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Take any shape but that, and my firm nerves

shall never tremble
William Shakespeare (1564–1616), Macbeth

16

Polymers and Particle Orbits
in Multiply Connected Spaces

In the previous chapter, the binary interaction potential between the polymer ele-
ments was approximated by a δ-function. Quantum-mechanically, this potential is
not completely impenetrable. Correspondingly, a polymer with such an interaction
has a finite probability of self-intersections. This is only a rough approximation to
the situation in nature where the atomic potential is of the hard-core type and self-
intersections are extremely rare. In a grand-canonical ensemble, a polymer is often
entangled with itself and with others. It can be disentangled only if it has open
ends. Macroscopic fluctuations are required to achieve this in the form of worm-like
creeping processes. Compared with local fluctuations, these take a very long time.
For closed polymers, disentangling is impossible without breaking bonds at the cost
of large activation energies. In order to study such entanglement phenomena in their
purest form, it is useful to idealize the strongly repulsive interaction potential, as in
Section 15.10, to a topological constraint of the type discussed in Chapter 6.

Entanglement phenomena play an important role also in quantum mechanics.
Fluctuating particle orbits may get entangled with magnetic flux tubes or with
other particle orbits. In fact, the statistical properties of Bose and Fermi particles
may be viewed as entanglement phenomena, as will be shown in this chapter.

16.1 Simple Model for Entangled Polymers

Consider the simplest model system with a topological constraint producing entan-
glement phenomena: a fixed polymer stretched out along the z-axis and a fluctuat-
ing second polymer. Arbitrary entanglements with the straight polymer may occur.
The possible entanglements of the fluctuating polymer with itself are ignored, for
simplicity. Let us study the end-to-end distribution of the fluctuating second poly-
mer. At first we neglect the third dimension, which can be trivially included at
a later stage, imagining the movement to be confined entirely to the xy-plane. If
the polymer along the z-axis is infinitely thin, the total end-to-end distribution of
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16.1 Simple Model for Entangled Polymers 1097

the fluctuating polymer in the plane is certainly independent of the presence of the
central polymer. In the random-chain approximation it reads for not too large R

PN(xb − xa) =

√

2

2πLa

2

e−(xb−xa)2/2La, (16.1)

where x is a planar vector.
In the presence of the central polymer, an interesting new problem arises: How

does the end-to-end distribution decompose with respect to the number of times by
which the fluctuating polymer is wrapped around the central polymer? To define
this number, we choose an arbitrary reference line from the origin to infinity, say the
x-axis. For each path from xa to xb, we count how often it crosses this line, including
a minus sign for opposite directions of the crossings. In this way, each path receives
an integer-valued label n which depends on the position of the reference line.

A property independent of the choice of the reference line exists for the pairs
of paths with fixed ends. The difference path is closed. The number n of times by
which a closed path encircles the origin is a topological invariant called the winding
number . Let us find the decomposition of the probability distribution of a closed
polymer PN(xb − xa) with respect to n:

PN (xb − xa) =
∞
∑

n=−∞

P n
N (xb,xa). (16.2)

The topological constraint destroys the translational invariance of the total dis-
tribution on the left-hand side, so that the different fixed-n distributions on the
right-hand side depend separately on both xb and xa.

In a path integral it is easy to keep track of the number of crossings n. The
angular difference between initial and final points xb and xa is given by the integral

ϕb − ϕa =
∫ tb

ta
dt ϕ̇(t) =

∫ tb

ta
dt
x1ẋ2 − x2ẋ1
x21 + x22

=
∫ xb

xa

x× dx

x2
. (16.3)

Given two paths C1 and C2 connecting xa and xb, this integral differs by an integer
multiple of 2π. The winding number is therefore given by the contour integral over
the closed difference path C:

n =
1

2π

∮

C

x× dx

x2
. (16.4)

In order to decompose the end-to-end distribution (16.2) with respect to the
winding number, we recall the angular decomposition of the imaginary-time evolu-
tion amplitude in Eqs. (8.9) and (8.17) of a free particle in two dimensions

PL(xb − xa) =
∑

m

1√
rbra

(rbτb|raτa)m
1

2π
eim(ϕb−ϕa), (16.5)
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with the radial amplitude

(rbτb|raτa)m = 2

√
rbra
La

e−(r2
b
+r2a)/LaIm

(

2
rbra
La

)

. (16.6)

We have inserted the polymer parameters following the rules of Section 15.6, replac-
ing M/2h̄(τb − τa) by 1/La, and using the label L = Na in PL rather than N , as in
Eq. (15.301).

We now recall that according to Section 6.1, an angular path integral consisting
of a product of integrals

N
∏

n=1

∫ π

−π

dϕn
2π

, (16.7)

whose conjugate momenta are integer-valued, can be converted into a product of
ordinary integrals

N
∏

n=1

∫ ∞

−∞

dϕn
2π

, (16.8)

whose conjugate momenta are continuous. These become independent of the time
slice n by momentum conservation, and the common momentum is eventually re-
stricted to its proper integer values by a final sum over an integer number n occurring
in the Poisson formula [see (6.9)]

∑

n

eik(ϕb+2πn−ϕa) =
∞
∑

m=−∞

δ(k −m)eim(ϕb−ϕa). (16.9)

Obviously, the number n on the left-hand side is precisely the winding number by
which we want to sort the end-to-end distribution. The desired restricted probability
P n
L (xb,xa) for a given winding number n is therefore obtained by converting the sum

over m in Eq. (16.5) into an integral over µ and another sum over n as in Eq. (1.205),
and by omitting the sum over n. The result is:

P n
L (xb,xa) =

2

La

∫ ∞

−∞
dµe−(r2

b
+r2a)/LaI|µ|

(

2
rbra
La

)

1

2π
eiµ(ϕb−ϕa+2πn). (16.10)

From this we find the desired probability of a closed polymer running through a
point x with various winding numbers n around the central polymer:

P n
L (x,x) =

2

La

∫ ∞

−∞
dµe−2r2/LaI|µ|

(

2
r2

La

)

1

2π
ei2πµn. (16.11)

Let us also calculate the partition function of a closed polymer with a given
winding number n. To make the partition function finite, we change the system by
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adding a harmonic oscillator potential centered at the origin.1 If ω is measured in
units 1/length, the above probability becomes

P n
L (x,x) =

2

a

ω

sinhωL

∫ ∞

−∞
dµe−2(r2/a)ω cothωLI|µ|

(

2

a

r2ω

sinhωL

)

1

2π
ei2πµn. (16.12)

This can be integrated over the entire space using the formula (2.475). The result
is

P n
L ≡

∫

d2xP n
L (x,x) =

1

2 sinhωL

∫ ∞

−∞
dµe−|µ|ωLe2πiµn. (16.13)

To check this formula, we sum both sides over all n. Then the integral over µ is
reduced, via Poisson’s formula, to a sum over integers µ = m = 0,±1,±2, . . . , and
we find

PL ≡
∫

d2xPL(x,x) =
∞
∑

n=−∞

P n
L

=
1

2 sinhωL

(

2

1− e−ωL
− 1

)

=
1

[2 sinh(ωL/2)]2
. (16.14)

As we should have expected, this is the partition function of the two-dimensional
harmonic oscillator.

To find the contribution of the various winding numbers, we perform the integral
over µ and obtain

P n
L =

ωL

sinhωL

1

4π2n2 + ω2L2
. (16.15)

The right-hand factor is recognized as a term arising in the expansion

1

2ωL
coth(ωL/2) =

∞
∑

n=−∞

1

4π2n2 + (ωL)2

=
1

L2

∞
∑

n=−∞

1

ω2
n + ω2

. (16.16)

The quantities ωn ≡ 2πn/L are the polymer analogs of the Matsubara frequencies.
Thus we may write

P n
L = PL · αn, (16.17)

where αn is the relative probability of finding the winding number n (with the
normalization Σnαn = 1),

αn =
1

ω2
n + ω2

[

∞
∑

n=−∞

1

ω2
n + ω2

]−1

=
1

L2

1

ω2
n + ω2

[

1

2ωL
coth

ωL

2

]−1

. (16.18)

1Alternatively, we may add a magnetic field with the Landau frequency ω = −eB/Mc, as done
in (16.33). Then the amplitude contains ω/2 instead of ω, and an extra factor emωL/2.
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16.2 Entangled Fluctuating Particle Orbit:
Aharonov-Bohm Effect

The entanglement of a fluctuating polymer around a straight central polymer has an
interesting quantum-mechanical counterpart known as the Aharonov-Bohm effect .
Consider a free nonrelativistic charged particle moving through a space containing
an infinitely thin tube of finite magnetic flux along the z-direction:

B3 =
g

2π
ǫ3jk∂j∂kϕ = g δ(2)(x⊥), (16.19)

where x⊥ is the transverse vector x⊥ ≡ (x1, x2). Let us study the associated path
integral. The magnetic interaction is given by [recall Eq. (2.635)]

Amag =
e

c

∫ tb

ta
dt ẋ ·A, (16.20)

where e is the charge and A the vector potential. The flux tube (16.19) is obtained
from the components in the xy-plane.

Ai =
g

2π
∂iϕ, (i = 1, 2), (16.21)

where ϕ is the azimuthal angle around the tube:

ϕ(x) ≡ arctan(x2/x1). (16.22)

Note that the derivatives in front of ϕ in (16.19) commute everywhere, except at
the origin where Stokes’ theorem yields

∫

d2x (∂1∂2 − ∂2∂1)ϕ =
∮

dϕ = 2π. (16.23)

The total magnetic flux through the tube is defined by the integral

Φ =
∫

d2xB3. (16.24)

Inserting (16.19) we see that the total flux is equal to g:

Φ = g. (16.25)

With the vector potentoal (16.21), the interaction (16.20) takes the form

Amag = −h̄µ0

∫ tb

ta
dt ϕ̇, (16.26)

where µ0 is the dimensionless number

µ0 ≡ − eg

2πh̄c
. (16.27)
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The minus sign is a matter of convention.
Since the particle orbits are present at all times, their worldlines in spacetime

can be considered as being closed at infinity, and the integral

n =
1

2π

∫ tb

ta
dt ϕ̇ (16.28)

is the topological invariant (16.4) with integer values of the winding number n. The
magnetic interaction (16.26) is therefore a purely topological one, its value being

Amag = −h̄µ0 2πn. (16.29)

After adding this to the action of a free particle in the radial decomposition (8.9)
of the quantum-mechanical path integral,we rewrite the sum over the azimuthal
quantum numbers m via Poisson’s summation formula as in (16.10), and obtain

(xbτb|xaτa) =
∫ ∞

−∞
dµ

1√
rbra

(rbτb|raτa)µ (16.30)

×
∞
∑

n=−∞

1

2π
ei(µ−µ0)(ϕb+2πn−ϕa).

Since the winding number n is often not easy to measure experimentally, let us
extract observable consequences which are independent of n. The sum over all n
forces µ to be equal to µ0 modulo an arbitrary integer number m = 0,±1,±2, . . . .
The result is

(xbτb|xaτa) =
∞
∑

m=−∞

1√
rbra

(rbτb|raτa)m+µ0

1

2π
eim(ϕb−ϕa), (16.31)

with the radial amplitude

(rbτb|raτa)m+µ0 =
√
rbra

M

h̄

1

(τb − τa)
exp

{

−M
2h̄

r2b + r2a
τb − τa

}

I|m+µ0|

(

M

h̄

rbra
τb − τa

)

.(16.32)

For the sake of generality, we allow for the presence of a homogeneous magnetic field
B whose Landau frequency is ω = −eB/Mc. In analogy with the parameter µ0 in
(16.27), it is defined with a minus sign. Using the radial amplitude (9.105), we see
that (16.32) is simply generalized to

(rbτb|raτa)m+µ0 =
√
rbra

Mω

2h̄η

η

sinh η
exp

[

−M
2h̄

ω

2
coth η(r2b + r2a)

]

× I|m+µ0|

(

Mωrbra
2h̄ sinh η

)

e(m+µ0)η, (16.33)

where η ≡ ω(τb − τa)/2.
At this point we can make an interesting observation: If µ0 is an integer number,

i.e., if

eg

2πh̄c
= integer, (16.34)
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the quantum-mechanical particle distribution function (x tb|x ta) in (16.31) becomes
independent of the magnetic flux tube along the z-axis. The condition implies that
the magnetic flux is an integer multiple of the fundamental flux quantum

Φ0 ≡ g0 ≡
2πh̄c

e
=
hc

e
. (16.35)

We recognize this infinitely thin tube as a Dirac string . Such undetectable strings
were used in Sections 8.12, Appendix 10A.3, and Section 14.6 to import the magnetic
flux of a magnetic monopole from infinity to a certain point where the magnetic
field lines emerge radially. In Appendix 10A.3 we have made the string invisible
mathematically imposing monopole gauge invariance. The present discussion shows
explicitly that the flux quantization makes Dirac strings indeed undetectable by any
charged particle. This observation inspired Dirac his speculation on the existence
of magnetic monopoles.

In low-temperature physics, a quantization of magnetic flux is observable in type-
II superconductors. Superconductors are perfect diamagnets which expel magnetic
fields. Those of type II have the property that above a certain critical external field
called Hc1, the expulsion is not perfect but they admit quantized magnetic tubes
of flux Φ0 (Shubnikov phase). For increasing fields, there are more and more such
flux tubes. They are squeezed together and can form a periodically arranged bundle.
When cut across in the xy-plane, the bundle looks like a hexagonal planar flux lattice
[4]. If the central magnetic flux tube in (16.19) carries an amount of flux that is not
an integer multiple of Φ0, the amplitude of particles passing the tube displays an
interesting interference pattern. This was initially a surprise since the space is free
of magnetic fields. To calculate this pattern we consider the fixed-energy amplitude
of a free particle in two dimensions (9.12), decomposed into partial waves via the
addition theorem (9.14) for Bessel functions as in (9.15):

(xb|xa)E = −2iM

h̄

∞
∑

m=−∞

Im(κr<)Km(κr>)
1

2π
eim(ϕb−ϕa). (16.36)

Comparing this with (16.30) and repeating the arguments leading to (16.31), (16.32),
we can immediately write down the fixed-energy amplitude in the presence of a flux
Φ0:

(xb|xa)E = −2iM

h̄

∞
∑

m=−∞

I|m+µ0|(κr<)K|m+µ0|(κr>)
1

2π
eim(ϕb−ϕa). (16.37)

The wave functions are now easily extracted. In the complex E-plane, the right-
hand side has a discontinuity across the positive real axis. By going through the
same steps as in (9.15)–(9.22), we derive for the discontinuity

∫ ∞

−∞

dE

2πh̄
disc(xb|xa)E =

∞
∑

m=−∞

∫ ∞

0
dkkJ|m+µ0|(krb)J|m+µ0|(kra)

1

2π
eim(ϕb−ϕb). (16.38)
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The integration measure
∫

(dE/2πh̄)(2πM/h̄) has been replaced by
∫∞
0 dkk according

to Eq. (9.23).
In the absence of the flux tube, the amplitude (16.38) reduces to that of a free

particle, which has the decomposition

∫ ∞

−∞

dE

2πh̄
disc(xb|xa)E =

∫

d2k

(2π)2
eik(xb−xa) =

1

2π

∫ ∞

0
dkkJ0(k|xb − xa|)

=
∞
∑

m=−∞

∫ ∞

0
dkkJm(krb)Jm(kra)

1

2π
eim(ϕb−ϕa). (16.39)

If a flux tube is present, a beam of incoming charged particles is deflected even
though the space around the z-axis contains no magnetic field. Let us calculate the
scattering amplitude and the ensuing cross section from the fixed-energy amplitude
(16.37). Recall the results of the quantum-mechanical scattering theory due to
Lippmann and Schwinger. In this theory one studies the effect of an interaction
upon an incoming free-particle state ϕk of wave vector k. The result is the scattering
state ψk obtained from the Lippmann-Schwinger integral equation

ψk = ϕk +
1

E − Ĥ0 + iη
V̂ ψk

= ϕk −
i

h̄
R̂(E) V̂ ϕk, (16.40)

where E is the energy of the incoming particle, V̂ the potential, and R̂(E) the
resolvent operator (1.319). The scattering states ψk are solutions of the Schrödinger
equation

Ĥψk = (Ĥ0 + V̂ )ψk = Eψk. (16.41)

In x-space, the Lippmann-Schwinger equation reads

ψk(x) = ϕk(x)−
i

h̄

∫

dDx′ (x|x′)EV (x′)ϕk(x
′). (16.42)

The first term describes the impinging particles, the second the scattered ones. For
the scattering amplitude, only the large-x behavior of the second term matters. One
usually normalizes ϕk(x) to e

ikx and factorizes the second term asymptotically into
a product of an outgoing spherical wave times a scattering amplitude. In three
dimensions, the asymptotic behavior far away from the scattering center is

ψk(x)
|x|→∞

−−−→ eikx +
ei|k||x|

|x| f(θ, ϕ) + . . . , (16.43)

where θ and ϕ are the scattering angles of the outgoing beam and f is the scattering
amplitude. Its square gives directly the differential cross section

dσ

dΩ
= |f(θ, ϕ)|2. (16.44)
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In two dimensions, the corresponding splitting is

ψk(x)
|x|→∞

−−−→ eikx +
ei|k||x|
√

|x|
f(ϕ) + . . . . (16.45)

The scattering amplitude f(ϕ) which depends only on the azimuthal angle ϕ =
arctan(x2/x1) yields the differential cross section

dσ

dϕ
= |f(ϕ)|2. (16.46)

To calculate f(ϕ), we observe that the most general solution Ψ(x) of the
Schrödinger equation (16.41) is obtained by forming the convolution integral of the
discontinuity of the resolvent with an arbitrary wave function φ(x):

ψ(x) =
∫

dDx′ disc(x|x′)E φ(x′). (16.47)

Using (16.38), this becomes some linear combination of wave functions J|m+µ0|(kr)

ψ(x) =
∞
∑

m=−∞

amJ|m+µ0|(kr)e
imϕ, (16.48)

which certainly satisfies the Schrödinger equation (16.41). The coefficients am have
to be chosen to satisfy the scattering boundary condition at spatial infinity. Suppose
that the incident particles carry a wave vector k = (−k, 0). In the incoming region
x→ ∞, they are described by a wave function

lim
x→∞

ψ(x) = e−ikxe−iµ0ϕ. (16.49)

The extra phase factor is necessary for the correct wave vector since in the presence
of the gauge field

eAi = −h̄cµ0∂iϕ, (16.50)

the physical momentum p = h̄k is not given by the usual derivative operator −ih̄∇
but by the gauge-invariant momentum operator

P̂ = −ih̄∇− e

c
A = −ih̄(∇+ iµ0∇ϕ). (16.51)

The corresponding incident gauge-invariant particle current is

j(x) = −i h̄
2M

ψ†
↔

∇ ψ(x)− e

Mc
A(x)ψ†ψ(x). (16.52)

We demonstrate below that the correct choice for the coefficients am is

am = (−i)|m+µ0|, (16.53)
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leading to the scattering amplitude

f(ϕ) =
1√
2π
e−iπ/4 sin πµ0

e−iϕ/2

cos(ϕ/2)
, (16.54)

i.e., to the cross section

dσ

dϕ
=

1

2π
sin2 πµ0

1

cos2(ϕ/2)
. (16.55)

It has a strong peak near the forward direction ϕ ≈ π. For µ0= integer, there is no
scattering at all and the flux tube becomes an invisible Dirac string.

To derive (16.53) and (16.54) we may assume that µ0 ∈ (0, 1). Otherwise, we
could simply shift the sum over m in (16.37) by an integer ∆m, and this would
merely produce an overall factor ei∆m(ϕb−ϕa) in disc(xb|xa)E. This would wind up
as a factor ei∆mϕ in ψ(x). For µ0 ∈ (0, 1), we split the wave function (16.48) into
three parts:

ψk = ψ(1) + ψ(2) + ψ(3). (16.56)

The first collects the terms with positive m,

ψ(1) =
∞
∑

m=1

(−i)m+µ0Jm+µ0e
imϕ, (16.57)

the second those with negative m,

ψ(2) =
−1
∑

m=−∞

(−i)m+µ0J|m+µ0|e
imϕ

=
∞
∑

m=1

(−i)m−µ0Jm−µ0e
−imϕ, (16.58)

and the third contains only the term m = 0,

ψ(3) = (−i)|µ0|J|µ0|. (16.59)

Obviously, ψ(2) may be obtained from ψ(1) via the identity

ψ(2)(r, ϕ, µ0) = ψ(1)(r,−ϕ,−µ0). (16.60)

Thus, the wave function (16.56) requires only a calculation of ψ(1).
As a first step we observe that the sum (16.57) has an integral representation

ψ(1) =
1

2
(−i)µ0e−iρ cosϕ I(ρ), (16.61)

with I(ρ) being the integral

I(ρ) ≡
∫ ρ

0
dρ′eiρ

′ cosϕ
(

J1+µ0 − iJµ0e
iϕ
)

. (16.62)
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We have set kr ≡ ρ such that kx ≡ ρ cosϕ. To prove the integral representation,
we differentiate (16.61) and find the differential equation

∂ρψ
(1) = −i cosϕ ψ(1) +

1

2
(−i)µ0

(

J1+µ0 − iJµ0e
iϕ
)

, (16.63)

with all functions depending only on kr ≡ ρ. Precisely the same equation is obeyed
by the sum (16.57):

∂ρψ
(1) =

∞
∑

m=1

(−i)m+µ0∂ρJm+µ0e
imϕ

=
∞
∑

m=1

(−i)m+µ0
1

2
(Jm+µ0−1 − Jm+µ0+1) e

imϕ (16.64)

= − i

2

∞
∑

m=1

(−i)m+µ0Jm+µ0e
imϕ

(

eiϕ + e−iϕ
)

+
1

2
(−i)µ0

(

J1+µ0 − iJµ0e
ie
)

.

Thus, the two expressions (16.57) and (16.61) for ψ(1) can differ at most by an
integration constant. However, the constant must be zero since both expressions
vanish at ρ = 0. This proves the integral representation (16.61).

In order to derive the scattering amplitude for the magnetic flux tube, we have
to find the asymptotic of the wave function. This is done by splitting ψ(1)

∞ into two
terms, a contribution ψ(1)

∞ in which the integral I is carried all the way to infinity, to
be denoted by I∞, and a remainder ∆ψ(1) which vanishes for r → ∞. The integral
I∞ can be calculated analytically using the formula

∫ ∞

0
dρeiβρJα(kρ) =

1

(k2 − β2)1/2
eiα arcsin(β/k), 0 < β < k, α > −2. (16.65)

This gives

I∞ ≡
∫ ∞

0
dρ′eiρ

′ cosϕ
(

J1+µ0 − iJµ0e
iϕ
)

=
1

| sinϕ|
[

eiµ0(π/2−|ϕ|) − ieiϕei(1+µ0)(π/2−|ϕ|)
]

=
i

| sinϕ|e
iµ0(π/2−|ϕ|)

(

e−i|ϕ| − eiϕ
)

=

{

0, ϕ < 0,
e−iµ0ϕ2iµ0 , ϕ > 0,

(16.66)

with ϕ ∈ (−π, π). Hence we have

ψ(1)
∞ =

{

0, ϕ < 0,
e−ikxe−iµ0ϕ, ϕ > 0.

(16.67)

Using (16.60), we find

ψ(2)
∞ =

{

e−ikxe−iµ0ϕ, ϕ < 0,
0, ϕ > 0.

(16.68)

The sum ψ(1)
∞ +ψ(2)

∞ represents the incoming wave (16.49). The scattered wave must
therefore reside in the remainder

ψsc = ∆ψ(1) +∆ψ(2) + ψ(3). (16.69)
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For the scattering amplitude, only the leading 1/
√
r-behavior of the three terms is

relevant. To find it for ∆ψ(1), we take (16.61) and write the remainder of the integral
(16.62) as

∆I(ρ) ≡ I(ρ)− I∞ =
∫ ∞

ρ
dρ′eiρ

′ cosϕ
(

J1+µ0 − ieiϕJµ0
)

. (16.70)

At large ρ, the asymptotic expansion

Jα(ρ) ∼
√

2/πρ cos(ρ− α/2− π/4) (16.71)

renders

∆I(ρ) =

√

2

π
[A(ρ) +B(ρ)], (16.72)

with the integrals

A(ρ) =
∫ ∞

ρ

dρ′√
ρ′
eiρ

′ cosϕ cos [ρ′ − (1 + µ0)/2− π/4] ,

B(ρ) = −ieiϕ
∫ ∞

ρ′

dρ′√
ρ′
eiρ

′ cosϕ cos [ρ′ − µ0/2− π/4] . (16.73)

Separating the cosine into exponentials and changing the variable ρ′ in the two terms
to ρ′ = t2/(1± cosϕ), we find

A(ρ) =

[

(−i)1/2+µ0√
1 + cos θ

∫ ∞

√
ρ(1+cosϕ)

dteit
2

+
i3/2+µ0√
1− cos θ

∫ ∞

√
ρ(1−cosϕ)

dte−it
2

]

,

(16.74)
and a corresponding expression for B(ρ). The asymptotic expansion of the error
function

∫ ∞

x
dte±it

2

= ± i

2

exp(±ix2)
x

+ . . . (16.75)

leads to

A(ρ) =
1

2



(−i) 1
2
+µ0

eiρ
√

ρ(1 + cosϕ)2
+ i

1
2
+µ0

e−iρ
√

ρ(1− cosϕ)2



 eiρ cosϕ,

B(ρ) = (−i)e
iϕ

2
(16.76)

×


(−i)− 1
2
+µ0

eiρ
√

ρ(1 + cosϕ)2
+ i−

1
2
+µ0

e−iρ
√

ρ(1 − cosϕ)2



 eiρ cosϕ.

Adding the two terms together in (16.72) and inserting everything into (16.61) gives
the asymptotic behavior

∆ψ(1) =

√
−i

2
√
2πρ

[

(−1)µ0eiρ
1 + eiϕ

1 + cosϕ
+ ie−iρ

1− eiϕ

1− cosϕ

]

. (16.77)
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Together with ∆ψ(2) found via (16.60), we obtain

∆ψ(1) +∆ψ(2) =

√
−i√
2πρ

[

eiρ
cos(πµ0 − ϕ/2)

cos(ϕ/2)
+ ie−iρ

]

+ e−i(ρ cosϕ+µ0ϕ).

(16.78)

Adding further ψ(3) from (16.59) with the asymptotic limit given by (16.71), the
total wave function is seen to behave like

ψ(x) → e−i(ρ cosϕ+µ0ϕ) + ψsc(x), (16.79)

with the scattered wave

ψsc =
1√
2πiρ

eiρ
sin πµ0

cos(ϕ/2)
e−iϕ/2. (16.80)

This corresponds precisely to the scattering amplitude (16.54) with the cross section
(16.55).

Let us mention that for half-integer values of µ0, the solution of the Schrödinger
equation has the simple integral representation

ψ(x) =

√

i

2
e−i(ϕ/2+ρ cosϕ)

∫

√
ρ(1+cosϕ)

0
dteit

2

. (16.81)

It vanishes on the line ϕ = π, i.e., directly behind the flux tube and is manifestly
single-valued.

16.3 Aharonov-Bohm Effect and Fractional Statistics

It was noted in Section 7.5 and it is worth mentioning once more in this context
that the amplitude for the relative motion of two fermion orbits can be obtained
from the amplitude of the Aharonov-Bohm effect.

For this, we take the amplitude with µ0 = 1 and sum it over the final states with
ϕb, ϕb + π, to account for particle identity. The result is

(xb|xa)E + (−xb|xa)E = −2iM

h̄

∑

m

I|m+1|(κr<)K|m+1|(κr>)

× 1

2π

[

eim(ϕb−ϕa) + (−)meim(ϕb−ϕa)
]

= −4iM

h̄
e−i(ϕb−ϕa)

∑

m=odd

I|m|(κr<)K|m|(κr>)
1

2π
eim(ϕb−ϕa). (16.82)

The sum over the two identical final states selects only the odd wave functions, as in
(7.267)–(7.268). When calculating observable quantities such as particle densities or
partition functions which involve only the trace of the amplitude, the phase factor
e−i(ϕb−ϕa) has no observable consequences and can be omitted.
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For µ0 6= 1, the resulting amplitudes may be interpreted as describing particles
in two dimensions obeying an unusual fractional statistics. This interpretation has
recently come to enjoy great popularity,2 since it has led to an understanding of the
experimental data of the fractional quantum Hall effect. The data can be explained
by the following assumption: The excitations of a gas of electrons with Coulomb
interactions in a quasi-two-dimensional material traversed by a strong magnetic
field can be viewed, to lowest approximation, as a gas of quasi-particles which has
no Coulomb interactions, but a new effective pair interaction. Each pair behaves
as if one partner were accompanied by a thin magnetic flux tube of a certain value
of µ0. While the quasi-particles of the ground state carry an integer-valued µ0 and
act statistically like ordinary electrons, the elementary excitations carry a fractional
value of µ0 and display fractional statistics (more in Section 16.11).

To study the fundamental thermodynamic properties of an ensemble of such
particles, we calculate the partition function of a particle running around a thin
flux tube along the z-axis. For finiteness, we assume the presence of an additional
homogeneous magnetic field in the z-direction. Ignoring the third dimension, we
take the amplitude (16.33), integrate it over all space, and find

Z =
∫

d2x(xbτb|xaτa)

=
1

2
eµ0η

∞
∑

m=−∞

emη
∫ ∞

0
dξe−ξ cosh ηI|m+µ0|(ξ), (16.83)

where

ξ ≡Mωr2/2h̄ sinh η (16.84)

[recall that ω = −eB/Mc and η = ω(τb−τa)/2]. To calculate the partition function,
the difference between the Euclidean times τb, τa is set equal to τb−τa = h̄/kβT = h̄β,
so that η = ωh̄β/2.

To deal with two identical particles, we also need the integral in which xb is
exchanged by −xb:

Zex =
∫

d2x(−xbτb|xaτa) =
1

2
eµ0η

∞
∑

m=−∞

(−)memη
∫ ∞

0
dξe−ξ cosh ηI|m+µ0|(ξ). (16.85)

In order to facilitate writing joint equations for both expansions, let us denote Z
and Zex by Z1 and Z1ex , respectively. The integrals are performed with the help of
formula (2.474), yielding the sums

Z1,1ex =
1

2

∞
∑

m=−∞

(±)meη(m+µ0)
1

sinh η
e−η|m+µ0|. (16.86)

These sums are obviously periodic under µ0 → µ0 + 2. Because of translational
invariance, the partition function Z ≡ Z1 diverges with the total area V =

∫

d2x as

2See Notes and References at the end of Chapter 7.
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an overall factor. To enforce convergence, we multiply the volume elements d2x with
an exponential regulating factor e−ǫξ. Then the area integrals can be extended over
all space. In terms of the variable ξ of (16.84), the measure in the above rotationally
symmetric integrals can be written as

d2x = l2e(T )
sinh η

η
dξ, (16.87)

with the thermal length le(T ) ≡
√

2πh̄2/kBTM introduced in Eq. (2.354). The role
of the total area V =

∫

d2x is now played by the finite quantity

V ≡
∫

d2xe−ǫξ =
l2e(T )

ǫ

sinh η

η
. (16.88)

Inserting the factor e−ǫξ into the integrals in Eqs. (16.83) and (16.85), and defining
a variable η′ slightly different from η by

cosh η′ ≡ ǫ+ cosh η, (16.89)

which has the expansion

eη
′

= cosh η′ +
√

cosh2 η′ − 1

= eη
(

1 +
ǫ

sinh η
− 1

2
e−η

ǫ2

sinh3 η
+ . . .

)

, η > 0, (16.90)

the regulated sums (16.86) for Z1 and Z1ex look almost the same as before:

Z1,1ex =
1

2

∞
∑

m=−∞

(±)meη(m+µ0)
1

sinh η′
e−η

′|m+µ0|. (16.91)

Separating positive and negative values of m + µ0, the two sums can be done for
µ0 ∈ (0, 1) and for µ0 ∈ (−1, 0). In the combined interval µ0 ∈ (−1, 1), we find

Z1,1ex =
1

2
eηµ0

1

sinh η′

{

e−η
′µ0

1∓ a
+
eη

′µ0

1∓ b
− eη

′|µ0|

}

, (16.92)

where

a ≡ eη−η
′

, b ≡ e−η−η
′

.

Two identical particles have the partition function

Z =
1

2
(Z1 + Z1ex) =

1

2
eηµ0

1

sinh η′

{

e−η
′µ0

1− a2
+

eη
′µ0

1− b2
− eη

′|µ0|

}

. (16.93)

It is symmetric under the simultaneous exchange µ0 → −µ0, η → −η. Outside the
interval µ0 ∈ (−1, 1), it is defined by periodic extension.
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In the absence of the thin flux tube we may take Z1,1ex directly from the amplitude
(2.668). For xb = xa and xb = −xa, this yields with the present variables

(xaτb|xaτa) = l−2
e (T )

η

sinh η
, (−xaτb|xaτa) = l−2

e (T )
η

sinh η
e−2 cosh η ξ. (16.94)

Their regulated spatial integrals are

Z1,0 =
1

2

∫ ∞

0
dξe−ǫξ =

1

2ǫ
,

Z1ex,0 =
1

2

∫ ∞

0
dξe−(ǫ+2cosh η)ξ =

1

2(ǫ+ 2 cosh η)
. (16.95)

The subtracted partition functions ∆Z1,1ex ≡ Z1,1ex− 1
2Z1,0 have a finite ǫ→ 0 -limit,

and ∆Z = Z − 1
2Z1,0 becomes for µ0 ∈ (0, 2)

∆Z = − 1

8 sinh η

[

cothη + 2(µ0 − 1)− 2e2(µ0+1)η 1

sinh 2η
+ 4e2ηµ0

]

. (16.96)

These results can be used to calculate the second coefficient appearing in a virial
expansion of the equation of state. For a dilute gas of particles with the above
magnetic interactions it reads

pV

NkBT
= 1 +

∞
∑

r=2

Brn
r−1. (16.97)

Here n is the number density of the particles N/V . In many-body theory it is shown
that the coefficient B2 depends on the two-body partition function Z2 as follows:

B2 = V

(

1

2
− Z2

Z2
1

)

, (16.98)

where Z1 is the two-dimensional single particle partition function of mass M . In the
presence of the homogeneous magnetic field, Z1 is given by Z1,0 of Eq. (16.95). With-
out the regulating factor, the spatial integral over the imaginary-time amplitude in
(16.94) gives directly

Z1 = V
η

l2e(T ) sinh η
. (16.99)

Separating the center of mass from the relative motion, we see that Z2 = 2Z1Zrel

and obtain

B2 =
V

Z1
(Z1/2− 2Zrel) =

l2e(T ) sinh η

2η
(Z1 − 4Zrel). (16.100)

The difference on the right-hand side is convergent for V → ∞. It can be evaluated
using any regulator for the area integration, in particular the exponential regulator
of Eq. (16.88).
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Figure 16.1 Second virial coefficient B2 as function of flux µ0 for various external

magnetic field strengths parametrized by η = −(eB/2Mc)h̄β. For a better comparison,

each curve has been normalized to unity at µ0 = 0.

The partition function for the relative motion of two identical particles is ob-
tained from Z by replacing M by the reduced mass, i.e., M → M/2. This renders
a factor 1/2 via l−2

e (T ). Hence Z1/2 − 2Zrel becomes equal to −∆Z and (16.100)
yields [5]

B2=
l2e(T )

4η

[

cothη +2(µ0 − 1)−2e2(µ0+1)η 1

sinh(2η)
+4e2ηµ0

]

. (16.101)

The behavior of B2 as a function of µ0 is shown in Fig. 16.1. In the absence of a
magnetic field, it reduces to

B2 =
l2e(T )

4

[

1− 2(1− |µ0|2)2
]

, µ0 ∈ (−1, 1). (16.102)

As µ0 grows from zero to infinity, B2 oscillates with a period 2 between B2 =
−l2e(T )/4 for even values of µ0, and B2 = l2e(T )/4 for odd values. These are the well-
known second virial coefficients of free bosons and fermions. They can, of course, be
obtained in a simpler and more direct way from the symmetric and antisymmetric
combinations of (16.95), Z0 = (1/2)(Z1,0±Z1ex,0). Subtracting Z1,0 leaves ±Z1ex,0/2
which reduces for η = 0 to ±1/8. Accounting for the factor 2 in the reduced mass,
this yields B2 = ∓l2e(T )/4.

The expression (16.102) can be interpreted as the virial coefficient of particles
which are neither bosons nor fermions, but obey the laws of fractional statistics.
These particles are the anyons introduced in Section 7.5. Unfortunately, there are
at present no experimental data for the virial coefficients to which the theoretical
expressions (16.102) [or (16.101)] could be compared.

At this point we should mention older, meanwhile discarded speculations that
the phenomenon of high-temperature superconductivity might be explained by frac-
tional statistics of some elementary excitations. Indeed, the change in statistics can
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Figure 16.2 Lefthanded trefoil knot in polymer.

be derived from the electromagnetic interaction between the electrons in a quasi-two-
dimensional layer of material moving in a strong magnetic field. Also, it is possible
to construct a model of anyonic two-dimensional superconductivity in which topo-
logical effects lead to a Meissner screening of magnetic fields (see Section 16.13). A
closer investigation, however, shows that the currents in the model show dissipation
after all.

It must be emphasized that the equality between electromagnetic and statistical
interaction used in the above calculations is restricted to two-particle systems and
cannot be extended to arbitrarily many particles as in Section 7.5. Although it is
possible to distribute the magnetic flux in a many-particle system equally between
the constituents producing the desired behavior under particle exchange, an equal
distribution of the charges would create an unwanted additional Coulomb potential,
and the purely topological character of the interaction would be destroyed. The
problem does not arise for charged particles such as electrons. Nevertheless, there
is a definite need for a better and universally applicable theoretical description of
anyons. This will be presented in Section 16.7.

16.4 Self-Entanglement of Polymer

An interesting consequence of the excluded-volume properties of polymers is the
possibility of a self-entanglement of a closed polymer. Since its line elements are
forbidden to cross each other, the fluctuations are unable to explore all possible
configurations. An initially circular polymer, for example, can never turn into a
trefoil knot of the form shown in Fig. 16.2 without breaking a molecular bond.
In the chemical formation process of a large number of polymers, many

entangled configurations arise. It is an interesting problem to find the distribu-
tion of the various independent topology classes. Until recently, the lack of theo-
retical methods has made analytic work almost impossible, restricting it to classi-
fication questions. Only Monte Carlo methods have yielded quantitative insights.
Since 1989, however, interesting new quantum field-theoretic methods have been
developed promising significant progress in the near future. Here we survey these
methods and indicate how to derive analytic results. First, we introduce the relevant
topological concepts.

A closed polymer will in general form a knot. A circular polymer represents
a trivial knot. Two knots are called equivalent if they can be deformed into each
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Figure 16.3 Nonprime (compound) knot. The dashed line separates two pieces. After

closing the open ends, the pieces form two prime knots.

Figure 16.4 Illustration of multiplication law a1a2 ≈ a3 in knot group. The loops a1
and a2 are equivalent, a1 ≈ a2, while a4 ≈ a−1

1 .

other without breaking any line. Such deformations are called isotopic. A first
step towards the classification consists in separating the equivalence classes into
irreducible and reducible ones, defining prime or simple knots and nonprime or
compound knots, respectively. A compound knot is characterized by the existence
of a plane which is intersected twice (after some isotopic deformation) (see Fig. 16.3).
By closing the open ends on each side of the plane one obtains two new knots. These
may or may not be reduced further in the same way until one arrives at simple knots.
One important step towards distinguishing different equivalence classes of simple and
compound knots is the knot group defined as follows. In the multiply connected
space created by a certain knot, choose an arbitrary point P (see Fig. 16.4). Then
consider all possible closed loops starting from P and ending again at P . Two such
loops are said to be equivalent if they can be deformed into each other without
crossing the lines of the knot under consideration. The loops are, however, allowed
to have arbitrary self-intersections. The classes of equivalent knots form the knot
group. Group multiplication is defined by running through any two loops of two
equivalence classes successively. The class whose loops can be contracted into the
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Figure 16.5 Inequivalent (compound) knots possessing isomorphic knot groups. The

upper is the granny knot , the lower the square knot . They are stereoisomers characterized

by the same Alexander polynomial (t2 − t+ 1)2 but different HOMFLY polynomials [see

(16.126)].

point P is defined as the unit element e. Changing the orientation of the loops in a
class corresponds to inverting the associated group element.

In this way, the classification of knots can be related to the classification of all
possible knot groups. Consider the trivial knot, the circle. Obviously, the closed
loops through P fall into classes labeled by an integer number n. The associated
knot group is the group of integers. Conversely, no nontrivial knot is associated with
this group.

Although this trivial example might at first suggest a one-to-one correspondence
between the simple knots and their knot groups, there is none. Many examples
are known where inequivalent knots have isomorphic knot groups. In particular,
all mirror-reflected knots which usually are inequivalent to the original ones (such
as the right- and left-handed trefoil), have the same knot group. Thus, the knot
groups necessarily yield an incomplete classification of knots. An example is shown
in Fig. 16.5.

Fortunately, the degeneracies are quite rare. Only a small fraction of inequivalent
knots cannot be distinguished by their knot groups.

The easiest way of picturing a knot in 3 dimensions is by drawing its projection
onto the paper plane. The lines in the projection show a number of crossings ,
and the drawing must distinguish the top from the bottom line. The knot is then
deformed isotopically until the projection has the minimal number of crossings. In
the projection, all isotopic deformations can be decomposed into a succession of
three elementary types, the so-called Reidemeister moves shown in Fig. 16.6.

A picture of all simple knots up to n = 8 is shown in Fig. 16.7. The numbers of
inequivalent simple and compound knots with a given number n of minimal crossings
are listed in Table 16.1.

The projected pictures can be used to construct an important algebraic quantity
characterizing the knot group, called the Alexander polynomial discovered in 1928.
It reduces the classification of knot groups to that of polynomials. This type of work
is typical of the field of algebraic topology.
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Figure 16.6 Reidemeister moves in projection image of knot which do not change its

class of isotopy. They define the movements of ambient isotopy . For ribbons, only the

second and third movements are allowed, defining the regular isotopy . The first movement

is forbidden since it changes its writhe [for the definition see Eq. (16.110)].

Table 16.1 Numbers of simple and compound knots with n minimal crossings in a pro-

jected plane.

n simple knots compound knots
0 1 0
1 0 0
2 0 0
3 1 0
4 1 0
5 2 0
6 3 1
7 7 1
8 21 3
9 49 5
10 166 10
11 548 37
12 – 154
13 – 484
14 – 1115

We explain the construction for the trefoil knot. Attaching a directional arrow
to the polymer and selecting an arbitrary starting point, we follow the arrow until
we run into a first underpass. This point is denoted by 1. Now we continue to the
next underpass denoted by 2, etc., up to n (see Fig. 16.8). The polymer sections
between two successive underpasses i and i+ 1 are named xi+1. At each underpass
from xi to xi+1, we record (see Table 16.2) whether the overpassing section xk runs
from right to left (type r) or from left to right (type l). We now set up a matrix
Aij. Each underpass with label i defines a row Aij, j = 1, 2, 3, . . . according to the
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Figure 16.7 Simple knots with up to 8 minimal crossings. The number of crossings

under each picture carries a subscript enumerating the equivalence classes.
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Figure 16.8 Labeling of underpasses for construction of Alexander polynomial t2− t+1

of the left-handed trefoil.

Table 16.2 Tables of underpasses (under) and directions (dir) r or l ofoverpassing lines

(over), for trefoil knot 31 and knot 41 of Fig. 16.7.

31 :

under over dir
x1 x3 r
x2 x1 r
x3 x2 r

41 :

under over dir
x1 x4 r
x2 x1 l
x3 x2 r
x4 x3 l

following rules: Let xk be the overpassing section. If xk coincides with xi or xi+1

the underpass is called trivial . In this, case the ith row of the matrix Aij has the
elements

Aii = −1, Ai,i+1 = 1. (16.103)

All other row elements Aij vanish. If the underpass is nontrivial, the nonvanishing
row elements are

Aii = 1, Aii+1 = −t, Aik = t− 1, type r (right to left), (16.104)

Aii = −t, Aii+1 = 1, Aik = t− 1, type l (left to right). (16.105)

In this way, we find the matrix of the trefoil knot:

Aij =







1 −t t− 1
t− 1 1 −t
−t t− 1 1





 . (16.106)

As another example, the knot 41 in Fig. 16.7 has the matrix

Aij =











1 −t 0 t− 1
t− 1 −t 1 0
0 t− 1 1 −t
1 0 t− 1 −t











. (16.107)
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Table 16.3 Alexander, Jones, and HOMFLY polynomials for smallest simple knots up

to 8 crossings. The numbers specify the coefficients; for instance, the knot 71 has the

Alexander polynomial A(t) = 1 − t+ t2 − t3 + t4 − t5 + t6 and the knot 88 has the Jones

polynomial J(t) = t−3(1 − t + 2t2 − t3 + t4). For the HOMFLY polynomial H(t, α), see

the explanation on p. 1125.

A(t) J(t) H(t,α)

31 1−11 (0)1 ([0]2−1)([0]1)

41 1−31 (−2)−1 (1[−1]1)([−1])

51 1−11−11 (0)1101 ([0]03−2)([0]041)([0]01)

52 2−32 (0)101 ([0]11−1)([0]11)

61 2−52 (−2)−10−1 (1[0]−11)([−1]−1)

62 1−33−31 (−1)−11−1 ([2]−21)(1[−3]1)([0]1)

63 1−35−31 (−3)1−11 (−1[3]−1)(−1[3]−1)(1) s

71 1−11−11−11 (0)1111101 ([0]004−3)([0]0010−4)([0]006−1)([0]001)

72 3−53 (0)10101 ([0]10−11)([0]111)

73 2−33−32 (0)110201 (−22−10[0])(−1330[0])(1100[0])

74 4−74 (0)10201 (−1020[0])(121[0])

75 2−45−42 (0)1102−11 ([0]020−1)([0]032−1)([0]011)

76 1−57−51 (−1)−12−11 ([1]−12−1)([1]−22)([0]−1)

77 1−59−52 (−3)1−21−1 (1−2[2])(−2[2]−1)([1])

81 3−73 (−2)−10−10−1 (1−10[0]1)(−1−1[−1])

82 1−33−33−31 (1)1−11−1 (1−33[0])(3−74[0])(1−51[0])(−10[0])

83 4−94 (−4)−10−20−1 (10[−1]01)(−1[−2]−1) s

84 2−55−52 (−3)−10−21−1 (2[−2]01)(1[−3]−21)([−1]−1)

85 1−34−55−31 (1)1−21−1 (2−54[0])(3−84[0])(1−51[0])(−10[0])

86 2−67−62 (−1)−11−21−1 (1−1−1[2])(1−2−2[1])(−1−1[0])

87 1−35−55−31 (−2)1−12−11 ([−1]4−2)([−3]8−3)([−1]5−1)([0]1)

88 2−69−62 (−3)1−12−11 (−1[2]1−1)(−1[2]2−1)([1]1)

89 1−35−75−31 (−4)−11−21−1 (2[−3]2)(3[−8]3)(1[−5]1)([−1]) s

810 1−36−76−31 (−2)1−13−11 ([−2]6−3)([−3]9−3)([−1]5−1)([0]1)

811 2−79−72 (−1)−12−21−1 (1−21[1])(1−2−1[1])(−1−1[0])

812 1−7(13)−71 (−4)−11−31−1 (1−1[1]−11)(−2[1]−2)([1]) s

813 2−7(11)−72 (−3)1−22−11 ([0]2−1)(−1[1]2−1)([1]1)

814 2−8(11)−82 (−1)−12−22−1 ([1])(1−1−1[1])(1−1[0])

815 3−8(11)−83 (0)1103−22−1 (1−4310[0])(−3520[0])(210[0])

816 1−48−98−41 (−2)1−23−21 ([0]2−1)([−2]5−2)([−1]4−1)([0]1)

817 1−48−(11)8−41 (−4)−12−32−1 (1[−1]1)(2[−5]2)(1[−4]1)([−1]) s

818 1−5(10)−(13)(10)−51 (−4)−13−33−1 (−1[3]−1)(1[−1]1)(1[−3]1)([−1]) s

819 1−1010−11 (0)11111 (1−5500[0])(−5(10)00[0])(−1600[0])(100[0])

820 1−23−21 (−1)101 ([−1]4−2)([−1]4−1)([0]1)

821 1−45−41 (0)1−11−1 (1−33[0])(1−32[0])(−10[0])
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Figure 16.9 Exceptional knots found by Kinoshita and Terasaka (a), Conway (b), and

Seifert (c), all with same Alexander polynomial as trivial knot [|A(t)| ≡ 1].

Having set up the n × n-matrix Aij , we choose an arbitrary subdeterminant
(minor) of order n − 1. It is a polynomial in t with integer coefficients. This
polynomial is divided by a suitable power of t to make it start out with a constant.
The result is the Alexander polynomial A(t). It is independent of the choice of the
subdeterminant.

For the left-handed trefoil, the matrix (16.106) yields

A(t) = t2 − t+ 1. (16.108)

For the knot 41, we find from (16.107)

A(t) = t2 − 3t+ 1. (16.109)

The Alexander polynomials of the simple knots in Fig. 16.7 are shown in Table 16.3.
Note that the replacement t→ 1/t leaves the Alexander polynomial invariant (after
renormalizing it back by some power of t to start out with a constant).

The Alexander polynomial of a composite knot factorizes into those of the simple
knots it is composed of. If two knots are mirror images of each other, they have
the same knot group and the same Alexander polynomials. Due to the factoriza-
tion property, two composite knots whose simple parts differ by mirror reflection
(stereoisomers ; see Fig. 16.5) have the same polynomial. Thus the Alexander poly-
nomial cannot render a complete classification of inequivalent knots. This is true
even after removing degeneracies of the above type. In Fig. 16.9, we give the sim-
plest examples of knots with an Alexander polynomial A(t) ≡ ±1 of the trivial knot.
Up to 11 crossings, these are the only examples. Since the total number of simple
knots up to n = 11 is 795, the exceptions are indeed very few.

Recent years have witnessed the development of simpler construction procedures
and more efficient polynomials for the classification of knots and links of several
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knots, the Jones and the HOMFLY polynomials3 and their generalizations. The
former depend on one, the latter on two variables, one of which occurs also with
inverse powers, i.e., in this variable the polynomials are of the Laurent type. Other
polynomials found in the literature, such as Conway , X-, or Kauffman’s bracket
polynomials , are special cases of the HOMFLY polynomials. In addition, there exist
a different type of Kauffman polynomials and of BLM/Ho polynomials F (a, z) and
Q(x), respectively, which are capable of distinguishing some knots with accidentally
degenerate HOMFLY polynomials. They will not be discussed here. For their
definition see Appendix 16B.

The X-polynomial X(a) is trivially related to the Jones polynomial J(t), to
which it reduces after a variable change a = t1/4. The X-polynomial is closely
related to the Kauffman polynomial K(a) by

X(a) = (−a)−3wK(a). (16.110)

The number w is the cotorsion, also called twist number , Tait number , or writhe
[6]. It is defined by giving the loop or link an orientation and attributing to each
crossing a number 1 or −1 according to the following rule. At each crossing follows
the overpass along the direction of orientation. If the underpass runs from right to
left, the crossing carries the number 1, otherwise −1. The sum of these numbers is
the cotorsion w. In the trefoil knot in Fig. 16.2 each crossing carries a −1 so that
w = −3.

The Kauffman polynomial is found by a very simple construction procedure. A
set of n trivial loops is defined to have the Laurent polynomial

Kn(a) = −(a2 + a−2)n−1. (16.111)

Every knot or link can be reduced to such loops by changing the crossings recursively
into two new configurations according to the graphical rule shown in Fig. 16.10.

L+ L0 L∞

= a + a−1

Figure 16.10 Graphical rule for removing crossing in generating Kauffman polynomial.

The first configuration is associated with a factor a, the second with a factor a−1.
The configuration receiving the factor a is most easily identified by approaching
the crossing on the underpassing curve and taking a right turn. The two new

3The word “HOMFLY” collects the initials of the authors (Hoste, Ocneanu, Millet, Freyd,
Lickorish, Yetter). The papers are quoted in Notes and References.



1122 16 Polymers and Particle Orbits in Multiply Connected Spaces

Figure 16.11 Kauffman decomposition of trefoil knot. The configuration 3 is the Hopf

link. The calculation of the associated polynomials is shown in Table 16.4.

Table 16.4 Kauffman polynomials in decomposition of trefoil knot.

link bracket polynomial rule
15 −a2 − a−2 Eq. 16.111
14 1 Eq. 16.111
13 1 Eq. 16.111
12 −a2 − a−2 Eq. 16.111
11 1 Eq. 16.111
10 −a2 − a−2 Eq. 16.111
9 −a2 − a−2 Eq. 16.111
8 −a4 − 2− a−4 Eq. 16.111
7 −a−3 a〈14〉+ a−1〈15〉, Fig. 16.10
6 −a3 a〈12〉+ a−1〈13〉, Fig. 16.10
5 −a3 a〈10〉+ a−1〈11〉, Fig. 16.10
4 a5 + a a〈8〉+ a−1〈9〉, Fig. 16.10
3 −a4 − a−4 a〈6〉+ a−1〈7〉, Fig. 16.10
2 a6 a〈4〉+ a−1〈5〉, Fig. 16.10
1 a7 − a3 − a−5 a〈2〉+ a−1〈3〉, Fig. 16.10

configurations are processed further in the same way and so on until one arrives
only at trivial loops. By applying these rules to a trefoil knot, we obtain a knot and
a link known as the Hopf link . These are decomposed further as shown in Fig. 16.11.
The Kauffman polynomials of each part are listed in Table 16.4. The polynomial of
the trefoil knot is

K(a) = a7 − a3 − a−5. (16.112)
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Since w = −3, we obtain with the factor (−a)−3w = −a9 the X-polynomial

X(a) = −a16 + a12 + a4. (16.113)

This corresponds to a Jones polynomial J(t) = t+ t3 − t4.
For the Jones polynomials, there exists a simple direct construction. According

to J.H. Conway, any knot can be related to lower knots or links by performing the
skein operations shown in Fig. 16.12 on any crossing in the projection plane. Either

Figure 16.12 Skein operations relating higher knots to lower ones.

a crossing L+ is transformed into L− and L+, or L+ is transformed into L− and L0.
For knots related in this way one defines the Jones polynomial J(t) recursively by
the skein relation

1

t
JL+(t)− tJL−(t) =

(√
t− 1√

t

)

JL0(t). (16.114)

The circular loop is defined to have the trivial polynomial J(t) ≡ 1. By applying the
skein operations to two disjoint unknotted loops in Fig. 16.13, one finds the Jones
polynomial

J2(t) = −(
√
t+ 1/

√
t). (16.115)

Upon carrying this procedure to n such loops, we find

Jn(t) = [−(
√
t+ 1/

√
t)]n−1, (16.116)

in agreement with (16.111). For the lowest knots, the Jones polynomials are listed
in Table 16.3. Up to nine crossings, the Jones polynomials distinguish mirror-
symmetric knots.

Conway discovered the first skein relation in 1970 when trying to develop a
computer program for calculating Alexander polynomials. He found the Alexander
polynomials to obey modulo the normalization convention, the skein relation

AL+(t)−AL−(t) = (
√
t− 1/

√
t)AL0(t), (16.117)

which eventually reduces the polynomials of all knots to the trivial one A1(t) = 1.
The skein relation simplifies the procedure so much that Conway was able to work
out by hand all polynomials known at that time. Because of the simplicity of
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Figure 16.13 Skein operations for calculating Jones polynomial of two disjoint unknotted

loops.

Figure 16.14 Skein operation for calculating Jones polynomial of trefoil knot.

Figure 16.15 Skein operation for calculating Jones polynomial of Hopf link.

this procedure, the Alexander polynomials are now often referred to as Alexander-
Conway polynomials .

Let us now calculate the Jones polynomial for the trefoil knot 31 of Fig. 16.7.
First we apply the skein operation shown in Fig. 16.14. The loop L− is unknotted
and has a unit polynomial. Thus we obtain the polynomial relation

Jtrefoil(t)JL+(t) = t2 · 1 + t(
√
t− 1/

√
t)JL0(t). (16.118)

The configuration L0 is known as a Hopf link . It needs one more reduction4 via the
operation shown in Fig. 16.15, resulting in the relation

1

t
JL 0

+

(t) = tJ2(t) + (
√
t− 1/

√
t)J1(t). (16.119)

4The Kauffman bracket polynomial of the Hopf link is KL0
(a) = −a4− a−4. Together with the

cotorsion w = −2, this amounts to an X-polynomial X(a) = −a10 − a2 and the Jones polynomial
JL0

(t) = −
√
t(1 + t2) as in (16.120).
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Using (16.111), we find

JL0(t) = −
√
t(1 + t2). (16.120)

Inserting this into (16.118) leads to the Jones polynomial of the trefoil knot

Jtrefoil = t+ t3 − t4. (16.121)

It differs from the result found above for the left-handed trefoil by the substitution
t→ t−1.

The HOMFLY polynomials HL(t, α) are obtained from a slight generalizations
of the skein relation (16.114) of the Jones polynomials: The factor (

√
t− 1/

√
t) on

the right-hand side is replaced by an arbitrary parameter α, leading to the skein
relation

1

t
HL+(t, α)− tHL−(t, α) = αHL0(t, α). (16.122)

The trivial knot is defined to have the trivial polynomial H1(t, α) = 1. For two
independent loops, the relation yields

H2(t, α) = (t−1 − t)α−1. (16.123)

The HOMFLY polynomials H(t, α) transform under a mirror reflection of the knot
into H(−t−1, α). Note that H2(t, α) is mirror-symmetric [H1(t, α) is trivially so].5

In general, the HOMFLY polynomials give reliable information on a possible mirror
symmetry. There are, however, a few exceptions, i.e., mirror-related pairs of knots
possessing the same HOMFLY polynomial.6

Examples for HOMFLY polynomials are

Htrefoil(rh)(t, α) = −t4 + 2t2 + t2α2,

Htrefoil(lh)(t, α) = −t−4 + 2t−2 + t−2α2,

HHopf(rh)(t, α) = (t− t3)α−1 + tα,

Hknot 41(t, α) = t−2 − 1 + t2 − α2. (16.124)

Setting α = t1/2−t−1/2 produces the Jones polynomials, while t→ 1, α→ t1/2−t−1/2

leads, with appropriate powers of t as normalization factors, back to the Alexander-
Conway polynomials.

In Table 16.3, the HOMFLY polynomials are listed for knots up to 8 cross-
ings. For mirror-unsymmetric knots, only one partner is recorded. The re-
flected polynomial is obtained by the substitution t → −t−1. The meaning
of the entries is best explained with an example: The knot 71 has an entry
([0]004 − 3)([0]00(10) − 4)([0]006 − 1)([0]001), which stands for the polynomial

5For the Kauffman polynomials F (a, x) defined in Appendix 16B, mirror reflection implies
F (a, x) → F (a−1, x).

6The first degeneracy of this type occurs for a link of 3 loops with 8 crossings.
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H(t, α) = (4t6 − 3t8) + (10t6 − 4t8)α2 + (6t6 − t8)α4 + t6α6. A bracket marks
the position and coefficient of the zeroth power in t2; the numbers to the right and
the left of it specify the coefficients of the adjacent higher and lower powers of t2,
respectively. Numbers with more than one digit are put in parentheses. The poly-
nomial of the reflected knot is obtained by reflecting the numbers in parentheses on
the associated bracket. The knots marked by an s are mirror-symmetric.

The Alexander-Conway polynomials are special cases of the HOMFLY polyno-
mials. A comparison with the skein relation (16.117) shows that they are obtained
from them by setting t = 1 and replacing α by t1/2 − t−1/2:

AL(t) = HL(1, t
1/2 − t−1/2). (16.125)

The reducible granny and square knots in Fig. 16.5 are distinguished by the
Jones and the HOMFLY polynomials; the latter are

Hgranny(t, α) = (2t2 − t4 + t2α2)2,

Hsquare(t, α) = (2t2 − t4 + t2α2)(2t−2 − t−4 + t2α2); (16.126)

the former are obtained by inserting α = t1/2 − t−1/2.
Up to now, there exists no complete algebraic classification scheme. For example,

the Jones polynomials of the knots with 10 and 13 crossings shown in Fig. 16.16 are

Figure 16.16 Knots with 10 and 13 crossings, not distinguished by Jones polynomials.

the same.7 For further details, see the mathematical literature quoted at the end of
the chapter.

Even with the incomplete classification of knots, it has until now been impossible
to calculate the probability distribution of the various equivalence classes of knots.
Modern computers allow us to enumerate the different topological configurations for
not too long polymers and to simulate their distributions by Monte Carlo methods.
In Fig. 16.17 we show the result of a simulation by Michels and Wiegel, where they
measure the fraction fN of unknotted polymers of N links. They fit their curve by
a power law

fN = CµNNα, (16.127)

7The HOMFLY polynomials have their first degeneracy for prime knots with 9 crossings. It was
checked that up to 13 crossings (amounting to 12 965 knots) no polynomial of a nontrivial knot is
accidentally degenerate with the trivial polynomial of a circle.
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Figure 16.17 Fraction fN of unknotted closed polymers in ensemble of fixed length

L = Na.

with the parameters C ≈ 1.026, µ ≈ 0.99640, α ≈ 0.0088. Thus fN falls off expo-
nentially in N like µN with µ < 1. The exponent α is extremely small. A more
recent simulation by S. Windwer takes account of the fact that the line elements are
self-avoiding. It yields the parameters8

C ≈ 1.2325, µ ≈ 0.9949, α ≈ 0. (16.128)

For a polymer enclosed in a sphere of radius R, the distribution has the finite-size
dependence

fN(R) = e−A(N
β l/R)γ , (16.129)

where l is the length of a link. The “critical exponents” are β ≈ 0.76 and γ ≈ 3.

16.5 The Gauss Invariant of Two Curves

For any analytic calculation of topological properties one needs a functional of the
polymer shape which is capable of distinguishing the different knot classes. Initially,

8A first theoretical determination of these parameters has recently been given by mapping the
problem onto a four-state Potts model. A presentation of this method which does not involve path
integrals would go beyond the scope of this book. See the papers by A. Kholodenko quoted at the
end of the chapter.
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a hopeful candidate was the one-loop version of the contour integral introduced
almost two centuries ago by Gauss for a pair of closed curves C and C ′:

G(C,C ′) =
1

4π

∮

C

∮

C′
[dx× dx′] · x− x′

|x− x′|3 . (16.130)

Gauss proved this to be a topological invariant. In fact, we may rewrite (16.134)
with the help of the δ-function (10A.8) as

∮

C
dx
∮

C′

dx′ × (x− x′)

|x− x′|3 = −
∫

d3x Æ(x;C) ·
[

∫

d3x′ Æ(x′;C ′)× R′

R′3

]

(16.131)

The second integral is recognized as the gradient of the multivalued field Ω(x;C ′)
defined by Eqs. (10A.18), which is the solid angle under which the contour C ′ is
seen from the point x, so that

G(C,C ′) = − 1

4π

∫

d3x Æ(x;C) ·∇Ω(x;C ′). (16.132)

Inserting here Eq. (10A.27), where S ′ is any surface enclosed by the contour L′, and
using the fact that

∫

d3x Æ(x;C) ·∇Ω(x;S ′) = −
∫

d3x∇ · Æ(x;C)Ω(x;S ′) = 0, (16.133)

due to (10A.9) and the fact that Ω(x;S) = 0 is single-valued, we obtain

G(C,C ′) = −
∫

d3x Æ(x;C) · Æ(x;S ′). (16.134)

This is a purely topological integral. By rewriting it as

G(C,C ′) = −
∮

C
dxi δi(x;S

′), (16.135)

we see that G(C,C ′) gives the linking number of C and C ′. It is defined as the
number of times by which one of the curves, say C ′, perforates the surface S spanned
by the other.

Alternative expressions for the Gauss integral (16.134) are

G(C,C ′) = − 1

4π

∮

C′
dΩ′(x′;C) = − 1

4π

∮

C
dΩ(x, C ′), (16.136)

where where Ω′(x′;S) is the solid angle under which the curve C is seen from the
point x′.

The values of the Gauss integral for various pairs of linked curves up to 8 crossings
are given in the third column of Table 16.5. All the intertwined pairs of curves
labeled by 21, 71, 72, 87, for instance, have a Gauss integral G(C,C ′) = ±1.
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Let us end this section by another interpretation of the Gauss integral. According
to Section 10A.1, the solid angle Ω is equal to the magnetic potential of a current
4π running through the curve C ′. Its gradient is the magnetic field

Bi = ∂iΩ. (16.137)

Hence we can write

G(C,C ′) = −
∮

C
dxiBi = −

∮

C′
dx′iB

′
i. (16.138)

According to this expression, G(C,C ′) gives the total work required to move a unit
magnetic charge around the closed orbit C in the presence of the magnetic field due
to a unit electric current along C ′.

Unfortunately, there exists no such topologically invariant integral for a single
closed polymer. If we identify the curves C and C ′, the Gauss integral ceases to be
a topological invariant. It can, however, be used to classify self-entangled ribbons .
These possess two separate edges identified with C and C ′. Such ribbons play
an important role in biophysics. The molecules of DNA, the carriers of genetic
information on the structure of living organisms, can be considered as ribbons.
They consist of two chains of molecules connected by weak hydrogen bridges. These
can break up thermally or by means of enzymes decomposing the ribbon into two
single chains.

16.6 Bound States of Polymers and Ribbons

Two or more polymers may line up parallel to each other and form a bound state.
The most famous example is the molecule of DNA. It is a bound state of two long
chains of molecules which may contain a few thousand up to several billion links.
The distance d between the two chains is about 20A

◦

. In equilibrium, the two chains
are twisted up in the form of a double helix, rising by about 20A

◦

(i.e., about 10
monomers) per turn (see Fig. 16.18). The DNA molecule may be idealized as an
infinitesimally thin ribbon. The ribbon is always two-sided since the edges of the
ribbon are made up of different phosphate groups whose chemical structure makes
the binding unique. One-sided structures formed by a Möbius strip are excluded.

Circular DNA molecules have interesting topological properties. In the double
helix, one edge passes through the other an integer number of times. This is the
linking number Lk of the double helix. Being a topological invariant, it does not
change if the two closed edges become unbound and distorted into an arbitrary
shape.

If the total number of windings Nw in the DNA helix is different from the linking
number Lk, a circular helix is always under mechanical stress. It can relax by forming
a supercoil (see Fig. 16.19). The number of excess turns

τ = Lk −Nw, (16.139)
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provides a measure for the supercoiling density which is defined by the ratio

σ ≡ τ

Nw
. (16.140)

In natural DNA, the supercoiling density is usually −σ ∼ 0.03−−0.1. The negative
sign implies that the natural twist of the double helix is slightly decreased by the
supercoiling. The negative sign seems to be essential in the main biological process,
the replication. It may be varied by an enzyme, called DNA gyrase. A cell has a
large arsenal of enzymes which can break one of the chains in the helix and unwind
the linking number Lk by one or more units, changing the topology. Such enzymes
run under the name of topoisomerases of type I. There is also one of a type II which
breaks both chains and can tie or untie knots in the double helix of DNA as a whole.

The biophysical importance of the supercoil derives from the fact that the stress
carried by such a configuration can be relaxed by breaking a number of bonds
between the two chains. In fact, a number θ = −σ of broken bonds leads to a
complete relaxation. During a cell division, all bonds are broken. Note that this
process would be energetically unfavorable if the supercoiling density were positive.

Figure 16.18 Small section and idealized view of circular DNA molecule. The link

number Lk (defined as number of times one chain passes through arbitrary surface spanned

by the other) is Lk ≈ 9.

Figure 16.19 A supercoiled DNA molecule. This is the natural shape when carefully

extracted from a cell. The supercoiling is negative.
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Figure 16.20 Simple links of two polymers up to 8 crossings.
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Just as for knots, no complete topological invariants are known for such types
of links of two (or more) closed polymers. Historically, generalized Alexander poly-
nomials were used to achieve an approximate classification of links. They are poly-
nomials of two variables. To construct them, we take one of the two polymers and
label all underpasses in the same way as for knots. The same thing is done for the
other polymer. For each underpass, a row of the Alexander matrix Aij is written
down with two variables s and t. The Alexander polynomial A(s, t) is again given
by any (n− 1)× (n− 1)-subdeterminant of the n× n-matrix Aij . The links up to 8
crossings are shown in Fig. 16.20. The Alexander polynomials associated with these
are listed in Table 16.5. Note that the replacements s → 1/s, t → 1/t, or both,
leave the Alexander polynomial invariant (due to the prescription of renormalizing
the lowest coefficients to an integer). For unlinked polymers one has A(s, t) = 0.

There is no need to go through the details of the procedure since the more recent
and powerful Jones and HOMFLY polynomials can be constructed for arbitrary links
without additional prescriptions. The latter are tabulated in the fourth column of
Table 16.5. In many cases, a change in the orientation of the second loop gives rise
to an inequivalent link. Then the table shows two entries underneath each other.
For the knot 72, the upper entry {−1}(1 ∗ −1)(1 ∗ 0 − 11)(∗ − 1 − 1) indicates the
polynomial H(t, α) = α−1(t−1− t)+α(t−1− t2+ t3)+α3(−t− t3). The curly bracket
shows the lowest power of α and the star marks the position of the zeroth power of
t. The coefficients of t, t3, . . . stand to the right of it, those of . . . , t−3, t−1 to the left
of it.

For the special case of a circular ribbon such as a DNA molecule, the Gauss
integral over the two edges, being a topological invariant, renders also a classification
of the ribbon as a whole. As shown in Eq. (16.135), the Gauss integral yields precisely
the linking number Lk.

It is useful to calculate G(C,C ′) for a ribbon in the limit of a very small edge-
to-edge distance d. This will also clarify why the Gauss integral G(C,C ′) in which
both C and C ′ run over the same single loop is not a topological invariant. We start
with the Gauss integral for the two edges C,C ′ of the ribbon

G(C,C ′) =
1

4π

∮

C

∮

C′
[dx× dx′] · x− x′

|x− x′|3 (16.141)

and shift the two neighboring integration contours C,C ′ both towards the ribbon
axis called C̄. Let ǫ measure the distance between the two edges, and let n(τ) be
the unit vector orthogonal to the axis pointing from C to C ′. Then we write

G(C,C ′) =
1

4π

∮

C̄
dτ
∮

C̄
dτ ′ [ẋ(τ)× (ẋ(τ ′) + ǫṅ(τ ′))] · x(τ)− x(τ ′)− ǫn(τ ′)

|x(τ)− x(τ ′)− ǫn(τ ′)|3 .

(16.142)

In the limit ǫ → 0, G(C,C ′) does not just become equal to G(C̄, C̄) [which then
would be the same as G(C,C) or G(C ′, C ′)]. A careful limiting procedure performed
below shows that there is a remainder Tw,

Lk = G(C̄, C̄) + Tw. (16.143)
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Table 16.5 Alexander polynomials A(s, t) and the coefficients of HOMFLY polynomi-

als H(t, α) for simple links of two closed curves up to 8 minimal crossings, labeled as

in Fig. 16.20. The value |A(1, 1)| is equal to the absolute value of the Gauss integral

|G(C,C ′)| for the two curves. The entries in the last column are explained in the text.

A(s,t) |A| H(t,α)

21 1 1 {−1}(∗1−1)(∗1)

41 s+t 2 {−1}(∗01−1)(∗11)
{−1}(∗01−1)(∗03−1)(∗01)

51 (s−1)(t−1) 0 {−1}(1∗−1)(−12∗−1)(1∗)

61 s2+t2+st 3 {−1}(∗001−1)(∗006−3)(∗005−1)(∗001)
{−1}(∗001−1)(∗111)

62 st(s+t)−st+s+t 3 {−1}(∗001−1)(∗022−1)(∗011)

63 2st−(s+t)+2 2 {−1}(∗01−1)(∗021−1)(∗011)
{−1}(1−10∗)(−21∗−1)(1∗)

71 s2t2−st(s+t)+st−(s+t)+1 1 {−1}(1−1∗)(−24−3∗)(10∗)
{−1}(∗1−1)(−11∗2−1)(1∗1)

72 st(s+t)−t2−s2−3st+s+t 1 {−1}(∗1−1)(1∗0−11)(∗−1−1)
{−1}(∗1−1)(−2∗5−2)(−1∗4−1)(∗1)

73 2(s−t)(t−1) 0 {−1}(1∗−1)(1∗−1−1)(∗−1−1)

74 (s−1)(t−1)(s2+1) 0 {−1}(−13−2∗)(−25−3∗)(−14−1∗)(10∗)

75 2s3t−t2−s+2 2 {−1}(∗002−3)(∗014−3)(∗012)
{−1}(−1∗3−2)(−2∗6−2)(−1∗4−1)(∗1)

76 (s+1)2(s−1)(t−1) 0 {−1}(1∗−1)(1−2∗1)(1−3∗1)(−1∗)

77 s3+t 2 {−1}(−1∗3−2)(−1∗4−1)(∗1)
{−1}(∗002−31)(∗006−4)(∗005−1)(∗001)

78 (s−t)(t−1) 0 {−1}(−13−2∗)(−13−2∗)(10∗)

81 (s+t)(s2+t2) 4 {−1}(∗0001−1)(∗00010−6)(∗00015−5)(∗0007−1)(∗0001)
{−1}(∗0001−1)(∗1111)

82 st(s+t−1)(st+1)+s+t 4 {−1}(∗0001−1)(∗0034−3)(∗0044−1)(∗0011)
{−1}(∗0001−1)(∗0212−1)(∗0111)

83 2s2t2−st(s+t)+3st−(s+t)+2 3 {−1}(∗001−1)((∗0041−2)(∗0043−1)(∗0011)
{−1}(1−100∗)(−200∗−1)(11∗)

84 s2t2(s+t)−2s2t2+2st(s+t)−2st+s+t 4 {−1}(∗0001−1)(∗0131−1)(∗0121)
{−1}(∗0001−1)(∗0042−2)(∗0043−1)(∗0011)

85 s2t2−2st(s+t)+3st−2(s+t)+1 3 {−1}(∗001−1)(∗0130−1)(∗0121)
{−1}(1−100∗)(1−42−2∗)(−23−1∗)(10∗)

86 2st−3(s+t)+2 2 {−1}(∗01−1)(∗0201−1)(∗0111)
{−1}(1−10∗)(−20∗1−1)(1∗1)

87 s2t2−2st(s+t)+s2+3st+t2−2(s+t)+1 1 {−1}(1−1∗)(1−4∗3−1)(−2∗3−1)(∗1)
{−1}(∗1−1)(∗2−33−1)(∗1−32)(∗0−1)

88 s2t2−2st(s+t)+s2+st+t2−2(s+t)+1 3 {−1}(∗1−1)(−1∗4−31)(−1∗3−2)(∗1)
{−1}(∗1−22−1)(1∗1−33)(∗−1−2)

89 s3+2s2t−4s2−4st+s+2t 2 {−1}(∗1−22−1)(1∗1−33)(∗−1−2)
{−1}(∗1−22−1)(∗2−34−1)(∗1−32)(∗0−1)

810 (s2−1)(t−1) 0 {−1}(1−2∗2−1)(1−4∗4−1)(1−3∗2)(−1∗)

811 s3t−2s2(s+t)+2s(s+t)−2(s+t)+1 2 {−1}(∗002−31)(∗005−2−1)(∗0042−1)(∗0011)
{−1}(2−3∗1)(1−5∗3−1)(−2∗3−1)(∗1)

812 (s2−1)(t−1) 0 {−1}(−13−2∗)(−14−4∗1)(2−3∗1)(−1∗)

813 (s2+1)(s−1)(t−1) 0 {−1}(1∗−1)(∗1−21)(−1∗2−2)(∗1)

814 s3t−4s2t+4s2+4st−4s+1 2 {−1}(∗002−31)(∗005−2−1)(∗0131)
{−1}(−1∗3−2)(1−3∗5−1)(−2∗3−1)(∗1)

815 (s−1)(t−1) 0 {−1}(1−2∗2−1)(−2∗3−1)(∗1)

816 s3−2s(s+1)+1 2 {−1}(∗1−22−1)(∗2−22)(∗0−1)
{−1}(∗1−22−1)(∗3−43)(∗1−41)(∗0−1)
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The remainder is called the twist of the ribbon, defined by

Tw ≡ 1

2π

∮

C̄
dτ ẋ(τ) · [n(τ)× ṅ(τ)]/|ẋ(τ)|. (16.144)

Incidentally, this integral makes sense also for a single curve if n(τ) is taken to be
the principal normal vector of the curve. Then Tw gives what is called the total
integrated torsion of the single curve. The first term in (16.143), the Gauss integral
for a single closed curve C̄, is called in this context the writhing number of the curve

Wr ≡ G(C̄, C̄) =
1

4π

∮

C̄
dτ
∮

C̄
dτ ′ [ẋ(τ)× ẋ(τ ′)] · x(τ)− x(τ ′)

|x(τ)− x(τ ′)|3 . (16.145)

Thus one writes the relation (16.143) commonly in the form

Lk = Wr + Tw. (16.146)

Only the sum Wr+Tw is a topological invariant, with Tw containing the information
on the ribbon structure of the closed loop C̄. This formula was found by Calagareau
in 1959 and generalized by White in 1969.

From what we have seen above in Eq. (16.136), the writhing number may also
be written as an integral

Wr = − 1

4π

∮

C̄
dΩ(x), (16.147)

where Ω(x) is the solid angle under which the axis of the ribbon is seen from an-
other point on the axis. When rewritten in the form (16.138), it has the magnetic
interpretation stated there.

This interpretation is relevant for understanding the spacetime properties of the
dionium atom which in turn may be viewed as a world ribbon whose two edges
describe an electric and a magnetic charge. We have pointed out in Section 14.6
that for a half-integer charge parameter q, a dionium atom consisting of two bosons
is a fermion. For this reason, a path integral over a fluctuating ribbon can be used
to describe the quantum mechanics of a fermion in three spacetime dimensions [7].

Let us derive the relation (16.146). We split the integral (16.142) over τ into two
parts: a small neighborhood of the point τ ′ , i.e.,

τ ∈ (τ ′ − δ, τ ′ + δ) (16.148)

and the remainder, for which the integrand is regular. In the regular part, we can
set the distance ǫ between the curves C and C ′ equal to zero, and obtain the Gauss
integral G(C̄, C̄), i.e., the writhing numberWr. In the singular part, we approximate
x(τ) within the small neighborhood (16.148) by the straight line

x(τ) ≈ x(τ ′) + ẋ(τ ′)(τ − τ ′),

ẋ(τ) ≈ ẋ(τ ′). (16.149)
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Figure 16.21 Illustration of Calagareau-White relation (16.146). The number of wind-

ings around the cylinder is Lk = 2, while Tw = Lk − p/
√

p2 +R2, where p is the pitch of

the helix and R the radius of the cylinder.

Then the τ -integral can be performed. For ǫ≪ δ ≪ 1, we find

Tw = − 1

4π

∮

C′
dτ ′ [n(τ ′)× ẋ(τ ′)] · ṅ(τ ′)ǫ2

∫ τ ′+δ

τ ′−δ
dτ

1
√

|ẋ(τ ′)|2(τ − τ ′)2 + ǫ2

=
1

2π

∮

C′
dτ ′ [ẋ(τ ′)× n(τ ′)] · ṅ(τ ′)/|ẋ(τ ′)|. (16.150)

It is worth emphasizing that in contrast to the Gauss integral for two curves C,C ′,
the value of the Gauss integral for C̄ is not an integer but a continuous number. It
depends on the shape of the ribbon, changing continuously when the ribbon is de-
formed isotopically. If one section of the ribbon passes through the other, however,
it changes by 2 units. The defining equation shows that Wr vanishes if the ribbon
axis has a center or a plane of symmetry. To give an example for a circular closed
ribbon with an integer number Lk and an arbitrary writhing number Wr we follow
Brook-Fuller and Crick. A cylinder with a closed ribbon is wound flat around the
surface of a cylinder, returning along the cylinder axis (see Fig. 16.21). While the
two edges of the ribbon perforate each other an integer number of times such that
Lk = 2, the ribbon axis has a noninteger Gauss integral Wr depending on the ratio
between pitch and radius, Wr = 2− p/

√
p2 +R2 .
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16.7 Chern-Simons Theory of Entanglements

The Gauss integral has a form very similar to the Biot-Savart law of magnetostatics
found in 1820. That law supplies an action-at-a-distance formula for the interaction
energy of two currents I, I ′ running along the curves C and C ′:

E = −II
′

c2

∮

C

∮

C′
dx · dx′ 1

|x− x′| , (16.151)

where c is the light velocity. It was a decisive conceptual advance of Maxwell’s theory
to explain formula (16.151) by means of a local field energy arising from a vector
potential A(x). In view of the importance of the Gauss integral for the topological
classification of entanglements, it is useful to derive a local field theory producing
the Gauss integral as a topological action-at-a-distance. Imagine the two contours
C and C ′ carrying stationary currents of some pseudo-charge which we normalize at
first to unity. These currents are coupled to a vector potential A(x), which is now
unrelated to magnetism and which will be called statisto-magnetic vector potential :

Ae,curr = −i
∮

C
dxA(x)− i

∮

C′
dxA(x). (16.152)

The action is of the Euclidean type as indicated by the subscript e (recall the relation
with the ordinary action A = iAe). We now construct a field action for A(x) so that
the field equations render an interaction between the two currents which is precisely
of the form of the Gauss integral. This field action reads

Ae,CS =
i

2

∫

d3xA · (∇×A) (16.153)

and is called the Chern-Simons action. It shares with the ordinary Euclidean mag-
netic field action the quadratic dependence on the vector potential A(x), as well as
the invariance under local gauge transformations

A(x) → A(x) +∇Λ(x), (16.154)

which is obvious when transforming the second vector potential in (16.153). The
gauge transformation of the first vector potential produces no change after a partial
integration. Also the coupling in (16.152) to the contours C and C ′ is gauge-invariant
after a partial integration, since the contours are closed, satisfying

∇ ·
∮

dx = 0. (16.155)

In contrast to the magnetic field energy, however, the action (16.153) is purely
imaginary. The factor i is important for the applications in which the Chern-Simons
action will give rise to phase factors of the form ei2θG(C,C′).
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By extremizing the combined action, we obtain the field equation

∇×A(x) =
(∮

C
+
∮

C′

)

dx. (16.156)

Its solution is

Ai(x) =
(∮

C
+
∮

C′

)

Gij(x,x
′)dx′j , (16.157)

where Gij(x,x
′) is a suitable Green function solving the inhomogeneous field equa-

tion (16.157) with a δ-function source instead of the current. Due to the gauge
invariance of the left-hand side, however, there is no unique solution. Given a solu-
tion Gij(x,x

′), any gauge-transformed Green function

Gij(x,x
′) → Gij(x,x

′) +∇iΛj(x,x
′) +∇jΛi(x,x

′)

will give the same curl ∇ × A. Only the transverse part of the vector potential
(16.157) is physical, and the Green function has to satisfy

ǫijk∇jGkl(x,x
′) = δ

(3)
ij (x− x′)T , (16.158)

where

δ
(3)
ij (x− x′)T =

(

δij −
∇i∇j

∇
2

)

δ(3)(x− x′) (16.159)

is the transverse δ-function. The vector potential is then obtained from (16.157) in
the transverse gauge with

∇ ·A(x) = 0. (16.160)

The solution of the differential equation (16.158) is easily found in the two-
dimensional transverse subspace. The Fourier transform of Eq. (16.158) reads

iǫijkpjGkl(p) = δil −
pjpl
p2

, (16.161)

and this is obviously solved by

Gij(p) = iǫikjpk
1

p2
. (16.162)

The transverse gauge (16.160) may be enforced in an action formalism by adding
to the action (16.153) a gauge-fixing term

AGF =
1

2α
(∇ ·A)2, (16.163)

with an intermediate gauge parameter α which is taken to zero at the end. The field
equation (16.158) is then changed to

(

ǫijk∇j +
i

α
∇i∇k

)

Gkl(x,x
′) = δikδ

(3)(x− x′), (16.164)



1138 16 Polymers and Particle Orbits in Multiply Connected Spaces

which reads in momentum space

(

iǫijkpj −
i

α
pipk

)

Gkl(p) = δik. (16.165)

This has the unique solution

Gik(p) =

(

iǫijkpj + iα
pipk
p2

)

1

p2
, (16.166)

whose α → 0 -limit is (16.162).
Going back to configuration space, the Green function becomes

Gij(x,x
′)=

∫

d3p

(2π)3
eip(x−x′) iǫikjpk

p2
=

1

4π
ǫikj∇k

1

|x− x′| =
1

4π
ǫijk

(x− x′)k
|x− x′|3 . (16.167)

Inserting this into Ae,curr +Ae,CS yields the interaction between the currents9

Ae,int = −i
∮

C

∮

C′
dxidx

′
jGij(x,x

′). (16.168)

Up to the prefactor −i, this is precisely the Gauss integral G(C,C ′) of the two curves
C, C ′. In addition there are the self-interactions of the two curves

Ae,int = − i

2

(∮

C

∮

C
+
∮

C′

∮

C′

)

dxidx
′
jGij(x,x

′), (16.169)

which are equal to −(i/2)[G(C,C)+G(C ′, C ′)]. Due to their nontopological nature
discussed earlier, these have no quantized values and must be avoided.

Such unquantized self-interactions can be avoided by considering systems whose
orbits are subject to appropriate restrictions. They may, for instance, contain only
lines which are not entangled with themselves and run in a preferred direction from
−∞ to ∞. Ensembles of nonrelativistic particles in two space dimensions have
precisely this type of worldlines in three-dimensional spacetime. They are therefore
an ideal field for the Chern-Simons theory, as we shall see below in more detail.

Another way of avoiding unquantized self-interactions is based on a suitable lim-
iting procedure. If the lines C and C ′ coincide, the Gaussian integral G(C,C ′)
over C = C ′ may be spread over a large number N of parallel running lines
Ci (i = 1, . . . , N), each of which carries a topological charge 1/N . The sum
(1/N2)

∑

ij G(Ci, Cj) contains N -times the same self-interaction and N(N−1)-times
the same integer-valued linking number Lk of pairs of lines. In the limit N → ∞,
only the number Lk survives. The result coincides with the Gauss integral for the
two frame lines C1 and CN of the ribbon. The number LK may therefore be called
the frame linking number . This number depends obviously on the choice of the
framing. There is a preferred choice for which Lk vanishes. This eliminates the
self-interaction trivially.

9Compare this with the derivation of Eq. (3.247).
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Although the limiting procedure makes the self-interaction topological, the ar-
bitrariness of the framing destroys all information on the knot classes. This infor-
mation can be salvaged by means of a generalization of the above topological action
leading to a nonabelian version of the Chern-Simons theory. That theory has the
same arbitrariness in the choice of the framing. However, by choosing the fram-
ing to be the same as in the abelian case and calculating only ratios of observable
quantities, it is possible to eliminate the framing freedom. This will enable us to
distinguish the different knot classes after all.

16.8 Entangled Pair of Polymers

For a pair of polymers, the above problems with self-entanglement can be avoided by a slight
modification of the Chern-Simons theory. This will allow us to study the entanglement of the pair.
In particular, we shall be able to calculate the second topological moment of the entanglement,
which is defined as the expectation value 〈m2〉 of the square of the linking number m [8]. The
self-entanglements will of the individual polymers will be ignored.

The result will apply approximately to a polymer in an ensemble of many others, since these
may be considered roughly as a single very long effective polymer.

Consider two polymers running along the contours C1 and C2 which statistically can be linked
with each other any number of times m = 0, 1, 2, . . . . The situation is illustrated in Fig. 16.22 for
m = 2. The linking number (16.134) for these two polymers can be calculated with the help of

Figure 16.22 Closed polymers along the contours C1, C2 respectively.

a slight modification of the Chern-Simons action (16.153) and the couplings (16.152). We simply
introduce two vector potentials and the Euclidean action

Ae = Ae,CS12 + Ae,curr, (16.170)

where

Ae,CS12 = i

∫

d3xA1 · (∇×A2) (16.171)

and

Ae,curr = −i
∮

C1

dxA1(x) − i

∮

C2

dxA2(x). (16.172)

If we choose the gauge fields to be transverse, as in (16.160), we obtain with the same technique
as before the correlation functions of the gauge fields

Dµν
ab (x,x′) ≡ 〈Aµ

a(x)Aν
b (x′)〉, a, b = 1, 2 (16.173)
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are

Dij
11(x,x

′) = 0, Dij
22(x,x

′) = 0, (16.174)

Dij
12(x,x

′) = Dij
21(x,x

′) =

∫

d3p

(2π)3
eip(x−x′) iǫikjk

k

p2
=

1

4π
ǫikj∇k

1

|x− x′|

=
1

4π
ǫijκ

(x − x′)k

|x− x′|3 . (16.175)

The transverse gauge is enforced by adding to the action (16.171) a gauge-fixing term

AGF =
1

2α
[(∇ ·A1)

2 + (∇ ·A2)
2], (16.176)

and taking the limit α → 0 at the end. Extremizing the extended action produces the Gaussian
linking number −iG(C1, C2) of Eq. (16.134). The calculation is completely analogous to that
leading to Eq. (16.168).

The partition function of the two polymers and the gauge fields is given by the path integral

Z =

∫

C1

Dx1

∫

C2

Dx2

∫

DA1DA2e
−Ae−AGF . (16.177)

Performing the functional integral over the gauge fields, we obtain from the extremum

Z = const ×
∫

C1

Dx1

∫

C2

Dx2 e
iG(C1,C2), (16.178)

where the constant is the trivial fluctuation factor of the vector potentials. The Gaussian integral
G(C1, C2) has the values m = 0,±1,±2, . . . of the linking numbers.

In order to analyze the distribution of linking number in the two-polymer system we must be
able to fix a certain linking number. This is possible by replacing the phase factor eim in the path
integral (16.178) by eimλ, and calculating Z(κ). An integral

∫

dκe−imλZ(λ) will then select any
specific linking number m. But a phase factor eimλ is simply produced in the partition function
(16.178) by attaching to one of the current couplings in the interaction (16.172), say to that of C2,
a factor λ, thus changing (16.172) to

Ae,curr,λ = −i
∮

C1

dxA1(x) − iλ

∮

C2

dxA2(x). (16.179)

The λ-dependent partition function is then

Z(λ) =

∫

C1

Dx1

∫

C2

Dx2

∫

DA1DA2e
−Ae,CS12−Ae,curr,λ−AGF

= const ×
∫

C1

Dx1

∫

C2

Dx2 e
imλ. (16.180)

Ultimately, we want to find the probability distribution of the linking numbers m as a function
of the lengths of C1 and C2. The solution of this two-polymer problem may be considered as an
approximation to a more interesting physical problem in which a particular polymer is linked to
any number N of polymers, which are effectively replaced by a single long “effective” polymer [9].
Unfortunately, the full distribution of m is very hard to calculate. Only a calculation of the second
topological moment is possible with limited effort. This quantity is given by the expectation value
〈m2〉 of the square of the linking number m.

Let PL1,L2
(x1,x2;m) be the configurational probability to find the polymer C1 of length L1

with fixed coinciding endpoints at x1 and the polymer C2 of length L2 with fixed coinciding
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endpoints at x2, entangled with a Gaussian linking number m. The second moment 〈m2〉 is given
by the ratio of integrals

〈m2〉 =

∫

d3x1d
3x2

∫ +∞
−∞ dm m2PL1,L2

(x1,x2;m)
∫

d3x1d3x2
∫ +∞
−∞ dmPL1,L2

(x1,x2;m)
, (16.181)

performed for either of the two probabilities. The integrations in d3x1d
3x2 covers all positions of

the endpoints. The denominator plays the role of a partition function of the system:

Z ≡
∫

d3x1d
3x2

∫ +∞

−∞
dmPL1,L2

(x1,x2;m). (16.182)

Due to translational invariance of the system, the probabilities depend only on the differences
between the endpoint coordinates:

PL1,L2
(x1,x2;m) = PL1,L2

(x1 − x2;m). (16.183)

Thus, after the shift of variables, the spatial double integrals in (16.181) can be rewritten as
∫

d3x1d
3x2PL1,L2

(x1,x2;m) = V

∫

d3xPL1,L2
(x;m), (16.184)

where V denotes the total volume of the system.

16.8.1 Polymer Field Theory for Probabilities

The calculation of the path integral over all line configurations is conveniently done within the
polymer field theory developed in Section 15.12. It permits us to rewrite the partition function
(16.180) as a functional integral over two ψα1

1 (x1) and ψα2

2 (x2) with n1 and n2 replica (α1 =
1, . . . , n1, α2 = 1, . . . , n2). At the end we shall take n1, n2 → 0 to ensure that these fields describe
only one polymer each, es explained in Section 15.12. For these fields we define an auxiliary
probability P~z(~x1, ~x2;λ) to find the polymer C1 with open ends at x1,x

′
1 and the polymer C2 with

open ends at x2,x
′
2. The double vectors ~x1 ≡ (x1,x

′
1) and ~x2 ≡ (x2,x

′
2) collect initial and final

endpoints of the two polymers C1 and C2. The auxiliary probability P~z(~x1, ~x2;λ) is given by a
functional integral

P~z(~x1, ~x2;λ) = lim
n1,n2→0

∫

D(fields)ψαi

1 (x1)ψ
∗α1

1 (x′
1)ψ

α2

2 (x2)ψ
∗α2

2 (x′
2)e

−A, (16.185)

where D(fields) indicates the measure of functional integration, and A the total action (16.180)
governing the fluctuations. The expectation value is calculated for any fixed pair (α1, α2) of replica
labels, i.e., replica labels are not subject to Einstein’s summation convention of repeated indices.
The action A consists of kinetic terms for the fields, a quartic interaction of the fields to account for
the fact that two monomers of the polymers cannot occupy the same point, the so-called excluded-

volume effect , and a Chern-Simons field to describe the linking number m. Neglecting at first the
excluded-volume effect and focusing attention on the linking problem only, the action reads

A = ACS12 + Ae,curr + Apol + AGF, (16.186)

with a polymer field action

Apol =

2
∑

i=1

∫

d3x
[

|D̄iψi|2 +m2
i |Ψi|2

]

. (16.187)

They are coupled to the polymer fields by the covariant derivatives

Di = ∇ + iγiA
i, (16.188)
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with the coupling constants γ1,2 given by

γ1 = 1, γ2 = λ. (16.189)

The square masses of the polymer fields are given by

m2
i = 2Mzi. (16.190)

where M = 3/a, with a being the length of the polymer links [recall (15.79)], and zi the chemical
potentials of the polymers, measured in units of the temperature. The chemical potentials are
conjugate variables to the length parameters L1 and L2, respectively. The symbols Ψi collect the
replica of the two polymer fields

Ψi =
(

ψ1
i , . . . , ψ

ni

i

)

, (16.191)

and their absolute squares contain the sums over the replica

|DiΨ̄i|2 =

ni
∑

αi=1

|Diψαi

i |2, |Ψi|2 =

ni
∑

αi=1

|ψαi

i |2. (16.192)

Having specified the fields, we can now write down the measure of functional integration in
Eq. (16.185):

D(fields) =

∫

DAi
1DAj

2DΨ1DΨ∗
1DΨ2DΨ∗

2. (16.193)

By Eq. (16.180), the parameter λ is conjugate to the linking number m. We can therefore calculate
the probability PL1,L2

(~x1, ~x2;m) in which the two polymers are open with different endpoints from
the auxiliary one P~z(~x1, ~x2;λ) by the following Laplace integral over ~z = (z1, z1):

PL1,L2
(~x1, ~x2;m) = lim

x′

1
→x1

x′

2
→x2

∫ c+i∞

c−i∞

Mdz1
2πi

Mdz2
2πi

ez1L1+z2L2

∫ ∞

−∞
dke−imλP~z (~x1, ~x2;λ) .

(16.194)

16.8.2 Calculation of Partition Function

Let us use the polymer field theory to calculate the partition function (16.182). By Eq. (16.194),
it is given by the integral over the auxiliary probabilities

Z =

∫

d3x1d
3x2 lim

x′

1
→x1

x′

2
→x2

∫ c+∞

c−i∞

Mdz1
2πi

Mdz2
2πi

ez1L1+z2L2

∫ ∞

−∞
dm

∫ +∞

−∞
dλe−imλP~z (~x1, ~x2;λ) .

(16.195)

The integration over m is trivial and gives 2πδ(λ), enforcing λ = 0, so that

Z =

∫

d3x1d
3x2 lim

x′

1
→x1

x′

2
→x2

∫ c+i∞

c−i∞

Mdz1Mdz2
2πi

ez1L1+z2L2P~z (~x1, ~x2; 0) . (16.196)

To calculate P~z (~x1, ~x2; 0), we observe that the action A in Eq. (16.186) depends on λ only via the
polymer part (16.187), and is quadratic in λ. Let us expand A as

A = A0 + λA1 + λ2A2, (16.197)
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with the λ-independent part

A0 ≡ ACS12 + AGF +

∫

d3x

[

|D1Ψ1|2 + |∇Ψ2|2 +

2
∑

i=1

|Ψi|2
]

, (16.198)

a linear coefficient

A1 ≡
∫

d3x j2(x) ·A2(x) (16.199)

containing a pseudo-current of the second polymer field

j2(x) = iΨ∗
2(x)∇Ψ2(x), (16.200)

and a quadratic coefficient

A2 ≡ 1

4

∫

d3x A2
2|Ψ2(x)|2. (16.201)

With these definitions we write with the help of (16.198):

P~z (~x1, ~x2; 0) =

∫

D(fields)e−A0ψα1

1 (x1)ψ
∗α1

1 (x′
1)ψ

α2

2 (x2)ψ
α2

2 (x′). (16.202)

In the action (16.198), the fields Ψ2,Ψ
∗
2 are obviously free, whereas the fields Ψ1,Ψ

∗
1 are apparently

not because of the couplings with the Chern-Simons fields in the covariant derivative D1. This
coupling is, however, without physical consequences. Indeed, by integrating out Ai

2 in (16.202), we
find from ACS12 the flatness condition:

∇×A1 = 0. (16.203)

On a flat space with vanishing boundary conditions at infinity this implies A1 = 0. As a conse-
quence, the functional integral (16.202) factorizes as follows [compare (15.370)]

P~z (~x1, ~x2; 0) = G0(x1 − x′
1; z1)G0(x2 − x′

2; z2), (16.204)

where G0(xi − x′
i; zi) are the free correlation functions of the polymer fields:

G0(xi − x′
i; zi) = 〈ψαi

i (xi)ψ
∗αi

i (x′
i)〉. (16.205)

In momentum space, the correlation functions are

〈ψ̃αi

i (ki)ψ̃
∗αi

i (k′
i)〉 = δ(3)(ki − k′

i)
1

k2
i +m2

i

, (16.206)

such that

G0(xi − x′
i; zi) =

∫

d3k

(2π)3
eik·x

1

k2
i +m2

i

, (16.207)

and

G0(xi − x′
i;Li) =

∫ c+i∞

c−i∞

Mdzi
2πi

eziLiG0(xi − x′
i; zi)

=
1

2

(

M

4πLi

)3/2

e−M(xi−x′

i)/2Li . (16.208)
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The partition function (16.196) is then given by the integral

Z = 2π

∫

d3x1d
3x2 lim

x′

1
→x1

x′

2
→x2

G0(x1 − x′
1;L1)G0(x2 − x′

2;L2). (16.209)

The integrals at coinciding endpoints can easily be performed, yielding

Z =
2πM3V 2

(8π)3
(L1L2)

−3/2. (16.210)

It is important to realize that in Eq. (16.195) the limits of coinciding endpoints x′
i → xi and

the inverse Laplace transformations do not commute unless a proper renormalization scheme is
chosen to eliminate the divergences caused by the insertion of the composite operators |ψα(x)|2.
This can be seen for a single polymer. If we were to commuting the limit of coinciding endpoints
with the Laplace transform, we would obtain

∫ c+i∞

c−i∞

dz

2π
ezL lim

x′→x
G0(x− x′; z) =

∫ c+i∞

c−i∞

dz

2πi
ezLG0(0, z), (16.211)

where

G0(0; z) = 〈|ψ(x)|2〉. (16.212)

This expectation value, however, is linearly divergent:

〈|ψ(x)|2〉 =

∫

d3k

k2 +m2
→ ∞. (16.213)

16.8.3 Calculation of Numerator in Second Moment

Let us now turn to the numerator in Eq. (16.181):

N ≡
∫

d3x1d
3x2

∫ ∞

−∞
dm m2 PL1,L2

(x1,x2;m). (16.214)

We shall set up a functional integral for N in terms of the auxiliary probability P~z(~x1, ~x2; 0)
analogous to Eq. (16.195). First we observe that

N =

∫

d3x1d
3r2

∫ ∞

−∞
dm m2 lim

x′

1
→x1

x′

2
→x2

∫ cτ i∞

c−i∞

Mdzi
2πi

Mdz2
2πi

× ez1L1+z2L2

∫ ∞

−∞
dλe−imλP~z(~x1, ~x2;λ). (16.215)

The integration in m is easily performed after noting that

∫ ∞

−∞
dm m2e−imλP~z(~x1, ~x2;λ) = −

∫ ∞

−∞
dm

(

∂2

∂λ2
e−imλ

)

P~z(~x1, ~x2;λ). (16.216)

After two integrations by parts in λ, and an integration in m, we obtain

N =

∫

d3x1d
3x2 lim

x′

1
→x1

x′

2
→x2

(−1)

∫ c+i∞

c−i∞

Mdz1
2πi

Mdz2
2πi

ez1L1+z2L2

×
∫ ∞

−∞
dλ δ(λ)

[

∂2

∂λ2
P~z(~x1, ~x2;λ)

]

. (16.217)
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Performing the now the trivial integration over λ yields

N=

∫

d3x1d
3x2 lim

x′

1
→x1

x′

2
→x2

(−1)

∫ c+i∞

c−i∞

Mdz1
2πi

Mdz2
2πi

ez1L1+z2L2

[

∂2

∂λ2
P~z(~x1, ~x2; 0)

]

. (16.218)

To compute the term in brackets, we use again (16.197) and Eqs. (16.198)–(16.223), to find

N =

∫

d3x1d
3x2 lim

n1→0

n2→0

∫ c+i∞

c−i∞

Mdz1
2πi

Mdz2
2πi

ez1L1+z2L2

×
∫

D(fields) exp(−A0)|ψα1

1 (x1)|2|ψα2

2 (x2)|2

×
[

(∫

d3xA2 · Ψ∗
2∇Ψ2

)2

+
1

2

∫

d3xA2
2 |Ψ2|2

]

. (16.219)

In this equation we have taken the limits of coinciding endpoint inside the Laplace integral over
z1, z2. This will be justified later on the grounds that the potentially dangerous Feynman diagrams
containing the insertions of operations like |Ψi|2 vanish in the limit n1, n2 → 0.

In order to calculate (16.219), we decompose the action into a free part

A0
0 ≡ ACS +

∫

d3x

[

|D1Ψ1|2 + |∇Ψ2|2 +

2
∑

i=1

2|Ψi|2
]

, (16.220)

and interacting parts

A0
1 ≡

∫

d3x j1(x) ·A1(x), (16.221)

with a “current” of the first polymer field

j1(x) ≡ iΨ∗
1(x)∇Ψ1(x), (16.222)

and

A2
0 ≡ 1

4

∫

d3x A2
1|Ψ1(x)|2. (16.223)

Expanding the exponential

eA0 = eA
0
0+A1

0+A2
0 = eA0

[

1−A1
0+

(A1
0)

2

2
−A2

0+. . .

]

, (16.224)

and keeping only the relevant terms, the functional integral (16.219) can be rewritten as a purely
Gaussian expectation value

N = κ2
∫

d3x1d
3x2 lim

n1→0

n2→0

∫ c+i∞

c−i∞

Mdz1
2πi

Mdz2
2πi

ez1L1+z2L2

×
∫

D(fields) exp(−A0
0)|ψα1

1 (x1)|2|ψα2

2 (x2)|2

×
[

(∫

d3xA1 · Ψ∗
1∇Ψ1

)2

+
1

2

∫

d3xA2
1 |Ψ1|2

]

×
[

(∫

d3xA2 · Ψ∗
2∇Ψ2

)2

+
1

2

∫

d3xA2
2 |Ψ2|2

]

. (16.225)
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+ + +

Figure 16.23 Four diagrams contributing in Eq. (16.225). The lines indicate correlation

functions of Ψi-fields. The crossed circles with label i denote the insertion of |Ψi(xi)|2.

Note that the initially asymmetric treatment of polymers C1 and C2 in the action (16.187) has led
to a completely symmetric expression for the second moment.

Only four diagrams shown in Fig. 16.23 contribute in Eq. (16.225). The first diagram is
divergent due to the divergence of the loop formed by two vector correlation functions. This
infinity may be absorbed in the four-Ψ interaction accounting for the excluded volume effect which
we do not consider at the moment. We now calculate the four diagrams separately.

16.8.4 First Diagram in Fig. 16.23

From Eq. (16.225) one has to evaluate the following integral

N1 =
κ2

4
lim
n1→0

n2→0

∫ c+i∞

c−i∞

Mdz1
2πi

Mdz2
2πi

ez1L1+z2L2

∫

d3x1d
3x2

∫

d3x′1d
3x′2 (16.226)

×
〈

|ψα1

1 (x1)|2|ψα2

2 (x2)|2
(

|Ψ1|2A2
1

)

x′

1

(

|Ψ2|2A2
2

)

x′

2

〉

.

As mentioned before, there is an ultraviolet-divergent contribution which must be regularized. The
system has, of course, a microscopic scale, which is the size of the monomers. This, however, is not
the appropriate short-distance scale to be uses here. The model treats the polymers as random
chains. However, the monomers of a polymer in the laboratory are usually not freely movable, so
that polymers have a certain stiffness. This gives rise to a certain persistence length ξ0 over which
a polymer is stiff. This length scale is increased to ξ > ξ0 by the excluded-volume effects. This is
the length scale which should be used as a proper physical short-distance cutoff. We may impose
this cutoff by imagining the model as being defined on a simple cubic lattice of spacing ξ. This
would, of course, make analytical calculations quite difficult. Still, as we shall see, it is possible to
estimate the dependence of the integral N1 and the others in the physically relevant limit in which
the lengths of the polymers are much larger than the persistence length ξ.

An alternative and simpler regularization is based on cutting off all ultraviolet-divergent con-
tinuum integrals at distances smaller than ξ.

After such a regularization, the calculation of N1 is rather straightforward. Replacing the
expectation values by the Wick contractions corresponding to the first diagram in Fig. 16.23, and
performing the integrals as shown in Appendix 16A, we obtain

N1 =
V

4π

M4

(8π)6
(L1L2)

− 1
2

∫ 1

0

ds [(1 − s)s]−
3
2

∫

d3xe−Mx2/2s(1−s) (16.227)

×
∫ 1

0

dt [(1 − t)t]−
3
2

∫

d3ye−My2/2t(1−t)

∫

d3x′′1
1

|x′′
1 |4

.

The variables x and y have been rescaled with respect to the original ones in order to extract the
behavior of N1 in L1 and L2. As a consequence, the lattices where x and y are defined have now
spacings ξ/

√
L1 and ξ/

√
L2 respectively.
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The x,y integrals may be explicitly computed in the physical limit L1, L2 ≫ ξ, in which the
above spacings become small. Moreover, it is possible to approximate the integral in x′′

1 with an
integral over a continuous variable l and a cutoff in the ultraviolet region:

∫

d3x′′1
1

|x′′
1 |4

∼ 4π2

∫ ∞

ξ

dl

l2
. (16.228)

After these approximations, we finally obtain

N1 = V π1/2 M

(4π)3
(L1L2)

−1/2ξ−1. (16.229)

16.8.5 Second and Third Diagrams in Fig. 16.23

Here we have to calculate

N2 = κ2 lim
n1→0

n2→0

∫ c+i∞

c−i∞

Mdz1
2πi

Mdz2
2πi

ez1L1+z2L2

∫

d3x1d
3x2

∫

d3x′1d
3x′′1d

3x′2

×
〈

|ψα1

1 (x1)|2|ψα2

2 (x2)|2 (A1 ·Ψ∗
1∇Ψ1)x′

1
(A1 ·Ψ∗

1∇Ψ1)x′′

1

(

A2
2 |Ψ2|2

)

x′

2

〉

. (16.230)

The above amplitude has no ultraviolet divergence, so that no regularization is required. The Wick
contractions pictured in the second Feynman diagrams of Fig. 16.23 lead to the integral

N2 = −4
√

2V L
−1/2
2 L−1

1

M3

π6

∫ 1

0

dt

∫ t

0

dt′C(t, t′), (16.231)

where C(t, t′) is a function independent of L1 and L2:

C(t, t′) = [(1 − t)t′(t− t′)]
−3/2

∫

d3xd3yd3ze−M(y−x)2/2(1−t)

×
(

∇
j
ye

−My2/2t′
)(

∇
i
xe

−Mx2/2(t−t′)
) [δijz · (z + x) − (z + x)i zj]

|z|3|z + x|3 . (16.232)

As in the previous section, the variables x,y, z have been rescaled with respect to the original ones
in order to extract the behavior in L1.

If the polymer lengths are much larger than the persistence length one can ignore the fact that
the monomers have a finite size and it is possible to compute C(t, t′) analytically, leading to

N2 = −V L
−1/2
2 L−1

1

(2π)6
M3/2 4K, (16.233)

where K is the constant

K ≡ 1

6
B

(

3

2
,
1

2

)

+
1

2
B

(

5

2
,
1

2

)

−B

(

7

2
,
1

2

)

+
1

3
B

(

9

2
,
1

2

)

=
19π

384
≈ 0.154, (16.234)

and B(a, b) = Γ(a)Γ(b)/Γ(a+ b) is the Beta function. For large L1 → ∞, this diagram gives a
negligible contribution with respect to N1.

The third diagram in Fig. 16.23 give the same as the second, except that L1 and L2 are
interchanged.

N3 = N2|L1↔L2
. (16.235)
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16.8.6 Fourth Diagram in Fig. 16.23

Here we have the integral

N4 = −4κ2
1

2
lim
n1→0

n2→0

∫ c+i∞

c−i∞

Mdz1
2πi

Mdz2
2πi

ez1L1+z2L2

∫

d3x1d
3x2

∫

d3x′1d
3x′2d

3x′′1d
3x′′2

×
〈

|ψα1

1 (x1)|2|ψ2(x
α2

2 )|2(A1 ·Ψ∗
1∇Ψ1)x′

1
(A1 ·Ψ∗

1∇Ψ1)x′′

1

× (A2 ·Ψ∗
2∇Ψ2)x′

2
(A2 · Ψ∗

2∇Ψ2)x′′

2

〉

, (16.236)

which has no ultraviolet divergence. After some analytic effort we find

N4 = − 1

16

M5V

(2π)11
(L1L2)

−1/2

∫ 1

0

ds

∫ s

0

ds′
∫ 1

0

dt

∫ t

0

dt′C(s, s′, t, t′), (16.237)

where

C(s, s′; t, t′) = [(1 − s)s′(s− s′)]
−3/2

[(1 − t)t′(t− t′)]
−3/2

×
∫

d3p

(2π)3

[

ǫikα
pα

p2
ǫjlβ

pβ

p2
+ ǫilα

pα

p2
ǫjkβ

pβ

p2

]

(16.238)

×
[∫

d3x′d3y′e−i
√
L1p(x′−y′)e−Mx′2/2(1−s)

(

∇
j
y′e

−My′2/2t′
)(

∇
i
x′e−M(x−y)2/2(s−s′)

)]

×
[∫

d3u′d3v′e−i
√
L2p(u′−v′)e−Mv′2/2(1−t)

(

∇
l
u′e−Mu

′2/2t′
)(

∇
k
v′e−M(u′−v

′)2/2(t−t′)
)]

,

and x′,y′ are scaled variables. To take into account the finite persistence length, they should be
defined on a lattice with spacing ξ/

√
L1. Similarly, u′,v′ should be considered on a lattice with

spacing ξ/
√
L2. Without performing the space integrations d3x′d3y′d3u′d3v′, the behavior of N4

as a function of the polymer lengths can be easily estimated in the following limits:

1. L1 ≫ 1;L1 ≫ L2

N4 ∝ L−1
1 (16.239)

2. L2 ≫ 1;L2 ≫ L1

N4 ∝ L−1
2 (16.240)

3. L1, L2 ≫ 1, L2/L1 = α = finite

N4 ∝ L
−3/2
1 . (16.241)

Moreover, if the lengths of the polymers are considerably larger than the persistence length,
the function C(s, s′, t, t′) can be computed in a closed form:

N4 ≈ −128V

π5

M

π3/2
(L1L2)

−1/2

∫ 1

0

ds

∫ 1

0

dt(1 − s)(1 − t)(st)1/2

× [L1t(1 − s) + L2(1 − t)s]
−1/2

. (16.242)

It is simple to check that this expression has exactly the above behaviors.
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16.8.7 Second Topological Moment

Collecting all contributions we obtain the result for the second topological moment:

〈m2〉 =
N1 +N2 +N3 +N4

Z
, (16.243)

with N1, N2, N3, N4, Z given by Eqs. (16.210), (16.229), (16.233), (16.235), and (16.231).
In all formulas, we have assumed that the volume V of the system is much larger than the size

of the volume occupied by a single polymer, i.e., V ≫ L3
1

To discuss the physical content of the result (16.232), we assume C2 to be a long effective
polymer representing all polymers in a uniform solution. We introduce the polymer concentration
l as the average mass density of the polymers per unit volume:

l =
M

V
, (16.244)

where M is the total mass of the polymers

M =

Np
∑

i=1

ma
Lk

a
. (16.245)

Here ma is the mass of a single monomer of length a, Lk is the length of polymer Ck, and Np is
the total number of polymers. Thus Lk/a is the number of monomers in the polymer Ck. The
polymer C1 is singled out as any of the polymers Ck, say Ck̄, of length L1 = Lk̄. The remaining
ones are replaced by a long effective polymer C2 of length L2 = σk 6=k̄Lk. From the above relations
we may also write

L2 ≈ aV l

ma
. (16.246)

In this way, the length of the effective molecule C2 is expressed in terms of physical parameters, the
concentration of polymers, the monomer length, and the mass and volume of the system. Inserting
(16.246) into (16.232), with N1, N2, N3, N4, Z given by Eqs. (16.210), (16.229), (16.233), (16.235),
and (16.231). and keeping only the leading terms for V ≫ 1, we find for the second topological
moment 〈m2〉 the approximation

〈m2〉 ≈ N1 +N2

Z
, (16.247)

and this has the approximate form

〈m2〉 =
al

ma

[

ξ−1Li

2π1/2M2
− 2KL

1/2
1

π4M3/2

]

, (16.248)

with K of (16.234).
Thus we have succeeded in setting up a topological field theory to describe two fluctuating

polymers C1 and C2, and calculated the second topological moment for the linking number m
between C1 and C2. The result is used as an approximation for the second moment for a single
polymer with respect to all others in a solution of many polymers.

An interesting remaining problem is to calculate the effect of the excluded volume.

16.9 Chern-Simons Theory of Statistical Interaction

The Chern-Simons theory (16.153) together with the coupling (16.152) generates
the desired topological interaction corresponding to the Gaussian integral between
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pairs of curves C and C ′. We now demonstrate that this topological interaction is
the same as the statistical interaction introduced in Eq. (7.279) and encountered
again in (16.26), where it governed the physics of a charged particle running around
a magnetic flux tube. This observation will make the Gaussian integral and thus
the Chern-Simons action relevant for the description of the statistical properties
of nonrelativistic particle orbits. In contrast to the electromagnetic generation of
fractional statistics for particle orbits in Section 16.2 via the Aharonov-Bohm effect,
the field theory involving the statisto-magnetic vector potential has the advantage of
removing the asymmetry between the particles, of which one had to carry a charge,
the other one a magnetic flux. An arbitrary number of identical particle orbits
can now be endowed with a fractional statistics, the same that was produced by
topological interaction (7.279).

To prove the equality between the two topological interactions in two space and
one time dimension, consider an electron in a plane encircling an infinitely thin
magnetic “flux tube” at the origin (the word flux tube stands between quotation
marks since the “tube” is only a point in the two-dimensional space). In a Euclidean
spacetime, the worldline of the electron C winds itself around the straight “flux tube”
C ′ along the τ -axis. For this geometry, the integral over C ′ in (16.134) can easily

be done using the formula
∫∞
−∞ dt/

√
t2 + d2

3
= 2. The result is

G(C,C ′) =
1

2π

∫

dτ ẋ(τ)∇ϕ(x(τ)) =
1

2π

∫

dτ ϕ̇(x(τ)), (16.249)

where ϕ(x(τ)) denotes the azimuthal angle of the electron with respect to the “flux
tube” at the time τ

Up to a factor 2π, the expression (16.249) agrees with the statistical interaction
in (16.26) and (7.279). In two space and one time dimension, the behavior under
particle exchange can be assigned to an amplitude at will by adding to the Euclidean
action a Gaussian integral with a suitable prefactor. A phase factor eiθ is produced
by the exchange when choosing the following Euclidean action-at-a-distance:

Ae,int = i2h̄θG(C,C ′). (16.250)

This topological interaction is generated by the Chern-Simons action

Ae,CS =
1

4θh̄i

∫

d3xA · (∇×A). (16.251)

The phase angle θ is related to the former parameter µ0 of the statistical interactions
(16.26) and (7.279) by

θ = πµ0. (16.252)

For µ0 = ±1,±3,±5, . . . , the particle orbits have Fermi statistics; for µ0 =
0,±2,±4, . . . , they have Bose statistics. Fractional values of µ0 lead to fractional
statistics. In contrast to the magnetic generation of fractional statistics, the Chern-
Simons mechanism applies to any number of particle orbits. By one of the methods
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16.9 Chern-Simons Theory of Statistical Interaction 1151

discussed after Eq. (16.169) it must, however, be assured that the Gaussian “self-
energy” does not render any undesirable nontopological contributions.

To maintain the analogy with the magnetic interactions as far as possible, we
write the Chern-Simons action for a gas of electrons in the form

Ae,CS =
1

4πi

e2

c2h̄µ0

∫

d3xA× (∇×A), (16.253)

and the coupling of the statisto-magnetic vector potential to the particle orbits as

Ae,curr = −ie
c

∮

C
dxA(x)− i

e

c

∮

C′
dxA(x). (16.254)

This looks precisely like the Euclidean coupling of an ordinary vector potential to
electrons. For an arbitrary number of orbits we define the Euclidean two-dimensional
current density

j(x) ≡ ec
∑

α

∮

Cα

dxα δ
(3)(x− xα) (16.255)

and write the interaction (16.254) as

Ae,curr = −i 1
c2

∫

d3x j(x)A(x). (16.256)

The curl of the vector potential

B ≡ ∇×A (16.257)

is referred to as a statisto-magnetic field . By varying (16.253) plus (16.256) with
respect to A(x), we obtain the field equation

B(x) = µ0
2πh̄c

e2
j(x). (16.258)

With the help of the elementary flux quantum Φ0, this can also be written as

B(x) = µ0Φ0
1

e
j(x). (16.259)

To apply the above formulas, we must transform them from the three-dimensional
Euclidean spacetime to the Minkowski space, where the curves Cα become particle
orbits in two space dimensions whose coordinates x⊥ = (x, y) are functions of the
time t. Specifically, we substitute the three coordinates (x1, x2, x3) as follows:

(x1, x2) → x⊥ ≡ (x, y),

x3 → ix0 ≡ ict.
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The Euclidean field components A1,2,3 go over into the Minkowskian statisto-electric
potentialφ and two spatial components Ax,y. The three fields B1,2,3 turn into the
Minkowskian statisto-electric fields Ey, Ex and a statisto-magnetic field Bz:

A3 = iφ = iA0, A1 = Ax, A2 = Ay,

B3 = iBz, B1 = −iEy, B2 = iEx. (16.260)

The Euclidean currents become, up to a factor i, the two-dimensional charge and
current densities:

j3 = ij0 = icρ(x⊥), ρ(x) ≡ e
∑

α

δ(2)(x⊥ − x⊥α),

j1 = ijx(x⊥) = e
∑

α

ẋαδ
(2)(x⊥ − x⊥α),

j2 = ijy(x⊥) = e
∑

α

ẏαδ
(2)(x⊥ − x⊥α), (16.261)

where ρ is the particle density per unit area. The motion of a particle in an external
field φ,Ax, Ay is then governed by the interaction

Aint =
∫

dtd2x
[

ρφ− 1

c
(jxAx + jxAy)

]

. (16.262)

Conversely, particles with fractional statistics in a 2+1-dimensional spacetime
generate Minkowskian statisto-electromagnetic fields following the equations

Bz = µ0Φ0ρ, Ex = µ0Φ0
1

c
jy, Ey = µ0Φ0

1

c
jx. (16.263)

The electromagnetic normalization in Eq. (16.262) has the advantage that a
charged particle cannot distinguish a statisto-magnetic field from a true magnetic
field. This property forms the basis for a simple interpretation of the fractional
quantum Hall effect as will be seen in Section 18.9.

16.10 Second-Quantized Anyon Fields

After the developments in Chapter 7, we should expect that the phase factor eiµ0π,
appearing in the path integral upon exchanging the endpoints of two anyonic orbits,
can also be found in a second-quantized operator formulation. To verify this, we
consider a free Bose field with the action (7.286) and couple it with a statisto-
electromagnetic field subject to a Chern-Simons action. The resulting free anyon
action reads

Aanyon = ACS +Aboson, (16.264)

where

Aboson =
∫

d2x
∫ tb

ta
dt

{

ψ∗(x, t)
[

ih̄
(

∂t + i
e

h̄
φ(x, t)

)

+ µ
]

ψ(x, t)

− h̄2

2M

∣

∣

∣

∣

[

∇− i
e

h̄c
A(x, t)

]

ψ(x, t)
∣

∣

∣

∣

2
}

. (16.265)
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The latter corresponds to the action (7.286) in the continuum limit with the deriva-
tives replaced by covariant derivatives according to the usual minimal substitution
rule (2.644):

p0 → p0 −
e

c
φ, p → p− e

c
A. (16.266)

The first field equation in (16.263) now reads

Bz(x, t) = µ0Φ0ψ
†(x, t)ψ(x, t), (16.267)

so that the vector potential satisfies the differential equation

∂xAy(x, t)− ∂yAx(x, t) = µ0Φ0ψ
†(x, t)ψ(x, t). (16.268)

It determines (Ax, Ay) up to the gauge freedom (∂xΛ, ∂yΛ), where Λ(x, t) is an
arbitrary single-valued function satisfying Schwarz’ integrability condition

(∂x∂y − ∂y∂x)Λ(x, t) = 0. (16.269)

In the present case, it is useful to allow for a violation of this condition by searching
for a multivalued function α(x, t) whose gradient is equal to a given vector potential:

(Ax, Ay) = (∂xα, ∂yα). (16.270)

This function must obey the differential equation (recall the discussion in Ap-
pendix 10A)

(∂x∂y − ∂y∂x)α(x, t) = µ0
2πh̄c

e
ψ†(x, t)ψ(x, t). (16.271)

The Green function of this differential equation, which is the elementary building
block for the construction of all multivalued functions in two dimensions, is the
function used before in Eq. (16.249) [see also (10A.30)]:

ϕ(x− x′) ≡ arctan[(y − y′)/(x− x′)]. (16.272)

It gives the angle between the vectors x and x′ and violates the Schwarz integrability
condition at the points where the vectors coincide [recall (10A.33)]:

(∂x∂y − ∂y∂x)ϕ(x− x′) = 2πδ(2)(x− x′). (16.273)

To satisfy this equation, the cut of the arctan in the complex plane must be avoided,
which is always possible by deforming it appropriately. The function ϕ(x− x′) has
the important property

ϕ(x− x′)− ϕ(x′ − x) = π. (16.274)

In the two terms on the left-hand side, the point x′ is moved around the point x in
the anticlockwise sense.
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With the help of the multivalued Green function (16.272) we find immediately
the solution of Eq. (16.271):

α(x, t) = µ0
h̄c

e

∫

d2xϕ(x− x′)ψ†(x, t)ψ(x, t). (16.275)

The relation (16.270) permits the elimination of the statisto-magnetic field from the
action. Actually, this statement is true in general. One can always multiply the
fields ψ(x, t) by a phase factor

exp
[

−i e
h̄c

∫ x

dx′A(x′, t)
]

,

where the contour integral is taken to x from any fixed point along some fixed path.
In front of the transformed field

Ψ(x, t) = e−i(e/h̄c)
∫

x

dx′A(x′,t)ψ(x, t), (16.276)

the covariant derivatives

Diψ(x, t) = (∂i − i
e

h̄c
Ai)ψ(x, t) (16.277)

become ordinary derivatives ∂i. Unfortunately, the new field Ψ(x, t) depends on
the vector potential in a complicated nonlocal way so that this transformation is in
general not worthwhile. In the present case, however, the equation of motion for
the vector potential is so simple that the transformation can be done explicitly. In
fact, the nonlocality has precisely the desired property of changing the statistics of
the fields from Bose statistics to any statistics.

We show this by considering the field operators ψ̂(x, t) which are canonically
quantized according to Eq. (7.294). In the continuum limit they satisfy the commu-
tation rules

[ψ̂(x, t), ψ̂†(x′, t)] = δ(2)(x− x′),

[ψ̂†(x, t), ψ̂†(x′, t)] = 0, (16.278)

[ψ̂(x, t), ψ̂(x′, t)] = 0.

The transformed field operators satisfy the corresponding commutation rules mod-
ified by a phase factor eiµ0π:

ψ̂(x, t)ψ̂†(x′, t)− eiπµ0ψ̂†(x′, t)ψ̂(x, t) = δ(2)(x− x′),

ψ̂†(x, t)ψ̂†(x′, t)− eiπµ0ψ̂†(x′, t)ψ̂†(x, t) = 0, (16.279)

ψ̂(x, t)ψ̂(x′, t)− eiπµ0 ψ̂(x′, t)ψ̂(x, t), = 0.

As in (16.274), the vector x′ on the left-hand side has to be carried around x in
the anticlockwise sense. Using the relation (16.270), the integral in the prefactor of

H. Kleinert, PATH INTEGRALS



16.11 Fractional Quantum Hall Effect 1155

(16.276) can immediately be performed and the transformed fields are simply given
by

ψ̃(x, t) = e−i
e
h̄c
α(x,t)ψ(x, t), ψ̃†(x, t) = ψ(x, t)ei

e
h̄c
α(x,t). (16.280)

The same relations hold for the second-quantized field operators. This makes it
quite simple to prove the commutation rules (16.279). We do this here only for the
second rule which controls the behavior of the many-body wave functions under the
exchange of any two-particle coordinates:

ψ̂†(x, t)ψ̂†(x′, t)− eiπµ0 ψ̂†(x′, t)ψ̂†(x, t) = 0.

This amounts to the relation

ψ̂†(x, t)ei
e
h̄c
α̂(x,t)ψ̂†(x′, t)ei

e
h̄c
α̂(x′,t) = eiπµ0 ψ̂†(x′, t)ei

e
h̄c
α̂(x′,t)ψ̂†(x, t)ei

e
h̄c
α̂(x,t). (16.281)

The phase factors in the middle can be taken to the right-hand side by using the
transformation formula

ei
∫

d2x′f(x′,t)ψ̂†(x,t)ψ̂(x,t)ψ̂†(x, t)e−i
∫

d2x′f(x′,t)ψ̂†(x,t)ψ̂(x,t) = eif(x,t)ψ̂†(x, t), (16.282)

which follows from the Lie expansion [recall (1.297)]

eiÂB̂e−iÂ = 1 + i[Â, B̂] +
i2

2!
[Â, [Â, B̂]] + . . . . (16.283)

Setting f(x) equal to µ0ϕ(x− x′), Eq. (16.281) goes over into

ψ̂†(x, t)ψ̂†(x′, t)eiµ0ϕ(x−x′)ei
e
h̄c

[α̂(x,t)+α̂(x′,t)]

= eiπµ0ψ̂†(x′, t)ψ̂†(x, t)eiµ0ϕ(x
′−x)ei

e
h̄c

[α̂(x′,t)+α̂(x,t)] . (16.284)

The correctness of this equation follows directly from the property (16.274) of the
ϕ(x) field and from the commutativity of the Bose fields ψ†(x, t) with each other.
This proves the second of the anyon commutation rules (16.279). The others are
obtained similarly.

Note that we could just as well have constructed the anyon fields from Fermi
fields by shifting the exchange phase by an angle π.

16.11 Fractional Quantum Hall Effect

If particles obeying fractional statistics move in an ordinary magnetic field, they
are also subject to a statisto-magnetic field . As observed earlier, this acts upon
each particle in the same way as an additional true magnetic field. This observation
provides a key for the understanding of the fractional quantum Hall effect . The
arguments will now be sketched.

To measure the effect experimentally, a thin slab of conducting material (the
original experiment used the compound AlxGa1−xAs) is placed at low temperatures
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(≈ 0.5 K) in the xy-plane traversed by a strong magnetic field Bz (between 10 and
200 kG) along the z-axis. An electric field Ex is applied in the x-direction and an
electric Hall current jy per length unit is measured in the y-direction. Such a current
is expected in a dissipative electron gas with a number density (per unit area) ρ,
where the fields satisfy the relation

Ex = − 1

ρec
jyBz (16.285)

(see Appendix 16E). The transverse resistance defined by

Rxy ≡
Bz

ρec
(16.286)

rises linearly in Bz. Its dimension is sec/cm. In contrast with this naive expectation,
the experimental data for Rxy rise stepwise with a number of plateaus whose resis-
tance take the values h/e2ν, where ν is a rational number with odd denominators:

ν = 1
5 ,

2
7 ,

1
3 ,

2
5 ,

2
3 , . . . . (16.287)

We have omitted the observed number ν = 5
2 since its theoretical explanation re-

quires additional physical considerations (see the references at the end of the chap-
ter).

Similar plateaus had been observed at integer values of ν. Those are explained
as follows.

In an ideal Fermi liquid at zero temperature, the electron orbits have energies
p2/2M . Their momenta fill a Fermi sphere of radius pF . The size of pF is determined
from the particle number per unit area ρ via the phase space integral

ρLxLy = 2×
∫

dpxdpyLxLy
(2πh̄)2

, (16.288)

where Lx and Ly are the lengths of the rectangular layered material in the x- and
y-directions. The factor 2 accounts for the two spin orientations. The rotationally
invariant integration up to pF yields

pF =
√

2πρh̄. (16.289)

By switching on a magnetic field Bz, the rotational invariance is destroyed and
the electrons circle with a velocity v = ωr on Landau orbits around the z-direction
with the cyclotron frequency ω = eB/Mc. In quantum mechanics, the system corre-
sponds to an ensemble of harmonic oscillators which in the gauge A = (0, Bx, 0) [see
Eq. (9.93)] move back and forth in the x-direction and have a spectrum (n+1/2)h̄ω
[see Eq. (9.100)]. The phase space integral in the x-direction

∫

dpxLx/(2πh̄) be-
comes therefore a sum over n. The center of oscillations is x0 = py/Mω [see
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Eq. (9.95)], so that the remaining phase space integral
∫

dpyLy/(2πh̄) can be in-
tegrated to MωLx/(2πh̄). Thus (16.288) gives, for each spin orientation,

ρ =Mω
1

2πh̄

nF
∑

n=0

. (16.290)

The number of filled levels is ν = nF + 1. In the vacuum, the levels of one ori-
entation are degenerate with those of the opposite orientation at a neighboring n
(up to radiative corrections of the order α ≈ 1/137). This is due to the anoma-
lous magnetic moment of the spin-1/2 electron being equal to one Bohr magneton
µB = eh̄/2Mc ≈ 0.927× 10−20erg/gauss (i.e., twice as large as classically expected,
the factor 2 being caused by the relativistic Thomas precession). Due to the factor
2, the energy levels for the two orientations are split by ωh̄, which is precisely equal
to the energy difference between levels of neighboring n. In a solid material, how-
ever, the anomalous magnetic moment is strongly renormalized and the degeneracy
is removed. There, every level has a definite spin orientation.

According to Eq. (16.290), the highest level is occupied completely if each level
has taken up a particle number corresponding to its maximal filling density

ρmax =
Mω

2πh̄
. (16.291)

At smaller magnetic fields, this density is small and the electrons are spread over
many levels whose number ν is given by

ρ =
Mω

2πh̄
ν. (16.292)

Expressing ω in terms of Bz leads to

Bz

ρ
=
hc

e

1

ν
. (16.293)

Using the flux quantum Φ0 = hc/e, this equation states that the magnetic flux per
electron

Φ ≡ Bz

ρ
(16.294)

has the value

Φ

Φ0

=
1

ν
. (16.295)

If the magnetic field is increased, the Landau levels can accommodate more electrons
which then reside in a decreasing number ν of levels. By inserting into Eq. (16.286)
the values of Bz at which the highest level becomes depleted, one obtains precisely
the experimentally observed quantized Hall resistances

Rxy =
h

e2
1

ν
(16.296)
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Figure 16.24 Values of parameter ν, at which plateaus in fractional quantum Hall

resistance h/e2ν are expected theoretically. The right-hand side shows the values

νeff/(2mνeff + 1), the left-hand side νeff/(2mνeff − 1). The full circles indicate the values

found experimentally.

with integer values of ν. The assumption of a statisto-magnetic interaction makes it
possible to explain the fractional quantum Hall effect by reducing it to the ordinary
quantum Hall effect.

In the fractional quantum Hall effect, the magnetic field is so strong that even
the lowest Landau level is only partially filled. This is why one did not expect any
plateaus at all. According to a simple idea due to Jain, however, it is possible to
relate the fractional plateaus to the integer plateaus. For this one assumes that
the electrons in the ground state of the fractional quantum Hall effect carry an
even statisto-magnetic flux −2mΦ0 due to the presence of a Chern-Simons action.
For the wave function, this amounts to a statistical phase factor ei2πm under the
exchange of two particle coordinates; it leaves the Fermi statistics of the electrons
unchanged. Now one takes advantage of the observation made in the last section that
the electrons cannot distinguish a statisto-magnetic field from an external magnetic
field. They move in Landau orbits enforced by the combined field

Beff
z = Bz − Bstat

z , Bstat
z = 2mΦ0ρ. (16.297)

The cyclotron frequency of the electrons in their Landau orbits is

ωeff = eBeff
z /Mc. (16.298)

Since the effective field is now much smaller than the external field, the Landau
levels possess a greatly reduced capacity. Thus the electrons must be distributed
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over several levels in spite of the large magnetic field. The number decreases as the
field grows further. The steps appear at those places where the effective magnetic
field has its integer quantum Hall plateaus, i.e., at the effective magnetic fields

Beff
z = ±ρΦ0/ν

eff , νeff = 1, 2, 3, . . . . (16.299)

The values of νeff are related to the ν-values of the external magnetic field as follows:

± 1

νeff
=

1

ν
− 2m. (16.300)

From this one has

ν =
νeff

2mνeff ± 1
. (16.301)

The resulting values of ν on the integer-valued plane spanned by the numbers m
and νeff are shown in Fig. 16.24. Only odd denominators are allowed. The values of
ν found by this simple hypothesis agree well with those of the lower experimental
levels (16.287).

16.12 Anyonic Superconductivity

At the end of Section 16.3 we have mentioned that an ensemble of particles with
fractional statistics in 2+1 spacetime dimensions exhibits Meissner screening. This
has given rise to speculations that the presently poorly understood phenomenon of
high-temperature superconductivity may be explained by anyons physics. The new
kind of superconductivity is observed in materials which contain pronounced layer
structures, and it is conceivable that the currents move in these two-dimensional
subspaces without dissipation. With some effort it can indeed be shown that in 2+1
dimensions a Chern-Simons action may be generated in principle10 by integrating
out Fermi fields. Accepting this, we can easily derive that an addition of this action
to the usual electromagnetic field action gives the magnetic field a finite range, i.e.,
a finite penetration depth. The usual electromagnetic action reads

A =
1

8π

∫

dtd3x[E2 − (∇×A)2], (16.302)

where E is the electric field

E = −1

c

∂A

∂t
−∇A0. (16.303)

In the Euclidean formulation with x4 = ict, the action becomes

Ae =
1

8πc

∫

d4x[E2 + (∇×A)2]. (16.304)

10See Notes and References at the end of the chapter.
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To add the Chern-Simons action, we restrict the spacetime dimensionality to 3.
The restriction is imposed by considering a system in 4 spacetime dimensions and
assuming it to be translationally invariant along the fourth coordinate direction x4.
Then there are no electric fields, and the Euclidean action becomes

Ae =
L

8πc

∫

d3x(∇×A)2, (16.305)

where L denotes the length of the system in the x4-direction. To this, we now add
the Chern-Simons action (16.253) and the current coupling (16.256). By extremizing
the total action, we obtain the field equation:

L

4πc
∇× (∇×A) + i

e2

2πc2h̄µ0
∇×A = i

1

c2
j. (16.306)

For the magnetic field B = ∇×A, the equation reads

L

4πc
(∇×B+ iλ−1B) = i

1

c2
j, (16.307)

where the parameter λ denotes the following length (α = e2/h̄c = fine-structure
constant ≈ 1/137):

λ ≡ ch̄µ0

2e2
L =

µ0

2α
L. (16.308)

By multiplying (16.307) vectorially with ∇ and using the equation once more, we
obtain

L

4πc
(−∇

2 + λ−2)B = i
1

c2
∇× j+

1

c2
λ−1j . (16.309)

In the current-free case, the magnetic field is seen to have only a finite penetration
depth λ into the material. In an ordinary superconductor, this phenomenon is
known as the Meissner effect . There it can be understood as a consequence of the
induction of supercurrents in an ideal (i.e., incompressible and frictionless) liquid of
charged particles, which lowers the invading magnetic field according to Lenz’ rule.
In the absence of friction, there is a complete extinction.

Recall that a superconductor with time-dependent currents and fields is governed
by the characteristic London equation (see Appendix 16D)

∇× j ∝ B. (16.310)

For a two-dimensional superconductor, this amounts to

(∇× j⊥)z ∝ Bz. (16.311)

The above anyonic system shows a similar induction phenomenon. In the absence
of currents, Eq. (16.309) determines the magnetic field Bz from the particle density
by

Bz = µ0Φ0ρ. (16.312)
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If there are currents in the xy-plane j⊥ = (jx, jy), the magnetic field is increased by
∆Bz in accordance with the equation

L

4πc
(−∇

2 + λ−2)∆Bz =
1

c2
(∇× j⊥)z. (16.313)

This is the desired relation between the magnetic field and the curl of the current
which indicates the superconducting character of the system expressed before in the
London equation (16.311). The contact with the London equation is established by
a restriction to smooth field configurations in which the first term in (16.313) can
be ignored.

Thus we conclude that the currents and magnetic fields in a two-dimensional
system of anyons show Meissner screening. This is not sufficient to make the system
superconductive since it does not automatically imply the absence of dissipation. In
a usual superconductor, the existence of an energy gap makes the dissipative part of
the current-current correlation function vanish for wave vectors smaller than some
value kc. This value determines the critical current strength above which super-
conductivity returns to normal. In the anyonic system, the absence of dissipation
was proved in an approximation. Recent studies of higher corrections, however,
have shown the presence of dissipation after all, destroying the hope for an anyonic
superconductor.

16.13 Non-Abelian Chern-Simons Theory

The topological field interaction (16.153) can be generalized to nonabelian gauge
groups. For the local symmetry group SU(N) it reads

Ae,CS =
k

4πi

∫

d3xǫijktrN

(

Ai∇jAk +
2

3
AiAjAk

)

, (16.314)

where Ai are Hermitian traceless N × N -matrices and tr N denotes the associated
trace. In the nonabelian theory, the gauge transformations are

Ai ↔ UAiU
−1 + i(∂iU)U

−1. (16.315)

It can be shown that they transform Ae,CS as follows [10]:

Ae,CS → Ae,CS + 2πinkh̄, n = integer. (16.316)

Thus, the action is not completely gauge-invariant. For integer values of k, however,
the additional 2πinkh̄ does not have any effect upon the phase factor e−Ae,CS/h̄ in the
path integral associated with the orbital fluctuations. Thus there is gauge invariance
for integer values of k (in contrast to the abelian case where k is arbitrary).

In the nonabelian theory, gauge fixing is a nontrivial issue. It is no longer possible
to simply add a gauge fixing functional of the type (16.163). The reason is that the
volume in the field space of gauge transformations depends on the gauge field. For
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a consistent gauge fixing, this volume has to be divided out of the gauge-fixing
functional as was first shown by Fadeev and Popov [11]. For an adequate discussion
of this interesting topic which lies beyond the scope of this quantum-mechanical text
the reader is referred to books on quantum field theory.

As in the abelian case, the functional derivative of the Chern-Simons action with
respect to the vector potential gives the field strength

Bi ≡ ǫijkFjk, (16.317)

where Fij is the nonabelian version of the curl:

Fij ≡ ∂iAj − ∂jAi − i[Ai, Aj]. (16.318)

In 1989, Witten found an important result: The expectation value of a gauge-
invariant integral defined for any loop L,

WL[A] ≡ trNŴ [A] ≡ trN P̂ e
i
∮

L
dxA, (16.319)

the so-called Wilson loop integral , possesses a close relationship with the Jones poly-
nomials of knot theory. The loop L can consist of several components linked in an
arbitrary way, in which case the integral in WL[A] runs successively over all compo-
nents. The operator P̂ in front of the exponential function denotes the path-ordering
operator . It is defined in analogy with the time-ordering operator T̂ in (1.241): If
the exponential function in (16.319) is expanded into a Taylor series, it specifies the
order in which the N ×N -matricesAi(x), which do not commute for different x and
i, appear in the products. If the path is labeled by a “time parameter”, the earlier
matrices stand to the right of the later ones. The fluctuations of the vector potential
are controlled by the Chern-Simons action (16.314). Expectation values of the loop
integrals are defined by the functional integral

〈WL[A]〉 ≡
∫ DAie−Ae,CS/h̄WL[A]

∫ DAie−Ae,CS/h̄
. (16.320)

To calculate the self-interaction of a loop, we proceed as described in the abelian
case after Eq. (16.169) by spreading the line out into an infinitely thin ribbon of
parallel lines. The borders of the ribbon are positioned in such a way that their
linking number Lk vanishes. If 0 denotes a circle, i.e., a trivial knot, one can show
that

〈W0[A]〉 = qN/2 − q−N/2

q1/2 − q−1/2
, (16.321)

with

q ≡ e−2πi/(N+k). (16.322)

For an arbitrary link L one finds the skein relation (see Appendix 16C)

qN/2〈WL+ [A]〉 − q−N/2〈WL−[A]〉 = (q1/2 − q−1/2)〈WL0 [A]〉. (16.323)

H. Kleinert, PATH INTEGRALS
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If N = 2, this agrees up to the sign of the right-hand side with the relation (16.114)
for the Jones polynomials JL(t). For general values of N 6= 2, we obviously obtain
with t = q−N/2 and α = q1/2 − q−1/2 = −(t1/N − t−1/N ) the skein relations (16.122)
of the HOMFLY polynomials. The important relation is

〈WL[A]〉
〈W0[A]〉 = HL(t,−(t1/N − t−1/N )), t = eπi/k. (16.324)

Since the second variable in HL(t, α) appears only in even or odd powers,
HL(t,−(t1/2 − t−1/2)) is a Jones polynomial up to a sign (−1)s+1, where s is the
number of loops in L.

A favored choice of framing is one in which the self-linking number Lk of each
component is equal to the twist number or writhe w introduced in Eq. (16.110).
Then the ribbon lies flat on the projection plane of the knot. This framing can easily
be drawn on the blackboard by splitting the line L into two parallel running lines;
it is therefore called the blackboard framing . Incidentally, each choice of framing
can be drawn as a blackboard framing if one adds to the loop L an appropriate
number of windings via a Reidemeister move of type I. These are trivial for lines
and nontrivial only for ribbons (see Fig. 16.6). In the blackboard framing, each such
winding changes the values Lk and w simultaneously by one unit. Thus Lk = w can
be brought to any desired value. Take, for example, the trefoil knot in Fig. 16.2. In
the blackboard framing it has the self-linking number Lk = w = −3. This can be
brought to zero by adding three windings via a Reidemeister move of type I.11

In the framing Lk = w, the right-hand side of (16.324) carries an extra phase
factor cw, where

c = e−i2π(N
2−1)/2Nk. (16.325)

For comparison: In the abelian Chern-Simons theory, the phase factor is c =
e−2πi/k, and the expectation 〈WL[A]〉 has the value cΣi6=jLkij for a link of several
loops labeled by i with vanishing individual self-linking numbers Lki. In the framing
Lki = wi, the value is cΣi6=jLkij+Σiwi.

The investigation of the properties of loops with nonabelian topological interac-
tions is an interesting task of present-day research.

Appendix 16A Calculation of Feynman Diagrams in
Polymer Entanglement

For the calculation of the amplitudes N1, . . . , N4 in Eqs. (16.226), (16.230), (16.235), and (16.236),
we need the following simple tensor formulas involving two completely antisymmetric tensors εijl:

εijkε
imn = δmj δ

n
k − δnj δ

m
k , εijkε

ijl = 2δlk. (16A.1)

The Feynman diagrams shown in Fig. 16.23 corresponds to integrals over products of the polymer
correlation functions G0 defined in Eq. (16.213), which have to be integrated over space and

11Mathematicians usually prefer another framing in which the ribbons lie flat on the so-called
Seifert surfaces .
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Laplace transformed. For the latter we make use of the convolution property of the integral over
two Laplace transforms f̃(z) and g̃(z) of the functions f, g:

∫ c+i∞

c−i∞

Mdz

2πi
ezLf̃(z)g̃(z) =

∫ L

0

dsf(s)g(L− S). (16A.2)

All spatial integrals are Gaussian of the form
∫

d3xe−ax2+2bx·y = (2π)3/2a−3/2eb
2y2/a, a > 0. (16A.3)

Contracting the fields in Eq. (16.226), and keeping only the contributions which do not vanish in
the limit of zero replica indices, we find with the help of Eqs. (16A.1) and (16A.2):

N1 =

∫

d3x1, d
3x2

∫ L1

0

ds

∫ L2

0

dt

∫

d3x′1d
3x′2G0(x1−x′

1; s)G0(x
′
1 − x1;L1 − s)

× G0(x2 − x′
2; t)G0(x

′
2 − x2;L2 − t)

l

|x′
1 − x′

2|4
. (16A.4)

Performing the changes of variables

s′ =
s

L1
, t′ =

t

L2
, x =

x1 − x′
1√

L1

, y =
x2 − x′

2√
L2

, (16A.5)

and setting x′′
1 ≡ x′

1 − x′
2, we easily derive (16.227).

For small ξ/
√
L1 and ξ/

√
L2, we use the approximation (16.228). The space integrals can be

done using the formula (16A.3). After some work we obtain the result (16.240).
For the amplitude N2 in Eq. (16.230) we obtain likewise the integral

N2 =

∫

d3x1d
3x2

∫

d3x′1d
3x′′1d

3x′2

×
[

∫ L1

0

ds

∫ S

0

ds′G0(x
′
1 − x1;L1 − s) ∇

j
x′′

1

G0(x1 − x′′
1 ; s′)∇i

x′

1
G0(x

′′
1 − x′

1; s− s′)
]

× Dik(x
′
1 − x2)Djk(x′′

1 − x′
2)

[

∫ L2

0

dtG0(x2 − x′
2;L2 − t)G0(x

′
2 − x2; t)

]

, (16A.6)

whereDij(x,x
′) are the correlation functions (16.174) and (16.175) of the vector potentials. Setting

x2 ≡
√
L2u + x′

2 and supposing that ξ/
√
L2 is small, the integral over u can be easily evaluated

with the help of the Gaussian integral (16A.3). After the substitutions x′′
1 =

√
L1y + x1 x′

1 =√
L1(y−x)+x1, x′

2 =
√
L1(y−x− z)+x1 and a rescaling of the variables s, s′ by a factor L−1

1 ,
we derive Eq. (16.231) with (16.232).

For small ξ/
√
L1, ξ/

√
L2, the spatial integrals are easily evaluated leading to:

N2 =
−
√

2V L
−1/2
2 L−1

1 M−1/2

(4n)6

∫ 1

0

dt

∫ t

0

dt′t′(1 − t)

√

t− t′

1 − t+ t′
. (16A.7)

After the change of variable t′ → t′′ = t − t′, the double integral is reduced to a sum of integrals
the type

c(n,m) =

∫ 1

0

dttm
∫ t

0

dt′t′n
√

t′

1 − t′
, m, n = integers .

These can be simplified by replacing tm by dtm+1/dt(m+ 1), and doing the integrals by parts. In
this way, we end up with a linear combination of integrals of the form:

∫ 1

0

dt
tκ+

1
2

√
1 − t

= B

(

κ+
3

2
,
1

2

)

. (16A.8)

The calculations of N3 and N4 are very similar, and are therefore omitted.

H. Kleinert, PATH INTEGRALS
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Appendix 16B Kauffman and BLM/Ho Polynomials

The Kauffman polynomials are given by F (a, x) = a−wΛ(a, x), where w is the writhe and Λ(a, x)
satisfies the skein relation

ΛL+
(a, x) + ΛL−

(a, x) = x[ΛL0
(a, x) + ΛL∞

(a, x)]. (16B.1)

The subscripts refer to the same loop configurations as in Figs. 16.10 and 16.12. The trivial loop
has

Λ(a, x) =
a+ a−1

z
− 1. (16B.2)

While the Kauffman polynomial is a knot invariant, the Λ-polynomial is only a ribbon invariant.12

If a winding LT+ or LT− is removed from a loop with the help of a Reidemeister move of type I
in Fig. 16.6 (which for infinitely thin lines would be trivial while changing the writhe of a ribbon
by one unit) then Λ(a, x) receives a factor a or a−1, respectively (see Fig. 16.25).

LT+ LT0 LT− LT0

= a × = a−1 ×

Figure 16.25 Trivial windings LT+ and LT−. Their removal by means of Reidemeister

move of type I decreases or increases writhe w by one unit.

The Kauffman polynomials arise from Wilson loop integrals of a nonabelian Chern-Simons
theory, if the action (16.314) is SO(N)- rather than SU(N)-symmetric. A list of these polynomials
can be found in papers by Lickorish and Millet and by Doll and Hoste quoted at the end of the
chapter.

The BLM/Ho polynomials are special cases of the Kauffman polynomials. The relation between
them is Q(x) ≡ F (1, x).

Appendix 16C Skein Relation between Wilson Loop
Integrals

Here we sketch the derivation of the skein relation (16.323) for the expectation values of Wilson’s
loop integrals (16.319). Let us decompose Ai in terms of the N2 − 1 generators Ta of the group
SO(N):

Ai =
∑

a

Aa
i Ta. (16C.1)

They satisfy the commutation rules

[Ta, Tb] = ifabcTc. (16C.2)

12More precisely, F (a, x) is invariant under the three Reidemeister moves which, in the projected
picture of the knot in Fig. 16.6, define the ambient isotopy, whereas Λ changes under the first
Reidemeister move, associated only with regular isotopy. whereas
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For simplicity, we assume k to be very large so that we can restrict the treatment to the lowest
order in 1/k. To avoid inessential factors of the constants e, c, h̄, we set these equal to 1. Under a
small variation of the fields one has

δŴL[A]

δAa
i (x)

= iP̂

∫

L

dx′iδ
(3)(x− x′)Ta(x

′)ŴL[A], (16C.3)

where the path-ordering operator P̂ arranges the expression to its right in such a way that Ta is
situated in ŴL at the correct path-ordered place. To emphasize this, we have recorded the position
of Ta by means of an x-argument. More precisely, if we discretize the loop integral and write

ŴL[A] = eiAi(x̄
1)∆x1

i eiAi(x̄
2)∆x2

i · · · eiAi(x̄
n)∆xn

i · · · , (16C.4)

where x̄n are the midpoints of the intervals ∆xn, a differentiation with respect to one of the
Ai(x̄

n)-fields replaces the associated factor eiAi(x̄n)∆xn
i by iTae

iAi(x̄
n)∆xn

i . With the δ-function on
a line L defined in Eq. (10A.8), we write (16C.3) as

δŴL[A]

δAa
i (x)

= iP̂ δi(x, L)Ta(x)ŴL[A]. (16C.5)

For simplicity, we assume x to be only once traversed by the loop L.
If the shape of the loop is deformed infinitesimally by dSi = ǫijkdxid

′xj , then ŴL changes by

δŴL = idxid
′xjP̂F

a
ij(x)Ta(x)ŴL, (16C.6)

where F a
ij are the N2 − 1 components of the nonabelian field strengths

Fij = ∂iAj − ∂jAi − i[Ai, Aj ] (16C.7)

and x the midpoints of the parallelograms spanned by dx and d′x. The derivation of Eq. (16C.6)
is based on the observation that a change of the path by a small parallelogram adds to the line
integral ŴL a factor Ŵ , which is a Wilson loop integral around the small parallelogram. The

latter is evaluated as follows:

Ŵ = eiAi(x−d′x/2)dxieiAj(x+dx/2)d′xje−iAi(x+d′x/2)dxie−iAj(x−dx/2)d′xj

= ei[Ai(x)dxi−∂jAi(x)dxid
′xj+...]ei[Aj(x)d

′xj+∂iAj(x)dxid
′xj+...]

× e−i[Ai(x)dxi+∂jAi(x)dxid
′xj+...]e−i[Aj(x)d

′xj−∂iAj(x)dxid
′xj+...]

= eiFij(x)dxid
′xj . (16C.8)

The last line is found with the help of the Baker-Hausdorff formula eAeB = eA+B+[A,B]/2+... (recall
Appendix 2A).

Let us denote the Chern-Simons functional integral over ŴL[A] by ŴL. Their N ×N -traces
are WL[A] and W̄L. The latter differs from the expectation 〈WL[A]〉 in (16.320) by not containing
the normalizing denominator, i.e.,

WL ≡
∫

DAe−Ae,CSWL[A]. (16C.9)

This changes under the loop deformation by

δWL =

∫

DAδWL[A]e−Ae,CS

= idxid
′xj

∫

DAF a
ij(x)Ta(x)WL[A]e−Ae,CS , (16C.10)

H. Kleinert, PATH INTEGRALS
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with the tacit agreement that a generator Ta(x) written in front of the trace has to be evaluated
within the trace at the correct path-ordered position. Now we observe that F a

ij can also be obtained
by applying a functional derivative to the Chern-Simons action (16.314):

i
4π

k
ǫijk

δAe,CS

δAa
k(x)

= F a
ij(x). (16C.11)

This allows us to rewrite (16C.10) as

−4π

k

∫

DA

∫

dSi
δAe,CS

δAa
i (x)

Ta(x)WL[A]e−Ae,CS

and further as
4π

k

∫

DAdSiTa(x)WL
δ

δAa
i (x)

e−Ae,CS .

A partial functional integration produces

−4π

k

∫

DA

∫

dSiTa(x)
δWL[A]

δAa
i (x)

e−Ae,CS ,

which brings the variation to the form

δWL = −4πi

k

∫

DAdSiδi(x, L)Ta(x)Ta(x)WL[A]e−Ae,CS . (16C.12)

The expectation of Wilson’s loop integral WL changes under a deformation only if the loop crosses
another line element. This property makes WL a ribbon invariant, i.e., an invariant of regular
isotopy.

For a finite deformation, the right-hand side has to be integrated over the area S across which
the line has swept. Using the integral formula

∫

S

dSiδi(x, L) =

{

1
0

}

if the line L

{

pierces S
misses S

}

, (16C.13)

we obtain for each crossing

WL+
−WL−

≡ ∆WL = −4πi

k

∫

DATa(x)Ta(x)WL[A]e−Ae,CS . (16C.14)

The two generators Ta(x) lie path-ordered on the different line pieces of the crossing. To establish
contact with the knot polynomials, the left-hand sides have been labeled by the loop subscripts
L+ and L− appearing in the skein relations of Eq. 16.114.

The product of the generators on the right-hand side is the Casimir operator of the N × N
-representation of SO(N):

(Ta)αβ(Ta)γδ =
1

2
δαδδβγ − 1

2N
δαβδγδ. (16C.15)

When inserted into Eq. (16C.14), we obtain the graphical relation:

.

The second graph on the right-hand side can be decomposed into



1168 16 Polymers and Particle Orbits in Multiply Connected Spaces

2

.

Taking these two terms to the left-hand side of (16C.14), we obtain the skein relation

(

1 − πi

Nk

)

WL+
−
(

1 +
πi

Nk

)

WL−
= −2πi

k
WL0

. (16C.16)

We now apply this relation to the windings displayed in Fig. 16.25. They decompose into a
line and a circle. Due to the trace operation in WL0

, the circle contributes a factor N . Thus we
obtain the relation

(

1 − πi

Nk

)

WLT+
−
(

1 +
πi

Nk

)

WLT−
= −2πi

k
N WLT0

. (16C.17)

Now we remove on the left-hand side the windings according to the graphical rules of Fig. 16.25.
Under this operation, the Wilson loop integral is not invariant. Like BLM/Ho polynomials, it
acquires a factor a or a−1:

WLT+
= aWLT0

, WLT−
= a−1WLT0

. (16C.18)

To be compatible with (16C.17), the parameter a must satisfy

a = 1 − πi

Nk
(N2 − 1), a−1 = 1 +

πi

Nk
(N2 − 1). (16C.19)

Due to (16C.18), the Wilson loop integral is only a ribbon invariant exhibiting regular isotopy. A
proper knot invariant which distinguishes ambient isotopy classes arises when multiplying WL by
a−w. The polynomials HL ≡ e−wWL satisfy the skein relation

[(

1 − πi

Nk

)

a

]

HL+
−
[(

1 +
πi

Nk

)

a−1

]

HL−
= −2πi

k
HL0

. (16C.20)

The prefactors on the left-hand side can be written for large k as 1 − 2πiN/k ≈ qN/2 and 1 +
2πiN/k ≈ q−N/2 with q = 1 − 2πiπ/k. The prefactor on the right-hand side is equal to q1/2 −
q−1/2. To leading order in 1/k, we have thus derived the skein relation (16.323) for the HOMFLY
polynomials HL.

Appendix 16D London Equations

Consider an ideal fluid of charged particles. By definition, it is non-viscous and incompressible,
satisfying ∇ ·v = 0. If the charge of the particles is e (which we take to be negative for electrons),
the electric current density is

j = ρev, (16D.1)

where ρ is the particle density. The current is obviously conserved.
The equation of motion of the particles in an electric and magnetic field is governed by the

Lorentz force and reads

M v̇ = e

(

E +
1

c
v ×B

)

. (16D.2)

H. Kleinert, PATH INTEGRALS
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Using the kinematic identity

dv

dt
=
∂v

∂t
+ (v ·∇)v =

∂v

∂t
+ ∇

(

1

2
v2

)

− v × (∇ × v), (16D.3)

this leads to the partial differential equation for the velocity field v(x, t)

M
∂v

∂t
+ ∇

(

M

2
v2

)

= eE +Mv ·
(

∇× v +
e

Mc
B
)

. (16D.4)

Consider the time dependence of the vector field on the right-hand side

X = ∇× v +
e

Mc
B. (16D.5)

Using Maxwell’s equation

∂

∂t
B = −c∇×E, (16D.6)

we derive

∂

∂t
X = ∇× (∇ ×X). (16D.7)

Suppose now that there is initially no B-field in the ideal fluid at rest which therefore has X ≡ 0
everywhere. If a magnetic field is turned on, Eq. (16D.7) guarantees that X remains zero at all
times. This implies that

∇× j = − ρe2

Mc
B, (16D.8)

which is the first London equation. By inserting the first London equation into Eq. (16D.4), we
find the second London equation

∂

∂t
v + ∇

(

M

2
v2

)

= eE. (16D.9)

If the vector potential is taken in the transverse gauge ∇ ·A = 0 (which in this context is also
called London gauge), then the first London equation can be solved and yields

j = − ρe2

Mc
A. (16D.10)

By inserting this equation into the Maxwell equation with no electric field E, we obtain

∇×B =
4π

c
j = −ρ4πe

2

Mc2
A. (16D.11)

When rewritten in the form

∇× (∇×A) + λ−2A = 0, (16D.12)

with

λ−2 =
ρ4πe2

Mc2
, (16D.13)

the equation exhibits directly the finite penetration depth λ of a magnetic field into the fluid,
the celebrated Meissner effect. It is the ideal manifestation of the Lenz rule, according to which
an incoming magnetic field induces currents reducing the magnetic field — in the present case to
extinction.
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Appendix 16E Hall Effect in Electron Gas

A gas of electrons with a density ρ carries an electric current

j = ρev. (16E.1)

In a magnetic field, the particle velocities change due to the Lorentz force by

M v̇ = e

(

E +
1

c
v ×B

)

. (16E.2)

If σ0 denotes the conductivity of the system without a magnetic field, the electric current is
obviously given by

j = σ0

(

E +
1

c
v ×B

)

= σ0

(

E +
1

ρec
j×B

)

. (16E.3)

The second term shows the classical Hall resistance (16.286).
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