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Nature alone knows what she wants.

Goethe

Preface to the Fifth Edition

The paperback version of the fourth edition of this book was sold out in Fall 2008.
This gave me a chance to revise it at many places. In particular, I improved con-
siderably Chapter 20 on financial markets and removed some technical sections of
Chapter 5.

Among the many people who spotted printing errors and suggested changes of
various text passages are Dr. A. Pelster, Dr. A. Redondo, and especially Dr. An-
nemarie Kleinert.

H. Kleinert

Berlin, January 2009
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Nature alone knows what she wants.

Goethe

Preface to Fourth Edition

The third edition of this book appeared in 2004 and was reprinted in the same
year without improvements. The present fourth edition contains several extensions.
Chapter 4 includes now semiclassical expansions of higher order. Chapter 8 offers
an additional path integral formulation of spinning particles whose action contains
a vector field and a Wess-Zumino term. From this, the Landau-Lifshitz equation
for spin precession is derived which governs the behavior of quantum spin liquids.
The path integral demonstrates that fermions can be described by Bose fields—the
basis of Skyrmion theories. A further new section introduces the Berry phase, a
useful tool to explain many interesting physical phenomena. Chapter 10 gives more
details on magnetic monopoles and multivalued fields. Another feature is new in
this edition: sections of a more technical nature are printed in smaller font size.
They can well be omitted in a first reading of the book.

Among the many people who spotted printing errors and helped me improve
various text passages are Dr. A. Chervyakov, Dr. A. Pelster, Dr. F. Nogueira, Dr.
M. Weyrauch, Dr. H. Baur, Dr. T. Iguchi, V. Bezerra, D. Jahn, S. Overesch, and
especially Dr. Annemarie Kleinert.

H. Kleinert

Berlin, June 2006
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Preface to Third Edition

This third edition of the book improves and extends considerably the second edition
of 1995:

• Chapter 2 now contains a path integral representation of the scattering am-
plitude and new methods of calculating functional determinants for time-
dependent second-order differential operators. Most importantly, it introduces
the quantum field-theoretic definition of path integrals, based on perturbation
expansions around the trivial harmonic theory.

• Chapter 3 presents more exactly solvable path integrals than in the previous
editions. It also extends the Bender-Wu recursion relations for calculating
perturbation expansions to more general types of potentials.

• Chapter 4 discusses now in detail the quasiclassical approximation to the scat-
tering amplitude and Thomas-Fermi approximation to atoms.

• Chapter 5 proves the convergence of variational perturbation theory. It also
discusses atoms in strong magnetic fields and the polaron problem.

• Chapter 6 shows how to obtain the spectrum of systems with infinitely high
walls from perturbation expansions.

• Chapter 7 offers a many-path treatment of Bose-Einstein condensation and
degenerate Fermi gases.

• Chapter 10 develops the quantum theory of a particle in curved space, treated
before only in the time-sliced formalism, to perturbatively defined path in-
tegrals. Their reparametrization invariance imposes severe constraints upon
integrals over products of distributions. We derive unique rules for evaluating
these integrals, thus extending the linear space of distributions to a semigroup.

• Chapter 15 offers a closed expression for the end-to-end distribution of stiff
polymers valid for all persistence lengths.

• Chapter 18 derives the operator Langevin equation and the Fokker-Planck
equation from the forward–backward path integral. The derivation in the lit-
erature was incomplete, and the gap was closed only recently by an elegant
calculation of the Jacobian functional determinant of a second-order differen-
tial operator with dissipation.
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• Chapter 20 is completely new. It introduces the reader into the applications
of path integrals to the fascinating new field of econophysics.

For a few years, the third edition has been freely available on the internet, and
several readers have sent useful comments, for instance E. Babaev, H. Baur, B.
Budnyj, Chen Li-ming, A.A. Drăgulescu, K. Glaum, I. Grigorenko, T.S. Hatamian,
P. Hollister, P. Jizba, B. Kastening, M. Krämer, W.-F. Lu, S. Mukhin, A. Pelster,
M.B. Pinto, C. Schubert, S. Schmidt, R. Scalettar, C. Tangui, and M. van Vugt.
Reported errors are corrected in the internet edition.

When writing the new part of Chapter 2 on the path integral representation of
the scattering amplitude I profited from discussions with R. Rosenfelder. In the new
parts of Chapter 5 on polarons, many useful comments came from J.T. Devreese,
F.M. Peeters, and F. Brosens. In the new Chapter 20, I profited from discussions
with F. Nogueira, A.A. Drăgulescu, E. Eberlein, J. Kallsen, M. Schweizer, P. Bank,
M. Tenney, and E.C. Chang.

As in all my books, many printing errors were detected by my secretary S. Endrias
and many improvements are due to my wife Annemarie without whose permanent
encouragement this book would never have been finished.

H. Kleinert

Berlin, August 2003
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Preface to Second Edition

Since this book first appeared three years ago, a number of important developments
have taken place calling for various extensions to the text.

Chapter 4 now contains a discussion of the features of the semiclassical quanti-
zation which are relevant for multidimensional chaotic systems.

Chapter 3 derives perturbation expansions in terms of Feynman graphs, whose
use is customary in quantum field theory. Correspondence is established with
Rayleigh-Schrödinger perturbation theory. Graphical expansions are used in Chap-
ter 5 to extend the Feynman-Kleinert variational approach into a systematic vari-

ational perturbation theory. Analytically inaccessible path integrals can now be
evaluated with arbitrary accuracy. In contrast to ordinary perturbation expansions
which always diverge, the new expansions are convergent for all coupling strengths,
including the strong-coupling limit.

Chapter 10 contains now a new action principle which is necessary to derive the
correct classical equations of motion in spaces with curvature and a certain class of
torsion (gradient torsion).

Chapter 19 is new. It deals with relativistic path integrals, which were previously
discussed only briefly in two sections at the end of Chapter 15. As an application,
the path integral of the relativistic hydrogen atom is solved.

Chapter 16 is extended by a theory of particles with fractional statistics (anyons),
from which I develop a theory of polymer entanglement. For this I introduce non-
abelian Chern-Simons fields and show their relationship with various knot polyno-
mials (Jones, HOMFLY). The successful explanation of the fractional quantum Hall
effect by anyon theory is discussed — also the failure to explain high-temperature
superconductivity via a Chern-Simons interaction.

Chapter 17 offers a novel variational approach to tunneling amplitudes. It ex-
tends the semiclassical range of validity from high to low barriers. As an application,
I increase the range of validity of the currently used large-order perturbation theory
far into the regime of low orders. This suggests a possibility of greatly improving
existing resummation procedures for divergent perturbation series of quantum field
theories.

The Index now also contains the names of authors cited in the text. This may
help the reader searching for topics associated with these names. Due to their
great number, it was impossible to cite all the authors who have made important
contributions. I apologize to all those who vainly search for their names.
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In writing the new sections in Chapters 4 and 16, discussions with Dr. D. Wintgen
and, in particular, Dr. A. Schakel have been extremely useful. I also thank Professors
G. Gerlich, P. Hänggi, H. Grabert, M. Roncadelli, as well as Dr. A. Pelster, and
Mr. R. Karrlein for many relevant comments. Printing errors were corrected by my
secretary Ms. S. Endrias and by my editor Ms. Lim Feng Nee of World Scientific.

Many improvements are due to my wife Annemarie.

H. Kleinert

Berlin, December 1994
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Preface to First Edition

These are extended lecture notes of a course on path integrals which I delivered at the
Freie Universität Berlin during winter 1989/1990. My interest in this subject dates
back to 1972 when the late R. P. Feynman drew my attention to the unsolved path
integral of the hydrogen atom. I was then spending my sabbatical year at Caltech,
where Feynman told me during a discussion how embarrassed he was, not being able
to solve the path integral of this most fundamental quantum system. In fact, this had
made him quit teaching this subject in his course on quantum mechanics as he had
initially done.1 Feynman challenged me: “Kleinert, you figured out all that group-
theoretic stuff of the hydrogen atom, why don’t you solve the path integral!” He was
referring to my 1967 Ph.D. thesis2 where I had demonstrated that all dynamical
questions on the hydrogen atom could be answered using only operations within
a dynamical group O(4, 2). Indeed, in that work, the four-dimensional oscillator
played a crucial role and the missing steps to the solution of the path integral were
later found to be very few. After returning to Berlin, I forgot about the problem since
I was busy applying path integrals in another context, developing a field-theoretic
passage from quark theories to a collective field theory of hadrons.3 Later, I carried
these techniques over into condensed matter (superconductors, superfluid 3He) and
nuclear physics. Path integrals have made it possible to build a unified field theory
of collective phenomena in quite different physical systems.4

The hydrogen problem came up again in 1978 as I was teaching a course on
quantum mechanics. To explain the concept of quantum fluctuations, I gave an in-
troduction to path integrals. At the same time, a postdoc from Turkey, I. H. Duru,
joined my group as a Humboldt fellow. Since he was familiar with quantum mechan-
ics, I suggested that we should try solving the path integral of the hydrogen atom.
He quickly acquired the basic techniques, and soon we found the most important
ingredient to the solution: The transformation of time in the path integral to a new
path-dependent pseudotime, combined with a transformation of the coordinates to

1Quoting from the preface of the textbook by R.P. Feynman and A.R. Hibbs, Quantum Me-

chanics and Path Integrals , McGraw-Hill, New York, 1965: “Over the succeeding years, ... Dr.
Feynman’s approach to teaching the subject of quantum mechanics evolved somewhat away from
the initial path integral approach.”

2H. Kleinert, Fortschr. Phys. 6 , 1, (1968), and Group Dynamics of the Hydrogen Atom, Lec-
tures presented at the 1967 Boulder Summer School, published in Lectures in Theoretical Physics ,
Vol. X B, pp. 427–482, ed. by A.O. Barut and W.E. Brittin, Gordon and Breach, New York, 1968.

3See my 1976 Erice lectures, Hadronization of Quark Theories, published in Understanding the

Fundamental Constituents of Matter , Plenum press, New York, 1978, p. 289, ed. by A. Zichichi.
4H. Kleinert, Phys. Lett. B 69 , 9 (1977); Fortschr. Phys. 26 , 565 (1978); 30 , 187, 351 (1982).
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“square root coordinates” (to be explained in Chapters 13 and 14).5 These trans-
formations led to the correct result, however, only due to good fortune. In fact, our
procedure was immediately criticized for its sloppy treatment of the time slicing.6

A proper treatment could, in principle, have rendered unwanted extra terms which
our treatment would have missed. Other authors went through the detailed time-
slicing procedure,7 but the correct result emerged only by transforming the measure
of path integration inconsistently. When I calculated the extra terms according to
the standard rules I found them to be zero only in two space dimensions.8 The
same treatment in three dimensions gave nonzero “corrections” which spoiled the
beautiful result, leaving me puzzled.

Only recently I happened to locate the place where the three-dimensional treat-
ment went wrong. I had just finished a book on the use of gauge fields in condensed
matter physics.9 The second volume deals with ensembles of defects which are de-
fined and classified by means of operational cutting and pasting procedures on an
ideal crystal. Mathematically, these procedures correspond to nonholonomic map-
pings. Geometrically, they lead from a flat space to a space with curvature and
torsion. While proofreading that book, I realized that the transformation by which
the path integral of the hydrogen atom is solved also produces a certain type of
torsion (gradient torsion). Moreover, this happens only in three dimensions. In two
dimensions, where the time-sliced path integral had been solved without problems,
torsion is absent. Thus I realized that the transformation of the time-sliced measure
had a hitherto unknown sensitivity to torsion.

It was therefore essential to find a correct path integral for a particle in a space
with curvature and gradient torsion. This was a nontrivial task since the literature
was ambiguous already for a purely curved space, offering several prescriptions to
choose from. The corresponding equivalent Schrödinger equations differ by multiples
of the curvature scalar.10 The ambiguities are path integral analogs of the so-called
operator-ordering problem in quantum mechanics. When trying to apply the existing
prescriptions to spaces with torsion, I always ran into a disaster, some even yielding
noncovariant answers. So, something had to be wrong with all of them. Guided by
the idea that in spaces with constant curvature the path integral should produce the
same result as an operator quantum mechanics based on a quantization of angular
momenta, I was eventually able to find a consistent quantum equivalence principle

5I.H. Duru and H. Kleinert, Phys. Lett. B 84 , 30 (1979), Fortschr. Phys. 30 , 401 (1982).
6G.A. Ringwood and J.T. Devreese, J. Math. Phys. 21 , 1390 (1980).
7R. Ho and A. Inomata, Phys. Rev. Lett. 48 , 231 (1982); A. Inomata, Phys. Lett. A 87 , 387

(1981).
8H. Kleinert, Phys. Lett. B 189 , 187 (1987); contains also a criticism of Ref. 7.
9H. Kleinert, Gauge Fields in Condensed Matter , World Scientific, Singapore, 1989, Vol. I, pp.

1–744, Superflow and Vortex Lines , and Vol. II, pp. 745–1456, Stresses and Defects .
10B.S. DeWitt, Rev. Mod. Phys. 29 , 377 (1957); K.S. Cheng, J. Math. Phys. 13 , 1723 (1972),

H. Kamo and T. Kawai, Prog. Theor. Phys. 50 , 680, (1973); T. Kawai, Found. Phys. 5 , 143
(1975), H. Dekker, Physica A 103 , 586 (1980), G.M. Gavazzi, Nuovo Cimento 101A, 241 (1981);
M.S. Marinov, Physics Reports 60 , 1 (1980).

H. Kleinert, PATH INTEGRALS



xvii

for path integrals in spaces with curvature and gradient torsion,11 thus offering also
a unique solution to the operator-ordering problem. This was the key to the leftover
problem in the Coulomb path integral in three dimensions — the proof of the absence
of the extra time slicing contributions presented in Chapter 13.

Chapter 14 solves a variety of one-dimensional systems by the new techniques.

Special emphasis is given in Chapter 8 to instability (path collapse) problems in
the Euclidean version of Feynman’s time-sliced path integral. These arise for actions
containing bottomless potentials. A general stabilization procedure is developed in
Chapter 12. It must be applied whenever centrifugal barriers, angular barriers, or
Coulomb potentials are present.12

Another project suggested to me by Feynman, the improvement of a variational
approach to path integrals explained in his book on statistical mechanics13, found
a faster solution. We started work during my sabbatical stay at the University of
California at Santa Barbara in 1982. After a few meetings and discussions, the
problem was solved and the preprint drafted. Unfortunately, Feynman’s illness
prevented him from reading the final proof of the paper. He was able to do this
only three years later when I came to the University of California at San Diego for
another sabbatical leave. Only then could the paper be submitted.14

Due to recent interest in lattice theories, I have found it useful to exhibit the
solution of several path integrals for a finite number of time slices, without going
immediately to the continuum limit. This should help identify typical lattice effects
seen in the Monte Carlo simulation data of various systems.

The path integral description of polymers is introduced in Chapter 15 where
stiffness as well as the famous excluded-volume problem are discussed. Parallels are
drawn to path integrals of relativistic particle orbits. This chapter is a preparation
for ongoing research in the theory of fluctuating surfaces with extrinsic curvature
stiffness, and their application to world sheets of strings in particle physics.15 I have
also introduced the field-theoretic description of a polymer to account for its increas-
ing relevance to the understanding of various phase transitions driven by fluctuating
line-like excitations (vortex lines in superfluids and superconductors, defect lines in
crystals and liquid crystals).16 Special attention has been devoted in Chapter 16 to
simple topological questions of polymers and particle orbits, the latter arising by
the presence of magnetic flux tubes (Aharonov-Bohm effect). Their relationship to
Bose and Fermi statistics of particles is pointed out and the recently popular topic
of fractional statistics is introduced. A survey of entanglement phenomena of single
orbits and pairs of them (ribbons) is given and their application to biophysics is
indicated.

11H. Kleinert, Mod. Phys. Lett. A 4 , 2329 (1989); Phys. Lett. B 236 , 315 (1990).
12H. Kleinert, Phys. Lett. B 224 , 313 (1989).
13R.P. Feynman, Statistical Mechanics , Benjamin, Reading, 1972, Section 3.5.
14R.P. Feynman and H. Kleinert, Phys. Rev. A 34 , 5080, (1986).
15A.M. Polyakov, Nucl. Phys. B 268 , 406 (1986), H. Kleinert, Phys. Lett. B 174 , 335 (1986).
16See Ref. 9.
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Finally, Chapter 18 contains a brief introduction to the path integral approach
of nonequilibrium quantum-statistical mechanics, deriving from it the standard
Langevin and Fokker-Planck equations.

I want to thank several students in my class, my graduate students, and my post-
docs for many useful discussions. In particular, T. Eris, F. Langhammer, B. Meller,
I. Mustapic, T. Sauer, L. Semig, J. Zaun, and Drs. G. Germán, C. Holm, D. John-
ston, and P. Kornilovitch have all contributed with constructive criticism. Dr. U.
Eckern from Karlsruhe University clarified some points in the path integral deriva-
tion of the Fokker-Planck equation in Chapter 18. Useful comments are due to Dr.
P.A. Horvathy, Dr. J. Whitenton, and to my colleague Prof. W. Theis. Their careful
reading uncovered many shortcomings in the first draft of the manuscript. Special
thanks go to Dr. W. Janke with whom I had a fertile collaboration over the years
and many discussions on various aspects of path integration.

Thanks go also to my secretary S. Endrias for her help in preparing the
manuscript in LATEX, thus making it readable at an early stage, and to U. Grimm
for drawing the figures.

Finally, and most importantly, I am grateful to my wife Dr. Annemarie Kleinert
for her inexhaustible patience and constant encouragement.

H. Kleinert

Berlin, January 1990
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Ay, call it holy ground,

The soil where first they trod!
F. D. Hemans (1793-1835), Landing of the Pilgrim Fathers

1

Fundamentals

Path integrals deal with fluctuating line-like structures. These appear in nature in a
variety of ways, for instance, as particle orbits in spacetime continua, as polymers in
solutions, as vortex lines in superfluids, as defect lines in crystals and liquid crystals.
Their fluctuations can be of quantum-mechanical, thermodynamic, or statistical ori-
gin. Path integrals are an ideal tool to describe these fluctuating line-like structures,
thereby leading to a unified understanding of many quite different physical phenom-
ena. In developing the formalism we shall repeatedly invoke well-known concepts of
classical mechanics, quantum mechanics, and statistical mechanics, to be summa-
rized in this chapter. In Section 1.13, we emphasize some important problems of
operator quantum mechanics in spaces with curvature and torsion. These problems
will be solved in Chapters 10 and 8 by means of path integrals.1

1.1 Classical Mechanics

The orbits of a classical-mechanical system are described by a set of time-dependent
generalized coordinates q1(t), . . . , qN(t). A Lagrangian

L(qi, q̇i, t) (1.1)

depending on q1, . . . , qN and the associated velocities q̇1, . . . , q̇N governs the dynam-
ics of the system. The dots denote the time derivative d/dt. The Lagrangian is at
most a quadratic function of q̇i. The time integral

A[qi] =
∫ tb

ta
dt L(qi(t), q̇i(t), t) (1.2)

of the Lagrangian along an arbitrary path qi(t) is called the action of this path. The
path being actually chosen by the system as a function of time is called the classical
path or the classical orbit qcli (t). It has the property of extremizing the action in
comparison with all neighboring paths

qi(t) = qcli (t) + δqi(t) (1.3)

1Readers familiar with the foundations may start directly with Section 1.13.
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2 1 Fundamentals

having the same endpoints q(tb), q(ta). To express this property formally, one
introduces the variation of the action as the linear term in the Taylor expansion of
A[qi] in powers of δqi(t):

δA[qi] ≡ {A[qi + δqi]−A[qi]}lin term in δqi . (1.4)

The extremal principle for the classical path is then

δA[qi]
∣

∣

∣

qi(t)=qcl
i
(t)

= 0 (1.5)

for all variations of the path around the classical path, δqi(t) ≡ qi(t)− qcli (t), which
vanish at the endpoints, i.e., which satisfy

δqi(ta) = δqi(tb) = 0. (1.6)

Since the action is a time integral of a Lagrangian, the extremality property can
be phrased in terms of differential equations. Let us calculate the variation of A[qi]
explicitly:

δA[qi] = {A[qi + δqi]−A[qi]}lin

=
∫ tb

ta
dt {L (qi(t) + δqi(t), q̇i(t) + δq̇i(t), t)− L (qi(t), q̇i(t), t)}lin

=
∫ tb

ta
dt

{

∂L

∂qi
δqi(t) +

∂L

∂q̇i
δq̇i(t)

}

=
∫ tb

ta
dt

{

∂L

∂qi
− d

dt

∂L

∂q̇i

}

δqi(t) +
∂L

∂q̇i
δqi(t)

∣

∣

∣

∣

tb

ta

. (1.7)

The last expression arises from a partial integration of the δq̇i term. Here, as in the
entire text, repeated indices are understood to be summed (Einstein’s summation
convention). The endpoint terms (surface or boundary terms) with the time t equal
to ta and tb may be dropped, due to (1.6). Thus we find for the classical orbit qcli (t)
the Euler-Lagrange equations :

d

dt

∂L

∂q̇i
=
∂L

∂qi
. (1.8)

There is an alternative formulation of classical dynamics which is based on a
Legendre-transformed function of the Lagrangian called the Hamiltonian

H ≡ ∂L

∂q̇i
q̇i − L(qi, q̇i, t). (1.9)

Its value at any time is equal to the energy of the system. According to the general
theory of Legendre transformations [1], the natural variables which H depends on
are no longer qi and q̇i, but qi and the generalized momenta pi, the latter being
defined by the N equations

pi ≡
∂

∂q̇i
L(qi, q̇i, t). (1.10)
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1.1 Classical Mechanics 3

In order to express the Hamiltonian H (pi, qi, t) in terms of its proper variables pi, qi,
the equations (1.10) have to be solved for q̇i by a velocity function

q̇i = vi(pi, qi, t). (1.11)

This is possible provided the Hessian metric

hij(qi, q̇i, t) ≡
∂2

∂q̇i∂q̇j
L(qi, q̇i, t) (1.12)

is nonsingular. The result is inserted into (1.9), leading to the Hamiltonian as a
function of pi and qi:

H (pi, qi, t) = pivi(pi, qi, t)− L (qi, vi (pi, qi, t) , t) . (1.13)

In terms of this Hamiltonian, the action is the following functional of pi(t) and qi(t):

A[pi, qi] =
∫ tb

ta
dt
[

pi(t)q̇i(t)−H(pi(t), qi(t), t)
]

. (1.14)

This is the so-called canonical form of the action. The classical orbits are now spec-
ified by pcli (t), q

cl
i (t). They extremize the action in comparison with all neighboring

orbits in which the coordinates qi(t) are varied at fixed endpoints [see (1.3), (1.6)]
whereas the momenta pi(t) are varied without restriction:

qi(t) = qcli (t) + δqi(t), δqi(ta) = δqi(tb) = 0,

pi(t) = pcli (t) + δpi(t).
(1.15)

In general, the variation is

δA[pi, qi] =
∫ tb

ta
dt

[

δpi(t)q̇i(t) + pi(t)δq̇i(t)−
∂H

∂pi
δpi −

∂H

∂qi
δqi

]

=
∫ tb

ta
dt

{[

q̇i(t)−
∂H

∂pi

]

δpi −
[

ṗi(t) +
∂H

∂qi

]

δqi

}

+ pi(t)δqi(t)
∣

∣

∣

tb

ta
.

(1.16)

Since this variation has to vanish for the classical orbits, we find that pcli (t), q
cl
i (t)

must be solutions of the Hamilton equations of motion

ṗi = −∂H
∂qi

,

q̇i =
∂H

∂pi
.

(1.17)

These agree with the Euler-Lagrange equations (1.8) via (1.9) and (1.10), as can
easily be verified. The 2N -dimensional space of all pi and qi is called the phase
space.
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An arbitrary function O(pi(t), qi(t), t) changes along an arbitrary path as follows:

d

dt
O (pi(t), qi(t), t) =

∂O

∂pi
ṗi +

∂O

∂qi
q̇i +

∂O

∂t
. (1.18)

If the path coincides with a classical orbit, we may insert (1.17) and find

dO

dt
=

∂H

∂pi

∂O

∂qi
− ∂O

∂pi

∂H

∂qi
+
∂O

∂t

≡ {H,O}+ ∂O

∂t
.

(1.19)

Here we have introduced the symbol {. . . , . . .} called Poisson brackets :

{A,B} ≡ ∂A

∂pi

∂B

∂qi
− ∂B

∂pi

∂A

∂qi
, (1.20)

again with the Einstein summation convention for the repeated index i. The Poisson
brackets have the obvious properties

{A,B} = −{B,A} antisymmetry, (1.21)

{A, {B,C}}+ {B, {C,A}}+ {C, {A,B}} = 0 Jacobi identity. (1.22)

If two quantities have vanishing Poisson brackets, they are said to commute.
The original Hamilton equations are a special case of (1.19):

d

dt
pi = {H, pi} =

∂H

∂pj

∂pi
∂qj

− ∂pi
∂pj

∂H

∂qj
= −∂H

∂qi
,

d

dt
qi = {H, qi} =

∂H

∂pj

∂qi
∂qj

− ∂qi
∂pj

∂H

∂qj
=
∂H

∂pi
.

(1.23)

By definition, the phase space variables pi, qi satisfy the Poisson brackets

{pi, qj} = δij ,

{pi, pj} = 0,

{qi, qj} = 0.

(1.24)

A function O(pi, qi) which has no explicit dependence on time and which, more-
over, commutes with H (i.e., {O,H} = 0), is a constant of motion along the classical
path, due to (1.19). In particular, H itself is often time-independent, i.e., of the form

H = H(pi, qi). (1.25)

Then, since H commutes with itself, the energy is a constant of motion.
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1.1 Classical Mechanics 5

The Lagrangian formalism has the virtue of being independent of the particular
choice of the coordinates qi. Let Qi be any other set of coordinates describing the
system which is connected with qi by what is called a local2 or point transformation

qi = fi(Qj , t). (1.26)

Certainly, to be of use, this relation must be invertible, at least in some neighborhood
of the classical path,

Qi = f−1i(qj, t). (1.27)

Otherwise Qi and qi could not both parametrize the same system. Therefore, fi
must have a nonvanishing Jacobi determinant:

det

(

∂fi
∂Qj

)

6= 0. (1.28)

In terms of Qi, the initial Lagrangian takes the form

L′
(

Qj , Q̇j, t
)

≡ L
(

fi (Qj, t) , ḟi (Qj , t) , t
)

(1.29)

and the action reads

A =
∫ tb

ta
dt L′

(

Qj(t), Q̇j(t), t
)

=
∫ tb

ta
dt L

(

fi (Qj(t), t) , ḟi (Qj(t), t) , t
)

.

(1.30)

By performing variations δQj(t), δQ̇j(t) in the first expression while keeping
δQj(ta) = δQj(tb) = 0, we find the equations of motion

d

dt

∂L′

∂Q̇j

− ∂L′

∂Qj
= 0. (1.31)

The variation of the lower expression, on the other hand, gives

δA =
∫ tb

ta
dt

(

∂L

∂qi
δfi +

∂L

∂q̇i
δḟi

)

=
∫ tb

ta
dt

(

∂L

∂qi
− d

dt

∂L

∂q̇i

)

δfi +
∂L

∂q̇i
δfi
∣

∣

∣

tb

ta
.

(1.32)

If δqi is arbitrary, then so is δfi. Moreover, with δqi(ta) = δqi(tb) = 0, also δfi
vanishes at the endpoints. Hence the extremum of the action is determined equally
well by the Euler-Lagrange equations for Qj(t) [as it was by those for qi(t)].

2The word local means here at a specific time. This terminology is of common use in field
theory where local means, more generally, at a specific spacetime point .
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Note that the locality property is quite restrictive for the transformation of the
generalized velocities q̇i(t). They will necessarily be linear in Q̇j :

q̇i = ḟi(Qj , t) =
∂fi
∂Qj

Q̇j +
∂fi
∂t
. (1.33)

In phase space, there exists also the possibility of performing local changes of
the canonical coordinates pi, qi to new ones Pj, Qj . Let them be related by

pi = pi(Pj, Qj , t),

qi = qi(Pj , Qj, t),
(1.34)

with the inverse relations
Pj = Pj(pi, qi, t),

Qj = Qj(pi, qi, t).
(1.35)

However, while the Euler-Lagrange equations maintain their form under any local
change of coordinates, the Hamilton equations do not hold, in general, for any trans-
formed coordinates Pj(t), Qj(t). The local transformations pi(t), qi(t) → Pj(t), Qj(t)
for which they hold, are referred to as canonical . They are characterized by the form
invariance of the action, up to an arbitrary surface term,

∫ tb

ta
dt [piq̇i −H(pi, qi, t)] =

∫ tb

ta
dt
[

PjQ̇j −H ′(Pj, Qj , t)
]

+ F (Pj, Qj , t)
∣

∣

∣

tb

ta
,

(1.36)

where H ′(Pj, Qj, t) is some new Hamiltonian. Its relation with H(pi, qi, t) must be
chosen in such a way that the equality of the action holds for any path pi(t), qi(t)
connecting the same endpoints (at least any in some neighborhood of the classical
orbits). If such an invariance exists then a variation of this action yields for Pj(t)
and Qj(t) the Hamilton equations of motion governed by H ′:

Ṗi = −∂H
′

∂Qi
,

Q̇i =
∂H ′

∂Pi
.

(1.37)

The invariance (1.36) can be expressed differently by rewriting the integral on the
left-hand side in terms of the new variables Pj(t), Qj(t),

∫ tb

ta
dt

{

pi

(

∂qi
∂Pj

Ṗj +
∂qi
∂Qj

Q̇j +
∂qi
∂t

)

−H(pi(Pj, Qj , t), qi(Pj, Qj , t), t)

}

, (1.38)

and subtracting it from the right-hand side, leading to
∫ tb

ta

{(

Pj − pi
∂qi
∂Qj

)

dQj − pi
∂qi
∂Pj

dPj

−
(

H ′ + pi
∂qi
∂t

−H

)

dt

}

= −F (Pj , Qj, t)
∣

∣

∣

tb

ta
.

(1.39)
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1.1 Classical Mechanics 7

The integral is now a line integral along a curve in the (2N + 1)-dimensional space,
consisting of the 2N -dimensional phase space variables pi, qi and of the time t.
The right-hand side depends only on the endpoints. Thus we conclude that the
integrand on the left-hand side must be a total differential. As such it has to satisfy
the standard Schwarz integrability conditions [2], according to which all second
derivatives have to be independent of the sequence of differentiation. Explicitly,
these conditions are

∂pi
∂Pk

∂qi
∂Ql

− ∂qi
∂Pk

∂pi
∂Ql

= δkl,

∂pi
∂Pk

∂qi
∂Pl

− ∂qi
∂Pk

∂pi
∂Pl

= 0, (1.40)

∂pi
∂Qk

∂qi
∂Ql

− ∂qi
∂Qk

∂pi
∂Ql

= 0,

and
∂pi
∂t

∂qi
∂Pl

− ∂qi
∂t

∂pi
∂Pl

=
∂(H ′ −H)

∂Pl
,

∂pi
∂t

∂qi
∂Ql

− ∂qi
∂t

∂pi
∂Ql

=
∂(H ′ −H)

∂Ql

.

(1.41)

The first three equations define the so-called Lagrange brackets in terms of which
they are written as

(Pk, Ql) = δkl,

(Pk, Pl) = 0,

(Qk, Ql) = 0. (1.42)

Time-dependent coordinate transformations satisfying these equations are called
symplectic. After a little algebra involving the matrix of derivatives

J =





∂Pi/∂pj ∂Pi/∂qj

∂Qi/∂pj ∂Qi/∂qj



 , (1.43)

its inverse

J−1 =





∂pi/∂Pj ∂pi/∂Qj

∂qi/∂Pj ∂qi/∂Qj



 , (1.44)

and the symplectic unit matrix

E =

(

0 δij
−δij 0

)

, (1.45)

we find that the Lagrange brackets (1.42) are equivalent to the Poisson brackets

{Pk, Ql} = δkl,

{Pk, Pl} = 0, (1.46)

{Qk, Ql} = 0.
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This follows from the fact that the 2N × 2N matrix formed from the Lagrange
brackets

L ≡




−(Qi, Pj) −(Qi, Qj)

(Pi, Pj) (Pi, Qj)



 (1.47)

can be written as (E−1J−1E)TJ−1, while an analogous matrix formed from the
Poisson brackets

P ≡




{Pi, Qj} −{Pi, Pj}
{Qi, Qj} −{Qi, Pj}



 (1.48)

is equal to J(E−1JE)T . Hence L = P−1, so that (1.42) and (1.46) are equivalent to
each other. Note that the Lagrange brackets (1.42) [and thus the Poisson brackets
(1.46)] ensure piq̇i −PjQ̇j to be a total differential of some function of Pj and Qj in
the 2N -dimensional phase space:

piq̇i − PjQ̇j =
d

dt
G(Pj, Qj , t). (1.49)

The Poisson brackets (1.46) for Pi, Qi have the same form as those in Eqs. (1.24)
for the original phase space variables pi, qi.

The other two equations (1.41) relate the new Hamiltonian to the old one. They
can always be used to construct H ′(Pj , Qj, t) from H(pi, qi, t). The Lagrange brack-
ets (1.42) or Poisson brackets (1.46) are therefore both necessary and sufficient for
the transformation pi, qi → Pj , Qj to be canonical.

A canonical transformation preserves the volume in phase space. This follows
from the fact that the matrix product J(E−1JE)T is equal to the 2N × 2N unit
matrix (1.48). Hence det (J) = ±1 and

∏

i

∫

[dpi dqi] =
∏

j

∫

[dPj dQj] . (1.50)

It is obvious that the process of canonical transformations is reflexive. It may
be viewed just as well from the opposite side, with the roles of pi, qi and Pj , Qj

exchanged [we could just as well have considered the integrand (1.39) as a complete
differential in Pj , Qj, t space].

Once a system is described in terms of new canonical coordinates Pj, Qj , we
introduce the new Poisson brackets

{A,B}′ ≡ ∂A

∂Pj

∂B

∂Qj
− ∂B

∂Pj

∂A

∂Qj
, (1.51)

and the equation of motion for an arbitrary observable quantity O (Pj(t), Qj(t), t)
becomes with (1.37)

dO

dt
= {H ′, O}′ + ∂O

∂t
, (1.52)
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1.1 Classical Mechanics 9

by complete analogy with (1.19). The new Poisson brackets automatically guarantee
the canonical commutation rules

{Pi, Qj}′ = δij ,

{Pi, Pj}′ = 0,

{Qi, Qj}′ = 0.

(1.53)

A standard class of canonical transformations can be constructed by introducing
a generating function F satisfying a relation of the type (1.36), but depending
explicitly on half an old and half a new set of canonical coordinates, for instance

F = F (qi, Qj, t). (1.54)

One now considers the equation

∫ tb

ta
dt [piq̇i −H(pi, qi, t)] =

∫ tb

ta
dt

[

PjQ̇j −H ′(Pj , Qj, t) +
d

dt
F (qi, Qj, t)

]

, (1.55)

replaces PjQ̇j by −ṖjQj +
d
dt
PjQj , defines

F (qi, Pj, t) ≡ F (qi, Qj, t) + PjQj ,

and works out the derivatives. This yields

∫ tb

ta
dt
{

piq̇i + ṖjQj − [H(pi, qi, t)−H ′(Pj, Qj , t)]
}

=
∫ tb

ta
dt

{

∂F

∂qi
(qi, Pj, t)q̇i +

∂F

∂Pj
(qi, Pj, t)Ṗj +

∂F

∂t
(qi, Pj, t)

}

.

(1.56)

A comparison of the two sides yields the equations for the canonical transformation

pi =
∂

∂qi
F (qi, Pj, t),

Qj =
∂

∂Pj

F (qi, Pj, t).

(1.57)

The second equation shows that the above relation between F (qi, Pj, t) and
F (qi, Qj, t) amounts to a Legendre transformation.

The new Hamiltonian is

H ′(Pj, Qj, t) = H(pi, qi, t) +
∂

∂t
F (qi, Pj, t). (1.58)

Instead of (1.54) we could, of course, also have chosen functions with other mixtures
of arguments such as F (qi, Pj, t), F (pi, Qj , t), F (pi, Pj, t) to generate simple canonical
transformations.
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A particularly important canonical transformation arises by choosing a gener-
ating function F (qi, Pj) in such a way that it leads to time-independent momenta
Pj ≡ αj . Coordinates Qj with this property are called cyclic. To find cyclic co-
ordinates we must search for a generating function F (qj , Pj, t) which makes the
transformed H ′ in (1.58) vanish identically. Then all derivatives with respect to the
coordinates vanish and the new momenta Pj are trivially constant. Thus we seek a
solution of the equation

∂

∂t
F (qi, Pj, t) = −H(pi, qi, t), (1.59)

where the momentum variables in the Hamiltonian obey the first equation of (1.57).
This leads to the following partial differential equation for F (qi, Pj , t):

∂tF (qi, Pj, t) = −H(∂qiF (qi, Pj, t), qi, t), (1.60)

called the Hamilton-Jacobi equation. Here and in the sequel we shall often use the
short notations for partial derivatives ∂t ≡ ∂/∂t, ∂qi ≡ ∂/∂qi .

A generating function which achieves this goal is supplied by the action functional
(1.14). When following the classical solutions starting from a fixed initial point and
running to all possible final points qi at a time t, the associated actions of these
solutions form a function A(qi, t). Expression (1.14) show that if a particle moves
along a classical trajectory, and the path is varied without keeping the endpoints
fixed, the action changes as a function of the end positions (1.16) by

δA[pi, qi] = pi(tb)δqi(tb)− pi(ta)δqi(ta). (1.61)

From this we deduce immediately the first of the equations (1.57), now for the
generating function A(qi, t):

pi =
∂

∂qi
A(qi, t). (1.62)

Moreover, the function A(qi, t) has the time derivative

d

dt
A(qi(t), t) = pi(t)q̇i(t)−H(pi(t), qi(t), t). (1.63)

Together with (1.62) this implies

∂tA(qi, t) = −H(pi, qi, t). (1.64)

If the momenta pi on the right-hand side are replaced according to (1.62), A(qi, t)
is indeed seen to be a solution of the Hamilton-acobi differential equation:

∂tA(qi, t) = −H(∂qiA(qi, t), qi, t). (1.65)
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1.2 Relativistic Mechanics in Curved Spacetime 11

1.2 Relativistic Mechanics in Curved Spacetime

The classical action of a relativistic spinless point particle in a curved four-
dimensional spacetime is usually written as an integral

A = −Mc2
∫

dτL(q, q̇) = −Mc2
∫

dτ
√

gµν q̇µ(τ)q̇ν(τ), (1.66)

where τ is an arbitrary parameter of the trajectory. It can be chosen in the final
trajectory to make L(q, q̇) ≡ 1, in which case it coincides with the proper time of
the particle. For arbitrary τ , the Euler-Lagrange equation (1.8) reads

d

dt

[

1

L(q, q̇)
gµν q̇

ν

]

=
1

2L(q, q̇)
(∂µgκλ) q̇

κq̇λ. (1.67)

If τ is the proper time where L(q, q̇) ≡ 1, this simplifies to

d

dt
(gµν q̇

ν) =
1

2
(∂µgκλ) q̇

κq̇λ, (1.68)

or

gµν q̈
ν =

(

1

2
∂µgκλ − ∂λgµκ

)

q̇κq̇λ. (1.69)

For brevity, we have denoted partial derivatives ∂/∂qµ by ∂µ. This partial derivative
is supposed to apply only to the quantity right behind it. At this point one introduces
the Christoffel symbol

Γ̄λνµ ≡ 1

2
(∂λgνµ + ∂νgλµ − ∂µgλν), (1.70)

and the Christoffel symbol of the second kind3

Γ̄ µ
κν ≡ gµσΓ̄κνσ. (1.71)

Then (1.69) can be written as

q̈µ + Γ̄κλ
µq̇κq̇λ = 0. (1.72)

Since the solutions of this equation minimize the length of a curve in spacetime,
they are called geodesics .

3In many textbooks, for instance S. Weinberg, Gravitation and Cosmology, Wiley, New York,
1972, the upper index and the third index in (1.70) stand at the first position. Our nota-
tion follows J.A. Schouten, Ricci Calculus , Springer, Berlin, 1954. It will allow for a closer
analogy with gauge fields in the construction of the Riemann tensor as a covariant curl of
the Christoffel symbol in Chapter 10. See H. Kleinert, Gauge Fields in Condensed Matter ,
Vol. II Stresses and Defects , World Scientific Publishing Co., Singapore 1989, pp. 744-1443
(http://www.physik.fu-berlin.de/~kleinert/b2).
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1.3 Quantum Mechanics

Historically, the extension of classical mechanics to quantum mechanics became
necessary in order to understand the stability of atomic orbits and the discrete
nature of atomic spectra. It soon became clear that these phenomena reflect the
fact that at a sufficiently short length scale, small material particles such as electrons
behave like waves, called material waves . The fact that waves cannot be squeezed
into an arbitrarily small volume without increasing indefinitely their frequency and
thus their energy, prevents the collapse of the electrons into the nucleus, which
would take place in classical mechanics. The discreteness of the atomic states of an
electron are a manifestation of standing material waves in the atomic potential well,
by analogy with the standing waves of electromagnetism in a cavity.

1.3.1 Bragg Reflections and Interference

The most direct manifestation of the wave nature of small particles is seen in diffrac-
tion experiments on periodic structures, for example of electrons diffracted by a crys-
tal. If an electron beam of fixed momentum p passes through a crystal, it emerges
along sharply peaked angles. These are the well-known Bragg reflections . They
look very similar to the interference patterns of electromagnetic waves. In fact, it
is possible to use the same mathematical framework to explain these patterns as in
electromagnetism. A free particle moving with momentum

p = (p1, p2, . . . , pD). (1.73)

through a D-dimensional Euclidean space spanned by the Cartesian coordinate vec-
tors

x = (x1, x2, . . . , xD) (1.74)

is associated with a plane wave, whose field strength or wave function has the form

Ψp(x, t) = eikx−iωt, (1.75)

where k is the wave vector pointing into the direction of p and ω is the wave fre-
quency . Each scattering center, say at x′, becomes a source of a spherical wave
with the spatial behavior eikR/R (with R ≡ |x − x′| and k ≡ |k|) and the wave-
length λ = 2π/k. At the detector, all field strengths have to be added to the total
field strength Ψ(x, t). The absolute square of the total field strength, |Ψ(x, t)|2, is
proportional to the number of electrons arriving at the detector.

The standard experiment where these rules can most simply be applied consists
of an electron beam impinging vertically upon a flat screen with two parallel slits
a with spacing d. At a large distance R behind these, one observes the number of
particles arriving per unit time (see Fig. 1.1)

dN

dt
∝ |Ψ1 +Ψ2|2 ≈

∣

∣

∣eik(R+ 1
2
d sinϕ) + eik(R−

1
2
d sinϕ)

∣

∣

∣

2 1

R2
, (1.76)
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eikx

dN
dt ∝

∣

∣

∣eik(R+ 1

2
d sinϕ) + eik(R−

1

2
d sinϕ)

∣

∣

∣

2
1
R2

Figure 1.1 Probability distribution of particle behind double slit, being proportional to

the absolute square of the sum of the two complex field strengths.

where ϕ is the angle of deflection from the normal.
Conventionally, the wave function Ψ(x, t) is normalized to describe a single par-

ticle. Its absolute square gives directly the probability density of the particle at the
place x in space, i.e., d3x |Ψ(x, t)|2 is the probability of finding the particle in the
volume element d3x around x.

1.3.2 Matter Waves

From the experimentally observed relation between the momentum and the size of
the angular deflection ϕ of the diffracted beam of the particles, one deduces the
relation between momentum and wave vector

p = h̄k, (1.77)

where h̄ is the universal Planck constant whose dimension is equal to that of an
action,

h̄ ≡ h

2π
= 1.0545919(80)× 10−27erg sec (1.78)

(the number in parentheses indicating the experimental uncertainty of the last two
digits before it). A similar relation holds between the energy and the frequency of
the wave Ψ(x, t). It may be determined by an absorption process in which a light
wave hits an electron and kicks it out of the surface of a metal, the well-known
photoelectric effect . From the threshold property of this effect one learns that an
electromagnetic wave oscillating in time as e−iωt can transfer to the electron the
energy

E = h̄ω, (1.79)

where the proportionality constant h̄ is the same as in (1.77). The reason for this
lies in the properties of electromagnetic waves. On the one hand, their frequency ω
and the wave vector k satisfy the relation ω/c = |k|, where c is the light velocity
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defined to be c ≡ 299 792.458 km/s. On the other hand, energy and momentum
are related by E/c = |p|. Thus, the quanta of electromagnetic waves, the photons ,
certainly satisfy (1.77) and the constant h̄ must be the same as in Eq. (1.79).

With matter waves and photons sharing the same relations (1.77), it is suggestive
to postulate also the relation (1.79) between energy and frequency to be universal for
the waves of all particles, massive and massless ones. All free particles of momentum
p are described by a plane wave of wavelength λ = 2π/|k| = 2πh̄/|p|, with the
explicit form

Ψp(x, t) = N ei(px−Ept)/h̄, (1.80)

where N is some normalization constant. In a finite volume, the wave function
is normalized to unity. In an infinite volume, this normalization makes the wave
function vanish. To avoid this, the current density of the particle probability

j(x, t) ≡ −i h̄
2m

ψ∗(x, t)
↔
∇ ψ(x, t) (1.81)

is normalized in some convenient way, where
↔
∇ is a short notation for the difference

between forward- and backward-derivatives

ψ∗(x, t)
↔
∇ ψ(x, t) ≡ ψ∗(x, t)

→
∇ ψ(x, t)− ψ∗(x, t)

←
∇ ψ(x, t)

≡ ψ∗(x, t)∇ψ(x, t)− [∇ψ∗(x, t)]ψ(x, t). (1.82)

The energy Ep depends on the momentum of the particle in the classical way,
i.e., for nonrelativistic material particles of massM it is Ep = p2/2M , for relativistic
ones Ep = c

√
p2 +M2c2, and for massless particles such as photons Ep = c|p|. The

common relation Ep = h̄ω for photons and matter waves is necessary to guarantee
conservation of energy in quantum mechanics.

In general, both momentum and energy of a particle are not sharply defined as
in the plane-wave function (1.80). Usually, a particle wave is some superposition of
plane waves (1.80)

Ψ(x, t) =
∫ d3p

(2πh̄)3
f(p)ei(px−Ept)/h̄. (1.83)

By the Fourier inversion theorem, f(p) can be calculated via the integral

f(p) =
∫

d3x e−ipx/h̄Ψ(x, 0). (1.84)

With an appropriate choice of f(p) it is possible to prepare Ψ(x, t) in any desired
form at some initial time, say at t = 0. For example, Ψ(x, 0) may be a function
sharply centered around a space point x̄. Then f(p) is approximately a pure phase
f(p) ∼ e−ipx̄/h̄, and the wave contains all momenta with equal probability. Con-
versely, if the particle amplitude is spread out in space, its momentum distribution
is confined to a small region. The limiting f(p) is concentrated at a specific mo-
mentum p̄. The particle is found at each point in space with equal probability, with
the amplitude oscillating like Ψ(x, t) ∼ ei(p̄x−Ep̄t)/h̄.
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In general, the width of Ψ(x, 0) in space and of f(p) in momentum space are
inversely proportional to each other:

∆x∆p ∼ h̄. (1.85)

This is the content of Heisenberg’s principle of uncertainty . If the wave is localized
in a finite region of space while having at the same time a fairly well-defined average
momentum p̄, it is called a wave packet . The maximum in the associated probability
density can be shown from (1.83) to move with a velocity

v̄ = ∂Ep̄/∂p̄. (1.86)

This coincides with the velocity of a classical particle of momentum p̄.

1.3.3 Schrödinger Equation

Suppose now that the particle is nonrelativistic and has a mass M . The classical
Hamiltonian, and thus the energy Ep, are given by

H(p) = Ep =
p2

2M
. (1.87)

We may therefore derive the following identity for the wave field Ψp(x, t):

∫

d3p

(2πh̄)3
f(p) [H(p)− Ep] e

i(px−Ept)/h̄ = 0. (1.88)

The arguments inside the brackets can be removed from the integral by observing
that p and Ep inside the integral are equivalent to the differential operators

p̂ = −ih̄∇,

Ê = ih̄∂t
(1.89)

outside. Then, Eq. (1.88) may be written as the differential equation

[H(−ih̄∇)− ih̄∂t)]Ψ(x, t) = 0. (1.90)

This is the Schrödinger equation for the wave function of a free particle. The equa-
tion suggests that the motion of a particle with an arbitrary Hamiltonian H(p,x, t)
follows the straightforward generalization of (1.90)

(

Ĥ − ih̄∂t
)

Ψ(x, t) = 0, (1.91)

where Ĥ is the differential operator

Ĥ ≡ H(−ih̄∇,x, t). (1.92)
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The rule of obtaining Ĥ from the classical HamiltonianH(p,x, t) by the substitution
p → p̂ = −ih̄∇ will be referred to as the correspondence principle.4 We shall see in
Sections 1.13–1.15 that this simple correspondence principle holds only in Cartesian
coordinates.

The Schrödinger operators (1.89) of momentum and energy satisfy with x and t
the so-called canonical commutation relations

[p̂i, xj ] = −ih̄, [Ê, t] = 0 = ih̄. (1.93)

The linear combinations of the solutions of the Schrödinger equation (1.91) form,
at each time t, a Hilbert space. If the Hamiltonian does not depend explicitly on
time, If the Hamiltonian does not depend explicitly on time, the Hilbert space can
be spanned by the energy eigenstates ΨEn

(x, t) = e−iEnt/h̄ΨEn
(x), where ΨEn

(x) are
time-independent stationary states , which solve the time-independent Schrödinger
equation

Ĥ(p̂,x)ΨEn
(x) = EnΨEn

(x). (1.94)

The validity of the Schrödinger theory (1.91) is confirmed by experiment, most
notably for the Coulomb Hamiltonian

H(p,x) =
p2

2M
− e2

r
, (1.95)

which governs the quantum mechanics of the hydrogen atom in the center-of-mass
coordinate system of electron and proton, where M is the reduced mass of the two
particles.

Since the square of the wave function, |Ψ(x, t)|2, is interpreted as the probability
density of a single particle in a finite volume, the integral over the entire volume
must be normalized to unity:

∫

d3x |Ψ(x, t)|2 = 1. (1.96)

For a stable particle, this normalization must remain the same at all times. If
Ψ(x, t) is to follow the Schrödinger equation (1.91), this is assured if and only if the
Hamiltonian operator is Hermitian,5 i.e., if it satisfies for arbitrary wave functions
Ψ1,Ψ2 the equality

∫

d3x [ĤΨ2(x, t)]
∗Ψ1(x, t) =

∫

d3xΨ∗2(x, t)ĤΨ1(x, t). (1.97)

4Our formulation of this principle is slightly stronger than the historical one used in the initial
phase of quantum mechanics, which gave certain translation rules between classical and quantum-
mechanical relations. The substitution rule for the momentum runs also under the name Jordan

rule.
5Problems arising from unboundedness or discontinuities of the Hamiltonian and other

quantum-mechanical operators, such as restrictions of the domains of definition, are ignored here
since they are well understood. Correspondingly we do not distinguish between Hermitian and self-
adjoint operators (see J. v. Neumann, Mathematische Grundlagen der Quantenmechanik , Springer,
Berlin, 1932). Some quantum-mechanical operator subtleties will manifest themselves in this book
as problems of path integration to be solved in Chapter 12. The precise relationship between the
two calls for further detailed investigations.
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The left-hand side defines the Hermitian-adjoint Ĥ† of the operator Ĥ , which sat-
isfies the identity

∫

d3xΨ∗2(x, t)Ĥ
†Ψ1(x, t) ≡

∫

d3x [ĤΨ2(x, t)]
∗Ψ1(x, t) (1.98)

for all wave functions Ψ1(x, t),Ψ2(x, t). An operator Ĥ is Hermitian, if it coincides
with its Hermitian-adjoint Ĥ†:

Ĥ = Ĥ†. (1.99)

Let us calculate the time change of the integral over two arbitrary wave functions,
∫

d3xΨ∗2(x, t)Ψ1(x, t). With the Schrödinger equation (1.91), this time change van-

ishes indeed as long as Ĥ is Hermitian:

ih̄
d

dt

∫

d3xΨ∗2(x, t)Ψ1(x, t)

=
∫

d3xΨ∗2(x, t)ĤΨ1(x, t)−
∫

d3x [ĤΨ2(x, t)]
∗Ψ1(x, t) = 0.

(1.100)

This also implies the time independence of the normalization integral
∫

d3x |Ψ(x, t)|2 = 1.

Conversely, if Ĥ is not Hermitian, one can always find an eigenstate of Ĥ whose
norm changes with time: any eigenstate of (H −H†)/i has this property.

Since p̂ = −ih̄∇ and x are themselves Hermitian operators, Ĥ will automatically
be a Hermitian operator if it is a sum of a kinetic and a potential energy:

H(p,x, t) = T (p, t) + V (x, t). (1.101)

This is always the case for nonrelativistic particles in Cartesian coordinates x. If p
and x appear in one and the same term of H , for instance as p2x2, the correspon-
dence principle does not lead to a unique quantum-mechanical operator Ĥ. Then
there seem to be, in principle, several Hermitian operators which, in the above exam-
ple, can be constructed from the product of two p̂ and two x̂ operators [for instance
αp̂2x̂2+βx̂2p̂2+γp̂x̂2p̂ with α+β+γ = 1]. They all correspond to the same classical
p2x2. At first sight it appears as though only a comparison with experiment could
select the correct operator ordering. This is referred to as the operator-ordering
problem of quantum mechanics which has plagued many researchers in the past. If
the ordering problem is caused by the geometry of the space in which the particle
moves, there exists a surprisingly simple geometric principle which specifies the or-
dering in the physically correct way. Before presenting this in Chapter 10 we shall
avoid ambiguities by assuming H(p,x, t) to have the standard form (1.101), unless
otherwise stated.
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1.3.4 Particle Current Conservation

The conservation of the total probability (1.96) is a consequence of a more general
local conservation law linking the current density of the particle probability

j(x, t) ≡ −i h̄
2m

ψ(x, t)
↔
∇ ψ(x, t) (1.102)

with the probability density

ρ(x, t) = ψ∗(x, t)ψ(x, t) (1.103)

via the relation
∂tρ(x, t) = −∇ · j(x, t). (1.104)

By integrating this current conservation law over a volume V enclosed by a surface
S, and using Green’s theorem, one finds

∫

V
d3x ∂tρ(x, t) = −

∫

V
d3x∇ · j(x, t) = −

∫

S
dS · j(x, t), (1.105)

where dS are the directed infinitesimal surface elements. This equation states that
the probability in a volume decreases by the same amount by which probability
leaves the surface via the current j(x, t).

By extending the integral (1.105) over the entire space and assuming the currents
to vanish at spatial infinity, we recover the conservation of the total probability
(1.96).

More general dynamical systems with N particles in Euclidean space are
parametrized in terms of 3N Cartesian coordinates xν (ν = 1, . . . , N). The Hamil-
tonian has the form

H(pν ,xν , t) =
N
∑

ν=1

p2
ν

2Mν
+ V (xν , t), (1.106)

where the arguments pν ,xν in H and V stand for all pν ’s, xν with ν = 1, 2, 3, . . . , N .
The wave function Ψ(xν , t) satisfies the N -particle Schrödinger equation

{

−
N
∑

ν=1

[

h̄2

2Mν
∂xν

2 + V (xν , t)

]}

Ψ(xν , t) = ih̄∂tΨ(xν , t). (1.107)

1.4 Dirac’s Bra-Ket Formalism

Mathematically speaking, the wave function Ψ(x, t) may be considered as a vector in
an infinite-dimensional complex vector space called Hilbert space. The configuration
space variable x plays the role of a continuous “index” of these vectors. An obvious
contact with the usual vector notation may be established, in which aD-dimensional
vector v is given in terms of its components vi with a subscript i = 1, . . .D, by
writing the argument x of Ψ(x, t) as a subscript:

Ψ(x, t) ≡ Ψx(t). (1.108)
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The usual norm of a complex vector is defined by

|v|2 =
∑

i

v∗i vi. (1.109)

The continuous version of this is

|Ψ|2 =
∫

d3xΨ∗x(t)Ψx(t) =
∫

d3xΨ∗(x, t)Ψ(x, t). (1.110)

The normalization condition (1.96) requires that the wave functions have the norm
|Ψ| = 1, i.e., that they are unit vectors in the Hilbert space.

1.4.1 Basis Transformations

In a vector space, there are many possible choices of orthonormal basis vectors bi
a

labeled by a = 1, . . . , D, in terms of which6

vi =
∑

a

bi
ava, (1.111)

with the components va given by the scalar products

va ≡
∑

i

bi
a∗vi. (1.112)

The latter equation is a consequence of the orthogonality relation7

∑

i

bi
a∗bi

a′ = δaa
′

, (1.113)

which in a finite-dimensional vector space implies the completeness relation
∑

a

bi
a∗bj

a = δij . (1.114)

In the space of wave functions (1.108) there exists a special set of basis functions
called local basis functions of particular importance. It may be constructed in the
following fashion: Imagine the continuum of space points to be coarse-grained into
a cubic lattice of mesh size ǫ, at positions

xn = (n1, n2, n3)ǫ, n1,2,3 = 0,±1,±2, . . . . (1.115)

Let hn(x) be a function that vanishes everywhere in space, except in a cube of size
ǫ3 centered around xn, i.e., for each component xi of x,

hn(x) =

{

1/
√
ǫ3 |xi − xn i| ≤ ǫ/2, i = 1, 2, 3.

0 otherwise.
(1.116)

6Mathematicians would expand more precisely vi =
∑

a bi
av

(b)
a , but physicists prefer to shorten

the notation by distinguishing the different components via different types of subscripts, using for
the initial components i, j, k, . . . and for the b-transformed components a, b, c, . . . .

7An orthogonality relation implies usually a unit norm and is thus really an orthonormality

relation but this name is rarely used.
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These functions are certainly orthonormal:
∫

d3xhn(x)∗hn
′

(x) = δnn
′

. (1.117)

Consider now the expansion

Ψ(x, t) =
∑

n

hn(x)Ψn(t) (1.118)

with the coefficients

Ψn(t) =
∫

d3xhn(x)∗Ψ(x, t) ≈
√
ǫ3Ψ(xn, t). (1.119)

It provides an excellent approximation to the true wave function Ψ(x, t), as long as
the mesh size ǫ is much smaller than the scale over which Ψ(x, t) varies. In fact, if
Ψ(x, t) is integrable, the integral over the sum (1.118) will always converge to Ψ(x, t).
The same convergence of discrete approximations is found in any scalar product,
and thus in any observable probability amplitudes. They can all be calculated with
arbitrary accuracy knowing the discrete components of the type (1.119) in the limit
ǫ → 0. The functions hn(x) may therefore be used as an approximate basis in the
same way as the previous basis functions fa(x), gb(x), with any desired accuracy
depending on the choice of ǫ.

In general, there are many possible orthonormal basis functions fa(x) in the
Hilbert space which satisfy the orthonormality relation

∫

d3x fa(x)∗fa′(x) = δaa
′

, (1.120)

in terms of which we can expand

Ψ(x, t) =
∑

a

fa(x)Ψa(t), (1.121)

with the coefficients
Ψa(t) =

∫

d3x fa(x)∗Ψ(x, t). (1.122)

Suppose we use another orthonormal basis f̃ b(x) with the orthonormality relation
∫

d3x f̃ b(x)∗f̃ b′(x) = δbb
′

,
∑

b

f̃ b(x)f̃ b(x′)∗ = δ(3)(x− x′), (1.123)

to re-expand
Ψ(x, t) =

∑

b

f̃ b(x)Ψ̃b(t), (1.124)

with the components

Ψ̃b(t) =
∫

d3x f̃ b(x)∗Ψ(x, t). (1.125)

Inserting (1.121) shows that the components are related to each other by

Ψ̃b(t) =
∑

a

[∫

d3x f̃ b(x)∗fa(x)
]

Ψa(t). (1.126)
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1.4.2 Bracket Notation

It is useful to write the scalar products between two wave functions occurring in the
above basis transformations in the so-called bracket notation as

〈b̃|a〉 ≡
∫

d3x f̃ b(x)∗fa(x). (1.127)

In this notation, the components of the state vector Ψ(x, t) in (1.122), (1.125) are

Ψa(t) = 〈a|Ψ(t)〉,
Ψ̃b(t) = 〈b̃|Ψ(t)〉.

(1.128)

The transformation formula (1.126) takes the form

〈b̃|Ψ(t)〉 =
∑

a

〈b̃|a〉〈a|Ψ(t)〉. (1.129)

The right-hand side of this equation may be formally viewed as a result of inserting
the abstract relation

∑

a

|a〉〈a| = 1 (1.130)

between 〈b̃| and |Ψ(t)〉 on the left-hand side:

〈b̃|Ψ(t)〉 = 〈b̃|1|Ψ(t)〉 =
∑

a

〈b̃|a〉〈a|Ψ(t)〉. (1.131)

Since this expansion is only possible if the functions f b(x) form a complete basis,
the relation (1.130) is alternative, abstract way of stating the completeness of the
basis functions. It may be referred to as completeness relation à la Dirac.

Since the scalar products are written in the form of brackets 〈a|a′〉, Dirac called
the formal objects 〈a| and |a′〉, from which the brackets are composed, bra and ket ,
respectively. In the bracket notation, the orthonormality of the basis fa(x) and
gb(x) may be expressed as follows:

〈a|a′〉 =
∫

d3x fa(x)∗fa′(x) = δaa
′

,

〈b̃|b̃′〉 =
∫

d3x f̃ b(x)∗f̃ b′(x) = δbb
′

.
(1.132)

In the same spirit we introduce abstract bra and ket vectors associated with the
basis functions hn(x) of Eq. (1.116), denoting them by 〈xn| and |xn〉, respectively,
and writing the orthogonality relation (1.117) in bracket notation as

〈xn|xn′〉 ≡
∫

d3xhn(x)∗hn
′

(x) = δnn′ . (1.133)

The components Ψn(t) may be considered as the scalar products

Ψn(t) ≡ 〈xn|Ψ(t)〉 ≈
√
ǫ3Ψ(xn, t). (1.134)



22 1 Fundamentals

Changes of basis vectors, for instance from |xn〉 to the states |a〉, can be performed
according to the rules developed above by inserting a completeness relation à la
Dirac of the type (1.130). Thus we may expand

Ψn(t) = 〈xn|Ψ(t)〉 =
∑

a

〈xn|a〉〈a|Ψ(t)〉. (1.135)

Also the inverse relation is true:

〈a|Ψ(t)〉 =
∑

n

〈a|xn〉〈xn|Ψ(t)〉. (1.136)

This is, of course, just an approximation to the integral
∫

d3xhn(x)∗〈x|Ψ(t)〉. (1.137)

The completeness of the basis hn(x) may therefore be expressed via the abstract
relation

∑

n

|xn〉〈xn| ≈ 1. (1.138)

The approximate sign turns into an equality sign in the limit of zero mesh size,
ǫ→ 0.

1.4.3 Continuum Limit

In ordinary calculus, finer and finer sums are eventually replaced by integrals. The
same thing is done here. We define new continuous scalar products

〈x|Ψ(t)〉 ≈ 1√
ǫ3
〈xn|Ψ(t)〉, (1.139)

where xn are the lattice points closest to x. With (1.134), the right-hand side is
equal to Ψ(xn, t). In the limit ǫ→ 0, x and xn coincide and we have

〈x|Ψ(t)〉 ≡ Ψ(x, t). (1.140)

The completeness relation can be used to write

〈a|Ψ(t)〉 ≈
∑

n

〈a|xn〉〈xn|Ψ(t)〉

≈
∑

n

ǫ3〈a|x〉〈x|Ψ(t)〉
∣

∣

∣

x=xn
,

(1.141)

which in the limit ǫ→ 0 becomes

〈a|Ψ(t)〉 =
∫

d3x 〈a|x〉〈x|Ψ(t)〉. (1.142)

This may be viewed as the result of inserting the formal completeness relation of
the limiting local bra and ket basis vectors 〈x| and |x〉,

∫

d3x |x〉〈x| = 1, (1.143)
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evaluated between the vectors 〈a| and |Ψ(t)〉.
With the limiting local basis, the wave functions can be treated as components

of the state vectors |Ψ(t)〉 with respect to the local basis |x〉 in the same way as any
other set of components in an arbitrary basis |a〉. In fact, the expansion

〈a|Ψ(t)〉 =
∫

d3x 〈a|x〉〈x|Ψ(t)〉 (1.144)

may be viewed as a re-expansion of a component of |Ψ(t)〉 in one basis, |a〉, into
those of another basis, |x〉, just as in (1.129).

In order to express all these transformation properties in a most compact nota-
tion, it has become customary to deal with an arbitrary physical state vector in a
basis-independent way and denote it by a ket vector |Ψ(t)〉. This vector may be spec-
ified in any convenient basis by multiplying it with the corresponding completeness
relation

∑

a

|a〉〈a| = 1, (1.145)

resulting in the expansion

|Ψ(t)〉 =
∑

a

|a〉〈a|Ψ(t)〉. (1.146)

This can be multiplied with any bra vector, say 〈b|, from the left to obtain the
expansion formula (1.131):

〈b|Ψ(t)〉 =
∑

a

〈b|a〉〈a|Ψ(t)〉. (1.147)

The continuum version of the completeness relation (1.138) reads
∫

d3x |x〉〈x| = 1, (1.148)

and leads to the expansion

|Ψ(t)〉 =
∫

d3x |x〉〈x|Ψ(t)〉, (1.149)

in which the wave function Ψ(x, t) = 〈x|Ψ(t)〉 plays the role of an xth component
of the state vector |Ψ(t)〉 in the local basis |x〉. This, in turn, is the limit of the
discrete basis vectors |xn〉,

|x〉 ≈ 1√
ǫ3

|xn〉 , (1.150)

with xn being the lattice points closest to x.
A vector can be described equally well in bra or in ket form. To apply the above

formalism consistently, we observe that the scalar products

〈a|b̃〉 =
∫

d3x fa(x)∗f̃ b(x),

〈b̃|a〉 =
∫

d3x f̃ b(x)∗fa(x)
(1.151)
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satisfy the identity
〈b̃|a〉 ≡ 〈a|b̃〉∗. (1.152)

Therefore, when expanding a ket vector as

|Ψ(t)〉 =
∑

a

|a〉〈a|Ψ(t)〉, (1.153)

or a bra vector as
〈Ψ(t)| =

∑

a

〈Ψ(t)|a〉〈a|, (1.154)

a multiplication of the first equation with the bra 〈x| and of the second with the ket
|x〉 produces equations which are complex-conjugate to each other.

1.4.4 Generalized Functions

Dirac’s bra-ket formalism is elegant and easy to handle. As far as the vectors |x〉 are
concerned there is, however, one inconsistency with some fundamental postulates of
quantum mechanics: When introducing state vectors, the norm was required to be
unity in order to permit a proper probability interpretation of single-particle states.
The limiting states |x〉 introduced above do not satisfy this requirement. In fact,
the scalar product between two different states 〈x| and |x′〉 is

〈x|x′〉 ≈ 1

ǫ3
〈xn|xn′〉 = 1

ǫ3
δnn′, (1.155)

where xn and xn′ are the lattice points closest to x and x′. For x 6= x′, the states are
orthogonal. For x = x′, on the other hand, the limit ǫ → 0 is infinite, approached
in such a way that

ǫ3
∑

n′

1

ǫ3
δnn′ = 1. (1.156)

Therefore, the limiting state |x〉 is not a properly normalizable vector in the Hilbert
space. For the sake of elegance, it is useful to weaken the requirement of normal-
izability (1.96) by admitting the limiting states |x〉 to the physical Hilbert space.
In fact, one admits all states which can be obtained by a limiting sequence from
properly normalized state vectors.

The scalar product between states 〈x|x′〉 is not a proper function. It is denoted
by the symbol δ(3)(x− x′) and called Dirac δ-function:

〈x|x′〉 ≡ δ(3)(x− x′). (1.157)

The right-hand side vanishes everywhere, except in the infinitely small box of width
ǫ around x ≈ x′. Thus the δ-function satisfies

δ(3)(x− x′) = 0 for x 6= x′. (1.158)

At x = x′, it is so large that its volume integral is unity:
∫

d3x′ δ(3)(x− x′) = 1. (1.159)
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Obviously, there exists no proper function that can satisfy both requirements, (1.158)
and (1.159). Only the finite-ǫ approximation in (1.155) to the δ-function are proper
functions. In this respect, the scalar product 〈x|x′〉 behaves just like the states |x〉
themselves: Both are ǫ→ 0 -limits of properly defined mathematical objects.

Note that the integral Eq. (1.159) implies the following property of the δ -
function:

δ(3)(a(x− x′)) =
1

|a|δ
(3)(x− x′). (1.160)

In one dimension, this leads to the more general relation

δ(f(x)) =
∑

i

1

|f ′(xi)|
δ(x− xi), (1.161)

where xi are the simple zeros of f(x).
In mathematics, one calls the δ-function a generalized function or a distribution.

It defines a linear functional of arbitrary smooth test functions f(x) which yields
its value at any desired place x:

δ[f ;x] ≡
∫

d3x δ(3)(x− x′)f(x′) = f(x). (1.162)

Test functions are arbitrarily often differentiable functions with a sufficiently fast
falloff at spatial infinity.

There exist a rich body of mathematical literature on distributions [3]. They
form a linear space. This space is restricted in an essential way in comparison
with ordinary functions: products of δ-functions or any other distributions remain
undefined. In Section 10.8.1 we shall find, however, that physics forces us to go
beyond these rules. An important requirement of quantum mechanics is coordinate
invariance. If we want to achieve this for the path integral formulation of quantum
mechanics, we must set up a definite extension of the existing theory of distributions,
which specifies uniquely integrals over products of distributions.

In quantum mechanics, the role of the test functions is played by the wave packets
Ψ(x, t). By admitting the generalized states |x〉 to the Hilbert space, we also admit
the scalar products 〈x|x′〉 to the space of wave functions, and thus all distributions,
although they are not normalizable.

1.4.5 Schrödinger Equation in Dirac Notation

In terms of the bra-ket notation, the Schrödinger equation can be expressed in a
basis-independent way as an operator equation

Ĥ|Ψ(t)〉 ≡ H(p̂, x̂, t)|Ψ(t)〉 = ih̄∂t|Ψ(t)〉, (1.163)

to be supplemented by the following specifications of the canonical operators:

〈x|p̂ ≡ −ih̄∇〈x|, (1.164)

〈x|x̂ ≡ x〈x|. (1.165)
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Any matrix element can be obtained from these equations by multiplication from
the right with an arbitrary ket vector; for instance with the local basis vector |x′〉:

〈x|p̂|x′〉 = −ih̄∇〈x|x′〉 = −ih̄∇δ(3)(x− x′), (1.166)

〈x|x̂|x′〉 = x〈x|x′〉 = xδ(3)(x− x′). (1.167)

The original differential form of the Schrödinger equation (1.91) follows by multi-
plying the basis-independent Schrödinger equation (1.163) with the bra vector 〈x|
from the left:

〈x|H(p̂, x̂, t)|Ψ(t)〉 = H(−ih̄∇,x, t)〈x|Ψ(t)〉
= ih̄∂t〈x|Ψ(t)〉.

(1.168)

Obviously, p̂ and x̂ are Hermitian matrices in any basis,

〈a|p̂|a′〉 = 〈a′|p̂|a〉∗, (1.169)

〈a|x̂|a′〉 = 〈a′|x̂|a〉∗, (1.170)

and so is the Hamiltonian

〈a|Ĥ|a′〉 = 〈a′|Ĥ|a〉∗, (1.171)

as long as it has the form (1.101).
The most general basis-independent operator that can be constructed in the

generalized Hilbert space spanned by the states |x〉 is some function of p̂, x̂, t,

Ô(t) ≡ O(p̂, x̂, t). (1.172)

In general, such an operator is called Hermitian if all its matrix elements have
this property. In the basis-independent Dirac notation, the definition (1.97) of a
Hermitian-adjoint operator Ô†(t) implies the equality of the matrix elements

〈a|Ô†(t)|a′〉 ≡ 〈a′|Ô(t)|a〉∗. (1.173)

Thus we can rephrase Eqs. (1.169)–(1.171) in the basis-independent form

p̂ = p̂†,

x̂ = x̂†,

Ĥ = Ĥ†.

(1.174)

The stationary states in Eq. (1.94) have a Dirac ket representation |En〉, and satisfy
the time-independent operator equation

Ĥ|En〉 = En|En〉. (1.175)
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1.4.6 Momentum States

Let us now look at the momentum p̂. Its eigenstates are given by the eigenvalue
equation

p̂|p〉 = p|p〉. (1.176)

By multiplying this with 〈x| from the left and using (1.164), we find the differential
equation

〈x|p̂|p〉 = −ih̄∂x〈x|p〉 = p〈x|p〉. (1.177)

The solution is
〈x|p〉 ∝ eipx/h̄. (1.178)

Up to a normalization factor, this is just a plane wave introduced before in Eq. (1.75)
to describe free particles of momentum p.

In order for the states |p〉 to have a finite norm, the system must be confined
to a finite volume, say a cubic box of length L and volume L3. Assuming periodic
boundary conditions, the momenta are discrete with values

pm =
2πh̄

L
(m1, m2, m3), mi = 0,±1,±2, . . . . (1.179)

Then we adjust the factor in front of exp (ipmx/h̄) to achieve unit normalization

〈x|pm〉 = 1√
L3

exp (ipmx/h̄) , (1.180)

and the discrete states |pm〉 satisfy
∫

d3x |〈x|pm〉|2 = 1. (1.181)

The states |pm〉 are complete:
∑

m

|pm〉〈pm| = 1. (1.182)

We may use this relation and the matrix elements 〈x|pm〉 to expand any wave
function within the box as

Ψ(x, t) = 〈x|Ψ(t)〉 =
∑

m

〈x|pm〉〈pm|Ψ(t)〉. (1.183)

If the box is very large, the sum over the discrete momenta pm can be approximated
by an integral over the momentum space [4].

∑

m

≈
∫

d3pL3

(2πh̄)3
. (1.184)

In this limit, the states |pm〉 may be used to define a continuum of basis vectors
with an improper normalization

|p〉 ≈
√
L3|pm〉, (1.185)
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in the same way as |xn〉 was used in (1.150) to define |x〉 ∼ (1/
√
ǫ3)|xn〉. The

momentum states |p〉 satisfy the orthogonality relation

〈p|p′〉 = (2πh̄)3δ(3)(p− p′), (1.186)

with δ(3)(p−p′) being again the Dirac δ-function. Their completeness relation reads

∫

d3p

(2πh̄)3
|p〉〈p| = 1, (1.187)

such that the expansion (1.183) becomes

Ψ(x, t) =
∫ d3p

(2πh̄)3
〈x|p〉〈p|Ψ(t)〉, (1.188)

with the momentum eigenfunctions

〈x|p〉 = eipx/h̄. (1.189)

This coincides precisely with the Fourier decomposition introduced above in the
description of a general particle wave Ψ(x, t) in (1.83), (1.84), with the identification

〈p|Ψ(t)〉 = f(p)e−iEpt/h̄. (1.190)

The bra-ket formalism accommodates naturally the technique of Fourier trans-
forms. The Fourier inversion formula is found by simply inserting into 〈p|Ψ(t)〉 a
completeness relation

∫

d3x|x〉〈x| = 1 which yields

〈p|Ψ(t)〉 =
∫

d3x 〈p|x〉〈x|Ψ(t)〉

=
∫

d3x e−ipx/h̄Ψ(x, t).
(1.191)

The amplitudes 〈p|Ψ(t)〉 are referred to as momentum space wave functions .

By inserting the completeness relation

∫

d3x|x〉〈x| = 1 (1.192)

between the momentum states on the left-hand side of the orthogonality relation
(1.186), we obtain the Fourier representation of the δ-function (1.186):

〈p|p′〉 =
∫

d3x 〈p|x〉〈x|p′〉

=
∫

d3x e−i(p−p
′)x/h̄ = (2πh̄)3δ(3)(p− p′).

(1.193)
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1.4.7 Incompleteness and Poisson’s Summation Formula

For many physical applications it is important to find out what happens to the
completeness relation (1.148) if one restrict the integral so a subset of positions.
Most relevant will be the one-dimensional integral,

∫

dx |x〉〈x| = 1, (1.194)

restricted to a sum over equally spaced points xn = na:

N
∑

n=−N
|xn〉〈xn|. (1.195)

Taking this sum between momentum eigenstates |p〉, we obtain

N
∑

n=−N
〈p|xn〉〈xn|p′〉 =

N
∑

n=−N
〈p|xn〉〈xn|p′〉 =

N
∑

n=−N
ei(p−p

′)na/h̄ (1.196)

For N → ∞ we can perform the sum with the help of Poisson’s summation formula

∞
∑

n=−∞
e2πiµn =

∞
∑

m=−∞
δ(µ−m). (1.197)

Identifying µ with (p− p′)a/2πh̄, we find using Eq. (1.160):

∞
∑

n=−∞
〈p|xn〉〈xn|p′〉 =

∞
∑

m=−∞
δ

(

(p−p′)a
2πh̄

−m

)

=
∞
∑

m=−∞

2πh̄

a
δ

(

p−p′−2πh̄m

a

)

. (1.198)

In order to prove the Poisson formula (1.197), we observe that the sum s(µ) ≡
∑

m δ(µ − m) on the right-hand side is periodic in µ with a unit period and has
the Fourier series s(µ) =

∑∞
n=−∞ sne

2πiµn. The Fourier coefficients are given by

sn =
∫ 1/2
−1/2 dµ s(µ)e

−2πiµn ≡ 1. These are precisely the Fourier coefficients on the
left-hand side.

For a finite N , the sum over n on the left-hand side of (1.197) yields

N
∑

n=−N
e2πiµn = 1 +

(

e2πiµ + e2·2πiµ + . . .+ eN ·2πiµ + c.c.
)

= −1 +

(

1− e2πiµ(N+1)

1− e2πiµ
+ c.c.

)

(1.199)

= 1 +
e2πiµ − e2πiµ(N+1)

1− e2πiµ
+ c.c. =

sin πµ(2N + 1)

sin πµ
.

This function is well known in wave optics (see Fig. 2.4). It determines the diffrac-
tion pattern of light behind a grating with 2N + 1 slits. It has large peaks at
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Figure 1.2 Relevant function
∑N

n=−N e2πiµn in Poisson’s summation formula. In the

limit N → ∞, µ is squeezed to the integer values.

µ = 0,±1,±2,±3, . . . and N − 1 small maxima between each pair of neighbor-
ing peaks, at ν = (1 + 4k)/2(2N + 1) for k = 1, . . . , N − 1. There are zeros at
ν = (1 + 2k)/(2N + 1) for k = 1, . . . , N − 1.

Inserting µ = (p− p′)a/2πh̄ into (1.199), we obtain

N
∑

n=−N
〈p|xn〉〈xn|p′〉 =

sin (p− p′)a(2N + 1)/2h̄

sin (p− p′)a/2h̄
. (1.200)

Let us see how the right-hand side of (1.199) turns into the right-hand side of
(1.197) in the limit N → ∞. In this limit, the area under each large peak can
be calculated by an integral over the central large peak plus a number n of small
maxima next to it:

∫ n/2N

−n/2N
dµ

sinπµ(2N + 1)

sin πµ
=
∫ n/2N

−n/2N
dµ

sin 2πµN cosπµ+cos 2πµN sin πµ

sin πµ
.

(1.201)

Keeping a fixed ratio n/N ≪ 1, we may replace in the integrand sin πµ by πµ and
cosπµ by 1. Then the integral becomes, for N → ∞ at fixed n/N ,

∫ n/2N

−n/2N
dµ

sinπµ(2N + 1)

sin πµ

N→∞−−−→
∫ n/2N

−n/2N
dµ

sin 2πµN

πµ
+
∫ n/2N

−n/2N
dµ cos 2πµN

N→∞−−−→ 1

π

∫ πn

−πn
dx

sin x

x
+

1

2πN

∫ πn

−πn
dx cosx

N→∞−−−→ 1, (1.202)

where we have used the integral formula
∫ ∞

−∞
dx

sin x

x
= π. (1.203)
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In the limit N → ∞, we find indeed (1.197) and thus (1.205).
There exists another useful way of expressing Poisson’s formula. Consider an

arbitrary smooth function f(µ) which possesses a convergent sum

∞
∑

m=−∞
f(m). (1.204)

Then Poisson’s formula (1.197) implies that the sum can be rewritten as an integral
and an auxiliary sum:

∞
∑

m=−∞
f(m) =

∫ ∞

−∞
dµ

∞
∑

n=−∞
e2πiµnf(µ). (1.205)

The auxiliary sum over n squeezes µ to the integer numbers.

1.5 Observables

Changes of basis vectors are an important tool in analyzing the physically observable
content of a wave vector. Let A = A(p,x) be an arbitrary time-independent real
function of the phase space variables p and x. Important examples for such an
A are p and x themselves, the Hamiltonian H(p,x), and the angular momentum
L = x×p. Quantum-mechanically, there will be an observable operator associated
with each such quantity. It is obtained by simply replacing the variables p and x in
A by the corresponding operators p̂ and x̂:

Â ≡ A(p̂, x̂). (1.206)

This replacement rule is the extension of the correspondence principle for the Hamil-
tonian operator (1.92) to more general functions in phase space, converting them
into observable operators. It must be assumed that the replacement leads to a
unique Hermitian operator, i.e., that there is no ordering problem of the type dis-
cussed in context with the Hamiltonian (1.101).8 If there are ambiguities, the naive
correspondence principle is insufficient to determine the observable operator. Then
the correct ordering must be decided by comparison with experiment, unless it can
be specified by means of simple geometric principles. This will be done for the
Hamiltonian operator in Chapter 8.

Once an observable operator Â is Hermitian, it has the useful property that the
set of all eigenvectors |a〉 obtained by solving the equation

Â|a〉 = a|a〉 (1.207)

can be used as a basis to span the Hilbert space. Among the eigenvectors, there is
always a choice of orthonormal vectors |a〉 fulfilling the completeness relation

∑

a

|a〉〈a| = 1. (1.208)

8Note that this is true for the angular momentum L = x × p.
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The vectors |a〉 can be used to extract physical information concerning the ob-
servable A from arbitrary state vector |Ψ(t)〉. For this we expand this vector in the
basis |a〉:

|Ψ(t)〉 =
∑

a

|a〉〈a|Ψ(t)〉. (1.209)

The components
〈a|Ψ(t)〉 (1.210)

yield the probability amplitude for measuring the eigenvalue a for the observable
quantity A.

The wave function Ψ(x, t) itself is an example of this interpretation. If we write
it as

Ψ(x, t) = 〈x|Ψ(t)〉, (1.211)

it gives the probability amplitude for measuring the eigenvalues x of the position
operator x̂, i.e., |Ψ(x, t)|2 is the probability density in x-space.

The expectation value of the observable operator (1.206) in the state |Ψ(t)〉 is
defined as the matrix element

〈Ψ(t)|Â|Ψ(t)〉 ≡
∫

d3x〈Ψ(t)|x〉A(−ih̄∇,x)〈x|Ψ(t)〉. (1.212)

1.5.1 Uncertainty Relation

We have seen before [see the discussion after (1.83), (1.84)] that the amplitudes in
real space and those in momentum space have widths inversely proportional to each
other, due to the properties of Fourier analysis. If a wave packet is localized in real
space with a width ∆x, its momentum space wave function has a width ∆p given
by

∆x∆p ∼ h̄. (1.213)

From the Hilbert space point of view this uncertainty relation can be shown to be
a consequence of the fact that the operators x̂ and p̂ do not commute with each
other, but the components satisfy the canonical commutation rules

[p̂i, x̂j] = −ih̄δij ,
[x̂i, x̂j] = 0, (1.214)

[p̂i, p̂j] = 0.

In general, if an observable operator Â is measured to have a sharp value a in one
state, this state must be an eigenstate of Â with an eigenvalue a:

Â|a〉 = a|a〉. (1.215)

This follows from the expansion

|Ψ(t)〉 =
∑

a

|a〉〈a|Ψ(t)〉, (1.216)
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in which |〈a|Ψ(t)〉|2 is the probability to measure an arbitrary eigenvalue a. If this
probability is sharply focused at a specific value of a, the state necessarily coincides
with |a〉.

Given the set of all eigenstates |a〉 of Â, we may ask under what circumstances
another observable, say B̂, can be measured sharply in each of these states. The
requirement implies that the states |a〉 are also eigenstates of B̂,

B̂|a〉 = ba|a〉, (1.217)

with some a-dependent eigenvalue ba. If this is true for all |a〉,

B̂Â|a〉 = baa|a〉 = aba|a〉 = ÂB̂|a〉, (1.218)

the operators Â and B̂ necessarily commute:

[Â, B̂] = 0. (1.219)

Conversely, it can be shown that a vanishing commutator is also sufficient for
two observable operators to be simultaneously diagonalizable and thus to allow for
simultaneous sharp measurements.

1.5.2 Density Matrix and Wigner Function

An important object for calculating observable properties of a quantum-mechanical
system is the quantum mechanical density operator associated with a pure state

ρ̂(t) ≡ |Ψ(t)〉〈Ψ(t)|, (1.220)

and the associated density matrix associated with a pure state

ρ(x1,x2; t) = 〈x1|Ψ(t)〉〈Ψ(t)|x2〉. (1.221)

The expectation value of any function f(x, p̂) can be calculated from the trace

〈Ψ(t)|f(x, p̂)|Ψ(t)〉 = tr [f(x, p̂)ρ̂(t)] =
∫

d3x〈Ψ(t)|x〉f(x,−ih̄∇)〈x|Ψ(t)〉.
(1.222)

If we decompose the states |Ψ(t)〉 into stationary eigenstates |En〉 of the Hamiltonian
operator Ĥ [recall (1.175)], |Ψ(t)〉 = ∑

n |En〉〈En|Ψ(t)〉, then the density matrix has
the expansion

ρ̂(t) ≡
∑

n,m

|En〉ρnm(t)〈Em| =
∑

n,m

|En〉〈En|Ψ(t)〉〈Ψ(t)|Em〉〈Em|. (1.223)

Wigner showed that the Fourier transform of the density matrix, theWigner function

W (X,p; t) ≡
∫

d3∆x

(2πh̄)3
eip∆x/h̄ρ(X+∆x/2,X−∆x/2; t) (1.224)
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satisfies, for a single particle of mass M in a potential V (x), the Wigner-Liouville
equation

(

∂t + v ·∇
X

)

W (X,p; t) =Wt(X,p; t), v ≡ p

M
, (1.225)

where

Wt(X,p; t) ≡
2

h̄

∫ d3q

(2πh̄)3
W (X,p− q; t)

∫

d3∆xV (X−∆x/2)eiq∆x/h̄. (1.226)

In the limit h̄→ 0, we may expand W (X,p−q; t) in powers of q, and V (X−∆x/2)
in powers of ∆x, which we rewrite in front of the exponential eiq∆x/h̄ as powers of
−ih̄∇q. Then we perform the integral over ∆x to obtain (2πh̄)3δ(3)(q), and perform
the integral over q to obtain the classical Liouville equation for the probability
density of the particle in phase space

(

∂t + v ·∇
X

)

W (X,p; t) = −F (X)∇pW (X,p; t), v ≡ p

M
, (1.227)

where F (X) ≡ −∇XV (X) is the force associated with the potential V (X).

1.5.3 Generalization to Many Particles

All this development can be extended to systems of N distinguishable mass points
with Cartesian coordinates x1, . . . ,xN . If H(pν ,xν , t) is the Hamiltonian, the
Schrödinger equation becomes

H(p̂ν , x̂ν , t)|Ψ(t)〉 = ih̄∂t|Ψ(t)〉. (1.228)

We may introduce a complete local basis |x1, . . . ,xN〉 with the properties

〈x1, . . . ,xN |x′1, . . . ,x′N〉 = δ(3)(x1 − x′1) · · · δ(3)(xN − x′N),
∫

d3x1 · · · d3xN |x1, . . . ,xN〉〈x1, . . . ,xN | = 1,
(1.229)

and define
〈x1, . . . ,xN |p̂ν = −ih̄∂xν

〈x1, . . . ,xN |,
〈x1, . . . ,xN |x̂ν = xν〈x1, . . . ,xN |.

(1.230)

The Schrödinger equation for N particles (1.107) follows from (1.228) by multiplying
it from the left with the bra vectors 〈x1, . . . ,xN |. In the same way, all other formulas
given above can be generalized to N -body state vectors.

1.6 Time Evolution Operator

If the Hamiltonian operator possesses no explicit time dependence, the basis-
independent Schrödinger equation (1.163) can be integrated to find the wave function
|Ψ(t)〉 at any time tb from the state at any other time ta

|Ψ(tb)〉 = e−i(tb−ta)Ĥ/h̄|Ψ(ta)〉. (1.231)
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The operator

Û(tb, ta) = e−i(tb−ta)Ĥ/h̄ (1.232)

is called the time evolution operator . It satisfies the differential equation

ih̄∂tbÛ(tb, ta) = Ĥ Û(tb, ta). (1.233)

Its inverse is obtained by interchanging the order of tb and ta:

Û−1(tb, ta) ≡ ei(tb−ta)Ĥ/h̄ = Û(ta, tb). (1.234)

As an exponential of i times a Hermitian operator, Û is a unitary operator satisfying

Û † = Û−1. (1.235)

Indeed,

Û †(tb, ta) = ei(tb−ta)Ĥ
†/h̄

= ei(tb−ta)Ĥ/h̄ = Û−1(tb, ta).
(1.236)

If H(p̂, x̂, t) depends explicitly on time, the integration of the Schrödinger equation
(1.163) is somewhat more involved. The solution may be found iteratively: For
tb > ta, the time interval is sliced into a large number N + 1 of small pieces of
thickness ǫ with ǫ ≡ (tb − ta)/(N + 1), slicing once at each time tn = ta + nǫ for
n = 0, . . . , N + 1. We then use the Schrödinger equation (1.163) to relate the wave
function in each slice approximately to the previous one:

|Ψ(ta + ǫ)〉 ≈
(

1− i

h̄

∫ ta+ǫ

ta
dt Ĥ(t)

)

∣

∣

∣Ψ(ta)
〉

,

|Ψ(ta + 2ǫ)〉 ≈
(

1− i

h̄

∫ ta+2ǫ

ta+ǫ
dt Ĥ(t)

)

|Ψ(ta + ǫ)〉,
...

|Ψ(ta + (N + 1)ǫ)〉 ≈
(

1− i

h̄

∫ ta+(N+1)ǫ

ta+Nǫ
dt Ĥ(t)

)

|Ψ(ta +Nǫ)〉.

(1.237)

From the combination of these equations we extract the evolution operator as a
product

Û(tb, ta) ≈
(

1− i

h̄

∫ tb

tN
dt′N+1 Ĥ(t′N+1)

)

× · · · ×
(

1− i

h̄

∫ t1

ta
dt′1 Ĥ(t′1)

)

. (1.238)

By multiplying out the product and going to the limit N → ∞ we find the series

Û(tb, ta) = 1− i

h̄

∫ tb

ta
dt′1 Ĥ(t′1) +

(−i
h̄

)2 ∫ tb

ta
dt′2

∫ t′2

ta
dt′1 Ĥ(t′2)Ĥ(t′1)

+
(−i
h̄

)3 ∫ tb

ta
dt′3

∫ t′3

ta
dt′2

∫ t′2

ta
dt′1 Ĥ(t′3)Ĥ(t′2)Ĥ(t′1) + . . . ,

(1.239)
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ta

tb

tbta t1

t2

Figure 1.3 Illustration of time-ordering procedure in Eq. (1.243).

known as the Neumann-Liouville expansion or Dyson series . An interesting modi-
fication of this is the so-called Magnus expansion to be derived in Eq. (2A.25).

Note that each integral has the time arguments in the Hamilton operators ordered
causally : Operators with later times stand to left of those with earlier times. It is
useful to introduce a time-ordering operator which, when applied to an arbitrary
product of operators,

Ôn(tn) · · · Ô1(t1), (1.240)

reorders the times successively. More explicitly we define

T̂ (Ôn(tn) · · · Ô1(t1)) ≡ Ôin(tin) · · · Ôi1(ti1), (1.241)

where tin, . . . , ti1 are the times tn, . . . , t1 relabeled in the causal order, so that

tin > tin−1 > . . . > ti1 . (1.242)

Any c-number factors in (1.241) can be pulled out in front of the T̂ operator. With
this formal operator, the Neumann-Liouville expansion can be rewritten in a more
compact way. Take, for instance, the third term in (1.239)

∫ tb

ta
dt2

∫ t2

ta
dt1 Ĥ(t2)Ĥ(t1). (1.243)

The integration covers the triangle above the diagonal in the square t1, t2 ∈ [ta, tb]
in the (t1, t2) plane (see Fig. 1.2). By comparing this with the missing integral over
the lower triangle

∫ tb

ta
dt2

∫ tb

t2
dt1 Ĥ(t2)Ĥ(t1) (1.244)

we see that the two expressions coincide except for the order of the operators. This
can be corrected with the use of a time-ordering operator T̂ . The expression

T̂
∫ tb

ta
dt2

∫ tb

t2
dt1 Ĥ(t2)Ĥ(t1) (1.245)
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is equal to (1.243) since it may be rewritten as
∫ tb

ta
dt2

∫ tb

t2
dt1 Ĥ(t1)Ĥ(t2) (1.246)

or, after interchanging the order of integration, as
∫ tb

ta
dt1

∫ t1

ta
dt2 Ĥ(t1)Ĥ(t2). (1.247)

Apart from the dummy integration variables t2 ↔ t1, this double integral coincides
with (1.243). Since the time arguments are properly ordered, (1.243) can trivially
be multiplied with the time-ordering operator. The conclusion of this discussion is
that (1.243) can alternatively be written as

1

2
T̂
∫ tb

ta
dt2

∫ tb

ta
dt1 Ĥ(t2)Ĥ(t1). (1.248)

On the right-hand side, the integrations now run over the full square in the t1, t2-
plane so that the two integrals can be factorized into

1

2
T̂
(∫ tb

ta
dt Ĥ(t)

)2

. (1.249)

Similarly, we may rewrite the nth-order term of (1.239) as

1

n!
T̂
∫ tb

ta
dtn

∫ tb

ta
dtn−1 · · ·

∫ tb

ta
dt1 Ĥ(tn)Ĥ(tn−1) · · · Ĥ(t1)

=
1

n!
T̂

[

∫ tb

ta
dt Ĥ(t)

]n

.

(1.250)

The time evolution operator Û(tb, ta) has therefore the series expansion

Û(tb, ta) = 1− i

h̄
T̂
∫ tb

ta
dt Ĥ(t) +

1

2!

(−i
h̄

)2

T̂
(

∫ tb

ta
dt Ĥ(t)

)2

+ . . .+
1

n!

(−i
h̄

)n

T̂
(

∫ tb

ta
dt Ĥ(t)

)n
+ . . . .

(1.251)

The right-hand side of T̂ contains simply the power series expansion of the expo-
nential so that we can write

Û(tb, ta) = T̂ exp
{

− i

h̄

∫ tb

ta
dt Ĥ(t)

}

. (1.252)

If Ĥ does not depend on the time, the time-ordering operation is superfluous, the
integral can be done trivially, and we recover the previous result (1.232).

Note that a small variation δĤ(t) of Ĥ(t) changes Û(tb, ta) by

δÛ(tb, ta) =− i

h̄

∫ tb

ta
dt′ T̂ exp

{

− i

h̄

∫ tb

t′
dt Ĥ(t)

}

δĤ(t′) T̂ exp

{

− i

h̄

∫ t′

ta
dt Ĥ(t)

}

=− i

h̄

∫ tb

ta
dt′ Û(tb, t

′) δĤ(t′) Û(t′, ta). (1.253)

A simple application for this relation is given in Appendix 1A.
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1.7 Properties of the Time Evolution Operator

By construction, Û(tb, ta) has some important properties:

a) Fundamental composition law
If two time translations are performed successively, the corresponding operators Û
are related by

Û(tb, ta) = Û(tb, t
′)Û(t′, ta), t′ ∈ (ta, tb). (1.254)

This composition law makes the operators Û a representation of the abelian group
of time translations. For time-independent Hamiltonians with Û(tb, ta) given by
(1.232), the proof of (1.254) is trivial. In the general case (1.252), it follows from
the simple manipulation valid for tb > ta:

T̂ exp
(

− i

h̄

∫ tb

t′
Ĥ(t) dt

)

T̂ exp

(

− i

h̄

∫ t′

ta
Ĥ(t) dt

)

= T̂

[

exp
(

− i

h̄

∫ tb

t′
Ĥ(t) dt

)

exp

(

− i

h̄

∫ t′

ta
Ĥ(t) dt

)]

= T̂ exp
(

− i

h̄

∫ tb

ta
Ĥ(t) dt

)

.

(1.255)

b) Unitarity
The expression (1.252) for the time evolution operator Û(tb, ta) was derived only for
the causal (or retarded) time arguments, i.e., for tb later than ta. We may, however,
define Û(tb, ta) also for the anticausal (or advanced) case where tb lies before ta. To
be consistent with the above composition law (1.254), we must have

Û(tb, ta) ≡ Û(ta, tb)
−1
. (1.256)

Indeed, when considering two states at successive times

|Ψ(ta)〉 = Û(ta, tb)|Ψ(tb)〉, (1.257)

the order of succession is inverted by multiplying both sides by Û−1(ta, tb):

|Ψ(tb)〉 = Û(ta, tb)
−1|Ψ(ta)〉, tb < ta. (1.258)

The operator on the right-hand side is defined to be the time evolution operator
Û(tb, ta) from the later time ta to the earlier time tb.

If the Hamiltonian is independent of time, with the time evolution operator being

Û(ta, tb) = e−i(ta−tb)Ĥ/h̄, ta > tb, (1.259)

the unitarity of the operator Û(tb, ta) is obvious:

Û †(tb, ta) = Û(tb, ta)
−1
, tb < ta. (1.260)
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Let us verify this property for a general time-dependent Hamiltonian. There, a
direct solution of the Schrödinger equation (1.163) for the state vector shows that
the operator Û(tb, ta) for tb < ta has a representation just like (1.252), except for a
reversed time order of its arguments. One writes this in the form [compare (1.252)]

Û(tb, ta) = T̂ exp
{

i

h̄

∫ tb

ta
Ĥ(t) dt

}

, (1.261)

where T̂ denotes the time-antiordering operator, with an obvious definition analo-
gous to (1.241), (1.242). This operator satisfies the relation

[

T̂
(

Ô1(t1)Ô2(t2)
)]†

= T̂
(

Ô†2(t2)Ô
†
1(t1)

)

, (1.262)

with an obvious generalization to the product of n operators. We can therefore
conclude right away that

Û †(tb, ta) = Û(ta, tb), tb > ta. (1.263)

With Û(ta, tb) ≡ Û(tb, ta)
−1, this proves the unitarity relation (1.260), in general.

c) Schrödinger equation for Û(tb, ta)
Since the operator Û(tb, ta) rules the relation between arbitrary wave functions at
different times,

|Ψ(tb)〉 = Û(tb, ta)|Ψ(ta)〉, (1.264)

the Schrödinger equation (1.228) implies that the operator Û(tb, ta) satisfies the
corresponding equations

ih̄∂tÛ(t, ta) = ĤÛ(t, ta), (1.265)

ih̄∂tÛ(t, ta)
−1

= −Û(t, ta)
−1
Ĥ, (1.266)

with the initial condition
Û(ta, ta) = 1. (1.267)

1.8 Heisenberg Picture of Quantum Mechanics

The unitary time evolution operator Û(t, ta) may be used to give a different formu-
lation of quantum mechanics bearing the closest resemblance to classical mechanics.
This formulation, called the Heisenberg picture of quantum mechanics, is in a way
more closely related to classical mechanics than the Schrödinger formulation. Many
classical equations remain valid by simply replacing the canonical variables pi(t)
and qi(t) in phase space by Heisenberg operators , to be denoted by pHi(t), qHi(t).
Originally, Heisenberg postulated that they are matrices, but later it became clear
that these matrices had to be functional matrix elements of operators, whose indices
can be partly continuous. The classical equations hold for the Heisenberg operators
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and as long as the canonical commutation rules (1.93) are respected at any given
time. In addition, qi(t) must be Cartesian coordinates. In this case we shall always
use the notation xi for the position variable, as in Section 1.4, rather than qi. The
corresponding Heisenberg operators are x̂Hi(t). Suppressing the subscripts i, the
canonical equal-time commutation rules are

[p̂H(t), x̂H(t)] = −ih̄,
[p̂H(t), p̂H(t)] = 0,

[x̂H(t), x̂H(t)] = 0.

(1.268)

According to Heisenberg, classical equations involving Poisson brackets remain
valid if the Poisson brackets are replaced by i/h̄ times the matrix commutators at
equal times. The canonical commutation relations (1.268) are a special case of this
rule, recalling the fundamental Poisson brackets (1.24). The Hamilton equations of
motion (1.23) turn into the Heisenberg equations

d

dt
p̂H(t) =

i

h̄

[

ĤH , p̂H(t)
]

,

d

dt
x̂H(t) =

i

h̄

[

ĤH , x̂H(t)
]

,

(1.269)

where
ĤH ≡ H(p̂H(t), x̂H(t), t) (1.270)

is the Hamiltonian in the Heisenberg picture. Similarly, the equation of motion for
an arbitrary observable function O(pi(t), xi(t), t) derived in (1.19) goes over into the
matrix commutator equation for the Heisenberg operator

ÔH(t) ≡ O(p̂H(t), x̂H(t), t), (1.271)

namely,
d

dt
ÔH =

i

h̄
[ĤH , ÔH ] +

∂

∂t
ÔH . (1.272)

These rules are referred to as Heisenberg’s correspondence principle.
The relation between Schrödinger’s and Heisenberg’s picture is supplied by the

time evolution operator. Let Ô be an arbitrary observable in the Schrödinger de-
scription

Ô(t) ≡ O(p̂, x̂, t). (1.273)

If the states |Ψa(t)〉 are an arbitrary complete set of solutions of the Schrödinger
equation, where a runs through discrete and continuous indices, the operator Ô(t)
can be specified in terms of its functional matrix elements

Oab(t) ≡ 〈Ψa(t)|Ô(t)|Ψb(t)〉. (1.274)

We can now use the unitary operator Û(t, 0) to go to a new time-independent basis
|ΨHa〉, defined by

|Ψa(t)〉 ≡ Û(t, 0)|ΨHa〉. (1.275)
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Simultaneously, we transform the Schrödinger operators of the canonical coordinates
p̂ and x̂ into the time-dependent canonical Heisenberg operators p̂H(t) and x̂H(t) via

p̂H(t) ≡ Û(t, 0)−1 p̂ Û(t, 0), (1.276)

x̂H(t) ≡ Û(t, 0)−1 x̂ Û(t, 0). (1.277)

At the time t = 0, the Heisenberg operators p̂H(t) and x̂H(t) coincide with the time-
independent Schrödinger operators p̂ and x̂, respectively. An arbitrary observable
Ô(t) is transformed into the associated Heisenberg operator as

ÔH(t) ≡ Û(t, ta)
−1O(p̂, x̂, t)Û(t, ta)

≡ O (p̂H(t), x̂H(t), t) .
(1.278)

The Heisenberg matrices OH(t)ab are then obtained from the Heisenberg operators
ÔH(t) by sandwiching ÔH(t) between the time-independent basis vectors |ΨHa〉:

OH(t)ab ≡ 〈ΨHa|ÔH(t)|ΨHb〉. (1.279)

Note that the time dependence of these matrix elements is now completely due to
the time dependence of the operators,

d

dt
OH(t)ab ≡ 〈ΨHa|

d

dt
ÔH(t)|ΨHb〉. (1.280)

This is in contrast to the Schrödinger representation (1.274), where the right-hand
side would have contained two more terms from the time dependence of the wave
functions. Due to the absence of such terms in (1.280) it is possible to study the
equation of motion of the Heisenberg matrices independently of the basis by consid-
ering directly the Heisenberg operators. It is straightforward to verify that they do
indeed satisfy the rules of Heisenberg’s correspondence principle. Consider the time
derivative of an arbitrary observable ÔH(t),

d

dt
ÔH(t) =

(

d

dt
Û−1(t, ta)

)

Ô(t)Û(t, ta)

+ Û−1(t, ta)

(

∂

∂t
Ô(t)

)

Û(t, ta) + Û−1(t, ta)Ô(t)

(

d

dt
Û(t, ta)

)

,

which can be rearranged as
[(

d

dt
Û−1(t, ta)

)

Û(t, ta)

]

Û−1(t, ta)Ô(t)Û(t, ta) (1.281)

+
[

Û−1(t, ta)Ô(t)Û(t, ta)
]

Û−1(t, ta)
d

dt
Û(t, ta) + Û−1(t, ta)

(

∂

∂t
Ô(t)

)

Û(t, ta).

Using (1.265), we obtain

d

dt
ÔH(t) =

i

h̄

[

Û−1ĤÛ , ÔH

]

+ Û−1
(

∂

∂t
Ô(t)

)

Û . (1.282)
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After inserting (1.278), we find the equation of motion for the Heisenberg operator:

d

dt
ÔH(t) =

i

h̄

[

ĤH , ÔH(t)
]

+

(

∂

∂t
Ô

)

H

(t). (1.283)

By sandwiching this equation between the complete time-independent basis states
|Ψa〉 in the Hilbert space, it holds for the matrices and turns into the Heisenberg
equation of motion. For the phase space variables pH(t), xH(t) themselves, these
equations reduce, of course, to the Hamilton equations of motion (1.269).

Thus we have shown that Heisenberg’s matrix quantum mechanics is completely
equivalent to Schrödinger’s quantum mechanics, and that the Heisenberg matrices
obey the same Hamilton equations as the classical observables.

1.9 Interaction Picture and Perturbation Expansion

For some physical systems, the Hamiltonian operator can be split into two contri-
butions

Ĥ = Ĥ0 + V̂ , (1.284)

where Ĥ0 is a so-called free Hamiltonian operator for which the Schrödinger equation
Ĥ0|ψ(t)〉 = ih̄∂t|ψ(t)〉 can be solved, and V̂ is an interaction potential which perturbs
these solutions slightly. In this case it is useful to describe the system in Dirac’s
interaction picture. We remove the time evolution of the unperturbed Schrödinger
solutions and define the states

|ψI(t)〉 ≡ eiĤ0t/h̄|ψ(t)〉. (1.285)

Their time evolution comes entirely from the interaction potential V̂ . It is governed
by the time evolution operator

ÛI(tb, ta) ≡ eiH0tb/h̄e−iH(tb−ta)/h̄e−iH0ta/h̄, (1.286)

and reads
|ψI(tb)〉 = ÛI(tb, ta)|ψI(ta)〉. (1.287)

If V̂ = 0, the states |ψI(tb)〉 are time-independent and coincide with the Heisenberg
states (1.275) of the operator Ĥ0.

The operator ÛI(tb, ta) satisfies the equation of motion

ih̄∂tbÛI(tb, ta) = VI(tb)ÛI(tb, ta), (1.288)

where
V̂I(t) ≡ eiH0t/h̄V̂ e−iH0t/h̄ (1.289)

is the potential in the interaction picture. This equation of motion can be turned
into an integral equation

ÛI(tb, ta) = 1− i

h̄

∫ tb

ta
dtVI(t)ÛI(t, ta). (1.290)
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Inserting Eq. (1.289), this reads

ÛI(tb, ta) = 1− i

h̄

∫ tb

ta
dt eiĤ0t/h̄V e−iĤ0t/h̄ÛI(t, ta). (1.291)

This equation can be iterated to find a perturbation expansion for the operator
ÛI(tb, ta) in powers of the interaction potential:

ÛI(tb, ta) = 1− i

h̄

∫ tb

ta
dt eiĤ0t/h̄V e−iĤ0t/h̄

+
(

− i

h̄

)2 ∫ tb

ta
dt
∫ t

ta
dt′ eiĤ0t/h̄V e−iĤ0(t−t′)/h̄V e−iĤ0t′/h̄ + . . . . (1.292)

Inserting on the left-hand side the operator (1.286) and multiplying the equation

from the left by e−iĤ0tb/h̄ and from the right by eiĤ0ta/h̄, this can also be rewritten
as

e−iH(tb−ta)/h̄ = e−iH0(tb−ta)/h̄ − i

h̄

∫ tb

ta
dt e−iĤ0(tb−t)/h̄V e−iĤ0(t−ta)/h̄

+
(

− i

h̄

)2 ∫ tb

ta
dt
∫ t

ta
dt′ e−iĤ0(tb−t)/h̄V e−iĤ0(t−t′)/h̄V e−iĤ0(t′−ta)/h̄ + . . . . (1.293)

This expansion is seen to be the recursive solution of the integral equation

e−iH(tb−ta)/h̄ = e−iH0(tb−ta)/h̄ − i

h̄

∫ tb

ta
dt e−iĤ0(tb−t)/h̄V e−iĤ(t−ta)/h̄. (1.294)

Note that the lowest-order correction agrees with the previous formula (1.253)
Another way of writing the expansion (1.293) is

e−iH(tb−ta)/h̄ = e−iH0tb/h̄ T̂ exp
{

− i

h̄

∫ tb

ta
dt eiĤ0t/h̄V e−iĤ0t/h̄

}

eiHta/h̄. (1.295)

This may be recorded as a mathematical operator formula

eT (Â+B̂) = T̂ e
∫

T

0
dte(T−t)ÂB̂etÂ = eTÂT̂ e

∫

T

0
dte−tÂB̂etÂ. (1.296)

Due to the time-ordering operator, the right-hand side cannot be evaluated with the
help Lie’s expansion formula, also known as Hadamard’s lemma

e−tÂB̂etÂ = B̂ − t[Â, B̂] +
t2

2!
[Â, [Â, B̂]] + . . . . (1.297)

Due to T̂ , the evaluation is considerably more involved and relegated to Ap-
pendix 2A. The proper expression of the right-hand side is referred to as the
Campbell-Baker-Hausdorff expansion

A simple consequence of Hadamard’s lemma is a variation formula for a time-
dependent operator Â(t):

δeÂ(t) =
∫ 1

0
dte(1−t)Â δÂ etÂ, (1.298)

which follows from (1.297) by setting B̂ = δÂ and expanding eT (Â+δÂ) − eTÂ to
lowest order in δÂ. This is, of course, just another way of expressing Eq. (1.253).
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1.10 Time Evolution Amplitude

In the subsequent development, an important role will be played by the matrix
elements of the time evolution operator in the localized basis states,

(xbtb|xata) ≡ 〈xb|Û(tb, ta)|xa〉. (1.299)

They are referred to as time evolution amplitudes. The functional matrix (xbtb|xata)
is also called the propagator of the system. For a system with a time-independent
Hamiltonian operator where Û(tb, ta) is given by (1.259), the propagator is simply

(xbtb|xata) = 〈xb| exp[−iĤ(tb − ta)/h̄]|xa〉. (1.300)

Due to the operator equations (1.265), the propagator satisfies the Schrödinger
equation

[H(−ih̄∂xb
,xb, tb)− ih̄∂tb ] (xbtb|xata) = 0. (1.301)

In the quantum mechanics of nonrelativistic particles, only the propagators from
earlier to later times will be relevant. It is therefore customary to introduce the
so-called causal time evolution operator or retarded time evolution operator :9

ÛR(tb, ta) ≡
{

Û(tb, ta), tb ≥ ta,
0, tb < ta,

(1.302)

and the associated causal time evolution amplitude or retarded time evolution am-
plitude

(xbtb|xata)
R ≡ 〈xb|ÛR(tb, ta)|xa〉. (1.303)

Since this differs from (1.299) only for tb < ta, and since all formulas in the sub-
sequent text will be used only for tb > ta, we shall often omit the superscript R.
To abbreviate the case distinction in (1.302), it is convenient to use the Heaviside
function defined by

Θ(t) ≡
{

1 for t > 0,
0 for t ≤ 0,

(1.304)

and write

UR(tb, ta) ≡ Θ(tb − ta)Û(tb, ta), (xbtb|xata)
R ≡ Θ(tb − ta)(xbtb|xata). (1.305)

There exists also another Heaviside function which differs from (1.304) only by the
value at tb = ta:

ΘR(t) ≡
{

1 for t ≥ 0,
0 for t < 0.

(1.306)

Both Heaviside functions have the property that their derivative yields Dirac’s
δ-function

∂tΘ(t) = δ(t). (1.307)

9Compare this with the retarded Green functions to be introduced in Section 18.1

H. Kleinert, PATH INTEGRALS



1.10 Time Evolution Amplitude 45

If it is not important which Θ-function is used we shall ignore the superscript.
The retarded propagator satisfies the Schrödinger equation
[

H(−ih̄∂xb
,xb, tb)

R − ih̄∂tb
]

(xbtb|xata)
R = −ih̄δ(tb − ta)δ

(3)(xb − xa). (1.308)

The nonzero right-hand side arises from the extra term

−ih̄ [∂tbΘ(tb − ta)] 〈xbtb|xata〉=−ih̄δ(tb − ta)〈xbtb|xata〉=−ih̄δ(tb − ta)〈xbta|xata〉
(1.309)

and the initial condition 〈xbta|xata〉 = 〈xb|xa〉, due to (1.267).
If the Hamiltonian does not depend on time, the propagator depends only on the

time difference t = tb − ta. The retarded propagator vanishes for t < 0. Functions
f(t) with this property have a characteristic Fourier transform. The integral

f̃(E) ≡
∫ ∞

0
dt f(t)eiEt/h̄ (1.310)

is an analytic function in the upper half of the complex energy plane. This analyticity
property is necessary and sufficient to produce a factor Θ(t) when inverting the
Fourier transform via the energy integral

f(t) ≡
∫ ∞

−∞

dE

2πh̄
f̃(E)e−iEt/h̄. (1.311)

For t < 0, the contour of integration may be closed by an infinite semicircle in the
upper half-plane at no extra cost. Since the contour encloses no singularities, it can
be contracted to a point, yielding f(t) = 0.

The Heaviside function Θ(t) itself is the simplest retarded function, with a
Fourier representation containing just a single pole just below the origin of the
complex energy plane:

Θ(t) =
∫ ∞

−∞

dE

2π

i

E + iη
e−iEt, (1.312)

where η is an infinitesimally small positive number. The integral representation is
undefined for t = 0 and there are, in fact, infinitely many possible definitions for the
Heaviside function depending on the value assigned to the function at the origin. A
special role is played by the average of the Heaviside functions (1.306) and (1.304),
which is equal to 1/2 at the origin:

Θ̄(t) ≡






1 for t > 0,
1
2 for t = 0,
0 for t < 0.

(1.313)

Usually, the difference in the value at the origin does not matter since the Heaviside
function appears only in integrals accompanied by some smooth function f(t). This
makes the Heaviside function a distribution with respect to smooth test functions
f(t) as defined in Eq. (1.162). All three distributions Θr(t), Θ

l(t), and Θ̄(t) define
the same linear functional of the test functions by the integral

Θ[f ] =
∫

dtΘ(t− t′)f(t′), (1.314)
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and this is an element in the linear space of all distributions.
As announced after Eq. (1.162), path integrals will specify, in addition, integrals

over products of distribution and thus give rise to an important extension of the
theory of distributions in Chapter 10. In this, the Heaviside function Θ̄(t− t′) plays
the main role.

While discussing the concept of distributions let us introduce, for later use, the
closely related distribution

ǫ(t− t′) ≡ Θ(t− t′)−Θ(t′ − t) = Θ̄(t− t′)− Θ̄(t′ − t), (1.315)

which is a step function jumping at the origin from −1 to 1 as follows:

ǫ(t− t′) =











1 for t > t′,
0 for t = t′,

−1 for t < t′.
(1.316)

1.11 Fixed-Energy Amplitude

The Fourier-transform of the retarded time evolution amplitude (1.303)

(xb|xa)E =
∫ ∞

−∞
dtbe

iE(tb−ta)/h̄(xbtb|xbta)
R =

∫ ∞

ta
dtbe

iE(tb−ta)/h̄(xbtb|xata) (1.317)

is called the fixed-energy amplitude.
If the Hamiltonian does not depend on time, we insert here Eq. (1.300) and find

that the fixed-energy amplitudes are matrix elements

(xb|xa)E = 〈xb|R̂(E)|xa〉 (1.318)

of the so-called resolvent operator

R̂(E) =
ih̄

E − Ĥ + iη
, (1.319)

which is the Fourier transform of the retarded time evolution operator (1.302):

R̂(E) =
∫ ∞

−∞
dtb e

iE(tb−ta)/h̄ÛR(tb, ta) =
∫ ∞

ta
dtb e

iE(tb−ta)/h̄Û(tb, ta). (1.320)

Let us suppose that the time-independent Schrödinger equation is completely
solved, i.e., that one knows all solutions |ψn〉 of the equation

Ĥ|ψn〉 = En|ψn〉. (1.321)

These satisfy the completeness relation

∑

n

|ψn〉〈ψn| = 1, (1.322)
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which can be inserted on the right-hand side of (1.300) between the Dirac brackets
leading to the spectral representation

(xbtb|xata) =
∑

n

ψn(xb)ψ
∗
n(xa) exp [−iEn(tb − ta)/h̄] , (1.323)

with

ψn(x) = 〈x|ψn〉 (1.324)

being the wave functions associated with the eigenstates |ψn〉. Applying the Fourier
transform (1.317), we obtain

(xb|xa)E =
∑

n

ψn(xb)ψ
∗
n(xa)Rn(E) =

∑

n

ψn(xb)ψ
∗
n(xa)

ih̄

E −En + iη
. (1.325)

The fixed-energy amplitude (1.317) contains as much information on the system
as the time evolution amplitude, which is recovered from it by the inverse Fourier
transformation

(xbta|xata) =
∫ ∞

−∞

dE

2πh̄
e−iE(tb−ta)/h̄(xb|xa)E. (1.326)

The small iη-shift in the energy E in (1.325) may be thought of as being attached
to each of the energies En, which are thus placed by an infinitesimal piece below the
real energy axis. Then the exponential behavior of the wave functions is slightly
damped, going to zero at infinite time:

e−i(En−iη)t/h̄ → 0. (1.327)

This so-called iη-prescription ensures the causality of the Fourier representation
(1.326). When doing the Fourier integral (1.326), the exponential eiE(tb−ta)/h̄ makes
it always possible to close the integration contour along the energy axis by an infinite
semicircle in the complex energy plane, which lies in the upper half-plane for tb < ta
and in the lower half-plane for tb > ta. The iη-prescription guarantees that for
tb < ta, there is no pole inside the closed contour making the propagator vanish. For
tb > ta, on the other hand, the poles in the lower half-plane give, via Cauchy’s residue
theorem, the spectral representation (1.323) of the propagator. An iη-prescription
will appear in another context in Section 2.3.

If the eigenstates are nondegenerate, the residues at the poles of (1.325) render
directly the products of eigenfunctions (barring degeneracies which must be dis-
cussed separately). For a system with a continuum of energy eigenvalues, there is
a cut in the complex energy plane which may be thought of as a closely spaced se-
quence of poles. In general, the wave functions are recovered from the discontinuity
of the amplitudes (xb|xa)E across the cut, using the formula

disc

(

ih̄

E −En

)

≡ ih̄

E − En + iη
− ih̄

E − En − iη
= 2πh̄δ(E −En). (1.328)
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Here we have employed the relation10, valid inside integrals over E:

1

E − En ± iη
=

P
E − En

∓ iπδ(E −En), (1.329)

where P indicates that the principal value of the integral has to be taken.
The energy integral over the discontinuity of the fixed-energy amplitude (1.325)

(xb|xa)E reproduces the completeness relation (1.322) taken between the local states
〈xb| and |xa〉,

∫ ∞

−∞

dE

2πh̄
disc (xb|xa)E =

∑

n

ψn(xb)ψ
∗
n(xa) = 〈xb|xa〉 = δ(D)(xb − xa). (1.330)

The completeness relation reflects the following property of the resolvent operator:

∫ ∞

−∞

dE

2πh̄
disc R̂(E) = 1̂. (1.331)

In general, the system possesses also a continuous spectrum, in which case the
completeness relation contains a spectral integral and (1.322) has the form

∑

n

|ψn〉〈ψn|+
∫

dν |ψν〉〈ψν | = 1. (1.332)

The continuum causes a branch cut along in the complex energy plane, and (1.330)
includes an integral over the discontinuity along the cut. The cut will mostly be
omitted, for brevity.

1.12 Free-Particle Amplitudes

For a free particle with a Hamiltonian operator Ĥ = p̂2/2M , the spectrum is con-
tinuous. The eigenfunctions are (1.189) with energies E(p) = p2/2M . Inserting
the completeness relation (1.187) into Eq. (1.300), we obtain for the time evolution
amplitude of a free particle the Fourier representation

(xbtb|xata) =
∫ dDp

(2πh̄)D
exp

{

i

h̄

[

p(xb − xa)−
p2

2M
(tb − ta)

]}

. (1.333)

The momentum integrals can easily be done. First we perform a quadratic comple-
tion in the exponent and rewrite it as

p(xb − xa)−
1

2M
p2(tb − ta) =

1

2M

(

p− 1

M

xb − xa

tb − ta

)2

(tb − ta)−
M

2

(xb − xa)
2

tb − ta
.

(1.334)

10This is often referred to as Sochocki’s formula. It is the beginning of an expansion in powers
of η > 0: 1/(x± iη) = P/x∓ iπδ(x) + η [πδ′(x) ± idxP/x] + O(η2).
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Then we replace the integration variables by the shifted momenta p′ = p −
(xb − xa)/(tb − ta)M , and the amplitude (1.333) becomes

(xbtb|xata) = F (tb − ta) exp

[

i

h̄

M

2

(xb − xa)
2

tb − ta

]

, (1.335)

where F (tb − ta) is the integral over the shifted momenta

F (tb − ta) ≡
∫

dDp′

(2πh̄)D
exp

{

− i

h̄

p′ 2

2M
(tb − ta)

}

. (1.336)

This can be performed using the Fresnel integral formula

∫ ∞

−∞

dp√
2π

exp
(

i
a

2
p2
)

=
1

√

|a|

{ √
i, a > 0,

1/
√
i, a < 0.

(1.337)

Here the square root
√
i denotes the phase factor eiπ/4: This follows from the Gauss

formula
∫ ∞

−∞

dp√
2π

exp
(

−α
2
p2
)

=
1√
α
, Reα > 0, (1.338)

by continuing α analytically from positive values into the right complex half-plane.
As long as Reα > 0, this is straightforward. On the boundaries, i.e., on the positive
and negative imaginary axes, one has to be careful. At α = ±ia + η with a>

<
0 and

infinitesimal η > 0, the integral is certainly convergent yielding (1.337). But the
integral also converges for η = 0, as can easily be seen by substituting x2 = z. See
Appendix 1B.

Note that differentiation of Eq. (1.338) with respect to α yields the more general
Gaussian integral formula

∫ ∞

−∞

dp√
2π

p2n exp
(

−α
2
p2
)

=
1√
α

(2n− 1)!!

αn
Reα > 0, (1.339)

where (2n − 1)!! is defined as the product (2n− 1) · (2n− 3) · · ·1. For odd powers
p2n+1, the integral vanishes. In the Fresnel formula (1.337), an extra integrand p2n

produces a factor (i/a)n.
Since the Fresnel formula is a special analytically continued case of the Gauss for-

mula, we shall in the sequel always speak of Gaussian integrations and use Fresnel’s
name only if the imaginary nature of the quadratic exponent is to be emphasized.

Applying this formula to (1.336), we obtain

F (tb − ta) =
1

√

2πih̄(tb − ta)/M
D , (1.340)

so that the full time evolution amplitude of a free massive point particle is

(xbtb|xata) =
1

√

2πih̄(tb − ta)/M
D exp

[

i

h̄

M

2

(xb − xa)
2

tb − ta

]

. (1.341)
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In the limit tb → ta, the left-hand side becomes the scalar product 〈xb|xa〉 =
δ(D)(xb − xa), implying the following limiting formula for the δ-function

δ(D)(xb − xa) = lim
tb−ta→0

1
√

2πih̄(tb − ta)/M
D exp

[

i

h̄

M

2

(xb − xa)
2

tb − ta

]

. (1.342)

Inserting Eq. (1.333) into (1.317), we have for the fixed-energy amplitude the
integral representation

(xb|xa)E =
∫ ∞

0
d(tb − ta)

∫

dDp

(2πh̄)D
exp

{

i

h̄

[

p(xb − xa) + (tb − ta)

(

E − p2

2M

)]}

.

(1.343)
Performing the time integration yields

(xb|xa)E =
∫ dDp

(2πh̄)D
exp [ip(xb − xa)]

ih̄

E − p2/2M + iη
, (1.344)

where we have inserted a damping factor e−η(tb−ta) into the integral to ensure con-
vergence at large tb− ta. For a more explicit result it is more convenient to calculate
the Fourier transform (1.341):

(xb|xa)E =
∫ ∞

0
d(tb − ta)

1
√

2πih̄(tb − ta)/M
D exp

{

i

h̄

[

E(tb − ta) +
M

2

(xb−xa)
2

tb − ta

]}

.

(1.345)

For E < 0, we set

κ ≡
√

−2ME/h̄2, (1.346)

and perform the integral with the help of the formula11

∫ ∞

0
dt tν−1e−iγt+iβ/t = 2

(

β

γ

)ν/2

e−iνπ/2K−ν(2
√

βγ), (1.347)

where Kν(z) is the modified Bessel function which satifies Kν(z) = K−ν(z)
12 The

result is

(xb|xa)E = −i2M
h̄

κD−2

(2π)D/2

KD/2−1(κR)

(κR)D/2−1 , (1.348)

where R ≡ |xb − xa|. The simplest modified Bessel function is13

K1/2(z) = K−1/2(z) =

√

π

2z
e−z, (1.349)

11I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products , Academic Press,
New York, 1980, Formulas 3.471.10, 3.471.11, and 8.432.6

12ibid., Formula 8.486.16
13M. Abramowitz and I. Stegun, Handbook of Mathematical Functions , Dover, New York, 1965,

Formula 10.2.17.
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so that we find for D = 1, 2, 3, the amplitudes

−iM
h̄

1

κ
e−κR, − i

M

h̄

1

π
K0(κR), − i

M

h̄

1

2πR
e−κR. (1.350)

At R = 0, the amplitude (1.348) is finite for all D ≤ 2, where we can use the
small-argument behavior of the associated Bessel function14

Kν(z) = K−ν(z) ≈
1

2
Γ(ν)

(

z

2

)−ν
for Re ν > 0, (1.351)

to obtain

(x|x)E = −i2M
h̄

κD−2

(4π)D/2
Γ(1−D/2). (1.352)

This result can be continued analytically to D > 2, which will be needed later (for
example in Subsection 4.9.4).

For E > 0 we set
k ≡

√

2ME/h̄2 (1.353)

and use the formula15

∫ ∞

0
dttν−1eiγt+iβ/t = iπ

(

β

γ

)ν/2

e−iνπ/2H
(1)
−ν (2

√

βγ), (1.354)

where H(1)
ν (z) is the Hankel function, to find

(xb|xa)E =
Mπ

h̄

kD−2

(2π)D/2

H
(1)
D/2−1(kR)

(kR)D/2−1 . (1.355)

The relation16

Kν(−iz) =
π

2
ieiνπ/2H(1)

ν (z) (1.356)

connects the two formulas with each other when continuing the energy from negative
to positive values, which replaces κ by e−iπ/2k = −ik.

For large distances, the asymptotic behavior17

Kν(z) ≈
√

π

2z
e−z, H(1)

ν (z) ≈
√

2

πz
ei(z−νπ/2−π/4) (1.357)

shows that the fixed-energy amplitude behaves for E < 0 like

(xb|xa)E ≈ −iM
h̄
κD−2

1

(2π)(D−1)/2
1

(κR)(D−1)/2
e−κR/h̄, (1.358)

and for E > 0 like

(xb|xa)E ≈ M

h̄
kD−2

1

(2πi)(D−1)/2
1

(kR)(D−1)/2
eikR/h̄. (1.359)

For D = 1 and 3, these asymptotic expressions hold for all R.

14ibid., Formula 9.6.9.
15ibid., Formulas 3.471.11 and 8.421.7.
16ibid., Formula 8.407.1.
17ibid., Formulas 8.451.6 and 8.451.3.
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1.13 Quantum Mechanics of General Lagrangian Systems

An extension of the quantum-mechanical formalism to systems described by a set
of completely general Lagrange coordinates q1, . . . , qN is not straightforward. Only
in the special case of qi (i = 1, . . . , N) being merely a curvilinear reparametrization
of a D-dimensional Euclidean space are the above correspondence rules sufficient
to quantize the system. Then N = D and a variable change from xi to qj in the
Schrödinger equation leads to the correct quantum mechanics. It will be useful to
label the curvilinear coordinates by Greek superscripts and write qµ instead of qj .
This will help when we write all ensuing equations in a form that is manifestly
covariant under coordinate transformations. In the original definition of generalized
coordinates in Eq. (1.1), this was unnecessary since transformation properties were
ignored. For the Cartesian coordinates we shall use Latin indices alternatively as
sub- or superscripts. The coordinate transformation xi = xi(qµ) implies the relation
between the derivatives ∂µ ≡ ∂/∂qµ and ∂i ≡ ∂/∂xi:

∂µ = eiµ(q)∂i, (1.360)

with the transformation matrix

eiµ(q) ≡ ∂µx
i(q) (1.361)

called basis D-ad (in 3 dimensions triad, in 4 dimensions tetrad, etc.). Let
ei

µ(q) = ∂qµ/∂xi be the inverse matrix (assuming it exists) called the reciprocal
D-ad , satisfying with eiµ the orthogonality and completeness relations

eiµ ei
ν = δµ

ν , eiµ ej
µ = δij. (1.362)

Then, (1.360) is inverted to
∂i = ei

µ(q)∂µ (1.363)

and yields the curvilinear transform of the Cartesian quantum-mechanical momen-
tum operators

p̂i = −ih̄∂i = −ih̄eiµ(q)∂µ. (1.364)

The free-particle Hamiltonian operator

Ĥ0 = T̂ =
1

2M
p̂2 = − h̄2

2M
∇

2 (1.365)

goes over into

Ĥ0 = − h̄2

2M
∆, (1.366)

where ∆ is the Laplacian expressed in curvilinear coordinates:

∆ = ∂2i = eiµ∂µei
ν∂ν

= eiµei
ν∂µ∂ν + (eiµ∂µei

ν)∂ν . (1.367)
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At this point one introduces the metric tensor

gµν(q) ≡ eiµ(q)e
i
ν(q), (1.368)

its inverse

gµν(q) = eiµ(q)ei
ν(q), (1.369)

defined by gµνgνλ = δµλ, and the so-called affine connection

Γµν
λ(q) = −eiν(q)∂µeiλ(q) = ei

λ(q)∂µe
i
ν(q). (1.370)

Then the Laplacian takes the form

∆ = gµν(q)∂µ∂ν − Γµ
µν(q)∂ν , (1.371)

with Γµ
λν being defined as the contraction

Γµ
λν ≡ gλκΓµκ

ν . (1.372)

The reason why (1.368) is called a metric tensor is obvious: An infinitesimal square
distance between two points in the original Cartesian coordinates

ds2 ≡ dx2 (1.373)

becomes in curvilinear coordinates

ds2 =
∂x

∂qµ
∂x

∂qν
dqµdqν = gµν(q)dq

µdqν. (1.374)

The infinitesimal volume element dDx is given by

dDx =
√
g dDq, (1.375)

where

g(q) ≡ det (gµν(q)) (1.376)

is the determinant of the metric tensor. Using this determinant, we form the quantity

Γµ ≡ g−1/2(∂µg
1/2) =

1

2
gλκ(∂µgλκ) (1.377)

and see that it is equal to the once-contracted connection

Γµ = Γµλ
λ. (1.378)

With the inverse metric (1.369) we have furthermore

Γµ
µν = −∂µgµν − Γµ

νµ. (1.379)
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We now take advantage of the fact that the derivatives ∂µ, ∂ν applied to the coordi-
nate transformation xi(q) commute causing Γµν

λ to be symmetric in µν, i.e., Γµν
λ

= Γνµ
λ and hence Γµ

νµ = Γν . Together with (1.377) we find the rotation

Γµ
µν = − 1√

g
(∂µg

µν√g), (1.380)

which allows the Laplace operator ∆ to be rewritten in the more compact form

∆ =
1√
g
∂µg

µν√g∂ν . (1.381)

This expression is called the Laplace-Beltrami operator .18

Thus we have shown that for a Hamiltonian in a Euclidean space

H(p̂,x) =
1

2M
p̂2 + V (x), (1.382)

the Schrödinger equation in curvilinear coordinates becomes

Ĥψ(q, t) ≡
[

− h̄2

2M
∆+ V (q)

]

ψ(q, t) = ih̄∂tψ(q, t), (1.383)

where V (q) is short for V (x(q)). The scalar product of two wave functions
∫

dDxψ∗2(x, t)ψ1(x, t), which determines the transition amplitudes of the system,
transforms into ∫

dDq
√
g ψ∗2(q, t)ψ1(q, t). (1.384)

It is important to realize that this Schrödinger equation would not be obtained
by a straightforward application of the canonical formalism to the coordinate-
transformed version of the Cartesian Lagrangian

L(x, ẋ) =
M

2
ẋ2 − V (x). (1.385)

With the velocities transforming as

ẋi = eiµ(q)q̇
µ, (1.386)

the Lagrangian becomes

L(q, q̇) =
M

2
gµν(q)q̇

µq̇ν − V (q). (1.387)

Up to a factor M , the metric is equal to the Hessian metric of the system, which
depends here only on qµ [recall (1.12)]:

Hµν(q) =Mgµν(q). (1.388)

18More details will be given later in Eqs. (11.12)–(11.18).
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The canonical momenta are

pµ ≡ ∂L

∂q̇µ
=Mgµν q̇

ν . (1.389)

The associated quantum-mechanical momentum operators p̂µ have to be Hermitian
in the scalar product (1.384) and must satisfy the canonical commutation rules
(1.268):

[p̂µ, q̂
ν ] = −ih̄δµν ,

[q̂µ, q̂ν ] = 0, (1.390)

[p̂µ, p̂ν ] = 0.

An obvious solution is

p̂µ = −ih̄g−1/4∂µg1/4, q̂µ = qµ. (1.391)

The commutation rules are true for −ih̄g−z∂µgz with any power z, but only z = 1/4
produces a Hermitian momentum operator:
∫

d3q
√
gΨ∗2(q, t)[−ih̄g−1/4∂µg1/4Ψ1(q, t)] =

∫

d3q g1/4Ψ∗2(q, t)[−ih̄∂µg1/4Ψ1(q, t)]

=
∫

d3q
√
g [−ih̄g−1/4∂µg1/4Ψ2(q, t)]

∗Ψ1(q, t), (1.392)

as is easily verified by partial integration.
In terms of the quantity (1.377), this can also be rewritten as

p̂µ = −ih̄(∂µ + 1
2Γµ). (1.393)

Consider now the classical Hamiltonian associated with the Lagrangian (1.387),
which by (1.389) is simply

H = pµq̇
µ − L =

1

2M
gµν(q)p

µpν + V (q). (1.394)

When trying to turn this expression into a Hamiltonian operator, we encounter the
operator-ordering problem discussed in connection with Eq. (1.101). The correspon-
dence principle requires replacing the momenta pµ by the momentum operators p̂µ,
but it does not specify the position of these operators with respect to the coordi-
nates qµ contained in the inverse metric gµν(q). An important constraint is provided
by the required Hermiticity of the Hamiltonian operator, but this is not sufficient
for a unique specification. We may, for instance, define the canonical Hamiltonian
operator as

Ĥcan ≡ 1

2M
p̂µgµν(q)p̂

ν + V (q), (1.395)

in which the momentum operators have been arranged symmetrically around the
inverse metric to achieve Hermiticity. This operator, however, is not equal to the
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correct Schrödinger operator in (1.383). The kinetic term contains what we may
call the canonical Laplacian

∆can = (∂µ + 1
2Γµ) g

µν(q) (∂ν + 1
2Γν). (1.396)

It differs from the Laplace-Beltrami operator (1.381) in (1.383) by

∆−∆can = − 1
2∂µ(g

µνΓν)− 1
4g

µνΓνΓµ. (1.397)

The correct Hamiltonian operator could be obtained by suitably distributing pairs of
dummy factors of g1/4 and g−1/4 symmetrically between the canonical operators [5]:

Ĥ =
1

2M
g−1/4p̂µg

1/4gµν(q)g1/4p̂νg
−1/4 + V (q). (1.398)

This operator has the same classical limit (1.394) as (1.395). Unfortunately, the
correspondence principle does not specify how the classical factors have to be ordered
before being replaced by operators.

The simplest system exhibiting the breakdown of the canonical quantization rules
is a free particle in a plane described by radial coordinates q1 = r, q2 = ϕ:

x1 = r cosϕ, x2 = r sinϕ. (1.399)

Since the infinitesimal square distance is ds2 = dr2 + r2dϕ2, the metric reads

gµν =

(

1 0
0 r2

)

µν

. (1.400)

It has a determinant
g = r2 (1.401)

and an inverse

gµν =

(

1 0
0 r−2

)µν

. (1.402)

The Laplace-Beltrami operator becomes

∆ =
1

r
∂rr∂r +

1

r2
∂ϕ

2. (1.403)

The canonical Laplacian, on the other hand, reads

∆can = (∂r + 1/2r)2 +
1

r2
∂ϕ

2

= ∂r
2 +

1

r
∂r −

1

4r2
+

1

r2
∂ϕ

2. (1.404)

The discrepancy (1.397) is therefore

∆can −∆ = − 1

4r2
. (1.405)
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Note that this discrepancy arises even though there is no apparent ordering problem
in the naively quantized canonical expression p̂µgµν(q) p̂

ν in (1.404). Only the need to
introduce dummy g1/4- and g−1/4-factors creates such problems, and a specification
of the order is required to obtain the correct result.

If the Lagrangian coordinates qi do not merely reparametrize a Euclidean space
but specify the points of a general geometry, we cannot proceed as above and de-
rive the Laplace-Beltrami operator by a coordinate transformation of a Cartesian
Laplacian. With the canonical quantization rules being unreliable in curvilinear
coordinates there are, at first sight, severe difficulties in quantizing such a system.
This is why the literature contains many proposals for handling this problem [6].
Fortunately, a large class of non-Cartesian systems allows for a unique quantum-
mechanical description on completely different grounds. These systems have the
common property that their Hamiltonian can be expressed in terms of the genera-
tors of a group of motion in the general coordinate frame. For symmetry reasons,
the correspondence principle must then be imposed not on the Poisson brackets of
the canonical variables p and q, but on those of the group generators and the coor-
dinates. The brackets containing two group generators specify the structure of the
group, those containing a generator and a coordinate specify the defining represen-
tation of the group in configuration space. The replacement of these brackets by
commutation rules constitutes the proper generalization of the canonical quantiza-
tion from Cartesian to non-Cartesian coordinates. It is called group quantization.
The replacement rule will be referred to as the group correspondence principle. The
canonical commutation rules in Euclidean space may be viewed as a special case
of the commutation rules between group generators, i.e., of the Lie algebra of the
group. In a Cartesian coordinate frame, the group of motion is the Euclidean group
containing translations and rotations. The generators of translations and rotations
are the momenta and the angular momenta, respectively. According to the group
correspondence principle, the Poisson brackets between the generators and the co-
ordinates are to be replaced by commutation rules. Thus, in a Euclidean space, the
commutation rules between group generators and coordinates lead to the canoni-
cal quantization rules, and this appears to be the deeper reason why the canonical
rules are correct. In systems whose energy depends on generators of the group of
motion other than those of translations, for instance on the angular momenta, the
commutators between the generators have to be used for quantization rather than
the canonical commutators between positions and momenta.

The prime examples for such systems are a particle on the surface of a sphere or
a spinning top whose quantization will now be discussed.

1.14 Particle on the Surface of a Sphere

For a particle moving on the surface of a sphere of radius r with coordinates

x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ, (1.406)
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the Lagrangian reads

L =
Mr2

2
(θ̇2 + sin2 θ ϕ̇2). (1.407)

The canonical momenta are

pθ =Mr2θ̇, pϕ =Mr2 sin2 θ ϕ̇, (1.408)

and the classical Hamiltonian is given by

H =
1

2Mr2

(

p2θ +
1

sin2 θ
p2ϕ

)

. (1.409)

According to the canonical quantization rules, the momenta should become opera-
tors

p̂θ = −ih̄ 1

sin1/2 θ
∂θ sin

1/2 θ, p̂ϕ = −ih̄∂ϕ. (1.410)

But as explained in the previous section, these momentum operators are not ex-
pected to give the correct Hamiltonian operator when inserted into the Hamiltonian
(1.409). Moreover, there exists no proper coordinate transformation from the sur-
face of the sphere to Cartesian coordinates19 such that a particle on a sphere cannot
be treated via the safe Cartesian quantization rules (1.268):

[p̂i, x̂
j] = −ih̄δij,

[x̂i, x̂j] = 0, (1.411)

[p̂i, p̂j] = 0.

The only help comes from the group properties of the motion on the surface of the
sphere. The angular momentum

L = x× p (1.412)

can be quantized uniquely in Cartesian coordinates and becomes an operator

L̂ = x̂× p̂ (1.413)

whose components satisfy the commutation rules of the Lie algebra of the rotation
group

[L̂i, L̂j ] = ih̄L̂k (i, j, k cyclic). (1.414)

Note that there is no factor-ordering problem since the x̂i’s and the p̂i’s appear
with different indices in each L̂k. An important property of the angular momentum

19There exist, however, certain infinitesimal nonholonomic coordinate transformations which are
multivalued and can be used to transform infinitesimal distances in a curved space into those in a
flat one. They are introduced and applied in Sections 10.2 and Appendix 10A, leading once more
to the same quantum mechanics as the one described here.
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operator is its homogeneity in x. It has the consequence that when going from
Cartesian to spherical coordinates

x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ, (1.415)

the radial coordinate cancels making the angular momentum a differential operator
involving only the angles θ, ϕ:

L̂1 = ih̄ (sinϕ ∂θ + cot θ cosϕ ∂ϕ) ,

L̂2 = −ih̄ (cosϕ ∂θ − cot θ sinϕ ∂ϕ) , (1.416)

L̂3 = −ih̄∂ϕ.

There is then a natural way of quantizing the system which makes use of these
operators L̂i. We re-express the classical Hamiltonian (1.409) in terms of the classical
angular momenta

L1 = Mr2
(

− sinϕ θ̇ − sin θ cos θ cosϕ ϕ̇
)

,

L2 = Mr2
(

cosϕ θ̇ − sin θ cos θ sinϕ ϕ̇
)

, (1.417)

L3 = Mr2 sin2 θ ϕ̇

as

H =
1

2Mr2
L2, (1.418)

and replace the angular momenta by the operators (1.416). The result is the Hamil-
tonian operator:

Ĥ =
1

2Mr2
L̂2 = − h̄2

2Mr2

[

1

sin θ
∂θ (sin θ ∂θ) +

1

sin2 θ
∂2ϕ

]

. (1.419)

The eigenfunctions diagonalizing the rotation-invariant operator L̂2 are well known.
They can be chosen to diagonalize simultaneously one component of L̂i, for instance
the third one, L̂3, in which case they are equal to the spherical harmonics

Ylm(θ, ϕ) = (−1)m
[

2l + 1

4π

(l −m)!

(l +m)!

]1/2

Pm
l (cos θ)eimϕ, (1.420)

with Pm
l (z) being the associated Legendre polynomials

Pm
l (z) =

1

2ll!
(1− z2)m/2 d

l+m

dxl+m
(z2 − 1)l. (1.421)

The spherical harmonics are orthonormal with respect to the rotation-invariant
scalar product

∫ π

0
dθ sin θ

∫ 2π

0
dϕ Y ∗lm(θ, ϕ)Yl′m′(θ, ϕ) = δll′δmm′ . (1.422)
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Two important lessons can be learned from this group quantization. First, the
correct Hamiltonian operator (1.419) does not agree with the canonically quantized
one which would be obtained by inserting Eqs. (1.410) into (1.409). The correct
result would, however, arise by distributing dummy factors

g−1/4 = r−1 sin−1/2θ, g1/4 = r sin1/2θ (1.423)

between the canonical momentum operators as observed earlier in Eq. (1.398). Sec-
ond, just as in the case of polar coordinates, the correct Hamiltonian operator is
equal to

Ĥ = − h̄2

2M
∆, (1.424)

where ∆ is the Laplace-Beltrami operator associated with the metric

gµν = r2
(

1 0
0 sin2 θ

)

, (1.425)

i.e.,

∆ =
1

r2

[

1

sin θ
∂θ (sin θ∂θ) +

1

sin2 θ
∂2ϕ

]

. (1.426)

1.15 Spinning Top

For a spinning top, the optimal starting point is again not the classical Lagrangian
but the Hamiltonian expressed in terms of the classical angular momenta. In the
symmetric case in which two moments of inertia coincide, it is written as

H =
1

2Iξ
(Lξ

2 + Lη
2) +

1

2Iζ
Lζ

2, (1.427)

where Lξ, Lη, Lζ are the components of the orbital angular momentum in the direc-
tions of the principal body axes with Iξ, Iη ≡ Iξ, Iζ being the corresponding moments
of inertia. The classical angular momentum of an aggregate of mass points is given
by

L =
∑

ν

xν × pν , (1.428)

where the sum over ν runs over all mass points. The angular momentum possesses
a unique operator

L̂ =
∑

ν

x̂ν × p̂ν , (1.429)

with the commutation rules (1.414) between the components L̂i. Since rotations
do not change the distances between the mass points, they commute with the con-
straints of the rigid body. If the center of mass of the rigid body is placed at the
origin, the only dynamical degrees of freedom are the orientations in space. They
can uniquely be specified by the rotation matrix which brings the body from some
standard orientation to the actual one. We may choose the standard orientation
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to have the principal body axes aligned with the x, y, z-directions, respectively. An
arbitrary orientation is obtained by applying all finite rotations to each point of the
body. They are specified by the 3× 3 orthonormal matrices Rij . The space of these
matrices has three degrees of freedom. It can be decomposed, omitting the matrix
indices as

R(α, β, γ) = R3(α)R2(β)R3(γ), (1.430)

where R3(α), R3(γ) are rotations around the z-axis by angles α, γ, respectively,
and R2(β) is a rotation around the y-axis by β. These rotation matrices can be
expressed as exponentials

Ri(δ) ≡ e−iδLi/h̄, (1.431)

where δ is the rotation angle and Li are the 3× 3 matrix generators of the rotations
with the elements

(Li)jk = −ih̄ǫijk. (1.432)

It is easy to check that these generators satisfy the commutation rules (1.414) of
angular momentum operators. The angles α, β, γ are referred to as Euler angles .

The 3 × 3 rotation matrices make it possible to express the infinitesimal rota-
tions around the three coordinate axes as differential operators of the three Euler
angles. Let ψ(R) be the wave function of the spinning top describing the probability
amplitude of the different orientations which arise from a standard orientation by
the rotation matrix R = R(α, β, γ). Under a further rotation by R(α′, β ′, γ′), the
wave function goes over into ψ′(R) = ψ(R−1(α′, β ′, γ′)R). The transformation may
be described by a unitary differential operator

Û(α′, β ′, γ′) ≡ e−iα
′L̂3e−iβ

′L̂2e−iγ
′L̂3 , (1.433)

where L̂i is the representation of the generators in terms of differential operators.
To calculate these we note that the 3 × 3 -matrix R−1(α, β, γ) has the following
derivatives

−ih̄∂αR−1 = R−1L3,

−ih̄∂βR−1 = R−1(cosαL2 − sinαL1), (1.434)

−ih̄∂γR−1 = R−1 [cos β L3 + sin β(cosαL1 + sinαL2)] .

The first relation is trivial, the second follows from the rotation of the generator

e−iαL3/h̄L2e
iαL3/h̄ = cosαL2 − sinαL1, (1.435)

which is a consequence of Lie’s expansion formula (1.297) together with the com-
mutation rules (1.432) of the 3× 3 matrices Li. The third requires, in addition, the
rotation

e−iβL2/h̄L3e
iβL2/h̄ = cos βL3 + sin βL1. (1.436)
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Inverting the relations (1.434), we find the differential operators generating the
rotations [7]:

L̂1 = ih̄

(

cosα cotβ ∂α + sinα ∂β −
cosα

sin β
∂γ

)

,

L̂2 = ih̄

(

sinα cotβ ∂α − cosα ∂β −
sinα

sin β
∂γ

)

, (1.437)

L̂3 = −ih̄∂α.

After exponentiating these differential operators we derive

Û(α′, β ′, γ′)R−1(α, β, γ)Û−1(α′, β ′, γ′) = R−1(α, β, γ)R(α′, β ′, γ′),

Û(α′, β ′, γ′)R(α, β, γ)Û−1(α′, β ′, γ′) = R−1(α′, β ′, γ′)R(α, β, γ), (1.438)

so that Û(α′, β ′, γ′)ψ(R) = ψ′(R), as desired.
In the Hamiltonian (1.427), we need the components of L̂ along the body axes.

They are obtained by rotating the 3× 3 matrices Li by R(α, β, γ) into

Lξ = RL1R
−1 = cos γ cos β(cosαL1 + sinαL2)

+ sin γ(cosαL2 − sinαL1)− cos γ sin β L3,

Lη = RL2R
−1 = − sin γ cos β(cosαL1 + sinαL2) (1.439)

+ cos γ(cosαL2 − sinαL1) + sin γ sin β L3,

Lζ = RL3R
−1 = cos β L3 + sin β(cosαL1 + sinαL2),

and replacing Li → L̂i in the final expressions. Inserting (1.437), we find the oper-
ators

L̂ξ = ih̄

(

− cos γ cot β ∂γ − sin γ ∂β +
cos γ

sin β
∂α

)

,

L̂η = ih̄

(

sin γ cot β ∂γ − cos γ ∂β −
sin γ

sin β
∂α

}

, (1.440)

L̂ζ = −ih̄∂γ .

Note that these commutation rules have an opposite sign with respect to those in
Eqs. (1.414) of the operators L̂i:

20

[L̂ξ, L̂η] = −ih̄L̂ζ , ξ, η, ζ = cyclic. (1.441)

The sign is most simply understood by writing

L̂ξ = aiξL̂i, L̂η = aiηL̂i, L̂ζ = aiζL̂i, (1.442)

20When applied to functions not depending on α, then, after replacing β → θ and γ → ϕ, the
operators agree with those in (1.416), up to the sign of L̂1.
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where aiξ, a
i
η, a

i
ζ , are the components of the body axes. Under rotations these behave

like [L̂i, a
j
ξ] = ih̄ǫijka

k
ξ , i.e., they are vector operators. It is easy to check that this

property produces the sign reversal in (1.441) with respect to (1.414).
The correspondence principle is now applied to the Hamiltonian in Eq. (1.427)

by placing operator hats on the La’s. The energy spectrum and the wave functions
can then be obtained by using only the group commutators between L̂ξ, L̂η, L̂ζ . The
spectrum is

ELΛ = h̄2
[

1

2Iξ
L(L+ 1) +

(

1

2Iζ
− 1

2Iξ

)

Λ2

]

, (1.443)

where L(L + 1) with L = 0, 1, 2, . . . are the eigenvalues of L̂2, and Λ = −L, . . . , L
are the eigenvalues of L̂ζ . The wave functions are the representation functions of
the rotation group. If the Euler angles α, β, γ are used to specify the orientation of
the body axes, the wave functions are

ψLΛm(α, β, γ) = DL
mΛ(−α,−β,−γ). (1.444)

Here m′ are the eigenvalues of L̂3, the magnetic quantum numbers, and DL
mΛ(α, β, γ)

are the representation matrices of angular momentum L. In accordance with (1.433),
one may decompose

DL
mm′(α, β, γ) = e−i(mα+m′γ)dLmm′(β), (1.445)

with the matrices

dLmm′(β) =

[

(L+m′)!(L−m′)!

(L+m)!(L−m)!

]1/2

×
(

cos
β

2

)m+m′ (

− sin
β

2

)m−m′

P
(m′−m,m′+m)
L−m′ (cos β). (1.446)

For j = 1/2, these form the spinor representation of the rotations around the y-axis

d
1/2
m′m(β) =

(

cos β/2 − sin β/2
sin β/2 cos β/2

)

. (1.447)

The indices have the order +1/2,−1/2. The full spinor representation function
D1/2(α, β, γ) in (1.445) is most easily obtained by inserting into the general expres-
sion (1.433) the representation matrices of spin 1/2 for the generators L̂i with the
commutation rules (1.414), the famous Pauli spin matrices :

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (1.448)

Thus we can write

D1/2(α, β, γ) = e−iασ3/2e−iβσ2/2e−iγσ3/2. (1.449)
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The first and the third factor yield the pure phase factors in (1.445). The function

d
1/2
m′m(β) is obtained by a simple power series expansion of e−iβσ

2/2, using the fact
that (σ2)2n = 1 and (σ2)2n+1 = σ2:

e−iβσ
2/2 = cos β/2 − i sin β/2 σ2, (1.450)

which is equal to (1.447).
For j = 1, the representation functions (1.446) form the vector representation

d1m′m(β) =









1
2
(1 + cos β) − 1√

2
sin β 1

2
(1− cos β)

1√
2
sin β cos β − 1√

2
sin β

1
2
(1− cos β) 1√

2
sin β 1

2
(1 + cos β)









. (1.451)

where the indices have the order +1/2,−1/2. The vector representation goes over
into the ordinary rotation matrices Rij(β) by mapping the states |1m〉 onto the
spherical unit vectors �(0) = ẑ, �(±1) = ∓(x̂ ± iŷ)/2 using the matrix elements
〈i|1m〉 = ǫi(m). Hence R(β)�(m) =

∑1
m′=−1 �(m

′)d1m′m(β).
The representation functions D1(α, β, γ) can also be obtained by inserting into

the general exponential (1.433) the representation matrices of spin 1 for the genera-
tors L̂i with the commutation rules (1.414). In Cartesian coordinates, these are
simply (L̂i)jk = −iǫijk, where ǫijk is the completely antisymmetric tensor with

ǫ123 = 1. In the spherical basis, these become (L̂i)mm′ = 〈m|i〉(L̂i)ij〈j|m′〉 =

ǫ∗i (m)(L̂i)ij�j(m
′). The exponential (e−iβL̂2)mm′ is equal to (1.451).

The functions P
(α,β)
l (z) are the Jacobi polynomials [8], which can be expressed

in terms of hypergeometric functions as

P
(α,β)
l ≡ (−1)l

l!

Γ(l + β + 1)

Γ(β + 1)
F (−l, l + 1 + α+ β; 1 + β; (1 + z)/2), (1.452)

where

F (a, b; c; z) ≡ 1 +
ab

c
z +

a(a+ 1) b(b+ 1)

c(c+ 1)

z2

2!
+ . . . . (1.453)

The rotation functions dLmm′(β) satisfy the differential equation
(

− d2

dβ2
− cotβ

d

dβ
+
m2 +m′2 − 2mm′ cos β

sin2 β

)

dLmm′(β) = L(L+ 1)dLmm′(β). (1.454)

The scalar products of two wave functions have to be calculated with a measure of
integration that is invariant under rotations:

〈ψ2|ψ1〉 ≡
∫ 2π

0

∫ π

0

∫ 2π

0
dαdβ sin βdγ ψ∗2(α, β, γ)ψ1(α, β, γ). (1.455)

The above eigenstates (1.445) satisfy the orthogonality relation
∫ 2π

0

∫ π

0

∫ 2π

0
dαdβ sin βdγ DL1 ∗

m′
1m1

(α, β, γ)DL2

m′
2m2

(α, β, γ)

= δm′
1m

′
2
δm1m2δL1L2

8π2

2L1 + 1
. (1.456)
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Let us also contrast in this example the correct quantization via the commutation
rules between group generators with the canonical approach which would start out
with the classical Lagrangian. In terms of Euler angles, the Lagrangian reads

L =
1

2
[Iξ(ωξ

2 + ωη
2) + Iζωζ

2], (1.457)

where ωξ, ωη, ωζ are the angular velocities measured along the principal axes of the
top. To find these we note that the components in the rest system ω1, ω2, ω3 are
obtained from the relation

ωkLk = iṘR−1 (1.458)

as

ω1 = −β̇ sinα + γ̇ sin β cosα,

ω2 = β̇ cosα + γ̇ sin β sinα,

ω3 = γ̇ cos β + α̇. (1.459)

After the rotation (1.439) into the body-fixed system, these become

ωξ = β̇ sin γ − α̇ sin β cos γ,

ωη = β̇ cos γ + α̇ sin β sin γ,

ωζ = α̇ cos β + γ̇. (1.460)

Explicitly, the Lagrangian is

L =
1

2
[Iξ(β̇

2 + α̇2 sin2 β) + Iζ(α̇ cos β + γ̇)2]. (1.461)

Considering α, β, γ as Lagrange coordinates qµ with µ = 1, 2, 3, this can be written
in the form (1.387) with the Hessian metric [recall (1.12) and (1.388)]:

gµν =







Iξ sin
2 β + Iζ cos

2 β 0 Iζ cos β
0 Iξ 0

Iζ cos β 0 Iζ





 , (1.462)

whose determinant is
g = I2ξ Iζ sin

2 β. (1.463)

Hence the measure
∫

d3q
√
g in the scalar product (1.384) agrees with the rotation-

invariant measure (1.455) up to a trivial constant factor. Incidentally, this is also
true for the asymmetric top with Iξ 6= Iη 6= Iζ , where g = I2ξ Iζ sin

2 β, although the
metric gµν is then much more complicated (see Appendix 1C).

The canonical momenta associated with the Lagrangian (1.457) are, according
to (1.387),

pα = ∂L/∂α̇ = Iξ α̇ sin2 β + Iζ cos β(α̇ cos β + γ̇),

pβ = ∂L/∂β̇ = Iξ β̇,

pγ = ∂L/∂γ̇ = Iζ (α̇ cos β + γ̇). (1.464)
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After inverting the metric to

gµν =
1

Iξ sin
2 β







1 0 − cos β
0 sin2 β 0

− cos β 0 cos2 β + Iξ sin
2 β/Iζ







µν

, (1.465)

we find the classical Hamiltonian

H =
1

2

[

1

Iξ
pβ

2 +

(

cos2 β

Iξ sin
2 β

+
1

Iζ

)

pγ
2 +

1

Iξ sin
2 β
pα

2 − 2 cos β

Iξ sin
2 β

pαpγ

]

. (1.466)

This Hamiltonian has no apparent ordering problem. One is therefore tempted to
replace the momenta simply by the corresponding Hermitian operators which are,
according to (1.391),

p̂α = −ih̄∂α,
p̂β = −ih̄(sin β)−1/2∂β(sin β)1/2 = −ih̄(∂β +

1

2
cot β),

p̂γ = −ih̄∂γ . (1.467)

Inserting these into (1.466) gives the canonical Hamiltonian operator

Ĥcan = Ĥ + Ĥdiscr, (1.468)

with

Ĥ ≡ − h̄2

2Iξ

[

∂β
2 + cot β∂β +

(

Iξ
Iζ

+ cot2 β

)

∂γ
2

+
1

sin2 β
∂α

2 − 2 cos β

sin2 β
∂α∂γ

]

(1.469)

and

Ĥdiscr ≡
1

2
(∂β cot β) +

1

4
cot2 β =

1

4 sin2 β
− 3

4
. (1.470)

The first term Ĥ agrees with the correct quantum-mechanical operator derived
above. Indeed, inserting the differential operators for the body-fixed angular mo-
menta (1.440) into the Hamiltonian (1.427), we find Ĥ. The term Ĥdiscr is the
discrepancy between the canonical and the correct Hamiltonian operator. It exists
even though there is no apparent ordering problem, just as in the radial coordinate
expression (1.404). The correct Hamiltonian could be obtained by replacing the
classical pβ

2 term in H by the operator g−1/4p̂βg
1/2p̂βg

−1/4, by analogy with the

treatment of the radial coordinates in Ĥ of Eq. (1.398).
As another similarity with the two-dimensional system in radial coordinates and

the particle on the surface of the sphere, we observe that while the canonical quan-
tization fails, the Hamiltonian operator of the symmetric spinning top is correctly
given by the Laplace-Beltrami operator (1.381) after inserting the metric (1.462)
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and the inverse (1.465). It is straightforward although tedious to verify that this is
also true for the completely asymmetric top [which has quite a complicated metric
given in Appendix 1C, see Eqs. (1C.2), and (1C.4)]. This is an important nontrivial
result, since for a spinning top, the Lagrangian cannot be obtained by reparametriz-
ing a particle in a Euclidean space with curvilinear coordinates. The result suggests
that a replacement

gµν(q)p
µpν → −h̄2∆ (1.471)

produces the correct Hamiltonian operator in any non-Euclidean space.21

What is the characteristic non-Euclidean property of the α, β, γ space? As we
shall see in detail in Chapter 10, the relevant quantity is the curvature scalar R.
The exact definition will be found in Eq. (10.42). For the asymmetric spinning top
we find (see Appendix 1C)

R =
(Iξ + Iη + Iζ)

2 − 2(I2ξ + I2η + I2ζ )

2IξIηIζ
. (1.472)

Thus, just like a particle on the surface of a sphere, the spinning top corresponds
to a particle moving in a space with constant curvature. In this space, the cor-
rect correspondence principle can also be deduced from symmetry arguments. The
geometry is most easily understood by observing that the α, β, γ space may be con-
sidered as the surface of a sphere in four dimensions, as we shall see in more detail
in Chapter 8.

An important non-Euclidean space of physical interest is encountered in the
context of general relativity. Originally, gravitating matter was assumed to move in
a spacetime with an arbitrary local curvature. In newer developments of the theory
one also allows for the presence of a nonvanishing torsion. In such a general situation,
where the group quantization rule is inapplicable, the correspondence principle has
always been a matter of controversy [see the references after (1.405)] to be resolved in
this text. In Chapters 10 and 8 we shall present a new quantum equivalence principle
which is based on an application of simple geometrical principles to path integrals
and which will specify a natural and unique passage from classical to quantum
mechanics in any coordinate frame.22 The configuration space may carry curvature
and a certain class of torsions (gradient torsion). Several arguments suggest that
our principle is correct. For the above systems with a Hamiltonian which can be
expressed entirely in terms of generators of a group of motion in the underlying
space, the new quantum equivalence principle will give the same results as the group
quantization rule.

21If the space has curvature and no torsion, this is the correct answer. If torsion is present, the
correct answer will be given in Chapters 10 and 8.

22H. Kleinert, Mod. Phys. Lett. A 4 , 2329 (1989) (http://www.physik.fu-berlin.de/
~kleinert/199); Phys. Lett. B 236 , 315 (1990) (ibid.http/202).
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1.16 Scattering

Most observations of quantum phenomena are obtained from scattering processes of
fundamental particles.

1.16.1 Scattering Matrix

Consider a particle impinging with a momentum pa and energy E = Ea = p2
a/2M

upon a nonzero potential concentrated around the origin. After a long time, it
will be found far from the potential with some momentum pb. The energy will be
unchanged: E = Eb = p2

b/2M . The probability amplitude for such a process is
given by the time evolution amplitude in the momentum representation

(pbtb|pata) ≡ 〈pb|e−iĤ(tb−ta)/h̄|pa〉, (1.473)

where the limit tb → ∞ and ta → −∞ has to be taken. Long before and after the
collision, this amplitude oscillates with a frequency ω = E/h̄ characteristic for free
particles of energy E. In order to have a time-independent limit, we remove these
oscillations, from (1.473), and define the scattering matrix (S-matrix) by the limit

〈pb|Ŝ|pa〉 ≡ lim
tb−ta→∞

ei(Ebtb−Eata)/h̄〈pb|e−iĤ(tb−ta)/h̄|pa〉. (1.474)

Most of the impinging particles will not scatter at all, so that this amplitude must
contain a leading term, which is separated as follows:

〈pb|Ŝ|pa〉 = 〈pb|pa〉+ 〈pb|Ŝ|pa〉′, (1.475)

where
〈pb|pa〉 = 〈pb|e−iĤ(tb−ta)/h̄|pa〉 = (2πh̄)3δ(3)(pb − pa) (1.476)

shows the normalization of the states [recall (1.186)]. This leading term is com-
monly subtracted from (1.474) to find the true scattering amplitude. Moreover,
since potential scattering conserves energy, the remaining amplitude contains a δ-
function ensuring energy conservation, and it is useful to divide this out, defining
the so-called T -matrix by the decomposition

〈pb|Ŝ|pa〉 ≡ (2πh̄)3δ(3)(pa − pa)− 2πh̄iδ(Eb − Ea)〈pb|T̂ |pa〉. (1.477)

From the definition (1.474) and the hermiticity of Ĥ it follows that the scattering
matrix is a unitary matrix. This expresses the physical fact that the total probability
of an incident particle to re-emerge at some time is unity (in quantum field theory
the situation is more complicated due to emission and absorption processes).

In the basis states |pm〉 introduced in Eq. (1.180) which satisfy the completeness
relation (1.182) and are normalized to unity in a finite volume V , the unitarity is
expressed as

∑

m′

〈pm|Ŝ†|pm′〉〈pm′|Ŝ|pm′′〉 =
∑

m′

〈pm|Ŝ|pm′〉〈pm′|Ŝ†|pm′′〉 = 1. (1.478)
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Remembering the relation (1.185) between the discrete states |pm〉 and their con-
tinuous limits |p〉, we see that

〈pb
m′|Ŝ|pa

m〉 ≈ 1

L3
〈pb|Ŝ|pa〉, (1.479)

where L3 is the spatial volume, and pm
b and pm

a are the discrete momenta closest to
pb and pa. In the continuous basis |p〉, the unitarity relation reads

∫

d3p

(2πh̄)3
〈pb|Ŝ†|p〉〈p|Ŝ|pa〉 =

∫

d3p

(2πh̄)3
〈pb|Ŝ|p〉〈p|Ŝ†|pa〉 = 1. (1.480)

1.16.2 Cross Section

The absolute square of 〈pb|Ŝ|pa〉 gives the probability Ppb←pa
for the scattering

from the initial momentum state pa to the final momentum state pb. Omitting the
unscattered particles, we have

Ppb←pa
=

1

L6
2πh̄δ(0) 2πh̄δ(Eb −Ea)|〈pb|T̂ |pa〉|2. (1.481)

The factor δ(0) at zero energy is made finite by imagining the scattering process to
take place with an incident time-independent plane wave over a finite total time T .
Then 2πh̄δ(0) =

∫

dt eiEt/h̄|E=0 = T , and the probability is proportional to the time
T :

Ppb←pa
=

1

L6
T 2πh̄δ(Eb −Ea)|〈pb|T̂ |pa〉|2. (1.482)

By summing this over all discrete final momenta, or equivalently, by integrating
this over the phase space of the final momenta [recall (1.184)], we find the total
probability per unit time for the scattering to take place

dP

dt
=

1

L6

∫

d3pbL
3

(2πh̄)3
2πh̄δ(Eb −Ea)|〈pb|T̂ |pa〉|2. (1.483)

The momentum integral can be split into an integral over the final energy and the
final solid angle. For non-relativistic particles, this goes as follows

∫

d3pb
(2πh̄)3

=
1

(2πh̄)3
M

(2πh̄)3

∫

dΩ
∫ ∞

0
dEb pb, (1.484)

where dΩ = dφbd cos θb is the element of solid angle into which the particle is
scattered. The energy integral removes the δ-function in (1.483), and makes pb
equal to pa.

The differential scattering cross section dσ/dΩ is defined as the probability that
a single impinging particle ends up in a solid angle dΩ per unit time and unit current
density. From (1.483) we identify

dσ

dΩ
=
dṖ

dΩ

1

j
=

1

L3

Mp

(2πh̄)3
2πh̄|Tpbpa

|21
j
, (1.485)
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where we have set

〈pb|T̂ |pa〉 ≡ Tpbpa
, (1.486)

for brevity. In a volume L3, the current density of a single impinging particle is
given by the velocity v = p/M as

j =
1

L3

p

M
, (1.487)

so that the differential cross section becomes

dσ

dΩ
=

M2

(2πh̄)2
|Tpbpa

|2. (1.488)

If the scattered particle moves relativistically, we have to replace the constant mass
M in (1.484) by E =

√
p2 +M2 inside the momentum integral, where p = |p|, so

that

∫

d3p

(2πh̄)3
=

1

(2πh̄)3

∫

dΩ
∫ ∞

0
dp p2

=
1

(2πh̄)3

∫

dΩ
∫ ∞

0
dEE p. (1.489)

In the relativistic case, the initial current density is not proportional to p/M but to
the relativistic velocity v = p/E so that

j =
1

L3

p

E
. (1.490)

Hence the cross section becomes

dσ

dΩ
=

E2

(2πh̄)2
|Tpbpa

|2. (1.491)

1.16.3 Born Approximation

To lowest order in the interaction strength, the operator Ŝ in (1.474) is

Ŝ ≈ 1− iV̂ /h̄. (1.492)

For a time-independent scattering potential, this implies

Tpbpa
≈ Vpbpa

/h̄, (1.493)

where

Vpbpa
≡ 〈pb|V̂ |pa〉 =

∫

d3x ei(pb−pa)x/h̄V (x) = Ṽ (pb − pa) (1.494)

H. Kleinert, PATH INTEGRALS



1.16 Scattering 71

is a function of the momentum transfer q ≡ pb − pa only. Then (1.491) reduces to
the so called Born approximation (Born 1926)

dσ

dΩ
≈ E2

(2πh̄)2h̄2
|Vpbpa

|2. (1.495)

The amplitude whose square is equal to the differential cross section is usually
denoted by fpbpa

, i.e., one writes

dσ

dΩ
= |fpbpa

|2. (1.496)

By comparison with (1.495) we identify

fpbpa
≡ − M

2πh̄
Rpbpa

, (1.497)

where we have chosen the sign to agree with the convention in the textbook by
Landau and Lifshitz [9].

1.16.4 Partial Wave Expansion and Eikonal Approximation

The scattering amplitude is usually expanded in partial waves with the help of
Legendre polynomials Pl(z) ≡ P 0

l (z) [see (1.421)] as

fpbpa
=

h̄

2ip

∞
∑

l=0

(2l + 1)Pl(cos θ)
(

e2i∂l(p) − 1
)

(1.498)

where p ≡ |p| = |pb| = |pa| and θ is the scattering defined by cos θ ≡ pbpb/|pb||pa|.
In terms of θ, the momentum transfer q = pb − pa has the size |q| = 2p sin(θ/2).

For small θ, we can use the asymptotic form of the Legendre polynomials23

P−ml (cos θ) ≈ 1

lm
Jm(lθ), (1.499)

to rewrite (1.498) approximately as an integral

f ei
pbpa

=
p

ih̄

∫

db b J0(qb)
{

exp
[

2iδpb/h̄(p)
]

− 1
}

, (1.500)

where b ≡ lh̄/p is the so called impact parameter of the scattering process. This is
the eikonal approximation to the scattering amplitude. As an example, consider
Coulomb scattering where V (r) = Ze2/r and (2.751) yields

χei
b,P[v] = −Ze

2M

|P|
1

h̄

∫ ∞

−∞
dz

1√
b2 + z2

. (1.501)

23M. Abramowitz and I. Stegun, op. cit., Formula 9.1.71.
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The integral diverges logarithmically, but in a physical sample, the potential is
screened at some distance R by opposite charges. Performing the integral up to R
yields

χei
b,P[v] = −Ze

2M

|P|
1

h̄

∫ R

b
dr

1√
r2 − b2

= −Ze
2M

|P|
1

h̄
log

R +
√
R2 − b2

b

≈ −2
Ze2M

|P|
1

h̄
log

2R

b
. (1.502)

This implies

exp
(

χei
b,P

)

≈
(

b

2R

)2iγ

, (1.503)

where

γ ≡ Ze2M

|P|
1

h̄
(1.504)

is a dimensionless quantity since e2 = h̄cα where α is the dimensionless fine-structure
constant24

α =
e2

h̄c
= 1/137.035 997 9 . . . . (1.505)

The integral over the impact parameter in (1.500) can now be performed and yields

f ei
pbpa

≈ h̄

2ip

1

sin2+2iγ(θ/2)

Γ(1 + iγ)

Γ(−iγ) e−2iγ log(2pR/h̄). (1.506)

Remarkably, this is the exact quantum mechanical amplitude of Coulomb scattering,
except for the last phase factor which accounts for a finite screening length. This
amplitude contains poles at momentum variables p = pn whenever

iγn ≡ Ze2Mh̄

pn
= −n, n = 1, 2, 3, . . . . (1.507)

This corresponds to energies

E(n) = − p2n
2M

= −MZ2e4

h̄2
1

2n2
, (1.508)

which are the well-known energy values of hydrogen-like atoms with nuclear charge
Ze. The prefactor EH ≡ e2/aH =Me4/h̄2 = 4.359×10−11 erg = 27.210 eV, is equal
to twice the Rydberg energy (see also p. 964).

24Throughout this book we use electromagnetic units where the electric field E = −∇φ has the
energy density H = E2/8π+ρφ, where ρ is the charge density, so that ∇ ·E = 4πρ and e2 = h̄c α.
The fine-structure constant is measured most precisely via the quantum Hall effect , see M.E. Cage
et al., IEEE Trans. Instrum. Meas. 38 , 284 (1989). The magnetic field satisfies Ampère’s law
∇×B = 4πj, where j is the current density.
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1.16.5 Scattering Amplitude from Time Evolution Amplitude

There exists a heuristic formula expressing the scattering amplitude as a limit of
the time evolution amplitude. For this we express the δ-function in the energy as a
large-time limit

δ(Eb −Ea) =
M

pb
δ(pb − pa) =

M

pb
lim
tb→∞

(

tb
2πh̄M/i

)1/2

exp
[

− i

h̄

tb
2M

(pb − pa)
2
]

,

(1.509)
where pb = |pb|. Inserting this into Eq. (1.477) and setting sloppily pb = pa for
elastic scattering, the δ-function is removed and we obtain the following expression
for the scattering amplitude

fpbpa
=
pb
M

√

2πh̄M/i
3

(2πh̄)3
lim
tb→∞

1

t
1/2
b

eiEb(tb−ta)/h̄ [(pbtb|pata)−〈pb|pa〉] . (1.510)

This treatment of a δ-function is certainly unsatisfactory. A satisfactory treat-
ment will be given in the path integral formulation in Section 2.22. At the present
stage, we may proceed with more care with the following operator calculation. We
rewrite the limit (1.474) with the help of the time evolution operator (2.5) as follows:

〈pb|Ŝ|pa〉 ≡ lim
tb−ta→∞

ei(Ebtb−Eata)/h̄(pbtb|pata)

= lim
tb,−ta→∞

〈pb|ÛI(tb, ta)|pa〉, (1.511)

where ÛI(tb, ta) is the time evolution operator in Dirac’s interaction picture (1.286).

1.16.6 Lippmann-Schwinger Equation

From the definition (1.286) it follows that the operator ÛI(tb, ta) satisfies the same
composition law (1.254) as the ordinary time evolution operator Û(t, ta):

ÛI(t, ta) = ÛI(t, tb)ÛI(tb, ta). (1.512)

Now we observe that

e−iH0t/h̄ÛI(t, ta) = e−iHt/h̄ÛI(0, ta) = ÛI(0, ta − t)e−iH0t/h̄, (1.513)

so that in the limit ta → −∞

e−iH0t/h̄ÛI(t, ta) = e−iHt/h̄ÛI(0, ta)−−−→ ÛI(0, ta)e
−iH0t/h̄, (1.514)

and therefore

lim
ta→−∞

ÛI(tb, ta)= lim
ta→−∞

eiH0tb/h̄e−iHtb/h̄ÛI(0, ta)= lim
ta→−∞

eiH0tb/h̄ÛI(0, ta)e
−iH0tb/h̄, (1.515)
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which allows us to rewrite the scattering matrix (1.511) as

〈pb|Ŝ|pa〉 ≡ lim
tb,−ta→∞

ei(Eb−Ea)tb/h̄〈pb|ÛI(0, ta)|pa〉. (1.516)

Note that in contrast to (1.474), the time evolution of the initial state goes now only
over the negative time axis rather than the full one.

Taking the matrix elements of Eq. (1.291) between free-particle states 〈pb| and
|pb〉, and using Eqs. (1.291) and (1.514), we obtain at tb = 0

〈pb|ÛI(0, ta)|pb〉 = 〈pb|pb〉 −
i

h̄

∫ 0

−∞
dt ei(Eb−Ea−iη)t/h̄〈pb|V̂ ÛI(0, ta)|pb〉. (1.517)

A small damping factor eηt/h̄ is inserted to ensure convergence at t = −∞. For a
time-independent potential, the integral can be done and yields

〈pb|ÛI(0, ta)|pb〉 = 〈pb|pb〉 −
1

Eb − Ea − iη
〈pb|V̂ ÛI(0, ta)|pb〉. (1.518)

This is the famous Lippmann-Schwinger equation. Inserting this into (1.516), we
obtain the equation for the scattering matrix

〈pb|Ŝ|pa〉 = lim
tb,−ta→∞

ei(Eb−Ea)tb

[

〈pb|pa〉 −
1

Eb − Ea − iη
〈pb|V̂ ÛI(0, ta)|pb〉

]

. (1.519)

The first term in brackets is nonzero only if the momenta pa and pb are equal, in
which case also the energies are equal, Eb = Ea, so that the prefactor can be set
equal to one. In front of the second term, the prefactor oscillates rapidly as the
time tb grows large, making any finite function of Eb vanish, as a consequence of the
Riemann-Lebesgue lemma. The second term contains, however, a pole at Eb = Ea

for which the limit has to be done more carefully. The prefactor has the property

lim
tb→∞

ei(Eb−Ea)tb/h̄

Eb −Ea − iη
=

{

0, Eb 6= Ea,
i/η, Eb = Ea.

(1.520)

It is easy to see that this property defines a δ-function in the energy:

lim
tb→∞

ei(Eb−Ea)tb/h̄

Eb − Ea − iη
= 2πiδ(Eb − Ea). (1.521)

Indeed, let us integrate the left-hand side together with a smooth function f(Eb),
and set

Eb ≡ Ea + ξ/tb. (1.522)

Then the Eb-integral is rewritten as

∫ ∞

−∞
dξ

eiξ

ξ + iη
f (Ea + ξ/ta) . (1.523)
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In the limit of large ta, the function f(Ea) can be taken out of the integral and the
contour of integration can then be closed in the upper half of the complex energy
plane, yielding 2πi. Thus we obtain from (1.519) the formula (1.477), with the
T -matrix

〈pb|T̂ |pa〉 =
1

h̄
〈pb|V̂ ÛI(0, ta)|pb〉. (1.524)

For a small potential V̂ , we approximate ÛI(0, ta) ≈ 1, and find the Born approxi-
mation (1.493).

The Lippmann-Schwinger equation can be recast as an integral equation for the
T -matrix. Multiplying the original equation (1.518) by the matrix 〈pb|V̂ |pa〉 = Vpbpc

from the left, we obtain

Tpbpa
= Vpbpa

−
∫

d3pc
(2πh̄)3

Vpbpc

1

Ec − Ea − iη
Tpcpa

. (1.525)

To extract physical information from the T -matrix (1.524) it is useful to analyze
the behavior of the interacting state ÛI(0, ta)|pa〉 in x-space. From Eq. (1.514),
we see that it is an eigenstate of the full Hamiltonian operator Ĥ with the initial
energy Ea. Multiplying this state by 〈x| from the left, and inserting a complete set
of momentum eigenstates, we calculate

〈x|ÛI(0, ta)|pa〉 =
∫

d3p

(2πh̄)3
〈x|p〉〈p|ÛI(0, ta)|pa〉 =

∫

d3p

(2πh̄)3
〈x|p〉〈p|ÛI(0, ta)|pa〉.

Using Eq. (1.518), this becomes

〈x|ÛI(0, ta)|pa〉 = 〈x|pa〉+
∫

d3x′
∫

d3pb
(2πh̄)3

eipb(x−x′)/h̄

Ea−p2
b/2M+iη

V (x′)〈x′|ÛI(0, ta)|pa〉.

(1.526)
The function

(x|x′)Ea
=
∫

d3pb
(2πh̄)3

eipb(x−x′)/h̄ ih̄

Ea − p2/2M + iη
(1.527)

is recognized as the fixed-energy amplitude (1.344) of the free particle. In three
dimensions it reads [see (1.359)]

(x|x′)Ea
= −2Mi

h̄

eipa|x−x
′|/h̄

4π|x− x′| , pa =
√

2MEa. (1.528)

In order to find the scattering amplitude, we consider the wave function (1.526) far
away from the scattering center, i.e., at large |x|. Under the assumption that V (x′)
is nonzero only for small x′, we approximate |x− x′| ≈ r− x̂x′, where x̂ is the unit
vector in the direction of x, and (1.526) becomes

〈x|ÛI(0, ta)|pa〉 ≈ eipax/h̄ − eipar

4πr

∫

d4x′e−ipax̂x
′ 2M

h̄2
V (x′)〈x′|ÛI(0, ta)|pa〉.

(1.529)
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In the limit ta → −∞, the factor multiplying the spherical wave factor eipar/h̄/r
is the scattering amplitude f(x̂)pa

, whose absolute square gives the cross section.
For scattering to a final momentum pb, the outgoing particles are detected far away
from the scattering center in the direction x̂ = p̂b. Because of energy conservation,
we may set pax̂ = pb and obtain the formula

fpbpa
= lim

ta→−∞
− M

2πh̄2

∫

d4xbe
−ipbxbV (xb)〈xb |ÛI(0, ta)|pa〉. (1.530)

By studying the interacting state ÛI(0, ta)|pa〉 in x-space, we have avoided the sin-
gular δ-function of energy conservation.

We are now prepared to derive formula (1.510) for the scattering amplitude. We
observe that in the limit ta → −∞, the amplitude 〈xb |ÛI(0, ta)|pa〉 can be obtained
from the time evolution amplitude (xbtb|xata) as follows:

〈xb |ÛI(0, ta)|pa〉 = 〈xb |Û(0, ta)|pa〉e−iEata/h̄ (1.531)

= lim
ta→−∞

(

−2πih̄ta
M

)3/2

(xbtb|xata)e
i(paxa−p2ata/2M)/h̄

∣

∣

∣

xa=pata/M
.

This follows directly from the Fourier transformation

〈xb |Û(0, ta)|pa〉e−iEata/h̄ =
∫

d3xa(xbtb|xata)e
i(paxa−p2ata/2M)/h̄, (1.532)

by substituting the dummy integration variable xa by pta/M . Then the right-hand
side becomes

(−ta
M

)3 ∫

d3p (xb 0|pta ta)ei(pap−p2a)ta/2Mh̄. (1.533)

Now, for large −ta, the momentum integration is squeezed to p = pa, and we obtain
(1.531). The appropriate limiting formula for the δ-function

δ(D)(pb − pa) = lim
ta→−∞

(−ta)D/2

√
2πih̄M

D exp
{

− i

h̄

ta
2M

(pb − pa)
2
}

(1.534)

is easily obtained from Eq. (1.342) by an obvious substitution of variables. Its
complex conjugate forD = 1 was written down before in Eq. (1.509) with ta replaced
by −tb. The exponential on the right-hand side can just as well be multiplied by a
factor ei(p

2
b
−p2a)2/2Mh̄ which is unity when both sides are nonzero, so that it becomes

e−i(pap−p2a)ta/2Mh̄. In this way we obtain a representation of the δ-function by which
the Fourier integral (1.533) goes over into (1.531). The phase factor ei(paxa−p2ata/2M)/h̄

on the right-hand side of Eq. (1.531), which is unity in the limit performed in that
equation, is kept in Eq. (4.580) for later convenience.

Formula (1.531) is a reliable starting point for extracting the scattering amplitude
fpbpa

from the time evolution amplitude in x-space (xb 0|xata) at xa = pata/M by
extracting the coefficient of the outcoming spherical wave eipar/h̄/r.

As a cross check we insert the free-particle amplitude (1.341) into (1.531) and
obtain the free undisturbed wave function eipax, which is the correct first term in
Eq. (1.526) associated with unscattered particles.
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1.17 Classical and Quantum Statistics

Consider a physical system with a constant number of particles N whose Hamilto-
nian has no explicit time dependence. If it is brought into contact with a thermal
reservoir at a temperature T and has reached equilibrium, its thermodynamic prop-
erties can be obtained through the following rules: At the level of classical mechanics,
each volume element in phase space

dp dq

h
=
dp dq

2πh̄
(1.535)

is occupied with a probability proportional to the Boltzmann factor

e−H(p,q)/kBT , (1.536)

where kB is the Boltzmann constant ,

kB = 1.3806221(59)× 10−16 erg/Kelvin. (1.537)

The number in parentheses indicates the experimental uncertainty of the two digits
in front of it. The quantity 1/kBT has the dimension of an inverse energy and is
commonly denoted by β. It will be called the inverse temperature, forgetting about
the factor kB. In fact, we shall sometimes take T to be measured in energy units kB
times Kelvin rather than in Kelvin. Then we may drop kB in all formulas.

The integral over the Boltzmann factors of all phase space elements,25

Zcl(T ) ≡
∫

dp dq

2πh̄
e−H(p,q)/kBT , (1.538)

is called the classical partition function. It contains all classical thermodynamic
information of the system. Of course, for a general Hamiltonian system with many

degrees of freedom, the phase space integral is
∏

n

∫

dpn dqn/2πh̄. The reader may

wonder why an expression containing Planck’s quantum h̄ is called classical . The
reason is that h̄ can really be omitted in calculating any thermodynamic average.
In classical statistics it merely supplies us with an irrelevant normalization factor
which makes Z dimensionless.

1.17.1 Canonical Ensemble

In quantum statistics, the Hamiltonian is replaced by the operator Ĥ and the integral
over phase space by the trace in the Hilbert space. This leads to the quantum-
statistical partition function

Z(T ) ≡ Tr
(

e−Ĥ/kBT
)

≡ Tr
(

e−H(p̂,x̂)/kBT
)

, (1.539)

25In the sequel we shall always work at a fixed volume V and therefore suppress the argument
V everywhere.
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where Tr Ô denotes the trace of the operator Ô. If Ĥ is an N -particle Schrödinger
Hamiltonian, the quantum-statistical system is referred to as a canonical ensemble.
The right-hand side of (1.539) contains the position operator x̂ in Cartesian coordi-
nates rather than q̂ to ensure that the system can be quantized canonically. In cases
such as the spinning top, the trace formula is also valid but the Hilbert space is
spanned by the representation states of the angular momentum operators. In more
general Lagrangian systems, the quantization has to be performed differently in the
way to be described in Chapters 10 and 8.

At this point we make an important observation: The quantum partition func-
tion is related in a very simple way to the quantum-mechanical time evolution op-
erator. To emphasize this relation we shall define the trace of this operator for
time-independent Hamiltonians as the quantum-mechanical partition function:

ZQM(tb − ta) ≡ Tr
(

Û(tb, ta)
)

= Tr
(

e−i(tb−ta)Ĥ/h̄
)

. (1.540)

Obviously the quantum-statistical partition function Z(T ) may be obtained from
the quantum-mechanical one by continuing the time interval tb − ta to the negative
imaginary value

tb − ta = − ih̄

kBT
≡ −ih̄β. (1.541)

This simple formal relation shows that the trace of the time evolution operator
contains all information on the thermodynamic equilibrium properties of a quantum
system.

1.17.2 Grand-Canonical Ensemble

For systems containing many bodies it is often convenient to study their equilibrium
properties in contact with a particle reservoir characterized by a chemical potential
µ. For this one defines what is called the grand-canonical quantum-statistical parti-
tion function

ZG(T, µ) = Tr
(

e−(Ĥ−µN̂)/kBT
)

. (1.542)

Here N̂ is the operator counting the number of particles in each state of the ensemble.
The combination of operators in the exponent,

ĤG = Ĥ − µN̂, (1.543)

is called the grand-canonical Hamiltonian.
Given a partition function Z(T ) at a fixed particle number N , the free energy is

defined by

F (T ) = −kBT logZ(T ). (1.544)

Its grand-canonical version at a fixed chemical potential is

FG(T, µ) = −kBT logZG(T, µ). (1.545)
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The average energy or internal energy is defined by

E = Tr
(

Ĥe−Ĥ/kBT
)/

Tr
(

e−Ĥ/kBT
)

. (1.546)

It may be obtained from the partition function Z(T ) by forming the temperature
derivative

E = Z−1kBT
2 ∂

∂T
Z(T ) = kBT

2 ∂

∂T
logZ(T ). (1.547)

In terms of the free energy (1.544), this becomes

E = T 2 ∂

∂T
(−F (T )/T ) =

(

1− T
∂

∂T

)

F (T ). (1.548)

For a grand-canonical ensemble we may introduce an average particle number
defined by

N = Tr
(

N̂e−(Ĥ−µN̂)/kBT
)/

Tr
(

e−(Ĥ−µN̂)/kBT
)

. (1.549)

This can be derived from the grand-canonical partition function as

N = ZG
−1(T, µ)kBT

∂

∂µ
ZG(T, µ) = kBT

∂

∂µ
logZG(T, µ), (1.550)

or, using the grand-canonical free energy, as

N = − ∂

∂µ
FG(T, µ). (1.551)

The average energy in a grand-canonical system,

E = Tr
(

Ĥe−(Ĥ−µN̂)/kBT
)/

Tr
(

e−(Ĥ−µN̂)/kBT
)

, (1.552)

can be obtained by forming, by analogy with (1.547) and (1.548), the derivative

E − µN = ZG
−1(T, µ)kBT

2 ∂

∂T
ZG(T, µ)

=

(

1− T
∂

∂T

)

FG(T, µ).

(1.553)

For a large number of particles, the density is a rapidly growing function of
energy. For a system of N free particles, for example, the number of states up to
energy E is given by

N(E) =
∑

pi

Θ(E −
N
∑

i=1

p2
i /2M), (1.554)

where each of the particle momenta pi is summed over all discrete momenta pm in
(1.179) available to a single particle in a finite box of volume V = L3. For a large
V , the sum can be converted into an integral26

N(E) = V N
N
∏

i=1

[

∫

d3pi
(2πh̄)3

]

Θ(E −
N
∑

i=1

p2
i /2M), (1.555)

26Remember, however, the exception noted in the footnote to Eq. (1.184) for systems possessing
a condensate.
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which is simply [V/(2πh̄)3]
N

times the volume Ω3N of a 3N -dimensional sphere of
radius

√
2ME:

N(E) =

[

V

(2πh̄)3

]N

Ω3N

≡
[

V

(2πh̄)3

]N
(2πME)3N/2

Γ
(

3
2
N + 1

) .

(1.556)

Recall the well-known formula for the volume of a unit sphere in D dimensions:

ΩD = πD/2/Γ(D/2 + 1). (1.557)

The surface is [see Eqs. (8.117) and (8.118) for a derivation]

SD = 2πD/2/Γ(D/2). (1.558)

This follows directly from the integral27

SD =
∫

dDp δ(p− 1) =
∫

dDp 2δ(p2 − 1) =
∫

dDp
∫ ∞

−∞

dλ

π
eiλ(p

2−1) (1.559)

=
∫ ∞

−∞

dλ

π

(

π

−iλ
)D/2

e−iλ =
2πD/2

Γ(D/2)
(1.560)

Therefore, the density per energy ρ = ∂N/∂E is given by

ρ(E) =

[

V

(2πh̄)3

]N

2πM
(2πME)3N/2−1

Γ(3
2
N)

. (1.561)

It grows with the very large power E3N/2 in the energy. Nevertheless, the integral for
the partition function (1.582) is convergent, due to the overwhelming exponential
falloff of the Boltzmann factor, e−E/kBT . As the two functions ρ(e) and e−e/kBT

are multiplied with each other, the result is a function which peaks very sharply
at the average energy E of the system. The position of the peak depends on the
temperature T . For the free N particle system, for example,

ρ(E)e−E/kBT ∼ e(3N/2−1) logE−E/kBT . (1.562)

This function has a sharp peak at

E(T ) = kBT
(

3N

2
− 1

)

≈ kBT
3N

2
. (1.563)

The width of the peak is found by expanding (1.562) in δE = E −E(T ):

exp

{

3N

2
logE(T )− E(T )

kBT
− 1

2E2(T )

3N

2
(δE)2 + . . .

}

. (1.564)

27I. S. Gradshteyn and I. M. Ryzhik, op. cit., Formula 3.382.7.
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Thus, as soon as δE gets to be of the order of E(T )/
√
N , the exponential is reduced

by a factor of two with respect to E(T ) ≈ kBT 3N/2. The deviation is of a relative
order 1/

√
N , i.e., the peak is very sharp. With N being very large, the peak at

E(T ) of width E(T )/
√
N can be idealized by a δ-function, and we may write

ρ(E)e−E/kBT ≈ δ(E −E(T ))N(T )e−E(T )/kBT . (1.565)

The quantity N(T ) measures the total number of states over which the system is
distributed at the temperature T .

The entropy S(T ) is now defined in terms of N(T ) by

N(T ) = eS(T )/kB . (1.566)

Inserting this with (1.565) into (1.582), we see that in the limit of a large number
of particles N :

Z(T ) = e−[E(T )−TS(T )]/kBT . (1.567)

Using (1.544), the free energy can thus be expressed in the form

F (T ) = E(T )− TS(T ). (1.568)

By comparison with (1.548) we see that the entropy may be obtained from the free
energy directly as

S(T ) = − ∂

∂T
F (T ). (1.569)

For grand-canonical ensembles we may similarly consider

ZG(T, µ) =
∫

dE dn ρ(E, n)e−(E−µn)/kBT , (1.570)

where
ρ(E, n)e−(E−µn)/kBT (1.571)

is now strongly peaked at E = E(T, µ), n = N(T, µ) and can be written approxi-
mately as

ρ(E, n)e−(E−µn)/kBT ≈ δ (E − E(T, µ)) δ (n−N(T, µ))

× eS(T,µ)/kBe−[E(T,µ)−µN(T,µ)]/kBT . (1.572)

Inserting this back into (1.570) we find for large N

ZG(T, µ) = e−[E(T,µ)−µN(T,µ)−TS(T,µ)]/kBT . (1.573)

For the grand-canonical free energy (1.545), this implies the relation

FG(T, µ) = E(T, µ)− µN(T, µ)− TS(T, µ). (1.574)

By comparison with (1.553) we see that the entropy can be calculated directly from
the derivative of the grand-canonical free energy

S(T, µ) = − ∂

∂T
FG(T, µ). (1.575)
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The particle number is, of course, found from the derivative (1.551) with respect to
the chemical potential, as follows directly from the definition (1.570).

The canonical free energy and the entropy appearing in the above equations
depend on the particle number N and the volume V of the system, i.e., they are
more explicitly written as F (T,N, V ) and S(T,N, V ), respectively.

In the arguments of the grand-canonical quantities, the particle number N is
replaced by the chemical potential µ.

Among the arguments of the grand-canonical free energy FG(T, µ, V ), the volume
V is the only one which grows with the system. Thus FG(T, µ, V ) must be directly
proportional to V . The proportionality constant defines the pressure p of the system:

FG(T, µ, V ) ≡ −p(T, µ, V )V. (1.576)

Under infinitesimal changes of the three variables, FG(T, µ, V ) changes as follows:

dFG(T, µ, V ) = −SdT −Ndµ− pdV. (1.577)

The first two terms on the right-hand side follow from varying Eq. (1.574) at a fixed
volume. When varying the volume, the definition (1.576) renders the last term.

Inserting (1.576) into (1.574), we find Euler’s relation:

E = TS −Ndµ− pV. (1.578)

The energy has S,N, V as natural variables. Equivalently, we may write

F = −µN − pV, (1.579)

where T,N, V are the natural variables.

1.18 Density of States and Tracelog

In many thermodynamic calculations, a quantity of fundamental interest is the den-
sity of states. To define it, we express the canonical partition function

Z(T ) = Tr
(

e−Ĥ/kBT
)

(1.580)

as a sum over the Boltzmann factors of all eigenstates |n〉 of the Hamiltonian:, i.e.

Z(T ) =
∑

n

e−En/kBT . (1.581)

This can be rewritten as an integral:

Z(T ) =
∫

dE ρ(E)e−E/kBT . (1.582)

The quantity
ρ(E) =

∑

n

δ(E −En) (1.583)
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specifies the density of states of the system in the energy interval (E,E + dE). It
may also be written formally as a trace of the density of states operator ρ̂(E):

ρ(E) = Tr ρ̂(E) ≡ Tr δ(E − Ĥ). (1.584)

The density of states is obviously the Fourier transform of the canonical partition
function (1.580):

ρ(E) =
∫ ∞

−i∞

dβ

2πi
eβE Tr

(

e−βĤ
)

=
∫ ∞

−i∞

dβ

2πi
eβE Z(1/kBβ). (1.585)

The integral

N(E) =
∫ E

dE ′ ρ(E ′) (1.586)

is the number of states up to energy E. The integration may start anywhere below
the ground state energy. The function N(E) is a sum of Heaviside step functions
(1.313):

N(E) =
∑

n

Θ(E −En). (1.587)

This equation is correct only with the Heaviside function which is equal to 1/2 at
the origin, not with the one-sided version (1.306), as we shall see later. Indeed, if
integrated to the energy of a certain level En, the result is

N(En) = (n+ 1/2). (1.588)

This formula will serve to determine the energies of bound states from approxi-
mations to ω(E) in Section 4.7, for instance from the Bohr-Sommerfeld condition
(4.190) via the relation (4.210). In order to apply this relation one must be sure
that all levels have different energies. Otherwise N(E) jumps at En by half the de-
generacy of this level. In Eq. (4A.9) we shall exhibit an example for this situation.

An important quantity related to ρ(E) which will appear frequently in this text
is the trace of the logarithm, short tracelog , of the operator Ĥ −E.

Tr log(Ĥ −E) =
∑

n

log(En − E). (1.589)

It may be expressed in terms of the density of states (1.584) as

Tr log(Ĥ − E) = Tr
∫ ∞

−∞
dE ′ δ(E ′ − Ĥ) log(E ′ − E) =

∫ ∞

−∞
dE ′ ρ(E ′) log(E ′ − E).

(1.590)
The tracelog of the Hamiltonian operator itself can be viewed as a limit of an operator
zeta function associated with Ĥ:

ζ̂Ĥ(ν) = Tr Ĥ−ν, (1.591)

whose trace is the generalized zeta-function

ζĤ(ν) ≡ Tr
[

ζ̂Ĥ(ν)
]

= Tr (Ĥ−ν) =
∑

n

E−νn . (1.592)
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For a linearly spaced spectrum En = n with n = 1, 2, 3 . . . , this reduces to Riemann’s
zeta function (2.521).

From the generalized zeta function we can obtain the tracelog by forming the
derivative

Tr log Ĥ = −∂ν ζĤ(ν)|ν=0. (1.593)

By differentiating the tracelog (1.589) with respect to E, we find the trace of the
resolvent (1.319):

∂ETr log(Ĥ − E) = Tr
1

E − Ĥ
=
∑

n

1

E − En
=

1

ih̄

∑

n

Rn(E) =
1

ih̄
Tr R̂(E). (1.594)

Recalling Eq. (1.329) we see that the imaginary part of this quantity slightly above
the real E-axis yields the density of states

−1

π
Im ∂E Tr log(Ĥ −E − iη) =

∑

n

δ(E − En) = ρ(E). (1.595)

By integrating this over the energy we obtain the number of states function N(E)
of Eq. (1.586):

−1

π
ImTr log(E − Ĥ) =

∑

n

Θ(E − En) = N(E). (1.596)

Appendix 1A Simple Time Evolution Operator

Consider the simplest nontrivial time evolution operator of a spin-1/2 particle in a magnetic field
B. The reduced Hamiltonian operator is Ĥ0 = −B ·�/2, so that the time evolution operator reads,
in natural units with h̄ = 1,

e−iĤ0(tb−ta) = ei(tb−ta)B·�/2. (1A.1)

Expanding this as in (1.293) and using the fact that (B ·�)2n = B2n and (B ·�)2n+1 = B2n(B ·�),
we obtain

e−iĤ0(tb−ta) = cos[B(tb − ta)/2] + iB̂ · � sin[B(tb − ta)/2] , (1A.2)

where B̂ ≡ B/|B|. Suppose now that the magnetic field is not constant but has a small time-
dependent variation δB(t). Then we obtain from (1.253) [or the lowest expansion term in (1.293)]

δe−iĤ0(tb−ta) =

∫ tb

ta

dt e−iĤ0(tb−t)δB(t) · �e−iĤ0(t−ta). (1A.3)

Using (1A.2), the integrand on the right-hand side becomes

{

cos[B(tb−t)/2]+iB̂ · � sin[B(tb−t)/2]
}

δB(t) ·�
{

cos[B(t−ta)/2]+iB̂ · � sin[B(t−ta)/2]
}

.(1A.4)

We simplify this with the help of the formula [recall (1.448)]

σiσj = δij + iǫijkσ
k (1A.5)

so that

B̂ · � δB(t) · � = B̂ · δB(t) + i[B̂× δB(t)] · �, δB(t) · � B̂ · � = B̂ · δB(t) − i[B̂× δB(t)] · �, (1A.6)
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and

B̂ · � δB(t) · � B̂ · � =
[

B̂ · δB(t)
]

B̂ · �+ i[B̂× δB(t)] · � B̂ · �

= i[B̂× δB(t)] · B̂ +
{

[B̂ · δB(t)]B̂− [B̂× δB(t)] × B̂
}

· �. (1A.7)

The first term on the right-hand side vanishes, the second term is equal to δB, since B̂2 = 1. Thus
we find for the integrand in (1A.4):

cosB(tb − t)/2 cosB(t− ta)/2 δB(t) · �
+i sinB(tb − t)/2 cosB(t− ta)/2{B̂ · δB(t) + i[B̂× δB(t)] · �}
+i cosB(tb − t)/2 sinB(t− ta)/2{B̂ · δB(t) − i[B̂× δB(t)] · �}

+ sinB(tb − t)/2 sinB(t− ta)/2 δB · � (1A.8)

which can be combined to give
{

cosB[(tb+ta)/2−t] δB(t)−sinB[(tb+ta)/2−t] [B̂× δB(t)]
}

·�+i sin[B(tb−ta)/2] B̂·δB(t).(1A.9)

Integrating this from ta to tb we obtain the variation (1A.3).

Appendix 1B Convergence of the Fresnel Integral

Here we prove the convergence of the Fresnel integral (1.337) by relating it to the Gauss integral.
According to Cauchy’s integral theorem, the sum of the integrals along the three pieces of the

Figure 1.4 Triangular closed contour for Cauchy integral

closed contour shown in Fig. 1.4 vanishes since the integrand e−z2

is analytic in the triangular
domain:

∮

dze−z2

=

∫ A

0

dze−z2

+

∫ B

A

dze−z2

+

∫ O

B

dze−z2

= 0. (1B.1)

Let R be the radius of the arc. Then we substitute in the three integrals the variable z as follows:

0A: z = p, dz = dp, z2 = p2

B 0: z = peiπ/4, dz = dp eiπ/4, z2 = ip2

AB: z = R eiϕ, dz = i Rdp, z2 = p2,

and obtain the equation
∫ R

0

dp e−p2

+ eiπ/4
∫ 0

R

dp e−ip2

+

∫ π/4

0

dϕ iR e−R2(cos 2ϕ+i sin 2ϕ)+iϕ = 0. (1B.2)

The first integral converges rapidly to
√
π/2 for R → ∞. The last term goes to zero in this limit.

To see this we estimate its absolute value as follows:
∣

∣

∣

∣

∣

∫ π/4

0

dϕ iR e−R2(cos 2ϕ+i sin 2ϕ)+iϕ

∣

∣

∣

∣

∣

< R

∫ π/4

0

dϕ e−R2 cos 2ϕ. (1B.3)
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The right-hand side goes to zero exponentially fast, except for angles ϕ close to π/4 where the
cosine in the exponent vanishes. In the dangerous regime α ∈ (π/4− ǫ, π/4) with small ǫ > 0, one
certainly has sin 2ϕ > sin 2α, so that

R

∫ π/4

α

dϕ e−R2 cos 2ϕ < R

∫ π/4

α

dϕ
sin 2ϕ

sin 2α
e−R2 cos 2ϕ. (1B.4)

The right-hand integral can be performed by parts and yields

αR e−R2 cos 2α +
1

R sin 2α

[

e−R2 cos 2ϕ
]ϕ=π/4

ϕ=α
, (1B.5)

which goes to zero like 1/R for largeR. Thus we find from (1B.2) the limiting formula
∫ 0

∞
dp e−ip2

=

−e−iπ/4√π/2, or
∫

∞

∞

dp e−ip2

= e−iπ/4√π, (1B.6)

which goes into Fresnel’s integral formula (1.337) by substituting p → p
√

a/2.

Appendix 1C The Asymmetric Top

The Lagrangian of the asymmetric top with three different moments of inertia reads

L =
1

2
[Iξωξ

2 + Iηωη
2 + Iζωζ

2]. (1C.1)

It has the Hessian metric [recall (1.12) and (1.388)]

g11 = Iξ sin2 β + Iζ cos2 β − (Iξ − Iη) sin2 β sin2 γ,

g21 = −(Iξ − Iη) sinβ sin γ cos γ,

g31 = Iζ cosβ,

g22 = Iη + (Iξ − Iη) sin2 γ,

g32 = 0,

g33 = Iζ , (1C.2)

rather than (1.462). The determinant is

g = IξIηIζ sin2 β, (1C.3)

and the inverse metric has the components

g11 =
1

g
{Iη + (Iξ − Iη) sin2 γ}Iζ,

g21 =
1

g
sinβ sin γ cos γ(Iξ − Iη)Iζ ,

g31 =
1

g
{cosβ[− sin2 γ(Iξ − Iη) − Iη]}Iζ ,

g22 =
1

g
{sin2 β[Iξ − sin2 γ(Iξ − Iη)]}Iζ ,

g32 =
1

g
{sinβ cosβ sinγ cos γ(Iη − Iξ)}Iζ ,

g33 =
1

g
{sin2 βIξIη + cos2 βIηIζ + cos2 β sin2 γ (Iξ − Iη)Iζ}. (1C.4)
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From this we find the components of the Riemann connection, the Christoffel symbol defined in
Eq. (1.70):

Γ̄11
1 = [cosβ cos γ sin γ(I2η − IηIζ − I2ξ + IξIζ)]/IξIη,

Γ̄21
1 = {cosβ[sin2 γ(I2ξ − I2η − (Iξ − Iη)Iζ)

+ Iη(Iξ + Iη − Iζ)]}/2 sinβIξIη,

Γ̄31
1 = {cos γ sin γ[I2η − I2ξ + (Iξ − Iη)Iζ ]}/2IξIη,

Γ̄22
1 = 0,

Γ̄32
1 = [sin2 γ(I2ξ − I2η − (Iξ − Iη)Iζ) − Iη(Iξ − Iη + Iζ)]/2 sinβIξIη,

Γ̄33
1 = 0,

Γ̄11
2 = {cosβ sinβ[sin2 γ(I2ξ − I2η − Iζ(Iξ − Iη)) − Iξ(Iξ − Iζ)]}/IξIη,

Γ̄21
2 = {cosβ cos γ sinγ[I2ξ − I2η − Iζ(Iξ − Iη)]}/2IξIη,

Γ̄31
2 = {sinβ[sin2 γ(I2ξ − I2η − Iζ(Iξ − Iη)) − Iξ(Iξ − Iη − Iζ)]}/2IξIη,

Γ̄22
2 = 0,

Γ̄32
2 = [cos γ sin γ(I2ξ − I2η − Iζ(Iξ − Iη))]/2IξIη,

Γ̄33
2 = 0,

Γ̄11
3 = {cos γ sin γ[sin2 β(IξIη(Iξ − Iη) − Iζ(I

2
ξ − I2η ) + I2ζ (Iξ − Iη))

+ (I2ξ − I2η )Iζ − I2ζ (Iξ − Iη)]}/IξIηIζ ,
Γ̄21

3 = {sin2 β[sin2 γ(2IξIη(Iη − Iξ) + Iζ(I
2
ξ − I2η ) − I2ζ (Iξ − Iη))

+IξIη(Iξ − Iη) + IηIζ(Iη − Iζ)] − sin2 γ((I2ξ − I2η )Iζ− I2ζ (Iξ − Iη))

− IηIζ(Iξ + Iη − Iζ)}/2 sinβIξIηIζ ,

Γ̄31
3 = [cosβ cos γ sin γ(I2ξ − I2η − Iζ(Iξ − Iη))]/2IξIη,

Γ̄22
3 = cos γ sin γ(Iη − Iξ)/Iζ ,

Γ̄32
3 = {cosβ[sin2 γ(I2η − I2ξ + (Iξ − Iη)Iζ) + Iη(Iξ − Iη + Iζ)]}/2 sinβIηIξ,

Γ̄33
3 = 0. (1C.5)

The other components follow from the symmetry in the first two indices Γ̄µν
λ = Γ̄λ

νµ. From this
Christoffel symbol we calculate the Ricci tensor, to be defined in Eq. (10.41),

R̄11 = {sin2 β[sin2 γ(I3η − I3ξ − (IξIη − I2ζ )(Iξ − Iη))

+ ((Iξ + Iζ)
2 − I2η )(Iξ − Iζ)] + I3ζ − Iζ(Iξ − Iη)

2}/2IξIηIζ ,
R̄21 = {sinβ sin γ cos γ[I3η − I3ξ + (IξIη − I2ζ )(Iη − Iξ)]}/2IξIηIζ ,
R̄31 = −{cosβ[(Iξ − Iη)

2 − I2ζ ]}/2IξIη,
R̄22 = {sin2 γ[I3ξ − I3η + (IξIη − I2ζ )(Iξ − Iη)] + I3η − (Iξ − Iζ)

2Iη}/2IξIηIζ ,
R̄32 = 0,

R̄33 = −[(Iξ − Iη)
2 − I2ζ ]/2IξIη. (1C.6)

Contraction with gµν gives the curvature scalar

R̄ = [2(IξIη + IηIζ + IζIξ) − I2ξ − I2η − I2ζ ]/2IξIηIζ . (1C.7)

Since the space under consideration is free of torsion, the Christoffel symbol Γ̄µν
λ is equal to the

full affine connection Γµν
λ. The same thing is true for the curvature scalars R̄ and R calculated

from Γ̄µν
λ and Γµν

λ, respectively.
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A dancing shape, an image gay,

To haunt, to startle, and waylay
W. Wordsworth (1770–1840), Phantom of Delight

2
Path Integrals — Elementary Properties and
Simple Solutions

The operator formalism of quantum mechanics and quantum statistics may not
always lead to the most transparent understanding of quantum phenomena. There
exists another, equivalent formalism in which operators are avoided by the use of
infinite products of integrals, called path integrals . In contrast to the Schrödinger
equation, which is a differential equation determining the properties of a state at a
time from their knowledge at an infinitesimally earlier time, path integrals yield the
quantum-mechanical amplitudes in a global approach involving the properties of a
system at all times .

2.1 Path Integral Representation of Time Evolution

Amplitudes

The path integral approach to quantum mechanics was developed by Feynman1 in
1942. In its original form, it applies to a point particle moving in a Cartesian co-
ordinate system and yields the transition amplitudes of the time evolution operator
between the localized states of the particle (recall Section 1.7)

(xbtb|xata) = 〈xb|Û(tb, ta)|xa〉, tb > ta. (2.1)

For simplicity, we shall at first assume the space to be one-dimensional. The exten-
sion to D Cartesian dimensions will be given later. The introduction of curvilinear
coordinates will require a little more work. A further generalization to spaces with
a nontrivial geometry, in which curvature and torsion are present, will be described
in Chapters 10–11.

2.1.1 Sliced Time Evolution Amplitude

We shall be interested mainly in the causal or retarded time evolution amplitudes
[see Eq. (1.303)]. These contain all relevant quantum-mechanical information and

1For the historical development, see Notes and References at the end of this chapter.
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possess, in addition, pleasant analytic properties in the complex energy plane [see
the remarks after Eq. (1.310)]. This is why we shall always assume, from now on,
the causal sequence of time arguments tb > ta.

Feynman realized that due to the fundamental composition law of the time evo-
lution operator (see Section 1.7), the amplitude (2.1) could be sliced into a large
number, say N + 1, of time evolution operators, each acting across an infinitesimal
time slice of thickness ǫ ≡ tn − tn−1= (tb − ta)/(N + 1)> 0:

(xbtb|xata) = 〈xb|Û(tb, tN)Û(tN , tN−1) · · · Û(tn, tn−1) · · · Û(t2, t1)Û(t1, ta)|xa〉. (2.2)

When inserting a complete set of states between each pair of Û ’s,

∫ ∞

−∞
dxn|xn〉〈xn| = 1, n = 1, . . . , N, (2.3)

the amplitude becomes a product of N -integrals

(xbtb|xata) =
N
∏

n=1

[∫ ∞

−∞
dxn

]N+1
∏

n=1

(xntn|xn−1tn−1), (2.4)

where we have set xb ≡ xN+1, xa ≡ x0, tb ≡ tN+1, ta ≡ t0. The symbol Π[· · ·] denotes
the product of the quantities within the brackets. The integrand is the product of
the amplitudes for the infinitesimal time intervals

(xntn|xn−1tn−1) = 〈xn|e−iǫĤ(tn)/h̄|xn−1〉, (2.5)

with the Hamiltonian operator

Ĥ(t) ≡ H(p̂, x̂, t). (2.6)

The further development becomes simplest under the assumption that the Hamil-
tonian has the standard form, being the sum of a kinetic and a potential energy:

H(p, x, t) = T (p, t) + V (x, t). (2.7)

For a sufficiently small slice thickness, the time evolution operator

e−iǫĤ/h̄ = e−iǫ(T̂+V̂ )/h̄ (2.8)

is factorizable as a consequence of the Baker-Campbell-Hausdorff formula (to be
proved in Appendix 2A)

e−iǫ(T̂+V̂ )/h̄ = e−iǫV̂ /h̄e−iǫT̂ /h̄e−iǫ2X̂/h̄2

, (2.9)

where the operator X̂ has the expansion

X̂ ≡ i

2
[V̂ , T̂ ]− ǫ

h̄

(

1

6
[V̂ , [V̂ , T̂ ]]− 1

3
[[V̂ , T̂ ], T̂ ]

)

+O(ǫ2) . (2.10)
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The omitted terms of order ǫ4, ǫ5, . . . contain higher commutators of V̂ and T̂ . If we
neglect, for the moment, the X̂-term which is suppressed by a factor ǫ2, we calculate
for the local matrix elements of e−iǫĤ/h̄ the following simple expression:

〈xn|e−iǫH(p̂,x̂,tn)/h̄|xn−1〉 ≈
∫ ∞

−∞
dx〈xn|e−iǫV (x̂,tn)/h̄|x〉〈x|e−iǫT (p̂,tn)/h̄|xn−1〉

=
∫ ∞

−∞
dx〈xn|e−iǫV (x̂,tn)/h̄|x〉

∫ ∞

−∞

dpn
2πh̄

eipn(x−xn−1)/h̄e−iǫT (pn,tn)/h̄. (2.11)

Evaluating the local matrix elements,

〈xn|e−iǫV (x̂,tn)/h̄|x〉 = δ(xn − x)e−iǫV (xn,tn)/h̄, (2.12)

this becomes

〈xn|e−iǫH(p̂,x̂,tn)/h̄|xn−1〉 ≈
∫ ∞

−∞

dpn
2πh̄

exp {ipn(xn − xn−1)/h̄− iǫ[T (pn, tn) + V (xn, tn)]/h̄} . (2.13)

Inserting this back into (2.4), we obtain Feynman’s path integral formula, consisting
of the multiple integral

(xbtb|xata) ≈
N
∏

n=1

[∫ ∞

−∞
dxn

]N+1
∏

n=1

[

∫ ∞

−∞

dpn
2πh̄

]

exp
(

i

h̄
AN

)

, (2.14)

where AN is the sum

AN =
N+1
∑

n=1

[pn(xn − xn−1)− ǫH(pn, xn, tn)]. (2.15)

2.1.2 Zero-Hamiltonian Path Integral

Note that the path integral (2.14) with zero Hamiltonian produces the Hilbert space
structure of the theory via a chain of scalar products:

(xbtb|xata) ≈
N
∏

n=1

[∫ ∞

−∞
dxn

]N+1
∏

n=1

[

∫ ∞

−∞

dpn
2πh̄

]

ei
∑N+1

n=1
pn(xn−xn−1)/h̄, (2.16)

which is equal to

(xbtb|xata) ≈
N
∏

n=1

[∫ ∞

−∞
dxn

] N+1
∏

n=1

〈xn|xn−1〉 =
N
∏

n=1

[∫ ∞

−∞
dxn

] N+1
∏

n=1

δ(xn − xn−1)

= δ(xb − xa). (2.17)

whose continuum limit is

(xbtb|xata) =
∫

Dx
∫ Dp

2πh̄
ei
∫

dtp(t)ẋ(t)/h̄ = 〈xb|xa〉 = δ(xb − xa). (2.18)
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In the operator expression (2.2), the right-hand side follows from the fact that
for zero Hamiltonian the time evolution operators Û(tn, tn−1) are all equal to unity.

At this point we make the important observation that a momentum variable
pn inside the product of momentuma integrations in the expression (2.16) can be
generated by a derivative p̂n ≡ −ih̄∂xn outside of it. In Subsection 2.1.4 we shall
go to the continuum limit of time slicing in which the slice thickness ǫ goes to zero.
In this limit, the discrete variables xn and pn become functions x(t) and p(t) of the
continuous time t, and the momenta pn become differential operators p(t) = −ih̄∂x(t),
satisfying the commutation relations with x(t):

[p̂(t), x(t)] = −ih̄. (2.19)

These are the canonical equal-time commutation relations of Heisenberg.
This observation forms the basis for deriving, from the path integral (2.14), the

Schrödinger equation for the time evolution amplitude.

2.1.3 Schrödinger Equation for Time Evolution Amplitude

Let us split from the product of integrals in (2.14) the final time slice as a factor, so
that we obtain the recursion relation

(xbtb|xata) ≈
∫ ∞

−∞
dxN (xbtb|xN tN ) (xN tN |xata), (2.20)

where

(xbtb|xN tN ) ≈
∫ ∞

−∞

dpb
2πh̄

e(i/h̄)[pb(xb−xN )−ǫH(pb,xb,tb)]. (2.21)

The momentum pb inside the integral can be generated by a differential operator
p̂b ≡ −ih̄∂xb

outside of it. The same is true for any function of pb, so that the
Hamiltonian can be moved before the momentum integral yielding

(xbtb|xN tN)≈e−iǫH(−ih̄∂xb ,xb,tb)/h̄
∫ ∞

−∞

dpb
2πh̄

eipb(xb−xN )/h̄=e−iǫH(−ih̄∂xb ,xb,tb)/h̄δ(xb−xN ).
(2.22)

Inserting this back into (2.20) we obtain

(xbtb|xata) ≈ e−iǫH(−ih̄∂xb ,xb,tb)/h̄(xb tb−ǫ|xata), (2.23)

or

1

ǫ
[(xb tb+ǫ|xata)− (xbtb|xata)] ≈

1

ǫ

[

e−iǫH(−i∂xb ,xb,tb+ǫ)/h̄ − 1
]

(xb tb|xata). (2.24)

In the limit ǫ→ 0, this goes over into the differential equation for the time evolution
amplitude

ih̄∂tb(xbtb|xata) = H(−ih̄∂xb
, xb, tb)(xb tb|xata), (2.25)

which is precisely the Schrödinger equation (1.301) of operator quantum mechanics.
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2.1.4 Convergence of of the Time-Sliced Evolution Amplitude

Some remarks are necessary concerning the convergence of the time-sliced expression
(2.14) to the quantum-mechanical amplitude in the continuum limit, where the
thickness of the time slices ǫ = (tb − ta)/(N + 1) → 0 goes to zero and the number
N of slices tends to ∞. This convergence can be proved for the standard kinetic
energy T = p2/2M only if the potential V (x, t) is sufficiently smooth. For time-
independent potentials this is a consequence of the Trotter product formula which
reads

e−i(tb−ta)Ĥ/h̄ = lim
N→∞

(

e−iǫV̂ /h̄e−iǫT̂ /h̄
)N+1

. (2.26)

If T and V are c-numbers, this is trivially true. If they are operators, we use Eq. (2.9)
to rewrite the left-hand side of (2.26) as

e−i(tb−ta)Ĥ/h̄ ≡
(

e−iǫ(T̂+V̂ )/h̄
)N+1

≡
(

e−iǫV̂ /h̄e−iǫT̂ /h̄e−iǫ2X̂/h̄2
)N+1

.

The Trotter formula implies that the commutator term X̂ proportional to ǫ2 does
not contribute in the limit N → ∞. The mathematical conditions ensuring this
require functional analysis too technical to be presented here (for details, see the
literature quoted at the end of the chapter). For us it is sufficient to know that
the Trotter formula holds for operators which are bounded from below and that
for most physically interesting potentials, it cannot be used to derive Feynman’s
time-sliced path integral representation (2.14), even in systems where the formula
is known to be valid. In particular, the short-time amplitude may be different
from (2.13). Take, for example, an attractive Coulomb potential V (x) ∝ −1/|x|
for which the Trotter formula has been proved to be valid. Feynman’s time-sliced
formula, however, diverges even for two time slices. This will be discussed in detail in
Chapter 12. Similar problems will be found for other physically relevant potentials
such as V (x) ∝ l(l +D − 2)h̄2/|x|2 (centrifugal barrier) and V (θ) ∝ m2h̄2/sin2 θ
(angular barrier near the poles of a sphere). In all these cases, the commutators
in the expansion (2.10) of X̂ become more and more singular. In fact, as we shall
see, the expansion does not even converge, even for an infinitesimally small ǫ. All
atomic systems contain such potentials and the Feynman formula (2.14) cannot be
used to calculate an approximation for the transition amplitude. A new path integral
formula has to be found. This will be done in Chapter 12. Fortunately, it is possible
to eventually reduce the more general formula via some transformations back to a
Feynman type formula with a bounded potential in an auxiliary space. Thus the
above derivation of Feynman’s formula for such potentials will be sufficient for the
further development in this book. After this it serves as an independent starting
point for all further quantum-mechanical calculations.

In the sequel, the symbol ≈ in all time-sliced formulas such as (2.14) will imply
that an equality emerges in the continuum limit N → ∞, ǫ→ 0 unless the potential
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has singularities of the above type. In the action, the continuum limit is without
subtleties. The sum AN in (2.15) tends towards the integral

A[p, x] =
∫ tb

ta
dt [p(t)ẋ(t)−H(p(t), x(t), t)] (2.27)

under quite general circumstances. This expression is recognized as the classical
canonical action for the path x(t), p(t) in phase space. Since the position variables
xN+1 and x0 are fixed at their initial and final values xb and xa, the paths satisfy
the boundary condition x(tb) = xb, x(ta) = xa.

In the same limit, the product of infinitely many integrals in (2.14) will be called
a path integral . The limiting measure of integration is written as

lim
N→∞

N
∏

n=1

[∫ ∞

−∞
dxn

]N+1
∏

n=1

[

∫ ∞

−∞

dpn
2πh̄

]

≡
∫ x(tb)=xb

x(ta)=xa

D′x
∫ Dp

2πh̄
. (2.28)

By definition, there is always one more pn-integral than xn-integrals in this product.
While x0 and xN+1 are held fixed and the xn-integrals are done for n = 1, . . . , N , each
pair (xn, xn−1) is accompanied by one pn-integral for n = 1, . . . , N+1. The situation
is recorded by the prime on the functional integral D′x. With this definition, the
amplitude can be written in the short form

(xbtb|xata) =
∫ x(tb)=xb

x(ta)=xa

D′x
∫ Dp

2πh̄
eiA[p,x]/h̄. (2.29)

The path integral has a simple intuitive interpretation: Integrating over all paths
corresponds to summing over all histories along which a physical system can possibly
evolve. The exponential eiA[p,x]/h̄ is the quantum analog of the Boltzmann factor
e−E/kBT in statistical mechanics. Instead of an exponential probability, a pure phase
factor is assigned to each possible history: The total amplitude for going from xa, ta
to xb, tb is obtained by adding up the phase factors for all these histories,

(xbtb|xata) =
∑

all histories
(xa,ta)❀ (xb,tb)

eiA[p,x]/h̄, (2.30)

where the sum comprises all paths in phase space with fixed endpoints xb, xa in
x-space.

2.1.5 Time Evolution Amplitude in Momentum Space

The above observed asymmetry in the functional integrals over x and p is a conse-
quence of keeping the endpoints fixed in position space. There exists the possibility
of proceeding in a conjugate way keeping the initial and final momenta pb and pa
fixed. The associated time evolution amplitude can be derived by going through
the same steps as before but working in the momentum space representation of the
Hilbert space, starting from the matrix elements of the time evolution operator

(pbtb|pata) ≡ 〈pb|Û(tb, ta)|pa〉. (2.31)
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The time slicing proceeds as in (2.2)–(2.4), with all x’s replaced by p’s, except in
the completeness relation (2.3) which we shall take as

∫ ∞

−∞

dp

2πh̄
|p〉〈p| = 1, (2.32)

corresponding to the choice of the normalization of states [compare (1.186)]

〈pb|pa〉 = 2πh̄δ(pb − pa). (2.33)

In the resulting product of integrals, the integration measure has an opposite asym-
metry: there is now one more xn-integral than pn-integrals. The sliced path integral
reads

(pbtb|pata) ≈
N
∏

n=1

[

∫ ∞

−∞

dpn
2πh̄

]

N
∏

n=0

[∫ ∞

−∞
dxn

]

× exp

{

i

h̄

N
∑

n=0

[−xn(pn+1 − pn)− ǫH(pn, xn, tn)]

}

. (2.34)

The relation between this and the x-space amplitude (2.14) is simple: By taking
in (2.14) the first and last integrals over p1 and pN+1 out of the product, renaming
them as pa and pb, and rearranging the sum

∑N+1
n=1 pn(xn − xn−1) as follows

N+1
∑

n=1

pn(xn − xn−1) = pN+1(xN+1 − xN ) + pN(xN − xN−1) + . . .

. . .+ p2(x2 − x1) + p1(x1 − x0)

= pN+1xN+1 − p1x0

−(pN+1 − pN)xN − (pN − pN−1)xN−1 − . . .− (p2 − p1)x1

= pN+1xN+1 − p1x0 −
N
∑

n=1

(pn+1 − pn)xn, (2.35)

the remaining product of integrals looks as in Eq. (2.34), except that the lowest
index n is one unit larger than in the sum in Eq. (2.34). In the limit N → ∞ this
does not matter, and we obtain the Fourier transform

(xbtb|xata) =
∫ dpb

2πh̄
eipbxb/h̄

∫ dpa
2πh̄

e−ipaxa/h̄(pbtb|pata). (2.36)

The inverse relation is

(pbtb|pata) =
∫

dxb e
−ipbxb/h̄

∫

dxa e
ipaxa/h̄(xbtb|xata). (2.37)

In the continuum limit, the amplitude (2.34) can be written as a path integral

(pbtb|pata) =
∫ p(tb)=pb

p(ta)=pa

D′p

2πh̄

∫

DxeiĀ[p,x]/h̄, (2.38)
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where

Ā[p, x] =
∫ tb

ta
dt [−ṗ(t)x(t)−H(p(t), x(t), t)] = A[p, x]− pbxb + paxa. (2.39)

If the Hamiltonian is independent of x and t, the sliced path integral (2.34)
becomes trivial. Then the N + 1 integrals over xn (n = 0, . . . , N) can be done
yielding a product of δ-functions δ(pb − pN) · · · δ(p1 − p0). As a conseqence, the
integrals over the N momenta pn (n = 1, . . . , N) are all squeezed to the initial
momentum pN = pN−1 = . . . = p1 = pa. A single a final δ-function 2πh̄δ(pb − pa)
remains, accompanied by the product of N + 1 factors

∏N
n=0 e

−iǫH(pa)/h̄, which is
equal to e−i(tb−ta)H(p)/h̄. Hence we obtain:

(pbtb|pata) = 2πh̄δ(pb − pa)e
−i(tb−ta)H(p)/h̄. (2.40)

Inserting this into Eq. (2.36), we find a simple Fourier integral for the time evolution
amlitude in x-space:

(xbtb|xata) =
∫

dp

2πh̄
eip(xb−xa)/h̄−i(tb−ta)H(p)/h̄. (2.41)

Note that in (2.40) contains an equal sign rather than the ≈-sign since the right-hand
sign is the same for any number of time slices.

2.1.6 Quantum-Mechanical Partition Function

A path integral symmetric in p and x arises when considering the quantum-
mechanical partition function defined by the trace (recall Section 1.17)

ZQM(tb, ta) = Tr
(

e−i(tb−ta)Ĥ/h̄
)

. (2.42)

In the local basis, the trace becomes an integral over the amplitude
(xbtb|xata) with xb = xa:

ZQM(tb, ta) =
∫ ∞

−∞
dxa(xatb|xata). (2.43)

The additional trace integral over xN+1 ≡ x0 makes the path integral for ZQM

symmetric in pn and xn:

∫ ∞

−∞
dxN+1

N
∏

n=1

[∫ ∞

−∞
dxn

]N+1
∏

n=1

[

∫ ∞

−∞

dpn
2πh̄

]

=
N+1
∏

n=1

[

∫∫ ∞

−∞

dxndpn
2πh̄

]

. (2.44)

In the continuum limit, the right-hand side is written as

lim
N→∞

N+1
∏

n=1

[

∫∫ ∞

−∞

dxndpn
2πh̄

]

≡
∮

Dx
∫ Dp

2πh̄
, (2.45)
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and the measures are related by

∫ ∞

−∞
dxa

∫ x(tb)=xa

x(ta)=xa

D′x
∫ Dp

2πh̄
≡
∮

Dx
∫ Dp

2πh̄
. (2.46)

The symbol
∮

indicates the periodic boundary condition x(ta) = x(tb). In the
momentum representation we would have similarly

∫ ∞

−∞

dpa
2πh̄

∫ p(tb)=pa

p(ta)=pa

D′p

2πh̄

∫

Dx ≡
∮ Dp

2πh̄

∫

Dx , (2.47)

with the periodic boundary condition p(ta) = p(tb), and the same right-hand side.
Hence, the quantum-mechanical partition function is given by the path integral

ZQM(tb, ta) =
∮

Dx
∫ Dp

2πh̄
eiA[p,x]/h̄ =

∮ Dp
2πh̄

∫

DxeiĀ[p,x]/h̄. (2.48)

In the right-hand exponential, the action Ā[p, x] can be replaced by A[p, x], since
the extra terms in (2.39) are removed by the periodic boundary conditions. In the
time-sliced expression, the equality is easily derived from the rearrangement of the
sum (2.35), which shows that

N+1
∑

n=1

pn(xn − xn−1)

∣

∣

∣

∣

∣

xN+1=x0

= −
N
∑

n=0

(pn+1 − pn)xn

∣

∣

∣

∣

∣

pN+1=p0

. (2.49)

In the path integral expression (2.48) for the partition function, the rules of quan-
tum mechanics appear as a natural generalization of the rules of classical statistical
mechanics, as formulated by Planck. According to these rules, each volume element
in phase space dxdp/h is occupied with the exponential probability e−E/kBT . In the
path integral formulation of quantum mechanics, each volume element in the path

phase space
∏

n dx(tn)dp(tn)/h is associated with a pure phase factor eiA[p,x]/h̄. We
see here a manifestation of the correspondence principle which specifies the tran-
sition from classical to quantum mechanics. In path integrals, it looks somewhat
more natural than in the historic formulation, where it requires the replacement of
all classical phase space variables p, x by operators, a rule which was initially hard
to comprehend.

2.1.7 Feynman’s Configuration Space Path Integral

Actually, in his original paper, Feynman did not give the path integral formula in
the above phase space formulation. Since the kinetic energy in (2.7) has usually the
form T (p, t) = p2/2M , he focused his attention upon the Hamiltonian

H =
p2

2M
+ V (x, t), (2.50)
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for which the time-sliced action (2.15) becomes

AN =
N+1
∑

n=1

[

pn(xn − xn−1)− ǫ
p2n
2M

− ǫV (xn, tn)

]

. (2.51)

It can be quadratically completed to

AN =
N+1
∑

n=1

[

− ǫ

2M

(

pn −
xn − xn−1

ǫ
M
)2

+
M

2
ǫ
(

xn − xn−1

ǫ

)2

− ǫV (xn, tn)

]

. (2.52)

The momentum integrals in (2.14) may then be performed using the Fresnel integral
formula (1.337), yielding

∫ ∞

−∞

dpn
2πh̄

exp

[

− i

h̄

ǫ

2M

(

pn −M
xn − xn−1

ǫ

)2
]

=
1

√

2πh̄iǫ/M
, (2.53)

and we arrive at the alternative representation

(xbtb|xata) ≈
1

√

2πh̄iǫ/M

N
∏

n=1





∫ ∞

−∞

dxn
√

2πh̄iǫ/M



 exp
(

i

h̄
AN

)

, (2.54)

where AN is now the sum

AN = ǫ
N+1
∑

n=1

[

M

2

(

xn − xn−1

ǫ

)2

− V (xn, tn)

]

, (2.55)

with xN+1 = xb and x0 = xa. Here the integrals run over all paths in configuration

space rather than phase space. They account for the fact that a quantum-mechanical
particle starting from a given initial point xa will explore all possible ways of reaching
a given final point xb. The amplitude of each path is exp(iAN/h̄). See Fig. 2.1 for
a geometric illustration of the path integration. In the continuum limit, the sum
(2.55) converges towards the action in the Lagrangian form:

A[x] =
∫ tb

ta
dtL(x, ẋ) =

∫ tb

ta
dt
[

M

2
ẋ2 − V (x, t)

]

. (2.56)

Note that this action is a local functional of x(t) in the temporal sense as defined in
Eq. (1.26).2

For the time-sliced Feynman path integral, one verifies the Schrödinger equation
as follows: As in (2.20), one splits off the last slice as follows:

(xbtb|xata) ≈
∫ ∞

−∞
dxN (xbtb|xN tN ) (xN tN |xata)

=
∫ ∞

−∞
d∆x (xbtb|xb−∆x tb−ǫ) (xb−∆x tb−ǫ|xata), (2.57)

2A functional F [x] is called local if it can be written as an integral
∫

dtf(x(t), ẋ(t)); it is called
ultra-local if it has the form

∫

dtf(x(t)).
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Figure 2.1 Zigzag paths, along which a point particle explores all possible ways of

reaching the point xb at a time tb, starting from xa at ta. The time axis is drawn from

right to left to have the same direction as the operator order in Eq. (2.2).

where

(xbtb|xb−∆x tb−ǫ) ≈
1

√

2πh̄iǫ/M
exp

{

ǫ
i

h̄

[

M

2

(

∆x

ǫ

)2

− V (xb, tb)

]}

. (2.58)

We now expand the amplitude in the integral of (2.57) in a Taylor series

(xb−∆x tb−ǫ|xata) =
[

1−∆x ∂xb
+

1

2
(∆x)2∂2xb

+ . . .
]

(xb, tb−ǫ|xata). (2.59)

Inserting this into (2.57), the odd powers of ∆x do not contribute. For the even
powers, we perform the integrals using the Fresnel version of formula (1.339), and
obtain zero for odd powers of ∆x, and

∫ ∞

−∞

d∆x
√

2πh̄iǫ/M
(∆x)2n exp

{

ǫ
i

h̄

M

2

(

∆x

ǫ

)2
}

=

(

i
h̄ǫ

M

)n

(2.60)

for even powers, so that the integral in (2.57) becomes

(xbtb|xata)=
[

1 + ǫ
ih̄

2M
∂2xb

+O(ǫ2)

]

[

1− ǫ
i

h̄
V (xb, tb) +O(ǫ2)

]

(xb, tb−ǫ|xata). (2.61)

In the limit ǫ→ 0, this yields again the Schrödinger equation. (2.23).
In the continuum limit, we write the amplitude (2.54) as a path integral

(xbtb|xata) ≡
∫ x(tb)=xb

x(ta)=xa

Dx eiA[x]/h̄. (2.62)
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This is Feynman’s original formula for the quantum-mechanical amplitude (2.1). It
consists of a sum over all paths in configuration space with a phase factor containing
the form of the action A[x].

We have used the same measure symbol Dx for the paths in configuration space
as for the completely different paths in phase space in the expressions (2.29), (2.38),
(2.46), (2.47). There should be no danger of confusion. Note that the extra dpn-

integration in the phase space formula (2.14) results now in one extra 1/
√

2πh̄iǫ/M

factor in (2.54) which is not accompanied by a dxn-integration.
The Feynman amplitude can be used to calculate the quantum-mechanical par-

tition function (2.43) as a configuration space path integral

ZQM =
∮

Dx eiA[x]/h̄. (2.63)

As in (2.45), (2.46), the symbol
∮ Dx indicates that the paths have equal endpoints

x(ta) = x(tb), the path integral being the continuum limit of the product of integrals

∮

Dx ≈
N+1
∏

n=1

∫ ∞

−∞

dxn
√

2πih̄ǫ/M
. (2.64)

There is no extra 1/
√

2πih̄ǫ/M factor as in (2.54) and (2.62), due to the integration

over the initial (= final) position xb = xa representing the quantum-mechanical
trace. The use of the same symbol

∮ Dx as in (2.48) should not cause any confusion
since (2.48) is always accompanied by an integral

∫ Dp.
For the sake of generality we might point out that it is not necessary to slice the

time axis in an equidistant way. In the continuum limit N → ∞, the canonical path
integral (2.14) is indifferent to the choice of the infinitesimal spacings

ǫn = tn − tn−1. (2.65)

The configuration space formula contains the different spacings ǫn in the following
way: When performing the pn integrations, we obtain a formula of the type (2.54),
with each ǫ replaced by ǫn, i.e.,

(xbtb|xata) ≈
1

√

2πh̄iǫb/M

N
∏

n=1





∫ ∞

−∞

dxn
√

2πih̄ǫn/M





× exp

{

i

h̄

N+1
∑

n=1

[

M

2

(xn − xn−1)
2

ǫn
− ǫnV (xn, tn)

]}

. (2.66)

To end this section, an important remark is necessary: It would certainly be
possible to define the path integral for the time evolution amplitude (2.29), without
going through Feynman’s time-slicing procedure, as the solution of the Schrödinger
differential equation [see Eq. (1.308))]:

[Ĥ(−ih̄∂x, x)− ih̄∂t](x t|xata) = −ih̄δ(t− ta)δ(x− xa). (2.67)
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If one possesses an orthonormal and complete set of wave functions ψn(x) solving
the time-independent Schrödinger equation Ĥψn(x)=Enψn(x), this solution is given
by the spectral representation (1.323)

(xbtb|xata) = Θ(tb − ta)
∑

n

ψn(xb)ψ
∗
n(xa)e

−iEn(tb−ta)/h̄, (2.68)

where Θ(t) is the Heaviside function (1.304). This definition would, however, run
contrary to the very purpose of Feynman’s path integral approach, which is to un-
derstand a quantum system from the global all-time fluctuation point of view. The
goal is to find all properties from the globally defined time evolution amplitude, in
particular the Schrödinger wave functions.3 The global approach is usually more
complicated than Schrödinger’s and, as we shall see in Chapters 8 and 12–14, con-
tains novel subtleties caused by the finite time slicing. Nevertheless, it has at least
four important advantages. First, it is conceptually very attractive by formulating
a quantum theory without operators which describe quantum fluctuations by close
analogy with thermal fluctuations (as will be seen later in this chapter). Second,
it links quantum mechanics smoothly with classical mechanics (as will be shown in
Chapter 4). Third, it offers new variational procedures for the approximate study of
complicated quantum-mechanical and -statistical systems (see Chapter 5). Fourth,
it gives a natural geometric access to the dynamics of particles in spaces with cur-
vature and torsion (see Chapters 10–11). This has recently led to results where
the operator approach has failed due to operator-ordering problems, giving rise to
a unique and correct description of the quantum dynamics of a particle in spaces
with curvature and torsion. From this it is possible to derive a unique extension
of Schrödinger’s theory to such general spaces whose predictions can be tested in
future experiments.4

2.2 Exact Solution for the Free Particle

In order to develop some experience with Feynman’s path integral formula we con-
sider in detail the simplest case of a free particle, which in the canonical form reads

(xbtb|xata) =
∫ x(tb)=xb

x(ta)=xa

D′x
∫ Dp

2πh̄
exp

[

i

h̄

∫ tb

ta
dt

(

pẋ− p2

2M

)]

, (2.69)

and in the pure configuration form:

(xbtb|xata) =
∫ x(tb)=xb

x(ta)=xa

Dx exp
[

i

h̄

∫ tb

ta
dt
M

2
ẋ2
]

. (2.70)

Since the integration limits are obvious by looking at the left-hand sides of the equa-
tions, they will be omitted from now on, unless clarity requires their specification.

3Many publications claiming to have solved the path integral of a system have violated this rule
by implicitly using the Schrödinger equation, although camouflaged by complicated-looking path
integral notation.

4H. Kleinert, Mod. Phys. Lett. A 4 , 2329 (1989) (http://www.physik.fu-berlin.de/~klei-
nert/199); Phys. Lett. B 236 , 315 (1990) (ibid.http/202).
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2.2.1 Trivial Solution

Since the Hamiltonian of a free particle H = p2/2M does not depend on x, the path
integral in momentum space yields the simple result (2.40). In configuration space
it reduces to simple Fourier integral Eq. (2.41). Inserting the above Hamiltonian,
the integral reads

(xbtb|xata) =
∫

dp

2πh̄
eip(xb−xa)/h̄−i(tb−ta)p2/2Mh̄, (2.71)

and can be done with the help of the Fresnel formula (2.53). The result is

(xbtb|xata) =
1

√

2πih̄(tb − ta)/M
exp

[

i

h̄

M

2

(xb − xa)
2

tb − ta

]

. (2.72)

This result is easily generalized to D dimensions, where the free-particle ampli-
tude (2.40) reads

(pbtb|pata) = (2πh̄)Dδ(D)(pb − pa)e
−i(tb−ta)p2/2Mh̄, (2.73)

and the Fourier transform yields

(xbtb|xata) =
1

√

2πih̄(tb − ta)/M
D exp

[

i

h̄

M

2

(xb − xa)
2

tb − ta

]

, (2.74)

in agreement with the quantum-mechanical result in D dimensions (1.341).

2.2.2 Solution in Configuration Space

The problem can also be solved with little effort starting from Eq. (2.70). The time-
sliced expression to be integrated is given by Eqs. (2.54), (2.55) with V (x) set equal
to zero. The resulting product of Gaussian integrals can easily be done successively
using formula (1.337), from which we derive the simple rule

∫

dx′
1

√

2πih̄Aǫ/M
exp

[

i

h̄

M

2

(x′′ − x′)2

Aǫ

]

1
√

2πih̄Bǫ/M
exp

[

i

h̄

M

2

(x′ − x)2

Bǫ

]

=
1

√

2πih̄(A +B)ǫ/M
exp

[

i

h̄

M

2

(x′′ − x)2

(A+B)ǫ

]

, (2.75)

which leads directly to the free-particle amplitude

(xbtb|xata) =
1

√

2πih̄(N + 1)ǫ/M
exp

[

i

h̄

M

2

(xb − xa)
2

(N + 1)ǫ

]

. (2.76)

After inserting (N + 1)ǫ = tb − ta, this agrees with the previous result (2.72). Note
that the free-particle amplitude happens to be independent of the number N + 1 of
time slices.
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The calculation shows that the path integrals (2.69) and (2.70) possess a simple
solvable generalization to a time-dependent mass M(t) =Mg(t):

(xbtb|xata) =
∫ x(tb)=xb

x(ta)=xa

D′x
∫ Dp

2πh̄
exp

[

i

h̄

∫ tb

ta
dt

(

pẋ− p2

2Mg(t)

)]

, (2.77)

and in the pure configuration form:

(xbtb|xata) =
∫ x(tb)=xb

x(ta)=xa

Dx√g exp
[

i

h̄

∫ tb

ta
dt
M

2
g(t)ẋ2(t)

]

. (2.78)

Here the measure of integration
∫ Dx√g symbolizes the continuum limit of the

product [compare (2.54)]:

∫ x(tb)=xb

x(ta)=xa

Dx√g ≡ 1
√

2πh̄iǫ/Mg(tb)

N
∏

n=1





∫ ∞

−∞

dxn
√

2πh̄iǫ/Mg(tn)



 . (2.79)

The factor g(tn) enters in each of the integrations (2.75), where the previous time
slicing parameters ǫ becomes now ǫn = ǫ/g(tn), and we find instead of (2.72) the
amplitude

(xbtb|xata) =
1

√

2πih̄M−1
∫ tb
ta
g−1(t)

exp

[

i

h̄

M

2

(xb − xa)
2

∫ tb
ta g

−1(t)

]

. (2.80)

This has the Fourier representation

(xbtb|xata) =
∫

dp

2πh̄
exp

{

i

h̄

[

ip(xb − xa)−
p2

2M

∫ tb

ta
g−1(t)

]}

. (2.81)

2.2.3 Fluctuations around the Classical Path

There exists yet another method of calculating this amplitude which is somewhat
involved than the simple case at hand deserves, but which turns out to be useful for
the treatment of a certain class of more complicated path integrals, after a suitable
generalization. This method is based on summing aver all path deviations from the
classical path, i.e., all paths are split into the classical path

xcl(t) = xa +
xb − xa
tb − ta

(t− ta), (2.82)

along which the free particle would run following the equation of motion

ẍcl(t) = 0, (2.83)

plus deviations δx(t):

x(t) = xcl(t) + δx(t). (2.84)
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Since the initial and final points are fixed at xa, xb, respectively, the deviations vanish
at the endpoints:

δx(ta) = δx(tb) = 0. (2.85)

The deviations δx(t) are referred to as the quantum fluctuations of the particle
orbit. In mathematics, the boundary conditions (2.85) are referred to as Dirichlet

boundary conditions . When inserting the decomposition (2.84) into the action we
observe that due to the equation of motion (2.83) for the classical path, the action
separates into the sum of a classical and a purely quadratic fluctuation term

M

2

∫ tb

ta
dt
{

ẋ2cl(t) + 2ẋcl(t)δẋ(t) + [δẋ(t)]2
}

=
M

2

∫ tb

ta
dtẋ2cl +Mẋδx

∣

∣

∣

tb

ta
−M

∫ tb

ta
dtẍclδx+

M

2

∫ tb

ta
dt(δẋ)2

=
M

2

[∫ tb

ta
dtẋ2cl +

∫ tb

ta
dt(δẋ)2

]

.

The absence of a mixed term is a general consequence of the extremality property
of the classical path,

δA
∣

∣

∣

x(t)=xcl(t)
= 0. (2.86)

It implies that a quadratic fluctuation expansion around the classical action

Acl ≡ A[xcl] (2.87)

can have no linear term in δx(t), i.e., it must start as

A = Acl +
1

2

∫ tb

ta
dt
∫ tb

ta
dt′

δ2A
δx(t)δx(t′)

δx(t)δx(t′)

∣

∣

∣

∣

x(t)=xcl(t)
+ . . . . (2.88)

With the action being a sum of two terms, the amplitude factorizes into the product
of a classical amplitude eiAcl/h̄ and a fluctuation factor F0(tb − ta),

(xbtb|xata) =
∫

Dx eiA[x]/h̄ = eiAcl/h̄F0(tb, ta). (2.89)

For the free particle with the classical action

Acl =
∫ tb

ta
dt
M

2
ẋ2cl, (2.90)

the function factor F0(tb − ta) is given by the path integral

F0(tb − ta) =
∫

Dδx(t) exp
[

i

h̄

∫ tb

ta
dt
M

2
(δẋ)2

]

. (2.91)

Due to the vanishing of δx(t) at the endpoints, this does not depend on xb, xa but
only on the initial and final times tb, ta. The time translational invariance reduces
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this dependence further to the time difference tb−ta. The subscript zero of F0(tb−ta)
indicates the free-particle nature of the fluctuation factor. After inserting (2.82) into
(2.90), we find immediately

Acl =
M

2

(xb − xa)
2

tb − ta
. (2.92)

The fluctuation factor, on the other hand, requires the evaluation of the multiple
integral

FN
0 (tb − ta) =

1
√

2πh̄iǫ/M

N
∏

n=1





∫ ∞

−∞

dδxn
√

2πh̄iǫ/M



 exp
(

i

h̄
AN

fl

)

, (2.93)

where AN
fl is the time-sliced fluctuation action

AN
fl =

M

2
ǫ
N+1
∑

n=1

(

δxn − δxn−1

ǫ

)2

. (2.94)

At the end, we have to take the continuum limit

N → ∞, ǫ = (tb − ta)/(N + 1) → 0.

2.2.4 Fluctuation Factor

The remainder of this section will be devoted to calculating the fluctuation factor
(2.93). Before doing this, we shall develop a general technique for dealing with
such time-sliced expressions. Due to the frequent appearance of the fluctuating
δx-variables, we shorten the notation by omitting all δ’s and working only with
x-variables.

A useful device for manipulating sums on a sliced time axis such as (2.94) is the
difference operator ∇ and its conjugate ∇, defined by

∇x(t) ≡ 1

ǫ
[x(t + ǫ)− x(t)], ∇x(t) ≡ 1

ǫ
[x(t)− x(t− ǫ)]. (2.95)

They are two different discrete versions of the time derivative ∂t, to which both
reduce in the continuum limit ǫ→ 0:

∇,∇ ǫ→0−−−→ ∂t, (2.96)

if they act upon differentiable functions. Since the discretized time axis with N +1
steps constitutes a one-dimensional lattice, the difference operators ∇,∇ are also
called lattice derivatives .

For the coordinates xn = x(tn) at the discrete times tn we write

∇xn =
1

ǫ
(xn+1 − xn), N ≥ n ≥ 0,

∇xn =
1

ǫ
(xn − xn−1), N + 1 ≥ n ≥ 1. (2.97)
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The time-sliced action (2.94) can then be expressed in terms of ∇xn or ∇xn as
(writing xn instead of δxn)

AN
fl =

M

2
ǫ

N
∑

n=0

(∇xn)2 =
M

2
ǫ
N+1
∑

n=1

(∇xn)2. (2.98)

In this notation, the limit ǫ → 0 is most obvious: The sum ǫ
∑

n goes into the
integral

∫ tb
ta dt, whereas both (∇xn)2 and (∇xn)2 tend to ẋ2, so that

AN
fl →

∫ tb

ta
dt
M

2
ẋ2. (2.99)

Thus, the time-sliced action becomes the Lagrangian action.
Lattice derivatives have properties quite similar to ordinary derivatives. One

only has to be careful in distinguishing ∇ and ∇. For example, they allow for the
useful operation summation by parts which is analogous to integration by parts.
Recall the rule for the integration by parts

∫ tb

ta
dtg(t)ḟ(t) = g(t)f(t)

∣

∣

∣

tb

ta
−
∫ tb

ta
dtġ(t)f(t). (2.100)

On the lattice, this relation yields for functions f(t) → xn and g(t) → pn:

ǫ
N+1
∑

n=1

pn∇xn = pnxn|N+1
0 − ǫ

N
∑

n=0

(∇pn)xn. (2.101)

This follows directly by rewriting (2.35).
For functions vanishing at the endpoints, i.e., for xN+1 = x0 = 0, we can omit

the surface terms and shift the range of the sum on the right-hand side to obtain
the simple formula [see also Eq. (2.49)]

N+1
∑

n=1

pn∇xn = −
N
∑

n=0

(∇pn)xn = −
N+1
∑

n=1

(∇pn)xn. (2.102)

The same thing holds if both p(t) and x(t) are periodic in the interval tb− ta, so that
p0 = pN+1, x0 = xN+1. In this case, it is possible to shift the sum on the right-hand
side by one unit arriving at the more symmetric-looking formula

N+1
∑

n=1

pn∇xn = −
N+1
∑

n=1

(∇pn)xn. (2.103)

In the time-sliced action (2.94) the quantum fluctuations xn (=̂δxn) vanish at the
ends, so that (2.102) can be used to rewrite

N+1
∑

n=1

(∇xn)2 = −
N
∑

n=1

xn∇∇xn. (2.104)
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In the ∇xn -form of the action (2.98), the same expression is obtained by applying
formula (2.102) from the right- to the left-hand side and using the vanishing of x0
and xN+1:

N
∑

n=0

(∇xn)2 = −
N+1
∑

n=1

xn∇∇xn = −
N
∑

n=1

xn∇∇xn. (2.105)

The right-hand sides in (2.104) and (2.105) can be written in matrix form as

−
N
∑

n=1

xn∇∇xn ≡ −
N
∑

n,n′=1

xn(∇∇)nn′xn′ ,

−
N
∑

n=1

xn∇∇xn ≡ −
N
∑

n,n′=1

xn(∇∇)nn′xn′ , (2.106)

with the same N ×N -matrix

∇∇ ≡ ∇∇ ≡ 1

ǫ2



















−2 1 0 . . . 0 0 0
1 −2 1 . . . 0 0 0
...

...
0 0 0 . . . 1 −2 1
0 0 0 . . . 0 1 −2



















. (2.107)

This is obviously the lattice version of the double time derivative ∂2t , to which it
reduces in the continuum limit ǫ→ 0. It will therefore be called the lattice Laplacian.

A further common property of lattice and ordinary derivatives is that they can
both be diagonalized by going to Fourier components. When decomposing

x(t) =
∫ ∞

−∞
dωe−iωtx(ω), (2.108)

and applying the lattice derivative ∇, we find

∇x(tn) =
∫ ∞

−∞
dω

1

ǫ

(

e−iω(tn+ǫ) − e−iωtn
)

x(ω) (2.109)

=
∫ ∞

−∞
dωe−iωtn

1

ǫ
(e−iωǫ − 1) x(ω).

Hence, on the Fourier components, ∇ has the eigenvalues

1

ǫ
(e−iωǫ − 1). (2.110)

In the continuum limit ǫ → 0, this becomes the eigenvalue of the ordinary time
derivative ∂t, i.e., −i times the frequency of the Fourier component ω. As a reminder
of this we shall denote the eigenvalue of i∇ by Ω and have

(i∇x)(ω) = Ω x(ω) ≡ i

ǫ
(e−iωǫ − 1) x(ω). (2.111)
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For the conjugate lattice derivative we find similarly

(i∇x)(ω) = Ω x(ω) ≡ − i
ǫ
(eiωǫ − 1) x(ω), (2.112)

where Ω is the complex-conjugate number of Ω, i.e., Ω ≡ Ω∗. As a consequence, the
eigenvalues of the negative lattice Laplacian −∇∇≡−∇∇ are real and nonnegative:

i

ǫ
(e−iωǫ − 1)

i

ǫ
(1− eiωǫ) =

1

ǫ2
[2− 2 cos(ωǫ)] ≥ 0. (2.113)

Of course, Ω and Ω̄ have the same continuum limit ω.
When decomposing the quantum fluctuations x(t) [=̂δx(t)] into their Fourier

components, not all eigenfunctions occur. Since x(t) vanishes at the initial time
t = ta, the decomposition can be restricted to the sine functions and we may expand

x(t) =
∫ ∞

0
dω sinω(t− ta) x(ω). (2.114)

The vanishing at the final time t = tb is enforced by a restriction of the frequencies
ω to the discrete values

νm =
πm

tb − ta
=

πm

(N + 1)ǫ
. (2.115)

Thus we are dealing with the Fourier series

x(t) =
∞
∑

m=1

√

2

(tb − ta)
sin νm(t− ta) x(νm) (2.116)

with real Fourier components x(νm). A further restriction arises from the fact that
for finite ǫ, the series has to represent x(t) only at the discrete points x(tn), n =
0, . . . , N + 1. It is therefore sufficient to carry the sum only up to m = N and to
expand x(tn) as

x(tn) =
N
∑

m=1

√

2

N + 1
sin νm(tn − ta) x(νm), (2.117)

where a factor
√
ǫ has been removed from the Fourier components, for convenience.

The expansion functions are orthogonal,

2

N + 1

N
∑

n=1

sin νm(tn − ta) sin νm′(tn − ta) = δmm′ , (2.118)

and complete:

2

N + 1

N
∑

m=1

sin νm(tn − ta) sin νm(tn′ − ta) = δnn′ (2.119)
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(where 0 < m,m′ < N + 1). The orthogonality relation follows by rewriting the
left-hand side of (2.118) in the form

2

N + 1

1

2
Re

N+1
∑

n=0

{

exp

[

iπ(m−m′)

N + 1
n

]

− exp

[

iπ(m+m′)

N + 1
n

]}

, (2.120)

with the sum extended without harm by a trivial term at each end. Being of the
geometric type, this can be calculated right away. For m = m′ the sum adds up to
1, while for m 6= m′ it becomes

2

N + 1

1

2
Re

[

1− eiπ(m−m′)eiπ(m−m′)/(N+1)

1− eiπ(m−m′)/(N+1)
− (m′ → −m′)

]

. (2.121)

The first expression in the curly brackets is equal to 1 for even m −m′ 6= 0; while
being imaginary for odd m −m′ [since (1 + eiα)/(1 − eiα) is equal to (1 + eiα)(1 −
e−iα)/|1− eiα|2 with the imaginary numerator eiα − e−iα]. For the second term the
same thing holds true for even and odd m+m′ 6= 0, respectively. Since m−m′ and
m+m′ are either both even or both odd, the right-hand side of (2.118) vanishes for
m 6= m′ [remembering that m, m′ ∈ [0, N +1] in the expansion (2.117), and thus in
(2.121)]. The proof of the completeness relation (2.119) can be carried out similarly.

Inserting now the expansion (2.117) into the time-sliced fluctuation action (2.94),
the orthogonality relation (2.118) yields

AN
fl =

M

2
ǫ

N
∑

n=0

(∇xn)2 =
M

2
ǫ
N+1
∑

m=1

x(νm)ΩmΩmx(νm). (2.122)

Thus the action decomposes into a sum of independent quadratic terms involving
the discrete set of eigenvalues

ΩmΩm =
1

ǫ2
[2− 2 cos(νmǫ)] =

1

ǫ2

[

2− 2 cos
(

πm

N + 1

)]

, (2.123)

and the fluctuation factor (2.93) becomes

FN
0 (tb − ta) =

1
√

2πh̄iǫ/M

N
∏

n=1





∫ ∞

−∞

dxn
√

2πh̄iǫ/M





×
N
∏

m=1

exp
{

i

h̄

M

2
ǫΩmΩm [x(νm)]

2
}

. (2.124)

Before performing the integrals, we must transform the measure of integration from
the local variables xn to the Fourier components x(νm). Due to the orthogonality
relation (2.118), the transformation has a unit determinant implying that

N
∏

n=1

dxn =
N
∏

m=1

dx(νm). (2.125)
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With this, Eq. (2.124) can be integrated with the help of Fresnel’s formula (1.337).
The result is

FN
0 (tb − ta) =

1
√

2πh̄iǫ/M

N
∏

m=1

1
√

ǫ2ΩmΩm

. (2.126)

To calculate the product we use the formula5

N
∏

m=1

(

1 + x2 − 2x cos
mπ

N + 1

)

=
x2(N+1) − 1

x2 − 1
. (2.127)

Taking the limit x→ 1 gives

N
∏

m=1

ǫ2ΩmΩm =
N
∏

m=1

2
(

1− cos
mπ

N + 1

)

= N + 1. (2.128)

The time-sliced fluctuation factor of a free particle is therefore simply

FN
0 (tb − ta) =

1
√

2πih̄(N + 1)ǫ/M
, (2.129)

or, expressed in terms of tb − ta,

F0(tb − ta) =
1

√

2πih̄(tb − ta)/M
. (2.130)

As in the amplitude (2.72) we have dropped the superscript N since this final result
is independent of the number of time slices.

Note that the dimension of the fluctuation factor is 1/length. In fact, one may
introduce a length scale associated with the time interval tb − ta,

l(tb − ta) ≡
√

2πh̄(tb − ta)/M, (2.131)

and write

F0(tb − ta) =
1√

il(tb − ta)
. (2.132)

With (2.130) and (2.92), the full time evolution amplitude of a free particle (2.89)
is again given by (2.72)

(xbtb|xata) =
1

√

2πih̄(tb − ta)/M
exp

[

i

h̄

M

2

(xb − xa)
2

tb − ta

]

. (2.133)

It is instructive to present an alternative calculation of the product of eigenvalues
in (2.126) which does not make use of the Fourier decomposition and works entirely
in configuration space. We observe that the product

N
∏

m=1

ǫ2ΩmΩm (2.134)

5I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 1.396.2.
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is the determinant of the diagonalized N × N -matrix −ǫ2∇∇. This follows from
the fact that for any matrix, the determinant is the product of its eigenvalues.
The product (2.134) is therefore also called the fluctuation determinant of the free
particle and written

N
∏

m=1

ǫ2ΩmΩm ≡ detN (−ǫ2∇∇). (2.135)

With this notation, the fluctuation factor (2.126) reads

FN
0 (tb − tb) =

1
√

2πh̄iǫ/M

[

detN(−ǫ2∇∇)
]−1/2

. (2.136)

Now one realizes that the determinant of ǫ2∇∇ can be found very simply from the
explicit N ×N matrix (2.107) by induction: For N = 1 we see directly that

detN=1(−ǫ2∇∇) = |2| = 2. (2.137)

For N = 2, the determinant is

detN=2(−ǫ2∇∇) =

∣

∣

∣

∣

∣

2 −1
−1 2

∣

∣

∣

∣

∣

= 3. (2.138)

A recursion relation is obtained by developing the determinant twice with respect
to the first row:

detN(−ǫ2∇∇) = 2 detN−1(−ǫ2∇∇)− detN−2(−ǫ2∇∇). (2.139)

With the initial condition (2.137), the solution is

detN(−ǫ2∇∇) = N + 1, (2.140)

in agreement with the previous result (2.128).

2.2.5 Finite Slicing Properties of Free-Particle Amplitude

The time-sliced free-particle time evolution amplitude (2.76) happens to be inde-
pendent of the number N of time slices used for their calculation. We have pointed
this out earlier for the fluctuation factor (2.129). Let us study the origin of this
independence for the classical action in the exponent. The difference equation of
motion

−∇∇x(t) = 0 (2.141)

is solved by the same linear function

x(t) = At +B, (2.142)
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as in the continuum. Imposing the initial conditions gives

xcl(tn) = xa + (xb − xa)
n

N + 1
. (2.143)

The time-sliced action of the fluctuations is calculated, via a summation by parts
on the lattice [see (2.101)]. Using the difference equation ∇∇xcl = 0, we find

Acl = ǫ
N+1
∑

n=1

M

2
(∇xcl)2 (2.144)

=
M

2

(

xcl∇xcl
∣

∣

∣

N+1

n=0
− ǫ

N
∑

n=0

xcl∇∇xcl
)

=
M

2
xcl∇xcl

∣

∣

∣

N+1

n=0
=
M

2

(xb − xa)
2

tb − ta
.

This coincides with the continuum action for any number of time slices.
In the operator formulation of quantum mechanics, the ǫ-independence of the

amplitude of the free particle follows from the fact that in the absence of a potential
V (x), the two sides of the Trotter formula (2.26) coincide for any N .

2.3 Exact Solution for Harmonic Oscillator

A further problem to be solved along similar lines is the time evolution amplitude
of the linear oscillator

(xbtb|xata) =
∫

D′x
∫ Dp

2πh̄
exp

{

i

h̄
A[p, x]

}

=
∫

Dx exp
{

i

h̄
A[x]

}

, (2.145)

with the canonical action

A[p, x] =
∫ tb

ta
dt

(

pẋ− 1

2M
p2 − Mω2

2
x2
)

, (2.146)

and the Lagrangian action

A[x] =
∫ tb

ta
dt
M

2
(ẋ2 − ω2x2). (2.147)

2.3.1 Fluctuations around the Classical Path

As before, we proceed with the Lagrangian path integral, starting from the time-
sliced form of the action

AN = ǫ
M

2

N+1
∑

n=1

[

(∇xn)2 − ω2x2n
]

. (2.148)
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The path integral is again a product of Gaussian integrals which can be evaluated
successively. In contrast to the free-particle case, however, the direct evaluation
is now quite complicated; it will be presented in Appendix 2B. It is far easier to
employ the fluctuation expansion, splitting the paths into a classical path xcl(t) plus
fluctuations δx(t). The fluctuation expansion makes use of the fact that the action
is quadratic in x = xcl + δx and decomposes into the sum of a classical part

Acl =
∫ tb

ta
dt
M

2
(ẋ2cl − ω2x2cl), (2.149)

and a fluctuation part

Afl =
∫ tb

ta
dt
M

2
[(δẋ)2 − ω2(δx)2], (2.150)

with the boundary condition

δx(ta) = δx(tb) = 0. (2.151)

There is no mixed term, due to the extremality of the classical action. The equation
of motion is

ẍcl = −ω2xcl. (2.152)

Thus, as for a free-particle, the total time evolution amplitude splits into a classical
and a fluctuation factor:

(xbtb|xata) =
∫

Dx eiA[x]/h̄ = eiAcl/h̄Fω(tb − ta). (2.153)

The subscript of Fω records the frequency of the oscillator.
The classical orbit connecting initial and final points is obviously

xcl(t) =
xb sinω(t− ta) + xa sinω(tb − t)

sinω(tb − ta)
. (2.154)

Note that this equation only makes sense if tb− ta is not equal to an integer multiple
of π/ω which we shall always assume from now on.6

After an integration by parts we can rewrite the classical action Acl as

Acl =
∫ tb

ta
dt
M

2

[

xcl(−ẍcl − ω2xcl)
]

+
M

2
xclẋcl

∣

∣

∣

tb

ta
. (2.155)

The first term vanishes due to the equation of motion (2.152), and we obtain the
simple expression

Acl =
M

2
[xcl(tb)ẋcl(tb)− xcl(ta)ẋcl(ta)]. (2.156)

6For subtleties in the immediate neighborhood of the singularities which are known as caustic

phenomena, see Notes and References at the end of the chapter, as well as Section 4.8.
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Since

ẋcl(ta) =
ω

sinω(tb − ta)
[xb − xa cosω(tb − ta)], (2.157)

ẋcl(tb) =
ω

sinω(tb − ta)
[xb cosω(tb − ta)− xa], (2.158)

we can rewrite the classical action as

Acl =
Mω

2 sinω(tb − ta)

[

(x2b + x2a) cosω(tb − ta)− 2xbxa
]

. (2.159)

2.3.2 Fluctuation Factor

We now turn to the fluctuation factor. With the matrix notation for the lattice
operator −∇∇− ω2, we have to solve the multiple integral

FN
ω (tb, ta) =

1
√

2πh̄iǫ/M

N
∏

n=1





∫ ∞

−∞

dδxn
√

2πh̄iǫ/M





× exp







i

h̄

M

2
ǫ

N
∑

n,n′=1

δxn[−∇∇− ω2]nn′δxn′







. (2.160)

When going to the Fourier components of the paths, the integral factorizes in the
same way as for the free-particle expression (2.124). The only difference lies in the
eigenvalues of the fluctuation operator which are now

ΩmΩm − ω2 =
1

ǫ2
[2− 2 cos(νmǫ)]− ω2 (2.161)

instead of ΩmΩm. For times tb, ta where all eigenvalues are positive (which will
be specified below) we obtain from the upper part of the Fresnel formula (1.337)
directly

FN
ω (tb, ta) =

1
√

2πh̄iǫ/M

N
∏

m=1

1
√

ǫ2ΩmΩm − ǫ2ω2
. (2.162)

The product of these eigenvalues is found by introducing an auxiliary frequency ω̃
satisfying

sin
ǫω̃

2
≡ ǫω

2
. (2.163)

Then we decompose the product as

N
∏

m=1

[ǫ2ΩmΩm − ǫ2ω2] =
N
∏

m=1

[

ǫ2ΩmΩm

]

N
∏

m=1

[

ǫ2ΩmΩm − ǫ2ω2

ǫ2ΩmΩm

]

=
N
∏

m=1

[

ǫ2ΩmΩm

]





N
∏

m=1



1− sin2 ǫω̃
2

sin2 mπ
2(N+1)







 . (2.164)
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The first factor is equal to (N + 1) by (2.128). The second factor, the product of
the ratios of the eigenvalues, is found from the standard formula7

N
∏

m=1



1− sin2 x

sin2 mπ
2(N+1)



 =
1

sin 2x

sin[2(N + 1)x]

(N + 1)
. (2.165)

With x = ω̃ǫ/2, we arrive at the fluctuation determinant

detN(−ǫ2∇∇− ǫ2ω2) =
N
∏

m=1

[ǫ2ΩmΩm − ǫ2ω2] =
sin ω̃(tb − ta)

sin ǫω̃
, (2.166)

and the fluctuation factor is given by

FN
ω (tb, ta) =

1
√

2πih̄/M

√

sin ω̃ǫ

ǫ sin ω̃(tb − ta)
, tb − ta < π/ω̃, (2.167)

where, as we have agreed earlier in Eq. (1.337),
√
i means eiπ/4, and tb− ta is always

larger than zero.

2.3.3 The iη -Prescription and Maslov-Morse Index

The result (2.167) is initially valid only for

tb − ta < π/ω̃. (2.168)

In this time interval, all eigenvalues in the fluctuation determinant (2.166) are pos-
itive, and the upper version of the Fresnel formula (1.337) applies to each of the
integrals in (2.160) [this was assumed in deriving (2.162)]. If tb − ta grows larger
than π/ω̃, the smallest eigenvalue Ω1Ω1 − ω2 becomes negative and the integration
over the associated Fourier component has to be done according to the lower case of
the Fresnel formula (1.337). The resulting amplitude carries an extra phase factor
e−iπ/2 and remains valid until tb − ta becomes larger than 2π/ω̃, where the second
eigenvalue becomes negative introducing a further phase factor e−iπ/2.

All phase factors emerge naturally if we associate with the oscillator frequency ω
an infinitesimal negative imaginary part, replacing everywhere ω by ω − iη with an
infinitesimal η > 0. This is referred to as the iη-prescription. Physically, it amounts
to attaching an infinitesimal damping term to the oscillator, so that the amplitude
behaves like e−iωt−ηt and dies down to zero after a very long time (as opposed to
an unphysical antidamping term which would make it diverge after a long time).
Now, each time that tb − ta passes an integer multiple of π/ω̃, the square root of
sin ω̃(tb−ta) in (2.167) passes a singularity in a specific way which ensures the proper
phase.8 With such an iη-prescription it will be superfluous to restrict tb − ta to the

7I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 1.391.1.
8In the square root, we may equivalently assume tb − ta to carry a small negative imaginary

part. For a detailed discussion of the phases of the fluctuation factor in the literature, see Notes
and References at the end of the chapter.
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range (2.168). Nevertheless it will sometimes be useful to exhibit the phase factor
arising in this way in the fluctuation factor (2.167) for tb − ta > π/ω̃ by writing

FN
ω (tb, ta) =

1
√

2πih̄/M

√

sin ω̃ǫ

ǫ| sin ω̃(tb − ta)|
e−iνπ/2, (2.169)

where ν is the number of zeros encountered in the denominator along the trajectory.
This number is called the Maslov-Morse index of the trajectory9.

2.3.4 Continuum Limit

Let us now go to the continuum limit, ǫ→ 0. Then the auxiliary frequency ω̃ tends
to ω and the fluctuation determinant becomes

detN(−ǫ2∇∇− ǫ2ω2)
ǫ→0−−−→ sinω(tb − ta)

ωǫ
. (2.170)

The fluctuation factor FN
ω (tb − ta) goes over into

Fω(tb − ta) =
1

√

2πih̄/M

√

ω

sinω(tb − ta)
, (2.171)

with the phase for tb − ta > π/ω determined as above.
In the limit ω → 0, both fluctuation factors agree, of course, with the free-particle

result (2.130).
In the continuum limit, the ratios of eigenvalues in (2.164) can also be calculated

in the following simple way. We perform the limit ǫ → 0 directly in each factor.
This gives

ǫ2ΩmΩm − ǫ2ω2

ǫ2ΩmΩm

= 1− ǫ2ω2

2− 2 cos(νmǫ)

ǫ→0−−−→ 1− ω2(tb − ta)
2

π2m2
. (2.172)

As the number N goes to infinity we wind up with an infinite product of these
factors. Using the well-known infinite-product formula for the sine function10

sin x = x
∞
∏

m=1

(

1− x2

m2π2

)

, (2.173)

we find, with x = ω(tb − ta),

∏

m

ΩmΩm

ΩmΩm − ω2

ǫ→0−−−→
∞
∏

m=1

ν2m
ν2m − ω2

=
ω(tb − ta)

sinω(tb − ta)
, (2.174)

9V.P. Maslov and M.V. Fedoriuk, Semi-Classical Approximations in Quantum Mechanics , Rei-
del, Boston, 1981.

10I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 1.431.1.
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and obtain once more the fluctuation factor in the continuum (2.171).
Multiplying the fluctuation factor with the classical amplitude, the time evolu-

tion amplitude of the linear oscillator in the continuum reads

(xbtb|xata) =
∫

Dx(t) exp
[

i

h̄

∫ tb

ta
dt
M

2
(ẋ2 − ω2x2)

]

=
1

√

2πih̄/M

√

ω

sinω(tb − ta)
(2.175)

× exp

{

i

2h̄

Mω

sinω(tb − ta)
[(x2b + x2a) cosω(tb − ta)− 2xbxa]

}

.

The result can easily be extended to any number D of dimensions, where the
action is

A =
∫ tb

ta
dt
M

2

(

ẋ2 − ω2x2
)

. (2.176)

Being quadratic in x, the action is the sum of the actions of each component leading
to the factorized amplitude:

(xbtb|xata) =
D
∏

i=1

(xibtb|xiata) =
1

√

2πih̄/M
D

√

ω

sinω(tb − ta)

D

× exp

{

i

2h̄

Mω

sinω(tb − ta)
[(x2

b + x2
a) cosω(tb − ta)− 2xbxa]

}

, (2.177)

where the phase of the second square root for tb − ta > π/ω is determined as in the
one-dimensional case [see Eq. (1.546)].

2.3.5 Useful Fluctuation Formulas

It is worth realizing that when performing the continuum limit in the ratio of eigenvalues (2.174),
we have actually calculated the ratio of the functional determinants of the differential operators

det(−∂2
t − ω2)

det(−∂2
t )

. (2.178)

Indeed, the eigenvalues of −∂2
t in the space of real fluctuations vanishing at the endpoints are

simply

ν2m =

(

πm

tb − ta

)2

, (2.179)

so that the ratio (2.178) is equal to the product

det(−∂2
t − ω2)

det(−∂2
t )

=

∞
∏

m=1

ν2m − ω2

ν2m
, (2.180)

which is the same as (2.174). This observation should, however, not lead us to believe that the
entire fluctuation factor

Fω(tb − ta) =

∫

Dδx exp

{

i

h̄

∫ tb

ta

dt
M

2
[(δẋ)2 − ω2(δx)2]

}

(2.181)
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could be calculated via the continuum determinant

Fω(tb, ta)
ǫ→0
−−−→ 1

√

2πh̄iǫ/M

1
√

det(−∂2
t − ω2)

(false). (2.182)

The product of eigenvalues in det(−∂2
t − ω2) would be a strongly divergent expression

det(−∂2
t − ω2) =

∞
∏

m=1

(ν2m − ω2) (2.183)

=
∞
∏

m=1

(

ν2m
)

∞
∏

m=1

[

ν2m − ω2

ν2m

]

=
∞
∏

m=1

[

π2m2

(tb − ta)2

]

× sinω(tb − ta)

ω(tb − ta)
.

Only ratios of determinants −∇∇ − ω2 with different ω’s can be replaced by their differential
limits. Then the common divergent factor in (2.183) cancels.

Let us look at the origin of this strong divergence. The eigenvalues on the lattice and their
continuum approximation start both out for small m as

ΩmΩm ≈ ν2m ≈ π2m2

(tb − ta)2
. (2.184)

For large m ≤ N , the eigenvalues on the lattice saturate at ΩmΩm → 2/ǫ2, while the ν2m’s keep
growing quadratically in m. This causes the divergence.

The correct time-sliced formulas for the fluctuation factor of a harmonic oscillator is summa-
rized by the following sequence of equations:

FN
ω (tb − ta) =

1
√

2πh̄iǫ/M

N
∏

n=1

[

∫

dδxn
√

2πh̄iǫ/M

]

exp

[

i

h̄

M

2ǫ
δxT (−ǫ2∇∇− ǫ2ω2)δx

]

=
1

√

2πh̄iǫ/M

1
√

detN (−ǫ2∇∇− ǫ2ω2)
, (2.185)

where in the first expression, the exponent is written in matrix notation with xT denoting the trans-
posed vector x whose components are xn. Taking out a free-particle determinant detN (−ǫ2∇∇),
formula (2.140), leads to the ratio formula

FN
ω (tb − ta) =

1
√

2πh̄i(tb − ta)/M

[

detN (−ǫ2∇∇− ǫ2ω2)

detN (−ǫ2∇∇)

]−1/2

, (2.186)

which yields

FN
ω (tb − ta) =

1
√

2πih̄/M

√

sin ω̃ǫ

ǫ sin ω̃(tb − ta)
, (2.187)

If with ω̃ of Eq. (2.163). If we are only interested in the continuum limit, we may let ǫ go to zero
on the right-hand side of (2.186) and evaluate

Fω(tb − ta) =
1

√

2πh̄i(tb − ta)/M

[

det(−∂2
t − ω2)

det(−∂2
t )

]−1/2

=
1

√

2πh̄i(tb − ta)/M

∞
∏

m=1

[

ν2m − ω2

ν2m

]−1/2

=
1

√

2πh̄i(tb − ta)/M

√

ω(tb − ta)

sinω(tb − ta)
. (2.188)
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Let us calculate also here the time evolution amplitude in momentum space. The Fourier
transform of initial and final positions of (2.177) [as in (2.73)] yields

(pbtb|pata) =

∫

dDxb e
−ipbxb/h̄

∫

dDxa e
ipaxa/h̄(xbtb|xata)

=
(2πh̄)D
√

2πih̄
D

1
√

Mω sinω(tb − ta)
D

× exp

{

i

h̄

1

2Mω sinω(tb − ta)

[

(p2
b + p2

a) cosω(tb − ta) − 2pbpa

]

}

. (2.189)

The limit ω → 0 reduces to the free-particle expression (2.73), not quite as directly as in the
x-space amplitude (2.177). Expanding the exponent

1

2Mω sinω(tb − ta)

[

(p2
b + pa) cosω(tb − ta) − 2pbp

2
a

]

=
1

2Mω2(tb − ta)

{

(pb − pa)
2 − 1

2
(p2

b + p2
a)[ω(tb − ta)]

2 + . . .

}

, (2.190)

and going to the limit ω → 0, the leading term in (2.189)

(2π)D
√

2πiω2(tb − ta)h̄M
D

exp

{

i

h̄

1

2Mω2(tb − ta)
(pb − pa)

2

}

(2.191)

tends to (2πh̄)Dδ(D)(pb − pa) [recall (1.534)], while the second term in (2.190) yields a factor

e−ip2(tb−ta)/2Mh̄, so that we recover indeed (2.73).

2.3.6 Oscillator Amplitude on Finite Time Lattice

Let us calculate the exact time evolution amplitude for a finite number of time slices. In contrast to
the free-particle case in Section 2.2.5, the oscillator amplitude is no longer equal to its continuum
limit but ǫ-dependent. This will allow us to study some typical convergence properties of path
integrals in the continuum limit. Since the fluctuation factor was initially calculated at a finite ǫ in
(2.169), we only need to find the classical action for finite ǫ. To maintain time reversal invariance
at any finite ǫ, we work with a slightly different sliced potential term in the action than before in
(2.148), using

AN = ǫ
M

2

N+1
∑

n=1

[

(∇xn)2 − ω2(x2
n + x2

n−1)/2
]

, (2.192)

or, written in another way,

AN = ǫ
M

2

N
∑

n=0

[

(∇xn)2 − ω2(x2
n+1 + x2

n)/2
]

. (2.193)

This differs from the original time-sliced action (2.148) by having the potential ω2x2
n replaced by

the more symmetric one ω2(x2
n + x2

n−1)/2. The gradient term is the same in both cases and can
be rewritten, after a summation by parts, as

ǫ
N+1
∑

n=1

(∇xn)2 = ǫ
N
∑

n=0

(∇xn)2 =
[

xb∇xb − xa∇xa

]

− ǫ
N
∑

n=1

xn∇∇xn. (2.194)
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This leads to a time-sliced action

AN =
M

2

(

xb∇xb − xa∇xa

)

− ǫ
M

4
ω2(x2

b + x2
a) − ǫ

M

2

N
∑

n=1

xn(∇∇ + ω2)xn. (2.195)

Since the variation of AN is performed at fixed endpoints xa and xb, the fluctuation factor is the
same as in (2.160). The equation of motion on the sliced time axis is

(∇∇ + ω2)xcl(t) = 0. (2.196)

Here it is understood that the time variable takes only the discrete lattice values tn. The solution
of this difference equation with the initial and final values xa and xb, respectively, is given by

xcl(t) =
1

sin ω̃(tb − ta)
[xb sin ω̃(t− ta) + xa sin ω̃(tb − t)] , (2.197)

where ω̃ is the auxiliary frequency introduced in (2.163). To calculate the classical action on the
lattice, we insert (2.197) into (2.195). After some trigonometry, and replacing ǫ2ω2 by 4 sin2(ω̃ǫ/2),
the action resembles closely the continuum expression (2.159):

AN
cl =

M

2ǫ

sin ω̃ǫ

sin ω̃(tb − ta)

[

(x2
b + x2

a) cos ω̃(tb − ta) − 2xbxa

]

. (2.198)

The total time evolution amplitude on the sliced time axis is

(xbtb|xata) = eiA
N
cl
/h̄FN

ω (tb − ta), (2.199)

with sliced action (2.198) and the sliced fluctuation factor (2.169).

2.4 Gelfand-Yaglom Formula

In many applications one encounters a slight generalization of the oscillator fluc-
tuation problem: The action is harmonic but contains a time-dependent frequency
Ω2(t) instead of the constant oscillator frequency ω2. The associated fluctuation
factor is

F (tb, ta) =
∫

Dδx(t) exp
(

i

h̄
A
)

, (2.200)

with the action

A =
∫ tb

ta
dt
M

2
[(δẋ)2 − Ω2(t)(δx)2]. (2.201)

Since Ω(t) may not be translationally invariant in time, the fluctuation factor de-
pends now in general on both the initial and final times. The ratio formula (2.186)
holds also in this more general case, i.e.,

FN(tb, ta) =
1

√

2πh̄i(tb − ta)/M

[

detN (−ǫ2∇∇− ǫ2Ω2)

detN(−ǫ2∇∇)

]−1/2

. (2.202)

Here Ω2(t) denotes the diagonal matrix

Ω2(t) =









Ω2
N

. . .

Ω2
1









, (2.203)

with the matrix elements Ω2
n = Ω2(tn).
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2.4.1 Recursive Calculation of Fluctuation Determinant

In general, the full set of eigenvalues of the matrix −∇∇ − Ω2(t) is quite difficult
to find, even in the continuum limit. It is, however, possible to derive a powerful
difference equation for the fluctuation determinant which can often be used to find its
value without knowing all eigenvalues. The method is due to Gelfand and Yaglom.11

Let us denote the determinant of the N ×N fluctuation matrix by DN , i.e.,

DN ≡ detN
(

−ǫ2∇∇− ǫ2Ω2
)

(2.204)

≡

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2− ǫ2Ω2
N −1 0 . . . 0 0 0

−1 2− ǫ2Ω2
N−1 −1 . . . 0 0 0

...
...

0 0 0 . . . −1 2− ǫ2Ω2
2 −1

0 0 0 . . . 0 −1 2− ǫ2Ω2
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

By expanding this along the first column, we obtain the recursion relation

DN = (2− ǫ2Ω2
N )DN−1 −DN−2, (2.205)

which may be rewritten as

ǫ2
[

1

ǫ

(

DN −DN−1

ǫ
− DN−1 −DN−2

ǫ

)

+ Ω2
NDN−1

]

= 0. (2.206)

Since the equation is valid for all N , it implies that the determinant DN satisfies
the difference equation

(∇∇+ Ω2
N+1)DN = 0. (2.207)

In this notation, the operator −∇∇ is understood to act on the dimensional label
N of the determinant. The determinant DN may be viewed as the discrete values of
a function of D(t) evaluated on the sliced time axis. Equation (2.207) is called the
Gelfand-Yaglom formula. Thus the determinant as a function of N is the solution
of the classical difference equation of motion and the desired result for a given N is
obtained from the final value DN = D(tN+1). The initial conditions are

D1 = (2− ǫ2Ω2
1),

D2 = (2− ǫ2Ω2
1)(2− ǫ2Ω2

2)− 1.
(2.208)

2.4.2 Examples

As an illustration of the power of the Gelfand-Yaglom formula, consider the known case of a
constant Ω2(t) ≡ ω2 where the Gelfand-Yaglom formula reads

(∇∇ + ω2)DN = 0. (2.209)

This is solved by a linear combination of sin(Nω̃ǫ) and cos(Nω̃ǫ), where ω̃ is given by (2.163). The
solution satisfying the correct boundary condition is obviously

DN =
sin(N + 1)ǫω̃

sin ǫω̃
. (2.210)

11I.M. Gelfand and A.M. Yaglom, J. Math. Phys. 1 , 48 (1960).
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Figure 2.2 Solution of equation of motion with zero initial value and unit initial slope. Its

value at the final time is equal to ǫ times the discrete fluctuation determinant DN = D(tb).

Indeed, the two lowest elements are

D1 = 2 cos ǫω̃,

D2 = 4 cos2 ǫω̃ − 1, (2.211)

which are the same as (2.208), since ǫ2Ω2 ≡ ǫ2ω2=2(1 − cos ω̃ǫ).
The Gelfand-Yaglom formula becomes especially easy to handle in the continuum limit ǫ → 0.

Then, by considering the renormalized function

Dren(tN ) = ǫDN , (2.212)

the initial conditions D1 = 2 and D2 = 3 can be re-expressed as

(ǫD)1 = Dren(ta) = 0, (2.213)

ǫD2 − ǫD1

ǫ
= (∇ǫD)1

ǫ→0
−−−→ Ḋren(ta) = 1. (2.214)

The difference equation for DN turns into the differential equation for Dren(t):

[∂2
t + Ω2(t)]Dren(t) = 0. (2.215)

The situation is pictured in Fig. 2.2. The determinant DN is 1/ǫ times the value of the function
Dren(t) at tb. This value is found by solving the differential equation starting from ta with zero
value and unit slope.

As an example, consider once more the harmonic oscillator with a fixed frequency ω. The
equation of motion in the continuum limit is solved by

Dren(t) =
1

ω
sinω(t− ta), (2.216)

which satisfies the initial conditions (2.214). Thus we find the fluctuation determinant to become,
for small ǫ,

det(−ǫ2∇∇− ǫ2ω2)
ǫ→0
−−−→ 1

ǫ

sinω(tb − ta)

ω
, (2.217)

in agreement with the earlier result (2.210). For the free particle, the solution is Dren(t) = t− ta
and we obtain directly the determinant detN (−ǫ2∇∇) = (tb − ta)/ǫ.

For time-dependent frequencies Ω(t), an analytic solution of the Gelfand-Yaglom initial-value
problem (2.213), (2.214), and (2.215) can be found only for special classes of functions Ω(t). In
fact, (2.215) has the form of a Schrödinger equation of a point particle in a potential Ω2(t), and
the classes of potentials for which the Schrödinger equation can be solved are well-known.
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2.4.3 Calculation on Unsliced Time Axis

In general, the most explicit way of expressing the solution is by linearly combining
Dren=ǫDN from any two independent solutions ξ(t) and η(t) of the homogeneous
differential equation

[∂2t + Ω2(t)]x(t) = 0. (2.218)

The solution of (2.215) is found from a linear combination

Dren(t) = αξ(t) + βη(t). (2.219)

The coefficients are determined from the initial condition (2.214), which imply

αξ(ta) + βη(ta) = 0,

αξ̇(ta) + βη̇(ta) = 1, (2.220)

and thus

Dren(t) =
ξ(t)η(ta)− ξ(ta)η(t)

ξ̇(ta)η(ta)− ξ(ta)η̇(ta)
. (2.221)

The denominator is recognized as the time-independent Wronski determinant of the
two solutions

W ≡ ξ(t)
↔

∂ t η(t) ≡ ξ(t)η̇(t)− ξ̇(t)η(t) (2.222)

at the initial point ta. The right-hand side is independent of t.
The Wronskian is an important quantity in the theory of second-order differential

equations. It is defined for all equations of the Sturm-Liouville type

d

dt

[

a(t)
dy(t)

dt

]

+ b(t)y(t) = 0, (2.223)

for which it is proportional to 1/a(t). The Wronskian is used to construct the Green
function for all such equations.12

In terms of the Wronskian, Eq. (2.221) has the general form

Dren(t) = − 1

W
[ξ(t)η(ta)− ξ(ta)η(t)] . (2.224)

Inserting t = tb gives the desired determinant

Dren = − 1

W
[ξ(tb)η(ta)− ξ(ta)η(tb)] . (2.225)

Note that the same functional determinant can be found from by evaluating the
function

D̃ren(t) = − 1

W
[ξ(tb)η(t)− ξ(t)η(tb)] (2.226)

12For its typical use in classical electrodynamics, see J.D. Jackson, Classical Electrodynamics ,
John Wiley & Sons, New York, 1975, Section 3.11.
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at ta. This also satisfies the homogenous differential equation (2.215), but with the
initial conditions

D̃ren(tb) = 0, ˙̃Dren(tb) = −1. (2.227)

It will be useful to emphasize at which ends the Gelfand-Yaglom boundary condi-
tions are satisfied by denoting Dren(t) and D̃ren(t) by Da(t) and Db(t), respectively,
summarizing their symmetric properties as

[∂2t + Ω2(t)]Da(t) = 0 ; Da(ta) = 0, Ḋa(ta) = 1, (2.228)

[∂2t + Ω2(t)]Db(t) = 0 ; Db(tb) = 0, Ḋb(tb) = −1, (2.229)

with the determinant being obtained from either function as

Dren = Da(tb) = Db(ta). (2.230)

In contrast to this we see from the explicit equations (2.224) and (2.226) that the
time derivatives of two functions at opposite endpoints are in general not related.
Only for frequencies Ω(t) with time reversal invariance, one has

Ḋa(tb) = −Ḋb(ta), for Ω(t) = Ω(−t). (2.231)

For arbitrary Ω(t), one can derive a relation

Ḋa(tb) + Ḋb(ta) = −2
∫ tb

ta
dtΩ(t)Ω̇(t)Da(t)Db(t). (2.232)

As an application of these formulas, consider once more the linear oscillator, for
which two independent solutions are

ξ(t) = cosωt, η(t) = sinωt. (2.233)

Hence

W = ω, (2.234)

and the fluctuation determinant becomes

Dren = − 1

ω
(cosωtb sinωta − cosωta sinωtb) =

1

ω
sinω(tb − ta). (2.235)

2.4.4 D’Alembert’s Construction

It is important to realize that the construction of the solutions of Eqs. (2.228) and
(2.229) requires only the knowledge of one solution of the homogenous differential
equation (2.218), say ξ(t). A second linearly independent solution η(t) can always
be found with the help of a formula due to d’Alembert,

η(t) = w ξ(t)
∫ t dt′

ξ2(t′)
, (2.236)
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where w is some constant. Differentiation yields

η̇ =
ξ̇η

ξ
+
w

ξ
, η̈ =

ξ̈η

ξ
. (2.237)

The second equation shows that with ξ(t), also η(t) is a solution of the homogenous
differential equation (2.218). From the first equation we find that the Wronski
determinant of the two functions is equal to w:

W = ξ(t)η̇(t)− ξ̇(t)η(t) = w. (2.238)

Inserting the solution (2.236) into the formulas (2.224) and (2.226), we obtain
explicit expressions for the Gelfand-Yaglom functions in terms of one arbitrary so-
lution of the homogenous differential equation (2.218):

Dren(t)=Da(t)=ξ(t)ξ(ta)
∫ t

ta

dt′

ξ2(t′)
, D̃ren(t)=Db(t)=ξ(tb)ξ(t)

∫ tb

t

dt′

ξ2(t′)
. (2.239)

The desired functional determinant is

Dren = ξ(tb)ξ(ta)
∫ tb

ta

dt′

ξ2(t′)
. (2.240)

2.4.5 Another Simple Formula

There exists yet another useful formula for the functional determinant. For this we solve the
homogenous differential equation (2.218) for an arbitrary initial position xa and initial velocity
ẋa at the time ta. The result may be expressed as the following linear combination of Da(t) and
Db(t):

x(xa, ẋa; t) =
1

Db(ta)

[

Db(t) −Da(t)Ḋb(ta)
]

xa + Da(t)ẋa . (2.241)

We then see that the Gelfand-Yaglom function Dren(t) = Da(t) can be obtained from the partial
derivative

Dren(t) =
∂x(xa, ẋa; t)

∂ẋa
. (2.242)

This function obviously satisfies the Gelfand-Yaglom initial conditions Dren(ta) = 0 and Ḋren(ta) =
1 of (2.213) and (2.214), which are a direct consequence of the fact that xa and ẋa are independent
variables in the function x(xa, ẋa; t), for which ∂xa/∂ẋa = 0 and ∂ẋa/∂ẋa = 1.

The fluctuation determinant Dren = Da(tb) is then given by

Dren =
∂xb

∂ẋa
, (2.243)

where xb abbreviates the function x(xa, ẋa; tb). It is now obvious that the analogous equations
(2.229) are satisfied by the partial derivative Db(t) = −∂x(t)/∂ẋb, where x(t) is expressed in terms
of the final position xb and velocity ẋb as x(t) = x(xb, ẋb; t)

x(xb, ẋb; t) =
1

Da(tb)

[

Da(t) + Db(t)Ḋa(tb)
]

xb −Db(t)ẋb , (2.244)
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so that we obtain the alternative formula

Dren = −∂xa

∂ẋb
. (2.245)

These results can immediately be generalized to functional determinants of differential opera-
tors of the form −∂2

t δij−Ω2
ij(t) where the time-dependent frequency is a D×D-dimensional matrix

Ω2
ij(t), (i, j = 1, . . . , D). Then the associated Gelfand-Yaglom function Da(t) becomes a matrix

Dij(t) satisfying the initial conditions Dij(ta) = 0, Ḋij(tb) = δij , and the desired functional
determinant Dren is equal to the ordinary determinant of Dij(tb):

Dren = Det
[

−∂2
t δij − Ω2

ij(t)
]

= detDij(tb). (2.246)

The homogeneous differential equation and the initial conditions are obviously satisfied by the
partial derivative matrix Dij(t) = ∂xi(t)/∂ẋj

a, so that the explicit representations of Dij(t) in
terms of the general solution of the classical equations of motion

[

−∂2
t δij − Ω2

ij(t)
]

xj(t) = 0
become

Dren = det
∂xi

b

∂ẋj
a

= det

(

−∂xi
a

∂ẋj
b

)

. (2.247)

A further couple of formulas for functional determinants can be found by constructing a solution
of the homogeneous differential equation (2.218) which passes through specific initial and final
points xa and xb at ta and tb, respectively:

x(xb, xa; t) =
Db(t)

Db(ta)
xa +

Da(t)

Da(tb)
xb. (2.248)

The Gelfand-Yaglom functions Da(t) and Db(t) can therefore be obtained from the partial deriva-
tives

Da(t)

Da(tb)
=

∂x(xb, xa; t)

∂xb
,

Db(t)

Db(ta)
=

∂x(xb, xa; t)

∂xa
. (2.249)

At the endpoints, Eqs. (2.248) yield

ẋa =
Ḋb(ta)

Db(ta)
xa +

1

Da(tb)
xb, (2.250)

ẋb = − 1

Db(ta)
xa +

Ḋa(tb)

Da(tb)
xb, (2.251)

so that the fluctuation determinant Dren = Da(tb) = Db(ta) is given by the formulas

Dren =

(

∂ẋa

∂xb

)−1

= −
(

∂ẋb

∂xa

)−1

, (2.252)

where ẋa and ẋb are functions of the independent variables xa and xb. The equality of these ex-
pressions with the previous ones in (2.243) and (2.245) is a direct consequence of the mathematical
identity for partial derivatives

∂xb

∂ẋa

∣

∣

∣

∣

xa

=

(

∂ẋa

∂xb

∣

∣

∣

∣

xa

)−1

. (2.253)

Let us emphasize that all functional determinants calculated in this Chapter apply to the
fluctuation factor of paths with fixed endpoints. In mathematics, this property is referred to
as Dirichlet boundary conditions. In the context of quantum statistics, we shall also need such
determinants for fluctuations with periodic boundary conditions, for which the Gelfand-Yaglom
method must be modified. We shall see in Section 2.11 that this causes considerable complications
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in the lattice derivation, which will make it desirable to find a simpler derivation of both functional
determinants. This will be found in Section 3.27 in a continuum formulation.

In general, the homogenous differential equation (2.218) with time-dependent frequency Ω(t)
cannot be solved analytically. The equation has the same form as a Schrödinger equation for
a point particle in one dimension moving in a one dimensional potential Ω2(t), and there are
only a few classes of potentials for which the solutions are known in closed form. Fortunately,
however, the functional determinant will usually arise in the context of quadratic fluctuations
around classical solutions in time-independent potentials (see in Section 4.3). If such a classical
solution is known analytically, it will provide us automatically with a solution of the homogeneous
differential equation (2.218). Some important examples will be discussed in Sections 17.4 and
17.11.

2.4.6 Generalization to D Dimensions

The above formulas have an obvious generalization to a D-dimensional version of
the fluctuation action (2.201)

A =
∫ tb

ta
dt
M

2
[(δẋ)2 − δxT




2(t)δx], (2.254)

where 
2(t) is a D×D matrix with elements Ω2
ij(t). The fluctuation factor (2.202)

generalizes to

FN(tb, ta) =
1

√

2πh̄i(tb − ta)/M
D

[

detN (−ǫ2∇∇− ǫ2
2)

detN(−ǫ2∇∇)

]−1/2

. (2.255)

The fluctuation determinant is found by Gelfand-Yaglom’s construction from a for-
mula

Dren = detDa(tb) = detDb(ta), (2.256)

with the matrices Da(t) and Db(t) satisfying the classical equations of motion and
initial conditions corresponding to (2.228) and (2.229):

[∂2t +

2(t)]Da(t) = 0 ; Da(ta) = 0, Ḋa(ta) = 1, (2.257)

[∂2t +

2(t)]Db(t) = 0 ; Db(tb) = 0, Ḋb(tb) = −1, (2.258)

where 1 is the unit matrix in D dimensions. We can then repeat all steps in the last
section and find the D-dimensional generalization of formulas (2.252):

Dren =

(

det
∂ẋia
∂xjb

)−1

=

[

det

(

−∂ẋ
i
b

∂xja

)]−1

. (2.259)

2.5 Harmonic Oscillator with Time-Dependent Frequency

The results of the last section put us in a position to solve exactly the path integral
of a harmonic oscillator with arbitrary time-dependent frequency Ω(t). We shall
first do this in coordinate space, later in momentum space.
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2.5.1 Coordinate Space

Consider the path integral

(xbtb|xata) =
∫

Dx exp
{

i

h̄
A[x]

}

, (2.260)

with the Lagrangian action

A[x] =
M

2

∫ tb

ta
dt
[

ẋ2(t)− Ω2(t)x2(t)
]

, (2.261)

which is harmonic with a time-dependent frequency. As in Eq. (2.14), the result can
be written as a product of a fluctuation factor and an exponential containing the
classical action:

(xbtb|xata) =
∫

Dx eiA[x]/h̄ = FΩ(tb, ta)e
iAcl/h̄. (2.262)

From the discussion in the last section we know that the fluctuation factor is, by
analogy with (2.171), and recalling (2.243),

FΩ(tb, ta) =
1

√

2πih̄/M

1
√

Da(tb)
. (2.263)

The determinant Da(tb) = Dren may be expressed in terms of partial derivatives
according to formulas (2.243) and (2.252):

FΩ(tb, ta) =
1

√

2πih̄/M

(

∂xb
∂ẋa

)−1/2

=
1

√

2πih̄/M

(

∂ẋa
∂xb

)1/2

, (2.264)

where the first partial derivative is calculated from the function x(xa, ẋa; t), the
second from ẋ(xb, xa; t). Equivalently we may use (2.245) and the right-hand part
of Eq. (2.252) to write

FΩ(tb, ta) =
1

√

2πih̄/M

(

−∂xa
∂ẋb

)−1/2

=
1

√

2πih̄/M

(

−∂ẋb
∂xa

)1/2

. (2.265)

It remains to calculate the classical action Acl. This can be done in the same
way as in Eqs. (2.155) to (2.159). After a partial integration, we have as before

Acl =
M

2
(xbẋb − xaẋa). (2.266)

Exploiting the linear dependence of ẋb and ẋa on the endpoints xb and xa, we may
rewrite this as

Acl =
M

2

(

xb
∂ẋb
∂xb

xb − xa
∂ẋa
∂xa

xa + xb
∂ẋb
∂xa

xa − xa
∂ẋa
∂xb

xb

)

. (2.267)
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Inserting the partial derivatives from (2.250) and (2.251) and using the equality of
Da(tb) and Db(ta), we obtain the classical action

Acl =
M

2Da(tb)

[

x2bḊa(tb)− x2aḊb(ta)− 2xbxa
]

. (2.268)

Note that there exists another simple formula for the fluctuation determinant Dren:

Dren = Da(tb) = Db(ta) = −M
(

∂2

∂xb∂xa
Acl

)−1

. (2.269)

For the harmonic oscillator with time-independent frequency ω, the Gelfand-
Yaglom function Da(t) of Eq. (2.235) has the property (2.231) due to time reversal
invariance, and (2.268) reproduces the known result (2.159).

The expressions containing partial derivatives are easily extended to D dimen-
sions: We simply have to replace the partial derivatives ∂xb/∂ẋa, ∂ẋb/∂ẋa, . . . by
the corresponding D×D matrices, and write the action as the associated quadratic
form.

The D-dimensional versions of the fluctuation factors (2.264) are

FΩ(tb, ta) =
1

√

2πih̄/M
D

[

det
∂xib
∂ẋja

]−1/2

=
1

√

2πih̄/M
D

[

det
∂ẋia
∂xjb

]1/2

. (2.270)

All formulas for fluctuation factors hold initially only for sufficiently short times
tb − ta. For larger times, they carry phase factors determined as before in (2.169).
The fully defined expression may be written as

FΩ(tb, ta) =
1

√

2πih̄/M
D

∣

∣

∣

∣

∣

det
∂xib
∂ẋja

∣

∣

∣

∣

∣

−1/2

e−iνπ/2 =
1

√

2πih̄/M
D

∣

∣

∣

∣

∣

det
∂ẋia
∂xjb

∣

∣

∣

∣

∣

1/2

e−iνπ/2,

(2.271)
where ν is the Maslov-Morse index. In the one-dimensional case it counts the turn-
ing points of the trajectory, in the multidimensional case the number of zeros in
determinant det ∂xib/∂ẋ

j
a along the trajectory, if the zero is caused by a reduction

of the rank of the matrix ∂xib/∂ẋ
j
a by one unit. If it is reduced by more than one

unit, ν increases accordingly. In this context, the number ν is also called the Morse

index of the trajectory.
The zeros of the functional determinant are also called conjugate points . They

are generalizations of the turning points in one-dimensional systems. The surfaces
in x-space, on which the determinant vanishes, are called caustics . The conjugate
points are the places where the orbits touch the caustics.13

Note that for infinitesimally short times, all fluctuation factors and classical ac-
tions coincide with those of a free particle. This is obvious for the time-independent
harmonic oscillator, where the amplitude (2.177) reduces to that of a free particle

13See M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics , Springer, Berlin, 1990.
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in Eq. (2.74) in the limit tb → ta. Since a time-dependent frequency is constant over
an infinitesimal time, this same result holds also here. Expanding the solution of
the equations of motion for infinitesimally short times as

xb ≈ (tb − ta)ẋa + xa, xa ≈ −(tb − ta)ẋb + xb, (2.272)

we have immediately

∂xib
∂ẋja

= δij(tb − ta),
∂xa

∂ẋjb
= −δij(tb − ta). (2.273)

Similarly, the expansions

ẋb ≈ ẋa ≈
xb − xa

tb − ta
(2.274)

lead to

∂ẋib
∂xja

= −δij
1

tb − ta
,

∂ẋia
∂xjb

= δij
1

tb − ta
. (2.275)

Inserting the expansions (2.273) or (2.274) into (2.266) (in D dimensions), the action
reduces approximately to the free-particle action

Acl ≈
M

2

(xb − xa)
2

tb − ta
. (2.276)

2.5.2 Momentum Space

Let us also find the time evolution amplitude in momentum space. For this we write the classical
action (2.267) as a quadratic form

Acl =
M

2
(xb, xa)A

(

xb

xa

)

(2.277)

with a matrix

A =









∂ẋb

∂xb

∂ẋb

∂xa

−∂ẋa

∂xb
−∂ẋa

∂xa









. (2.278)

The inverse of this matrix is

A−1 =









∂xb

∂ẋb
− ∂xb

∂ẋa

∂xa

∂ẋb
−∂xa

∂ẋa









. (2.279)

The partial derivatives of xb and xa are calculated from the solution of the homogeneous differential
equation (2.218) specified in terms of the final and initial velocities ẋb and ẋa:

x(ẋb, ẋa; t) =
1

Ḋa(tb)Ḋb(ta) + 1

×
{[

Da(t) + Db(t)Ḋa(tb)
]

ẋa +
[

−Db(t) + Da(t)Ḋb(ta)
]

ẋb

}

, (2.280)
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which yields

xa =
1

Ḋa(tb)Ḋb(ta) + 1

[

Db(ta)Ḋa(ta)ẋb −Db(ta)ẋb

]

, (2.281)

xb =
1

Ḋa(tb)Ḋb(ta) + 1

[

Da(tb)ẋa + Da(tb)Ḋb(ta)ẋb

]

, (2.282)

so that

A−1 =
Da(tb)

Ḋa(tb)Ḋb(ta) + 1





Ḋb(ta) −1

−1 −Ḋa(tb)



 . (2.283)

The determinant of A is the Jacobian

detA = −∂(ẋb, ẋa)

∂(xb, xa)
= − Ḋa(tb)Ḋb(ta) + 1

Da(tb)Db(ta)
. (2.284)

We can now perform the Fourier transform of the time evolution amplitude and find, via a quadratic
completion,

(pbtb|pata) =

∫

dxb e
−ipbxb/h̄

∫

dxa e
ipaxa/h̄(xbtb|xata) (2.285)

=

√

2πh̄

iM

√

Da(tb)

Ḋa(tb)Ḋb(ta) + 1

× exp

{

i

h̄

1

2M

Da(tb)

Ḋa(tb)Ḋb(ta) + 1

[

−Ḋb(ta)p
2
b + Ḋa(tb)p

2
a − 2pbpa

]

}

.

Inserting here Da(tb) = sinω(tb− ta)/ω and Ḋa(tb) = cosω(tb− ta), we recover the oscillator result
(2.189).

In D dimensions, the classical action has the same quadratic form as in (2.277)

Acl =
M

2

(

xT
b ,x

T
a

)

A

(

xb

xa

)

(2.286)

with a matrix A generalizing (2.278) by having the partial derivatives replaced by the corresponding
D ×D-matrices. The inverse is the 2D × 2D-version of (2.279), i.e.

A =









∂ẋb

∂xb

∂ẋb

∂xa

−∂ẋa

∂xb
−∂ẋa

∂xa









, A−1 =









∂xb

∂ẋb
− ∂xb

∂ẋa

∂xa

∂ẋb
−∂xa

∂ẋa









. (2.287)

The determinant of such a block matrix

A =

(

a b
c d

)

(2.288)

is calculated after a triangular decomposition

A =

(

a b
c d

)

=

(

a 0
c 1

)(

1 a−1b
0 d− ca−1b

)

=

(

1 b
0 d

)(

a− bd−1c 0
d−1c 1

)

(2.289)

in two possible ways as

det

(

a b
c d

)

= det a · det (d− ca−1b) = det (a− bd−1c) · det d, (2.290)
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depending whether det a or det b is nonzero. The inverse is in the first case

A=

(

1 −a−1bx
0 x

)(

a−1 0
−ca−1 1

)

=

(

a−1+a−1bxca−1−a−1bx
−xca−1 x

)

, x≡(d−ca−1b)−1. (2.291)

The resulting amplitude in momentum space is

(pbtb|pata) =

∫

dxb e
−ipbxb/h̄

∫

dxa e
ipaxa/h̄(xbtb|xata)

=
2π√

2πih̄M

1√
DrendetA

exp

{

i

h̄

1

2M

[

(

pT
b ,p

T
a

)

A−1

(

pb

pa

)]}

. (2.292)

Also in momentum space, the amplitude (2.292) reduces to the free-particle one in Eq. (2.73)
in the limit of infinitesimally short time tb− ta: For the time-independent harmonic oscillator, this
was shown in Eq. (2.191), and the time-dependence of Ω(t) becomes irrelevant in the limit of small
tb − ta → 0.

2.6 Free-Particle and Oscillator Wave Functions

In Eq. (1.335) we have expressed the time evolution amplitude of the free particle
(2.72) as a Fourier integral

(xbtb|xata) =
∫

dp

(2πh̄)
eip(xb−xa)/h̄e−ip2(tb−ta)/2Mh̄. (2.293)

This expression contains the information on all stationary states of the system. To
find these states we have to perform a spectral analysis of the amplitude. Recall
that according to Section 1.7, the amplitude of an arbitrary time-independent system
possesses a spectral representation of the form

(xbtb|xata) =
∞
∑

n=0

ψn(xb)ψ
∗
n(xa)e

−iEn(tb−ta)/h̄, (2.294)

where En are the eigenvalues and ψn(x) the wave functions of the stationary states.
In the free-particle case the spectrum is continuous and the spectral sum is an
integral. Comparing (2.294) with (2.293) we see that the Fourier decomposition
itself happens to be the spectral representation. If the sum over n is written as an
integral over the momenta, we can identify the wave functions as

ψp(x) =
1√
2πh̄

eipx. (2.295)

For the time evolution amplitude of the harmonic oscillator

(xbtb|xata) =
1

√

2πih̄ sin [ω(tb − ta)] /Mω
(2.296)

× exp

{

iMω

2h̄ sin [ω(tb − ta)]

[

(x2b + x2a) cosω(tb − ta)− 2xbxa
]

}

,
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the procedure is not as straight-forward. Here we must make use of a summation
formula for Hermite polynomials (see Appendix 2C) Hn(x) due to Mehler:14

1√
1− a2

exp

{

− 1

2(1− a2)
[(x2 + x′2)(1 + a2)− 4xx′a]

}

= exp(−x2/2− x′2/2)
∞
∑

n=0

an

2nn!
Hn(x)Hn(x

′), (2.297)

with

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, . . . , Hn(x) = (−1)nex
2 dn

dxn
e−x2

. (2.298)

Identifying

x ≡
√

Mω/h̄ xb, x′ ≡
√

Mω/h̄ xa, a ≡ e−iω(tb−ta), (2.299)

so that

a

1− a2
=

1

2i sin [ω(tb − ta)]
,

1 + a2

1− a2
=

1 + e−2iω(tb−ta)

1− e−2iω(tb−ta)
=

cos [ω(tb − ta)]

i sin [ω(tb − ta)]

we arrive at the spectral representation

(xbtb|xata) =
∞
∑

n=0

ψn(xb)ψn(xa)e
−i(n+1/2)ω(tb−ta). (2.300)

From this we deduce that the harmonic oscillator has the energy eigenvalues

En = h̄ω(n+ 1/2) (2.301)

and the wave functions

ψn(x) = Nnλ
−1/2
ω e−x2/2λ2

ωHn(x/λω). (2.302)

Here, λω is the natural length scale of the oscillator

λω ≡
√

h̄

Mω
, (2.303)

and Nn the normalization constant

Nn = (1/2nn!
√
π)1/2. (2.304)

It is easy to check that the wave functions satisfy the orthonormality relation
∫ ∞

−∞
dxψn(x)ψn′(x)∗ = δnn′, (2.305)

using the well-known orthogonality relation of Hermite polynomials15

1

2nn!
√
π

∫ ∞

−∞
dx e−x2

Hn(x)Hn′(x) = δn,n′. (2.306)

14See P.M. Morse and H. Feshbach, Methods of Theoretical Physics , McGraw-Hill, New York,
Vol. I, p. 781 (1953).

15I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 7.374.1.
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2.7 General Time-Dependent Harmonic Action

A simple generalization of the harmonic oscillator with time-dependent frequency allows also for
a time-dependent mass, so that the action (2.307) becomes

A[x] =

∫ tb

ta

dt
M

2

[

g(t)ẋ2(t) − Ω2(t)x2(t)
]

, (2.307)

with some dimensionless time-dependent factor g(t). This factor changes the measure of path
integration so that the time evolution amplitude can no longer be calculated from (2.260). To find
the correct measure we must return to the canonical path integral (2.29) which now reads

(xbtb|xata) =

∫ x(tb)=xb

x(ta)=xa

D′x

∫ Dp

2πh̄
eiA[p,x]/h̄, (2.308)

with the canonical action

A[p, x] =

∫ tb

ta

dt

[

pẋ− p2

2Mg(t)
− M

2
Ω2(t)x2(t)

]

. (2.309)

Integrating the momentum variables out in the sliced form of this path integral as in Eqs. (2.51)–
(2.53) yields

(xbtb|xata) ≈
1

√

2πh̄iǫ/Mg(tN+1)

N
∏

n=1

[

∫ ∞

−∞

dxn
√

2πh̄iǫ/Mg(tn)

]

exp

(

i

h̄
AN

)

. (2.310)

The continuum limit of this path integral is written as

(xbtb|xata) =

∫

Dx
√
g exp

{

i

h̄
A[x]

}

, (2.311)

with the action (2.307).
The classical orbits solve the equation of motion

[

−∂tg(t)∂t − Ω2(t)
]

x(t) = 0, (2.312)

which, by the transformation

x̃(t) =
√

g(t)x(t), Ω̃2(t) =
1

g(t)

[

Ω2(t) +
ġ2(t)

4g(t)
− g̈(t)

2

]

, (2.313)

can be reduced to the previous form

√

g(t)
[

−∂2
t − Ω̃2(t)

]

x̃(t) = 0. (2.314)

The result of the path integration is therefore

(xbtb|xata) =

∫

Dx
√
g eiA[x]/h̄ = F (xb, tb;xa, ta)e

iAcl/h̄, (2.315)

with a fluctuation factor [compare (2.263)]

F (xb, tb;xa, ta) =
1

√

2πih̄/M

1
√

Da(tb)
, (2.316)

where Da(tb) is found from a generalization of the formulas (2.264)–(2.269). The classical action
is

Acl =
M

2
(gbxbẋb − gaxaẋa), (2.317)

H. Kleinert, PATH INTEGRALS



2.8 Path Integrals and Quantum Statistics 135

where gb ≡ g(tb), ga ≡ g(ta). The solutions of the equation of motion can be expressed in terms
of modified Gelfand-Yaglom functions (2.228) and (2.229) with the properties

[∂tg(t)∂t + Ω2(t)]Da(t) = 0 ; Da(ta) = 0, Ḋa(ta) = 1/ga, (2.318)

[∂tg(t)∂t + Ω2(t)]Db(t) = 0 ; Db(tb) = 0, Ḋb(tb) = −1/gb, (2.319)

as in (2.248):

x(xb, xa; t) =
Db(t)

Db(ta)
xa +

Da(t)

Da(tb)
xb. (2.320)

This allows us to write the classical action (2.317) in the form

Acl =
M

2Da(tb)

[

gbx
2
bḊa(tb) − gax

2
aḊb(ta) − 2xbxa

]

. (2.321)

From this we find, as in (2.269),

Dren = Da(tb) = Db(ta) = −M

(

∂2Acl

∂xb∂xa

)−1

, (2.322)

so that the fluctuation factor becomes

F (xb, tb;xa, ta) =
1√

2πih̄

√

− ∂2Acl

∂xb∂xa
. (2.323)

As an example take a free particle with a time-dependent mass term, where

Da(t)=

∫ t

ta

dt′ g−1(t′), Db(t)=

∫ tb

t

dt′ g−1(t′), Dren=Da(tb)=Db(ta)=

∫ tb

ta

dt′ g−1(t′), (2.324)

and the classical action reads

Acl =
M

2

(xb − xa)
2

Da(tb)
. (2.325)

The result can easily be generalized to an arbitrary harmonic action

A =

∫ tb

ta

dt
M

2

[

g(t)ẋ2 + 2b(t)xẋ− Ω2(t)x2
]

, (2.326)

which is extremized by the Euler-Lagrange equation [recall (1.8)]
[

∂tg(t)∂t + ḃ(t) + Ω2(t)
]

x = 0. (2.327)

The solution of the path integral (2.315) is again given by (2.315), with the fluctuation factor
(2.323), where Acl is the action (2.326) along the classical path connecting the endpoints.

A further generalization to D dimensions is obvious by adapting the procedure in Subsec-
tion 2.4.6, which makes Eqs. (2.318)–(2.320). matrix equations.

2.8 Path Integrals and Quantum Statistics

The path integral approach is useful to also understand the thermal equilibrium
properties of a system. We assume the system to have a time-independent Hamilto-
nian and to be in contact with a reservoir of temperature T . As explained in Sec-
tion 1.7, the bulk thermodynamic quantities can be determined from the quantum-
statistical partition function

Z = Tr
(

e−Ĥ/kBT
)

=
∑

n

e−En/kBT . (2.328)
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This, in turn, may be viewed as an analytic continuation of the quantum-mechanical
partition function

ZQM = Tr
(

e−i(tb−ta)Ĥ/h̄
)

(2.329)

to the imaginary time

tb − ta = − ih̄

kBT
≡ −ih̄β. (2.330)

In the local particle basis |x〉, the quantum-mechanical trace corresponds to an
integral over all positions so that the quantum-statistical partition function can be
obtained by integrating the time evolution amplitude over xb = xa and evaluating
it at the analytically continued time:

Z ≡
∫ ∞

−∞
dx z(x) =

∫ ∞

−∞
dx 〈x|e−βĤ |x〉 =

∫ ∞

−∞
dx (x tb|x ta)|tb−ta=−ih̄β. (2.331)

The diagonal elements

z(x) ≡ 〈x|e−βĤ |x〉 = (x tb|x ta)|tb−ta=−ih̄β (2.332)

play the role of a partition function density . For a harmonic oscillator, this quantity
has the explicit form [recall (2.175)]

zω(x) =
1

√

2πh̄/M

√

ω

sinh h̄βω
exp

(

−Mω

h̄
tanh

h̄βω

2
x2
)

. (2.333)

By splitting the Boltzmann factor e−βĤ into a product of N + 1 factors e−ǫĤ/h̄

with ǫ = h̄/kBT (N + 1), we can derive for Z a similar path integral representa-
tion just as for the corresponding quantum-mechanical partition function in (2.42),
(2.48):

Z ≡
N+1
∏

n=1

[∫ ∞

−∞
dxn

]

(2.334)

× 〈xN+1|e−ǫĤ/h̄|xN〉〈xN |e−ǫĤ/h̄|xN−1〉 × . . .× 〈x2|e−ǫĤ/h̄|x1〉〈x1|e−ǫĤ/h̄|xN+1〉.

As in the quantum-mechanical case, the matrix elements 〈xn|e−ǫĤ/h̄|xn−1〉 are re-
expressed in the form

〈xn|e−ǫĤ/h̄|xn−1〉 ≈
∫ ∞

−∞

dpn
2πh̄

eipn(xn−xn−1)/h̄−ǫH(pn,xn)/h̄, (2.335)

with the only difference that there is now no imaginary factor i in front of the
Hamiltonian. The product (2.334) can thus be written as

Z ≈
N+1
∏

n=1

[

∫ ∞

−∞
dxn

∫ ∞

−∞

dpn
2πh̄

]

exp
(

−1

h̄
AN

e

)

, (2.336)
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where AN
e denotes the sum

AN
e =

N+1
∑

n=1

[−ipn(xn − xn−1) + ǫH(pn, xn)] . (2.337)

In the continuum limit ǫ→ 0, the sum goes over into the integral

Ae[p, x] =
∫ h̄β

0
dτ [−ip(τ)ẋ(τ) +H(p(τ), x(τ))], (2.338)

and the partition function is given by the path integral

Z =
∫

Dx
∫ Dp

2πh̄
e−Ae[p,x]/h̄. (2.339)

In this expression, p(τ), x(τ) may be considered as paths running along an “imag-
inary time axis” τ = it. The expression Ae[p, x] is very similar to the mechanical
canonical action (2.27). Since it governs the quantum-statistical path integrals it
is called quantum-statistical action or Euclidean action, indicated by the subscript
e. The name alludes to the fact that a D-dimensional Euclidean space extended
by an imaginary-time axis τ = it has the same geometric properties as a D + 1-
dimensional Euclidean space. For instance, a four-vector in a Minkowski spacetime
has a square length dx2 = −(cdt)2 + (dx)2. Continued to an imaginary time, this
becomes dx2 = (cdτ)2 + (dx)2 which is the square distance in a Euclidean four-
dimensional space with four-vectors (cτ,x).

The integrand of the Euclidean action (2.339) is the Euclidean Lagrangian Le. It
is related to the Hamiltonian by the Euclidean Legendre transform [compare (1.9)]

H = Le + i
∂Le

∂ẋ
ẋ = Le + ipẋ (2.340)

in which ẋ is eliminated in favor of p = ∂Le/∂ẋ [compare (1.10)].
Just as in the path integral for the quantum-mechanical partition function (2.48),

the measure of integration
∮ Dx ∫ Dp/2πh̄ in the quantum-statistical expression

(2.339) is automatically symmetric in all p’s and x’s:

∮

Dx
∫ Dp

2πh̄
=
∮ Dp

2πh̄

∫

Dx =
N+1
∏

n=1

∫ ∞

−∞
dxn

∫ ∞

−∞

dpn
2πh̄

. (2.341)

The symmetry is of course due to the trace integration over all initial ≡ final posi-
tions.

Most remarks made in connection with Eq. (2.48) carry over to the present
case. The above path integral (2.339) is a natural extension of the rules of clas-
sical statistical mechanics. According to these, each cell in phase space dxdp/h is
occupied with equal statistical weight, with the probability factor e−E/kBT . In quan-
tum statistics, the paths of all particles fluctuate evenly over the cells in path phase

space
∏

n dx(τn)dp(τn)/h (τn ≡ nǫ), each path carrying a probability factor e−Ae/h̄

involving the Euclidean action of the system.
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2.9 Density Matrix

The partition function does not determine any local thermodynamic quantities. Im-
portant local information resides in the thermal analog of the time evolution ampli-
tude 〈xb|e−Ĥ/kBT |xa〉. Consider, for instance, the diagonal elements of this amplitude
renormalized by a factor Z−1:

ρ(xa) ≡ Z−1〈xa|e−Ĥ/kBT |xa〉. (2.342)

They determine the thermal average of the particle density of a quantum-statistical
system. Due to (2.334), the factor Z−1 makes the spatial integral over ρ equal to
unity:

∫ ∞

−∞
dx ρ(x) = 1. (2.343)

By inserting into (2.342) a complete set of eigenfunctions ψn(x) of the Hamiltonian
operator Ĥ, we find the spectral decomposition

ρ(xa) =
∑

n

|ψn(xa)|2e−βEn

/

∑

n

e−βEn. (2.344)

Since |ψn(xa)|2 is the probability distribution of the system in the eigenstate |n〉,
while the ratio e−βEn/

∑

n e
−βEn is the normalized probability to encounter the sys-

tem in the state |n〉, the quantity ρ(xa) represents the normalized average particle
density in space as a function of temperature.

Note the limiting properties of ρ(xa). In the limit T → 0, only the lowest energy
state survives and ρ(xa) tends towards the particle distribution in the ground state

ρ(xa)
T→0−−−→ |ψ0(xa)|2. (2.345)

In the opposite limit of high temperatures, quantum effects are expected to become
irrelevant and the partition function should converge to the classical expression
(1.538) which is the integral over the phase space of the Boltzmann distribution

Z
T→∞−−−→ Zcl =

∫ ∞

−∞
dx
∫ ∞

−∞

dp

2πh̄
e−H(p,x)/kBT . (2.346)

We therefore expect the large-T limit of ρ(x) to be equal to the classical particle

distribution

ρ(x)
T→∞−−−→ ρcl(x) = Z−1

cl

∫ ∞

−∞

dp

2πh̄
e−H(p,x)/kBT . (2.347)

Within the path integral approach, this limit will be discussed in more detail in
Section 2.13. At this place we roughly argue as follows: When going in the original
time-sliced path integral (2.334) to large T , i.e., small τb − τa = h̄/kBT , we may
keep only a single time slice and write

Z ≈
[∫ ∞

−∞
dx
]

〈x|e−ǫĤ/h̄|x〉, (2.348)
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with

〈x|e−ǫĤ |x〉 ≈
∫ ∞

−∞

dpn
2πh̄

e−ǫH(pn,x)/h̄. (2.349)

After substituting ǫ = τb − τa this gives directly (2.347). Physically speaking, the
path has at high temperatures “no (imaginary) time” to fluctuate, and only one
term in the product of integrals needs to be considered.

If H(p, x) has the standard form

H(p, x) =
p2

2M
+ V (x), (2.350)

the momentum integral is Gaussian in p and can be done using the formula
∫ ∞

−∞

dp

2πh̄
e−ap2/2h̄ =

1√
2πh̄a

. (2.351)

This leads to the pure x-integral for the classical partition function

Zcl =
∫ ∞

−∞

dx
√

2πh̄2/MkBT
e−V (x)/kBT =

∫ ∞

−∞

dx

le(h̄β)
e−βV (x). (2.352)

In the second expression we have introduced the length

le(h̄β) ≡
√

2πh̄2β/M. (2.353)

It is the thermal (or Euclidean) analog of the characteristic length l(tb − ta) intro-
duced before in (2.131). It is called the deBroglie wavelength associated with the

temperature T = 1/kBβ or, in short, the thermal de Broglie wavelength.
Omitting the x-integration in (2.352) renders the large-T limit ρ(x), the classical

particle distribution

ρ(x)
T→∞−−−→ ρcl(x) = Z−1

cl

1

le(h̄β)
e−V̄ (x). (2.354)

For a free particle, the integral over x in (2.352) diverges. If we imagine the length
of the x-axis to be very large but finite, say equal to L, the partition function is
equal to

Zcl =
L

le(h̄β)
. (2.355)

In D dimensions, this becomes

Zcl =
VD

lDe (h̄β)
, (2.356)

where VD is the volume of the D-dimensional system. For a harmonic oscillator
with potential Mω2x2/2, the integral over x in (2.352) is finite and yields, in the
D-dimensional generalization

Zcl =
lDω

lD(h̄β)
, (2.357)
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where

lω ≡
√

2π

βMω2
(2.358)

denotes the classical length scale defined by the frequency of the harmonic oscillator.
It is related to the quantum-mechanical one λω of Eq. (2.303) by

lω le(h̄β) = 2π λ2ω. (2.359)

Thus we obtain the mnemonic rule for going over from the partition function of a
harmonic oscillator to that of a free particle: we must simply replace

lω −−−→
ω→0

L, (2.360)

or
1

ω
−−−→
ω→0

√

βM

2π
L. (2.361)

The real-time version of this is, of course,

1

ω
−−−→
ω→0

√

(tb − ta)M

2πh̄
L. (2.362)

Let us write down a path integral representation for ρ(x). Omitting in (2.339)
the final trace integration over xb ≡ xa and normalizing the expression by a factor
Z−1, we obtain

ρ(xa) = Z−1
∫ x(h̄β)=xb

x(0)=xa

D′x
∫ Dp

2πh̄
e−Ae[p,x]/h̄

= Z−1
∫ x(h̄β)=xb

x(0)=xa

Dxe−Ae[x]/h̄. (2.363)

The thermal equilibrium expectation of an arbitrary Hermitian operator Ô is
given by

〈Ô〉T ≡ Z−1
∑

n

e−βEn〈n|Ô|n〉. (2.364)

In the local basis |x〉, this becomes

〈Ô〉T = Z−1
∫∫ ∞

−∞
dxbdxa〈xb|e−βĤ |xa〉〈xa|Ô|xb〉. (2.365)

An arbitrary function of the position operator x̂ has the expectation

〈f(x̂)〉T = Z−1
∫∫ ∞

−∞
dxbdxa〈xb|e−βĤ |xa〉δ(xb − xa)f(xa) =

∫

dxρ(x)f(x). (2.366)

The particle density ρ(xa) determines the thermal averages of local observables.
If f depends also on the momentum operator p̂, then the off-diagonal matrix

elements 〈xb|e−βĤ |xa〉 are also needed. They are contained in the density matrix
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introduced for pure quantum systems in Eq. (1.221), and reads now in a thermal
ensemble of temperature T :

ρ(xb, xa) ≡ Z−1〈xb|e−βĤ |xa〉, (2.367)

whose diagonal values coincide with the above particle density ρ(xa).
It is useful to keep the analogy between quantum mechanics and quantum statis-

tics as close as possible and to introduce the time translation operator along the
imaginary time axis

Ûe(τb, τa) ≡ e−(τb−τa)Ĥ/h̄, τb > τa, (2.368)

defining its local matrix elements as imaginary or Euclidean time evolution
amplitudes16

(xbτb|xaτa) ≡ 〈xb|Ûe(τb, τa)|xa〉, τb > τa. (2.369)

As in the real-time case, we shall only consider the causal time-ordering τb > τa.
Otherwise the partition function and the density matrix do not exist in systems with
energies up to infinity. Given the imaginary-time amplitudes, the partition function
is found by integrating over the diagonal elements

Z =
∫ ∞

−∞
dx(x h̄β|x 0), (2.370)

and the density matrix

ρ(xb, xa) = Z−1(xbh̄β|xa0). (2.371)

For the sake of generality we may sometimes also consider the imaginary-time
evolution operators for time-dependent Hamiltonians and the associated amplitudes.
They are obtained by time-slicing the local matrix elements of the operator

Û(τb, τa) = Tτ exp
[

−1

h̄

∫ τb

τa
dτĤ(−iτ)

]

. (2.372)

Here Tτ is an ordering operator along the imaginary-time axis.
It must be emphasized that the usefulness of the operator (2.372) in describing

thermodynamic phenomena is restricted to the Hamiltonian operator Ĥ(t) depend-
ing very weakly on the physical time t. The system has to remain close to equilibrium
at all times. This is the range of validity of the so-called linear response theory (see
Chapter 18 for more details).

The imaginary-time evolution amplitude (2.369) has a path integral representa-
tion which is obtained by dropping the final integration in (2.336) and relaxing the
condition xb = xa:

(xbτb|xaτa) ≈
N
∏

n=1

[∫ ∞

−∞
dxn

] N+1
∏

n=1

[

∫ ∞

−∞

dpn
2πh̄

]

exp
(

−AN
e /h̄

)

. (2.373)

16The imaginary-time amplitude (xbβ|xa 0) = 〈xb|e−βĤ |xa〉 is often referred to as heat kernel .
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The time-sliced Euclidean action is

AN
e =

N+1
∑

n=1

[−ipn(xn − xn−1) + ǫH(pn, xn, τn)] (2.374)

(we have omitted the factor −i in the τ -argument of H). In the continuum limit
this is written as a path integral

(xbτb|xaτa) =
∫

D′x
∫ Dp

2πh̄
exp

{

−1

h̄
Ae[p, x]

}

(2.375)

[by analogy with (2.339)]. For a Hamiltonian of the standard form (2.7),

H(p, x, τ) =
p2

2M
+ V (x, τ),

with a smooth potential V (x, τ), the momenta can be integrated out, just as in
(2.53), and the Euclidean version of the pure x-space path integral (2.54) leads to
(2.55):

(xbτb|xaτa) =
∫

Dx exp

{

−1

h̄

∫ h̄β

0
dτ
[

M

2
(∂τx)

2 + V (x, τ)
]

}

≈ 1
√

2πh̄ǫ/M

N
∏

n=1





∫ ∞

−∞

dxn
√

2πβ/M



 (2.376)

× exp

{

−1

h̄
ǫ
N+1
∑

n=1

[

M

2

(

xn − xn−1

ǫ

)2

+ V (xn, τn)

]}

.

From this we calculate the quantum-statistical partition function

Z =
∫ ∞

−∞
dx (x h̄β|x 0)

=
∫

dx
∫ x(h̄β)=x

x(0)=x
Dx e−Ae[x]/h̄ =

∮

Dx e−Ae[x]/h̄, (2.377)

where Ae[x] is the Euclidean version of the Lagrangian action

Ae[x] =
∫ τb

τa
dτ
[

M

2
x′2 + V (x, τ)

]

. (2.378)

The prime denotes differentiation with respect to the imaginary time. As in the
quantum-mechanical partition function in (2.63), the path integral

∮ Dx now stands
for

∮

Dx ≈
N+1
∏

n=1

∫ ∞

−∞

dxn
√

2πh̄ǫ/M
. (2.379)

It contains no extra 1/
√

2πh̄ǫ/M factor, as in (2.376), due to the trace integration
over the exterior x.
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The condition x(h̄β) = x(0) is most easily enforced by expanding x(τ) into a
Fourier series

x(τ) =
∞
∑

m=−∞

1√
N + 1

e−iωmτxm, (2.380)

with the Matsubara frequencies

ωm ≡ 2πmkBT/h̄ =
2πm

h̄β
, m = 0,±1,±2, . . . . (2.381)

When considered as functions on the entire τ -axis, the paths are periodic in h̄β at
any τ , i.e.,

x(τ) = x(τ + h̄β). (2.382)

Thus the path integral for the quantum-statistical partition function comprises all
periodic paths with a period h̄β. In the time-sliced path integral (2.376), the coor-
dinates x(τ) are needed only at the discrete times τn = nǫ. Correspondingly, the
sum over m in (2.380) can be restricted to run from m = −N/2 to N/2 for even N
and from −(N − 1)/2 to (N + 1)/2 for odd N (see Fig. 2.3). In order to have a real
x(τn), we must require that

xm = x∗−m (modulo N + 1). (2.383)

Note that the Matsubara frequencies in the expansion of the paths x(τ) are now
twice as big as the frequencies νm in the quantum fluctuations (2.115) (after analytic
continuation of tb − ta to −ih̄/kBT ). Still, they have about the same total number,
since they run over positive and negative integers. An exception is the zero frequency
ωm = 0, which is included here, in contrast to the frequencies νm in (2.115) which
run only over positive m = 1, 2, 3, . . . . This is necessary to describe paths with
arbitrary nonzero endpoints xb = xa = x (included in the trace).

2.10 Quantum Statistics of the Harmonic Oscillator

The harmonic oscillator is a good example for solving the quantum-statistical path integral. The
τ -axis is sliced at τn = nǫ, with ǫ ≡ h̄β/(N + 1) (n = 0, . . . , N + 1), and the partition function is
given by the N → ∞ -limit of the product of integrals

ZN
ω =

N
∏

n=0

[

∫ ∞

−∞

dxn
√

2πh̄ǫ/M

]

exp
(

−AN
e /h̄

)

, (2.384)

where AN
e is the time-sliced Euclidean oscillator action

AN
e =

M

2ǫ

N+1
∑

n=1

xn(−ǫ2∇∇ + ǫ2ω2)xn. (2.385)

Integrating out the xn’s, we find immediately

ZN
ω =

1
√

detN+1(−ǫ2∇∇ + ǫ2ω2)
. (2.386)
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Figure 2.3 Illustration of the eigenvalues (2.387) of the fluctuation matrix in the action

(2.385) for even and odd N .

Let us evaluate the fluctuation determinant via the product of eigenvalues which diagonalize
the matrix −ǫ2∇∇ + ǫ2ω2 in the sliced action (2.385). They are

ǫ2ΩmΩm + ǫ2ω2 = 2 − 2 cosωmǫ + ǫ2ω2, (2.387)

with the Matsubara frequencies ωm. For ω = 0, the eigenvalues are pictured in Fig. 2.3. The
action (2.385) becomes diagonal after going to the Fourier components xm. To do this we arrange
the real and imaginary parts Rexm and Imxm in a row vector

(Rex1, Imx1; Rex2, Imx2; . . . ; Rexn, Imxn; . . .),

and see that it is related to the time-sliced positions xn = x(τn) by a transformation matrix with
the rows

Tmnxn = (Tm)nxn

=

√

2

N + 1

( 1√
2
, cos

m

N + 1
2π · 1, sin m

N + 1
2π · 1,

cos
m

N + 1
2π · 2, sin m

N + 1
2π · 2, . . .

. . . , cos
m

N + 1
2π · n, sin m

N + 1
2π · n, . . .

)

n
xn. (2.388)

For each row index m = 0, . . . , N, the column index n runs from zero to N/2 for even N , and to
(N + 1)/2 for odd N . In the odd case, the last column sin m

N+12π · n with n = (N + 1)/2 vanishes
identically and must be dropped, so that the number of columns in Tmn is in both cases N + 1,
as it should be. For odd N , the second-last column of Tmn is an alternating sequence ±1. Thus,
for a proper normalization, it has to be multiplied by an extra normalization factor 1/

√
2, just as

the elements in the first column. An argument similar to (2.120), (2.121) shows that the resulting
matrix is orthogonal. Thus, we can diagonalize the sliced action in (2.385) as follows

AN
e =

M

2
ǫ















[

ω2x2
0 + 2

∑N/2
m=1(ΩmΩm + ω2)|xm|2

]

for N = even,
[

ω2x2
0 + (Ω(N+1)/2Ω(N+1)/2 + ω2)x 2

N+1

+ 2
∑(N−1)/2

m=1 (ΩmΩm + ω2)|xm|2
]

for N = odd.

(2.389)

Thanks to the orthogonality of Tmn, the measure
∏

n

∫∞

−∞
dx(τn) transforms simply into

∫ ∞

−∞

dx0

N/2
∏

m=1

∫ ∞

−∞

dRexm

∫ ∞

−∞

d Imxm for N = even,
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(2.390)

∫ ∞

−∞

dx0

∫ ∞

−∞

dx(N+1)/2

(N−1)/2
∏

m=1

∫ ∞

−∞

dRexm

∫ ∞

−∞

d Imxm for N = odd.

By performing the Gaussian integrals we obtain the partition function

ZN
ω =

[

detN+1(−ǫ2∇∇ + ǫ2ω2)
]−1/2

=

[

N
∏

m=0

(ǫ2ΩmΩm + ǫ2ω2)

]−1/2

=

{

N
∏

m=0

[

2(1 − cosωmǫ) + ǫ2ω2
]

}−1/2

=

[

N
∏

m=0

(

4 sin2 ωmǫ

2
+ ǫ2ω2

)

]−1/2

. (2.391)

Thanks to the periodicity of the eigenvalues under the replacement n → n+N + 1, the result has
become a unique product expression for both even and odd N .

It is important to realize that contrary to the fluctuation factor (2.162) in the real-time am-
plitude, the partition function (2.391) contains the square root of only positive eigenmodes as a
unique result of Gaussian integrations. There are no phase subtleties as in the Fresnel integral
(1.337).

To calculate the product, we observe that upon decomposing

sin2 ωmǫ

2
=
(

1 + cos
ωmǫ

2

)(

1 − cos
ωmǫ

2

)

, (2.392)

the sequence of first factors

1 + cos
ωmǫ

2
≡ 1 + cos

πm

N + 1
(2.393)

runs for m = 1, . . .N through the same values as the sequence of second factors

1 − cos
ωmǫ

2
= 1 − cos

πm

N + 1
≡ 1 + cosπ

N + 1 −m

N + 1
, (2.394)

except in an opposite order. Thus, separating out the m = 0 -term, we rewrite (2.391) in the form

ZN
ω =

1

ǫω

[

N
∏

m=1

2
(

1 − cos
ωmǫ

2

)

]−1 [ N
∏

m=1

(

1 +
ǫ2ω2

4 sin2 ωmǫ
2

)]−1/2

. (2.395)

The first factor on the right-hand side is the quantum-mechanical fluctuation determinant of the
free-particle determinant detN (−ǫ2∇∇) = N +1 [see (2.128)], so that we obtain for both even and
odd N

ZN
ω =

kBT

h̄ω

[

N
∏

m=1

(

1 +
ǫ2ω2

4 sin2 ωmǫ
2

)]−1/2

. (2.396)

To evaluate the remaining product, we must distinguish again between even and odd cases of N .
For even N , where every eigenvalue occurs twice (see Fig. 2.3), we obtain

ZN
ω =

kBT

h̄ω





N/2
∏

m=1

(

1 +
ǫ2ω2

4 sin2 mπ
N+1

)





−1

. (2.397)

For odd N , the term with m = (N + 1)/2 occurs only once and must be treated separately so that

ZN
ω =

kBT

h̄ω





(

1 +
ǫ2ω2

4

)1/2 (N−1)/2
∏

m=1

(

1 +
ǫ2ω2

4 sin2 πm
N+1

)





−1

. (2.398)
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We now introduce the parameter ω̃e, the Euclidean analog of (2.163), via the equations

sin i
ω̃eǫ

2
≡ i

ωǫ

2
, sinh

ω̃eǫ

2
≡ ωǫ

2
. (2.399)

In the odd case, the product formula17

(N−1)/2
∏

m=1

[

1 − sin2 x

sin2 mπ
(N+1)

]

=
2

sin 2x

sin[(N + 1)x]

(N + 1)
(2.400)

[similar to (2.165)] yields, with x = ω̃eǫ/2,

ZN
ω =

kBT

h̄ω

[

1

sinh(ω̃eǫ/2)

sinh[(N + 1)ω̃eǫ/2]

N + 1

]−1

. (2.401)

In the even case, the formula18

N/2
∏

m=1

[

1 − sin2 x

sin2 mπ
(N+1)

]

=
1

sinx

sin[(N + 1)x]

(N + 1)
, (2.402)

produces once more the same result as in Eq. (2.401). Inserting Eq. (2.399) leads to the partition
function on the sliced imaginary time axis:

ZN
ω =

1

2 sinh(h̄ω̃eβ/2)
. (2.403)

The partition function can be expanded into the following series

ZN
ω = e−h̄ω̃e/2kBT + e−3h̄ω̃e/2kBT + e−5h̄ω̃e/2kBT + . . . . (2.404)

By comparison with the general spectral expansion (2.328), we display the energy eigenvalues of
the system:

En =

(

n +
1

2

)

h̄ω̃e. (2.405)

They show the typical linearly rising oscillator sequence with

ω̃e =
2

ǫ
arsinh

ωǫ

2
(2.406)

playing the role of the frequency on the sliced time axis, and h̄ω̃e/2 being the zero-point energy.
In the continuum limit ǫ → 0, the time-sliced partition function ZN

ω goes over into the usual
oscillator partition function

Zω =
1

2 sinh(βh̄ω/2)
. (2.407)

In D dimensions this becomes, of course, [2 sinh(βh̄ω/2)]−D, due to the additivity of the action in
each component of x.

Note that the continuum limit of the product in (2.396) can also be taken factor by factor.
Then Zω becomes

Zω =
kBT

h̄ω

[

∞
∏

m=1

(

1 +
ω2

ω2
m

)

]−1

. (2.408)

17I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 1.391.1.
18ibid., formula 1.391.3.
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According to formula (2.173), the product
∏∞

m=1

(

1 + x2

m2π2

)

converges rapidly against sinhx/x

and we find with x = h̄ωβ/2

Zω =
kBT

h̄ω

h̄ω/2kBT

sinh(h̄ω/2kBT )
=

1

2 sinh(βh̄ω/2)
. (2.409)

As discussed after Eq. (2.183), the continuum limit can be taken in each factor since the product
in (2.396) contains only ratios of frequencies.

Just as in the quantum-mechanical case, this procedure of obtaining the continuum limit can
be summarized in the sequence of equations arriving at a ratio of differential operators

ZN
ω =

[

detN+1(−ǫ2∇∇ + ǫ2ω2)
]−1/2

=
[

det′N+1(−ǫ2∇∇)
]−1/2

[

detN+1(−ǫ2∇∇ + ǫ2ω2)

det′N+1(−ǫ2∇∇)

]−1/2

ǫ→0
−−−→ kBT

h̄

[

det(−∂2
τ + ω2)

det′(−∂2
τ )

]−1/2

=
kBT

h̄ω

∞
∏

m=1

[

ω2
m + ω2

ω2
m

]−1

. (2.410)

In the ω = 0 -determinants, the zero Matsubara frequency is excluded to obtain a finite expression.
This is indicated by a prime. The differential operator −∂2

τ acts on real functions which are periodic
under the replacement τ → τ+h̄β. Remember that each eigenvalue ω2

m of −∂2
τ occurs twice, except

for the zero frequency ω0 = 0, which appears only once.
Let us finally mention that the results of this section could also have been obtained directly

from the quantum-mechanical amplitude (2.175) [or with the discrete times from (2.199)] by an
analytic continuation of the time difference tb − ta to imaginary values −i(τb − τa):

(xbτb|xaτa) =
1

√

2πh̄/M

√

ω

sinhω(τb − τa)

× exp

{

− 1

2h̄

Mω

sinhω(τb − τa)
[(x2

b + x2
a) coshω(τb − τa) − 2xbxa]

}

. (2.411)

By setting x = xb = xa and integrating over x, we obtain [compare (2.333)]

Zω =

∫ ∞

−∞

dx (x τb|x τa) =
1

√

2πh̄(τb − τa)/M

√

ω(τb − τa)

sinh[ω(τb − τa)]

×
√

2πh̄ sinh[ω(τb − τa)]/ωM

2 sinh[ω(τb − τa)/2]
=

1

2 sinh[ω(τb − τa)/2]
. (2.412)

Upon equating τb − τa = h̄β, we retrieve the partition function (2.407). A similar treatment of
the discrete-time version (2.199) would have led to (2.403). The main reason for presenting an
independent direct evaluation in the space of real periodic functions was to display the frequency
structure of periodic paths and to see the difference with respect to the quantum-mechanical paths
with fixed ends. We also wanted to show how to handle the ensuing product expressions.

For applications in polymer physics (see Chapter 15) one also needs the partition function of
all path fluctuations with open ends

Zopen
ω =

∫ ∞

−∞

dxb

∫ ∞

−∞

dxa (xbτb|xaτa) =
1

√

2πh̄(τb − τa)/M

√

ω(τb − τa)

sinh[ω(τb − τa)]

2πh̄

Mω

=

√

2πh̄

Mω

1
√

sinh[ω(τb − τa)]
. (2.413)

The prefactor is
√

2π times the length scale λω of Eq. (2.303).
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2.11 Time-Dependent Harmonic Potential

It is often necessary to calculate thermal fluctuation determinants for the case of a time-dependent
frequency Ω(τ) which is periodic under τ → τ + h̄β. As in Section 2.3.6, we consider the amplitude

(xbτb|xaτa) =

∫

D′x

∫ Dp

2πh̄
e
−
∫

τb

τa
dτ [−ipẋ+p2/2M+MΩ2(τ)x2/2]/h̄

=

∫

Dxe
−
∫

τb

τa
dτ [Mẋ2+Ω2(τ)x2]/2h̄

. (2.414)

The time-sliced fluctuation factor is [compare (2.202)]

FN (τa − τb) = detN+1[−ǫ2∇∇ + ǫΩ2(τ)]−1/2, (2.415)

with the continuum limit

F (τa − τb) =
kBT

h̄

[

det(−∂2
τ + Ω2(τ))

det′(−∂2
τ )

]−1/2

. (2.416)

Actually, in the thermal case it is preferable to use the oscillator result for normalizing the
fluctuation factor, rather than the free-particle result, and to work with the formula

F (τb, τa) =
1

2 sinh(βh̄ω/2)

[

det(−∂2
τ + Ω2(τ))

det(−∂2
τ + ω2)

]−1/2

. (2.417)

This has the advantage that the determinant in the denominator contains no zero eigenvalue which
would require a special treatment as in (2.410); the operator −∂2

τ + ω2 is positive.
As in the quantum-mechanical case, the spectrum of eigenvalues is not known for general Ω(τ).

It is, however, possible to find a differential equation for the entire determinant, analogous to the
Gelfand-Yaglom formula (2.209), with the initial condition (2.214), although the derivation is now
much more tedious. The origin of the additional difficulties lies in the periodic boundary condition
which introduces additional nonvanishing elements −1 in the upper right and lower left corners of
the matrix −ǫ2∇∇ [compare (2.107)]:

−ǫ2∇∇ =















2 −1 0 . . . 0 0 −1
−1 2 −1 . . . 0 0 0
...

...
0 0 0 . . . −1 2 −1
−1 0 0 . . . 0 −1 2















. (2.418)

To better understand the relation with the previous result we shall replace the corner elements
−1 by −α which can be set equal to zero at the end, for a comparison. Adding to −ǫ2∇∇ a
time-dependent frequency matrix we then consider the fluctuation matrix

−ǫ2∇∇ + ǫ2Ω2 =











2 + ǫ2Ω2
N+1 −1 0 . . . 0 −α

−1 2 + ǫ2Ω2
N −1 . . . 0 0

...
...

−α 0 0 . . . −1 2 + ǫ2Ω2
1











.

(2.419)

Let us denote the determinant of this (N + 1)× (N + 1) matrix by D̃N+1. Expanding it along the
first column, it is found to satisfy the equation

D̃N+1 = (2 + ǫ2Ω2
N+1) (2.420)

×detN







2 + ǫ2Ω2
N −1 0 . . . 0 0

...
...

0 0 0 . . . −1 2 + ǫ2Ω2
1
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+detN















−1 0 0 0 . . . 0 −α
−1 2 + ǫ2Ω2

N−1 −1 0 . . . 0 0
0 −1 2 + ǫ2Ω2

N−2 −1 . . . 0 0
...

...
0 0 0 0 . . . −1 2 + ǫ2Ω2

1















+(−1)N+1αdetN















−1 0 0 . . . 0 −α
2 + ǫ2Ω2

N −1 0 . . . 0 0
−1 2 + ǫ2Ω2

N−1 −1 . . . 0 0
...

...
0 0 0 . . . 2 + ǫ2Ω2

2 −1















.

The first determinant was encountered before in Eq. (2.204) (except that there it appeared with
−ǫ2Ω2 instead of ǫ2Ω2). There it was denoted by DN , satisfying the difference equation

(

−ǫ2∇∇ + ǫ2Ω2
N+1

)

DN = 0, (2.421)

with the initial conditions

D1 = 2 + ǫ2Ω2
1,

D2 = (2 + ǫ2Ω2
1)(2 + ǫ2Ω2

2) − 1. (2.422)

The second determinant in (2.420) can be expanded with respect to its first column yielding

−DN−1 − α. (2.423)

The third determinant is more involved. When expanded along the first column it gives

(−1)N
[

1 + (2 + ǫ2Ω2
N )HN−1 −HN−2

]

, (2.424)

with the (N − 1) × (N − 1) determinant

HN−1 ≡ (−1)N−1 (2.425)

×detN−1















0 0 0 . . . 0 0 −α
2 + ǫ2Ω2

N−1 −1 0 . . . 0 0 0
−1 2 + ǫ2Ω2

N−2 −1 . . . 0 0 0
...

...
0 0 0 . . . −1 2 + ǫ2Ω2

2 −1















.

By expanding this along the first column, we find that HN satisfies the same difference equation
as DN :

(−ǫ2∇∇ + ǫ2Ω2
N+1)HN = 0. (2.426)

However, the initial conditions for HN are different:

H2 =

∣

∣

∣

∣

0 −α
2 + ǫ2Ω2

2 −1

∣

∣

∣

∣

= α(2 + ǫ2Ω2
2), (2.427)

H3 = −

∣

∣

∣

∣

∣

∣

∣

∣

0 0 −α
2 + ǫ2Ω2

3 −1 0
−1 2 + ǫ2Ω2

2 −1

∣

∣

∣

∣

∣

∣

∣

∣

= α
[

(2 + ǫ2Ω2
2)(2 + ǫ2Ω2

3) − 1
]

. (2.428)
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They show that HN is in fact equal to αDN−1, provided we shift Ω2
N by one lattice unit upwards

to Ω2
N+1. Let us indicate this by a superscript +, i.e., we write

HN = αD+
N−1. (2.429)

Thus we arrive at the equation

D̃N+1 = (2 + ǫ2Ω2
N )DN −DN−1 − α

−α[1 + (2 + ǫ2Ω2
N )αD+

N−2 − αD+
N−3]. (2.430)

Using the difference equations for DN and D+
N , this can be brought to the convenient form

D̃N+1 = DN+1 − α2D+
N−1 − 2α. (2.431)

For quantum-mechanical fluctuations with α = 0, this reduces to the earlier result in Section 2.3.6.
For periodic fluctuations with α = 1, the result is

D̃N+1 = DN+1 −D+
N−1 − 2. (2.432)

In the continuum limit, DN+1 − D+
N−1 tends towards 2Ḋren, where Dren(τ) = Da(t) is the

imaginary-time version of the Gelfand-Yaglom function in Section 2.4 solving the homogenous
differential equation (2.215), with the initial conditions (2.213) and (2.214), or Eqs. (2.228). The
corresponding properties are now:

[

−∂2
τ + Ω2(τ)

]

Dren(τ) = 0, Dren(0) = 0, Ḋren(0) = 1. (2.433)

In terms of Dren(τ), the determinant is given by the Gelfand-Yaglom-like formula

det(−ǫ2∇∇ + ǫΩ2)T
ǫ→0
−−−→ 2[Ḋren(h̄β) − 1], (2.434)

and the partition function reads

ZΩ =
1

√

2
[

Ḋren(h̄β) − 1
]

. (2.435)

The result may be checked by going back to the amplitude (xbtb|xata) of Eq. (2.262), continuing
it to imaginary times t = iτ , setting xb = xa = x, and integrating over all x. The result is

ZΩ =
1

2
√

Ḋa(tb) − 1
, tb = ih̄β, (2.436)

in agreement with (2.435).
As an example, take the harmonic oscillator for which the solution of (2.433) is

Dren(τ) =
1

ω
sinhωτ (2.437)

[the analytically continued (2.216)]. Then

2[Ḋren(τ) − 1] = 2(coshβh̄ω − 1) = 4 sinh2(βh̄ω/2), (2.438)

and we find the correct partition function:

Zω =
{

2[Ḋren(τ) − 1]
}−1/2 ∣

∣

∣

τ=h̄β

=
1

2 sinh(βh̄ω/2)
. (2.439)
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On a sliced imaginary-time axis, the case of a constant frequency Ω2 ≡ ω2 is solved as follows.
From Eq. (2.210) we take the ordinary Gelfand-Yaglom function DN , and continue it to Euclidean
ω̃e, yielding the imaginary-time version

DN =
sinh(N + 1)ω̃eǫ

sinh ω̃eǫ
. (2.440)

Then we use formula (2.432), which simplifies for a constant Ω2 ≡ ω2 for which D+
N−1 = DN−1,

and calculate

D̃N+1 =
1

sinh ω̃eǫ
[sinh(N + 2)ω̃eǫ− sinhNω̃eǫ] − 2

= 2 [cosh(N + 1)ω̃eǫ− 1] = 4 sinh2[(N + 1)ω̃eǫ/2]. (2.441)

Inserting this into Eq. (2.386) yields the partition function

Zω =
1

√

D̃N+1

=
1

2 sinh(h̄ω̃eβ/2)
, (2.442)

in agreement with (2.403).

2.12 Functional Measure in Fourier Space

There exists an alternative definition for the quantum-statistical path integral which
is useful for some applications (for example in Section 2.13 and in Chapter 5). The
limiting product formula (2.410) suggests that instead of summing over all zigzag
configurations of paths on a sliced time axis, a path integral may be defined with
the help of the Fourier components of the paths on a continuous time axis. As in
(2.380), but with a slightly different normalization of the coefficients, we expand
these paths here as

x(τ) = x0 + η(τ) ≡ x0 +
∞
∑

m=1

(

xme
iωmτ + c.c.

)

, x0 = real, x−m ≡ x∗m. (2.443)

Note that the temporal integral over the time-dependent fluctuations η(τ) is zero,
∫ h̄/kBT
0 dτ η(τ) = 0, so that the zero-frequency component x0 is the temporal average
of the fluctuating paths:

x0 = x̄ ≡ kBT

h̄

∫ h̄/kBT

0
dτ x(τ). (2.444)

In contrast to (2.380) which was valid on a sliced time axis and was therefore
subject to a restriction on the range of the m-sum, the present sum is unrestricted
and runs over all Matsubara frequencies ωm = 2πmkBT/h̄ = 2πm/h̄β. In terms of
xm, the Euclidean action of the linear oscillator is

Ae =
M

2

∫ h̄/kBT

0
dτ (ẋ2 + ω2x2)

=
Mh̄

kBT

[

ω2

2
x20 +

∞
∑

m=1

(ω2
m + ω2)|xm|2

]

. (2.445)
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The integration variables of the time-sliced path integral were transformed to the
Fourier components xm in Eq. (2.388). The product of integrals

∏

n

∫∞
−∞ dx(τn)

turned into the product (2.390) of integrals over real and imaginary parts of xm. In
the continuum limit, the result is

∫ ∞

−∞
dx0

∞
∏

m=1

∫ ∞

−∞
dRexm

∫ ∞

−∞
d Im xm. (2.446)

Placing the exponential e−Ae/h̄ with the frequency sum (2.445) into the integrand,
the product of Gaussian integrals renders a product of inverse eigenvalues (ω2

m+ω
2)−1

for m = 1, . . . ,∞, with some infinite factor. This may be determined by comparison
with the known continuous result (2.410) for the harmonic partition function. The
infinity is of the type encountered in Eq. (2.183), and must be divided out of the
measure (2.446). The correct result (2.408) is obtained from the following measure
of integration in Fourier space

∮

Dx ≡
∫ ∞

−∞

dx0
le(h̄β)

∞
∏

m=1

[

∫ ∞

−∞

∫ ∞

−∞

dRexmd Imxm
πkBT/Mω2

m

]

. (2.447)

The divergences in the product over the factors (ω2
m + ω2)−1 discussed after

Eq. (2.183) are canceled by the factors ω2
m in the measure. It will be convenient to

introduce a short-hand notation for the measure on the right-hand side, writing it
as

∮

Dx ≡
∫ ∞

−∞

dx0
le(h̄β)

∮

D′x. (2.448)

The denominator of the x0-integral is the length scale le(h̄β) associated with β
defined in Eq. (2.353).

Then we calculate

Zx0
ω ≡

∮

D′x e−Ae/h̄ =
∞
∏

m=1

[

∫ ∞

−∞

∫ ∞

−∞

dRexmd Im xm
πkBT/Mω2

m

]

e−Mh̄[ω2x2
0/2+

∑

∞

m=1
(ω2

m+ω2)|xm|2]/kBT

= e−Mω2x2
0/2kBT

∞
∏

m=1

[

ω2
m + ω2

ω2
m

]−1

. (2.449)

The final integral over the zero-frequency component x0 yields the partition function

Zω =
∮

Dx e−Ae/h̄ =
∫ ∞

−∞

dx0
le(h̄β)

Zx0
ω =

kBT

h̄ω

∞
∏

m=1

[

ω2
m + ω2

ω2
m

]−1

, (2.450)

as in (2.410).
The same measure can be used for the more general amplitude (2.414), as is

obvious from (2.416). With the predominance of the kinetic term in the measure
of path integrals [the divergencies discussed after (2.183) stem only from it], it can
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easily be shown that the same measure is applicable to any system with the standard
kinetic term.

It is also possible to find a Fourier decomposition of the paths and an associated
integration measure for the open-end partition function in Eq. (2.413). We begin by
considering the slightly reduced set of all paths satisfying the Neumann boundary
conditions

ẋ(τa) = va = 0, ẋ(τb) = vb = 0. (2.451)

They have the Fourier expansion

x(τ) = x0 + η(τ) = x0 +
∞
∑

n=1

xn cos νn(τ − τa), νn = nπ/β. (2.452)

The frequencies νn are the Euclidean version of the frequencies (3.64) for Dirichlet
boundary conditions. Let us calculate the partition function for such paths by
analogy with the above periodic case by a Fourier decomposition of the action

Ae =
M

2

∫ h̄/kBT

0
dτ (ẋ2 + ω2x2) =

Mh̄

kBT

[

ω2

2
x20 +

1

2

∞
∑

n=1

(ν2n + ω2)x2n

]

, (2.453)

and of the measure

∮

Dx ≡
∫ ∞

−∞

dx0
le(h̄β)

∞
∏

n=1

[

∫ ∞

−∞

∫ ∞

−∞

d xn
πkBT/2Mν2n

]

≡
∫ ∞

−∞

dx0
le(h̄β)

∮

D′x. (2.454)

We now perform the path integral over all fluctuations at fixed x0 as in (2.449):

ZN,x0
ω ≡

∮

D′x e−Ae/h̄ =
∞
∏

n=1

[

∫ ∞

−∞

∫ ∞

−∞

d xn
πkBT/2Mν2n

]

e−Mh̄[ω2x2
0/2+

∑

∞

n=1
(ν2n+ω2)|xn|2]/kBT

= e−Mω2x2
0/2kBT

∞
∏

n=1

[

ν2n + ω2

ν2n

]−1

. (2.455)

Using the product formula (2.183), this becomes

ZN,x0
ω =

√

ωh̄β

sinhωh̄β
exp

(

−βM
2
ω2x20

)

. (2.456)

The final integral over the zero-frequency component x0 yields the partition function

ZN
ω =

1

le(h̄β)

√

2πh̄

Mω

1√
sinhωh̄β

. (2.457)

We have replaced the denominator in the prefactor 1/le(h̄β) by the length scale
1/le(h̄β) of Eq. (2.353). Apart from this prefactor, the Neumann partition function
coincides precisely with the open-end partition function Zopen

ω in Eq. (2.413).
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What is the reason for this coincidence up to a trivial factor, even though the
paths satisfying Neumann boundary conditions do not comprise all paths with open
ends? Moreover, the integrals over the endpoints in the defining equation (2.413) do
not force the endpoint velocities , but rather endpoint momenta to vanish. Indeed,
recalling Eq. (2.189) for the time evolution amplitude in momentum space we can
see immediately that the partition function with open ends Zopen

ω in Eq. (2.413) is
identical to the imaginary-time amplitude with vanishing endpoint momenta:

Zopen
ω = (pb h̄β|pa 0)|pb=pa=0. (2.458)

Thus, the sum over all paths with arbitrary open ends is equal to the sum of all
paths satisfying Dirichlet boundary conditions in momentum space. Only classically,
the vanishing of the endpoint momenta implies the vanishing of the endpoint veloc-
ities. From the general discussion of the time-sliced path integral in phase space in
Section 2.1 we know that fluctuating paths have Mẋ 6= p. The fluctuations of the
difference are controlled by a Gaussian exponential of the type (2.53). This leads to
the explanation of the trivial factor between Zopen

ω and ZN
ω . The difference between

Mẋ and p appears only in the last short-time intervals at the ends. But at short
time, the potential does not influence the fluctuations in (2.53). This is the reason
why the fluctuations at the endpoints contribute only a trivial overall factor le(h̄β)
to the partition function ZN

ω .

2.13 Classical Limit

The alternative measure of the last section serves to show, somewhat more convinc-
ingly than before, that in the high-temperature limit the path integral representation
of any quantum-statistical partition function reduces to the classical partition func-
tion as stated in Eq. (2.346). We start out with the Lagrangian formulation (2.376).
Inserting the Fourier decomposition (2.443), the kinetic term becomes

∫ h̄β

0
dτ

M

2
ẋ2 =

Mh̄

kBT

∞
∑

m=1

ω2
m|xm|2, (2.459)

and the partition function reads

Z =
∮

Dx exp

[

− M

kBT

∞
∑

m=1

ω2
m|xm|2 −

1

h̄

∫ h̄/kBT

0
dτ V (x0 +

∞
∑

m=−∞

′ xme
−iωmτ )

]

. (2.460)

The summation symbol with a prime implies the absence of the m = 0 -term. The
measure is the product (2.447) of integrals of all Fourier components.

We now observe that for large temperatures, the Matsubara frequencies form 6= 0
diverge like 2πmkBT/h̄ . This has the consequence that the Boltzmann factor for
the xm6=0 fluctuations becomes sharply peaked around xm = 0. The average size of

xm is
√

kBT/M/ωm = h̄/2πm
√
MkBT . If the potential V

(

x0 +
∑′ ∞

m=−∞
′ xme

−iωmτ
)

is a smooth function of its arguments, we can approximate it by V (x0) plus terms
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containing higher powers of xm. For large temperatures, these are small on the
average and can be ignored. The leading term V (x0) is time-independent. Hence
we obtain in the high-temperature limit

Z
T→∞−−−→

∮

Dx exp
[

− M

kBT

∞
∑

m=1

ω2
m|xm|2 −

1

kBT
V (x0)

]

. (2.461)

The right-hand side is quadratic in the Fourier components xm. With the measure
of integration (2.447), we perform the integrals over xm and obtain

Z
T→∞−−−→ Zcl =

∫ ∞

−∞

dx0
le(h̄β)

e−V (x0)/kBT . (2.462)

This agrees with the classical statistical partition function (2.352).
The derivation reveals an important prerequisite for the validity of the classical

limit: It holds only for sufficiently smooth potentials. We shall see in Chapter 8
that for singular potentials such as −1/|x| (Coulomb), 1/|x|2 (centrifugal barrier),
1/ sin2 θ (angular barrier), this condition is not fulfilled and the classical limit is no
longer given by (2.462). The particle distribution ρ(x) at a fixed x does not have
this problem. It always tends towards the naively expected classical limit (2.354):

ρ(x)
T→∞−−−→ Z−1

cl e
−V (x)/kBT . (2.463)

The convergence is nonuniform in x, which is the reason why the limit does not
always carry over to the integral (2.462). This will be an important point in deriving
in Chapter 12 a new path integral formula valid for singular potentials. At first, we
shall ignore such subtleties and continue with the conventional discussion valid for
smooth potentials.

2.14 Calculation Techniques on Sliced Time Axis

via the Poisson Formula

In the previous sections we have used tabulated product formulas such as (2.127), (2.165), (2.173),
(2.400), (2.402) to find fluctuation determinants on a finite sliced time axis. With the recent
interest in lattice models of quantum field theories, it is useful to possess an efficient calculational
technique to derive such product formulas (and related sums). Consider, as a typical example, the
quantum-statistical partition function for a harmonic oscillator of frequency ω on a time axis with
N + 1 slices of thickness ǫ,

Z =

N
∏

m=0

[2(1 − cosωmǫ) + ǫ2ω2]−1/2, (2.464)

with the product running over all Matsubara frequencies ωm = 2πmkBT/h̄. Instead of dealing
with this product it is advantageous to consider the free energy

F = −kBT logZ =
1

2
kBT

N
∑

m=0

log[2(1 − cosωmǫ) + ǫ2ω2]. (2.465)
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We now observe that by virtue of Poisson’s summation formula (1.205), the sum can be rewritten
as the following combination of a sum and an integral:

F =
1

2
kBT (N + 1)

∞
∑

n=−∞

∫ 2π

0

dλ

2π
eiλn(N+1) log[2(1 − cosλ) + ǫ2ω2]. (2.466)

The sum over n squeezes λ to integer multiples of 2π/(N + 1) = ωmǫ which is precisely what we
want.

We now calculate the integrals in (2.466):

∫ 2π

0

dλ

2π
eiλn(N+1) log[2(1 − cosλ) + ǫ2ω2]. (2.467)

For this we rewrite the logarithm of an arbitrary positive argument as the limit

log a = lim
δ→0

[

−
∫ ∞

δ

dτ

τ
e−τa/2

]

+ log(2δ) + γ, (2.468)

where

γ ≡ −Γ′(1)/Γ(1) = lim
N→∞

(

N
∑

n=1

1

n
− logN

)

≈ 0.5773156649 . . . (2.469)

is the Euler-Mascheroni constant. Indeed, the function

E1(x) =

∫ ∞

x

dt

t
e−t (2.470)

is known as the exponential integral with the small-x expansion19

E1(x) = −γ − log x−
∞
∑

k=1

(−x)k

kk!
. (2.471)

With the representation (2.468) for the logarithm, the free energy can be rewritten as

F =
1

2ǫ

∞
∑

n=−∞

lim
δ→0

{

−
∫ ∞

δ

dτ

τ

∫ 2π

0

dλ

2π
eiλn(N+1)−τ [2(1−cosλ)+ǫ2ω2]/2 − δn0 [log(2δ) + γ]

}

.

(2.472)

The integral over λ is now performed20 giving rise to a modified Bessel function In(N+1)(τ):

F =
1

2ǫ

∞
∑

n=−∞

lim
δ→0

{

−
∫ ∞

δ

dτ

τ
In(N+1)(τ)e−τ(2+ǫ2ω2)/2 − δn0 [log(2δ) + γ]

}

.

(2.473)

If we differentiate this with respect to ǫ2ω2 ≡ m2, we obtain

∂F

∂m2
=

1

4ǫ

∞
∑

n=−∞

∫ ∞

0

dτIn(N+1)(τ)e−τ(2+m2)/2 (2.474)

and perform the τ -integral, using the formula valid for Re ν > −1, Re α > Re µ

∫ ∞

0

dτ Iν(µτ)e−τα = µν (α−
√

α2 − µ2)−ν ,
√

α2 − µ2
= µ−ν (α−

√

α2 − µ2)ν
√

α2 − µ2
, (2.475)

19I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 8.214.2.
20I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formulas 8.411.1 and 8.406.1.
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to find

∂F

∂m2
=

1

2ǫ

∞
∑

n=−∞

1
√

(m2 + 2)2 − 4

[

m2 + 2 −
√

(m2 + 2)2 − 4

2

]|n|(N+1)

. (2.476)

From this we obtain F by integration over m2 + 1. The n = 0 -term under the sum gives

log[(m2 + 2 +
√

(m2 + 2)2 − 4 )/2] + const (2.477)

and the n 6= 0 -terms:

− 1

|n|(N + 1)
[(m2 + 2 +

√

(m2 + 2)2 − 4 )/2]−|n|(N+1) + const , (2.478)

where the constants of integration can depend on n(N + 1). They are adjusted by going to the
limit m2 → ∞ in (2.473). There the integral is dominated by the small-τ regime of the Bessel
functions

Iα(z) ∼ 1

|α|!
(z

2

)α

[1 + O(z2)], (2.479)

and the first term in (2.473) becomes

− 1

(|n|(N + 1))!

∫ ∞

δ

dτ

τ

(τ

2

)|n|(N+1)

e−τm2/2

≈
{

logm2 + γ + log(2δ) n = 0

−(m2)−|n|(N+1)/|n|(N + 1) n 6= 0

}

. (2.480)

The limit m2 → ∞ in (2.477), (2.478) gives, on the other hand, logm2 + const and
−(m2)−|n|(N+1)/|n|(N + 1) + const , respectively. Hence the constants of integration must be
zero. We can therefore write down the free energy for N + 1 time steps as

F =
1

2β

N
∑

m=0

log[2(1 − cos(ωmǫ)) + ǫ2ω2]

=
1

2ǫ

{

log
[(

ǫ2ω2 + 2 +
√

(ǫ2ω2 + 2)2 − 4
)

/

2
]

(2.481)

− 2

N + 1

∞
∑

n=1

1

n

[(

ǫ2ω2 + 2 +
√

(ǫ2ω2 + 2)2 − 4
)

/

2
]−|n|(N+1)

}

.

Here it is convenient to introduce the parameter

ǫω̃e ≡ log
{[

ǫ2ω2 + 2 +
√

(ǫ2ω2 + 2)2 − 4
]

/

2
}

, (2.482)

which satisfies

cosh(ǫω̃e) = (ǫ2ω2 + 2)/2, sinh(ǫω̃e) =
√

(ǫ2ω2 + 2)2 − 4/2, (2.483)

or

sinh(ǫω̃e/2) = ǫω/2.

Thus it coincides with the parameter introduced in (2.399), which brings the free energy (2.481)
to the simple form

F =
h̄

2

[

ω̃e −
2

ǫ(N + 1)

∞
∑

n=1

1

n
e−ǫω̃en(N+1)

]

=
1

2

[

h̄ω̃e + 2kBT log(1 − e−βh̄ω̃e)
]

=
1

β
log [2 sinh(βh̄ω̃e/2)] , (2.484)
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whose continuum limit is

F
ǫ→0
=

1

β
log [2 sinh (βh̄ω/2)] =

h̄ω

2
+

1

β
log(1 − e−βh̄ω). (2.485)

2.15 Field-Theoretic Definition of Harmonic Path Integrals

by Analytic Regularization

A slight modification of the calculational techniques developed in the last section
for the quantum partition function of a harmonic oscillator can be used to define
the harmonic path integral in a way which neither requires time slicing, as in the
original Feynman expression (2.66), nor a precise specification of the integration
measure in terms of Fourier components, as in Section 2.12. The path integral for
the partition function

Zω =
∮

Dxe−
∫ h̄β

0
M [ẋ2(τ)+ω2x2(τ)]/2 =

∮

Dxe−
∫ h̄β

0
Mx(τ)[−∂2

τ+ω2]x(τ)/2 (2.486)

is formally evaluated as

Zω =
1

√

Det(−∂2τ + ω2)
= e−

1
2
Tr log(−∂2

τ+ω2). (2.487)

Since the determinant of an operator is the product of all its eigenvalues, we may
write, again formally,

Zω =
∏

ω′

1√
ω′2 + ω2

. (2.488)

The product runs over an infinite set of quantities which grow with ω′2, thus being
certainly divergent. It may be turned into a divergent sum by rewriting Zω as

Zω ≡ e−Fω/kBT = e−
1
2

∑

ω′
log(ω′2+ω2). (2.489)

This expression has two unsatisfactory features. First, it requires a proper definition
of the formal sum over a continuous set of frequencies. Second, the logarithm of
the dimensionful arguments ω2

m + ω2 must be turned into a meaningful expression.
The latter problem would be removed if we were able to exchange the logarithm
by log[(ω′2 + ω2)/ω2]. This would require the formal sum

∑

ω′ log ω2 to vanish. We
shall see below in Eq. (2.514) that this is indeed one of the pleasant properties of
analytic regularization.

At finite temperatures, the periodic boundary conditions along the imaginary-
time axis make the frequencies ω′ in the spectrum of the differential operator−∂2τ+ω2

discrete, and the sum in the exponent of (2.489) becomes a sum over all Matsubara
frequencies ωm = 2πkBT/h̄ (m = 0,±1,±2, . . .):

Zω = exp

[

−1

2

∞
∑

m=−∞

log(ω2
m + ω2)

]

. (2.490)
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For the free energy Fω ≡ (1/β) logZω, this implies

Fω =
1

2β
Tr log(−∂2τ + ω2)

∣

∣

∣

per
=

1

2β

∞
∑

m=−∞

log(ω2
m + ω2). (2.491)

where the subscript per emphasizes the periodic boundary conditions in the τ -
interval (0, h̄β).

2.15.1 Zero-Temperature Evaluation of the Frequency Sum

In the limit T → 0, the sum in (2.491) goes over into an integral, and the free energy
becomes

Fω ≡ 1

2β
Tr log(−∂2τ + ω2)

∣

∣

∣

±∞
=
h̄

2

∫ ∞

−∞

dω′

2π
log(ω′2 + ω2), (2.492)

where the subscript ±∞ indicates the vanishing boundary conditions of the eigen-
functions at τ = ±∞. Thus, at low temperature, we can replace the frequency sum
in the exponent of (2.489) by

∑

ω′

−−−→
T→0

h̄β
∫ ∞

−∞

dω′

2π
. (2.493)

This could have been expected on the basis of Planck’s rules for the phase space
invoked earlier on p. 97 to explain the measure of path integration. According to
these rules, the volume element in the phase space of energy and time has the mea-
sure

∫

dt dE/h =
∫

dt dω/2π. If the integrand is independent of time, the temporal
integral produces an overall factor , which for the imaginary-time interval (0, h̄β) of
statistical mechanics is equal to h̄β = h̄/kBT , thus explaining the integral version
of the sum (2.493).

The integral on the right-hand side of (2.492) diverges at large ω′. This is called
an ultraviolet divergence (UV-divergence), alluding to the fact that the ultraviolet
regime of light waves contains the high frequencies of the spectrum.

The important observation is now that the divergent integral (2.492) can be
made finite by a mathematical technique called analytic regularization.21 This is
based on rewriting the logarithm log(ω′2 + ω2) in the derivative form:

log(ω′2 + ω2) = − d

dǫ
(ω′2 + ω2)−ǫ

∣

∣

∣

∣

∣

ǫ=0

. (2.494)

Equivalently, we may obtain the logarithm from an ǫ → 0 -limit of the function

lMS(ǫ) = −1

ǫ
(ω′2 + ω2)−ǫ +

1

ǫ
. (2.495)

21G. ’t Hooft and M. Veltman, Nucl. Phys. B 44 , 189 (1972). Analytic regularization is at
present the only method that allows to renormalize nonabelian gauge theories without destroying
gauge invariance. See also the review by G. Leibbrandt, Rev. Mod. Phys. 74 , 843 (1975).
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The subtraction of the pole term 1/ǫ is commonly referred to a minimal subtraction.
Indicating this process by a subscript MS, we may write

lMS(ǫ) = −1

ǫ
(ω′2 + ω2)−ǫ

∣

∣

∣

∣

MS, ǫ→0
. (2.496)

Using the derivative formula (2.494), the trace of the logarithm in the free energy
(2.492) takes the form

1

h̄β
Tr log(−∂2τ + ω2) = − d

dǫ

∫ ∞

−∞

dω′

2π
(ω′2 + ω2)−ǫ

∣

∣

∣

∣

∣

ǫ=0

. (2.497)

We now set up a useful integral representation, due to Schwinger, for a power a−ǫ

generalizing (2.468). Using the defining integral representation for the Gamma func-
tion

∫ ∞

0

dτ

τ
τµe−τω2

= ω−µ/2Γ(µ), (2.498)

the desired generalization is

a−ǫ =
1

Γ(ǫ)

∫ ∞

0

dτ

τ
τ ǫe−τa. (2.499)

This allows us to re-express (2.497) as

1

h̄β
Tr log(−∂2τ + ω2) = − d

dǫ

1

Γ(ǫ)

∫ ∞

−∞

dω′

2π

∫ ∞

0

dτ

τ
τ ǫe−τ(ω′2+ω2)

∣

∣

∣

∣

∣

ǫ=0

. (2.500)

As long as ǫ is larger than zero, the τ -integral converges absolutely, so that we can
interchange the τ - and ω′-integrations, and obtain

1

h̄β
Tr log(−∂2τ + ω2) = − d

dǫ

1

Γ(ǫ)

∫ ∞

0

dτ

τ
τ ǫ
∫ ∞

−∞

dω′

2π
e−τ(ω′2+ω2)

∣

∣

∣

∣

∣

ǫ=0

. (2.501)

At this point we can perform the Gaussian integral over ω′ using formula (1.338),
and find

1

h̄β
Tr log(−∂2τ + ω2) = − d

dǫ

1

Γ(ǫ)

∫ ∞

0

dτ

τ
τ ǫ

1

2
√
τπ
e−τω2

∣

∣

∣

∣

∣

ǫ=0

. (2.502)

For small ǫ, the τ -integral is divergent at the origin. It can, however, be defined by
an analytic continuation of the integral starting from the regime ǫ > 1/2, where it
converges absolutely, to ǫ = 0. The continuation must avoid the pole at ǫ = 1/2.
Fortunately, this continuation is trivial since the integral can be expressed in terms of
the Gamma function, whose analytic properties are well-known. Using the integral
formula (2.498), we obtain

1

h̄β
Tr log(−∂2τ + ω2) = − 1

2
√
π
ω1−2ǫ d

dǫ

1

Γ(ǫ)
Γ(ǫ− 1/2)

∣

∣

∣

∣

∣

ǫ=0

. (2.503)
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The right-hand side has to be continued analytically from ǫ > 1/2 to ǫ = 0. This is
easily done using the defining property of the Gamma function Γ(x) = Γ(1 + x)/x,
from which we find Γ(−1/2) = −2Γ(1/2) = −2

√
π, and 1/Γ(ǫ) ≈ ǫ/Γ(1 + ǫ) ≈ ǫ.

The derivative with respect to ǫ leads to the free energy of the harmonic oscillator
at low temperature via analytic regularization:

1

h̄β
Tr log(−∂2τ + ω2) =

∫ ∞

−∞

dω′

2π
log(ω′2 + ω2) = ω, (2.504)

so that the free energy of the oscillator at zero-temperature becomes

Fω =
h̄ω

2
. (2.505)

This agrees precisely with the result obtained from the lattice definition of the path
integral in Eq. (2.407), or from the path integral (3.808) with the Fourier measure
(2.447).

With the above procedure in mind, we shall often use the sloppy formula ex-
pressing the derivative of Eq. (2.499) at ǫ = 0:

log a = −
∫ ∞

0

dτ

τ
e−τa. (2.506)

This formula differs from the correct one by a minimal subtraction and can be
used in all calculations with analytic regularization. Its applicability is based on
the possibility of dropping the frequency integral over 1/ǫ in the alternative correct
expression

1

h̄β
Tr log(−∂2τ + ω2) = −1

ǫ

∫ ∞

−∞

dω′

2π

[

1

ǫ
(ω′2 + ω2)−ǫ − 1

ǫ

]

ǫ→0
. (2.507)

In fact, within analytic regularization one may set all integrals over arbitrary pure
powers of the frequency equal to zero:

∫ ∞

0
dω′ (ω′)α = 0 for all α. (2.508)

This is known as Veltman’s rule.22 It is a special limit of a frequency integral which
is a generalization of the integral in (2.497):

∫ ∞

−∞

dω′

2π

(ω′2)γ

(ω′2 + ω2)ǫ
=

Γ(γ + 1/2)

2πΓ(ǫ)
(ω2)γ+1/2−ǫ. (2.509)

This equation may be derived by rewriting the left-hand side as

1

Γ(ǫ)

∫ ∞

−∞

dω′

2π
(ω′2)γ

∫ ∞

0

dτ

τ
τ ǫe−τ(ω′2+ω2). (2.510)

22See the textbook H. Kleinert and V. Schulte-Frohlinde, Critical Properties of φ4-Theories ,
World Scientific, Singapore, 2001 (http://www.physik.fu-berlin.de/~kleinert/b8).
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The integral over ω′ is performed as follows:

∫ ∞

−∞

dω′

2π
(ω′2)γe−τ(ω′2+ω2) =

1

2π

∫ ∞

0

dω′ 2

ω′ 2
(ω′2)γ+1/2e−τ(ω′2+ω2) =

τ−γ−1/2

2π
Γ(γ + 1/2),

(2.511)
leading to a τ -integral in (2.510)

∫ ∞

0

dτ

τ
τ ǫ−γ−1/2e−τω2

= (ω2)γ+1/2+ǫ, (2.512)

and thus to the formula (2.509). The Veltman rule (2.508) follows from this directly
in the limit ǫ → 0, since 1/Γ(ǫ) → 0 on the right-hand side. This implies that the
subtracted 1/ǫ term in (2.507) gives no contribution.

The vanishing of all integrals over pure powers by Veltman’s rule (2.508) was
initially postulated in the process of developing a finite quantum field theory of
weak and electromagnetic interactions. It has turned out to be extremely useful
for the calculation of critical exponents of second-order phase transitions from field
theories.22

An important consequence of Veltman’s rule is to make the logarithms of di-
mensionful arguments in the partition functions (2.489) and the free energy (2.491)
meaningful quantities. First, since

∫

d(ω′/2π) logω2 = 0, we can divide the argu-
ment of the logarithm in (2.492) by ω2 without harm, and make them dimensionless.
At finite temperatures, we use the equality of the sum and the integral over an ωm-
independent quantity c

kBT
∞
∑

m=−∞

c =
∫ ∞

−∞

dωm

2π
c (2.513)

to show that also

kBT
∞
∑

m=−∞

log ω2 = 0, (2.514)

so that we have, as a consequence of Veltman’s rule, that the Matsubara frequency
sum over the constant log ω2 vanishes for all temperatures. For this reason, also the
argument of the logarithm in the free energy (2.491) can be divided by ω2 without
change, thus becoming dimensionless.

2.15.2 Finite-Temperature Evaluation of the Frequency Sum

At finite temperature, the free energy contains an additional term consisting of the
difference between the Matsubara sum and the frequency integral

∆Fω =
kBT

2

∞
∑

m=−∞

log

(

ω2
m

ω2
+ 1

)

− h̄

2

∫ ∞

−∞

dωm

2π
log

(

ω2
m

ω2
+ 1

)

, (2.515)
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where we have used dimensionless logarithms as discussed at the end of the last
subsection. The sum is conveniently split into a subtracted, manifestly convergent
expression

∆1Fω = kBT
∞
∑

m=1

[

log

(

ω2
m

ω2
+ 1

)

− log
ω2
m

ω2

]

= kBT
∞
∑

m=1

log

(

1 +
ω2

ω2
m

)

, (2.516)

and a divergent sum

∆2Fω = kBT
∞
∑

m=1

log
ω2
m

ω2
. (2.517)

The convergent part is most easily evaluated. Taking the logarithm of the product
in Eq. (2.408) and recalling (2.409), we find

∞
∏

m=1

(

1 +
ω2

ω2
m

)

=
sinh(βh̄ω/2)

βh̄ω/2
, (2.518)

and therefore

∆F1 =
1

β
log

sinh(βh̄ω/2)

βh̄ω/2
. (2.519)

The divergent sum (2.517) is calculated by analytic regularization as follows: We
rewrite

∞
∑

m=1

log
ω2
m

ω2
= −

[

2
d

dǫ

∞
∑

m=1

(

ωm

ω

)−ǫ
]

ǫ→0

= −


2
d

dǫ

(

2π

βh̄ω

)−ǫ ∞
∑

m=1

m−ǫ





ǫ→0

, (2.520)

and express the sum over m−ǫ in terms of Riemann’s zeta function

ζ(z) =
∞
∑

m=1

m−z. (2.521)

This sum is well defined for z > 1, and can be continued analytically into the entire
complex z-plane. The only singularity of this function lies at z = 1, where in the
neighborhood ζ(z) ≈ 1/z. At the origin, ζ(z) is regular, and satisfies23

ζ(0) = −1/2, ζ ′(0) = −1

2
log 2π, (2.522)

such that we may approximate

ζ(z) ≈ −1

2
(2π)z, z ≈ 0. (2.523)

Hence we find

∞
∑

m=1

log
ω2
m

ω2
= −



2
d

dǫ

(

2π

βh̄ω

)−ǫ

ζ(ǫ)





ǫ→0

=
d

dǫ
(βh̄ω)ǫ

∣

∣

∣

∣

∣

ǫ→0

= log h̄ωβ. (2.524)

23I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 9.541.4.
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thus determining ∆2Fω in Eq. (2.517).
By combining this with (2.519) and the contribution −h̄ω/2 from the integral

(2.515), the finite-temperature part (2.491) of the free energy becomes

∆Fω =
1

β
log(1− e−h̄βω). (2.525)

Together with the zero-temperature free energy (2.505), this yields the dimensionally
regularized sum formula

Fω =
1

2β
Tr log(−∂2τ + ω2) =

1

2β

∞
∑

m=−∞

log(ω2
m + ω2) =

h̄ω

2
+

1

β
log(1− e−h̄ω/kBT )

=
1

β
log

(

2 sinh
h̄ωβ

2

)

, (2.526)

in agreement with the properly normalized free energy (2.485) at all temperatures.
Note that the property of the zeta function ζ(0) = −1/2 in Eq. (2.522) leads once

more to our earlier result (2.514) that the Matsubara sum of a constant c vanishes:

∞
∑

m=−∞

c =
−1
∑

m=−∞

c+ c+
∞
∑

m=1

c = 0, (2.527)

since
∞
∑

m=1

1 =
−∞
∑

m=−1

1 = ζ(0) = −1/2. (2.528)

As mentioned before, this allows us to divide ω2 out of the logarithms in the sum
in Eq. (2.526) and rewrite this sum as

1

2β

∞
∑

m=−∞

log

(

ω2
m

ω2
+ 1

)

=
1

β

∞
∑

m=1

log

(

ω2
m

ω2
+ 1

)

(2.529)

2.15.3 Quantum-Mechanical Harmonic Oscillator

This observation leads us directly to the analogous quantum-mechanical discussion.
Starting from the fluctuation factor (2.91) of the free particle which can formally be
written as

F0(∆t) =
∫

Dδx(t) exp
[

i

h̄

∫ tb

ta
dt
M

2
δx(−∂2t )δx

]

=
1

√

2πh̄i∆t/M
, (2.530)

where ∆t ≡ tb − ta [recall (2.130)]. The path integral of the harmonic oscillator has
the fluctuation factor [compare (2.188)]

Fω(∆t) = F0(∆t)

[

Det(−∂2t − ω2)

Det(−∂2t )

]−1/2

. (2.531)
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The ratio of the determinants has the Fourier decomposition

Det(−∂2t − ω2)

Det(−∂2t )
= exp

{

∞
∑

n=1

[

log(ν2n − ω2)− log ν2n
]

}

, (2.532)

where νn = nπ/∆t [recall (2.115)], and was calculated in Eq. (2.188) to be

Det(−∂2t − ω2)

Det(−∂2t )
=

sinω∆t

ω∆t
. (2.533)

This result can be reproduced with the help of formulas (2.529) and (2.526). We
raplace β by 2∆t, and use again Σn1 = ζ(0) = −1/2 to obtain

Det(−∂2t − ω2) =
∞
∑

n=1

log(ν2n + ω2)
∣

∣

∣

ω→iω
=

∞
∑

n=1

[

log

(

ν2n
ω2

+ 1

)

+ log ω2

]

ω→iω

=

[

∞
∑

n=1

log

(

ν2n
ω2

+ 1

)

− 1

2
log ω2

]

ω→iω

= log
(

2
sinω∆t

ω

)

. (2.534)

For ω = 0 this reproduces Formula (2.524). Inserting this and (2.534) into (2.532),
we recover the result (2.533). Thus we find the amplitude

(xbtb|xata) =
1

√

πi/M
Det−1/2(−∂2t − ω2)eiAcl/h̄ =

1
√

πi/M

√

ω

2 sinω∆t
eiAcl/h̄, (2.535)

in agreement with (2.175).

2.15.4 Tracelog of the First-Order Differential Operator

The trace of the logarithm in the free energy (2.492) can obviously be split into two
terms

Tr log(−∂2τ + ω2) = Tr log(∂τ + ω) + Tr log(−∂τ + ω). (2.536)

Since the left-hand side is equal to βh̄ω by (2.504), and the two integrals must be
the same, we obtain the low-temperature result

Tr log(∂τ+ ω)=Tr log(−∂τ+ ω)= h̄β
∫ ∞

−∞

dω

2π
log(−iω′ + ω)= h̄β

∫ ∞

−∞

dω

2π
log(iω′+ ω)

=
h̄βω

2
. (2.537)

The same result could be obtained from analytic continuation of the integrals over
∂ǫ(±iω′ + ω)ǫ to ǫ = 0.

For a finite temperature, we may use Eq. (2.526) to find

Tr log(∂τ+ ω)=Tr log(−∂τ+ ω)=
1

2
Tr log(−∂2τ + ω2)=log

(

2 sinh
βh̄ω

2

)

, (2.538)
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which reduces to (2.537) for T → 0.
The result is also the same if there is an extra factor i in the argument of

the tracelog. To see this we consider the case of time-independent frequency where
Veltman’s rule (2.508) tells us that it does not matter whether one evaluates integrals
over log(iω′ ∓ ω) or over log(ω′ ± iω).

Let us also replace ω′ by iω′ in the zero-temperature tracelog (2.504) of the
second-order differential operator (−∂2τ + ω2). Then we rotate the contour of inte-
gration clockwise in the complex plane to find

∫ ∞

−∞

dω′

2π
log(−ω′2 + ω2 − iη) = ω, ω ≥ 0, (2.539)

where an infinitesimal positive η prescribes how to bypass the singularities at ω′ =
±ω ∓ iη along the rotated contour of integration. Recall the discussion of the iη-
prescription in Section 3.3. The integral (2.539) can be split into the integrals

∫ ∞

−∞

dω′

2π
log[ω′ ± (ω − iη)] = i

ω

2
, ω ≥ 0. (2.540)

Hence formula (2.537) can be generalized to arbitrary complex frequencies ω =
ωR + iωI as follows:

∫ ∞

−∞

dω′

2π
log(ω′ ± iω) = ∓ǫ(ωR)

ω

2
, (2.541)

and
∫ ∞

−∞

dω′

2π
log(ω′ ± ω) = −iǫ(ωI)

ω

2
, (2.542)

where ǫ(x) = Θ(x)−Θ(−x) = x/|x| is the antisymmetric Heaviside function (1.315),
which yields the sign of its argument. The formulas (2.541) and (2.542) are the
large-time limit of the more complicated sums

kBT

h̄

∞
∑

m=−∞

log(ωm ± iω) =
kBT

h̄
log

[

2ǫ(ωR) sinh
h̄ω

2kBT

]

, (2.543)

and

kBT

h̄

∞
∑

m=−∞

log(ωm ± ω) =
kBT

h̄
log

[

−2iǫ(ωI) sin
h̄ω

2kBT

]

. (2.544)

The first expression is periodic in the imaginary part of ω, with period 2πkBT , the
second in the real part. The determinants possess a meaningful large-time limit only
if the periodic parts of ω vanish. In many applications, however, the fluctuations will
involve sums of logarithms (2.544) and (2.543) with different complex frequencies
ω, and only the sum of the imaginary or real parts will have to vanish to obtain a
meaningful large-time limit. On these occasions we may use the simplified formulas
(2.541) and (2.542). Important examples will be encountered in Section 18.9.2.
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In Subsection 3.3.2, Formula (2.538) will be generalized to arbitrary positive
time-dependent frequencies Ω(τ), where it reads [see (3.133)]

Tr log [±∂τ + Ω(τ)] = log

{

2 sinh

[

1

2

∫ h̄β

0
dτ ′′ Ω(τ ′′)

]}

=
1

2

∫ h̄β

0
dτ ′′ Ω(τ ′′) + log

[

1− e−
∫ h̄β

0
dτ ′′ Ω(τ ′′)

]

. (2.545)

2.15.5 Gradient Expansion of the One-Dimensional Tracelog

Formula (2.545) may be used to calculate the trace of the logarithm of a second-
order differential equation with arbitrary frequency as a semiclassical expansion. We
introduce the Planck constant h̄ and the potential w(τ) ≡ h̄Ω(τ), and factorize as
in (2.536):

Det
[

−h̄2∂2τ + w2(τ)
]

= Det [−h̄∂τ − w̄(τ)]×Det [h̄∂τ − w̄(τ)] , (2.546)

where the function w̄(τ) satisfies the Riccati differential equation:24

h̄∂τ w̄(τ) + w̄2(τ) = w2(τ). (2.547)

By solving this we obtain the trace of the logarithm from (2.545):

Tr log
[

−h̄2∂2τ + w2(τ)
]

= log

{

4 sinh2

[

1

2h̄

∫ h̄β

0
dτ ′ w̄(τ ′)

]}

. (2.548)

The exponential of this yields the functional determinant. For constant w̄(τ) =
ω this agrees with the result (2.433) of the Gelfand-Yaglom formula for periodic
boundary conditions.

This agreement is no coincidence. We can find the solution of any Riccati differ-
ential equation if we know how to solve the second-order differential equation (2.433).
Imposing the Gelfand-Yaglom boundary conditions in (2.433), we find Dren(τ) and
from this the functional determinant 2[Ḋren(h̄β)−1]. Comparison with (2.548) shows
that the solution of the Riccati differential equation (2.547) is given by

w̄(τ) = 2h̄∂τ arsinh
√

[Ḋren(τ)− 1]/2. (2.549)

For the harmonic oscillator where Ḋren(τ) is equal to (2.437), this leads to the
constant w̄(τ) = h̄ω, as it should.

If we cannot solve the second-order differential equation (2.433), a solution to
the Riccati equation (2.547) can still be found as a power series in h̄:

w̄(τ) =
∞
∑

n=0

w̄n(τ)h̄
n, (2.550)

24Recall the general form of the Riccati differential equation y′ = f(τ)y + g(τ)y2 + h(y), which
is an inhomogeneous version of the Bernoulli differential equation y′ = f(τ)y + g(τ)yn for n = 2.
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which provides us with a so-called gradient expansion of the trace of the logarithm.
The lowest-order coefficient function w̄0(τ) is obviously equal to w(τ). The higher
ones obey the recursion relation

w̄n(τ) = − 1

2w(τ)

(

˙̄wn−1(τ) +
n−1
∑

k=1

w̄n−k(τ)w̄k(τ)

)

, n ≥ 1. (2.551)

These are solved for n = 0, 1, 2, 3 by
{

√

v(τ),− v′(τ)

4 v(τ)
, − 5 v′(τ)

2

32 v(τ)
5/2

+
v′′(τ)

8 v(τ)
3/2

, − 15 v′(τ)
3

64 v(τ)
4 +

9 v′(τ) v′′(τ)

32 v(τ)
3 − v(3)(τ)

16 v(τ)
2 ,

− 1105 v′(τ)
4

2048 v(τ)
11/2

+
221 v′(τ)

2
v′′(τ)

256 v(τ)
9/2

− 19 v′′(τ)
2

128 v(τ)
7/2

− 7 v′(τ) v(3)(τ)

32 v(τ)
7/2

+
v(4)(τ)

32 v(τ)
5/2

}

,(2.552)

where v(τ) ≡ w2(τ). The series can, of course, be trivially extended to any desired
orders.

2.15.6 Duality Transformation and Low-Temperature Expansion

There exists another method of calculating the finite-temperature part of the free
energy (2.491) which is worth presenting at this place, due to its broad applicability
in statistical mechanics. For this we rewrite (2.515) in the form

∆Fω =
kBT

2

(

∞
∑

m=−∞

− h̄

kBT

∫ ∞

−∞

dωm

2π

)

log(ω2
m + ω2). (2.553)

Changing the integration variable to m, this becomes

∆Fω =
kBT

2

(

∞
∑

m=−∞

−
∫ ∞

−∞
dm

)

log





(

2πkBT

h̄

)2

m2 + ω2



 . (2.554)

Within analytic regularization, this expression is rewritten with the help of formula
(2.506) as

∆Fω = −kBT
2

∫ ∞

0

dτ

τ

(

∞
∑

m=−∞

−
∫ ∞

−∞
dm

)

e−τ[(2πkBT/h̄)2m2+ω2]. (2.555)

The duality transformation proceeds by performing the sum over the Matsubara
frequencies with the help of Poisson’s formula (1.205) as an integral

∫

dµ plus by an
extra sum over integer numbers n. This brings (2.555) to the form (expressing the
temperature in terms of β),

∆Fω = − 1

2β

∫ ∞

0

dτ

τ

∫ ∞

−∞
dµ

(

∞
∑

n=−∞

e2πµni − 1

)

e−τ[(2π/h̄β)2µ2+ω2]. (2.556)
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The parentheses contain the sum 2
∑∞

n=1 e
2πµni. After a quadratic completion of the

exponent

2πµni− τ

(

2π

h̄β

)2

µ2 = −τ
(

2π

h̄β

)2 [

µ− i
nh̄2β2

4πτ

]2

− 1

4τ
(h̄βn)2 , (2.557)

the integral over µ can be performed, with the result

∆Fω = − h̄

2
√
π

∫ ∞

0

dτ

τ
τ−1/2

∞
∑

n=1

e−(nh̄β)2/4τ−τω2

. (2.558)

Now we may use the integral formula [compare (1.347)]25

∫ ∞

0

dτ

τ
τ νe−a2/τ−b2τ = 2

(

a

b

)ν

Kν(2ab), Kν(2ab) = K−ν(2ab), (2.559)

to obtain the sum over modified Bessel functions

∆Fω = − h̄ω

2
√
π

∞
∑

n=1

2 (nβh̄ω)−1/2
√
2K1/2(nβh̄ω). (2.560)

The modified Bessel functions with index 1/2 are particularly simple:

K1/2(z) =

√

π

2z
e−z. (2.561)

Inserting this into (2.560), the sum is a simple geometric one, and may be performed
as follows:

∆Fω = − 1

β

∑

n=1

1

n
e−βh̄ωn =

1

β
log

(

1− e−βh̄ω
)

, (2.562)

in agreement with the previous result (2.525).
The effect of the duality tranformation may be rephrased in another way. It

converts the sum over Matsubara frequencies ωm in (2.516):

S(βh̄ω) = kBT
∞
∑

m=1

log

(

1 +
ω2

ω2
m

)

(2.563)

into a sum over the quantum numbers n of the harmonic oscillator:

S(βh̄ω) =
βh̄ω

2
− log βh̄ω −

∞
∑

n=1

1

n
e−nβh̄ω. (2.564)

The sum (2.563) converges fast at high temperatures, where it can be expanded in
powers of ω2:

S(βh̄ω) = −
∞
∑

k=1

(−1)k

k

(

∞
∑

m=1

1

m2k

)





(

βh̄ω

2π

)2




k

. (2.565)

25I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formulas 3.471.9 and 8.486.16.
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The expansion coefficients are equal to Riemann’s zeta function ζ(z) of Eq. (2.521)
at even arguments z = 2k, so that we may write

S(βh̄ω) = −
∞
∑

m=1

(−1)k

k
ζ(2k)

(

βh̄ω

2π

)2k

. (2.566)

At even positive arguments, the values of the zeta function are related to the
Bernoulli numbers by26

ζ(2n) =
(2π)2n

2(2n)!
|B2n|. (2.567)

The Bernoulli numbers are defined by the expansion

t

et − 1
=

∞
∑

n=0

Bn
tn

n!
. (2.568)

The lowest nonzero Bernoulli numbers are B0 = 1, B1 = −1/2, B2 = 1/2, B4 =
−1/30, . . . . The Bernoulli numbers determine also the values of the zeta functions
at negative odd arguments:

ζ(1− 2n) = −B2n

2n
, (2.569)

this being a consequence of the general identity27

ζ(z) = 2zπz−1 sin(πz/2)Γ(1− z)ζ(1− z) = 2z−1πzζ(1− z)/Γ(z) cos
zπ

2
. (2.570)

Typical values of ζ(z) which will be needed here are28

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, . . . , ζ(∞) = 1. (2.571)

In contrast to the Matsubara frequency sum (2.563) and its expansion (2.566),
the dually transformed sum over the quantum numbers n in (2.564) converges rapidly
for low temperatures. It converges everywhere except at very large temperatures,
where it diverges logarithmically. The precise behavior can be calculated as follows:
For large T there exists a large number N which is still much smaller than 1/βh̄ω,
such that e−βh̄ωN is close to unity. Then we split the sum as

∞
∑

n=1

1

n
e−nβh̄ω ≈

N−1
∑

n=1

1

n
+

∞
∑

n=N

1

n
e−nβh̄ω. (2.572)

26ibid., Formulas 9.542 and 9.535.
27ibid., Formula 9.535.2.
28Other often-needed values are ζ(0) = −1/2, ζ′(0) = − log(2π)/2, ζ(−2n) = 0, ζ(3) ≈

1.202057, ζ(5) ≈ 1.036928, . . . .
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Since N is large, the second sum can be approximated by an integral

∫ ∞

N

dn

n
e−nβh̄ω =

∫ ∞

Nβh̄ω

dx

x
e−x,

which is an exponential integral E1(Nβh̄ω) of Eq. (2.470) with the large-argument
expansion −γ − log(Nβh̄ω) of Eq. (2.471).

The first sum in (2.572) is calculated with the help of the Digamma function

ψ(z) ≡ Γ′(z)

Γ(z)
. (2.573)

This has an expansion29

ψ(z) = −γ −
∞
∑

n=0

(

1

n+ z
− 1

n + 1

)

, (2.574)

which reduces for integer arguments to

ψ(N) = −γ +
N−1
∑

n=1

1

n
, (2.575)

and has the large-z expansion

ψ(z) ≈ log z − 1

2z
−

∞
∑

n=1

B2n

2nz2n
. (2.576)

Combining this with (2.471), the logarithm of N cancels, and we find for the sum
in (2.572) the large-T behavior

∞
∑

n=1

1

n
e−nβh̄ω ≈

T→∞
− log βh̄ω +O(β). (2.577)

This cancels the logarithm in (2.564).
The low-temperature series (2.564) can be used to illustrate the power of analytic

regularization. Suppose we want to extract from it the large-T behavior, where the
sum

g(βh̄ω) ≡
∞
∑

n=1

1

n
e−nβh̄ω (2.578)

converges slowly. We would like to expand the exponentials in the sum into powers
of ω, but this gives rise to sums over positive powers of n. It is possible to make
sense of these sums by analytic continuation. For this we introduce a generalization
of (2.578):

ζν(e
βh̄ω) ≡

∞
∑

n=1

1

nν
e−nβh̄ω, (2.579)

29I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 1.362.1.
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which reduces to g(βh̄ω) for ν = 1. This sum is evaluated by splitting it into an
integral over n and a difference between sum and integral:

ζν(e
βh̄ω) =

∫ ∞

0
dn

1

nν
e−nβh̄ω +

(

∞
∑

n=1

−
∫ ∞

0

)

1

nν
e−nβh̄ω. (2.580)

The integral is convergent for ν < 1 and yields Γ(1 − ν) (βh̄ω)ν via the integral
formula (2.498). For other ν’s it is defined by analytic continuation. The remainder
may be expanded sloppily in powers of ω and yields

ζν(e
βh̄ω)=

∫ ∞

0
dn

1

nν
e−nβh̄ω +

(

∞
∑

n=1

−
∫ ∞

0

)

1

nν
+

∞
∑

k=1

[(

∞
∑

n=1

−
∫ ∞

0

)

nk−ν

]

(−1)k

k!
(βh̄ω)k.

(2.581)
The second term is simply the Riemann zeta function ζ(ν) [recall (2.521)]. Since
the additional integral vanishes due to Veltman’ rule (2.508), the zeta function may
also be defined by

(

∞
∑

n=1

−
∫ ∞

0

)

1

νk
= ζ(ν), (2.582)

If this formula is applied to the last term in (2.581), we obtain the so-called Robinson

expansion30

ζν(e
βh̄ω) = Γ(1− ν)(βh̄ω)ν−1 + ζ(ν) +

∞
∑

k=1

1

k!
(−βh̄ω)kζ(ν − k). (2.583)

This expansion will later play an important role in the discussion of Bose-Einstein
condensation [see Eq. (7.38)].

For various applications it is useful to record also the auxiliary formula

(

∞
∑

n=1

−
∫ ∞

0

)

enβh̄ω

nν
=

∞
∑

k=1

1

k!
(−βh̄ω)kζ(ν − k) ≡ ζ̄ν(e

βh̄ω), (2.584)

since in the sum minus the integral, the first Robinson terms are absent and the
result can be obtained from a naive Taylor expansion of the exponents enβh̄ω and
the summation formula (2.582).

From (2.583) we can extract the desired sum (2.578) by going to the limit ν → 1.
Close to the limit, the Gamma function has a pole Γ(1−ν) = 1/(1−ν)−γ+O(ν−1).
From the identity

2zΓ(1− z)ζ(1− z) sin
πz

2
= π1−zζ(z) (2.585)

and (2.522) we see that ζ(ν) behaves near ν = 1 like

ζ(ν) =
1

ν − 1
+ γ +O(ν − 1) = −Γ(1− ν) +O(ν − 1). (2.586)

30J.E. Robinson, Phys. Rev. 83 , 678 (1951).
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Hence the first two terms in (2.583) can be combined to yield for ν → 1 the finite
result limν→1 Γ(1 − ν) [(βh̄ω)ν−1 − 1]=− log βh̄ω. The remaining terms contain in
the limit the values ζ(0) = −1/2, ζ(−1), ζ(−2), etc. Here we use the property of
the zeta function that it vanishes at even negative arguments, and that the function
at arbitrary negative argument is related to one at positive argument by the identity
(2.585). This implies for the expansion coefficients in (2.583) with k = 1, 2, 3, . . . in
the limit ν → 1:

ζ(−2p) = 0, ζ(1− 2p) =
1

p
(−1)p

(2p)!

(2π)2p
ζ(2p), p = 1, 2, 3, . . . . (2.587)

Hence we obtain for the expansion (2.583) in the limit ν → 1:

g(βh̄ω) = ζ1(e
βh̄ω) = − log βh̄ω +

βh̄ω

2
+

∞
∑

k=1

ζ(2k)
(−1)k

k!
(βh̄ω)2k . (2.588)

This can now be inserted into Eq. (2.564) and we recover the previous expansion
(2.566) for S(βh̄ω) which was derived there by a proper duality transformation.

It is interesting to observe what goes wrong if we forget the separation (2.580)
of the sum into integral plus sum-minus-integral and its regularization. For this we
re-expand (2.578) directly, and illegally, in powers of ω. Then we obtain for ν = 1
the formal expansion

ζ1(e
βh̄ω) =

∞
∑

p=0

(

∞
∑

n=1

np−1

)

(−1)p

p!
(βh̄ω)p = −ζ(1) +

∞
∑

p=1

ζ(1− p)
(−1)p

p!
(βh̄ω)p ,

(2.589)

which contains the infinite quantity ζ(1). The correct result (2.588) is obtained from
this by replacing the infinite quantity ζ(1) by − log βh̄ω, which may be viewed as a
regularized ζreg(1):

ζ(1) → ζreg(1) = − log βh̄ω. (2.590)

The above derivation of the Robinson expansion can be supplemented by a dual
version as follows. With the help of Poisson’s formula (1.197) we rewrite the sum
(2.579) as an integral over n and an auxiliary sum over integer numbers m, after
which the integral over n can be performed yielding

ζν(e
βh̄ω) ≡

∞
∑

m=−∞

∫ ∞

0
dn e(2πim+βh̄ω)n 1

nν
= Γ(1− ν)(−βh̄ω)ν−1

+ Γ(1− ν) 2 Re
∞
∑

m=1

(−βh̄ω − 2πim)ν−1 . (2.591)

The sum can again be expanded in powers of ω

2Re
∞
∑

m=1

(−2πim)ν−1

(

1 +
βh̄ω

2πim

)ν−1

= 2
∞
∑

k=0

(

ν − 1

k

)

cos[(1− ν − k)π/2] (2π)ν−1−kζ(1− ν + k) (βh̄ω)k .(2.592)
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Using the relation (2.585) for zeta-functions, the expansion (2.591) is seen to coincide
with (2.579).

Note that the representation (2.591) of ζν(e
βh̄ω) is a sum over Matsubara fre-

quencies ωm = 2πm/β [recall Eq. (2.381)]:

ζν(e
βh̄ω) ≡

∞
∑

m=−∞

∫ ∞

0
dn e(iωm+h̄ω)βn 1

nν

= Γ(1− ν)(−βh̄ω)ν−1

[

1 + 2Re
∞
∑

m=1

(1 + iωm/h̄ω)
ν−1

]

. (2.593)

The first term coming from the integral over n in (2.580) is associated with the
zero Matsubara frequency. This term represents the high-temperature or classical
limit of the expansion. The remainder contains the sum over all nonzero Matsubara
frequencies, and thus the effect of quantum fluctuations.

It should be mentioned that the first two terms in the low-temperature expansion
(2.564) can also be found from the sum (2.563) with the help of the Euler-Maclaurin
formula31 for a sum over discrete points t = a + (k + κ)∆ of a function F (t) from
k = 0 to K ≡ (b− a)/∆:

K
∑

k=0

F (a+ k∆) =
1

∆

∫ b

a
dt F (t) +

1

2
[F (a) + F (b)]

+
∞
∑

p=1

∆2p−1

(2p)!
B2p

[

F (2p−1)(b)− F (2p−1)(a)
]

, (2.594)

or, more generally for t = a+ (k + κ)∆,

K−1
∑

k=0

F (a+ (k + κ)∆)=
1

∆

∫ b

a
dt F (t) +

∞
∑

p=1

∆p−1

p!
Bp(κ)

[

F (p−1)(b)− F (p−1)(a)
]

,

(2.595)

where Bn(κ) are the Bernoulli functions defined by a generalization of the expansion
(2.568):

teκt

et − 1
=

∞
∑

n=0

Bn(κ)
tn

n!
. (2.596)

At κ = 0, the Bernoulli functions start out with the Bernoulli numbers: Bn(0) = Bn.
The function B0(κ) is equal to 1 everywhere.

Another way of writing formula (2.597) is

K−1
∑

k=0

F (a+ (k + κ)∆) =
1

∆

∫ b

a
dt



1 +
∞
∑

p=0

∆p

p!
Bp(κ)∂

p
t



F (t). (2.597)

This implies that a sum over discrete values of a function can be replaced by an
integral over a gradient expansion of the function.

31M. Abramowitz and I. Stegun, op. cit., Formulas 23.1.30 and 23.1.32.
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Using the first Euler-Maclaurin formula (2.594) with a = ω2
1, b = ω2

M , and
∆ = ω1, we find

M
∑

m=0

[

log(ω2
m + ω2)− log(ω2

m)
]

=
{

π
ω

ω1

+
ωm

ω1

[

log(ω2
m + ω2)−2

]

}∣

∣

∣

∣

m=M

m=1

−
{

ω = 0

}∣

∣

∣

∣

∣

m=M

m=1

+
1

2

{

log(ω2
1 + ω2) + log(ω2

M + ω2)
}

−
{

ω = 0
}

. (2.598)

For small T , the leading two terms on the right-hand side are

π
ω

ω1

− 1

2
log

ω2

ω2
1

, (2.599)

in agreement with the first two terms in the low-temperature series (2.564). Note
that the Euler-Maclaurin formula is unable to recover the exponentially small terms
in (2.564), since they are not expandable in powers of T .

The transformation of high- into low-temperature expansions is an important
tool for analyzing phase transitions in models of statistical mechanics.32

2.16 Finite-N Behavior of Thermodynamic Quantities

Thermodynamic fluctuations in Euclidean path integrals are often imitated in computer simula-
tions. These are forced to employ a sliced time axis. It is then important to know in which way
the time-sliced thermodynamic quantities converge to their continuum limit. Let us calculate the
internal energy E and the specific heat at constant volume C for finite N from (2.484). Using
(2.484) we have

∂(βω̃e)

∂β
=

ω

cosh(ǫω̃e/2)
,

∂(ǫω̃e)

∂β
=

2

β
tanh(ǫω̃e/2), (2.600)

and find the internal energy

E =
∂

∂β
(βF ) =

h̄

2
coth(βh̄ω̃e/2)

∂(βω̃e)

∂β

=
h̄ω

2

coth(βh̄ω̃e/2)

cosh(ǫω̃e/2)
. (2.601)

The specific heat at constant volume is given by

1

kB
C = −β2 ∂2

∂β2
(βF ) = −β2 ∂

∂β
E (2.602)

=
1

4
β2h̄2ω2

[

1

sinh2(βh̄ω̃e/2)
+ coth(βh̄ω̃e/2) tanh(ǫω̃e/2)

ǫ

h̄β

]

1

cosh2(ǫω̃e/2)
.

Plots are shown in Fig. 2.5 for various N using natural units with h̄ = 1, kB = 1. At high

32See H. Kleinert, Gauge Fields in Condensed Matter , Vol. I Superflow and Vortex Lines, World
Scientific, Singapore, 1989, pp. 1–742 (http://www.physik.fu-berlin.de/~kleinert/b1).
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Figure 2.4 Finite-lattice effects in internal energy E and specific heat C at constant volume,

as a function of the temperature for various numbers N + 1 of time slices. Note the nonuniform

way in which the exponential small-T behavior of C ∝ e−ω/T is approached in the limit N → ∞.

temperatures, F,E, and C are independent of N :

F → 1

β
log β, (2.603)

E → 1

β
= T, (2.604)

C → 1. (2.605)

These limits are a manifestation of the Dulong-Petit law : An oscillator has one kinetic and one
potential degree of freedom, each carrying an internal energy T/2 and a specific heat 1/2. At low
temperatures, on the other hand, E and C are strongly N -dependent (note that since F and E
are different at T = 0, the entropy of the lattice approximation does not vanish as it must in the
continuum limit). Thus, the convergence N → ∞ is highly nonuniform. After reaching the limit,
the specific heat goes to zero for T → 0 exponentially fast, like e−ω/T . The quantity ω is called
activation energy.33 It is the energy difference between the ground state and the first excited state
of the harmonic oscillator. For large but finite N , on the other hand, the specific heat has the
large value N +1 at T = 0. This is due to ω̃e and cosh2(ǫω̃e/2) behaving, for a finite N and T → 0
(where ǫ becomes large) like

ω̃e → 1

ǫ
log(ǫ2ω2),

cosh(ǫω̃e/2) → ǫω/2. (2.606)

Hence

E
T→0
−−−→ 1

β
coth[(N + 1) log(ǫω)]

T→0
−−−→ 0, (2.607)

33Note that in a D-dimensional solid the lattice vibrations can be considered as an ensemble of
harmonic oscillators with energies ω ranging from zero to the Debye frequency. Integrating over
the corresponding specific heats with the appropriate density of states,

∫

dωωD−1e−ω/kBT , gives
the well-known power law at low temperatures C ∝ TD.
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C
T→0
−−−→ N + 1. (2.608)

The reason for the nonuniform approach of the N → ∞ limit is obvious: If we expand (2.484) in
powers of ǫ, we find

ω̃e = ω

(

1 − 1

24
ǫ2ω2 + . . .

)

. (2.609)

When going to low T at finite N the corrections are quite large, as can be seen by writing (2.609),
with ǫ = h̄β/(N + 1), as

ω̃e = ω

[

1 − 1

24

h̄2ω2

k2bT
2(N + 1)2

+ . . .

]

. (2.610)

Note that (2.609) contains no corrections of the order ǫ. This implies that the convergence of

all thermodynamic quantities in the limit N → ∞, ǫ → 0 at fixed T is quite fast — one order in

1/N faster than we might at first expect [the Trotter formula (2.26) also shows the 1/N2 -behavior].

2.17 Time Evolution Amplitude of Freely Falling Particle

The gravitational potential of a particle on the surface of the earth is

V (x) = V0 +M g · x, (2.611)

where −g is the earth’s acceleration vector pointing towards the ground, and V0
some constant. The equation of motion reads

ẍ = −g, (2.612)

which is solved by

x = xa + va(t− ta) +
g

2
(t− ta)

2, (2.613)

with the initial velocity

va =
xb − xa

tb − ta
− g

2
(tb − ta). (2.614)

Inserting this into the action

A =
∫ tb

ta
dt
(

M

2
ẋ2 − V0 − g · x

)

, (2.615)

we obtain the classical action

Acl = −V0(tb− ta)+
M

2

(xb − xa)
2

tb − ta
− 1

2
(tb− ta)g · (xb+xa)−

1

24
(tb− ta)3g2. (2.616)

Since the quadratic part of (2.615) is the same as for a free particle, also the fluctu-
ation factor is the same [see (2.130)], and we find the time evolution amplitude

(xbtb|xata) =
1

√

2πih̄(tb − ta)/M
3 e

− i
h̄
V0(tb−ta)

× exp

{

iM

2h̄

[

(xb − xa)
2

tb − ta
− (tb − ta)g · (xb + xa)−

1

12
(tb − ta)

3g2

]}

. (2.617)
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The potential (2.611) can be considered as a limit of a harmonic potential

V (x) = V0 +
M

2
ω2(x− x0)

2 (2.618)

for

ω → 0, x0 = −g/ω2 → −∞ ≈ ĝ, V0 = −Mx2
0/2 = −Mg2/2ω4 → −∞, (2.619)

keeping
g = −Mω2x0, (2.620)

and

v0 = V0 +
M

2
ω2x2

0 (2.621)

fixed. If we perform this limit in the amplitude (2.177), we find of course (2.617).
The wave functions can be obtained most easily by performing this limiting

procedure on the wave functions of the harmonic oscillator. In one dimension, we
set n = E/ω and find that the spectral representation (2.294) goes over into

(xbtb|xata) =
∫

dEAE(xb)A
∗
E(xa)e

−i(E−v0)(tb−ta)/h̄, (2.622)

with the wave functions

AE(x) =
1√
lε

Ai
(

x

l
− E

ε

)

. (2.623)

Here ε ≡ (h̄2g2M/2)1/3 and l ≡ (h̄2/2M2g)1/3 = ε/Mg are the natural units of
energy and length, respectively, and Ai(z) is the Airy function solving the differential
equation

Ai′′(z) = zAi(z), (2.624)

For positive z, the Airy function can be expressed in terms of modified Bessel func-
tions Iν(ξ) and Kν(ξ):

34

Ai(z) =

√
z

2
[I−1/3(2z

3/2/3)− I1/3(2z
3/2/3)] =

1

π

√

z

3
K1/3

(

2z3/2/3
)

. (2.625)

For large z, this falls off exponentially:

Ai(z) → 1

2
√
πz1/4

e−2z3/2/3, z → ∞. (2.626)

For negative z, an analytic continuation35

Iν(ξ) = e−πνi/2J(eπi/2ξ), − π < argξ ≤ π/2,

Iν(ξ) = e−πνi/2J(eπi/2ξ), π/2 < argξ ≤ π, (2.627)

34A compact description of the properties of Bessel functions is found in M. Abramowitz and I.
Stegun, op. cit., Chapter 10. The Airy function is expressed in Formulas 10.4.14.

35I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formulas 8.406.
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leads to

Ai(z) =
1

3

√
z
[

J−1/3(2(−z)3/2/3) + J1/3(2(−z)3/2/3)
]

, (2.628)

where J1/3(ξ) are ordinary Bessel functions. For large arguments, these oscillate like

Jν(ξ) →
√

2

πξ
cos(ξ − πν/2− π/4) +O(ξ−1), (2.629)

from which we obtain the oscillating part of the Airy function

Ai(z) → 1√
πz1/4

sin
[

2(−z)3/2/3 + π/4
]

, z → −∞. (2.630)

The Airy function has the simple Fourier representation

Ai(x) =
∫ ∞

−∞

dk

2π
ei(xk+k3/3). (2.631)

In fact, the momentum space wave functions of energy E are

〈p|E〉 =
√

l

ε
e−i(pE−p3/6M)l/εh̄ (2.632)

fulfilling the orthogonality and completeness relations

∫

dp

2πh̄
〈E ′|p〉〈p|E〉 = δ(E ′ −E),

∫

dE 〈p′|E〉〈E|p〉 = 2πh̄δ(p′ − p). (2.633)

The Fourier transform of (2.632) is equal to (2.623), due to (2.631).

2.18 Charged Particle in Magnetic Field

Having learned how to solve the path integral of the harmonic oscillator we are ready
to study also a more involved harmonic system of physical importance: a charged
particle in a magnetic field. This problem was first solved by L.D. Landau in 1930
in Schrödinger theory.36

2.18.1 Action

The magnetic interaction of a particle of charge e is given by

Amag =
e

c

∫ tb

ta
dt ẋ(t) ·A(x(t)), (2.634)

where A(x) is the vector potential of the magnetic field. The total action is

A[x] =
∫ tb

ta
dt
[

M

2
ẋ2(t) +

e

c
ẋ(t) ·A(x(t))

]

. (2.635)

36L.D. Landau and E.M. Lifshitz, Quantum Mechanics , Pergamon, London, 1965.
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Suppose now that the particle moves in a homogeneous magnetic field B pointing
along the z-direction. Such a field can be described by a vector potential

A(x) = (0, Bx, 0). (2.636)

But there are other possibilities. The magnetic field

B(x) = ∇×A(x) (2.637)

as well as the magnetic interaction (2.634) are invariant under gauge transformations

A(x) → A(x) +∇Λ(x), (2.638)

where Λ(x) are arbitrary single-valued functions of x. As such they satisfy the
Schwarz integrability condition [compare (1.40)–(1.41)]

(∂i∂j − ∂j∂i)Λ(x) = 0. (2.639)

For instance, the axially symmetric vector potential

Ã(x) =
1

2
B× x (2.640)

gives the same magnetic field; it differs from (2.636) by a gauge transformation

Ã(x) = A(x) +∇Λ(x), (2.641)

with the gauge function

Λ(x) = −1

2
B xy. (2.642)

In the canonical form, the action reads

A[p,x] =
∫ tb

ta
dt

{

p · ẋ− 1

2M

[

p− e

c
A(x)

]2
}

. (2.643)

The magnetic interaction of a point particle is thus included in the path integral by
the so-called minimal substitution of the momentum variable:

p → P ≡ p− e

c
A(x). (2.644)

For the vector potential (2.636), the action (2.643) becomes

A[p,x] =
∫ tb

ta
dt [p · ẋ−H(p,x)] , (2.645)

with the Hamiltonian

H(p,x) =
p2

2M
+

1

8
Mω2

Lx
2 − 1

2
ωLlz(p,x), (2.646)
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where x = (x, y) and p = (px, py) and

lz(p,x) = (x× p)z = xpy − ypx (2.647)

is the z-component of the orbital angular momentum. In a Schrödinger equation, the
last term in H(p,x) is diagonal on states with a given angular momentum around
the z-axis. We have introduced the field-dependent frequency

ωL =
e

Mc
B, (2.648)

called Landau frequency or cyclotron frequency . This can also be written in terms
of the Bohr magneton

µB ≡ h̄e

Mc
, (2.649)

as

ωL = µBB/h̄. (2.650)

The first two terms in (2.646) describe a harmonic oscillator in the xy-plane with
a field-dependent magnetic frequency

ωB ≡ ωL

2
. (2.651)

Note that in the gauge gauge (2.636), the Hamiltonian would have the rotation-
ally noninvariant form

H(p,x) =
p2

2M
+

1

2
Mω2

Lx
2 − ωLxpy (2.652)

rather than (2.646), implying oscillations of frequency ωL in the x-direction and a
free motion in the y-direction.

The time-sliced form of the canonical action (2.643) reads

AN
e =

N+1
∑

n=1

{

pn(xn − xn−1)−
1

2M

[

p2xn + (py n − Bxn)
2 + p2zn

]

}

, (2.653)

and the associated time-evolution amplitude for the particle to run from xa to xb is
given by

(xbtb|xata) =
N
∏

n=1

[∫

d3xn

]N+1
∏

n=1

[

∫

d3pn
(2πh̄)3

]

exp
(

i

h̄
AN

e

)

, (2.654)

with the time-sliced action

AN =
N+1
∑

n=1

{

pn(xn − xn−1)−
1

2M

[

p2xn + (py n − Bxn)
2 + p2zn

]

}

. (2.655)



182 2 Path Integrals — Elementary Properties and Simple Solutions

2.18.2 Gauge Properties

Note that the time evolution amplitude is not gauge-invariant. If we use the vector
potential in some other gauge

A′(x) = A(x) +∇Λ(x), (2.656)

the action changes by a surface term

∆A =
e

c

∫ tb

ta
dt ẋ ·∇Λ(x) =

e

c
[Λ(xb)− Λ(xa)]. (2.657)

The amplitude is therefore multiplied by a phase factor on both ends

(xbtb|xata)A → (xbtb|xata)A′ = eieΛ(xb)/ch̄(xbtb|xata)Ae
−ieΛ(xa)/ch̄. (2.658)

For the observable particle distribution (x tb|x ta), the phase factors are obviously
irrelevant. But all other observables of the system must also be independent of the
phases Λ(x) which is assured if they correspond to gauge-invariant operators.

2.18.3 Time-Sliced Path Integration

Since the action AN contains the variables yn and zn only in the first term
∑N+1

n=1 ipnxn, we can perform the yn, zn integrations and find a product of N ∆-
functions in the y- and z-components of the momenta pn. If the projections of p to
the yz-plane are denoted by p′, the product is

(2πh̄)2δ(2)
(

p′
N+1 − p′

N

)

· · · (2πh̄)2δ(2) (p′
2 − p′

1) . (2.659)

These allow performing all py n, pz n-integrals, except for one overall py, pz. The path
integral reduces therefore to

(xbtb|xata) =
∫ ∞

−∞

dpydpz
(2πh̄)2

N
∏

n=1

[∫ ∞

−∞
dxn

]N+1
∏

n=1

[

∫

dpxn

2πh̄

]

(2.660)

× exp

{

i

h̄

[

py(yb − ya) + pz(zb − za)− (tb − ta)
p2z
2M

]}

exp
(

i

h̄
AN

x

)

,

where AN
x is the time-sliced action involving only a one-dimensional path integral

over the x-component of the path, x(t), with the sliced action

AN
x =

N+1
∑

n=1

[

pxn(xn − xn−1)−
p2xn

2M
− 1

2M

(

py −
e

c
Bxn

)2 ]

. (2.661)

This is the action of a one-dimensional harmonic oscillator with field-dependent
frequency ωB whose center of oscillation depends on py and lies at

x0 = py/MωL. (2.662)
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The path integral over x(t) is harmonic and known from (2.175):

(xbtb|xata)x0 =

√

MωL

2πih̄ sinωL(tb − ta)

× exp
(

i

h̄

MωL

2 sinωL(tb − ta)

{[

(xb − x0)
2 + (xa − x0)

2
]

cosωL(tb − ta)

− 2(xb − x0)(xa − x0)}
)

. (2.663)

Doing the pz-integral in (2.660), we arrive at the formula

(xbtb|xata) =
1

√

2πih̄(tb − ta)/M
e
iM
2h̄

(zb−za)
2

tb−ta (x⊥
b tb|x⊥

a ta), (2.664)

with the amplitude orthogonal to the magnetic field

(x⊥
b tb|x⊥

a ta) ≡
MωL

2πh̄

∫ ∞

−∞
dx0 e

iMωLx0(yb−ya)/h̄(xbtb|xata)x0. (2.665)

After a quadratic completion in x0, the total exponent in (2.665) reads

iMωL

2h̄

[

−(x2b + x2a) tan[ωL(tb − ta)/2] + (xb − xa)
2 1

sinωL(tb − ta)

]

−iMωL

h̄
tan[ωL(tb − ta)/2]

(

x0 −
xb + xa

2
− yb − ya

2 tan[ωL(tb − ta)/2]

)2

+i
MωL

2h̄

[

(xb + xa)
2

2
tan[ωL(tb − ta)/2] +

(yb − ya)
2

2 tan[ωL(tb − ta)/2]

]

+i
MωL

2h̄
(xb + xa)(yb − ya). (2.666)

The integration MωL

∫∞
−∞ dx0/2πh̄ removes the second term and results in a factor

MωL

2πh̄

√

πh̄

iMωL tan[ωL(tb − ta)/2]
. (2.667)

By rearranging the remaining terms, we arrive at the amplitude

(xbtb|xata) =

√

M

2πih̄(tb − ta)

3
ωL(tb − ta)/2

sin[ωL(tb − ta)/2]
exp

[

i

h̄
(Acl +Asf)

]

,

(2.668)

with an action

Acl =
M

2

{

(zb − za)
2

tb − ta
+
ωL

2
cot[ωL(tb − ta)/2]

[

(xb − xa)
2 + (yb − ya)

2
]

+ ωL(xayb − xbya)
}

, (2.669)

and the surface term

Asf =
MωL

2
(xbyb − xaya) =

e

2c
B xy

∣

∣

∣

b

a
. (2.670)
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2.18.4 Classical Action

Since the action is harmonic, the amplitude is again a product of a phase eiAcl and
a fluctuation factor. A comparison with (2.641) and (2.658) shows that the surface
term would be absent if the amplitude (xbtb|xata)Ã were calculated with the vector
potential in the axially symmetric gauge (2.640). Thus Acl must be equal to the
classical action in this gauge. Indeed, the orthogonal part can be rewritten as

A⊥
cl =

∫ tb

ta
dt

{

M

2

d

dt
(xẋ+ yẏ) +

M

2
[x(−ẍ+ ωLẏ) + y(−ÿ − ωLẋ)]

}

. (2.671)

The equations of motion are

ẍ = ωLẏ, ÿ = −ωLẋ, (2.672)

reducing the action of a classical orbit to

A⊥
cl =

M

2
(xẋ+ yẏ)

∣

∣

∣

tb

ta
=
M

2
([xbẋb − xaẋa] + [ybẏb − yaẏa]) . (2.673)

The orbits are easily determined. By inserting the two equations in (2.672) into
each other we see that ẋ and ẏ perform independent oscillations:

˙̈x+ ω2
Lẋ = 0, ˙̈y + ω2

Lẏ = 0. (2.674)

The general solution of these equations is

x =
1

sinωL(tb − ta)
[(xb − x0) sinωL(t− ta) − (xa − x0) sinωL(t− tb) ] + x0, (2.675)

y =
1

sinωL(tb − ta)
[(yb − y0) sinωL(t− ta) − (ya − y0) sinωL(t− tb) ] + y0, (2.676)

where we have incorporated the boundary condition x(ta,b) = xa,b, y(ta,b)
= ya,b. The constants x0, y0 are fixed by satisfying (2.672). This gives

x0 =
1

2

[

(xb + xa) + (yb − ya) cot
ωL

2
(tb − ta)

]

, (2.677)

y0 =
1

2

[

(yb + ya)− (xb− xa)cot
ωL

2
(tb − ta)

]

. (2.678)

Now we calculate

xbẋb =
ωL

sinωL(tb − ta)
xb [(x0 − xa) + (xb − x0) cosωL(tb − ta)] , (2.679)

xaẋa =
ωL

sinωL(tb − ta)
xa [(x0 − xa) cosωL(tb − ta) + (xb − x0)] , (2.680)

and hence

xbẋb − xaẋa = ωLx0(xb + xa) tan
ωL

2
(tb − ta)

+
ωL

sinωL(tb − ta)

[

(x2b + x2a) cosωL(tb − ta)− 2xbxa
]

=
ωL

2

[

(xb − xa)
2 cot

ωL

2
(tb − ta) + (xb + xa)(yb − ya)

]

. (2.681)
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Similarly we find

ybẏb − yaẏa = ωLy0(yb + ya) tan
ωL

2
(tb − ta)

+
ωL

sinωL(tb − ta)
[(y2b + y2a) cosωL(tb − ta)− 2ybya]

=
ωL

2

[

(yb − ya)
2 cot

ωL

2
(tb − ta)− (xb − xa)(yb + ya)

]

. (2.682)

Inserted into (2.673), this yields the classical action for the orthogonal motion

A⊥
cl =

M

2

{

ωL

2
cot[ωL(tb − ta)/2]

[

(xb − xa)
2 + (yb − ya)

2
]

+ ωL(xayb − xbya)
}

,

(2.683)

which is indeed the orthogonal part of the action (2.669).

2.18.5 Translational Invariance

It is interesting to see how the amplitude ensures the translational invariance of all
physical observables. The first term in the classical action is trivially invariant. The
last term reads

∆A =
MωL

2
(xayb − xbya). (2.684)

Under a translation by a distance d,

x → x + d, (2.685)

this term changes by

MωL

2
[dx(yb − ya) + dy(xa − xb)] =

MωL

2
[(d× x)b − (d× x)a]z (2.686)

causing the amplitude to change by a pure gauge transformation as

(xbtb|xata) → eieΛ(xb)/ch̄(xbtb|xata)e
−ieΛ(xa)/ch̄, (2.687)

with the phase

Λ(x) = −MωLh̄c

2e
[d× x]z . (2.688)

Since observables involve only gauge-invariant quantities, such transformations are
irrelevant.

This will be done in 2.23.3.
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2.19 Charged Particle in Magnetic Field plus

Harmonic Potential

For application in Chapter 5 we generalize the above magnetic system by adding a
harmonic oscillator potential, thus leaving the path integral solvable. For simplicity,
we consider only the orthogonal part of the resulting system with respect to the
magnetic field. Omitting orthogonality symbols, the Hamiltonian is the same as in
(2.646). Without much more work we may solve the path integral of a more general
system in which the harmonic potential in (2.646) has a different frequency ω 6= ωL,
and thus a Hamiltonian

H(p,x) =
p2

2M
+

1

2
Mω2x2 − ωBlz(p,x). (2.689)

The associated Euclidean action

Ae[p,x] =
∫ τb

τa
dτ [−ip · ẋ+H(p,x)] (2.690)

has the Lagrangian form

Ae[x] =
∫ h̄β

0
dτ

{

M

2
ẋ2(τ) +

1

2
M(ω2 − ω2

B)x
2(τ)− iMωB[x(τ)× ẋ(τ)]z

}

.

(2.691)

At this point we observe that the system is stable only for ω ≥ ωB. The action
(2.691) can be written in matrix notation as

Acl =
∫ h̄β

0
dτ

[

M

2

d

dτ
(xẋ) +

M

2
xT Dω2,B x

]

, (2.692)

where Dω2,B is the 2× 2 -matrix

Dω2,B(τ, τ
′) ≡

(

−∂2τ + ω2 − ω2
B −2iωB∂τ

2iωB∂τ −∂2τ + ω2 − ω2
B

)

δ(τ − τ ′). (2.693)

Since the path integral is Gaussian, we can immediately calculate the partition
function

Z =
1

(2πh̄/M)2
detD

−1/2
ω2,B . (2.694)

By expanding Dω2,B(τ, τ
′) in a Fourier series

Dω2,B(τ, τ
′) =

1

h̄β

∞
∑

m=−∞

D̃ω2,B(ωm)e
−iωm(τ−τ ′), (2.695)

we find the Fourier components

D̃ω2,B(ωm) =

(

ω2
m + ω2 − ω2

B −2ωBωm

2ωBωm ω2
m + ω2 − ω2

B

)

, (2.696)
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with the determinants

det D̃ω2,B(ωm) = (ω2
m + ω2 − ω2

B)
2 + 4ω2

Bω
2
m. (2.697)

These can be factorized as

det D̃ω2,B(ωm) = (ω2
m + ω2

+)(ω
2
m + ω2

−), (2.698)

with
ω± ≡ ω ± ωB. (2.699)

The eigenvectors of D̃ω2,B(ωm) are

e+ =
1√
2

(

1
i

)

, e− = − 1√
2

(

1
−i

)

, (2.700)

with eigenvalues

d± = ω2
m + ω2 ± 2iωmωB = (ωm + iω±)(ωm − iω∓). (2.701)

Thus the right- and left-circular combinations x± = ±(x ± iy)/
√
2 diagonalize the

Lagrangian (2.692) to

Acl =
∫ h̄β

0
dτ

{

M

2

d

dτ

(

x∗+ẋ+ + x∗−ẋ−
)

+
M

2

[

x∗+(−∂τ − ω+)(−∂τ + ω−)x+ + x∗−(−∂τ − ω−)(−∂τ + ω+)x−
]

}

. (2.702)

Continued back to real times, the components x±(t) are seen to oscillate indepen-
dently with the frequencies ω±.

The factorization (2.698) makes (2.702) an action of two independent harmonic
oscillators of frequencies ω±. The associated partition function has therefore the
product form

Z =
1

2 sinh (h̄βω+/2)

1

2 sinh (h̄βω−/2)
. (2.703)

For the original system of a charged particle in a magnetic field discussed in
Section 2.18, the partition function is obtained by going to the limit ω → ωB in
the Hamiltonian (2.689). Then ω− → 0 and the partition function (2.703) diverges,
since the system becomes translationally invariant in space. From the mnemonic
replacement rule (2.361) we see that in this limit we must replace the relevant
vanishing inverse frequency by an expression proportional to the volume of the
system. The role of ω2 in (2.361) is played here by the frequency in front of the
x2-term of the Lagrangian (2.691). Since there are two dimensions, we must replace

1

ω2 − ω2
B

−−−→
ω→ωB

1

2ωω−

−−−→
ω−→0

β

2π/M
V2, (2.704)

and thus

Z −−−→
ω−→0

1

2 sinh (h̄βω)

V2
λ2ω
, (2.705)

where λω is the quantum-mechanical length scale in Eqs. (2.303) and (2.359) of the
harmonic oscillator.
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2.20 Gauge Invariance and Alternative Path Integral

Representation

The action (2.635) of a particle in an external ordinary potential V (x, t) and a vector potential
A(x, t) can be rewritten with the help of an arbitrary space- and time-dependent gauge function
Λ(x, t) in the following form:

A[x] =

∫ tb

ta

dt

{

M

2
ẋ2 +

e

c
ẋ(t)[A(x, t) + ∇Λ(x, t)]−V (x, t)+

e

c
∂tΛ(x, t)

}

− e

c
[Λ(xb, tb) − Λ(xa, ta)] . (2.706)

The Λ(x, t)-terms inside the integral are canceled by the last two surface terms making the action
independent of Λ(x, t).

We may now choose a particular function Λ(x, t) equal to c/e-times the classical action A(x, t)
which solves the Hamilton-Jacobi equation (1.65), i.e.,

1

2M

[

∇A(x, t) − e

c
A(x, t)

]2

+ ∂tA(x, t) + V (x, t) = 0. (2.707)

Then we obtain the following alternative expression for the action:

A[x] =

∫ tb

ta

dt
1

2M

[

M ẋ−∇A(x, t) +
e

c
A(x, t)

]2

+ A(xb, tb) −A(xa, ta). (2.708)

For two infinitesimally different solutions of the Hamilton-Jacobi equation, the difference between
the associated action functions δA satisfies the differential equation

v ·∇δA + ∂tδA = 0, (2.709)

where v is the classical velocity field

v(x, t) ≡ (1/M)
[

∇A(x, t) − e

c
A(x, t)

]

. (2.710)

The differential equation (2.709) expresses the fact that two solutions A(x, t) for which the particle
energy and momenta at x and t differ by δE and δp, respectively, satisfy the kinematic relation
δE = p · δp/M = ẋcl ·∇δA. This follows directly from E = p2/2M . The so-constrained variations
δE and δp leave the action (2.708) invariant.

A sequence of changes δA of this type can be used to make the function A(x, t) coincide with
the action A(x, t;xa, ta) of paths which start out from xa, ta and arrive at x, t. In terms of this
action function, the path integral representation of the time evolution amplitude takes the form

(xbtb|xata) = eiA(xb,tb;xa,ta)/h̄

∫ x(tb)=xb

x(ta)=xa

Dx (2.711)

×exp

{

i

h̄

∫ tb

ta

dt
1

2M

[

M ẋ−∇A(x, t;xa, ta) +
e

c
A(x, t)

]2
}

or, using v(x(t), t),

(xbtb|xata) = eiA(xb,tb;xa,ta)/h̄

∫ x(tb)=xb

x(ta)=xa

Dx exp

[

i

h̄

∫ tb

ta

dt
M

2
(ẋ− v)

2

]

.

(2.712)
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The fluctuations are now controlled by the deviations of the instantaneous velocity ẋ(t) from local
value of the classical velocity field v(x, t). Since the path integral attempts to keep the deviations
as small as possible, we call v(x, t) the desired velocity of the particle at x and t. Introducing
momentum variables p(t), the amplitude may be written as a phase space path integral

(xbtb|xata) = eiA(xb,tb;xa,ta)/h̄

∫ x(tb)=xb

x(ta)=xa

D′x

∫ Dp

2πh̄

× exp

(

i

h̄

∫ tb

ta

dt

{

p(t) [ẋ(t) − v(x(t), t)] − 1

2M
p2(t)

})

, (2.713)

which will be used in Section 18.15 to give a stochastic interpretation of quantum processes.

2.21 Velocity Path Integral

There exists yet another form of writing the path integral in which the fluctuating velocities play a
fundamental role and which will later be seen to be closely related to path integrals in the so-called
stochastic calculus to be introduced in Sections 18.13 and 18.640. We observe that by rewriting
the path integral as

(xbtb|xata)=

∫

D3x δ

(

xb−xa−
∫ tb

ta

dt ẋ(t)

)

exp

{

i

h̄

∫ tb

ta

dt

[

M

2
ẋ2−V (x)

]}

, (2.714)

the δ-function allows us to include the last variable xn in the integration measure of the time-sliced
version of the path integral. Thus all time-sliced time derivatives (xn+1 − xn)/ǫ for n = 0 to N
are integrated over implying that they can be considered as independent fluctuating variables vn.
In the potential, the dependence on the velocities can be made explicit by inserting

x(t) = xb −
∫ tb

t

dtv(t), (2.715)

x(t) = xa +

∫ t

ta

dtv(t), (2.716)

x(t) = X +
1

2

∫ tb

ta

dt′ v(t′)ǫ(t′ − t), (2.717)

where

X ≡ xb + xa

2
(2.718)

is the average position of the endpoints and ǫ(t− t′) is the antisymmetric combination of Heaviside
functions introduced in Eq. (1.315).

In the first replacement, we obtain the velocity path integral

(xbtb|xata)=

∫

D3v δ

(

xb−xa−
∫ tb

ta

dtv(t)

)

exp

{

i

h̄

∫ tb

ta

dt

[

M

2
v2−V

(

xb−
∫ tb

t

dtv(t)

)]}

. (2.719)

The measure of integration is normalized to make

∫

D3v exp

{

i

h̄

∫ tb

ta

dt

[

M

2
v2

]}

= 1. (2.720)

The correctness of this normalization can be verified by evaluating (2.719) for a free particle.
Inserting the Fourier representation for the δ-function

δ

(

xb − xa −
∫ tb

ta

dtv(t)

)

=

∫

d3p

(2πi)3
exp

[

i

h̄
p

(

xb − xa −
∫ tb

ta

dtv(t)

)]

, (2.721)
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we can complete the square in the exponent and integrate out the v-fluctuations using (2.720) to
obtain

(xbtb|xata) =

∫

d3p

(2πi)3
exp

{

i

h̄

[

p (xb − xa) −
p2

2M
(tb − ta)

]}

. (2.722)

This is precisely the spectral representation (1.333) of the free-particle time evolution amplitude
(1.335) [see also Eq. (2.53)].

A more symmetric velocity path integral is obtained by choosing the third replacement (2.717).
This leads to the expression

(xbtb|xata) =

∫

D3v δ

(

∆x−
∫ tb

ta

dtv(t)

)

exp

{

i

h̄

∫ tb

ta

dt
M

2
v2

}

× exp

{

− i

h̄

∫ tb

ta

dt V

(

X +
1

2

∫ tb

ta

dt′ v(t′)ǫ(t′ − t)

)}

. (2.723)

The velocity representations are particularly useful if we want to know integrated amplitudes such
as

∫

d3xa (xbtb|xata) =

∫

D3v exp

{

i

h̄

∫ tb

ta

dt
M

2
v2

}

.

× exp

{

− i

h̄

∫ tb

ta

dtV

(

xb −
1

2

∫ tb

t

dt′ v(t′)

)}

, (2.724)

which will be of use in the next section.

2.22 Path Integral Representation of the Scattering Matrix

In Section 1.16 we have seen that the description of scattering processes requires several nontrivial
limiting procedures on the time evolution amplitude. Let us see what these procedures yield when
applied to the path integral representation of this amplitude.

2.22.1 General Development

Formula (1.474) for the scattering matrix expressed in terms of the time evolution operator in
momentum space has the following path integral representation:

〈pb|Ŝ|pa〉 ≡ lim
tb−ta→∞

ei(Ebtb−Eata)/h̄

∫

d3xb

∫

d3xae
−i(pbxb−paxa)/h̄(xbtb|xata). (2.725)

Introducing the momentum transfer q ≡ (pb − pa), we rewrite e−i(pbxb−paxa)/h̄ as
e−iqxb/h̄e−ipa(xb−xa)/h̄, and observe that the amplitude including the exponential prefactor
e−ipa(xb−xa)/h̄ has the path integral representation:

e−ipa(xb−xa)/h̄(xbtb|xata) =

∫

D3x exp

{

i

h̄

∫ tb

ta

dt

[

M

2
ẋ2 − paẋ− V (x)

]}

. (2.726)

The linear term in ẋ is eliminated by shifting the path from x(t) to

y(t) = x(t) − pa

M
t (2.727)

leading to

e−ipa(xb−xb)/h̄(xbtb|xata)=e−ip2

a(tb−ta)/2Mh̄

∫

D3y exp

{

i

h̄

∫ tb

ta

dt

[

M

2
ẏ2−V

(

y+
P

M
t

)]}

.

(2.728)
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Inserting everything into (2.725) we obtain

〈pb|Ŝ|pa〉 ≡ lim
tb−ta→∞

eiq
2tb/2Mh̄

∫

d3yb e
−iqyb/h̄

∫

d3ya

×
∫

D3y exp

{

i

h̄

∫ tb

ta

dt

[

M

2
ẏ2−V

(

y +
pa

M
t
)

]}

. (2.729)

In the absence of an interaction, the path integral over y(t) gives simply

∫

d3ya
1

√

2πh̄i(tb − ta)/M
exp

[

i

h̄

M

2

(yb − ya)
2

tb − ta)

]

= 1, (2.730)

and the integral over ya yields

〈pb|Ŝ|pa〉|V ≡0 = lim
tb−ta→∞

eiq
2(tb−ta)/8Mh̄(2πh̄)3δ(3)(q) = (2πh̄)3δ(3)(pb − pa), (2.731)

which is the contribution from the unscattered beam to the scattering matrix in Eq. (1.477).
The first-order contribution from the interaction reads, after a Fourier decomposition of the

potential,

〈pb|Ŝ1|pa〉 = − i

h̄
lim

tb−ta→∞
eiq

2tb/2Mh̄

∫

d3yb e
−iqyb/h̄

∫

d3Q

(2πh̄)3
V (Q)

∫

d3ya

×
∫ tb

ta

dt′ exp

(

i

h̄

paQ

M
t′
)∫

D3y exp

{

i

h̄

∫ tb

ta

dt

[

M

2
ẏ2+ δ(t′−t)Qy

]}

. (2.732)

The harmonic path integral was solved in one dimension for an arbitrary source j(t) in Eq. (3.168).
For ω = 0 and the particular source j(t) = δ(t′ − t)Q the result reads, in three dimensions,

1
√

2πih̄(tb − ta)/M
3 exp

[

i

h̄

M

2

(yb − ya)
2

tb − ta

]

× exp

(

i

h̄

1

tb − ta

{

[yb(t
′ − ta) + ya(tb − t′)]Q− 1

2M
(tb − t′)(t′ − ta)Q

2

})

. (2.733)

Performing here the integral over ya yields

exp

{

i

h̄
Qyb

}

exp

{

− i

h̄

1

2M
(tb − t′)Q2

}

. (2.734)

The integral over yb in (2.732) leads now to a δ-function (2πh̄)3δ(3)(Q − q), such that the expo-
nential prefactor in (2.732) is canceled by part of the second factor in (2.734).

In the limit tb− ta → ∞, the integral over t′ produces a δ-function 2πh̄δ(pbQ/M +Q2/2M) =
2πh̄δ(Eb − Ea) which enforces the conservation of energy. Thus we find the well-known Born
approximation

〈pb|Ŝ1|pa〉 = −2πiδ(Eb − Ea)V (q). (2.735)

In general, we subtract the unscattered particle term (2.731) from (2.729), to obtain a path
integral representation for the T -matrix [for the definition recall (1.477)]:

2πh̄iδ(Eb − Ea)〈pb|T̂ |pa〉 ≡ − lim
tb−ta→∞

eiq
2tb/2Mh̄

∫

d3yb e
−iqyb/h̄

∫

d3ya

×
∫

D3y exp

(

i

h̄

∫ tb

ta

dt
M

2
ẏ2

){

exp

[

− i

h̄

∫ tb

ta

dt V
(

y +
pa

M
t
)

]

− 1

}

. (2.736)
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It is preferable to find a formula which does not contain the δ-function of energy conservation as
a factor on the left-hand side. In order to remove this we observe that its origin lies in the time-
translational invariance of the path integral in the limit tb−ta → ∞. If we go over to a shifted time
variable t → t + t0, and change simultaneously y → y − pat0/M , then the path integral remains
the same except for shifted initial and final times tb + t0 and ta + t0. In the limit tb − ta → ∞, the
integrals

∫ tb+t0
ta+t0

dt can be replaced again by
∫ tb
ta

dt. The only place where a t0-dependence remains

is in the prefactor e−iqyb/h̄ which changes to e−iqyb/h̄eiqpat0/Mh̄. Among all path fluctuations, there
exists one degree of freedom which is equivalent to a temporal shift of the path. This is equivalent to
an integral over t0 which yields a δ-function 2πh̄δ (qpa/M) = 2πh̄δ (Eb − Ea). We only must make
sure to find the relation between this temporal shift and the corresponding measure in the path
integral. This is obviously a shift of the path as a whole in the direction p̂a ≡ pa/|pa|. The formal
way of isolating this degree of freedom proceeds according to a method developed by Faddeev and
Popov37 by inserting into the path integral (2.729) the following integral representation of unity:

1 =
|pa|
M

∫ ∞

−∞

dt0 δ (p̂a(yb + pat0/M)) . (2.737)

In the following, we shall drop the subscript a of the incoming beam, writing

p ≡ pa, p ≡ |pa| = |pb|. (2.738)

After the above shift in the path integral, the δ-function in (2.737) becomes δ (p̂ayb) inside the path
integral, with no t0-dependence. The integral over t0 can now be performed yielding the δ-function
in the energy. Removing this from the equation we obtain the path integral representation of the
T -matrix

〈pb|T̂ |pa〉 ≡ i
p

M
lim

tb−ta→∞
eiq

2(tb−ta)/8Mh̄

∫

d3yb δ (p̂ayb) e−iqyb/h̄

∫

d3ya

×
∫

D3y exp

(

i

h̄

∫ tb

ta

dt
M

2
ẏ2

){

exp

[

− i

h̄

∫ tb

ta

dt V

(

y+
P

M
t

)]

−1

}

. (2.739)

At this point it is convenient to go over to the velocity representation of the path integral (2.723).
This enables us to perform trivially the integral over yb, and we obtain the y version of (2.724).
The δ-function enforces a vanishing longitudinal component of yb. The transverse component of
yb will be denoted by b:

b ≡ yb − (p̂ayb)p̂/a. (2.740)

Hence we find the path integral representation

〈pb|T̂ |pa〉 ≡ i
p

M
lim

tb−ta→∞
eiq

2tb/2Mh̄

∫

d2b e−iqb/h̄

×
∫

D3v exp

(

i

h̄

∫ tb

ta

dt
M

2
v2

)

[

eiχb,p[v] − 1
]

, (2.741)

where the effect of the interaction is contained in the scattering phase

χb,p[v] ≡ − 1

h̄

∫ tb

ta

dt V

(

b +
p

M
t−
∫ tb

t

dt′ v(t′)

)

. (2.742)

We can go back to a more conventional path integral by replacing the velocity paths v(t) by

ẏ(t) = −
∫ tb
t v(t). This vanishes at t = tb. Equivalently, we can use paths z(t) with periodic

boundary conditions and subtract from these z(tb) = zb.
From 〈pb|T̂ |pa〉 we obtain the scattering amplitude fpbpa

, whose square gives the differential
cross section, by multiplying it with a factor −M/2πh̄ [see Eq. (1.497)].

37L.D. Faddeev and V.N. Popov, Phys. Lett. B 25 , 29 (1967).
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Note that in the velocity representation, the evaluation of the harmonic path integral integrated
over ya in (2.732) is much simpler than before where we needed the steps (2.733), (2.734). After
the Fourier decomposition of V (x) in (2.742), the relevant integral is

∫

D3v exp

{

i

h̄

∫ tb

ta

dt

[

M

2
v2−Θ(tb− t′)Qv

]}

=e
− i

2Mh̄

∫

tb

ta
dtΘ2(tb−t

′)Q2

=e−
i

2Mh̄
(tb−t′)Q2

. (2.743)

The first factor in (2.734) comes directly from the argument Y in the Fourier representation of the
potential

V

(

yb +
p

M
t−

∫ tb

t

dt′ v(t′)

)

in the velocity representation of the S-matrix (2.729).

2.22.2 Improved Formulation

The prefactor eiq
2tb/2Mh̄ in Formula (2.741) is an obstacle to taking a more explicit limit tb−ta → ∞

on the right-hand side. To overcome this, we represent this factor by an auxiliary path integral38

over some vector field w(t):

eiq
2tb/2Mh̄ =

∫

D3w exp

[

− i

h̄

∫ tb

ta

dt
M

2
w2(t)

]

e
i
∫

tb

ta
dtΘ(t)w(t)q/h̄

. (2.744)

The last factor changes the exponential e−iqb/h̄ in (2.741) into e
−iq

[

b+
∫

tb

ta
dtΘ(t)w(t)

]

/h̄
. Since b is

a dummy variable of integration, we can equivalently replace b → bw ≡ b−
∫ tb
ta

dtΘ(t)w(t) in the

scattering phase χb,p[v] and remain with

fpbpa
= lim

tb−ta→∞

p

2πih̄

∫

d2b e−iqb/h̄

∫

D3w

×
∫

D3v exp

[

i

h̄

∫ ∞

−∞

dt
M

2

(

v2 −w2
)

]

[exp (iχbw,p) − 1] . (2.745)

The scattering phase in this expression can be calculated from formula (2.742) with the integral
taken over the entire t-axis:

χbw,p[v,w] = − 1

h̄

∫ ∞

−∞

dt V

(

b +
p

M
t−
∫ tb

ta

dt′ [Θ(t′−t)v(t′) − Θ(t′)w(t′)]

)

. (2.746)

The fluctuations of w(t) are necessary to correct for the fact that the outgoing particle does not
run, on the average, with the velocity p/M = pa/M but with velocity pb/M = (p + q)/M .

We may also go back to a more conventional path integral by inserting y(t) = −
∫ tb
t

v(t) and

setting similarly z(t) = −
∫ tb
t

w(t). Then we obtain the alternative representation

fpbpa
= lim

tb−ta→∞

p

2πih̄

∫

d2b e−iqb/h̄

∫

d3ya

∫

d3za

×
∫

D3y

∫

D3z exp

[

i

h̄

∫ tb

ta

dt
M

2

(

ẏ2 − ż2
)

]

[

eiχbz,p[y] − 1
]

, (2.747)

38See R. Rosenfelder, notes of a lecture held at the ETH Zürich in 1979: Pfadintegrale in der

Quantenphysik , 126 p., PSI Report 97-12, ISSN 1019-0643, and Lecture held at the 7th Int. Conf.
on Path Integrals in Antwerpen, Path Integrals from Quarks to Galaxies , 2002; Phys. Rev. A 79,
012701 (2009).
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with

χbz,p[y] ≡ − 1

h̄

∫ tb

ta

dt V
(

b +
p

M
t + y(t) − z(0)

)

, (2.748)

where the path integrals run over all paths with yb = 0 and zb = 0. In Section 3.26 this path
integral will be evaluated perturbatively.

2.22.3 Eikonal Approximation to the Scattering Amplitude

To lowest approximation, we neglect the fluctuating variables y(t) and z(t) in (2.748). Since the
integral

∫

d3ya

∫

d3za

∫

D3y

∫

D3z exp

[

i

h̄

∫ tb

ta

dt
M

2

(

ẏ2 − ż2
)

]

(2.749)

in (2.747) has unit normalization [recall the calculation of (2.734)], we obtain directly the eikonal
approximation to the scattering amplitude

f ei
pbpa

≡ p

2πih̄

∫

d2b e−iqb/h̄
[

exp
(

iχei
b,p

)

− 1
]

, (2.750)

with

χei
b,p ≡ − 1

h̄

∫ ∞

−∞

dt V
(

b +
p

M
t
)

. (2.751)

The time integration can be converted into a line integration along the direction of the incoming
particles by introducing a variable z ≡ pt/M . Then we can write

χei
b,p ≡ −M

p

1

h̄

∫ ∞

−∞

dz V (b + p̂z) . (2.752)

If V (x) is rotationally symmetric, it depends only on r ≡ |x|. Then we shall write the potential
as V (r) and calculate (2.752) as the integral

χei
b,p ≡ −M

p

1

h̄

∫ ∞

−∞

dz V
(

√

b2 + z2
)

. (2.753)

Inserting this into (2.750), we can perform the integral over all angles between q and b using the
formula

1

2π

∫ π

−π

dθ exp

(

i

h̄
qb cos θ

)

= J0(qb), (2.754)

where J0(ξ) is the Bessel function, and find

f ei
pbpa

=
p

ih̄

∫

db b J0(qb)
[

exp
(

iχei
b,p

)

− 1
]

. (2.755)

The variable of integration b coincides with the impact parameter b introduced in Eq. (1.500). The
result (2.755) is precisely the eikonal approximation (1.500) with χei

b,p/2 playing the role of the
scattering phases δl(p) of angular momentum l = pb/h̄:

χei
b,p = 2iδpb/h̄(p). (2.756)

2.23 Heisenberg Operator Approach to Time Evolution

Amplitude

An interesting alternative to the path integral derivation of the time evolution amplitudes of
harmonic systems is based on quantum mechanics in the Heisenberg picture. It bears a close
similarity with the path integral derivation in that it requires solving the classical equations of
motion with given initial and final positions to obtain the exponential of the classical action eiA/h̄.
The fluctuation factor, however, which accompanies this exponential is obtained quite differently
from commutation rules of the operatorial orbits at different times as we shall now demonstrate.
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2.23.1 Free Particle

We want to calculate the matrix element of the time evolution operator

(x t|x′ 0) = 〈x|e−iĤt/h̄|x′〉, (2.757)

where Ĥ is the Hamiltonian operator

Ĥ = H(p̂) =
p̂2

2M
. (2.758)

We shall calculate the time evolution amplitude (2.757) by solving the differential equation

ih̄∂t〈x t|x′ 0〉 ≡ 〈x|Ĥ e−iĤt/h̄|x′〉 = 〈x|e−iĤt/h̄
[

eiĤt/h̄Ĥ e−iĤt/h̄
]

|x′〉
= 〈x t|H(p̂(t))|x′ 0〉. (2.759)

The argument contains now the time-dependent Heisenberg picture of the operator p̂. The evalu-
ation of the right-hand side will be based on re-expressing the operator H(p̂(t)) as a function of
initial and final position operators in such a way that all final position operators stand to the left
of all initial ones:

Ĥ = H(x̂(t), x̂(0); t). (2.760)

Then the matrix elements on the right-hand side can immediately be evaluated using the eigenvalue
equations

〈x t|x̂(t) = x〈x t|, x̂(0)|x′ 0〉 = x′|x′ 0〉, (2.761)

as being

〈x t|H(x̂(t), x̂(0); t)|x̂ 0〉 = H(x,x′; t)〈x t|x′ 0〉, (2.762)

and the differential equation (2.759) becomes

ih̄∂t〈x t|x′ 0〉 ≡ H(x,x′; t)〈x t|x′ 0〉, (2.763)

or

〈x t|x′ 0〉 = C(x,x′)E(x,x′; t) ≡ C(x,x′)e
−i
∫

t
dt′ H(x,x′;t′)/h̄

. (2.764)

The prefactor C(x,x′) contains a possible constant of integration resulting from the time integral
in the exponent.

The Hamiltonian operator is brought to the time-ordered form (2.760) by solving the Heisen-
berg equations of motion

dx̂(t)

dt
=

i

h̄

[

Ĥ, x̂(t)
]

=
p̂(t)

M
, (2.765)

dp̂(t)

dt
=

i

h̄

[

Ĥ, p̂(t)
]

= 0. (2.766)

The second equation shows that the momentum is time-independent:

p̂(t) = p̂(0), (2.767)

so that the first equation is solved by

x̂(t) − x̂(0) = t
p̂(t)

M
, (2.768)
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which brings (2.758) to

Ĥ =
M

2t2
[x̂(t) − x̂(0)]

2
. (2.769)

This is not yet the desired form (2.760) since there is one factor which is not time-ordered. The
proper order is achieved by rewriting Ĥ as

Ĥ =
M

2t2
{

x̂2(t) − 2x̂(t)x̂(0) + x̂2(0) + [x̂(t), x̂(0)]
}

, (2.770)

and calculating the commutator from Eq. (2.768) and the canonical commutation rule [p̂i, x̂j ] =
−ih̄δij as

[x̂(t), x̂(0)] = − ih̄

M
Dt, (2.771)

so that we find the desired expression

Ĥ = H(x̂(t), x̂(0); t) =
M

2t2
[

x̂2(t) − 2x̂(t)x̂(0) + x̂2(0)
]

− ih̄
D

2t
. (2.772)

Its matrix elements (2.762) can now immediately be written down:

H(x,x′; t) =
M

2t2
(x− x′)

2 − ih̄
D

2t
. (2.773)

From this we find directly the exponential factor in (2.764)

E(x,x′; t) = e−i
∫

dtH(x,x′;t)/h̄ = exp

[

i

h̄

M

2t
(x− x′)

2 − D

2
log t

]

. (2.774)

Inserting (2.774) into Eq. (2.764), we obtain

〈x t|x′ 0〉 = C(x,x′)
1

tD/2
exp

[

i

h̄

M

2t
(x− x′)

2
]

. (2.775)

A possible constant of integration in (2.774) depending on x,x′ is absorbed in the prefactor C(x,x′).
This is fixed by differential equations involving x:

−ih̄∇〈x t|x′ 0〉 = 〈x|p̂e−iĤt/h̄|x′〉 = 〈x|e−iĤt
[

eiĤt/h̄p̂e−iĤt/h̄
]

|x′〉 = 〈x t|p̂(t)|x′ 0〉.

ih̄∇′〈x t|x′ 0〉 = 〈x|e−iĤt/h̄p̂|x′〉〈x t|p̂(0)|x′ 0〉. (2.776)

Inserting (2.768) and using the momentum conservation (2.767), these become

−ih̄∇〈x t|x′ 0〉 =
M

t
(x− x′) 〈x t|x′ 0〉,

ih̄∇′〈x t|x′ 0〉 =
M

t
(x− x′) 〈x t|x′ 0〉. (2.777)

Inserting here the previous result (2.775), we obtain the conditions

−i∇C(x,x′) = 0, i∇′C(x,x′) = 0, (2.778)

which are solved only by a constant C. The constant, in turn, is fixed by the initial condition

lim
t→0

〈x t|x′ 0〉 = δ(D)(x− x′), (2.779)

to be

C =

√

M

2πih̄

D

, (2.780)

so that we find the correct free-particle amplitude (2.74)

〈x t|x′ 0〉 ≡
√

M

2πih̄t

D

exp

[

i

h̄

M

2t
(x− x′)2

]

. (2.781)

Note that the fluctuation factor 1/tD/2 emerges in this approach as a consequence of the commu-
tation relation (2.771).
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2.23.2 Harmonic Oscillator

Here we are dealing with the Hamiltonian operator

Ĥ = H(p̂, x̂) =
p̂2

2M
+

Mω2

2
x2, (2.782)

which has to be brought again to the time-ordered form (2.760). We must now solve the Heisenberg
equations of motion

dx̂(t)

dt
=

i

h̄

[

Ĥ, x̂(t)
]

=
p̂(t)

M
, (2.783)

dp̂(t)

dt
=

i

h̄

[

Ĥ, p̂(t)
]

= −Mω2x̂(t). (2.784)

By solving these equations we obtain [compare (2.158)]

p̂(t) = M
ω

sinωt
[x̂(t) cosωt− x̂(0)] . (2.785)

Inserting this into (2.782), we obtain

Ĥ =
Mω2

2 sin2 ωt

{

[x̂(t) cosωt− x̂(0)]
2
+ sin2 ωt x̂2(t)

}

, (2.786)

which is equal to

Ĥ =
Mω2

2 sin2 ωt

{

x̂2(t) + x̂2(0) − 2 cosωt x̂(t)x̂(0) + cosωt [x̂(t), x̂(0)]
}

. (2.787)

By commuting Eq. (2.785) with x̂(t), we find the commutator [compare (2.771)]

[x̂(t), x̂(0)] = − ih̄

M
D

sinωt

ω
, (2.788)

so that we find the matrix elements of the Hamiltonian operator in the form (2.762) [compare
(2.773)]

H(x,x′; t) =
Mω2

2 sin2 ωt

(

x2 + x′2 − 2 cosωtxx′
)

− ih̄
D

2
ω cotωt. (2.789)

This has the integral [compare (2.774)]

∫

dtH(x,x′; t) = − Mω

2 sinωt

[(

x2 + x′2
)

cosωt− 2xx′
]

− ih̄
D

2
log

sinωt

ω
. (2.790)

Inserting this into Eq. (2.764), we find precisely the harmonic oscillator amplitude (2.177), apart
from the factor C(x,x′). This is again determined by the differential equations (2.776), leaving
only a simple normalization factor fixed by the initial condition (2.779) with the result (2.780).

Again, the fluctuation factor has its origin in the commutator (2.788).

2.23.3 Charged Particle in Magnetic Field

We now turn to a charged particle in three dimensions in a magnetic field treated in Section 2.18,
where the Hamiltonian operator is most conveniently expressed in terms of the operator of the
covariant momentum (2.644),

P̂ ≡ p̂− e

c
A(x̂), (2.791)
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as [compare (2.643)]

Ĥ = H(p̂, x̂) =
P̂2

2M
. (2.792)

In the presence of a magnetic field, its components do not commute but satisfy the commutation
rules:

[P̂i, P̂j ] = −e

c
[p̂i, Âj ] −

e

c
[Âi, p̂j] = i

eh̄

c
(∇iAj −∇jAi) = i

eh̄

c
Bij , (2.793)

where Bij = ǫijkBK is the usual antisymmetric tensor representation of the magnetic field.
We now have to solve the Heisenberg equations of motion

dx̂(t)

dt
=

i

h̄

[

Ĥ, x̂ (t)
]

=
P̂(t)

M
(2.794)

dP̂(t)

dt
=

i

h̄

[

Ĥ, P̂(t)
]

=
e

Mc
B(x̂(t))P̂(t) + i

eh̄

Mc
∇jBji(x̂(t)), (2.795)

where B(x̂(t))P̂(t) is understood as the product of the matrix Bij(x̂(t)) with the vector P̂. In a
constant field, where Bij(x̂(t)) is a constant matrix Bij , the last term in the second equation is
absent and we find directly the solution

P̂(t) = eΩLtP̂(0), (2.796)

where ΩL is a matrix version of the Landau frequency (2.648)

ΩL ij ≡
e

Mc
Bij , (2.797)

which can also be rewritten with the help of the Landau frequency vector

!L ≡ e

Mc
B (2.798)

and the 3 × 3-generators of the rotation group

(Lk)ij ≡ −iǫkij (2.799)

as
ΩL = iL · !L. (2.800)

Inserting this into Eq. (2.794), we find

x̂(t) = x̂(0) +
eΩLt − 1

ΩL

P̂(0)

M
, (2.801)

where the matrix on the right-hand side is again defined by a power series expansion

eΩLt − 1

ΩL
= t + ΩL

t2

2
+ Ω2

L

t3

3!
+ . . . . (2.802)

We can invert (2.801) to find

P̂(0)

M
=

ΩL/2

sinh ΩLt/2
e−ΩLt/2 [x̂(t) − x̂(0)] . (2.803)

Using (2.796), this implies

P̂(t) = MN(ΩLt) [x̂(t) − x̂(0)] , (2.804)
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with the matrix

N(ΩLt) ≡
ΩL/2

sinh ΩLt/2
eΩLt/2. (2.805)

By squaring (2.804) we obtain

P̂2(t)

2M
=

M

2
[x̂(t) − x̂(0)]

T
K(ΩLt) [x̂(t) − x̂(0)] , (2.806)

where
K(ΩLt) = NT (ΩLt)N(ΩLt). (2.807)

Using the antisymmetry of the matrix ΩL, we can rewrite this as

K(ΩLt) = N(−ΩLt)N(ΩLt) =
Ω2

L/4

sinh2 ΩLt/2
. (2.808)

The commutator between two operators x̂(t) at different times is, due to Eq. (2.801),

[x̂i(t), x̂j(0)] = − i

M

(

eΩLt − 1

ΩL

)

ij

, (2.809)

and

[

x̂i(t), x̂j(0)
]

+ [x̂j(t), x̂i(0)] = − i

M

(

eΩLt − 1

ΩL
+

eΩ
T
Lt − 1

ΩT
L

)

ij

= − i

M

(

eΩLt − e−ΩLt

ΩL

)

ij

= −2
i

M

[

sinh ΩLt

ΩL

]

ij

. (2.810)

Respecting this, we can expand (2.806) in powers of operators x̂(t) and x̂(0), thereby time-ordering
the later operators to the left of the earlier ones as follows:

H(x̂(t), x̂(0)) =
M

2

[

x̂T (t)K(ΩLt)x̂(t) − 2x̂TK(ΩLt)x̂(0) + x̂TK(ΩLt)x̂(0)
]

− ih̄

2
tr

[

ΩL

2
coth

ΩLt

2

]

. (2.811)

This has to be integrated in t, for which we use the formulas

∫

dtK(ΩLt) =

∫

dt
Ω2

L/2

sinh2 ΩLt/2
= −ΩL

2
coth

ΩLt

2
, (2.812)

and
∫

dt
1

2
tr

[

ΩL

2
coth

ΩLt

2

]

= tr log
sinhΩLt/2

ΩL/2
= tr log

sinh ΩLt/2

ΩLt/2
+ 3 log t, (2.813)

these results following again from a Taylor expansion of both sides. The factor 3 in the last term
is due to the three-dimensional trace. We can then immediately write down the exponential factor
E(x,x′; t) in (2.764):

E(x,x′; t)=
1

t3/2
exp

{

i

h̄

M

2
(x−x′)T

(

ΩL

2
coth

ΩLt

2

)

(x−x′) − 1

2
tr log

sinh ΩLt/2

ΩLt/2

}

. (2.814)

The last term gives rise to a prefactor

[

det
sinh ΩLt/2

ΩLt/2

]−1/2

. (2.815)
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As before, the time-independent integration factor C(x,x′) in (2.764) is fixed by differential
equations in x and x′, which involve here the covariant derivatives:

[

−ih̄∇− e

c
A(x)

]

〈x t|x′ 0〉 = 〈x|P̂e−iĤt/h̄|x′〉 = 〈x|e−iĤt/h̄
[

eiĤt/h̄P̂e−iĤt/h̄
]

|x′〉

= 〈x t|P̂(t)|x′ 0〉 = L(ΩLt)(x− x′)〈x t|x′ 0〉, (2.816)
[

ih̄∇′− e

c
A(x)

]

〈x t|x′ 0〉 = 〈x|e−iĤt/h̄P̂|x′〉

= 〈x t|P̂(0)|x′ 0〉 = L(ΩLt)(x− x′)〈x t|x′ 0〉. (2.817)

Calculating the partial derivative we find

−ih̄∇〈x t|x′ 0〉= [−ih̄∇C(x,x′)]E(x,x′; t)+C(x,x′)[−ih̄∇E(x,x′; t)]

= [−ih̄∇C(x,x′)]E(x,x′; t)+C(x,x′)M

(

ΩL

2
coth

ΩLt

2

)

(x−x′)E(x,x′; t).

Subtracting the right-hand side of (2.816) leads to

M

(

ΩL

2
coth

ΩLt

2

)

(x− x′) −ML(ΩLt)(x− x′) = −M

2
ΩL(x− x′), (2.818)

so that C(x,x′) satisfies the time-independent differential equation

[

−ih̄∇− e

c
A(x) − M

2
ΩL(x− x′)

]

C(x,x′) = 0. (2.819)

A similar equation is found from the second equation (2.817):

[

ih̄∇′ − e

c
A(x) − M

2
ΩL(x− x′)

]

C(x,x′) = 0. (2.820)

These equations are solved by

C(x,x′) = C exp

{

i

h̄

∫ x

x′

d�

[

e

c
A(�) +

M

2
ΩL(�− x′)

]}

. (2.821)

The contour of integration is arbitrary since the vector field in brackets,

e

c
A′(�) ≡ e

c
A(�) +

ΩL

2
(�− x′) =

e

c

[

A(�) − 1

2
B× (�− x′)

]

(2.822)

has a vanishing curl, ∇ × A′(x) = 0. We can therefore choose the contour to be a straight line
connecting x′ and x, in which case d� points in the same direction of x− x′ as �− x′ so that the
cross product vanishes. Hence we may write for a straight-line connection the ΩL-term

C(x,x′) = C exp

{

i
e

c

∫ x

x′

d�A(�)

}

. (2.823)

Finally, the normalization constant C is fixed by the initial condition (2.779) to have the value
(2.780).

Collecting all terms, the amplitude is

〈x t|x′ 0〉 =
1

√

2πih̄2t/M
3

[

det
sinh ΩLt/2

ΩLt/2

]−1/2

exp

{

i
e

c

∫ x

x′

d�A(�)

}

× exp

{

i

h̄

M

2
(x− x′)T

(

ΩL

2
coth

ΩLt

2

)

(x− x′)

}

. (2.824)
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All expressions simplify if we assume the magnetic field to point in the z-direction, in which
case the frequency matrix becomes

ΩL =





0 ωL 0
−ωL 0 0

0 0 0



 , (2.825)

so that

cos
ΩLt

2
=





cosωLt/2 0 0
0 cosωLt/2 0
0 0 1



 , (2.826)

and

sinh ΩLt/2

ΩLt/2
=





0 sinωLt/2 0
− sinωLt/2 0 0

0 0 1



 , (2.827)

whose determinant is

det
sinh ΩLt/2

ΩLt/2
=

(

sinhωLt/2

ωLt/2

)2

. (2.828)

Let us calculate the exponential involving the vector potential in (2.824) explicitly. We choose
the gauge in which the vector potential points in the y-direction [recall (2.636)], and parametrize
the straight line between x′ and x as

� = x′ + s(x− x′), s ∈ [0, 1]. (2.829)

Then we find

∫ x

x′

d�A(�) = B(y − y′)

∫ 1

0

ds [x′ + s(x− x′)] = B(y − y′)(x + x′)

= B(xy − x′y′) + B(x′y − xy′). (2.830)

Inserting this and (2.828) into (2.764), we recover the earlier result (2.668).

Appendix 2A Baker-Campbell-Hausdorff Formula and

Magnus Expansion

The standard Baker-Campbell-Hausdorff formula, from which our formula (2.9) can be derived,
reads

eÂeB̂ = eĈ , (2A.1)

where

Ĉ = B̂ +

∫ 1

0

dtg(eadAteadB)[Â], (2A.2)

and g(z) is the function

g(z) ≡ log z

z − 1
=

∞
∑

n=0

(1 − z)n

n + 1
, (2A.3)

and adB is the operator associated with B̂ in the so-called adjoint representation, which is defined
by

adB[Â] ≡ [B̂, Â]. (2A.4)
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One also defines the trivial adjoint operator (adB)0[Â] = 1[Â] ≡ Â. By expanding the exponentials
in Eq. (2A.2) and using the power series (2A.3), one finds the explicit formula

Ĉ = B̂ + Â +

∞
∑

n=1

(−1)n

n + 1

∑

pi,qi;pi+qi≥1

1

1 +
∑n

i=1 pi

× (adA)p1

p1!

(adB)q1

q1!
· · · (adA)pn

pn!

(adB)qn

qn!
[Â]. (2A.5)

The lowest expansion terms are

Ĉ = B̂ + Â− 1

2

[

1
2adA + adB + 1

6(adA)2 + 1
2adA adB + 1

2(adB)2+. . .
]

[Â]

+
1

3

[

1
3(adA)2 + 1

2adA adB + 1
2adB adA + (adB)2 + . . .

]

[Â] (2A.6)

= Â + B̂ +
1

2
[Â, B̂] +

1

12
([Â, [Â, B̂]] + [B̂, [B̂, Â]]) +

1

24
[Â, [[Â, B̂], B̂]] . . . .

The result can be rearranged to the closely related Zassenhaus formula

eÂ+B̂ = eÂeB̂ eẐ2eẐ3eẐ4 · · · , (2A.7)

where

Ẑ2 =
1

2
[B̂, Â] (2A.8)

Ẑ3 = −1

3
[B̂, [B̂, Â]] − 1

6
[Â, [B̂, Â]]) (2A.9)

Ẑ4 =
1

8

(

[[[B̂, Â], B̂], B̂] + [[[B̂, Â], Â], B̂]
)

+
1

24
[[[B̂, Â], Â], Â] (2A.10)

... .

To prove formula (2A.2) and thus the expansion (2A.6), we proceed similar to the derivation
of the interaction formula (1.295) by deriving and solving a differential equation for the operator
function

Ĉ(t) = log(eÂteB̂). (2A.11)

Its value at t = 1 will supply us with the desired result Ĉ in (2A.5). The starting point is the
observation that for any operator M̂ ,

eĈ(t)M̂e−Ĉ(t) = eadC(t)[M̂ ], (2A.12)

by definition of adC. Inserting (2A.11), the left-hand side can also be rewritten as

eÂteB̂M̂e−B̂e−Ât, which in turn is equal to eadAteadB[M̂ ], by definition (2A.4). Hence we have

eadC(t) = eadA teadB . (2A.13)

Differentiation of (2A.11) yields

eĈ(t) d

dt
e−Ĉ(t) = −Â. (2A.14)

The left-hand side, on the other hand, can be rewritten in general as

eĈ(t) d

dt
e−Ĉ(t) = −f(adC(t))[

˙̂
C(t)], (2A.15)

where

f(z) ≡ ez − 1

z
. (2A.16)
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This will be verified below. It implies that

f(adC(t))[
˙̂
C(t)] = Â. (2A.17)

We now define the function g(z) as in (2A.3) and see that it satisfies

g(ez)f(z) ≡ 1. (2A.18)

We therefore have the trivial identity

˙̂
C(t) = g(eadC(t))f(adC(t))[

˙̂
C(t)]. (2A.19)

Using (2A.17) and (2A.13), this turns into the differential equation

˙̂
C(t) = g(eadC(t))[Â] = eadAteadB [Â], (2A.20)

from which we find directly the result (2A.2).
To complete the proof we must verify (2A.15). The expression is not simply equal to

−eĈ(t) ˙̂
C(t)Me−Ĉ(t) since

˙̂
C(t) does not, in general, commute with

˙̂
C(t). To account for this

consider the operator

Ô(s, t) ≡ eĈ(t)s d

dt
e−Ĉ(t)s. (2A.21)

Differentiating this with respect to s gives

∂sÔ(s, t) = eĈ(t)sĈ(t)
d

dt

(

e−Ĉ(t)s
)

− eĈ(t)s d

dt

(

Ĉ(t)e−Ĉ(t)s
)

= −eĈ(t)s ˙̂
C(t)e−Ĉ(t)s

= −eadC(t)s[
˙̂
C(t)]. (2A.22)

Hence

Ô(s, t) − Ô(0, t) =

∫ s

0

ds′∂s′Ô(s′, t)

= −
∞
∑

n=0

sn+1

(n + 1)!
(adC(t))

n
[
˙̂
C(t)], (2A.23)

from which we obtain

Ô(1, t) = eĈ(t) d

dt
e−Ĉ(t) = −f(adC(t))[

˙̂
C(t)], (2A.24)

which is what we wanted to prove.
Note that the final form of the series for Ĉ in (2A.6) can be rearranged in many different ways,

using the Jacobi identity for the commutators. It is a nontrivial task to find a form involving the
smallest number of terms.39

The same mathematical technique can be used to derive a useful modification of the Neumann-
Liouville expansion or Dyson series (1.239) and (1.251). This is the so-called Magnus expansion40,

in which one writes Û(tb, ta) = eÊ , and expands the exponent Ê as

Ê = − i

h̄

∫ tb

ta

dt1 Ĥ(t1) +
1

2

(−i

h̄

)2 ∫ tb

ta

dt2

∫ t2

ta

dt1

[

Ĥ(t2), Ĥ(t1)
]

39For a discussion see J.A. Oteo, J. Math. Phys. 32 , 419 (1991).
40See A. Iserles, A. Marthinsen, and S.P. Norsett, On the implementation of the method of

Magnus series for linear differential equations , BIT 39, 281 (1999) (http://www.damtp.cam.ac.uk/
user/ai/Publications).
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+
1

4

(−i

h̄

)3
{

∫ tb

ta

dt3

∫ t3

ta

dt2

∫ t2

ta

dt1

[

Ĥ(t3),
[

Ĥ(t2), Ĥ(t1)
]]

+
1

3

∫ tb

ta

dt3

∫ tb

ta

dt2

∫ tb

ta

dt1

[[

Ĥ(t3), Ĥ(t2)
]

, Ĥ(t1)
]

}

+ . . . , (2A.25)

which converges faster than the Neumann-Liouville expansion.

Appendix 2B Direct Calculation of the Time-Sliced

Oscillator Amplitude

After time-slicing, the amplitude (2.145) becomes a multiple integral over short-time amplitudes
[using the action (2.192)]

(xnǫ|xn−10) =
1

√

2πh̄iǫ/M
exp

{

i

h̄

M

2

[

(xn − xn−1)
2

ǫ
− ǫω2 1

2
(x2

n + x2
n−1)

]}

. (2B.26)

We shall write this as

(xnǫ|xn−10) = N1 exp

{

i

h̄

[

a1(x
2
n + x2

n−1) − 2b1xnxn−1

]

}

, (2B.27)

with

a1 =
M

2ǫ

[

1 − 2
(ωǫ

2

)2
]

, b1 =
M

2ǫ
,

N1 =
1

√

2πh̄iǫ/M
. (2B.28)

When performing the intermediate integrations in a product of N such amplitudes, the result must
have the same general form

(xN ǫ|xN−10) = NN exp

{

i

h̄

[

aN (x2
N + x2

0) − 2bNxNx0

]

}

. (2B.29)

Multiplying this by a further short-time amplitude and integrating over the intermediate position
gives the recursion relations

NN+1 = N1NN

√

iπh̄

aN + a1
, (2B.30)

aN+1 =
a2N − b2N + a1aN

a1 + aN
=

a21 − b21 + a1aN
a1 + aN

, (2B.31)

bN+1 =
b1bN

a1 + aN
. (2B.32)

From (2B.31) we find

a2N = b2N + a21 − b21, (2B.33)

and the only nontrivial recursion relation to be solved is that for bN . With (2B.32) it becomes

bN+1 =
b1bN

a1 +
√

b2N − (b21 − a21)
, (2B.34)

or

1

bN+1
=

1

b1

(

a1
bN

+

√

1 − b21 − a21
b2N

)

. (2B.35)
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We now introduce the auxiliary frequency ω̃ of Eq. (2.163). Then

a1 =
M

2ǫ
cos ω̃, (2B.36)

and the recursion for bN+1 reads

1

bN+1
=

cos ω̃ǫ

bN
+

2ǫ

M

√

1 − M2

4ǫ2
sin2 ω̃ǫ

b2N
. (2B.37)

By introducing the reduced quantities

βN ≡ 2ǫ

M
bN , (2B.38)

with
β1 = 1, (2B.39)

the recursion becomes

1

βN+1
=

cos ω̃ǫ

βN
+

√

1 − sin2 ω̃ǫ

β2
N

. (2B.40)

For N = 1, 2, this determines

1

β2
= cos ω̃ǫ +

√

1 − sin2 ω̃ǫ =
sin 2ω̃ǫ

sin ω̃ǫ
,

1

β3
= cos ω̃ǫ

sin 2ω̃ǫ

sin ω̃ǫ
+

√

1 − sin2 ω̃ǫ
sin2 2ω̃ǫ

sin2 ω̃ǫ
=

sin 3ω̃ǫ

sin ω̃ǫ
. (2B.41)

We therefore expect the general result

1

βN+1
=

sin ω̃(N + 1)ǫ

sin ω̃ǫ
. (2B.42)

It is easy to verify that this solves the recursion relation (2B.40). From (2B.38) we thus obtain

bN+1 =
M

2ǫ

sin ω̃ǫ

sin ω̃(N + 1)ǫ
. (2B.43)

Inserting this into (2B.30) and (2B.33) yields

aN+1 =
M

2ǫ
sin ω̃ǫ

cos ω̃(N + 1)ǫ

sin ω̃(N + 1)ǫ
, (2B.44)

NN+1 = N1

√

sin ω̃ǫ

sin ω̃(N + 1)ǫ
, (2B.45)

such that (2B.29) becomes the time-sliced amplitude (2.199).

Appendix 2C Derivation of Mehler Formula

Here we briefly sketch the derivation of Mehler’s formula.41 It is based on the observation that the
left-hand side of Eq. (2.297), let us call it F (x, x′), is the Fourier transform of the function

F̃ (k, k′) = π e−(k2+k′2+akk′)/2, (2C.46)

41See P.M. Morse and H. Feshbach, Methods of Theoretical Physics , McGraw-Hill, New York,
Vol. I, p. 781 (1953).
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as can easily be verified by performing the two Gaussian integrals in the Fourier representation

F (x;x′) =

∫ ∞

−∞

∫ ∞

−∞

dk

2π

dk′

2π
eikx+ik′xF̃ (k, k′). (2C.47)

We now consider the right-hand side of (2.297) and form the Fourier transform by recognizing the

exponential ek
2/2−ikx as the generating function of the Hermite polynomials42

ek
2/2−ikx =

∞
∑

n=0

(−ik/2)n

n!
Hn(x). (2C.48)

This leads to

F̃ (k, k′) =

∫ ∞

−∞

∫ ∞

−∞

dx dx′F (x, x′)e−ikx−ik′x = e−(k2+k′2)/2

×
∫ ∞

−∞

∫ ∞

−∞

dx dx′F (x, x′)

∞
∑

n=0

∞
∑

n′=0

(−ik/2)n

n!

(−ik′/2)n
′

n′!
Hn(x)Hn′ (x). (2C.49)

Inserting here the expansion on the right-hand side of (2.297) and using the orthogonality relation
of Hermite polynomials (2.306), we obtain once more (2C.47).
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Aκίνητα κινǫι̂ς
You stir what should not be stirred

Herodotus (484BC–425BC)

3
External Sources, Correlations,

and Perturbation Theory

Important information on every quantum-mechanical system is carried by the corre-
lation functions of the path x(t). They are defined as the expectation values of prod-
ucts of path positions at different times, x(t1) · · ·x(tn), to be calculated as functional
averages. Quantities of this type are observable in simple scattering experiments.
The most efficient extraction of correlation functions from a path integral proceeds
by adding to the Lagrangian an external time-dependent mechanical force term dis-
turbing the system linearly, and by studying the response to the disturbance. A
similar linear term is used extensively in quantum field theory, for instance in quan-
tum electrodynamics where it is no longer a mechanical force, but a source of fields,
i.e., a charge or a current density. For this reason we shall call this term generically
source or current term.

In this chapter, the procedure is developed for the harmonic action, where a
linear source term does not destroy the solvability of the path integral. The resulting
amplitude is a simple functional of the current. Its functional derivatives will supply
all correlation functions of the system, and for this reason it is called the generating
functional of the theory. It serves to derive the celebrated Wick rule for calculating
the correlation functions of an arbitrary number of x(t). This forms the basis for
perturbation expansions of anharmonic theories.

3.1 External Sources

Consider a harmonic oscillator with an action

Aω =
∫ tb

ta
dt
M

2
(ẋ2 − ω2x2). (3.1)

Let it be disturbed by an external source or current j(t) coupled linearly to the
particle coordinate x(t). The source action is

Aj =
∫ tb

ta
dt x(t)j(t). (3.2)

209
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The total action
A = Aω +Aj (3.3)

is still harmonic in x and ẋ, which makes it is easy to solve the path integral in
the presence of a source term. In particular, the source term does not destroy
the factorization property (2.153) of the time evolution amplitude into a classicalref(2.153)

lab(2.111)
est(2.128)

amplitude eiAj,cl/h̄ and a fluctuation factor Fω,j(tb, ta),

(xbtb|xata)jω = e(i/h̄)Aj,clFω,j(tb, ta). (3.4)

Here Aj,cl is the action for the classical orbit xj,cl(t) which minimizes the total action
A in the presence of the source term and which obeys the equation of motion

ẍj,cl(t) + ω2xj,cl(t) = j(t). (3.5)

In the sequel, we shall first work with the classical orbit xcl(t) extremizing the action
without the source term:

xcl(t) =
xb sinω(t− ta) + xa sinω(tb − t)

sinω(tb − ta)
. (3.6)

All paths will be written as a sum of the classical orbit xcl(t) and a fluctuation δx(t):

x(t) = xcl(t) + δx(t). (3.7)

Then the action separates into a classical and a fluctuating part, each of which
contains a source-free and a source term:

A = Aω +Aj ≡ Acl +Afl

= (Aω,cl +Aj,cl) + (Aω,fl +Aj,fl). (3.8)

The time evolution amplitude can be expressed as

(xbtb|xata)jω = e(i/h̄)Acl

∫

Dx exp
(

i

h̄
Afl

)

= e(i/h̄)(Aω,cl+Aj,cl)
∫

Dx exp
[

i

h̄
(Aω,fl +Aj,fl)

]

. (3.9)

The classical action Aω,cl is known from Eq. (2.159):ref(2.159)
lab(2.116)
est(2.133) Aω,cl =

Mω

2 sinω(tb − ta)

[

(x2b + x2a) cosω(tb − ta)− 2xbxa
]

. (3.10)

The classical source term is known from (3.6):

Aj,cl =
∫ tb

ta
dt xcl(t)j(t) (3.11)

=
1

sinω(tb − ta)

∫ tb

ta
dt[xa sinω(tb − t) + xb sinω(t− ta)]j(t).

H. Kleinert, PATH INTEGRALS



3.1 External Sources 211

Consider now the fluctuating part of the action, Afl = Aω,fl + Aj,fl. Since xcl(t)
extremizes the action without the source, Afl contains a term linear in δx(t). After
a partial integration [making use of the vanishing of δx(t) at the ends] it can be
written as

Afl =
M

2

∫ tb

ta
dtdt′ δx(t)Dω2(t, t′)δx(t′) +

∫ tb

ta
dt δx(t)j(t), (3.12)

where Dω2(t, t′) is the differential operator

Dω2(t, t′) = (−∂2t − ω2)δ(t− t′) = δ(t− t′)(−∂2t′ − ω2), t, t′ ∈ (ta, tb). (3.13)

It may be considered as a functional matrix in the space of the t-dependent functions
vanishing at ta, tb. The equality of the two expressions is seen as follows. By partial
integrations one has

∫ tb

ta
dt f(t)∂2t g(t) =

∫ tb

ta
dt ∂2t f(t)g(t), (3.14)

for any f(t) and g(t) vanishing at the boundaries (or for periodic functions in the
interval). The left-hand side can directly be rewritten as

∫ tb
ta dtdt

′ f(t)δ(t−t′)∂2t′g(t′),
the right-hand side as

∫ tb
ta
dtdt′ ∂2t f(t)δ(t− t′)g(t′), and after further partial integra-

tions, as
∫

dtdt′ f(t)∂2t δ(t− t′)g(t).
The inverse D−1

ω2 (t, t′) of the functional matrix (3.13) is formally defined by the
relation

∫ tb

ta
dt′Dω2(t′′, t′)D−1

ω2 (t
′, t) = δ(t′′ − t), t′′, t ∈ (ta, tb), (3.15)

which shows that it is the standard classical Green function of the harmonic oscillator
of frequency ω:

Gω2(t, t′) ≡ D−1
ω2 (t, t

′) = (−∂2t − ω2)−1δ(t− t′), t, t′ ∈ (ta, tb). (3.16)

This definition is not unique since it leaves room for an additional arbitrary solution
H(t, t′) of the homogeneous equation

∫ tb
ta dt

′Dω2(t′′, t′)H(t′, t) = 0. This freedom will
be removed below by imposing appropriate boundary conditions.

In the fluctuation action (3.12), we now perform a quadratic completion by a
shift of δx(t) to

δx̃(t) ≡ δx(t) +
1

M

∫ tb

ta
dt′Gω2(t, t′)j(t′). (3.17)

Then the action becomes quadratic in both δx̃ and j:

Afl =
∫ tb

ta
dt
∫ tb

ta
dt′
[

M

2
δx̃(t)Dω2(t, t′)δx̃(t′)− 1

2M
j(t)Gω2(t, t′)j(t′)

]

. (3.18)
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The Green function obeys the same boundary condition as the fluctuations δx(t):

Gω2(t, t′) = 0 for

{

t = tb , t′ arbitrary,
t arbitrary, t′ = ta .

(3.19)

Thus, the shifted fluctuations δx̃(t) of (3.17) also vanish at the ends and run through
the same functional space as the original δx(t). The measure of path integration
∫ Dδx(t) is obviously unchanged by the simple shift (3.17). Hence the path integral
∫ Dδx̃ over eiAfl/h̄ with the action (3.18) gives, via the first term in Afl, the harmonic
fluctuation factor Fω(tb − ta) calculated in (2.171):ref(2.171)

lab(2.125)
est(2.144)

Fω(tb − ta) =
1

√

2πih̄/M

√

ω

sinω(tb − ta)
. (3.20)

The source part in (3.18) contributes only a trivial exponential factor

Fj,fl = exp
{

i

h̄
Aj,fl

}

, (3.21)

whose exponent is quadratic in j(t):

Aj,fl = − 1

2M

∫ tb

ta
dt
∫ tb

ta
dt′j(t)Gω2(t, t′)j(t′). (3.22)

The total time evolution amplitude in the presence of a source term can therefore
be written as the product

(xbtb|xata)jω = (xbtb|xata)ωFj,clFj,fl, (3.23)

where (xbtb|xat)ω is the source-free time evolution amplitude

(xbtb|xata)ω = e(i/h̄)Aω,clFω(tb − ta) =
1

√

2πih̄/M

√

ω

sinω(tb − ta)

× exp

{

i

2h̄

Mω

sinω(tb − ta)
[(x2b + x2a) cosω(tb − ta)− 2xbxa]

}

, (3.24)

and Fj,cl is an amplitude containing the classical action (3.11):

Fj,cl = e(i/h̄)Aj,cl

= exp

{

i

h̄

1

sinω(tb − ta)

∫ tb

ta
dt[xa sinω(tb − t) + xb sinω(t− ta)] j(t)

}

. (3.25)

To complete the result we need to know the Green function Gω2(t, t′) explicitly,
which will be calculated in the next section.
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3.2 Green Function of Harmonic Oscillator

According to Eq. (3.16), the Green function in Eq. (3.22) is obtained by inverting
the second-order differential operator −∂2t − ω2:

Gω2(t, t′) = (−∂2t − ω2)−1δ(t− t′), t, t′ ∈ (ta, tb). (3.26)

As remarked above, this function is defined only up to solutions of the homoge-
neous differential equation associated with the operator −∂2t − ω2. The boundary
conditions removing this ambiguity are the same as for the fluctuations δx(t), i.e.,
Gω2(t, t′) vanishes if either t or t′ or both hit an endpoint ta or tb (Dirichlet boundary
condition). The Green function is symmetric in t and t′. For the sake of generality,
we shall find the Green function also for the more general differential equation with
time-dependent frequency,

[−∂2t − Ω2(t)]GΩ2(t, t′) = δ(t− t′), (3.27)

with the same boundary conditions.
There are several ways of calculating this explicitly.

3.2.1 Wronski Construction

The simplest way proceeds via the so-called Wronski construction, which is based
on the following observation. For different time arguments, t > t′ or t < t′, the
Green function GΩ2(t, t′) has to solve the homogeneous differential equations

(−∂2t − ω2)GΩ2(t, t′) = 0, (−∂2t′ − ω2)GΩ2(t, t′) = 0. (3.28)

It must therefore be a linear combination of two independent solutions of the homo-
geneous differential equation in t as well as in t′, and it must satisfy the Dirichlet
boundary condition of vanishing at the respective endpoints.

Constant Frequency

If Ω2(t) ≡ ω2, this implies that for t > t′, Gω2(t, t′) must be proportional to sinω(tb−
t) as well as to sinω(t′ − ta), leaving only the solution

Gω2(t, t′) = C sinω(tb − t) sinω(t′ − ta), t > t′. (3.29)

For t < t′, we obtain similarly

Gω2(t, t′) = C sinω(tb − t′) sinω(t− ta), t < t′. (3.30)

The two cases can be written as a single expression

Gω2(t, t′) = C sinω(tb − t>) sinω(t< − ta), (3.31)
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where the symbols t> and t< denote the larger and the smaller of the times t and
t′, respectively. The unknown constant C is fixed by considering coincident times
t = t′. There, the time derivative of Gω2(t, t′) must have a discontinuity which gives
rise to the δ-function in (3.15). For t > t′, the derivative of (3.29) is

∂tGω2(t, t′) = −Cω cosω(tb − t) sinω(t′ − ta), (3.32)

whereas for t < t′

∂tGω2(t, t′) = Cω sinω(tb − t′) cosω(t− ta). (3.33)

At t = t′ we find the discontinuity

∂tGω2(t, t′)|t=t′+ǫ − ∂tGω2(t, t′)|t=t′−ǫ = −Cω sinω(tb − ta). (3.34)

Hence −∂2tGω2(t, t′) is proportional to a δ-function:

−∂2tGω2(t, t′) = Cω sinω(tb − ta)δ(t− t′). (3.35)

By normalizing the prefactor to unity, we fix C and find the desired Green function:

Gω2(t, t′) =
sinω(tb − t>) sinω(t< − ta)

ω sinω(tb − ta)
. (3.36)

It exists only if tb − ta is not equal to an integer multiple of π/ω. This restriction
was encountered before in the amplitude without external sources; its meaning was
discussed in the two paragraphs following Eq. (2.168).ref(2.168)

lab(x2.142)
est(2.142)

The constant in the denominator of (3.36) is the Wronski determinant (or Wron-

skian) of the two solutions ξ(t) = sinω(tb − t) and η(t) = sinω(t − ta) which was
introduced in (2.222):ref(2.222)

lab(2.171)
est(2.194) W [ξ(t), η(t)] ≡ ξ(t)η̇(t)− ξ̇(t)η(t). (3.37)

An alternative expression for (3.36) is

Gω2(t, t′) =
− cosω(tb − ta − |t− t′|) + cosω(tb + ta − t− t′)

2ω sinω(tb − ta)
. (3.38)

In the limit ω → 0 we obtain the free-particle Green function

G0(t, t
′) =

1

(tb − ta)
(tb − t>)(t< − ta)

=
1

tb − ta

[

−tt′ − 1

2
(tb − ta)|t− t′|+ 1

2
(ta + tb)(t+ t′)− tatb

]

. (3.39)
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Time-Dependent Frequency

It is just as easy to find the Green functions of the more general differential equation
(3.27) with a time-dependent oscillator frequency Ω(t). We construct first a so-called
retarded Green function (compare page 38) as a product of a Heaviside function with
a smooth function

GΩ2(t, t′) = Θ(t− t′)∆(t, t′). (3.40)

Inserting this into the differential equation (3.27) we find

[−∂2t − Ω2(t)]GΩ2(t, t′) = Θ(t− t′) [−∂2t − Ω2(t)]∆(t, t′)

− δ̇(t− t′)− 2∂t∆(t, t′)δ(t− t′). (3.41)

Expanding

∆(t, t′) = ∆(t, t) + [∂t∆(t, t′)]t=t′(t− t′) +
1

2
[∂2t∆(t, t′)]t=t′(t− t′)2 + . . . , (3.42)

and using the fact that

(t− t′)δ̇(t− t′) = −δ(t− t′), (t− t′)nδ̇(t− t′) = 0 for n > 1, (3.43)

the second line in (3.41) can be rewritten as

−δ̇(t− t′)∆(t, t′)− δ(t− t′)∂t∆(t, t′). (3.44)

By choosing the initial conditions

∆(t, t) = 0, ∆̇(t, t′)|t′=t = −1, (3.45)

we satisfy the inhomogeneous differential equation (3.27) provided ∆(t, t′) obeys the
homogeneous differential equation

[−∂2t − Ω2(t)]∆(t, t′) = 0, for t > t′ . (3.46)

This equation is solved by a linear combination

∆(t, t′) = α(t′)ξ(t) + β(t′)η(t) (3.47)

of any two independent solutions η(t) and ξ(t) of the homogeneous equation

[−∂2t − Ω2(t)]ξ(t) = 0, [−∂2t − Ω2(t)]η(t) = 0. (3.48)

Their Wronski determinant W = ξ(t)η̇(t)− ξ̇(t)η(t) is nonzero and, of course, time-
independent, so that we can determine the coefficients in the linear combination
(3.47) from (3.45) and find

∆(t, t′) =
1

W
[ξ(t)η(t′)− ξ(t′)η(t)] . (3.49)
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The right-hand side contains the so-called Jacobi commutator of the two functions
ξ(t) and η(t). Here we list a few useful algebraic properties of ∆(t, t′):

∆(t, t′) =
∆(tb, t)∆(t′, ta)−∆(t, ta)∆(tb, t

′)

∆(tb, ta)
, (3.50)

∆(tb, t)∂tb ∆(tb, ta)−∆(t, ta) = ∆(tb, ta)∂t∆(tb, t), (3.51)

∆(t, ta)∂tb∆(tb, ta)−∆(tb, t) = ∆(tb, ta)∂t∆(t, ta). (3.52)

The retarded Green function (3.40) is so far not the unique solution of the dif-
ferential equation (3.27), since one may always add a general solution of the homo-
geneous differential equation (3.48):

GΩ2(t, t′) = Θ(t− t′)∆(t, t′) + a(t′)ξ(t) + b(t′)η(t), (3.53)

with arbitrary coefficients a(t′) and b(t′). This ambiguity is removed by the Dirichlet
boundary conditions

GΩ2(tb, t) = 0, tb 6= t,

GΩ2(t, ta) = 0, t 6= ta. (3.54)

Imposing these upon (3.53) leads to a simple algebraic pair of equations

a(t)ξ(ta) + b(t)η(ta) = 0, (3.55)

a(t)ξ(tb) + b(t)η(tb) = ∆(t, tb). (3.56)

Denoting the 2× 2 -coefficient matrix by

Λ =

(

ξ(ta) η(ta)
ξ(tb) η(tb)

)

, (3.57)

we observe that under the condition

det Λ = W∆(ta, tb) 6= 0, (3.58)

the system (3.56) has a unique solution for the coefficients a(t) and b(t) in the Green
function (3.53). Inserting this into (3.54) and using the identity (3.50), we obtain
from this Wronski’s general formula corresponding to (3.36)

GΩ2(t, t′) =
Θ(t− t′)∆(tb, t)∆(t′, ta) + Θ(t′ − t)∆(t, ta)∆(tb, t

′)

∆(ta, tb)
. (3.59)

At this point it is useful to realize that the functions in the numerator coincide
with the two specific linearly independent solutions Da(t) and Db(t) of the homoge-
nous differential equations (3.48) which were introduced in Eqs. (2.228) and (2.229).
Comparing the initial conditions of Da(t) and Db(t) with that of the function ∆(t, t′)
in Eq. (3.45), we readily identify

Da(t) ≡ ∆(t, ta), Db(t) ≡ ∆(tb, t), (3.60)
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and formula (3.59) can be rewritten as

GΩ2(t, t′) =
Θ(t− t′)Db(t)Da(t

′) + Θ(t′ − t)Da(t)Db(t
′)

Da(tb)
. (3.61)

It should be pointed out that this equation renders a unique and well-defined
Green function if the differential equation [−∂2t − Ω2(t)]y(t) = 0 has no solutions
with Dirichlet boundary conditions y(ta) = y(tb) = 0, generally called zero-modes .
A zero mode would cause problems since it would certainly be one of the indepen-
dent solutions of (3.49), say η(t). Due to the property η(ta) = η(tb) = 0, however,
the determinant of Λ would vanish, thus destroying the condition (3.58) which was
necessary to find (3.59). Indeed, the function ∆(t, t′) in (3.49) would remain unde-
termined since the boundary condition η(ta) = 0 together with (3.55) implies that
also ξ(ta) = 0, making W = ξ(t)η̇(t)− ξ̇(t)η(t) vanish at the initial time ta, and thus
for all times.

3.2.2 Spectral Representation

A second way of specifying the Green function explicitly is via its spectral represen-
tation.

Constant Frequency

For constant frequency Ω(t) ≡ ω, the fluctuations δx(t) which satisfy the differential
equation

(−∂2t − ω2) δx(t) = 0, (3.62)

and vanish at the ends t = ta and t = tb, are expanded into a complete set of
orthonormal functions:

xn(t) =

√

2

tb − ta
sin νn(t− ta), (3.63)

with the frequencies [compare (2.115)]

νn =
πn

tb − ta
. (3.64)

These functions satisfy the orthonormality relations

∫ tb

ta
dt xn(t)xn′(t) = δnn′ . (3.65)

Since the operator −∂2t − ω2 is diagonal on xn(t), this is also true for the Green
function Gω2(t, t′) = (−∂2t − ω2)−1δ(t− t′). Let Gn be its eigenvalues defined by

∫ tb

ta
dtGω2(t, t′)xn(t

′) = Gnxn(t). (3.66)
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Then we expand Gω2(t, t′) as follows:

Gω2(t, t′) =
∞
∑

n=1

Gnxn(t)xn(t
′). (3.67)

By definition, the eigenvalues of Gω2(t, t′) are the inverse eigenvalues of the differ-
ential operator (−∂2t − ω2), which are ν2n − ω2. Thus

Gn = (ν2n − ω2)−1, (3.68)

and we arrive at the spectral representation of Gω2(t, t′):

Gω2(t, t′) =
2

tb − ta

∞
∑

n=1

sin νn(t− ta) sin νn(t
′ − ta)

ν2n − ω2
. (3.69)

We may use the trigonometric relation

sin νn(tb − t) = − sin νn[(t− ta)− (tb − ta)] = −(−1)n sin νn(t− ta)

to rewrite (3.69) as

Gω2(t, t′) =
2

tb − ta

∞
∑

n=1

(−1)n+1 sin νn(tb − t) sin νn(t
′ − ta)

ν2n − ω2
. (3.70)

These expressions make sense only if tb − ta is not equal to an integer multiple of
π/ω, where one of the denominators in the sums vanishes. This is the same range
of tb − ta as in the Wronski expression (3.36).

Time-Dependent Frequency

The spectral representation can also be written down for the more general Green
function with a time-dependent frequency defined by the differential equation (3.27).
If yn(t) are the eigenfunctions solving the differential equation with eigenvalue λn

K(t)yn(t) = λnyn(t), (3.71)

and if these eigenfunctions satisfy the orthogonality and completeness relations
∫ tb

ta
dt yn(t)yn′(t) = δnn′, (3.72)
∑

n

yn(t)yn(t
′) = δ(t− t′), (3.73)

and if, moreover, there exists no zero-mode for which λn = 0, then GΩ2(t, t′) has the
spectral representation

GΩ2(t, t′) =
∑

n

yn(t)yn(t
′)

λn
. (3.74)

This is easily verified by multiplication with K(t) using (3.71) and (3.73).
It is instructive to prove the equality between the Wronskian construction and

the spectral representations (3.36) and (3.70). It will be useful to do this in several
steps. In the present context, some of these may appear redundant. They will,
however, yield intermediate results which will be needed in Chapters 7 and 18 when
discussing path integrals occurring in quantum field theories.
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3.3 Green Functions of First-Order Differential Equation

An important quantity of statistical mechanics are the Green functions Gp
Ω(t, t

′)
which solve the first-order differential equation

[i∂t − Ω(t)]GΩ(t, t
′) = iδ(t− t′), t− t′ ∈ [0, tb − ta), (3.75)

or its Euclidean version Gp
Ω,e(τ, τ

′′) which solves the differential equation, obtained
from (3.75) for t = −iτ :

[∂τ − Ω(τ)]GΩ,e(τ, τ
′) = δ(τ − τ ′), τ − τ ′ ∈ [0, h̄β). (3.76)

These can be calculated for an arbitrary function Ω(t).

3.3.1 Time-Independent Frequency

Consider first the simplest case of a Green function Gp
ω(t, t

′) with fixed frequency ω
which solves the first-order differential equation

(i∂t − ω)Gp
ω(t, t

′) = iδ(t− t′), t− t′ ∈ [0, tb − ta). (3.77)

The equation determines Gp
ω(t, t

′) only up to a solution H(t, t′) of the homogeneous
differential equation (i∂t − ω)H(t, t′) = 0. The ambiguity is removed by imposing
the periodic boundary condition

Gp
ω(t, t

′) ≡ Gp
ω(t− t′) = Gp

ω(t− t′ + tb − ta), (3.78)

indicated by the superscript p. With this boundary condition, the Green func-
tion Gp

ω(t, t
′) is translationally invariant in time. It depends only on the difference

between t and t′ and is periodic in it.
The spectral representation of Gp

ω(t, t
′) can immediately be written down, as-

suming that tb − ta does not coincide with an even multiple of π/ω:

Gp
ω(t− t′) =

1

tb − ta

∞
∑

m=−∞

e−iωm(t−t′) i

ωm − ω
. (3.79)

The frequencies ωm are twice as large as the previous νm’s in (3.64):

ωm ≡ 2πm

tb − ta
, m = 0,±1,±2,±3, . . . . (3.80)

As for the periodic orbits in Section 2.9, there are “about as many” ωm as νm,
since there is an ωm for each positive and negative integer m, whereas the νm are
all positive (see the last paragraph in that section). The frequencies (3.80) are the
real-time analogs of the Matsubara frequencies (2.381) of quantum statistics with ref(2.381)

lab(2.213)
est(2.252)

the usual correspondence tb − ta = −ih̄/kBT of Eq. (2.330).

ref(2.330)
lab(2.180)
est(2.213)

To calculate the spectral sum, we use the Poisson summation formula in the
form (1.197):

ref(1.197)
lab(2c.226)
est(2.322)
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∞
∑

m=−∞

f(m) =
∫ ∞

−∞
dµ

∞
∑

n=−∞

e2πiµnf(µ). (3.81)

Accordingly, we rewrite the sum over ωm as an integral over ω′, followed by an
auxiliary sum over n which squeezes the variable ω′ onto the proper discrete values
ωm = 2πm/(tb − ta):

Gp
ω(t) =

∞
∑

n=−∞

∫ ∞

−∞

dω′

2π
e−iω′[t−(tb−ta)n]

i

ω′ − ω
. (3.82)

At this point it is useful to introduce another Green function Gω(t−t′) associated
with the first-order differential equation (3.77) on an infinite time interval:

Gω(t) =
∫ ∞

−∞

dω′

2π
e−iω′t i

ω′ − ω
. (3.83)

In terms of this function, the periodic Green function (3.82) can be written as a sum
which exhibits in a most obvious way the periodicity under t→ t + (tb − ta):

Gp
ω(t) =

∞
∑

n=−∞

Gω(t− (tb − ta)n). (3.84)

The advantage of using Gω(t − t′) is that the integral over ω′ in (3.83) can easily
be done. We merely have to prescribe how to treat the singularity at ω′ = ω. This
also removes the freedom of adding a homogeneous solution H(t, t′). To make the
integral unique, we replace ω by ω − iη where η is a very small positive number,
i.e., by the iη-prescription introduced after Eq. (2.168). This moves the pole in theref(2.168)

lab(x2.142)
est(2.142)

integrand of (3.83) into the lower half of the complex ω′-plane, making the integral
over ω′ in Gω(t) fundamentally different for t < 0 and for t > 0. For t < 0, the
contour of integration can be closed in the complex ω′-plane by a semicircle in the
upper half-plane at no extra cost, since e−iω′t is exponentially small there (see Fig.
3.1). With the integrand being analytic in the upper half-plane we can contract the
contour to zero and find that the integral vanishes. For t > 0, on the other hand,
the contour is closed in the lower half-plane containing a pole at ω′ = ω− iη. When
contracting the contour to zero, the integral picks up the residue at this pole and
yields a factor −2πi. At the point t = 0, finally, we can close the contour either way.
The integral over the semicircles is now nonzero, ∓1/2, which has to be subtracted
from the residues 0 and 1, respectively, yielding 1/2. Hence we find

Gω(t) =
∫ ∞

−∞

dω′

2π
e−iω′t i

ω′ − ω + iη

= e−iωt ×











1 for t > 0,
1
2 for t = 0,
0 for t < 0.

(3.85)

The vanishing of the Green function for t < 0 is the causality property of Gω(t)
discussed in (1.310) and (1.311). It is a general property of functions whose Fourierref(1.310)

lab(x1.329)
est(1.329)
ref(1.311)
lab(x1.331)
est(1.330)
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Figure 3.1 Pole in Fourier transform of Green functions Gp,a
ω (t), and infinite semicircles

in the upper (lower) half-plane which extend the integrals to a closed contour for t < 0

(t > 0).

transforms are analytic in the upper half-plane.
The three cases in (3.85) can be collected into a single formula using the Heaviside

function Θ(t) of Eq. (1.313):

Gω(t) = e−iωtΘ̄(t). (3.86)

The periodic Green function (3.84) can then be written as

Gp
ω(t) =

∞
∑

n=−∞

e−iω[t−(tb−ta)n]Θ̄(t− (tb − ta)n). (3.87)

Being periodic in tb− ta, its explicit evaluation can be restricted to the basic interval

t ∈ [0, tb − ta). (3.88)

Inside the interval (0, tb − ta), the sum can be performed as follows:

Gp
ω(t) =

0
∑

n=−∞

e−iω[t−(tb−ta)n] =
e−iωt

1− e−iω(tb−ta)

= −i e−iω[t−(tb−ta)/2]

2 sin[ω(tb − ta)/2]
, t ∈ (0, tb − ta). (3.89)

At the point t = 0, the initial term with Θ̄(0) contributes only 1/2 so that

Gp
ω(0) = Gp

ω(0+)− 1

2
. (3.90)

Outside the basic interval (3.88), the Green function is determined by its periodicity.
For instance,

Gp
ω(t) = −i e−iω[t+(tb−ta)/2]

2 sin[ω(tb − ta)/2]
, t ∈ (−(tb − ta), 0). (3.91)



222 3 External Sources, Correlations, and Perturbation Theory

Note that as t crosses the upper end of the interval [0, tb−ta), the sum in (3.87) picks
up an additional term (the term with n = 1). This causes a jump in Gp

ω(t) which
enforces the periodicity. At the upper point t = tb − ta, there is again a reduction
by 1/2 so that Gp

ω(tb − ta) lies in the middle of the jump, just as the value 1/2 lies
in the middle of the jump of the Heaviside function Θ̄(t).

The periodic Green function is of great importance in the quantum statistics of
Bose particles (see Chapter 7). After a continuation of the time to imaginary values,
t→ −iτ , tb − ta → −ih̄/kBT , it takes the form

Gp
ω,e(τ) =

1

1− e−h̄ω/kBT
e−ωτ , τ ∈ (0, h̄β), (3.92)

where the subscript e records the Euclidean character of the time. The prefactor
is related to the average boson occupation number of a particle state of energy h̄ω,
given by the Bose-Einstein distribution function

nb
ω =

1

eh̄ω/kBT − 1
. (3.93)

In terms of it,
Gp

ω,e(τ) = (1 + nb
ω)e

−ωτ , τ ∈ (0, h̄β). (3.94)

The τ -behavior of the subtracted periodic Green function Gp
ω,e
′ (τ) ≡ Gp

ω,e(τ)−1/h̄βω
is shown in Fig. 3.2.
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-1 -0.5 0.5 1 1.5 2

-1

-0.5

0.5

1

τ/h̄β

τ/h̄β

Gp
ω,e
′ (τ) Ga

ω,e(τ)

Figure 3.2 Subtracted periodic Green function Gp
ω,e
′ ≡ Gp

ω,e(τ)−1/h̄βω and antiperiodic

Green function Ga
ω,e(τ) for frequencies ω = (0, 5, 10)/h̄β (with increasing dash length).

The points show the values at the jumps of the three functions (with increasing point size)

corresponding to the relation (3.90).

As a next step, we consider a Green function Gp
ω2(t) associated with the second-

order differential operator −∂2t − ω2,

Gp
ω2(t, t

′) = (−∂2t − ω2)−1δ(t− t′), t− t′ ∈ [ta, tb), (3.95)

which satisfies the periodic boundary condition:

Gp
ω2(t, t

′) ≡ Gp
ω2(t− t′) = Gp

ω2(t− t′ + tb − ta). (3.96)
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Figure 3.3 Two poles in Fourier transform of Green function Gp,a
ω2 (t).

Just like Gp
ω(t, t

′), this periodic Green function depends only on the time difference
t− t′. It obviously has the spectral representation

Gp
ω2(t) =

1

tb − ta

∞
∑

m=−∞

e−iωmt 1

ω2
m − ω2

, (3.97)

which makes sense as long as tb − ta is not equal to an even multiple of π/ω. At
infinite tb − ta, the sum becomes an integral over ωm with singularities at ±ω which
must be avoided by an iη-prescription, which adds a negative imaginary part to
the frequency ω [compare the discussion after Eq. (2.168)]. This fixes also the
continuation from small tb − ta beyond the multiple values of π/ω. By decomposing

1

ω′2 − ω2 + iη
=

1

2iω

(

i

ω′ − ω + iη
− i

ω′ + ω − iη

)

, (3.98)

the calculation of the Green function (3.97) can be reduced to the previous case.
The positions of the two poles of (3.98) in the complex ω′-plane are illustrated in
Fig. 3.3. In this way we find, using (3.89),

Gp
ω2(t) =

1

2ωi
[Gp

ω(t)−Gp
−ω(t)]

= − 1

2ω

cosω[t− (tb − ta)/2]

sin[ω(tb − ta)/2]
, t ∈ [0, tb − ta). (3.99)

In Gp
−ω(t) one must keep the small negative imaginary part attached to the frequency

ω. For an infinite time interval tb − ta, this leads to a Green function Gp
ω2(t − t′):

also
G−ω(t) = −e−iωtΘ̄(−t). (3.100)

The directional change in encircling the pole in the ω′ -integral leads to the exchange
Θ̄(t) → −Θ̄(−t).

Outside the basic interval t ∈ [0, tb − ta), the function is determined by its
periodicity. For t ∈ [−(tb − ta), 0), we may simply replace t by |t|.
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As a further step we consider another Green function Ga
ω(t, t

′). It fulfills the
same first-order differential equation i∂t − ω as Gp

ω(t, t
′):

(i∂t − ω)Ga
ω(t, t

′) = iδ(t− t′), t− t′ ∈ [0, tb − ta), (3.101)

but in contrast to Gp
ω(t, t

′) it satisfies the antiperiodic boundary condition

Ga
ω(t, t

′) ≡ Ga
ω(t− t′) = −Ga

ω(t− t′ + tb − ta). (3.102)

As for periodic boundary conditions, the Green function Ga
ω(t, t

′) depends only on
the time difference t − t′. In contrast to Gp

ω(t, t
′), however, Ga

ω(t, t
′) changes sign

under a shift t→ t+ (tb − ta). The Fourier expansion of Ga
ω(t− t′) is

Ga
ω(t) =

1

tb − ta

∞
∑

m=−∞

e−iωf
mt i

ωf
m − ω

, (3.103)

where the frequency sum covers the odd Matsubara-like frequencies

ωf
m =

π(2m+ 1)

tb − ta
. (3.104)

The superscript f stands for fermionic since these frequencies play an important
role in the statistical mechanics of particles with Fermi statistics to be explained in
Section 7.10 [see Eq. (7.414)].

The antiperiodic Green functions are obtained from a sum similar to (3.82), but
modified by an additional phase factor eiπn = (−)n. When inserted into the Poisson
summation formula (3.81), such a phase is seen to select the half-integer numbers
in the integral instead of the integer ones:

∞
∑

m=−∞

f(m+ 1/2) =
∫ ∞

−∞
dµ

∞
∑

n=−∞

(−)ne2πiµnf(µ). (3.105)

Using this formula, we can expand

Ga
ω(t) =

∞
∑

n=−∞

∫ ∞

−∞

dω′

2π
(−)ne−iω′[t−(tb−ta)n]

i

ω′ − ω + iη

=
∞
∑

n=−∞

(−)nGω(t− (tb − ta)n), (3.106)

or, more explicitly,

Ga
ω(t) =

∞
∑

n=−∞

e−iω[t−(tb−ta)n](−)nΘ̄(t− (tb − ta)n). (3.107)

For t ∈ [0, tb − ta), this gives

Ga
ω(t) =

0
∑

n=−∞

e−iω[t−(tb−ta)n](−)n =
eiωt

1 + e−iω(tb−ta)

=
e−iω[t−(tb−ta)/2]

2 cos[ω(tb − ta)/2]
, t ∈ [0, tb − ta). (3.108)

H. Kleinert, PATH INTEGRALS



3.3 Green Functions of First-Order Differential Equation 225

Outside the interval t ∈ [0, tb − ta), the function is defined by its antiperiodicity.
The τ -behavior of the antiperiodic Green function Ga

ω,e(τ) is also shown in Fig. 3.2.
In the limit ω → 0, the right-hand side of (3.108) is equal to 1/2, and the

antiperiodicity implies that

Ga
0(t) =

1

2
ǫ(t), t ∈ [−(tb − ta), (tb − ta)]. (3.109)

Antiperiodic Green functions play an important role in the quantum statistics
of Fermi particles. After analytically continuing t to the imaginary time −iτ with
tb − ta → −ih̄/kBT , the expression (3.108) takes the form

Ga
ω,e(τ) =

1

1 + e−h̄ω/kBT
e−ωτ , τ ∈ [0, h̄β). (3.110)

The prefactor is related to the average Fermi occupation number of a state of energy
h̄ω, given by the Fermi-Dirac distribution function

nf
ω =

1

eh̄ω/kBT + 1
. (3.111)

In terms of it,
Ga

ω,e(τ) = (1− nf
ω)e

−ωτ , τ ∈ [0, h̄β). (3.112)

With the help of Ga
ω(t), we form the antiperiodic analog of (3.97), (3.99), i.e., the

antiperiodic Green function associated with the second-order differential operator
−∂2t − ω2:

Ga
ω2(t) =

1

tb − ta

∞
∑

m=0

e−iωf
mt 1

ωf
m
2 − ω2

=
1

2ωi
[Ga

ω(t)−Ga
−ω(t)]

= − 1

2ω

sinω[t− (tb − ta)/2]

cos[ω(tb − ta)/2]
, t ∈ [0, tb − ta]. (3.113)

Outside the basic interval t ∈ [0, tb − ta], the Green function is determined by its
antiperiodicity. If, for example, t ∈ [−(tb − ta), 0], one merely has to replace t by |t|.

Note that the Matsubara sums

Gp
ω2,e(0) =

1

h̄β

∞
∑

m=−∞

1

ω2
m + ω2

, Gp
ω,e(0) =

1

h̄β

∞
∑

m=−∞

1

ωf
m
2 + ω2

, (3.114)

can also be calculated from the combinations of the simple Green functions (3.79)
and (3.103):

1

2ω

[

Gp
ω,e(η) +Gp

ω,e(−η)
]

=
1

2ω

[

Gp
ω,e(η) +Gp

ω,e(h̄β−η)
]

=
1

2ω

(

1 + nb
ω

) (

1 + e−βω
)
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=
1

2ω
coth

h̄ωβ

2
, (3.115)

1

2ω

[

Ga
ω,e(η) +Ga

ω,e(−η)
]

=
1

2ω

[

Ga
ω,e(η)−Ga

ω,e(h̄β−η)
]

=
1

2ω

(

1− nf
ω

) (

1− e−βω
)

=
1

2ω
tanh

h̄ωβ

2
, (3.116)

where η is an infinitesimal positive number needed to specify on which side of the
jump the Green functions Gp,a

ω,e(τ) at τ = 0 have to be evaluated (see Fig. 3.2).

3.3.2 Time-Dependent Frequency

The above results (3.89) and (3.108) for the periodic and antiperiodic Green func-
tions of the first-order differential operator (i∂t − ω) can easily be found also for
arbitrary time-dependent frequencies Ω(t), thus solving (3.75). We shall look for
the retarded version which vanishes for t < t′. This property is guaranteed by the
ansatz containing the Heaviside function (1.313):

GΩ(t, t
′) = Θ̄(t− t′)g(t, t′). (3.117)

Using the property (1.307) of the Heaviside function, that its time derivative yields
the δ-function, and normalizing g(t, t) to be equal to 1, we see that g(t, t′) must
solve the homogenous differential equation

[i∂t − Ω(t)] g(t, t′) = 0. (3.118)

The solution is
g(t, t′) = K(t′)e−i

∫ t

c
dt′′ Ω(t′′). (3.119)

The condition g(t, t) = 1 fixes K(t) = ei
∫ t

c
dt′′ Ω(t′′), so that we obtain

GΩ(t, t
′) = Θ̄(t− t′)e−i

∫ t

t′
dt′′ Ω(t′′). (3.120)

The most general Green function is a sum of this and an arbitrary solution of the
homogeneous equation (3.118):

GΩ(t, t
′) =

[

Θ̄(t− t′) + C(t′)
]

e−i
∫ t

t′
dt′′ Ω(t′′). (3.121)

For a periodic frequency Ω(t) we impose periodic boundary conditions upon the
Green function, setting GΩ(ta, t

′) = GΩ(tb, t
′). This is ensured if for tb > t > t′ > ta:

C(t′)e−i
∫ ta

t′
dt′′ Ω(t′′) = [1 + C(t′)] e−i

∫ tb

t′
dt′′ Ω(t′′). (3.122)

This equation is solved by a t′-independent C(t′):

C = np
Ω ≡ 1

e
i
∫ tb

ta
dt′′ Ω(t′′) − 1

. (3.123)
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Hence we obtain the periodic Green function

Gp
Ω(t, t

′) =
[

Θ̄(t− t′) + np
Ω

]

e−i
∫ t

t′
dt′′ Ω(t′′). (3.124)

For antiperiodic boundary conditions we obtain the same equation with np
Ω replaced

by −na
Ω where

na
Ω ≡ 1

e
i
∫ tb

ta
dtΩ(t)

+ 1
. (3.125)

Note that a sign change in the time derivative of the first-order differential equation
(3.75) to

[−i∂t − Ω(t)]GΩ(t, t
′) = iδ(t− t′) (3.126)

has the effect of interchanging in the time variable t and t′ of the Green function
Eq. (3.120).

If the frequency Ω(t) is a matrix, all exponentials have to be replaced by time-
ordered exponentials [recall (1.252)]

e
i
∫ tb

ta
dtΩ(t) → T̂ e

i
∫ tb

ta
dtΩ(t)

. (3.127)

As remarked in Subsection 2.15.4, this integral cannot, in general, be calculated
explicitly. A simple formula is obtained only if the matrix Ω(t) varies only little
around a fixed matrix Ω0.

For imaginary times τ = it we generalize the results (3.92) and (3.110) for the
periodic and antiperiodic imaginary-time Green functions of the first-order differ-
ential equation (3.76) to time-dependent periodic frequencies Ω(τ). Here the Green
function (3.120) becomes

GΩ(τ, τ
′) = Θ̄(τ − τ ′)e−

∫ τ

τ ′
dτ ′′ Ω(τ ′′), (3.128)

and the periodic Green function (3.124):

GΩ(τ, τ
′) =

[

Θ̄(τ − τ ′) + nb
]

e−
∫ τ

τ ′
dτ ′′ Ω(τ ′′), (3.129)

where

nb ≡ 1

e
∫ h̄β

0
dτ ′′ Ω(τ ′′) − 1

(3.130)

is the generalization of the Bose distribution function in Eq. (3.93). For antiperiodic
boundary conditions we obtain the same equation, except that the generalized Bose
distribution function is replaced by the negative of the generalized Fermi distribution
function in Eq. (3.111):

nf ≡ 1

e
∫ h̄β

0
dτ ′′ Ω(τ ′′) + 1

. (3.131)

For the opposite sign of the time derivative in (3.128), the arguments τ and τ ′ are
interchanged.
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From the Green functions (3.124) or (3.128) we may find directly the trace of
the logarithm of the operators [−i∂t + Ω(t)] or [∂τ + Ω(τ)]. At imaginary time, we
multiply Ω(τ) with a strength parameter g, and use the formula

Tr log [∂τ + gΩ(τ)] =
∫ g

0
dg′Gg′Ω(τ, τ). (3.132)

Inserting on the right-hand side of Eq. (3.129), we find for g = 1:

Tr log [∂τ + Ω(τ)] = log

{

2 sinh

[

1

2

∫ h̄β

0
dτ ′′ Ω(τ ′′)

]}

=
1

2

∫ h̄β

0
dτ ′′ Ω(τ ′′) + log

[

1− e−
∫ h̄β

0
dτ ′′ Ω(τ ′′)

]

, (3.133)

which reduces at low temperature to

Tr log [∂τ + Ω(τ)] =
1

2

∫ h̄β

0
dτ ′′ Ω(τ ′′). (3.134)

The result is the same for the opposite sign of the time derivative and the trace
of the logarithm is sensitive only to Θ̄(τ − τ ′) at τ = τ ′, where it is equal to 1/2.

As an exercise for dealing with distributions it is instructive to rederive this result
in the following perturbative way. For a positive Ω(τ), we introduce an infinitesimal
positive quantity η and decompose

Tr log [±∂τ + Ω(τ)] = Tr log [±∂τ + η] + Tr log
[

1 + (±∂τ + η)−1Ω(τ)
]

(3.135)

= Tr log [±∂τ + η] + Tr log
[

1 + (±∂τ + η)−1Ω(τ)
]

.

The first term Tr log [±∂τ + η] = Tr log [±∂τ + η] =
∫∞
−∞ dω logω vanishes since

∫∞
−∞ dω logω = 0 in dimensional regularization by Veltman’s rule [see (2.508)]. Using
the Green functions

[±∂τ + η]−1 (τ, τ ′) =

{

Θ̄(τ − τ ′)

Θ̄(τ ′ − τ)

}

, (3.136)

the second term can be expanded in a Taylor series

∞
∑

n=1

(−1)n+1

n

∫

dτ1 · · ·dτn Ω(τ1)Θ̄(τ1−τ2)Ω(τ2)Θ̄(τ2−τ3) · · ·Ω(τn)Θ̄(τn−τ1). (3.137)

For the lower sign of ±∂τ , the Heaviside functions have reversed arguments τ2 −
τ1, τ3 − τ2, . . . , τ1 − τn. The integrals over a cyclic product of Heaviside functions
in (3.137) are zero since the arguments τ1, . . . , τn are time-ordered which makes the
argument of the last factor Θ̄(τn−τ1) [or Θ̄(τ1−τn)] negative and thus Θ̄(τn−τ1) = 0
[or Θ̄(τ1 − τn)]. Only the first term survives yielding

∫

dτ1Ω(τ1)Θ̄(τ1 − τ1) =
1

2

∫

dτ Ω(τ), (3.138)
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such that we re-obtain the result (3.134).
This expansion (3.133) can easily be generalized to an arbitrary matrix Ω(τ) or a

time-dependent operator, Ĥ(τ). Since Ĥ(τ) and Ĥ(τ ′) do not necessarily commute,
the generalization is

Tr log[h̄∂τ + Ĥ(τ)] =
1

2h̄
Tr

[

∫ h̄β

0
dτ Ĥ(τ)

]

−
∞
∑

n=1

1

n
Tr

[

T̂ e−n
∫ h̄β

0
dτ ′′ Ĥ(τ ′′)/h̄

]

, (3.139)

where T̂ is the time ordering operator (1.241). Each term in the sum contains a
power of the time evolution operator (1.255).

3.4 Summing Spectral Representation of Green Function

After these preparations we are ready to perform the spectral sum (3.70) for the
Green function of the differential equation of second order with Dirichlet boundary
conditions. Setting t2 ≡ tb − t, t1 ≡ t′ − ta, we rewrite (3.70) as

Gω2(t, t′) =
2

tb − ta

∞
∑

n=1

(−1)n+1

(2i)2
(eiνnt2 − e−iνnt2)(eiνnt1 − e−iνnt1)

ν2n − ω2

=
1

2

1

tb − ta

∞
∑

n=1

(−1)n
[(e−iνn(t2+t1) − e−iνn(t2−t1)) + c.c. ]

ν2n − ω2

=
1

2

1

tb − ta

∞
∑

n=−∞

(−1)n
e−iνn(t2+t1) − e−iνn(t2−t1)

ν2n − ω2
. (3.140)

We now separate even and odd frequencies νn and write these as bosonic and
fermionic Matsubara frequencies ωm = ν2m and ωf

m = ν2m+1, respectively, recalling
the definitions (3.80) and (3.104). In this way we obtain

Gω2(t, t′) =
1

2

{

1

tb − ta

∞
∑

m=−∞

e−iωm(t2+t1)

ω2
m − ω2

− 1

tb − ta

∞
∑

m=−∞

e−iωf
m(t2+t1)

ωf
m

2 − ω2

− 1

tb − ta

∞
∑

m=−∞

e−iωm(t2−t1)

ω2
m − ω2

+
1

tb − ta

∞
∑

m=−∞

e−iωf
m(t2−t1)

ωf
m

2 − ω2

}

. (3.141)

Inserting on the right-hand side the periodic and antiperiodic Green functions (3.99)
and (3.108), we obtain the decomposition

Gω2(t, t′) =
1

2
[Gp

ω(t2 + t1)−Ga
ω(t2 + t1)−Gp

ω(t2 − t1) +Ga
ω(t2 − t1)] . (3.142)

Using (3.99) and (3.113) we find that

Gp
ω(t2 + t1)−Gp

ω(t2 − t1) =
sinω[t2 − (tb − ta)/2] sinωt1

ω sin[ω(tb − ta)/2]
, (3.143)

Ga
ω(t2 + t1)−Ga

ω(t2 − t1) = −cosω[t2 − (tb − ta)/2] sinωt1
ω cos[ω(tb − ta)/2]

, (3.144)
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such that (3.142) becomes

Gω2(t, t′) =
1

ω sinω(tb − ta)
sinωt2 sinωt1, (3.145)

in agreement with the earlier result (3.36).
An important limiting case is

ta → −∞, tb → ∞. (3.146)

Then the boundary conditions become irrelevant and the Green function reduces to

Gω2(t, t′) = − i

2ω
e−iω|t−t′|, (3.147)

which obviously satisfies the second-order differential equation

(−∂2t − ω2)Gω2(t, t′) = δ(t− t′). (3.148)

The periodic and antiperiodic Green functions Gp
ω2(t, t′) and Ga

ω2(t, t′) at finite
tb − ta in Eqs. (3.99) and (3.113) are obtained from Gω2(t, t′) by summing over all
periodic repetitions [compare (3.106)]

Gp
ω2(t, t

′) =
∞
∑

n=−∞

G(t+ n(tb − ta), t
′),

Ga
ω2(t, t′) =

∞
∑

n=−∞

(−1)nGω2(t+ n(tb − ta), t
′). (3.149)

For completeness let us also sum the spectral representation with the normalized
wave functions [compare (3.98)–(3.69)]

x0(t) =

√

1

tb − ta
, xn(t) =

√

2

tb − ta
cos νn(t− ta), (3.150)

which reads:

GN
ω2(t, t′) =

2

tb − ta

[

− 1

2ω2
+

∞
∑

n=1

cos νn(t− ta) cos νn(t
′ − ta)

ν2n − ω2

]

. (3.151)

It satisfies the Neumann boundary conditions

∂tG
N
ω2(t, t′)

∣

∣

∣

t=tb
= 0, ∂t′G

N
ω2(t, t′)

∣

∣

∣

t′=ta
= 0. (3.152)

The spectral representation (3.151) can be summed by a decomposition (3.140), if
that the lowest line has a plus sign between the exponentials, and (3.142) becomes

GN
ω2(t, t′) =

1

2
[Gp

ω(t2 + t1)−Ga
ω(t2 + t1) +Gp

ω(t2 − t1)−Ga
ω(t2 − t1)] . (3.153)
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Using now (3.99) and (3.113) we find that

Gp
ω(t2 + t1) +Gp

ω(t2 − t1) = −cosω[t2 − (tb − ta)/2] cosωt1
ω sin[ω(tb − ta)/2]

, (3.154)

Ga
ω(t2 + t1) +Ga

ω(t2 − t1) = −sinω[t2 − (tb − ta)/2] cosωt1
ω cos[ω(tb − ta)/2]

, (3.155)

and we obtain instead of (3.145):

GN
ω2(t, t′) = − 1

ω sinω(tb − ta)
cosω(tb − t>) cosω(t< − ta), (3.156)

which has the small-ω expansion

GN
ω2(t, t′) ≈

ω2≈0
− 1

(tb−ta)ω2
+
tb−ta
3

− 1

2
|t−t′| − 1

2
(t+t′)+

1

2(tb−ta)
(

t2+t′2
)

.(3.157)

3.5 Wronski Construction for Periodic and Antiperiodic
Green Functions

The Wronski construction in Subsection 3.2.1 of Green functions with time-
dependent frequency Ω(t) satisfying the differential equation (3.27)

[−∂2t − Ω2(t)]GΩ2(t, t′) = δ(t− t′) (3.158)

can easily be carried over to the Green functions Gp,a
Ω2 (t, t′) with periodic and an-

tiperiodic boundary conditions. As in Eq. (3.53) we decompose

Gp,a
Ω2 (t, t

′) = Θ̄(t− t′)∆(t, t′) + a(t′)ξ(t) + b(t′)η(t), (3.159)

with independent solutions of the homogenous equations ξ(t) and η(t), and insert
this into (3.27), where δp,a(t− t′) is the periodic version of the δ-function

δp,a(t− t′) ≡
∞
∑

n=−∞

δ(t− t′ − nh̄β)

{

1
(−1)n

}

, (3.160)

and Ω(t) is assumed to be periodic or antiperiodic in tb − ta. This yields again for
∆(t, t′) the homogeneous initial-value problem (3.46), (3.45),

[−∂2t − Ω2(t)]∆(t, t′) = 0; ∆(t, t) = 0, ∂t∆(t, t′)|t′=t = −1. (3.161)

The periodic boundary conditions lead to the system of equations

a(t)[ξ(tb)∓ ξ(ta)] + b(t)[η(tb)∓ η(ta)] = −∆(tb, t),

a(t)[ξ̇(tb)∓ ξ̇(ta)] + b(t)[η̇(tb)∓ η̇(ta)] = −∂t∆(tb, t). (3.162)
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Defining now the constant 2× 2 -matrices

Λ̄p,a(ta, tb) =

(

ξ(tb)∓ ξ(ta) η(tb)∓ η(ta)

ξ̇(tb)∓ ξ̇(ta) η̇(tb)∓ η̇(ta)

)

, (3.163)

the condition analogous to (3.58),

det Λ̄p,a(ta, tb) = W ∆̄p,a(ta, tb) 6= 0, (3.164)

with
∆̄p,a(ta, tb) = 2± ∂t∆(ta, tb)± ∂t∆(tb, ta), (3.165)

enables us to obtain the unique solution to Eqs. (3.162). After some algebra using
the identities (3.51) and (3.52), the expression (3.159) for Green functions with
periodic and antiperiodic boundary conditions can be cast into the form

Gp,a
Ω2 (t, t

′) = GΩ2(t, t′)∓ [∆(t, ta)±∆(tb, t)][∆(t′, ta)±∆(tb, t
′)]

∆̄p,a(ta, tb)∆(ta, tb)
, (3.166)

where GΩ2(t, t′) is the Green function (3.59) with Dirichlet boundary conditions. As
in (3.59) we may replace the functions on the right-hand side by the solutions Da(t)
and Db(t) defined in Eqs. (2.228) and (2.229) with the help of (3.60).

The right-hand side of (3.166) is well-defined unless the operator K(t) = −∂2t −
Ω2(t) has a zero-mode, say η(t), with periodic or antiperiodic boundary conditions
η(tb) = ±η(ta), η̇(tb) = ±η̇(ta), which would make the determinant of the 2 × 2
-matrix Λ̄p,a vanish.

3.6 Time Evolution Amplitude in Presence of Source Term

Given the Green function Gω2(t, t′), we can write down an explicit expression for
the time evolution amplitude. The quadratic source contribution to the fluctuation
factor (3.21) is given explicitly by

Aj,fl = − 1

2M

∫ tb

ta
dt
∫ tb

ta
dt′Gω2(t, t′) j(t)j(t′) (3.167)

= − 1

M

1

ω sinω(tb − ta)

∫ tb

ta
dt
∫ t

ta
dt′ sinω(tb − t) sinω(t′ − ta)j(t)j(t

′).

Altogether, the path integral in the presence of an external source j(t) reads

(xbtb|xata)jω =
∫

Dx exp
{

i

h̄

∫ tb

ta
dt
[

M

2
(ẋ2 − ω2x2) + jx

]}

= e(i/h̄)Aj,clFω,j(tb, ta),

(3.168)

with a total classical action

Aj,cl =
1

2

Mω

sinω(tb − ta)

[

(x2b + x2a) cosω(tb − ta)−2xbxa
]

+
1

sinω(tb − ta)

∫ tb

ta
dt[xa sinω(tb − t) + xb sinω(t− ta)]j(t), (3.169)
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and the fluctuation factor composed of (2.171) and a contribution from the current
term eiAj,fl/h̄:

Fω,j(tb, ta) = Fω(tb, ta)e
iAj,fl/h̄ =

1
√

2πih̄/M

√

ω

sinω(tb − ta)

× exp

{

− i

h̄Mω sinω(tb − ta)

∫ tb

ta
dt
∫ t

ta
dt′ sinω(tb − t) sinω(t′ − ta)j(t)j(t

′)

}

. (3.170)

This expression is easily generalized to arbitrary time-dependent frequencies.
Using the two independent solutions Da(t) and Db(t) of the homogenous differential
equations (3.48), which were introduced in Eqs. (2.228) and (2.229), we find for the
action (3.169) the general expression, composed of the harmonic action (2.268) and
the current term

∫ tb
ta
dtxcl(t)j(t) with the classical solution (2.248):

Aj,cl =
M

2Da(tb)

[

x2bḊa(tb)−x2aḊb(ta)−2xbxa
]

+
1

Da(tb)

∫ tb

ta
dt [xbDa(t)+xaDb(t)]j(t).

(3.171)

The fluctuation factor is composed of the expression (2.263) for the current-free
action, and the generalization of (3.167) with the Green function (3.61):

Fω,j(tb, ta) = Fω(tb, ta)e
iAj,fl/h̄ =

1
√

2πih̄/M

1
√

Da(tb)
exp

{

− i

2h̄MDa(tb)

×
∫ tb

ta
dt
∫ t

ta
dt′ j(t)

[

Θ̄(t− t′)Db(t)Da(t
′) + Θ̄(t′ − t)Da(t)Db(t

′)
]

j(t′)
}

. (3.172)

For applications to statistical mechanics which becomes possible after an analytic
continuation to imaginary times, it is useful to write (3.169) and (3.170) in another
form. We introduce the Fourier transforms of the current

A(ω) ≡ 1

Mω

∫ tb

ta
dte−iω(t−ta)j (t) , (3.173)

B(ω) ≡ 1

Mω

∫ tb

ta
dte−iω(tb−t)j(t) = −e−iω(tb−ta)A(−ω), (3.174)

and see that the classical source term in the exponent of (3.168) can be written as

Aj,cl = −i Mω

sinω(tb − ta)

{[

xb(e
iω(tb−ta)A− B)

]

+ xa(e
iω(tb−ta)B − A)

}

. (3.175)

The source contribution to the quadratic fluctuations in Eq. (3.167), on the other
hand, can be rearranged to yield

Aj,fl =
i

4Mω

∫ tb

ta
dt
∫ tb

tb

dt′e−iω|t−t′|j(t)j(t′)− Mω

2 sinω(tb−ta)
[

eiω(tb−ta)(A2+B2)−2AB
]

.

(3.176)
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This is seen as follows: We write the Green function between j(t), j(t′) in (3.168) as

−
[

sinω(tb − t) sinω(t′ − ta)Θ̄(t− t′) + sinω(tb − t′) sinω(t− ta)Θ̄(t′ − t)
]

=
1

4

[(

eiω(tb−ta)e−iω(t−t′) + c.c.
)

−
(

eiω(tb+ta)e−iω(t+t′) + c.c.
)]

Θ̄(t− t′)

+
{

t↔ t′
}

. (3.177)

Using Θ̄(t− t′) + Θ̄(t′ − t) = 1, this becomes

1

4

{

−
(

eiω(tb+ta)e−iω(t′+t) + c.c.
)

+eiω(tb−ta)
(

e−iω(t−t′)Θ̄(t− t′) + e−iω(t′−t)Θ̄(t′ − t)
)

(3.178)

+e−iω(tb−ta)
[

eiω(t−t′)(1− Θ̄(t′ − t)) + eiω(t
′−t)(1− Θ̄(t− t′))

]}

.

A multiplication by j(t), j(t′) and an integration over the times t, t′ yield

1

4

[

− eiω(tb−ta)4M2ω2(B2 + A2) (3.179)

+
(

eiω(tb−ta) − e−iω(tb−ta)
)

∫ tb

ta
dt
∫ tb

tb
dt′e−iω|t−t′|j(t)j(t′) + 4M2ω22AB

]

,

thus leading to (3.176).
If the source j(t) is time-independent, the integrals in the current terms of the

exponential of (3.169) and (3.170) can be done, yielding the j-dependent exponent

i

h̄
Aj =

i

h̄
(Aj,cl +Aj,fl) =

i

h̄

{

1

ω sinω(tb − ta)
[1− cosω(tb − ta)](xb + xa)j

+
1

2Mω3

[

ω(tb − ta) + 2
cosω(tb − ta)− 1

sinω(tb − ta)

]

j2
}

. (3.180)

Substituting (1−cosα) by sinα tan(α/2), this yields the total source action becomes

Aj =
1

ω
tan

ω(tb − ta)

2
(xb + xa)j +

1

2Mω3

[

ω (tb − ta)− 2 tan
ω(tb − ta)

2

]

j2. (3.181)

This result could also have been obtained more directly by taking the potential plus
a constant-current term in the action

−
∫ tb

ta
dt
(

M

2
ω2x2 − xj

)

, (3.182)

and by completing it quadratically to the form

−
∫ tb

ta
dt
M

2
ω2
(

x− j

Mω2

)2

+
tb − ta
2Mω2

j2. (3.183)
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This is a harmonic potential shifted in x by −j/Mω2. The time evolution amplitude
can thus immediately be written down as

(xbtb|xata)j=const
ω =

√

Mω

2πih̄ sinω(tb − ta)
exp

(

i

2h̄

Mω

sinω(tb − ta)

×
{[

(

xb −
j

Mω2

)2

+
(

xa −
j

Mω2

)2
]

cosω(tb − ta) (3.184)

−2
(

xb −
j

Mω2

)(

xa −
j

Mω2

)}

+
i

h̄

tb − ta
2Mω2

j2
)

.

In the free-particle limit ω → 0, the result becomes particularly simple:

(xbta|xata)j=const
0 =

1
√

2πih̄(tb − ta)/M
exp

[

i

h̄

M

2

(xb − xa)
2

tb − ta

]

× exp
{

i

h̄

[

1

2
(xb + xa)(tb − ta)j −

1

24M
(tb − ta)

3j2
]}

. (3.185)

As a cross check, we verify that the total exponent is equal to i/h̄ times the classical
action

Aj,cl =
∫ tb

ta
dt
(

M

2
ẋ2j,cl + jxj,cl

)

, (3.186)

calculated for the classical orbit xj,cl(t) connecting xa and xb in the presence of the
constant current j. This satisfies the Euler-Lagrange equation

ẍj,cl = j/M, (3.187)

which is solved by

xj,cl(t) = xa +
[

xb − xa −
j

2M
(tb − ta)

2
]

t− ta
tb − ta

+
j

2M
(t− ta)

2. (3.188)

Inserting this into the action yields

Aj,cl =
M

2

(xb − xa)
2

tb − ta
+

1

2
(xb + xa)(tb − ta)j −

(tb − ta)
3

24

j2

M
, (3.189)

just as in the exponent of (3.185).
Let us remark that the calculation of the oscillator amplitude (xatb|xat)jω in

(3.168) could have proceeded alternatively by using the orbital separation

x(t) = xj,cl(t) + δx(t), (3.190)

where xj,cl(t) satisfies the Euler-Lagrange equations with the time-dependent source
term

ẍj,cl(t) + ω2xj,cl(t) = j(t)/M, (3.191)
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rather than the orbital separation of Eq. (3.7),

x(t) = xcl(t) + δx(t),

where xcl(t) satisfied the Euler-Lagrange equation with no source. For this inho-

mogeneous differential equation we would have found the following solution passing
through xa at t = ta and xb at t = tb:

xj,cl(t) = xa
sinω(tb − t)

sinω(tb − ta)
+ xb

sinω(t− ta)

sinω(tb − ta)
+

1

M

∫ tb

ta
dt′Gω2(t, t′)j(t′). (3.192)

The Green function Gω2(t, t′) appears now at the classical level. The separation
(3.190) in the total action would have had the advantage over (3.7) that the source
causes no linear term in δx(t). Thus, there would be no need for a quadratic com-
pletion; the classical action would be found from a pure surface term plus one half
of the source part of the action

Acl =
∫ tb

ta
dt
[

M

2
(ẋ2cl,j − ω2x2j,cl) + jxj,cl

]

=
M

2
xj,clẋj,cl

∣

∣

∣

tb

ta

+
∫ tb

ta
dt
[

M

2
xj,cl

(

−ẍj,cl − ω2xj,cl +
j

M

)]

+
1

2

∫ tb

ta
dtxj,clj

=
M

2
(xbẋb − xaẋa)

∣

∣

∣

x=xj,cl

+
1

2

∫ tb

ta
dtxj,cl(t)j(t). (3.193)

Inserting xj,cl from (3.192) and Gω2(t, t′) from (3.36) leads once more to the exponent
in (3.168). The fluctuating action quadratic in δx(t) would have given the same
fluctuation factor as in the j = 0 -case, i.e., the prefactor in (3.168) with no further
j2 (due to the absence of a quadratic completion).

3.7 Time Evolution Amplitude at Fixed Path Average

Another interesting quantity to be needed in Chapter 15 is the Fourier transform of
the amplitude (3.184):

(xbtb|xata)x0
ω = (tb − ta)

∫ ∞

−∞

dj

2πh̄
e−ij(tb−ta)x0/h̄(xbtb|xata)jω. (3.194)

This is the amplitude for a particle to run from xa to xb along restricted paths whose
temporal average x̄ ≡ (tb − ta)

−1
∫ tb
ta
dt x(t) is held fixed at x0:

(xbtb|xata)x0
ω =

∫

Dx δ(x0 − x̄) exp
{

i

h̄

∫ tb

ta
dt
M

2
(ẋ2 − ω2x2)

}

. (3.195)

This property of the paths follows directly from the fact that the integral over the
time-independent source j (3.194) produces a δ-function δ((tb − ta)x0 −

∫ tb
ta dt x(t)).

Restricted amplitudes of this type will turn out to have important applications later
in Subsection 3.25.1 and in Chapters 5, 10, and 15.
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The integral over j in (3.194) is done after a quadratic completion in Aj − j(tb−
ta)x0 with Aj of (3.181):

Aj − j(tb − ta)x0 =
1

2Mω3

[

ω (tb − ta)− 2 tan
ω(tb − ta)

2

]

(j − j0)
2 +Ax0, (3.196)

with

j0 =
Mω2

ω(tb − ta)− 2 tan ω(tb−ta)
2

[

ω(tb − ta) x0 − tan
ω(tb − ta)

2
(xb + xa)

]

, (3.197)

and

Ax0 = − Mω

2
[

ω(tb−ta)−2 tan ω(tb−ta)
2

]

[

ω(tb − ta)x0 − tan
ω(tb − ta)

2
(xa + xb)

]2

.(3.198)

With the completed quadratic exponent (3.196), the Gaussian integral over j in
(3.194) can immediately be done, yielding

(xbtb|xata)x0
ω = (xbtb|xata)

tb − ta√
2πh̄

√

√

√

√

iMω3

ω(tb − ta)− 2 tan ω(tb−ta)
2

exp
(

i

h̄
Ax0

)

.(3.199)

In the free-particle limit ω → 0, this reduces to

(xbtb|xata)x0
ω =

√
3M

πh̄i(tb−ta)
exp

{

Mi

2h̄(tb−ta)

[

(xb−xa)2+12
(

x0−
xb+xa

2

)2
]}

. (3.200)

If we set xb = xa in (3.199) and integrate over xb = xa, we find the quantum-
mechanical version of the partition function at fixed x0:

Zx0
ω =

1
√

2πh̄(tb − ta)/Mi

ω(tb − ta)/2

sin[ω(tb − ta)/2]
exp

[

− i

2h̄
(tb − ta)Mω2x20

]

. (3.201)

As a check we integrate this over x0 and recover the correct Zω of Eq. (2.412).
We may also integrate over both ends independently to obtain the partition

function

Zopen,x0
ω =

√

√

√

√

ω(tb − ta)

sinω(tb − ta)
exp

[

− i

2h̄
(tb − ta)Mω2x20

]

. (3.202)

Integrating this over x0 and going to imaginary times leads back to the partition
function Zopen

ω of Eq. (2.413).

3.8 External Source in Quantum-Statistical Path Integral

In the last section we have found the quantum-mechanical time evolution amplitude
in the presence of an external source term. Let us now do the same thing for the
quantum-statistical case and calculate the path integral

(xbh̄β|xa0)jω =
∫

Dx(τ) exp
{

−1

h̄

∫ h̄β

0
dτ
[

M

2
(ẋ2 + ω2x2)− j(τ)x(τ)

]

}

. (3.203)

This will be done in two ways.
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3.8.1 Continuation of Real-Time Result

The desired result is obtained most easily by an analytic continuation of the
quantum-mechanical results (3.23), (3.168) in the time difference tb− ta to an imag-
inary time −ih̄(τb − τa) = −ih̄β. This gives immediately

(xbh̄β|xa0)jω =

√

M

2πh̄2β

√

ωh̄β

sinhωh̄β
exp

{

−1

h̄
Aext

e [j]
}

, (3.204)

with the extended classical Euclidean oscillator action

Aext
e [j] = Ae +Aj

e = Ae +Aj
1,e +Aj

2,e, (3.205)

where Ae is the Euclidean action

Ae =
Mω

2 sinh βh̄ω

[

(x2b + x2a) coshωh̄β − 2xbxa
]

, (3.206)

while the linear and quadratic Euclidean source terms are

Aj
1,e = − 1

sinhωh̄β

∫ τb

τa
dτ [xa sinhω(h̄β − τ) + xb sinhωτ ]j(τ), (3.207)

and

Aj
2,e=− 1

M

∫ h̄β

0
dτ
∫ τ

0
dτ ′ j(τ)Gω2,e(τ, τ

′)j(τ ′), (3.208)

where Gω2,e(τ, τ
′) is the Euclidean version of the Green function (3.36) with Dirichlet

boundary conditions:

Gω2,e(τ, τ
′) =

sinhω(h̄β − τ>) sinhωτ<
ω sinhωh̄β

=
coshω(h̄β − |τ − τ ′|)− coshω(h̄β − τ − τ ′)

2ω sinhωh̄β
, (3.209)

satisfying the differential equation

(−∂2τ + ω2)Gω2,e(τ, τ
′) = δ(τ − τ ′). (3.210)

It is related to the real-time Green function (3.36) by

Gω2,e(τ, τ
′) = i Gω2(−iτ,−iτ ′), (3.211)

the overall factor i accounting for the replacement δ(t − t′) → iδ(τ − τ ′) on the
right-hand side of (3.148) in going to (3.210) when going from the real time t to
the Euclidean time −iτ . The symbols τ> and τ< in the first line (3.209) denote the
larger and the smaller of the Euclidean times τ and τ ′, respectively.
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The source terms (3.207) and (3.208) can be rewritten as follows:

Aj
1,e = − Mω

sinhωh̄β

{[

xb(e
−βh̄ωAe − Be)

]

xa(e
−βh̄ωBe − Ae)

}

, (3.212)

and

Aj
2,e = − 1

4Mω

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′e−ω|τ−τ ′|j(τ)j(τ ′)

+
Mω

2 sinhωh̄β

[

eβh̄ω(A2
e +B2

e )− 2AeBe

]

. (3.213)

We have introduced the Euclidean versions of the functions A(ω) and B(ω) in
Eqs. (3.173) and (3.174) as

Ae(ω) ≡ iA(ω)|tb−ta=−ih̄β =
1

Mω

∫ h̄β

0
dτe−ωτ j(τ), (3.214)

Be(ω) ≡ iB(ω)|tb−ta=−ih̄β =
1

Mω

∫ h̄β

0
dτe−ω(h̄β−τ)j(τ) = −e−βh̄ωAe(−ω). (3.215)

From (3.204) we now calculate the quantum-statistical partition function. Set-
ting xb = xa = x, the first term in the action (3.205) becomes

Ae =
Mω

sinh βh̄ω
2 sinh2(ωh̄β/2)x2. (3.216)

If we ignore the second and third action terms in (3.205) and integrate (3.204) over
x, we obtain, of course, the free partition function

Zω =
1

2 sinh(βh̄ω/2)
. (3.217)

In the presence of j, we perform a quadratic completion in x and obtain a source-
dependent part of the action (3.205):

Aj
e = Aj

fl,e +Aj
r,e, (3.218)

where the additional term Aj
r,e is the remainder left by a quadratic completion. It

reads

Aj
r,e = − Mω

2 sinhωβ
eβh̄ω(Ae +Be)

2. (3.219)

Combining this with Aj
fl,e of (3.213) gives

Aj
fl,e +Aj

r,e = − 1

4Mω

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′e−ω|τ−τ ′|j(τ)j(τ ′)− Mω

sinh(βh̄ω/2)
eβh̄ω/2AeBe.

(3.220)
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This can be rearranged to the total source term

Aj
e = − 1

4Mω

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′

coshω(|τ − τ ′| − h̄β/2)

sinh(βh̄ω/2)
j(τ)j(τ ′). (3.221)

This is proved by rewriting the latter integrand as

1

2 sinh(βh̄ω/2)

{[

eω(τ−τ ′)e−βh̄ω/2 + (ω → −ω)
]

Θ̄(τ − τ ′)

+
[

eω(τ
′−τ)e−βh̄ω/2 + (ω → −ω)

]

Θ̄(τ ′ − τ)
}

j(τ)j(τ ′).

In the second and fourth terms we replace eβh̄ω/2 by e−βh̄ω/2 + 2 sinh(βh̄ω/2) and
integrate over τ, τ ′, with the result (3.220).

The expression between the currents in (3.221) is recognized as the Euclidean
version of the periodic Green function Gp

ω2(τ) in (3.99):

Gp
ω2,e(τ) ≡ iGp

ω2(−iτ)|tb−ta=−ih̄β

=
1

2ω

coshω(τ − h̄β/2)

sinh(βh̄ω/2)
, τ ∈ [0, h̄β]. (3.222)

In terms of (3.221), the partition function of an oscillator in the presence of the
source term is

Zω[j] = Zω exp
(

−1

h̄
Aj

e

)

. (3.223)

For completeness, let us also calculate the partition function of all paths with
open ends in the presence of the source j(t), thus generalizing the result (2.413).
Integrating (3.204) over initial and final positions xa and xb we obtain

Zopen
ω [j] =

√

2πh̄

Mω

1
√

sinh[ω(τb − τa)]
e−(Aj

2,e+Ãj
2,e)/h̄, (3.224)

where

Ãj
2,e = − 1

M

∫ h̄β

0
dτ
∫ τ

0
dτ ′j(τ)G̃ω2(τ, τ ′)j(τ ′), (3.225)

with

G̃ω2(τ, τ ′)=
1

2ω sinh3 ωh̄β
{coshωh̄β[sinhω(h̄β−τ) sinh ω(h̄β−τ ′)+sinhωτ sinhωτ ′]

+ sinhω(h̄β−τ) sinhωτ ′ + sinhω(h̄β−τ ′) sinhωτ} .(3.226)

By some trigonometric identities, this can be simplified to

G̃ω2(τ, τ ′) =
1

ω

coshω(h̄β − τ − τ ′)

sinhωh̄β
. (3.227)
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The first step is to rewrite the curly brackets in (3.226) as

sinhωτ
[

coshωh̄β sinhωτ ′ + sinhω(h̄β−τ ′)
]

+ sinhω(h̄β−τ ′)
[

coshωh̄β sinhω(h̄β−τ) + sinhω(h̄β− ((h̄β−τ))
]

. (3.228)

The first bracket is equal to sinh βh̄ω coshωτ , the second to sinh βh̄ω coshω(h̄β−τ ′),
so that we arrive at

sinhωh̄β
[

sinhωτ coshωτ ′ + sinhω(h̄β−τ) coshω(h̄β−τ ′)
]

. (3.229)

The bracket is now rewritten as

1

2

[

sinhω(τ + τ ′) + sinhω(τ − τ ′) + sinhω(2h̄β − τ − τ ′) + sinhω(τ ′ − τ)
]

, (3.230)

which is equal to

1

2

[

sinhω(h̄β + τ + τ ′ − h̄β) + sinhω(h̄β + h̄β − τ − τ ′)
]

, (3.231)

and thus to

1

2

[

2 sinhωh̄β coshω(h̄β − τ − τ ′)
]

, (3.232)

such that we arrive indeed at (3.227). The source action in the exponent in (3.224)
is therefore:

(Aj
2,e + Ãj

2,e) = − 1

M

∫ h̄β

0
dτ
∫ τ

0
dτ ′ j(τ)Gopen

ω2,e (τ, τ
′)j(τ ′), (3.233)

with (3.208)

Gopen
ω2,e (τ, τ

′) =
coshω(h̄β − |τ − τ ′|) + coshω(h̄β − τ − τ ′)

2ω sinhωh̄β

=
coshω(h̄β − τ>) coshωτ<

ω sinhωh̄β
. (3.234)

This Green function coincides precisely with the Euclidean version of Green function
GN

ω2(t, t′) in Eq. (3.151) using the relation (3.211). This coincidence should have been
expected after having seen in Section 2.12 that the partition function of all paths
with open ends can be calculated, up to a trivial factor le(h̄β) of Eq. (2.353), as a sum
over all paths satisfying Neumann boundary conditions (2.451), which is calculated
using the measure (2.454) for the Fourier components.

In the limit of small-ω, the Green function (3.234) reduces to

Gopen
ω2,e (τ, τ

′) ≈
ω2≈0

1

βω2
+
β

3
− 1

2
|τ − τ ′| − 1

2
(τ + τ ′) +

1

2β

(

τ 2 + τ ′2
)

, (3.235)

which is the imaginary-time version of (3.157).
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3.8.2 Calculation at Imaginary Time

Let us now see how the partition function with a source term is calculated directly
in the imaginary-time formulation, where the periodic boundary condition is used
from the outset. Thus we consider

Zω[j] =
∫

Dx(τ) e−Ae[j]/h̄, (3.236)

with the Euclidean action

Ae[j] =
∫ h̄β

0
dτ
[

M

2
(ẋ2 + ω2x2)− j(τ)x(τ)

]

. (3.237)

Since x(τ) satisfies the periodic boundary condition, we can perform a partial inte-
gration of the kinetic term without picking up a boundary term xẋ|tbta . The action
becomes

Ae[j] =
∫ h̄β

0
dτ
[

M

2
x(τ)(−∂2τ + ω2)x(τ)− j(τ)x(τ)

]

. (3.238)

Let De(τ, τ
′) be the functional matrix

Dω2,e(τ, τ
′) ≡ (−∂2τ + ω2)δ(τ − τ ′), τ − τ ′ ∈ [0, h̄β]. (3.239)

Its functional inverse is the Euclidean Green function,

Gp
ω2,e(τ, τ

′) = Gp
ω2,e(τ − τ ′) = D−1

ω2,e(τ, τ
′) = (−∂2τ + ω2)−1δ(τ − τ ′), (3.240)

with the periodic boundary condition.
Next we perform a quadratic completion by shifting the path:

x→ x′ = x− 1

M
GP

ω2,e j. (3.241)

This brings the Euclidean action to the form

Ae[j] =
∫ h̄β

0
dτ
M

2
x′(−∂2τ + ω2)x′ − 1

2M

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′j(τ)Gp

ω2,e(τ − τ ′)j(τ ′).

(3.242)

The fluctuations over the periodic paths x′(τ) can now be integrated out and yield
for j(τ) ≡ 0

Zω = DetD
−1/2
ω2,e . (3.243)

As in Subsection 2.15.2, we find the functional determinant by rewriting the product
of eigenvalues as

DetDω2,e =
∞
∏

m=−∞

(ω2
m + ω2) = exp

[

∞
∑

m=−∞

log(ω2
m + ω2)

]

, (3.244)
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and evaluating the sum in the exponent according to the rules of analytic regular-
ization. This leads directly to the partition function of the harmonic oscillator as in
Eq. (2.409):

Zω =
1

2 sinh(βh̄ω/2)
. (3.245)

The generating functional for j(τ) 6= 0 is therefore

Z[j] = Zω exp
{

−1

h̄
Aj

e[j]
}

, (3.246)

with the source term:

Aj
e[j] = − 1

2M

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′j(τ)Gp

ω2,e(τ − τ ′)j(τ ′). (3.247)

The Green function of imaginary time is calculated as follows. The eigenfunctions
of the differential operator −∂2τ are e−iωmτ with eigenvalues ω2

m, and the periodic
boundary condition forces ωm to be equal to the thermal Matsubara frequencies
ωm = 2πm/h̄β with m = 0,±1,±2, . . . . Hence we have the Fourier expansion

Gp
ω2,e(τ) =

1

h̄β

∞
∑

m=−∞

1

ω2
m + ω2

e−iωmτ . (3.248)

In the zero-temperature limit, the Matsubara sum becomes an integral, yielding

Gp
ω2,e(τ) =

T=0

∫ dωm

2π

1

ω2
m + ω2

e−iωmτ =
1

2ω
e−ω|τ |. (3.249)

The frequency sum in (3.248) may be written as such an integral over ωm, provided
the integrand contains an additional Poisson sum (3.81):

∞
∑

m̄=−∞

δ(m− m̄) =
∞
∑

n=−∞

ei2πnm =
∞
∑

n=−∞

einωmh̄β. (3.250)

This implies that the finite-temperature Green function (3.248) is obtained from
(3.249) by a periodic repetition:

Gp
ω2,e(τ) =

∞
∑

n=−∞

1

2ω
e−ω|τ+nh̄β|

=
1

2ω

coshω(τ − h̄β/2)

sinh(βh̄ω/2)
, τ ∈ [0, h̄β]. (3.251)

A comparison with (3.97), (3.99) shows that Gp
ω2,e(τ) coincides with G

p
ω2(t) at imag-

inary times, as it should.
Note that for small ω, the Green function has the expansion

Gp
ω2,e(τ) =

1

h̄βω2
+

τ 2

2h̄β
− τ

2
+
h̄β

12
+ . . . . (3.252)
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The first term diverges in the limit ω → 0. Comparison with the spectral represen-
tation (3.248) shows that it stems from the zero Matsubara frequency contribution
to the sum. If this term is omitted, the subtracted Green function

Gp
ω2,e
′ (τ) ≡ Gp

ω2,e(τ)−
1

h̄βω2
(3.253)

has a well-defined ω → 0 limit

Gp
0,e
′ (τ) =

1

h̄β

∑

m=±1,±2,...

1

ω2
m

e−iωmτ =
τ 2

2h̄β
− τ

2
+
h̄β

12
, (3.254)

the right-hand side being correct only for τ ∈ [0, h̄β]. Outside this interval it must
be continued periodically. The subtracted Green function Gp

ω2,e
′ (τ) is plotted for

different frequencies ω in Fig. 3.4.
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τ/h̄β

τ/h̄β

Gp
ω2,e
′ (τ) Ga

ω2,e(τ)

Figure 3.4 Subtracted periodic Green function Gp
ω2,e
′ (τ) ≡ Gp

ω2,e(τ) − 1/h̄βω2 and an-

tiperiodic Green function Ga
ω2,e(τ) for frequencies ω = (0, 5, 10)/h̄β (with increasing dash

length). Compare Fig. 3.2.

The limiting expression (3.254) can, incidentally, be derived using the methods
developed in Subsection 2.15.6. We rewrite the sum as

1

h̄β

∑

m=±1,±2,...

(−1)m

ω2
m

e−iωm(τ−h̄β/2) (3.255)

and expand

− 2

h̄β

(

h̄β

2π

)2
∑

n=0,2,4,...

1

n!

[

−i2π
h̄β

(τ − h̄β/2)

]n ∞
∑

m=1

(−1)m−1

m2−n
. (3.256)

The sum over m on the right-hand side is Riemann’s eta function1

η(z) ≡
∞
∑

m=1

(−1)m−1

mz
, (3.257)

1M. Abramowitz and I. Stegun, op. cit., Formula 23.2.19.
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which is related to the zeta function (2.521) by

η(z) = (1− 21−z)ζ(z). (3.258)

Since the zeta functions of negative integers are all zero [recall (2.587)], only the
terms with n = 0 and 2 contribute in (3.256). Inserting

η(0) = −ζ(0) = 1/2, η(2) = ζ(2)/2 = π2/12, (3.259)

we obtain

− 2

h̄β

(

h̄β

2π

)2




π2

12
− 1

4

(

2π

h̄β

)2

(τ − h̄β/2)2


 =
τ 2

2h̄β
− τ

2
+
h̄β

12
, (3.260)

in agreement with (3.254).
It is worth remarking that the Green function (3.254) is directly proportional to

the Bernoulli polynomial B2(z):

Gp
0,e
′ (τ) =

h̄β

2
B2(τ/h̄β). (3.261)

These polynomials are defined in terms of the Bernoulli numbers Bk as2

Bn(x) =
n
∑

k=0

(

n

k

)

Bkz
n−k. (3.262)

They appear in the expansion of the generating function3

ezt

et − 1
=

∞
∑

n=0

Bn(z)
tn−1

n!
, (3.263)

and have the expansion

B2n(z) = (−1)n−1 2(2n)!

(2π)2n

∞
∑

k=0

cos(2πkz)

k2n
, (3.264)

with the special cases

B1(z) = z − 1/2, B2(z) = z2 − z + 1/6, . . . . (3.265)

By analogy with (3.251), the antiperiodic Green function can be obtained from
an antiperiodic repetition

Ga
ω2,e(τ) =

∞
∑

n=−∞

(−1)n

2ω
e−ω|τ+nh̄β|

=
1

2ω

sinhω(τ − h̄β/2)

cosh(βh̄ω/2)
, τ ∈ [0, h̄β], (3.266)

2I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 9.620.
3ibid. Formula 9.621.
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which is an analytic continuation of (3.113) to imaginary times. In contrast to
(3.252), this has a finite ω → 0 limit

Ga
ω2,e(τ) =

τ

2
− h̄β

4
, τ ∈ [0, h̄β]. (3.267)

For a plot of the antiperiodic Green function for different frequencies ω see again
Fig. 3.4.

The limiting expression (3.267) can again be derived using an expansion of the
type (3.256). The spectral representation in terms of odd Matsubara frequencies
(3.104)

Ga
ω2,e(τ) ≡ 1

h̄β

∞
∑

m=−∞

1

ωf
m
2
e−iωf

mτ (3.268)

is rewritten as

1

h̄β

∞
∑

m=−∞

1

ωf
m
2
cos(ωf

mτ) =
1

h̄β

∞
∑

m=−∞

(−1)m

ωf
m
2

sin[ωf
m(τ − h̄β/2)]. (3.269)

Expanding the sin function yields

2

h̄β

(

h̄β

2π

)2
∑

n=1,3,5,...

(−1)(n−1)/2

n!

[

2π

h̄β
(τ − h̄β/2)

]n ∞
∑

m=0

(−1)m
(

m+ 1
2

)2−n . (3.270)

The sum over m at the end is 22−n times Riemann’s beta function4 β(2− n), which
is defined as

β(z) ≡ 1

2z

∞
∑

m=0

(−1)m
(

m+ 1
2

)z , (3.271)

and is related to Riemann’s zeta function

ζ(z, q) ≡
∞
∑

m=0

1

(m+ q)z
. (3.272)

Indeed, we see immediately that

∞
∑

m=0

(−1)m

(m+ q)z
= ζ(z, q)− 22−zζ(z, (q + 1)/2), (3.273)

so that

β(z) ≡ 1

2z

[

ζ(z, 1/2)− 22−zζ(z, 3/4)
]

. (3.274)

Near z = 1, the function ζ(z, q) behaves like5

ζ(z, q) =
1

z − 1
− ψ(q) +O(z − 1), (3.275)

4M. Abramowitz and I. Stegun, op. cit., Formula 23.2.21.
5I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 9.533.2.
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where ψ(z) is the Digamma function (2.573). Thus we obtain in the limit z → 1:

β(1) = lim
z→1

1

2

[

ζ(z, 1/2)− 21−zζ(z, 3/4)
]

=
1

2
[−ψ(1/2) + ψ(3/4) + log 2] =

π

4
.

(3.276)
The last result follows from the specific values [compare (2.575)]:

ψ(1/2) = −γ − 2 log 2, ψ(3/4) = −γ − 3 log 2 +
π

2
. (3.277)

For negative odd arguments, the beta function (3.271) vanishes, so that there are no
further contributions. Inserting this into (3.270) the only surviving e n = 1 -term
yields once more (3.267).

Note that the relation (3.276) could also have been found directly from the
expansion (2.574) of the Digamma function, which yields

β(1) =
1

4
[ψ(3/2)− ψ(1/4)] , (3.278)

and is equal to (3.276) due to ψ(1/4) = −γ − 3 log 2− π/2.
For currents j(τ), which are periodic in h̄β, the source term (3.247) can also be

written more simply:

Aj
e[j] = − 1

4Mω

∫ h̄β

0
dτ
∫ ∞

−∞
dτ ′e−ω|τ−τ ′|j(τ)j(τ ′). (3.279)

This follows directly by rewriting (3.279), by analogy with (3.149), as a sum over
all periodic repetitions of the zero-temperature Green function (3.249):

Gp
ω2,e(τ) =

1

2ω

∞
∑

n=−∞

e−ω|τ+nh̄β|. (3.280)

When inserted into (3.247), the factors e−nβh̄ω can be removed by an irrelevant
periodic temporal shift in the current j(τ ′) → j(τ ′ − nh̄β) leading to (3.279).

For a time-dependent periodic or antiperiodic potential Ω(τ), the Green function
Gp,a

ω2,e(τ) solving the differential equation

[∂2τ − Ω2(τ)]Gp,a
ω2,e(τ, τ

′) = δp,a(τ − τ ′), (3.281)

with the periodic or antiperiodic δ-function

δp,a(τ − τ ′) =
∞
∑

n=−∞

δ(τ − τ ′ − nh̄β)

{

1
(−1)n

}

, (3.282)

can be expressed6 in terms of two arbitrary solutions ξ(τ) and η(τ) of the ho-
mogenous differential equation in the same way as the real-time Green functions in
Section 3.5:

Gp,a
ω2,e(τ, τ

′) = Gω2,e(τ, τ
′)∓ [∆(τ, τa)±∆(τb, τ)][∆(τ ′, τa)±∆(τb, τ

′)]

∆̄p,a(τa, τb)∆(τa, τb)
, (3.283)

6See H. Kleinert and A. Chervyakov, Phys. Lett. A 245 , 345 (1998) (quant-ph/9803016);
J. Math. Phys. B 40 , 6044 (1999) (physics/9712048).
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where Gω2,e(τ, τ
′) is the imaginary-time Green function with Dirichlet boundary

conditions corresponding to (3.209):

Gω2,e(τ, τ
′) =

Θ̄(τ − τ ′)∆(τb, τ)∆(τ ′, τa) + Θ̄(τ − τ ′)∆(τb, τ
′)∆(τ, τa)

∆(τa, τb)
, (3.284)

with

∆(τ, τ ′) =
1

W
[ξ(τ)η(τ ′)− ξ(τ ′)η(τ)] , W = ξ(τ)η̇(τ)− ξ̇(τ)η(τ), (3.285)

and
∆̄p,a(τa, τb) = 2± ∂τ∆(τa, τb)± ∂τ∆(τb, τa). (3.286)

Let also write down the imaginary-time versions of the periodic or antiperiodic
Green functions for time-dependent frequencies. Recall the expressions for constant
frequency Gp

ω(t) and G
a
ω(t) of Eqs. (3.94) and (3.112) for τ ∈ (0, h̄β):

Gp
ω,e(τ) =

1

h̄β

∑

m

e−iωmτ −1

iωm − ω
= e−ω(τ−h̄β/2) 1

2 sinh(βh̄ω/2)

= (1 + nb
ω)e

−ωτ , (3.287)

and

Ga
ω,e(τ) =

1

h̄β

∑

m

e−iωf
mτ −1

iωf
m − ω

= e−ω(τ−h̄β/2) 1

2 cosh(βh̄ω/2)

= (1− nf
ω)e

−ωτ , (3.288)

the first sum extending over the even Matsubara frequencies, the second over the
odd ones. The Bose and Fermi distribution functions nb,f

ω were defined in Eqs. (3.93)
and (3.111).

For τ < 0, periodicity or antiperiodicity determine

Gp,a
ω,e(τ) = ±Gp,a

ω,e(τ + h̄β). (3.289)

The generalization of these expressions to time-dependent periodic and antiperi-
odic frequencies Ω(τ) satisfying the differential equations

[−∂τ − Ω(τ)]Gp,a
Ω,e(τ, τ

′) = δp,a(τ − τ ′) (3.290)

has for β → ∞ the form

Gp,a
Ω,e(τ, τ

′) = Θ̄(τ − τ ′)e−
∫ τ

0
dτ ′ Ω(τ ′). (3.291)

Its periodic superposition yields for finite β a sum analogous to (3.280):

Gp,a
Ω,e(τ, τ

′) =
∞
∑

n=0

e−
∫ τ+nh̄β

0
dτ ′ Ω(τ ′)

{

1
(−1)n

}

, h̄β > τ > τ ′ > 0, (3.292)

which reduces to (3.287), (3.288) for a constant frequency Ω(τ) ≡ ω.
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3.9 Lattice Green Function

As in Chapter 2, it is easy to calculate the above results also on a sliced time axis. This is useful
when it comes to comparing analytic results with Monte Carlo lattice simulations. We consider here
only the Euclidean versions; the quantum-mechanical ones can be obtained by analytic continuation
to real times.

The Green function Gω2(τ, τ ′) on an imaginary-time lattice with infinitely many lattice points
of spacing ǫ reads [instead of the Euclidean version of (3.147)]:

Gω2(τ, τ ′) =
ǫ

2 sinh ǫω̃e
e−ω̃e|τ−τ ′| =

1

2ω

1

cosh(ǫω̃e/2)
e−ω̃e|τ−τ ′|, (3.293)

where ω̃e is given, as in (2.406), by ref(2.406)
lab(2.234)
est(2.277)

ω̃e =
2

ǫ
arsinh

ǫω

2
. (3.294)

This is derived from the spectral representation

Gω2(τ, τ ′) = Gω2(τ − τ ′) =

∫

dω′

2π
e−iω′(τ−τ ′) ǫ2

2(1 − cos ǫω′) + ǫ2ω2
(3.295)

by rewriting it as

Gω2(τ, τ ′) =

∫ ∞

0

ds

∫

dω′

2π
e−iω′ǫne−s[2(1−cos ǫω′)+ǫ2ω2]/ǫ2 , (3.296)

with n ≡ (τ ′ − τ)/ǫ, performing the ω′-integral which produces a Bessel function I(τ−τ ′)/ǫ(2s/ǫ
2),

and subsequently the integral over s with the help of formula (2.475). The Green function (3.293)
is defined only at discrete τn = nh̄β/(N + 1). If it is summed over all periodic repetitions n →
n+ k(N +1) with k = 0,±1,±2, . . . , one obtains the lattice analog of the periodic Green function
(3.251):

Gp
e (τ) =

1

h̄β

∞
∑

m=−∞

ǫ2

2(1 − cos ǫωm) + ǫ2ω2
e−iωmτ

=
1

2ω

1

cosh(ǫω̃/2)

cosh ω̃(τ − h̄β/2)

sinh(h̄ω̃β/2)
, τ ∈ [0, h̄β]. (3.297)

3.10 Correlation Functions, Generating Functional,
and Wick Expansion

Equipped with the path integral of the harmonic oscillator in the presence of an
external source it is easy to calculate the correlation functions of any number of
position variables x(τ). We consider here only a system in thermal equilibrium
and study the behavior at imaginary times. The real-time correlation functions can
be discussed similarly. The precise relation between them will be worked out in
Chapter 18.

In general, i.e., also for nonharmonic actions, the thermal correlation functions
of n-variables x(τ) are defined as the functional averages

G
(n)
ω2 (τ1, . . . , τn) ≡ 〈x(τ1)x(τ2) · · ·x(τn)〉 (3.298)

≡ Z−1
∫

Dxx(τ1)x(τ2) · · ·x(τn) exp
(

−1

h̄
Ae

)

.
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They are also referred to as n-point functions . In operator quantum mechanics, the
same quantities are obtained from the thermal expectation values of time-ordered
products of Heisenberg position operators x̂H(τ):

G
(n)
ω2 (τ1, . . . , τn) = Z−1Tr

{

T̂τ
[

x̂H(τ1)x̂H(τ2) · · · x̂H(τn)e−Ĥ/kBT
]}

, (3.299)

where Z is the partition function

Z = e−F/kBT = Tr(e−Ĥ/kBT ) (3.300)

and T̂τ is the time-ordering operator. Indeed, by slicing the imaginary-time evolution
operator e−Ĥτ/h̄ at discrete times in such a way that the times τi of the n position
operators x(τi) are among them, we find that G

(n)
ω2 (τ1, . . . , τn) has precisely the path

integral representation (3.298).
By definition, the path integral with the product of x(τi) in the integrand is

calculated as follows. First we sort the times τi according to their time order,
denoting the reordered times by τt(i). We also set τb ≡ τt(n+1) and τa ≡ τt(0).
Assuming that the times τt(i) are different from one another, we slice the time axis
τ ∈ [τa, τb] into the intervals [τb, τt(n)], [τt(n), τt(n−1)], [τt(n−2), τt(n−3)],. . ., [τt(4), τt(3)],
[τt(2), τt(1)], [τt(1), τa]. For each of these intervals we calculate the time evolution
amplitude (xt(i+1)τt(i+1)|xt(i)τt(i)) as usual. Finally, we recombine the amplitudes by
performing the intermediate x(τt(i))-integrations, with an extra factor x(τi) at each
τi, i.e.,

G
(n)
ω2 (τ1, . . . , τn) =

n+1
∏

i=1

[
∫ ∞

−∞
dxτt(i)

]

(xt(n+1)τb)|xt(n)τt(n)) · x(τt(n)) · . . .

·(xt(i+1)τt(i+1)|xt(i)τt(i)) · x(τt(i)) · (xt(i)τt(i)|xt(i−1)τt(i−1)) · x(τt(i−1))

· . . . · (xt(2)τt(2)|xt(1)τt(1)) · x(τt(1)) · (xt(1)τt(1)|xt(0)τa). (3.301)

We have set xt(n+1) ≡ xb = xa ≡ xt(0), in accordance with the periodic boundary
condition. If two or more of the times τi are equal, the intermediate integrals are
accompanied by the corresponding power of x(τi).

Fortunately, this rather complicated-looking expression can be replaced by a
much simpler one involving functional derivatives of the thermal partition function
Z[j] in the presence of an external current j. From the definition of Z[j] in (3.236)
it is easy to see that all correlation functions of the system are obtained by the
functional formula

G
(n)
ω2 (τ1, . . . , τn) =

[

Z[j]−1h̄
δ

δj(τ1)
· · · h̄ δ

δj(τn)
Z[j]

]

j=0

. (3.302)

This is why Z[j] is called the generating functional of the theory.
In the present case of a harmonic action, Z[j] has the simple form (3.246), (3.247),

and we can write

G
(n)
ω2 (τ1, . . . , τn) =

[

h̄
δ

δj(τ1)
· · · h̄ δ

δj(τn)
(3.303)
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× exp

{

1

2h̄M

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′j(τ)Gp

ω2,e(τ − τ ′)j(τ ′)

}]

j=0

,

where Gp
ω2,e(τ−τ ′) is the Euclidean Green function (3.251). Expanding the exponen-

tial into a Taylor series, the differentiations are easy to perform. Obviously, any odd
number of derivatives vanishes. Differentiating (3.246) twice yields the two-point
function [recall (3.251)]

G
(2)
ω2 (τ, τ

′) = 〈x(τ)x(τ ′)〉 = h̄

M
Gp

ω2,e(τ − τ ′). (3.304)

Thus, up to the constant prefactor, the two-point function coincides with the Eu-
clidean Green function (3.251). Inserting (3.304) into (3.303), all n-point func-

tions are expressed in terms of the two-point function G
(2)
ω2 (τ, τ ′): Expand-

ing the exponential into a power series, the expansion term of order n/2 carries
the numeric prefactors 1/(n/2)! · 1/2n/2 and consists of a product of n/2 factors
∫ h̄β
0 dτ ′j(τ)G

(2)
ω2 (τ, τ ′)j(τ ′)/h̄

2. The n-point function is obtained by functionally dif-
ferentiating this term n times. The result is a sum over products of n/2 factors

G
(2)
ω2 (τ, τ ′) with n! permutations of the n time arguments. Most of these prod-

ucts coincide, for symmetry reasons. First, G
(2)
ω2 (τ, τ ′) is symmetric in its argu-

ments. Hence 2n/2 of the permutations correspond to identical terms, their num-
ber canceling one of the prefactors. Second, the n/2 Green functions G

(2)
ω2 (τ, τ ′)

in the product are identical. Of the n! permutations, subsets of (n/2)! permuta-
tions produce identical terms, their number canceling the other prefactor. Only
n!/[(n/2)!2n/2] = (n − 1) · (n − 3) · · ·1 = (n − 1)!! terms are different. They all
carry a unit prefactor and their sum is given by the so-called Wick rule or Wick

expansion:

G
(n)
ω2 (τ1, . . . , τn) =

∑

pairs

G
(2)
ω2 (τp(1), τp(2)) · · ·G(2)

ω2 (τp(n−1), τp(n)). (3.305)

Each term is characterized by a different pair configurations of the time arguments
in the Green functions. These pair configurations are found most simply by the fol-
lowing rule: Write down all time arguments in the n-point function τ1τ2τ3τ4 . . . τn.
Indicate a pair by a common symbol, say τ̇p(i)τ̇p(i+1), and call it a pair contraction

to symbolize a Green function G
(2)
ω2 (τp(i), τp(i+1)). The desired (n− 1)!! pair configu-

rations in the Wick expansion (3.305) are then found iteratively by forming n − 1
single contractions

τ̇1τ̇2τ3τ4 . . . τn + τ̇1τ2τ̇3τ4 . . . τn + τ̇1τ2τ3τ̇4 . . . τn + . . .+ τ̇1τ2τ3τ4 . . . τ̇n, (3.306)

and by treating the remaining n − 2 uncontracted variables in each of these terms
likewise, using a different contraction symbol. The procedure is continued until all
variables are contracted.
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In the literature, one sometimes another shorter formula under the name of
Wick’s rule, stating that a single harmonically fluctuating variable satisfies the
equality of expectations:

〈

eKx
〉

= eK
2〈x2〉/2. (3.307)

This follows from the observation that the generating functional (3.236) may also
be viewed as Zω times the expectation value of the source exponential

Zω[j] = Zω ×
〈

e
∫

dτj(τ)x(τ)/h̄
〉

. (3.308)

Thus we can express the result (3.246) also as

〈

e
∫

dτj(τ)x(τ)/h̄
〉

= e
(1/2Mh̄)

∫

dτ
∫

dτ ′j(τ)Gp

ω2,e
(τ,τ ′)j(τ ′)

. (3.309)

Since (h̄/M)Gp
ω2,e(τ, τ

′) in the exponent is equal to the correlation function

G
(2)
ω2 (τ, τ ′) = 〈x(τ)x(τ ′)〉 by Eq. (3.304), we may also write

〈

e
∫

dτj(τ)x(τ)/h̄
〉

= e
∫

dτ
∫

dτ ′j(τ)〈x(τ)x(τ ′)〉j(τ ′)/2h̄2

. (3.310)

Considering now a discrete time axis sliced at t = tn, and inserting the special source
current j(τn) = Kδn,0, for instance, we find directly (3.307).

The Wick theorem in this form has an important physical application. The
intensity of the sharp diffraction peaks observed in Bragg scattering of X-rays on
crystal planes is reduced by thermal fluctuations of the atoms in the periodic lattice.
The reduction factor is usually written as e−2W and called the Debye-Waller factor .
In the Gaussian approximation it is given by

e−W ≡ 〈e−∇·u(x)〉 = e−Σk〈 |k·u(k)]
2〉/2, (3.311)

where u(x) is the atomic displacement field.
If the fluctuations take place around 〈x(τ)〉 6= 0, then (3.307) goes obviously over

into

〈ePx〉 = eP 〈x(τ)〉+P 2〈x−〈x(τ)〉〉2/2. (3.312)

3.10.1 Real-Time Correlation Functions

The translation of these results to real times is simple. Consider, for example, the
harmonic fluctuations δx(t) with Dirichlet boundary conditions, which vanish at tb
and ta. Their correlation functions can be found by using the amplitude (3.23) as a
generating functional, if we replace x(t) → δx(t) and xb = xa → 0. Differentiating
twice with respect to the external currents j(t) we obtain

G
(2)
ω2 (t, t

′) = 〈x(t)x(t′)〉 = i
h̄

M
Gω2(t− t′), (3.313)
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with the Green function Gω2(t− t′) of Eq. (3.36), which vanishes if t = tb or t = ta.
The correlation function of ẋ(t) is

〈ẋ(t)ẋ(t′)〉 = i
h̄

M

cosω(tb − t>) cosω(t< − ta)

ω sinω(tb − ta)
, (3.314)

and has the value

〈ẋ(tb)ẋ(tb)〉 = i
h̄

M
cotω(tb − ta). (3.315)

As an application, we use this result to calculate once more the time evolution
amplitude (xbtb|xata) in a way closely related to the operator method in Section 2.23.
We observe that the time derivative of this amplitude has the path integral repre-
sentation [compare (2.763)]

ih̄∂tb(xbtb|xata)=−
∫

DDxL(xb, ẋb)e
i
∫ tb

ta
dtL(x,ẋ)/h̄

=−〈L(xb, ẋb)〉 (xbtb|xata),

(3.316)
and calculate the expectation value 〈L(xb, ẋb)〉 as a sum of the classical Lagrangian
L(xcl(tb), ẋcl(tb)) and the expectation value of the fluctuating part of the Lagrangian
〈Lfl(xb, ẋb)〉 ≡ 〈 [L(xb, ẋb)− L(xcl(tb), ẋcl(tb))] 〉. If the Lagrangian has the standard
form L =M ẋ2/2− V (x), then only the kinetic term contributes to 〈Lfl(xb, ẋb)〉, so
that

〈Lfl(xb, ẋb)〉 =
M

2
〈δẋ2

b〉. (3.317)

There is no contribution from 〈V (xb) − V (xcl(tb))〉, due to the Dirichlet boundary
conditions.

The temporal integral over − [L(xcl(tb), ẋcl(tb))− 〈Lfl(xb, ẋb)〉] agrees with the
operator result (2.790), and we obtain the time evolution amplitude from the formula

(xbtb|xata) = C(xb,xa)e
iA(xb,xa;tb−ta)/h̄ exp

(

i

h̄

∫ tb

ta
dtb′

M

2
〈δẋ2

b′〉
)

, (3.318)

where A(xb,xa; tb − ta) is the classical action A[xcl] expressed as a function of the
endpoints [recall (4.87)]. The constant of integration C(xb,xa) is fixed as in (2.776)
by solving the differential equation

−ih̄∇b(xbtb|xata) = 〈pb〉(xbtb|xata) = pcl(tb)(xbtb|xata), (3.319)

and a similar equation for xa [compare (2.777)]. Since the prefactor pcl(tb) on the
right-hand side is obtained from the derivative of the exponential eiA(xb,xa;tb−ta)/h̄

in (3.318), due to the general relation (4.88), the constant of integration C(xb,xa)
is actually independent of xb and xa. Thus we obtain from (3.318) once more the
known result (3.318).

As an example, take the harmonic oscillator. The terms linear in δx(t) = x(t)−
xcl(t) vanish since they are they are odd in δx(t) while the exponent in (3.316) is
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even. Inserting on the right-hand side of (3.317) the correlation function (3.314),
we obtain in D dimensions

〈Lfl(xb, ẋb)〉 =
M

2
〈δẋ2

b〉 = i
h̄ω

2
D cotω(tb − ta), (3.320)

which is precisely the second term in Eq. (2.789), with the appropriate opposite
sign.

3.11 Correlation Functions of Charged Particle
in Magnetic Field and Harmonic Potential

It is straightforward to find the correlation functions of a charged particle in a
magnetic and an extra harmonic potential discussed in Section 2.19. They are
obtained by inverting the functional matrix (2.693):

G
(2)
ω2,B(τ, τ

′) =
h̄

M
D−1

ω2,B(τ, τ
′). (3.321)

By an ordinary matrix inversion of (2.696), we obtain the Fourier expansion

G
(2)
B (τ, τ ′) =

1

h̄β

∞
∑

m=−∞

G̃ω2,B(ωm)e
−iωm(τ−τ ′), (3.322)

with

G̃
(2)
ω2,B(ωm) =

h̄

M

1

(ω2
m + ω2

+)(ω2
m + ω2

−)

(

ω2
m + ω2 − ω2

B 2ωBωm

−2ωBωm ω2
m + ω2 − ω2

B,

)

. (3.323)

Since ω2
+ + ω2

− = 2(ω2 + ω2
B) and ω2

+ − ω2
− = 4ωωB, the diagonal elements can be

written as

1

2(ω2
m + ω2

+)(ω2
m + ω2

−)

[

(ω2
m + ω2

+) + (ω2
m + ω2

−)− 4ω2
B

]

=
1

2

{[

1

ω2
m + ω2

+

+
1

ω2
m + ω2

−

]

+
ωB

ω

[

1

ω2
m + ω2

+

− 1

ω2
m + ω2

−

]}

. (3.324)

Recalling the Fourier expansion (3.248), we obtain directly the diagonal periodic
correlation function

G
(2)
ω2,B,xx=

h̄

4Mω

[

coshω+(|τ−τ ′|−h̄β/2)
sinh(ω+h̄β/2)

+
coshω−(|τ−τ ′| − h̄β/2)

sinh(ω−h̄β/2)

]

, (3.325)

which is equal to G
(2)
ω2,B,yy. The off-diagonal correlation functions have the Fourier

components

2ωBωm

(ω2
m + ω2

+)(ω2
m + ω2

−)
=
ωm

2ω

[

1

ω2
m + ω2

+

− 1

ω2
m + ω2

−

]

. (3.326)
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Since ωm are the Fourier components of the derivative i∂τ , we can write

G
(2)
ω2,B,xy(τ, τ

′)=−G(2)
ω2,B,yx(τ, τ

′)=
h̄

2M
i∂τ

[

1

2ω+

coshω+(|τ − τ ′| − h̄β/2)

sinh(ω+h̄β/2)

− 1

2ω−

coshω−(|τ − τ ′| − h̄β/2)

sinh(ω−h̄β/2)

]

.(3.327)

Performing the derivatives yields

G
(2)
ω2,B,xy(τ, τ

′)=G
(2)
ω2,B,yx(τ, τ

′)=
h̄ǫ(τ−τ ′)

2Mi

[

1

2ω+

sinhω+(|τ−τ ′| − h̄β/2)

sinh(ω+h̄β/2)

− 1

2ω−

sinhω−(|τ−τ ′| − h̄β/2)

sinh(ω−h̄β/2)

]

,(3.328)

where ǫ(τ−τ ′) is the step function (1.315).
For a charged particle in a magnetic field without an extra harmonic oscillator we

have to take the limit ω → ωB in these equations. Due to translational invariance of
the limiting system, this exists only after removing the zero-mode in the Matsubara
sum. This is done most simply in the final expressions by subtracting the high-
temperature limits at τ = τ ′. In the diagonal correlation functions (3.325) this
yields

G
(2)
ω2,B,xx

′ (τ, τ ′) = G
(2)
ω2,B,yy

′ (τ, τ ′) = G
(2)
ω2,B,xx −

1

βMω+ω−
, (3.329)

where the prime indicates the subtraction. Now one can easily go to the limit
ω → ωB with the result

G
(2)
ω2,B,xx

′ (τ, τ ′) = G
(2)
ω2,B,yy

′ (τ, τ ′)=
h̄

4Mω

[

cosh 2ω(|τ − τ ′| − h̄β/2)

sinh(βh̄ω)
− 1

ωh̄β

]

. (3.330)

For the subtracted off-diagonal correlation functions (3.328) we find

G
(2)
ω2,B,xy

′ (τ, τ ′) = −G(2)
ω2,B,yx

′ (τ, τ ′) = G
(2)
ω2,B,xy +

h̄ωB

2Miω+ω−

ǫ(τ − τ ′). (3.331)

For more details see the literature.7

3.12 Correlation Functions in Canonical Path Integral

Sometimes it is desirable to know the correlation functions of position and momentum variables

G
(m,n)
ω2 (τ1, . . . , τm; τ1, . . . , τn) ≡ 〈x(τ1)x(τ2) · · ·x(τm)p(τ1)p(τ2) · · · p(τn)〉 (3.332)

≡ Z−1

∫

Dx(τ)
∫ Dp(τ)

2π
x(τ1)x(τ2) · · ·x(τm)p(τ) p(τ1)p(τ2) · · · p(τn) exp

(

− 1

h̄
Ae

)

.

These can be obtained from a direct extension of the generating functional (3.236) by another
source k(τ) coupled linearly to the momentum variable p(τ):

Z[j, k] =

∫

Dx(τ) e−Ae [j,k]/h̄. (3.333)

7M. Bachmann, H. Kleinert, and A. Pelster, Phys. Rev. A 62 , 52509 (2000) (quant-ph/0005074);
Phys. Lett. A 279 , 23 (2001) (quant-ph/0005100).
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3.12.1 Harmonic Correlation Functions

For the harmonic oscillator, the generating functional (3.333) is denoted by Zω[j, k] and its Eu-
clidean action reads

Ae[j, k] =

∫ h̄β

0

dτ

[

−ip(τ)ẋ(τ) +
1

2M
p2 +

M

2
ω2x2 − j(τ)x(τ) − k(τ)p(τ)

]

, (3.334)

the partition function is denoted by Zω[j, k]. Introducing the vectors in phase space V(τ) =
(p(τ), x(τ)) and J(τ) = (j(τ), k(τ)), this can be written in matrix form as

Ae[J] =

∫ h̄β

0

dτ

(

1

2
VT Dω2,eV − VTJ

)

, (3.335)

where Dω2,e(τ, τ
′) is the functional matrix

Dω2,e(τ, τ
′) ≡

(

Mω2 i∂τ

−i∂τ M−1

)

δ(τ − τ ′), τ − τ ′ ∈ [0, h̄β]. (3.336)

Its functional inverse is the Euclidean Green function,

Gp
ω2,e(τ, τ

′) = Gp
ω2,e(τ−τ ′) = D−1

ω2,e(τ, τ
′)

=

(

M−1 −i∂τ
i∂τ Mω2

)

(−∂2τ + ω2)−1δ(τ − τ ′), (3.337)

with the periodic boundary condition. After performing a quadratic completion as in (3.241) by
shifting the path:

V → V′ = V + Gp
ω2,eJ, (3.338)

the Euclidean action takes the form

Ae[J] =

∫ h̄β

0

dτ
1

2
V′T Dω2,eV

′ − 1

2

∫ h̄β

0

dτ

∫ h̄β

0

dτ ′JT (τ ′)Gp
ω2,e(τ − τ ′)J(τ ′). (3.339)

The fluctuations over the periodic paths V′(τ) can now be integrated out and yield for J(τ) ≡ 0
the oscillator partition function

Zω = Det D
−1/2
ω2,e . (3.340)

A Fourier decomposition into Matsubara frequencies

Dω2,e(τ, τ
′) =

1

h̄β

∞
∑

m=−∞
Dp

ω2,e(ωm)e−iωm(τ−τ ′), (3.341)

has the components

Dp
ω2,e(ωm) =

(

M−1 ωm

−ωm Mω2

)

, (3.342)

with the determinants
detDp

ω2,e(ωm) = ω2
m + ω2, (3.343)

and the inverses

Gp
e (ωm) = [Dp

ω2,e(ωm)]−1 =

(

Mω2 −ωm

ωm M−1

)

1

ω2
m + ω2

. (3.344)
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The product of determinants (3.343) for all ωm required in the functional determinant of Eq. (3.340)
is calculated with the rules of analytic regularization in Section 2.15, and yields the same partition
function as in (3.244), and thus the same partition function (3.245):

Zω =
1

∏∞
m=1

√

ω2
m + ω2

=
1

2 sinh(βh̄ω/2)
. (3.345)

We therefore obtain for arbitrary sources J(τ) = (j(τ), k(τ)) 6= 0 the generating functional

Z[J] = Zω exp

{

− 1

h̄
AJ

e [J]

}

, (3.346)

with the source term

AJ
e [J] = −1

2

∫ h̄β

0

dτ

∫ h̄β

0

dτ ′ JT (τ)Gp
ω2,e(τ, τ

′)J(τ ′). (3.347)

The Green function Gp
ω2,e(τ, τ

′) follows immediately from Eq. (3.337) and (3.240):

Gp
ω2,e(τ, τ

′) = Gp
ω2,e(τ−τ

′) = D−1
ω2,e(τ, τ

′) =

(

M−1 −i∂τ

i∂τ Mω2

)

Gp
ω2,e(τ − τ ′), (3.348)

where Gp
ω2,e(τ − τ ′) is the simple periodic Green function (3.251). From the functional derivatives

of (3.346) with respect to j(τ)/h̄ and k(τ)/h̄ as in (3.302), we now find the correlation functions

G
(2)
ω2,e,xx(τ, τ

′) ≡ 〈x(τ)x(τ ′)〉 =
h̄

M
Gp

ω2,e(τ − τ ′), (3.349)

G
(2)
ω2,e,xp(τ, τ

′) ≡ 〈x(τ)p(τ ′)〉 = −ih̄Ġp
ω2,e(τ − τ ′), (3.350)

G
(2)
ω2,e,px(τ, τ

′) ≡ 〈p(τ)x(τ ′)〉 = ih̄Ġp
ω2,e(τ − τ ′), (3.351)

G
(2)
ω2,e,pp(τ, τ

′) ≡ 〈p(τ)p(τ ′)〉 = h̄Mω2Gp
ω2,e(τ − τ ′). (3.352)

The correlation function 〈x(τ)x(τ ′)〉 is the same as in the pure configuration space formulation
(3.304). The mixed correlation function 〈p(τ)x(τ ′)〉 is understood immediately by rewriting the
current-free part of the action (3.334) as

Ae[0, 0] =

∫ h̄β

0

dτ

[

1

2M
(p− iMẋ)

2
+
M

2

(

ẋ2 + ω2x2
)

]

, (3.353)

which shows that p(τ) fluctuates harmonically around the classical momentum for imaginary time
iMẋ(τ). It is therefore not surprising that the correlation function 〈p(τ)x(τ ′)〉 comes out to be
the same as that of iM〈ẋ(τ)x(τ ′)〉. Such an analogy is no longer true for the correlation function
〈p(τ)p(τ ′)〉. In fact, the correlation function 〈ẋ(τ)ẋ(τ ′)〉 is equal to

〈ẋ(τ)ẋ(τ ′)〉 = −h̄M∂2τG
p
ω2,e(τ − τ ′). (3.354)

Comparison with (3.352) reveals the relation

〈p(τ)p(τ ′)〉 = 〈ẋ(τ)ẋ(τ ′)〉 +
h̄

M

(

−∂2τ + ω2
)

Gp
ω2,e(τ − τ ′)

= 〈ẋ(τ)ẋ(τ ′)〉 +
h̄

M
δ(τ − τ ′). (3.355)

The additional δ-function on the right-hand side is the consequence of the fact that p(τ) is not
equal to iMẋ, but fluctuates around it harmonically.
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For the canonical path integral of a particle in a uniform magnetic field solved in Section 2.18,
there are analogous relations. Here we write the canonical action (2.643) with a vector potential
(2.640) in the Euclidean form as

Ae[p,x] =

∫ h̄β

0

dτ

{

1

2M

[

p− e

c
B× x− iM ẋ

]2

+
M

2
ω2x2

}

, (3.356)

showing that p(τ) fluctuates harmonically around the classical momentum pcl(τ) = (e/c)B× x−
iM ẋ. For a magnetic field pointing in the z-direction we obtain, with the frequency ωB = ωL/2
of Eq. (2.648), the following relations between the correlation functions involving momenta and
those involving only coordinates given in (3.325), (3.327), (3.327):

G
(2)
ω2,B,xpx

(τ, τ ′) ≡ 〈x(τ)px(τ ′)〉 = iM∂τ ′G
(2)
ω2,B,xx(τ, τ

′) −MωBG
(2)
ω2,B,xy(τ, τ

′), (3.357)

G
(2)
ω2,B,xpy

(τ, τ ′) ≡ 〈x(τ)py(τ ′)〉 = iM∂τ ′G
(2)
ω2,B,xy(τ, τ

′) +MωBG
(2)
ω2,B,xx(τ, τ

′), (3.358)

G
(2)
ω2,B,zpz

(τ, τ ′) ≡ 〈z(τ)pz(τ ′)〉 = iM∂τ ′G
(2)
ω2,B,zz(τ, τ

′), (3.359)

G
(2)
ω2,B,pxpx

(τ, τ ′) ≡ 〈px(τ)px(τ ′)〉=−M2∂τ∂τ ′G
(2)
ω2,B,xx(τ, τ

′)−2iM2ωB∂τG
(2)
ω2,B,xy(τ, τ

′)

+M2ω2
B G

(2)
ω2,B,xx(τ, τ

′) + h̄Mδ(τ − τ ′), (3.360)

G
(2)
ω2,B,pxpy

(τ, τ ′) ≡ 〈px(τ)py(τ
′)〉= −M2∂τ∂τ ′G

(2)
ω2,B,xy(τ, τ

′) + iM2∂τG
(2)
ω2,B,xx(τ, τ

′)

+M2ω2
BG

(2)
ω2,B,xy(τ, τ

′), (3.361)

G
(2)
ω2,B,pzpz

(τ, τ ′) ≡ 〈pz(τ)pz(τ ′)〉= −M2∂τ∂τ ′G
(2)
ω2,B,zz(τ, τ

′) + h̄Mδ(τ − τ ′). (3.362)

Only diagonal correlations between momenta contain the extra δ-function on the right-hand side

according to the rule (3.355). Note that ∂τ∂τ ′G
(2)
ω2,B,ab(τ, τ

′) = −∂2τG
(2)
ω2,B,ab(τ, τ

′). Each correla-
tion function is, of course, invariant under time translations, depending only on the time difference
τ − τ ′.

The correlation functions 〈x(τ)x(τ ′)〉 and 〈x(τ)y(τ ′)〉 are the same as before in Eqs. (3.327)
and (3.328).

3.12.2 Relations between Various Amplitudes

A slight generalization of the generating functional (3.333) contains paths with fixed endpoints
rather than all periodic paths. If the endpoints are held fixed in configuration space, one defines

(xb h̄β|xa 0)[j, k] =

∫ x(h̄β)=xb

x(0)=xa

Dx
Dp

2πh̄
exp

{

− 1

h̄
Ae[j, k]

}

. (3.363)

If the endpoints are held fixed in momentum space, one defines

(pb h̄β|pa 0)[j, k] =

∫ p(h̄β)=pb

p(0)=pa

Dx
Dp

2πh̄
exp

{

− 1

h̄
Ae[j, k]

}

. (3.364)

The two are related by a Fourier transformation

(pb h̄β|pa 0)[j, k] =

∫ +∞

−∞
dxa

∫ +∞

−∞
dxbe

−i(pbxb−paxa)/h̄(xb h̄β|xa 0)[j, k] . (3.365)

We now observe that in the canonical path integral, the amplitudes (3.363) and (3.364) with
fixed endpoints can be reduced to those with vanishing endpoints with modified sources. The
modification consists in shifting the current k(τ) in the action by the source term ixbδ(τb − τ) −
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ixaδ(τ − τa) and observe that this produces in (3.364) an overall phase factor in the limit τb ↑ h̄β
and τa ↓ 0:

lim
τb↑h̄β

lim
τa↓0

(pb h̄β|pa 0)[j(τ), k(τ) + ixbδ(τb − τ) − ixaδ(τ − τa)]

= exp

{

i

h̄
(pbxb − paxa)

}

(pb h̄β|pa 0)[j(τ), k(τ)] . (3.366)

By inserting (3.366) into the inverse of the Fourier transformation (3.365),

(xb h̄β|xa 0)[j, k] =

∫ +∞

−∞

dpa
2πh̄

∫ +∞

−∞

dpb
2πh̄

ei(pbxb−paxa)/h̄(pb h̄β|pa 0)[j, k], (3.367)

we obtain

(xb h̄β|xa 0)[j, k]= lim
τb↑h̄β

lim
τa↓0

(0 h̄β|0 0)[j(τ), k(τ) + ixbδ(τb−τ) − ixaδ(τ−τa)] . (3.368)

In this way, the fixed-endpoint path integral (3.363) can be reduced to a path integral with van-
ishing endpoints but additional δ-terms in the current k(τ) coupled to the momentum p(τ).

There is also a simple relation between path integrals with fixed equal endpoints and periodic
path integrals. The measures of integration are related by

∫ x(h̄β)=x

x(0)=x

DxDp
2πh̄

=

∮ DxDp
2πh̄

δ(x(0) − x) . (3.369)

Using the Fourier decomposition of the delta function, we rewrite (3.369) as

∫ x(h̄β)=x

x(0)=x

DxDp
2πh̄

= lim
τ ′
a↓0

∫ +∞

−∞

dpa
2πh̄

eipax/h̄

∮ DxDp
2πh̄

e
−i
∫

h̄β

0
dτ paδ(τ−τ ′

a)x(τ)/h̄. (3.370)

Inserting now (3.370) into (3.368) leads to the announced desired relation

(xb h̄β|xa0)[k, j] = lim
τb↑h̄β

lim
τa↓0

lim
τ ′
a↓0

∫ +∞

−∞

dpa
2πh̄

×Z [j(τ) − ipaδ(τ − τ ′a), k(τ) + ixbδ(τb − τ) − ixaδ(τ − τa)] , (3.371)

where Z[j, k] is the thermodynamic partition function (3.333) summing all periodic paths. When
using (3.371) we must be careful in evaluating the three limits. The limit τ ′a ↓ 0 has to be evaluated
prior to the other limits τb ↑ h̄β and τa ↓ 0.

3.12.3 Harmonic Generating Functionals

Here we write down explicitly the harmonic generating functionals with the above shifted source
terms:

k̃(τ) = k(τ) + ixbδ(τb − τ) − ixaδ(τ − τa) , j̃(τ) = j(τ) − ipδ(τ − τ ′a), (3.372)

leading to the factorized generating functional

Zω[k̃, j̃] = Z(0)
ω [0, 0]Z(1)

ω [k, j]Zp
ω[k, j] . (3.373)

The respective terms on the right-hand side of (3.373) read in detail

Z(0)
ω [0, 0] = Zω exp

(

1

2h̄2
{

−p2Gp
xx(τ

′
a, τ

′
a) − 2p

[

xaG
p
xp(τ

′
a, τa) + xbG

p
xp(τ

′
a, τb)

]
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−x2aGp
pp(τa, τa) − x2bG

p
pp(τb, τb) + 2xaxbG

p
pp(τa, τb)

})

, (3.374)

Z(1)
ω [k, j] = exp

(

1

h̄2

∫ h̄β

0

dτ
{

j(τ)[−ipGp
xx(τ, τ ′a) + ixbG

p
xp(τ, τb) − ixaG

p
xp(τ, τa)]

+k(τ)[−ipGp
xp(τ, τ

′
a) + ixbG

p
pp(τ, τb) − ixaG

p
pp(τ, τa)]

}

)

, (3.375)

Zp
ω[k, j] = exp

{

1

2h̄2

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2 [(j(τ1), k(τ2))

×
(

Gp
xx(τ1, τ1) Gp

xp(τ1, τ2)
Gp

px(τ1, τ2) Gp
pp(τ1, τ2)

)(

j(τ2)
k(τ2)

)]}

, (3.376)

where Zω is given by (3.345) and Gp
xp(τ1, τ2) etc. are the periodic Euclidean Green functions

G
(2)
ω2,e,ab(τ1, τ2) defined in Eqs. (3.349)–(3.352) in an abbreviated notation. Inserting (3.373) into

(3.371) and performing the Gaussian momentum integration, over the exponentials in Z
(0)
ω [0, 0]

and Z
(1)
ω [k, j], the result is

(xb h̄β|xa 0)[k, j] = (xb h̄β|xa 0)[0, 0]× exp

{

1

h̄

∫ h̄β

0

dτ [xcl(τ)j(τ) + pcl(τ)k(τ)]

}

× exp

{

1

2h̄2

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2 [(j(τ1), k(τ2))

(

G
(D)
xx (τ1, τ2) G

(D)
xp (τ1, τ2)

G
(D)
px (τ1, τ2) G

(D)
pp (τ1, τ2)

)

(

j(τ2)
k(τ2)

)

]}

,

(3.377)

where the Green functions G
(D)
ab (τ1, τ2) have now Dirichlet boundary conditions. In particular, the

Green function G
(D)
ab (τ1, τ2) is equal to (3.36) continued to imaginary time. The Green functions

G
(D)
xp (τ1, τ2) and G

(D)
pp (τ1, τ2) are Dirichlet versions of Eqs. (3.349)–(3.352) which arise from the

above Gaussian momentum integrals.
After performing the integrals, the first factor without currents is

(xb h̄β|xa0)[0, 0] = lim
τb↑h̄β

lim
τa↓0

lim
τ ′
a↓0

Zω

2πh̄

√

2πh̄2

Gp
xx(τ ′a, τ

′
a)

× exp

[

1

2h̄2

(

x2a

{

Gp
xp

2(τ ′a, τa)

Gp
xx(τ ′a, τ

′
a)

−Gp
pp(τa, τa)

}

+ x2b

{

Gp
xp

2(τ ′a, τb)

Gp
xx(τ ′a, τ

′
a)

−Gp
pp(τb, τb)

}

−2xaxb

{

Gp
xp(τ

′
a, τa)G

p
xp(τ

′
a, τb)

Gp
xx(τ ′a, τ

′
a)

−Gp
pp(τa, τb)

})]

. (3.378)

Performing the limits using

lim
τa↓0

lim
τ ′
a↓0

Gp
xp(τ

′
a, τa) = −i h̄

2
, (3.379)

where the order of the respective limits turns out to be important, we obtain the amplitude (2.411):

(xb h̄β|xa0)[0, 0] =

√

Mω

2πh̄ sinh h̄βω

× exp

{

− Mω

2h̄ sinh h̄βω

[

(x2a + x2b) cosh h̄βω − 2xaxb
]

}

. (3.380)

The first exponential in (3.377) contains a complicated representation of the classical path

xcl(τ) = lim
τb↑h̄β

lim
τa↓0

lim
τ ′
a↓0

i

h̄

{

xa

[

Gp
xp(τ

′
a, τa)G

p
xx(τ, τ ′a)

Gp
xx(τ ′a, τ

′
a)

+Gp
xp(τa, τ)

]

H. Kleinert, PATH INTEGRALS



3.12 Correlation Functions in Canonical Path Integral 261

−xb
[

Gp
xp(τ

′
a, τb)G

p
xx(τ, τ ′a)

Gp
xx(τ ′a, τ

′
a)

+Gp
xp(τb, τ)

]}

, (3.381)

and of the classical momentum

pcl(τ) = lim
τb↑h̄β

lim
τa↓0

lim
τ ′
a↓0

i

h̄

{

xa

[

Gp
xp(τ

′
a, τa)G

p
xp(τ

′
a, τ)

Gp
xx(τ ′a, τ

′
a)

−Gp
pp(τa, τ)

]

−xb
[

Gp
xp(τ

′
a, τb)G

p
xp(τ

′
a, τ)

Gp
xx(τ ′a, τ

′
a)

−Gp
pp(τb, τ)

]}

. (3.382)

Indeed, inserting the explicit periodic Green functions (3.349)–(3.352) and going to the limits we
obtain

xcl(τ) =
xa sinhω(h̄β − τ) + xb sinhωτ

sinh h̄βω
(3.383)

and

pcl(τ) = iMω
−xa coshω(h̄β − τ) + xb coshωτ

sinh h̄βω
, (3.384)

the first being the imaginary-time version of the classical path (3.6), the second being related to
it by the classical relation pcl(τ) = iMdxcl(τ)/dτ .

The second exponential in (3.377) quadratic in the currents contains the Green functions with
Dirichlet boundary conditions

G(D)
xx (τ1, τ2) =Gp

xx(τ1, τ2) −
Gp

xx(τ1, 0)Gp
xx(τ2, 0)

Gp
xx(τ1, τ1)

, (3.385)

G(D)
xp (τ1, τ2) =Gp

xp(τ1, τ2) +
Gp

xx(τ1, 0)Gp
xp(τ2, 0)

Gp
xx(τ1, τ1)

, (3.386)

G(D)
px (τ1, τ2) =Gp

px(τ1, τ2) +
Gp

xp(τ1, 0)Gp
xx(τ2, 0)

Gp
xx(τ1, τ1)

, (3.387)

G(D)
pp (τ1, τ2) =Gp

pp(τ1, τ2) −
Gp

xp(τ1, 0)Gp
xp(τ2, 0)

Gp
xx(τ1, τ1)

. (3.388)

After applying some trigonometric identities, these take the form

G(D)
xx (τ1, τ2) =

h̄

2Mω sinh h̄βω
[coshω(h̄β−|τ1−τ2|)−coshω(h̄β−τ1−τ2)], (3.389)

G(D)
xp (τ1, τ2) =

ih̄

2 sinh h̄βω
{θ(τ1−τ2) sinhω(h̄β−|τ1−τ2|)

−θ(τ2−τ1) sinhω(h̄β − |τ2−τ1|)+sinhω(h̄β − τ1−τ2)}, (3.390)

G(D)
px (τ1, τ2) = − ih̄

2 sinh h̄βω
{θ(τ1−τ2) sinhω(h̄β − |τ1−τ2|)

−θ(τ2−τ1) sinhω(h̄β − |τ2−τ1|)−sinhω(h̄β − τ1−τ2)}, (3.391)

G(D)
pp (τ1, τ2) =

Mh̄ω

2 sinh h̄βω
[coshω(h̄β − |τ1−τ2|) + coshω(h̄β−τ1−τ2)]. (3.392)

The first correlation function is, of course, the imaginary-time version of the Green function (3.209).
Observe the symmetry properties under interchange of the time arguments:

G(D)
xx (τ1, τ2) = G(D)

xx (τ2, τ1) , G(D)
xp (τ1, τ2) = −G(D)

xp (τ2, τ1) , (3.393)

G(D)
px (τ1, τ2) = −G(D)

px (τ2, τ1) , G(D)
pp (τ1, τ2) = G(D)

pp (τ2, τ1) , (3.394)
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and the identity

G(D)
xp (τ1, τ2) = G(D)

px (τ2, τ1). (3.395)

In addition, there are the following derivative relations between the Green functions with Dirichlet
boundary conditions:

G(D)
xp (τ1, τ2) = −iM ∂

∂τ1
G(D)

xx (τ1, τ2) = iM
∂

∂τ2
G(D)

xx (τ1, τ2) , (3.396)

G(D)
px (τ1, τ2) = iM

∂

∂τ1
G(D)

xx (τ1, τ2) = −iM ∂

∂τ2
G(D)

xx (τ1, τ2) , (3.397)

G(D)
pp (τ1, τ2) = h̄Mδ(τ1−τ2) −M2 ∂2

∂τ1∂τ2
G(D)

xx (τ1−τ2) . (3.398)

Note that Eq. (3.385) is a nonlinear alternative to the additive decomposition (3.142) of a
Green function with Dirichlet boundary conditions: into Green functions with periodic boundary
conditions.

3.13 Particle in Heat Bath

The results of Section 3.8 are the key to understanding the behavior of a quantum-
mechanical particle moving through a dissipative medium at a fixed temperature T .
We imagine the coordinate x(t) a particle of mass M to be coupled linearly to a
heat bath consisting of a great number of harmonic oscillators Xi(τ) (i = 1, 2, 3, . . .)
with various masses Mi and frequencies Ωi. The imaginary-time path integral in
this heat bath is given by

(xbh̄β|xa0) =
∏

i

∮

DXi(τ)
∫ x(h̄β)=xb

x(0)=xa

Dx(τ)

× exp

{

−1

h̄

∫ h̄β

0
dτ
∑

i

[

Mi

2
(Ẋi

2
+ Ω2

iX
2
i )
]

}

(3.399)

× exp

{

−1

h̄

∫ h̄β

0
dτ

[

M

2
ẋ2 + V (x(τ))−

∑

i

ciXi(τ)x(τ)

]}

× 1
∏

i Zi

,

where we have allowed for an arbitrary potential V (x). The partition functions of
the individual bath oscillators

Zi ≡
∮

DXi(τ) exp

{

−1

h̄

∫ h̄β

0
dτ
[

Mi

2
(Ẋi

2
+ Ω2

iX
2
i )
]

}

=
1

2 sinh(h̄βΩi/2)
(3.400)

have been divided out, since their thermal behavior is trivial and will be of no interest
in the sequel. The path integrals over Xi(τ) can be performed as in Section 3.1
leading for each oscillator label i to a source expression like (3.246), in which cix(τ)
plays the role of a current j(τ). The result can be written as

(xbh̄β|xa0) =
∫ x(h̄β)=xb

x(0)=xa

Dx(τ) exp
{

−1

h̄

∫ h̄β

0
dτ
[

M

2
ẋ2 + V (x(τ))

]

− 1

h̄
Abath[x]

}

,

(3.401)
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where Abath[x] is a nonlocal action for the particle motion generated by the bath

Abath[x] = −1

2

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′x(τ)α(τ − τ ′)x(τ ′). (3.402)

The function α(τ − τ ′) is the weighted periodic correlation function (3.251):

α(τ − τ ′) =
∑

i

c2i
1

Mi
Gp

Ω2
i
,e
(τ − τ ′)

=
∑

i

c2i
2MiΩi

cosh Ωi(|τ − τ ′| − h̄β/2)

sinh(Ωih̄β/2)
. (3.403)

Its Fourier expansion has the Matsubara frequencies ωm = 2πkBT/h̄

α(τ − τ ′) =
1

h̄β

∞
∑

m=−∞

αme
−iωm(τ−τ ′), (3.404)

with the coefficients

αm =
∑

i

c2i
Mi

1

ω2
m + ω2

i

. (3.405)

Alternatively, we can write the bath action in the form corresponding to (3.279)
as

Abath[x] = −1

2

∫ h̄β

0
dτ
∫ ∞

−∞
dτ ′x(τ)α0(τ − τ ′)x(τ ′), (3.406)

with the weighted nonperiodic correlation function [recall (3.280)]

α0(τ − τ ′) =
∑

i

c2i
2MiΩi

e−Ωi|τ−τ ′|. (3.407)

The bath properties are conveniently summarized by the spectral density of the

bath

ρb(ω
′) ≡ 2π

∑

i

c2i
2MiΩi

δ(ω′ − Ωi). (3.408)

The frequencies Ωi are by definition positive numbers. The spectral density allows
us to express α0(τ − τ ′) as the spectral integral

α0(τ − τ ′) =
∫ ∞

0

dω′

2π
ρb(ω

′)e−ω′|τ−τ ′|, (3.409)

and similarly

α(τ − τ ′) =
∫ ∞

0

dω′

2π
ρb(ω

′)
coshω′(|τ − τ ′| − h̄β/2)

sinh(ω′h̄β/2)
. (3.410)
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For the Fourier coefficients (3.405), the spectral integral reads

αm =
∫ ∞

0

dω′

2π
ρb(ω

′)
2ω′

ω2
m + ω′2

. (3.411)

It is useful to subtract from these coefficients the first term α0, and to invert the
sign of the remainder making it positive definite. Thus we split

αm = 2
∫ ∞

0

dω′

2π

ρb(ω
′)

ω′

(

1− ω2
m

ω2
m + ω′2

)

= α0 − gm. (3.412)

Then the Fourier expansion (3.404) separates as

α(τ − τ ′) = α0δ
p(τ − τ ′)− g(τ − τ ′), (3.413)

where δp(τ − τ ′) is the periodic δ-function (3.282):

δp(τ − τ ′) =
1

h̄β

∞
∑

m=−∞

e−iωm(τ−τ ′) =
∞
∑

n=−∞

δ(τ − τ ′ − nh̄β), (3.414)

the right-hand sum following from Poisson’s summation formula (1.197). The sub-
tracted correlation function

g(τ − τ ′) =
1

h̄β

∞
∑

m=−∞

g(ωm)e
−iωm(τ−τ ′), (3.415)

has the coefficients

gm =
∑

i

c2i
Mi

ω2
m

ω2
m + Ω2

i

=
∫ ∞

0

dω′

2π

ρb(ω
′)

ω′

2ω2
m

ω2
m + ω′2

. (3.416)

The corresponding decomposition of the bath action (3.402) is

Abath[x] = Aloc +A′
bath[x], (3.417)

where

A′
bath[x] =

1

2

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′x(τ)g(τ − τ ′)x(τ ′), (3.418)

and

Aloc = −α0

2

∫ h̄β

0
dτ x2(τ), (3.419)

is a local action which can be added to the original action in Eq. (3.401), changing
merely the curvature of the potential V (x). Because of this effect, it is useful to
introduce a frequency shift ∆ω2 via the equation

M∆ω2 ≡ −α0 = −2
∫ ∞

0

dω′

2π

ρb(ω
′)

ω′
= −

∑

i

c2i
MiΩ

2
i

. (3.420)
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Then the local action (3.419) becomes

Aloc =
M

2
∆ω2

∫ h̄β

0
dτ x2(τ). (3.421)

This can be absorbed into the potential of the path integral (3.401), yielding a
renormalized potential

Vren(x) = V (x) +
M

2
∆ω2 x2. (3.422)

With the decomposition (3.417), the path integral (3.401) acquires the form

(xbh̄β|xa0) =
∫ x(h̄β)=xb

x(0)=xa

Dx(τ) exp
{

−1

h̄

∫ h̄β

0
dτ
[

M

2
ẋ2 + Vren(x(τ))

]

− 1

h̄
A′

bath[x]

}

.

(3.423)

The subtracted correlation function (3.415) has the property

∫ h̄β

0
dτ g(τ − τ ′) = 0. (3.424)

Thus, if we rewrite in (3.418)

x(τ)x(τ ′) =
1

2
{x2(τ) + x2(τ ′)− [x(τ)− x(τ ′)]2}, (3.425)

the first two terms do not contribute, and we remain with

A′
bath[x] = −1

4

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′g(τ − τ ′)[x(τ)− x(τ ′)]2. (3.426)

If the oscillator frequencies Ωi are densely distributed, the function ρb(ω
′) is

continuous. As will be shown later in Eqs. (18.208) and (18.317), an oscillator bath
introduces in general a friction force into classical equations of motion. If this is
to have the usual form −Mγẋ(t), the spectral density of the bath must have the
approximation

ρb(ω
′) ≈ 2Mγω′ (3.427)

[see Eqs. (18.208), (18.317)]. This approximation is characteristic for Ohmic dissipa- ref(18.208)
lab(x18.199)
est(18.199)
ref(18.317)
lab(18.396)
est(18.208)

tion. In general, a typical friction force increases with ω only for small frequencies;
for larger ω, it decreases again. An often applicable phenomenological approxima-
tion is the so-called Drude form

ρb(ω
′) ≈ 2Mγω′ ω2

D

ω2
D + ω′2

, (3.428)

where 1/ωD ≡ τD is Drude’s relaxation time. For times much shorter than the
Drude time τD, there is no dissipation. In the limit of large ωD, the Drude form
describes again Ohmic dissipation.
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Inserting (3.428) into (3.416), we obtain the Fourier coefficients for Drude dissi-
pation

gm = 2Mγω2
D

∫ ∞

0

dω

2π

1

ω2
D + ω2

2ω2
m

ω2
m + ω2

=M |ωm|γ
ωD

|ωm|+ ωD
. (3.429)

It is customary, to factorize
gm ≡ M |ωm|γm, (3.430)

so that Drude dissipation corresponds to

γm = γ
ωD

|ωm|+ ωD
, (3.431)

and Ohmic dissipation to γm ≡ γ.
The Drude form of the spectral density gives rise to a frequency shift (3.420)

∆ω2 = −γωD, (3.432)

which goes to infinity in the Ohmic limit ωD → ∞.

3.14 Heat Bath of Photons

The heat bath in the last section was a convenient phenomenological tool to repro-
duce the Ohmic friction observed in many physical systems. In nature, there can be
various different sources of dissipation. The most elementary of these is the deex-
citation of atoms by radiation, which at zero temperature gives rise to the natural
line width of atoms. The photons may form a thermally equilibrated gas, the most
famous example being the cosmic black-body radiation which is a gas of the photons
of 3 K left over from the big bang 15 billion years ago (and which create a sizable
fraction of the blips on our television screens).

The theoretical description is quite simple. We decompose the vector potential
A(x, t) of electromagnetism into Fourier components of wave vector k

A(x, t) =
∑

k

ck(x)Xk(t), ck =
eikx√
2ΩkV

,
∑

k

=
∫

d3kV

(2π)3
. (3.433)

The Fourier components Xk(t) can be considered as a sum of harmonic oscillators
of frequency Ωk = c|k|, where c is the light velocity. A photon of wave vector k is
a quantum of Xk(t). A certain number N of photons with the same wave vector
can be described as the Nth excited state of the oscillator Xk(t). The statistical
sum of these harmonic oscillators led Planck to his famous formula for the energy
of black-body radiation for photons in an otherwise empty cavity whose walls have
a temperature T . These will form the bath, and we shall now study its effect
on the quantum mechanics of a charged point particle. Its coupling to the vector
potential is given by the interaction (2.634). Comparison with the coupling to the
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heat bath in Eq. (3.399) shows that we simply have to replace −∑i ciXi(τ)x(τ) by
−∑k ckXk(τ)ẋ(τ). The bath action (3.402) takes then the form

Abath[x] = −1

2

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′ẋi(τ)αij(x(τ), τ ;x(τ ′), τ ′)ẋj(τ ′), (3.434)

where αij(x, τ ;x′, τ ′) is a 3 × 3 matrix generalization of the correlation function
(3.403):

αij(x, τ ;x′, τ ′) =
e2

h̄c2
∑

k

c−k(x)ck(x
′)〈X i

−k(τ)X
j
k(τ

′)〉. (3.435)

We now have to account for the fact that there are two polarization states for each
photon, which are transverse to the momentum direction. We therefore introduce a
transverse Kronecker symbol

Tδijk ≡ (δij − kikj/k2) (3.436)

and write the correlation function of a single oscillator X i
−k(τ) as

Gij
−k′k

(τ − τ ′) = 〈X̂ i
−k′(τ)X̂j

k′(τ ′)〉 = h̄Tδijk δkk′ Gp
ω2,ek(τ − τ ′), (3.437)

with

Gp
ω2,ek(τ − τ ′) ≡ 1

2Ωk

coshΩk(|τ − τ ′| − h̄β/2)

sinh(Ωkh̄β/2)
. (3.438)

Thus we find

αij(x, τ ;x′, τ ′) =
e2

c2

∫

d3k

(2π)3
Tδijk

eik(x−x′)

2Ωk

coshΩk(|τ − τ ′| − h̄β/2)

sinh(Ωkh̄β/2)
. (3.439)

At zero temperature, and expressing Ωk = c|k|, this simplifies to

αij(x, τ ;x′, τ ′) =
e2

c3

∫

d3k

(2π)3
Tδijk

eik(x−x′)−c|k||τ−τ ′|

2|k| . (3.440)

Forgetting for a moment the transverse Kronecker symbol and the prefactor e2/c2,
the integral yields

GR
e (x, τ ;x

′, τ ′) =
1

4π2c2
1

(τ − τ ′)2 + (x− x′)2/c2
, (3.441)

which is the imaginary-time version of the well-known retarded Green function used
in electromagnetism. If the system is small compared to the average wavelengths
in the bath we can neglect the retardation and omit the term (x − x′)2/c2. In the
finite-temperature expression (3.440) this amounts to neglecting the x-dependence.
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The transverse Kronecker symbol can then be averaged over all directions of the
wave vector and yields simply 2δij/3, and we obtain the approximate function

αij(x, τ ;x′, τ ′) =
2e2

3c2
δij

1

2πc2

∫

dω

2π
ω
coshω(|τ − τ ′| − h̄β/2)

sinh(ωh̄β/2)
. (3.442)

This has the generic form (3.410) with the spectral function of the photon bath

ρpb(ω
′) =

e2

3c2π
ω′. (3.443)

This has precisely the Ohmic form (3.427), but there is now an important difference:
the bath action (3.434) contains now the time derivatives of the paths x(τ). This
gives rise to an extra factor ω′2 in (3.427), so that we may define a spectral density
for the photon bath:

ρpb(ω
′) ≈ 2Mγω′3, γ =

e2

6c2πM
. (3.444)

In contrast to the usual friction constant γ in the previous section, this has the
dimension 1/frequency.

3.15 Harmonic Oscillator in Ohmic Heat Bath

For a harmonic oscillator in an Ohmic heat bath, the partition function can be
calculated as follows. Setting

Vren(x) =
M

2
ω2x2, (3.445)

the Fourier decomposition of the action (3.423) reads

Ae =
Mh̄

kBT

{

ω2

2
x20 +

∞
∑

m=1

[

ω2
m + ω2 + ωmγm

]

|xm|2
}

. (3.446)

The harmonic potential is the full renormalized potential (3.422). Performing the
Gaussian integrals using the measure (2.447), we obtain the partition function for
the damped harmonic oscillator of frequency ω [compare (2.408)]

Zdamp
ω =

kBT

h̄ω

{

∞
∏

m=1

[

ω2
m + ω2 + ωmγm

ω2
m

]}−1

. (3.447)

For the Drude dissipation (3.429), this can be written as

Zdamp
ω =

kBT

h̄ω

∞
∏

m=1

ω2
m(ωm + ωD)

ω3
m + ω2

mωD + ωm(ω2 + γωD) + ωDω2
. (3.448)

Let w1, w2, w3 be the roots of the cubic equation

w3 − w2ωD + w(ω2 + γωD)− ω2ωD = 0. (3.449)
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Then we can rewrite (3.448) as

Zdamp
ω =

kBT

h̄ω

∞
∏

m=1

ωm

ωm + w1

ωm

ωm + w2

ωm

ωm + w3

ωm + ωD

ωm

. (3.450)

Using the product representation of the Gamma function8

Γ(z) = lim
n→∞

nz

z

n
∏

m=1

m

m+ z
(3.451)

and the fact that

w1 + w2 + w3 − ωD = 0, w1w2w3 = ω2ωD, (3.452)

the partition function (3.450) becomes

Zdamp
ω =

1

2π

ω

ω1

Γ(w1/ω1)Γ(w2/ω1)Γ(w3/ω1)

Γ(ωD/ω1)
, (3.453)

where ω1 = 2πkBT/h̄ is the first Matsubara frequency, such that wi/ω1 = wiβ/2π.
In the Ohmic limit ωD → ∞, the roots w1, w2, w3 reduce to

w1 = γ/2 + iδ, w1 = γ/2− iδ, w3 = ωD − γ, (3.454)

with
δ ≡

√

ω2 − γ2/4, (3.455)

and (3.453) simplifies further to

Zdamp
ω =

1

2π

ω

ω1

Γ(w1/ω1)Γ(w2/ω1). (3.456)

For vanishing friction, the roots w1 and w2 become simply w1 = iω, w2 = −iω, and
the formula9

Γ(1− z)Γ(z) =
π

sin πz
(3.457)

can be used to calculate

Γ(iω/ω1)Γ(−iω/ω1) =
ω1

ω

π

sinh(πω/ω1)
=
ω1

ω

π

sinh(ωh̄/2kBT )
, (3.458)

showing that (3.453) goes properly over into the partition function (3.217) of the
undamped harmonic oscillator.

The free energy of the system is

F (T ) = −kBT [log(ω/2πω1)− log Γ(ωD/ω1)

+ log Γ(w1/ω1) + log Γ(w2/ω1) + log Γ(w3/ω1)] . (3.459)

8I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 8.322.
9ibid., Formula 8.334.3.
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Using the large-z behavior of log Γ(z)10

log Γ(z) =
(

z − 1

2

)

log z − z +
1

2
log 2π +

1

12z
− 1

360z3
−O(1/z5), (3.460)

we find the free energy at low temperature

F (T ) ∼ E0−
(

1

w1
+

1

w2
+

1

w1
− ω2

w1w2w3

)

π

6h̄
(kBT )

2 = E0−
γπ

6ω2h̄
(kBT )

2, (3.461)

where

E0 = − h̄

2π
[w1 log(w1/ωD) + w2 log(w2/ωD) + w3 log(w3/ωD)] (3.462)

is the ground state energy.
For small friction, this reduces to

E0 =
h̄ω

2
+

γ

2π
log

ωD

ω
− γ2

16ω

(

1 +
4ω

πωD

)

+O(γ3). (3.463)

The T 2-behavior of F (T ) in Eq. (3.461) is typical for Ohmic dissipation.
At zero temperature, the Matsubara frequencies ωm = 2πmkBT/h̄ move arbi-

trarily close together, so that Matsubara sums become integrals according to the
rule

1

h̄β

∑

m

−−−→
T→0

∫ ∞

0

dωm

2π
. (3.464)

Applying this limiting procedure to the logarithm of the product formula (3.448),
the ground state energy can also be written as an integral

E0 =
h̄

2π

∫ ∞

0
dωm log

[

ω3
m + ω2

mωD + ωm(ω
2 + γωD) + ωDω

2

ω2
m(ωm + ωD)

]

, (3.465)

which shows that the energy E0 increases with the friction coefficient γ.
It is instructive to calculate the density of states defined in (1.583). Inverting

the Laplace transform (1.582), we have to evaluate

ρ(ε) =
1

2πi

∫ η+i∞

η−i∞
dβ eiεβ Zdamp

ω (β), (3.466)

where η is an infinitesimally small positive number. In the absence of friction, the
integral over Zω(β) =

∑∞
n=0 e

−βh̄ω(n+1/2) yields

ρ(ε) =
∞
∑

n=0

δ(ε− (n + 1/2)h̄ω). (3.467)

In the presence of friction, we expect the sharp δ-function spikes to be broadened.
The calculation is done as follows: The vertical line of integration in the complex
β-plane in (3.466) is moved all the way to the left, thereby picking up the poles
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Figure 3.5 Poles in complex β-plane of Fourier integral (3.466) coming from the Gamma

functions of (3.453)

of the Gamma functions which lie at negative integer values of wiβ/2π. From the
representation of the Gamma function11

Γ(z) =
∫ ∞

1
dt tz−1e−t +

∞
∑

n=0

(−1)n

n!(z + n)
(3.468)

we see the size of the residues. Thus we obtain the sum

ρ(ε) =
1

ω

∞
∑

n=1

3
∑

i=1

Rn,ie
−2πnε/wi, (3.469)

Rn,1 =
ω

w2
1

(−1)n−1

(n− 1)!

Γ(−nw2/w1)Γ(−nw3/w1)

Γ(−nωD/w1)
, (3.470)

with analogous expressions for Rn,2 and Rn,3. The sum can be done numerically
and yields the curves shown in Fig. 3.6 for typical underdamped and overdamped
situations. There is an isolated δ-function at the ground state energy E0 of (3.462)
which is not widened by the friction. Right above E0, the curve continues from a
finite value ρ(E0 +0) = γπ/6ω2 determined by the first expansion term in (3.461).

3.16 Harmonic Oscillator in Photon Heat Bath

It is straightforward to extend this result to a photon bath where the spectral density
is given by (3.444) and (3.471) becomes

Zdamp
ω =

kBT

h̄ω

{

∞
∏

m=1

[

ω2
m + ω2 + ω3

mγ

ω2
m

]}−1

, (3.471)

10ibid., Formula 8.327.
11ibid., Formula 8.314.
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Figure 3.6 Density of states for weak and strong damping in natural units. On the left,

the parameters are γ/ω = 0.2, ωD/ω = 10, on the right γ/ω = 5, ωD/ω = 10. For more

details see Hanke and Zwerger in Notes and References.

with γ = e2/6c2πM . The power of ωm accompanying the friction constant is in-
creased by two units. Adding a Drude correction for the high-frequency behavior
we replace γ by ωm/(ωm + ωD) and obtain instead of (3.448)

Zdamp
ω =

kBT

h̄ω

∞
∏

m=1

ω2
m(ωm + ωD)(1 + γωD)

ω3
m(1 + γωD) + ω2

mωD + ωmω2 + ωDω2
. (3.472)

The resulting partition function has again the form (3.453), except that w123 are the
solutions of the cubic equation

w3(1 + γωD)− w2ωD + wω2 − ω2ωD = 0. (3.473)

Since the electromagnetic coupling is small, we can solve this equation to lowest
order in γ. If we also assume ωD to be large compared to ω, we find the roots

w1 ≈ γeffpb/2 + iω, w1 ≈ γeffpb/2− iω, w3 ≈ ωD/(1 + γeffpbωD/ω
2), (3.474)

where we have introduced an effective friction constant of the photon bath

γeffpb =
e2

6c2πM
ω2, (3.475)

which has the dimension of a frequency, just as the usual friction constant γ in the
previous heat bath equations (3.454).

3.17 Perturbation Expansion of Anharmonic Systems

If a harmonic system is disturbed by an additional anharmonic potential V (x), to be
called interaction, the path integral can be solved exactly only in exceptional cases.
These will be treated in Chapters 8, 13, and 14. For sufficiently smooth and small
potentials V (x), it is always possible to expand the full partition in powers of the
interaction strength. The result is the so-called perturbation series . Unfortunately,
it only renders reliable numerical results for very small V (x) since, as we shall prove
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in Chapter 17, the expansion coefficients grow for large orders k like k!, making the
series strongly divergent. The can only be used for extremely small perturbations.
Such expansions are called asymptotic (more in Subsection 17.10.1). For this reason
we are forced to develop a more powerful technique of studying anharmonic systems
in Chapter 5. It combines the perturbation series with a variational approach and
will yield very accurate energy levels up to arbitrarily large interaction strengths. It
is therefore worthwhile to find the formal expansion in spite of its divergence.

Consider the quantum-mechanical amplitude

(xbtb|xata)=
∫ x(tb)=xb

x(ta)=xa

Dx exp
{

i

h̄

∫ tb

ta
dt

[

M

2
ẋ2 −M

ω2

2
x2 − V (x)

]}

, (3.476)

and expand the integrand in powers of V (x), which leads to the series

(xbtb|xata) =
∫ x(tb)=xb

x(ta)=xa

Dx
[

1− i

h̄

∫ tb

ta
dtV (x(t))

− 1

2!h̄2

∫ tb

ta
dt2V (x(t2))

∫ tb

ta
dt1V (x(t1))

+
i

3!h̄3

∫ tb

ta
dt3V (x(t3))

∫ tb

ta
dt2V (x(t2))

∫ tb

ta
dt1V (x(t1)) + . . .

]

× exp
[

i

h̄

∫ tb

ta
dt
M

2

(

ẋ2 − ω2x2
)

]

. (3.477)

If we decompose the path integral in the nth term into a product (2.4), the expansion
can be rewritten as

(xbtb|xata) = (xbtb|xata)−
i

h̄

∫ tb

ta
dt1

∫

dx1(xbtb|x1t1)V (x1)(xbtb|xata) (3.478)

− 1

2!h̄2

∫ tb

ta
dt2

∫ tb

ta
dt1

∫

dx1dx2(xbtb|x2t2)V (x2)(x2t2|x1t1)V (x1)(x1t1|xata) + . . . .

A similar expansion can be given for the Euclidean path integral of a partition
function

Z =
∮

Dx exp
{

−1

h̄

∫ h̄β

0
dτ
[

M

2
(ẋ2 + ω2x2) + V (x)

]

}

, (3.479)

where we obtain

Z =
∫

Dx
[

1− 1

h̄

∫ h̄β

0
dτV (x(τ)) +

1

2!h̄2

∫ h̄β

0
dτ2V (x(τ2))

∫ h̄β

0
dτ1V (x(τ1))

− 1

3!h̄3

∫ h̄β

0
dτ3V (x(τ3))

∫ h̄β

0
dτ2V (x(τ2))

∫ h̄β

0
dτ1V (x(τ1)) + . . .

]

× exp

{

−1

h̄

∫ h̄β

0
dt

[

M

2
ẋ2 +M

ω2

2
x2
]}

. (3.480)

The individual terms are obviously expectation values of powers of the Euclidean
interaction

Aint,e ≡
∫ h̄β

0
dτV (x(τ)), (3.481)
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calculated within the harmonic-oscillator partition function Zω. The expectation
values are defined by

〈. . .〉ω ≡ Z−1
ω

∫

Dx . . . exp
{

−1

h̄

∫ h̄β

0
dτ
[

M

2
(ẋ2 + ω2x2)

]

}

. (3.482)

With these, the perturbation series can be written in the form

Z =
(

1− 1

h̄
〈Aint,e〉ω +

1

2!h̄2
〈A2

int,e〉ω − 1

3!h̄3
〈A3

int,e〉ω + . . .
)

Zω. (3.483)

As we shall see immediately, it is preferable to resum the prefactor into an expo-
nential of a series

1− 1

h̄
〈Aint,e〉ω +

1

2!h̄2
〈A2

int,e〉ω − 1

3!h̄3
〈A3

int,e〉ω + . . .

= exp
{

−1

h̄
〈Aint,e〉ω +

1

2!h̄2
〈A2

int,e〉ω,c −
1

3!h̄3
〈A3

int,e〉ω,c + . . .
}

. (3.484)

The expectation values 〈〉ω,c are called cumulants . They are related to the original
expectation values by the cumulant expansion:12

〈A2
int,e〉ω,c ≡ 〈A2

int,e〉ω − 〈Aint,e〉2ω (3.485)

= 〈[Aint,e − 〈Aint,e〉ω]2〉ω,
〈A3

int,e〉ω,c ≡ 〈A3
int,e〉ω − 3〈A2

int,e〉ω〈Aint,e〉ω + 2〈Aint,e〉3ω (3.486)

= 〈[Aint,e − 〈Aint,e〉ω]3〉ω,
... .

The cumulants contribute directly to the free energy F = −(1/β) logZ. From
(3.484) and (3.483) we conclude that the anharmonic potential V (x) shifts the free
energy of the harmonic oscillator Fω = (1/β) log[2 sinh(h̄βω/2)] by

∆F =
1

β

(

1

h̄
〈Aint,e〉ω − 1

2!h̄2
〈A2

int,e〉ω,c +
1

3!h̄3
〈A3

int,e〉ω,c + . . .
)

. (3.487)

Whereas the original expectation values
〈

An
int,e

〉

ω
grow for large β with the nth

power of β, due to contributions of n disconnected diagrams of first order in g
which are integrated independently over τ from 0 to h̄β, the cumulants

〈

An
int,,e

〉

ω
are

proportional to β, thus ensuring that the free energy F has a finite limit, the ground
state energy E0. In comparison with the ground state energy of the unperturbed
harmonic system, the energy E0 is shifted by

∆E0 = lim
β→∞

1

β

(

1

h̄
〈Aint,e〉ω − 1

2!h̄2
〈A2

int,e〉ω,c +
1

3!h̄3
〈A3

int,e〉ω,c + . . .
)

. (3.488)

12Note that the subtracted expressions in the second lines of these equations are particularly
simple only for the lowest two cumulants given here.
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There exists a simple functional formula for the perturbation expansion of the
partition function in terms of the generating functional Zω[j] of the unperturbed
harmonic system. Adding a source term into the action of the path integral (3.479),
we define the generating functional of the interacting theory:

Z[j] =
∮

Dx exp

{

−1

h̄

∫ h̄β

0
dτ
[

M

2

(

ẋ2 + ω2x2
)

+ V (x)− jx
]

}

. (3.489)

The interaction can be brought outside the path integral in the form

Z[j] = e−
1
h̄

∫ h̄β

0
dτV (δ/δj(τ)) Zω[j] . (3.490)

The interacting partition function is obviously

Z = Z[0]. (3.491)

Indeed, after inserting on the right-hand side the explicit path integral expression
for Z[j] from (3.236):

Zω[j] =
∫

Dx exp
{

−1

h̄

∫ h̄β

0
dτ
[

M

2
(ẋ2 + ω2x2)− jx

]

}

, (3.492)

and expanding the exponential in the prefactor

e−
1
h̄

∫ h̄β

0
dτV (δ/δj(τ)) = 1− 1

h̄

∫ h̄β

0
dτV (δ/δj(τ))

+
1

2!h̄2

∫ h̄β

0
dτ2V (δ/δj(τ2))

∫ h̄β

0
dτ1V (δ/δj(τ1)) (3.493)

− 1

3!h̄3

∫ h̄β

0
dτ3V (δ/δj(τ3))

∫ h̄β

0
dτ2V (δ/δ(τ2))

∫ h̄β

0
dτ1V (δ/δ(τ1)) + . . . ,

the functional derivatives of Z[j] with respect to the source j(τ) generate inside
the path integral precisely the expansion (3.483), whose cumulants lead to formula
(3.487) for the shift in the free energy.

Before continuing, let us mention that the partition function (3.479) can, of
course, be viewed as a generating functional for the calculation of the expectation
values of the action and its powers. We simply have to form the derivatives with
respect to h̄−1:

〈An〉 = Z−1 ∂n

∂h̄−1nZω[j]
∣

∣

∣

∣

h̄−1=0
. (3.494)

For a harmonic oscillator where Z is given by (3.245), this yields

〈A〉 = lim
h̄→∞

Z−1
ω h̄2

∂

∂h̄
Zω = lim

h̄→∞
h̄

h̄ωβ

2 sinh h̄ωβ/2
= 0. (3.495)

The same result is, incidentally, obtained by calculating the expectation value of the
action with analytic regularization:

〈

ẋ2(τ)
〉

ω
+ ω2

〈

x2(τ)
〉

ω
=
∫

dω′

2π

ω′2

ω′2 + ω2
+
∫

dω′

2π

ω2

ω′2 + ω2
=
∫

dω′

2π
= 0. (3.496)

The integral vanishes by Veltman’s rule (2.508).
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3.18 Rayleigh-Schrödinger and Brillouin-Wigner
Perturbation Expansion

The expectation values in formula (3.487) can be evaluated by means of the so-
called Rayleigh-Schrödinger perturbation expansion, also referred to as old-fashioned
perturbation expansion. This expansion is particularly useful if the potential V (x)
is not a polynomial in x. Examples are V (x) = δ(x) and V (x) = 1/x. In these two
cases the perturbation expansions can be summed to all orders, as will be shown
for the first example in Section 9.5. For the second example the reader is referred
to the literature.13 We shall explicitly demonstrate the procedure for the ground
state and the excited energies of an anharmonic oscillator. Later we shall also give
expansions for scattering amplitudes.

To calculate the free-energy shift ∆F in Eq. (3.487) to first order in V (x), we
need the expectation

〈Aint,e〉ω ≡ Z−1
ω

∫ h̄β

0
dτ1

∫

dxdx1(x h̄β|x1 τ1)ωV (x1)(x1τ1|x 0)ω. (3.497)

The time evolution amplitude on the right describes the temporal development of
the harmonic oscillator located initially at the point x, from the imaginary time 0
up to τ1. At the time τ1, the state is subject to the interaction depending on its
position x1 = x(τ1) with the amplitude V (x1). After that, the state is carried to the
final state at the point x by the other time evolution amplitude.

To second order we have to calculate the expectation in V (x):

1

2
〈A2

int,e〉ω ≡ Z−1
ω

∫ h̄β

0
dτ2

∫ h̄β

0
dτ1

∫

dxdx2dx1(x h̄β|x2τ2)ωV (x2)
×(x2τ2|x1τ1)ωV (x1)(x1τ1|x 0)ω. (3.498)

The integration over τ1 is taken only up to τ2 since the contribution with τ1 > τ2
would merely render a factor 2.

The explicit evaluation of the integrals is facilitated by the spectral expansion
(2.300). The time evolution amplitude at imaginary times is given in terms of theref(2.300)

lab(x2.206)
est(2.206)

eigenstates ψn(x) of the harmonic oscillator with the energy En = h̄ω(n+ 1/2):

(xbτb|xaτa)ω =
∞
∑

n=0

ψn(xb)ψ
∗
n(xa)e

−En(τb−τa)/h̄. (3.499)

The same type of expansion exists also for the real-time evolution amplitude.
This leads to the Rayleigh-Schrödinger perturbation expansion for the energy shifts
of all excited states, as we now show.

The amplitude can be projected onto the eigenstates of the harmonic oscillator.
For this, the two sides are multiplied by the harmonic wave functions ψ∗

n(xb) and

13M.J. Goovaerts and J.T. Devreese, J. Math. Phys. 13, 1070 (1972).
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ψn(xa) of quantum number n and integrated over xb and xa, respectively, resulting
in the expansion

∫

dxbdxaψ
∗
n(xb)(xbtb|xata)ψn(xa)=

∫

dxbdxaψ
∗
n(xb)(xbtb|xata)ωψn(xa)

×
(

1 +
i

h̄
〈n|Aint|n〉ω − 1

2!h̄2
〈n|A2

int|n〉ω − i

3!h̄3
〈n|A3

int|n〉ω + . . .
)

, (3.500)

with the interaction

Aint ≡ −
∫ tb

ta
dt V (x(t)). (3.501)

The expectation values are defined by

〈n| . . . |n〉ω ≡ Z−1
QM,ω,n

∫

dxbdxaψ
∗
n(xb)

(

∫ x(tb)=xb

x(ta)=xa

Dx . . . eiAω/h̄

)

ψn(xa), (3.502)

where
ZQM,ω,n ≡ e−iω(n+1/2)(tb−ta) (3.503)

is the projection of the quantum-mechanical partition function of the harmonic
oscillator

ZQM,ω =
∞
∑

n=0

e−iω(n+1/2)(tb−ta)

[see (2.42)] onto the nth excited state. ref(2.42)
lab(2.24)
est(2.26)

The expectation values are calculated as in (3.497), (3.498). To first order in
V (x), one has

〈n|Aint|n〉ω ≡ −Z−1
QM,ω,n

∫ tb

ta
dt1

∫

dxbdxadx1ψ
∗
n(xb)(xbtb|x1t1)ω

× V (x1)(x1t1|xata)ωψn(xa). (3.504)

The time evolution amplitude on the right-hand side describes the temporal de-
velopment of the initial state ψn(xa) from the time ta to the time t1, where the
interaction takes place with an amplitude −V (x1). After that, the time evolution
amplitude on the left-hand side carries the state to ψ∗

n(xb).
To second order in V (x), the expectation value is given by the double integral

1

2
〈n|A2

int|n〉ω ≡ Z−1
QM,ω,n

∫ tb

ta
dt2

∫ t2

ta
dt1

∫

dxbdxadx2dx1

×ψ∗
n(xb)(xbtb|x2t2)ωV (x2)(x2t2|x1t1)ωV (x1)(x1t1|xata)ωψn(xa). (3.505)

As in (3.498), the integral over t1 ends at t2.
By analogy with (3.484), we resum the corrections in (3.500) to bring them into

the exponent:

1 +
i

h̄
〈n|Aint|n〉ω − 1

2!h̄2
〈n|A2

int|n〉ω − i

3!h̄3
〈n|A3

int|n〉ω + . . . (3.506)

= exp
{

i

h̄
〈n|Aint|n〉ω − 1

2!h̄2
〈n|A2

int|n〉ω,c −
i

3!h̄3
〈n|A3

int|n〉ω,c + . . .
}

.
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The cumulants in the exponent are

〈n|A2
int|n〉ω,c ≡ 〈n|A2

int|n〉ω − 〈n|Aint|n〉2ω
= 〈n|[Aint − 〈n|Aint|n〉ω]2|n〉ω, (3.507)

〈n|A3
int|n〉ω,c ≡ 〈n|A3

int|n〉ω − 3〈n|A2
int|n〉ω〈n|Aint|n〉ω + 2〈n|Aint|n〉3ω

= 〈n|[Aint − 〈n|Aint|n〉ω]3|n〉ω, (3.508)
...

.

From (3.506), we obtain the energy shift of the nth oscillator energy

∆En = lim
tb−ta→∞

ih̄

tb − ta

{

i

h̄
〈n|Aint|n〉ω − 1

2!h̄2
〈n|A2

int|n〉ω,c

− i

3!h̄3
〈n|A3

int|n〉ω,c + . . .
}

, (3.509)

which is a generalization of formula (3.488) which was valid only for the ground state
energy. At n = 0, the new formula goes over into (3.488), after the usual analytic
continuation of the time variable.

The cumulants can be evaluated further with the help of the real-time version
of the spectral expansion (3.499):

(xbtb|xata)ω =
∞
∑

n=0

ψn(xb)ψ
∗
n(xa)e

−iEn(tb−ta)/h̄. (3.510)

To first order in V (x), it leads to

〈n|Aint|n〉ω ≡ −
∫ tb

ta
dt
∫

dxψ∗
n(x)V (x)ψn(x) ≡ −(tb − ta)Vnn. (3.511)

To second order in V (x), it yields

1

2
〈n|A2

int|n〉ω ≡ Z−1
QM,ω,n

∫ tb

ta
dt2

∫ t2

ta
dt1 (3.512)

×
∑

k

e−iEn(tb−t2)/h̄−iEk(t2−t1)/h̄−iEn(t1−ta)/h̄VnkVkn.

The right-hand side can also be written as

∫ tb

ta
dt2

∫ t2

ta
dt1

∑

k

ei(En−Ek)t2/h̄+i(Ek−En)t1/h̄VnkVkn (3.513)

and becomes, after the time integrations,

−
∑

k

VnkVkn
Ek −En

{

ih̄(tb − ta)−
h̄2

En − Ek

[

ei(En−Ek)(tb−ta)/h̄−1
]

}

.

(3.514)
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As it stands, the sum makes sense only for the Ek 6= En -terms. In these, the second
term in the curly brackets can be neglected in the limit of large time differences
tb − ta. The term with Ek = En must be treated separately by doing the integral
directly in (3.513). This yields

VnnVnn
(tb − ta)

2

2
, (3.515)

so that

1

2
〈n|A2

int|n〉ω = −
∑

m6=n

VnmVmn

Em −En
ih̄(tb − ta) + VnnVnn

(tb − ta)
2

2
. (3.516)

The same result could have been obtained without the special treatment of the Ek =
En -term by introducing artificially an infinitesimal energy difference Ek − En = ǫ
in (3.514), and by expanding the curly brackets in powers of tb − ta.

When going over to the cumulants 1
2
〈n|A2

int|n〉ω,c according to (3.507), the k = n -
term is eliminated and we obtain

1

2
〈n|A2

int|n〉ω,c = −
∑

k 6=n

VnkVkn
Ek −En

ih̄(tb − ta). (3.517)

For the energy shifts up to second order in V (x), we thus arrive at the simple formula

∆1En +∆2En = Vnn −
∑

k 6=n

VnkVkn
Ek − En

. (3.518)

The higher expansion coefficients become rapidly complicated. The correction of
third order in V (x), for example, is

∆3En =
∑

k 6=n

∑

l 6=n

VnkVklVln
(Ek − En)(El − En)

− Vnn
∑

k 6=n

VnkVkn
(Ek −En)2

. (3.519)

For comparison, we recall the well-known formula of Brillouin-Wigner equation14

∆En = R̄nn(En +∆En), (3.520)

where R̄nn(E) are the diagonal matrix elements 〈n| ˆ̄R(E)|n〉 of the level shift operator
ˆ̄R(E) which solves the integral equation

ˆ̄R(E) = V̂ + V̂
1− P̂n

E − Ĥω

ˆ̄R(E). (3.521)

The operator P̂n ≡ |n〉〈n| is the projection operator onto the state |n〉. The factors
1 − P̂n ensure that the sums over the intermediate states exclude the quantum

14L. Brillouin and E.P. Wigner, J. Phys. Radium 4, 1 (1933); M.L. Goldberger and K.M. Watson,
Collision Theory, John Wiley & Sons, New York, 1964, pp. 425–430.
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number n of the state under consideration. The integral equation is solved by the
series expansion in powers of V̂ :

ˆ̄R(E) = V̂ + V̂
1− P̂n

E − Ĥω

V̂ + V̂
1− P̂n

E − Ĥω

V̂
1− P̂n

E − Ĥω

V̂ + . . . . (3.522)

Up to the third order in V̂ , Eq. (3.520) leads to the Brillouin-Wigner perturbation

expansion

E −En = Rnn(E) = Vnn +
∑

k 6=n

VnkVkn
E −Ek

+
∑

k 6=n

∑

l 6=n

VnkVklVln
(E −Ek)(E − El)

+ . . . , (3.523)

which is an implicit equation for ∆En = E − En. The Brillouin-Wigner equation
(3.520) may be converted into an explicit equation for the level shift ∆En:

∆En = Rnn(En) +Rnn(En)R
′
nn(En)+[Rnn(En)R

′
nn(En)

2 + 1
2R

2
nn(En)R

′′
nn(En)]

+[Rnn(En)R
′
nn(En)

3+ 3
2R

2
nn(En)R

′
nn(En)R

′′
nn(En)+ 1

6R
3
nn(En)R

′′′
nn(En)]+ . . . .(3.524)

Inserting (3.523) on the right-hand side, we recover the standard Rayleigh-

Schrödinger perturbation expansion of quantum mechanics,which coincides precisely
with the above perturbation expansion of the path integral whose first three terms
were given in (3.518) and (3.519). Note that starting from the third order, the
explicit solution (3.524) for the level shift introduces more and more extra dis-
connected terms with respect to the simple systematics in the Brillouin-Wigner
expansion (3.523).

For arbitrary potentials, the calculation of the matrix elements Vnk can become
quite tedious. A simple technique to find them is presented in Appendix 3A.

The calculation of the energy shifts for the particular interaction V (x) = gx4/4
is described in Appendix 3B. Up to order g3, the result is

∆En =
h̄ω

2
(2n+ 1) +

g

4
3(2n2 + 2n+ 1)a4

−
(

g

4

)2

2(34n3 + 51n2 + 59n+ 21)a8
1

h̄ω
(3.525)

+
(

g

4

)3

4 · 3(125n4 + 250n3 + 472n2 + 347n+ 111)a12
1

h̄2ω2
.

The perturbation series for this as well as arbitrary polynomial potentials can
be carried out to high orders via recursion relations for the expansion coefficients.
This is done in Appendix 3C.

3.19 Level-Shifts and Perturbed Wave Functions

from Schrödinger Equation

It is instructive to rederive the perturbation expansion from ordinary operator Schrödinger theory.
This derivation provides us also with the perturbed eigenstates to any desired order.
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The Hamiltonian operator Ĥ is split into a free and an interacting part

Ĥ = Ĥ0 + V̂ . (3.526)

Let |n〉 be the eigenstates of Ĥ0 and |ψ(n)〉 those of Ĥ :

Ĥ0|n〉 = E
(n)
0 |n〉, Ĥ |ψ(n)〉 = E(n)|ψ(n)〉. (3.527)

We shall assume that the two sets of states |n〉 and |ψ(n)〉 are orthogonal sets, the first with unit
norm, the latter normalized by scalar products

a(n)n ≡ 〈n|ψ(n)〉 = 1. (3.528)

Due to the completeness of the states |n〉, the states |ψ(n)〉 can be expanded as

|ψ(n)〉 = |n〉 +
∑

m 6=n

a(n)m |m〉, (3.529)

where

a(n)m ≡ 〈m|ψ(n)〉 (3.530)

are the components of the interacting states in the free basis. Projecting the right-hand Schrödinger
equation in (3.527) onto 〈m| and using (3.530), we obtain

E
(m)
0 a(n)m + 〈m|V̂ |ψ(n)〉 = E(n)a(n)m . (3.531)

Inserting here (3.529), this becomes

E
(m)
0 a(n)m + 〈m|V̂ |n〉 +

∑

k 6=n

a
(n)
k 〈m|V̂ |k〉 = E(n)a(n)m , (3.532)

and for m = n, due to the special normalization (3.528),

E
(n)
0 + 〈n|V̂ |n〉 +

∑

k 6=n

a
(n)
k 〈n|V̂ |k〉 = E(n). (3.533)

Multiplying this equation with a
(n)
m and subtracting it from (3.532), we eliminate the unknown

exact energy E(n), and obtain a set of coupled algebraic equations for a
(n)
m :

a(n)m =
1

E
(n)
0 − E

(m)
0



〈m− a(n)m n|V̂ |n〉 +
∑

k 6=n

a
(n)
k 〈m− a(n)m n|V̂ |k〉



 , (3.534)

where we have introduced the notation 〈m − a
(n)
m n| for the combination of states 〈m| − a

(n)
m 〈n| ,

for brevity.
This equation can now easily be solved perturbatively order by order in powers of the inter-

action strength. To count these, we replace V̂ by gV̂ and expand a
(n)
m as well as the energies E(n)

in powers of g as:

a(n)m (g) =

∞
∑

l=1

a
(n)
m,l(−g)l (m 6= n), (3.535)

and

E(n) = E
(n)
0 −

∞
∑

l=1

(−g)lE(n)
l . (3.536)
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Inserting these expansions into (3.533), and equating the coefficients of g, we immediately find the
perturbation expansion of the energy of the nth level

E
(n)
1 = 〈n|V̂ |n〉, (3.537)

E
(n)
l =

∑

k 6=n

a
(n)
k,l−1〈n|V̂ |k〉 l > 1. (3.538)

The expansion coefficients a
(n)
m,l are now determined by inserting the ansatz (3.535) into (3.534).

This yields

a
(n)
m,1 =

〈m|V̂ |n〉
E

(m)
0 − E

(n)
0

, (3.539)

and for l > 1:

a
(n)
m,l=

1

E
(m)
0 −E(n)

0



−a(n)m,l−1〈n|V̂ |n〉+
∑

k 6=n

a
(n)
k,l−1〈m|V̂ |k〉−

l−2
∑

l′=1

a
(n)
m,l′

∑

k 6=n

a
(n)
k,l−1−l′〈n|V̂ |k〉



.

(3.540)

Using (3.537) and (3.538), this can be simplified to

a
(n)
m,l =

1

E
(m)
0 −E(n)

0





∑

k 6=n

a
(n)
k,l−1〈m|V̂ |k〉 −

l−1
∑

l′=1

a
(n)
m,l′E

(n)
l−l′



 . (3.541)

Together with (3.537), (3.538), and (3.539), this is a set of recursion relations for the coefficients

a
(n)
m,l and E

(n)
l .

The recursion relations allow us to recover the perturbation expansions (3.518) and (3.519) for
the energy shift. The second-order result (3.518), for example, follows directly from (3.540) and
(3.541), the latter giving

E
(n)
2 =

∑

k 6=n

a
(n)
k,1〈n|V̂ |k〉 =

∑

k 6=n

〈k|V̂ |n〉〈n|V̂ |k〉
E

(k)
0 − E

(n)
0

. (3.542)

If the potential V̂ = V (x̂) is a polynomial in x̂, its matrix elements 〈n|V̂ |k〉 are nonzero only for n
in a finite neighborhood of k, and the recursion relations consist of finite sums which can be solved
exactly.

3.20 Calculation of Perturbation Series via Feynman
Diagrams

The expectation values in formula (3.487) can be evaluated also in another way
which can be applied to all potentials which are simple polynomials pf x. Then the
partition function can be expanded into a sum of integrals associated with certain
Feynman diagrams .

The procedure is rooted in the Wick expansion of correlation functions in Sec-
tion 3.10. To be specific, we assume the anharmonic potential to have the form

V (x) =
g

4
x4. (3.543)

The graphical expansion terms to be found will be typical for all so-called ϕ4-
theories of quantum field theory.
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To calculate the free energy shift (3.487) to first order in g, we have to evaluate
the harmonic expectation of Aint,e. This is written as

〈Aint,e〉ω =
g

4

∫ h̄β

0
dτ〈x4(τ)〉ω. (3.544)

The integrand contains the correlation function

〈x(τ1)x(τ2)x(τ3)x(τ4)〉ω = G
(4)
ω2 (τ1, τ2, τ3, τ4)

at identical time arguments. According to the Wick rule (3.305), this can be ex-
panded into the sum of three pair terms

G
(2)
ω2 (τ1, τ2)G

(2)
ω2 (τ3, τ4) +G

(2)
ω2 (τ1, τ3)G

(2)
ω2 (τ2, τ4) +G

(2)
ω2 (τ1, τ4)G

(2)
ω2 (τ2, τ3),

where G
(2)
ω2 (τ, τ ′) are the periodic Euclidean Green functions of the harmonic oscil-

lator [see (3.304) and (3.251)]. The expectation (3.544) is therefore equal to the
integral

〈Aint,e〉ω = 3
g

4

∫ h̄β

0
dτG

(2)
ω2 (τ, τ)

2. (3.545)

The right-hand side is pictured by the Feynman diagram

3

.

Because of its shape this is called a two-loop diagram. In general, a Feynman dia-
gram consists of lines meeting at points called vertices . A line connecting two points
represents the Green function G

(2)
ω2 (τ1, τ2). A vertex indicates a factor g/4h̄ and a

variable τ to be integrated over the interval (0, h̄β). The present simple diagram has
only one point, and the τ -arguments of the Green functions coincide. The number
underneath counts how often the integral occurs. It is called the multiplicity of the
diagram.

To second order in V (x), the harmonic expectation to be evaluated is

〈A2
int,e〉ω =

(

g

4

)2 ∫ h̄β

0
dτ2

∫ h̄β

0
dτ1〈x4(τ2)x4(τ1)〉ω. (3.546)

The integral now contains the correlation function G
(8)
ω2 (τ1, . . . , τ8) with eight time

arguments. According to the Wick rule, it decomposes into a sum of 7!! = 105
products of four Green functions G

(2)
ω2 (τ, τ ′). Due to the coincidence of the time ar-

guments, there are only three different types of contributions to the integral (3.546):

〈A2
int,e〉ω =

(

g

4

)2 ∫ h̄β

0
dτ2

∫ h̄β

0
dτ1

[

72G
(2)
ω2 (τ2, τ2)G

(2)
ω2 (τ2, τ1)

2G
(2)
ω2 (τ1, τ1)

+24G
(2)
ω2 (τ2, τ1)

4 + 9G
(2)
ω2 (τ2, τ2)

2G
(2)
ω2 (τ1, τ1)

2
]

. (3.547)

The integrals are pictured by the following Feynman diagrams composed of three
loops:
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.

72 24 9

They contain two vertices indicating two integration variables τ1, τ2. The first two
diagrams with the shape of three bubbles in a chain and of a watermelon, respec-
tively, are connected diagrams, the third is disconnected . When going over to the
cumulant 〈A2

int,e〉ω,c, the disconnected diagram is eliminated.
To higher orders, the counting becomes increasingly tedious and it is worth

developing computer-algebraic techniques for this purpose. Figure 3.7 shows the
diagrams for the free-energy shift up to four loops. The cumulants eliminate precisely
all disconnected diagrams. This diagram-rearranging property of the logarithm is
very general and happens to every order in g, as can be shown with the help of
functional differential equations.

βF = βFω +
3

− 1

2!

(

72

+

24

)

+
1

3!

(

2592

+

1728

+

3456

+

1728

)

+ . . .

Figure 3.7 Perturbation expansion of free energy up to order g3 (four loops).

The lowest-order term βFω containing the free energy of the harmonic oscillator
[recall Eqs. (3.245) and (2.526)]

Fω =
1

β
log

(

2 sinh
βh̄ω

2

)

(3.548)

is often represented by the one-loop diagram

βFω = −1

2
Tr logG

(2)
ω2 = − 1

2h̄β

∫ h̄β

0
dτ
[

logG
(2)
ω2

]

(τ, τ) = −1

2
. (3.549)

With it, the graphical expansion in Fig. 3.7 starts more systematically with one
loop rather than two. The systematics is, however, not perfect since the line in the
one-loop diagram does not show that integrand contains a logarithm. In addition,
the line is not connected to any vertex.

All τ -variables in the diagrams are integrated out. The diagrams have no open
lines and are called vacuum diagrams .

The calculation of the diagrams in Fig. 3.7 is simplified with the help of a fac-
torization property: If a diagram consists of two subdiagrams touching each other
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at a single vertex, its Feynman integral factorizes into those of the subdiagrams.
Thanks to this property, we only have to evaluate the following integrals (omitting
the factors g/4h̄ for each vertex)

=
∫ h̄β

0
dτG

(2)
ω2 (τ, τ) = h̄βa2,

=
∫ h̄β

0

∫ h̄β

0
dτ1dτ2 G

(2)
ω2 (τ1, τ2)

2 ≡ h̄β
1

ω
a42,

=
∫ h̄β

0

∫ h̄β

0

∫ h̄β

0
dτ1dτ2dτ3 G

(2)
ω2 (τ1, τ2)G

(2)
ω2 (τ2, τ3)G

(2)
ω2 (τ3, τ1)

≡ h̄β
(

1

ω

)2

a63,

=
∫ h̄β

0

∫ h̄β

0
dτ1dτ2 G

(2)
ω2 (τ1, τ2)

4 ≡ h̄β
1

ω
a82,

=
∫ h̄β

0

∫ h̄β

0

∫ h̄β

0
dτ1dτ2dτ3 G

(2)
ω2 (τ1, τ2)G

(2)
ω2 (τ2, τ3)G

(2)
ω2 (τ3, τ1)

3

≡ h̄β
(

1

ω

)2

a103 ,

=
∫ h̄β

0

∫ h̄β

0

∫ h̄β

0
dτ1dτ2dτ3 G

(2)
ω2 (τ1, τ2)

2G
(2)
ω2 (τ2, τ3)

2G
(2)
ω2 (τ3, τ1)

2

≡ h̄β
(

1

ω

)2

a123 . (3.550)

Note that in each expression, the last τ -integral yields an overall factor h̄β, due to
the translational invariance along the τ -axis. The others give rise to a factor 1/ω,
for dimensional reasons. The temperature-dependent quantities a2LV are labeled by
the number of vertices V and lines L of the associated diagrams. Their dimension
is length to the nth power [corresponding to the dimension of the n x(τ)-variables
in the diagram]. For more than four loops, there can be more than one diagram for
each V and L, such that one needs an additional label in a2LV to specify the diagram
uniquely. Each a2LV may be written as a product of the basic length scale (h̄/Mω)L

multiplied by a function of the dimensionless variable x ≡ βh̄ω:

a2LV =

(

h̄

Mω

)L

α2L
V (x). (3.551)

The functions α2L
V (x) are listed in Appendix 3D.

As an example for the application of the factorization property, take the Feyn-
man integral of the second third-order diagram in Fig. 3.7 (called a “daisy” diagram
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because of its shape):

=
∫ h̄β

0

∫ h̄β

0

∫ h̄β

0
dτ1dτ2dτ3G

(2)
ω2 (τ1, τ2)G

(2)
ω2 (τ2, τ3)G

(2)
ω2 (τ3, τ1)

×G
(2)
ω2 (τ1, τ1)G

(2)
ω2 (τ2, τ2)G

(2)
ω2 (τ3, τ3).

It decomposes into a product between the third integral in (3.550) and three powers
of the first integral:

→ ×
3
.

Thus we can immediately write

= h̄β
(

1

ω

)2

a63(a
2)3.

In terms of a2LV , the free energy becomes

F = Fω +
g

4
3a4 − 1

2!h̄ω

(

g

4

)2 (

72a2a42a
2 + 24a82

)

(3.552)

+
1

3!h̄2ω2

(

g

4

)3 [

2592a2(a42)
2a2 + 1728a63(a

2)3 + 3456a103 a
2 + 1728a123

]

+ . . . .

In the limit T → 0, the integrals (3.550) behave like

a42 → a4, a63 → 3

2
a6,

a82 → 1

2
a8, a103 → 5

8
a10,

a123 → 3

8
a12,

(3.553)

and the free energy reduces to

F =
h̄ω

2
+
g

4
3a4 −

(

g

4

)2

42a8
1

h̄ω
+
(

g

4

)3

4 · 333a12
(

1

h̄ω

)2

+ . . . . (3.554)

In this limit, it is simpler to calculate the integrals (3.550) directly with the zero-

temperature limit of the Green function (3.304), which is G
(2)
ω2 (τ, τ ′) = a2e−ω|τ−τ ′|

with a2 = h̄/2ωM [see (3.251)]. The limits of integration must, however, be shifted

by half a period to
∫ h̄β/2
−h̄β/2 dτ before going to the limit, so that one evaluates

∫∞
−∞ dτ

rather than
∫∞
0 dτ (the latter would give the wrong limit since it misses the left-hand

side of the peak at τ = 0). Before integration, the integrals are conveniently split
as in Eq. (3D.1).
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3.21 Perturbative Definition of Interacting Path Integrals

In Section 2.15 we have seen that it is possible to define a harmonic path integral
without time slicing by dimensional regularization. With the techniques developed
so far, this definition can trivially be extended to path integrals with interactions, if
these can be treated perturbatively. We recall that in Eq. (3.483), the partition func-
tion of an interacting system can be expanded in a series of harmonic expectation
values of powers of the interaction. The procedure is formulated most conveniently
in terms of the generating functional (3.489) using formula (3.490) for the generat-
ing functional with interactions and Eq. (3.491) for the associated partition. The
harmonic generating functional on the right-hand side of (3.490),

Zω[j] =
∮

Dx exp
{

−1

h̄

∫ h̄β

0
dτ
[

M

2
(ẋ2 + ω2x2)− jx

]

}

, (3.555)

can be evaluated with analytic regularization as described in Section (2.15) and
yields, after a quadratic completion [recall (3.246), (3.247)]:

Zω[j] =
1

2 sin(ωh̄β/2)
exp

{

1

2Mh̄

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′ j(τ)Gp

ω2,e(τ − τ ′)j(τ ′)

}

, (3.556)

where Gp
ω2,e(τ) is the periodic Green function (3.251)

Gp
ω2,e(τ) =

1

2ω

coshω(τ − h̄β/2)

sinh(βh̄ω/2)
, τ ∈ [0, h̄β]. (3.557)

As a consequence, Formula (3.490) for the generating functional of an interacting
theory

Z[j] = e−
1
h̄

∫ h̄β

0
dτV (h̄δ/δj(τ)) Zω[j] , (3.558)

is completely defined by analytic regularization. By expanding the exponential pre-
factor as in Eq. (3.493), the full generating functional is obtained from the harmonic
one without any further path integration. Only functional differentiations are re-
quired to find the generating functional of all interacting interacting correlation
functions Z[j] from the harmonic one Zω[j].

This procedure yields the perturbative definition of arbitrary path integrals.
It is widely used in the quantum field theory of particle physics15 and critical
phenomena16 It is also the basis for an important extension of the theory of dis-
tributions to be discussed in detail in Sections 10.6–10.11.

It must be realized, however, that the perturbative definition is not a complete
definition. Important contributions to the path integral may be missing: all those

15C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill (1985).
16H. Kleinert and V. Schulte-Frohlinde, Critical Properties of φ4-Theories , World Scientific,

Singapore 2001, pp. 1–487 (www.physik.fu-berlin.de/~kleinert/re.html#b8).
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which are not expandable in powers of the interaction strength g. Such contributions
are essential in understanding many physical phenomena, for example, tunneling, to
be discussed in Chapter 17. Interestingly, however, information on such phenomena
can, with appropriate resummation techniques to be developed in Chapter 5, also
be extracted from the large-order behavior of the perturbation expansions, as will
be shown in Subsection 17.10.4.

3.22 Generating Functional of Connected Correlation
Functions

In Section 3.10 we have seen that the correlation functions obtained from the func-
tional derivatives of Z[j] via relation (3.298) contain many disconnected parts. The
physically relevant free energy F [j] = −kBT logZ[j], on the other hand, contains
only in the connected parts of Z[j]. In fact, from statistical mechanics we know that
meaningful description of a very large thermodynamic system can only be given in
terms of the free energy which is directly proportional to the total volume V . The
partition function Z = e−F/kBT has no meaningful infinite-volume limit, also called
the thermodynamic limit , since it contains a power series in V . Only the free en-
ergy density f ≡ F/V has an infinite-volume limit. The expansion of Z[j] diverges
therefore for V → ∞. This is why in thermodynamics we always go over to the free
energy density by taking the logarithm of the partition function. This is calculated
entirely from the connected diagrams.

Due to this thermodynamic experience we expect the logarithm of Z[j] to provide
us with a generating functional for all connected correlation functions. To avoid
factors kBT we define this functional as

W [j] = logZ[j], (3.559)

and shall now prove that the functional derivatives of W [j] produce precisely the
connected parts of the Feynman diagrams for each correlation function.

Consider the connected correlation functionsG(n)
c (τ1, . . . , τn) defined by the func-

tional derivatives

G(n)
c (τ1, . . . , τn) =

δ

δj(τ1)
· · · δ

δj(τn)
W [j] . (3.560)

Ultimately, we shall be interested only in these functions with zero external current,
where they reduce to the physically relevant connected correlation functions. For the
general development in this section, however, we shall consider them as functionals
of j(τ), and set j = 0 only at the end.

Of course, given all connected correlation functions G(n)
c (τ1, . . . , τn), the full

correlation functions G(n) (τ1, . . . , τn) in Eq. (3.298) can be recovered via simple
composition laws from the connected ones. In order to see this clearly, we shall
derive the general relationship between the two types of correlation functions in
Section 3.22.2. First, we shall prove the connectedness property of the derivatives
(3.560).
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3.22.1 Connectedness Structure of Correlation Functions

We first prove that the generating functional W [j] collects only connected diagrams
in its Taylor coefficients δnW/δj(τ1) . . . δj(τn). Later, after Eq. (3.588), we shall see
that these functional derivatives comprise all connected diagrams in G(n)(τ1, . . . , τn).

Let us write the path integral for the generating functional Z[j] as follows (here
we use natural units with h̄ = 1):

Z[j] =
∫

Dx e−Ae[x,j]/h̄, (3.561)

with the action

Ae[x, j] =
∫ h̄β

0
dτ
[

M

2

(

ẋ2 + ω2x2
)

+ V (x)− j(τ)x(τ)
]

. (3.562)

In the following structural considerations we shall use natural physical units in which
h̄ = 1, for simplicity of the formulas. By analogy with the integral identity

∫

dx
d

dx
e−F (x) = 0,

which holds by partial integration for any function F (x) which goes to infinity for
x→ ±∞, the functional integral satisfies the identity

∫

Dx δ

δx(τ)
e−Ae[x,j] = 0, (3.563)

since the action Ae[x, j] goes to infinity for x → ±∞. Performing the functional
derivative, we obtain

∫

Dx δAe[x, j]

δx(τ)
e−Ae[x,j] = 0. (3.564)

To be specific, let us consider the anharmonic oscillator with potential V (x) =
λx4/4!. We have chosen a coupling constant λ/4! instead of the previous g in (3.543)
since this will lead to more systematic numeric factors. The functional derivative of
the action yields the classical equation of motion

δAe[x, j]

δx(τ)
=M(−ẍ + ω2x) +

λ

3!
x3 − j = 0, (3.565)

which we shall write as

δAe[x, j]

δx(τ)
= G−1

0 x+
λ

3!
x3 − j = 0, (3.566)

where we have set G0(τ, τ
′) ≡ G(2) to get free space for upper indices. With this

notation, Eq. (3.564) becomes

∫

Dx
{

G−1
0 x(τ) +

λ

3!
x3(τ)− j(τ)

}

e−Ae[x,j] = 0. (3.567)
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We now express the paths x(τ) as functional derivatives with respect to the source
current j(τ), such that we can pull the curly brackets in front of the integral. This
leads to the functional differential equation for the generating functional Z[j]:







G−1
0

δ

δj(τ)
+
λ

3!

[

δ

δj(τ)

]3

− j(τ)







Z[j] = 0. (3.568)

With the short-hand notation

Zj(τ1)j(τ2)...j(τn)[j] ≡
δ

δj(τ1)

δ

δj(τ2)
· · · δ

δj(τn)
Z[j], (3.569)

where the arguments of the currents will eventually be suppressed, this can be
written as

G−1
0 Zj(τ) +

λ

3!
Zj(τ)j(τ)j(τ) − j(τ) = 0. (3.570)

Inserting here (3.559), we obtain a functional differential equation for W [j]:

G−1
0 Wj +

λ

3!

(

Wjjj + 3WjjWj +W 3
j

)

− j = 0. (3.571)

We have employed the same short-hand notation for the functional derivatives of
W [j] as in (3.569) for Z[j],

Wj(τ1)j(τ2)...j(τn)[j] ≡
δ

δj(τ1)

δ

δj(τ2)
· · · δ

δj(τn)
W [j], (3.572)

suppressing the arguments τ1, . . . , τn of the currents, for brevity. Multiplying (3.571)
functionally by G0 gives

Wj = − λ

3!
G0

(

Wjjj + 3WjjWj +W 3
j

)

+G0 j. (3.573)

We have omitted the integral over the intermediate τ ’s, for brevity. More specifically,
we have written G0 j for

∫

dτ ′G0(τ, τ
′)j(τ ′). Similar expressions abbreviate all func-

tional products. This corresponds to a functional version of Einstein’s summation

convention.
Equation (3.573) may now be expressed in terms of the one-point correlation

function

G(1)
c = Wj, (3.574)

defined in (3.560), as

G(1)
c = − λ

3!
G0

{

G
(1)
c jj + 3G

(1)
c jG

(1)
c +

[

G(1)
c

]3
}

+G0 j. (3.575)
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The solution to this equation is conveniently found by a diagrammatic procedure
displayed in Fig. 3.8. To lowest, zeroth, order in λ we have

G(1)
c = G0 j. (3.576)

From this we find by functional integration the zeroth order generating functional
W0[j]

W0[j] =
∫

Dj G(1)
c =

1

2
jG0j, (3.577)

up to a j-independent constant. Subscripts of W [j] indicate the order in the inter-
action strength λ.

Reinserting (3.576) on the right-hand side of (3.575) gives the first-order expres-
sion

G(1)
c = −G0

λ

3!

[

3G0G0j + (G0j)
3
]

+G0j, (3.578)

represented diagrammatically in the second line of Fig. 3.8. Equation (3.578) can be
integrated functionally in j to obtain W [j] up to first order in λ. Diagrammatically,
this process amounts to multiplying each open lines in a diagram by a current j,
and dividing the arising jns by n. Thus we arrive at

W0[j] +W1[j] =
1

2
jG0j −

λ

4
G0 (G0j)

2 − λ

24
(G0j)

4 , (3.579)

Figure 3.8 Diagrammatic solution of recursion relation (3.573) for the generating func-

tional W [j] of all connected correlation functions. First line represents Eq. (3.575), second

(3.578), third (3.579). The remaining lines define the diagrammatic symbols.
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as illustrated in the third line of Fig. 3.8. This procedure can be continued to any
order in λ.

The same procedure allows us to prove that the generating functional W [j] col-
lects only connected diagrams in its Taylor coefficients δnW/δj(x1) . . . δj(xn). For
the lowest two orders we can verify the connectedness by inspecting the third line in
Fig. 3.8. The diagrammatic form of the recursion relation shows that this topological
property remains true for all orders in λ, by induction. Indeed, if we suppose it to
be true for some n, then all G(1)

c inserted on the right-hand side are connected, and
so are the diagrams constructed from these when forming G(1)

c to the next, (n+1)st,
order.

Note that this calculation is unable to recover the value of W [j] at j = 0 which
is an unknown integration constant of the functional differential equation. For the
purpose of generating correlation functions, this constant is irrelevant. We have
seen in Fig. 3.7 that W [0], which is equal to −F/kBT , consists of the sum of all
connected vacuum diagrams contained in Z[0].

3.22.2 Correlation Functions versus Connected Correlation

Functions

Using the logarithmic relation (3.559) between W [j] and Z[j] we can now derive
general relations between the n-point functions and their connected parts. For the
one-point function we find

G(1)(τ) = Z−1[j]
δ

δj(τ)
Z[j] =

δ

δj(τ)
W [j] = G(1)

c (τ). (3.580)

This equation implies that the one-point function representing the ground state
expectation value of the path x(τ) is always connected:

〈x(τ)〉 ≡ G(1)(τ) = G(1)
c (τ) = X. (3.581)

Consider now the two-point function, which decomposes as follows:

G(2)(τ1, τ2) = Z−1[j]
δ

δj(τ1)

δ

δj(τ2)
Z[j]

= Z−1[j]
δ

δj(τ1)

{(

δ

δj(τ2)
W [j]

)

Z[j]

}

= Z−1[j]
{

Wj(τ1)j(τ2) +Wj(τ1)Wj(τ2)

}

Z[j]

= G(2)
c (τ1, τ2) +G(1)

c (τ1)G
(1)
c (τ2) . (3.582)

In addition to the connected diagrams with two ends there are two connected dia-
grams ending in a single line. These are absent in a x4-theory at j = 0 because of
the symmetry of the potential, which makes all odd correlation functions vanish. In
that case, the two-point function is automatically connected.
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For the three-point function we find

G(3) (τ1, τ2, τ3) = Z−1[j]
δ

δj(τ1)

δ

δj(τ2)

δ

δj(τ3)
Z[j]

= Z−1[j]
δ

δj(τ1)

δ

δj(τ2)

{[

δ

δj(τ3)
W [j]

]

Z[j]

}

= Z−1[j]
δ

δj(τ1)

{[

Wj(τ3)j(τ2) +Wj(τ2)Wj(τ3)

]

Z[j]
}

(3.583)

= Z−1[j]
{

Wj(τ1)j(τ2)j(τ3) +
(

Wj(τ1)Wj(τ2)j(τ3) +Wj(τ2)Wj(τ1)j(τ3)

+Wj(τ3)Wj(τ1)j(τ2)

)

+Wj(τ1)Wj(τ2)Wj(τ3)

}

Z[j]

= G(3)
c (τ1, τ2, τ3) +

[

G(1)
c (τ1)G

(2)
c (τ2, τ3) + 2 perm

]

+G(1)
c (τ1)G

(1)
c (τ2)G

(1)
c (τ3),

and for the four-point function

G(4) (τ1, . . . , τ4) = G(4)
c (τ1, . . . , τ4) +

[

G(3)
c (τ1, τ2, τ3)G

(1)
c (τ4) + 3 perm

]

+
[

G(2)
c (τ1, τ2)G

(2)
c (τ3, τ4) + 2 perm

]

+
[

G(2)
c (τ1, τ2)G

(1)
c (τ3)G

(1)
c (τ4) + 5 perm

]

+ G(1)
c (τ1) · · ·G(1)

c (τ4). (3.584)

In the pure x4-theory there are no odd correlation functions, because of the symme-
try of the potential.

For the general correlation function G(n), the total number of terms is most easily
retrieved by dropping all indices and differentiating with respect to j (the arguments
τ1, . . . , τn of the currents are again suppressed):

G(1) = e−W
(

eW
)

j
= Wj = G(1)

c

G(2) = e−W
(

eW
)

jj
=Wjj +Wj

2 = G(2)
c +G(1)

c
2

G(3) = e−W
(

eW
)

jjj
=Wjjj + 3WjjWj +Wj

3 = G(3)
c + 3G(2)

c G(1)
c +G(1)3

c

G(4) = e−W
(

eW
)

jjjj
=Wjjjj + 4WjjjWj + 3Wjj

2 + 6WjjWj
2 +Wj

4

= G(4)
c + 4G(3)

c G(1)
c + 3G(2)2

c + 6G(2)
c G(1)2

c +G(1)4
c . (3.585)

All equations follow from the recursion relation

G(n) = G
(n−1)
j +G(n−1)G(1)

c , n ≥ 2, (3.586)

if one uses G
(n−1)
j̧ = G(n)

c and the initial relation G(1) = G(1)
c . By comparing the

first four relations with the explicit expressions (3.582)–(3.584) we see that the
numerical factors on the right-hand side of (3.585) refer to the permutations of the
arguments τ1, τ2, τ3, . . . of otherwise equal expressions. Since there is no problem in
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reconstructing the explicit permutations we shall henceforth write all composition
laws in the short-hand notation (3.585).

The formula (3.585) and its generalization is often referred to as cluster decom-

position, or also as the cumulant expansion, of the correlation functions.
We can now prove that the connected correlation functions collect precisely all

connected diagrams in the n-point functions. For this we observe that the decompo-
sition rules can be inverted by repeatedly differentiating both sides of the equation
W [j] = logZ[j] functionally with respect to the current j:

G(1)
c = G(1)

G(2)
c = G(2) −G(1)G(1)

G(3)
c = G(3) − 3G(2)G(1) + 2G(1)3

G(4)
c = G(4) − 4G(3)G(1) + 12G(2)G(1)2 − 3G(2)2 − 6G(1)4. (3.587)

Each equation follows from the previous one by one more derivative with respect to
j, and by replacing the derivatives on the right-hand side according to the rule

G
(n)
j = G(n+1) −G(n)G(1). (3.588)

Again the numerical factors imply different permutations of the arguments and the
subscript j denotes functional differentiations with respect to j.

Note that Eqs. (3.587) for the connected correlation functions are valid for sym-
metric as well as asymmetric potentials V (x). For symmetric potentials, the equa-
tions simplify, since all terms involving G(1) = X = 〈x〉 vanish.

It is obvious that any connected diagram contained inG(n) must also be contained
in G(n)

c , since all the terms added or subtracted in (3.587) are products of G
(n)
j s, and

thus necessarily disconnected. Together with the proof in Section 3.22.1 that the
correlation functions G(n)

c contain only the connected parts of G(n), we can now be
sure that G(n)

c contains precisely the connected parts of G(n).

3.22.3 Functional Generation of Vacuum Diagrams

The functional differential equation (3.573) for W [j] contains all information on the
connected correlation functions of the system. However, it does not tell us anything
about the vacuum diagrams of the theory. These are contained in W [0], which
remains an undetermined constant of functional integration of these equations.

In order to gain information on the vacuum diagrams, we consider a modification
of the generating functional (3.561), in which we set the external source j equal to
zero, but generalize the source j(τ) in (3.561) coupled linearly to x(τ) to a bilocal
form K(τ, τ ′) coupled linearly to x(τ)x(τ ′):

Z[K] =
∫

Dx(τ) e−Ae[x,K], (3.589)

where Ae[x,K] is the Euclidean action

Ae[x,K] ≡ A0[x] +Aint[x] +
1

2

∫

dτ
∫

dτ ′ x(τ)K(τ, τ ′)x(τ ′). (3.590)
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When forming the functional derivative with respect to K(τ, τ ′) we obtain the cor-
relation function in the presence of K(τ, τ ′):

G(2)(τ, τ ′) = −2Z−1[K]
δZ

δK(τ, τ ′)
. (3.591)

At the end we shall set K(τ, τ ′) = 0, just as previously the source j. When differ-
entiating Z[K] twice, we obtain the four-point function

G(4)(τ1, τ2, τ3, τ4) = 4Z−1[K]
δ2Z

δK(τ1, τ2)δK(τ3, τ4)
. (3.592)

As before, we introduce the functional W [K] ≡ logZ[K]. Inserting this into (3.591)
and (3.592), we find

G(2)(τ, τ ′) = 2
δW

δK(τ, τ ′)
, (3.593)

G(4)(τ1, τ2, τ3, τ4) = 4

[

δ2W

δK(τ1, τ2)δK(τ3, τ4)
+

δW

δK(τ1, τ2)

δW

δK(τ3, τ4)

]

. (3.594)

With the same short notation as before, we shall use again a subscript K to denote
functional differentiation with respect to K, and write

G(2) = 2WK , G(4) = 4 [WKK +WKWK ] = 4WKK +G(2)G(2). (3.595)

From Eq. (3.585) we know that in the absence of a source j and for a symmetric
potential, G(4) has the connectedness structure

G(4) = G(4)
c + 3G(2)

c G(2)
c . (3.596)

This shows that in contrast to Wjjjj, the derivative WKK does not directly yield a
connected four-point function, but two disconnected parts:

4WKK = G(4)
c + 2G(2)

c G(2)
c , (3.597)

the two-point functions being automatically connected for a symmetric potential.
More explicitly, (3.597) reads

4δ2W

δK(τ1, τ2)δK(τ3, τ4)

= G(4)
c (τ1, τ2, τ3, τ4) +G(2)

c (τ1, τ3)G
(2)
c (τ2, τ4) +G(2)

c (τ1, τ4)G
(2)
c (τ2, τ3). (3.598)

Let us derive functional differential equations for Z[K] and W [K]. By analogy with
(3.563) we start out with the trivial functional differential equation

∫

Dx x(τ) δ

δx(τ ′)
e−Ae[x,K] = −δ(τ − τ ′)Z[K], (3.599)
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which is immediately verified by a functional integration by parts. Performing the
functional derivative yields

∫

Dxx(τ)δAe[x,K]

δx(τ ′)
e−Ae[x,K] = δ(τ − τ ′)Z[K], (3.600)

or

∫

Dx
∫

dτ
∫

dτ ′
{

x(τ)G−1
0 (τ, τ ′)x(τ ′) +

λ

3!
x(τ)x3(τ ′)

}

e−Ae[x,K] = δ(τ − τ ′)Z[K].

(3.601)

For brevity, we have absorbed the source in the free-field correlation function G0:

G0 → [G−1
0 −K]−1. (3.602)

The left-hand side of (3.601) can obviously be expressed in terms of functional
derivatives of Z[K], and we obtain the functional differential equation whose short
form reads

G−1
0 ZK +

λ

3
ZKK =

1

2
Z. (3.603)

Inserting Z[K] = eW [K], this becomes

G−1
0 WK +

λ

3
(WKK +WKWK) =

1

2
. (3.604)

It is useful to reconsider the functional W [K] as a functional W [G0]. Then
δG0/δK = G2

0, and the derivatives of W [K] become

WK = G2
0WG0, WKK = 2G3

0WG0 +G4
0WG0G0 , (3.605)

and (3.604) takes the form

G0WG0 +
λ

3
(G4

0WG0G0 + 2G3
0WG0 +G4

0WG0WG0) =
1

2
. (3.606)

This equation is represented diagrammatically in Fig. 3.9. The zeroth-order solution

G0WG0 = 8
−1

4!

[

λG4
0WG0G0 + 2G0λG

2
0WG0 +WG0G

2
0λG

2
0WG0

]

+
1

2

Figure 3.9 Diagrammatic representation of functional differential equation (3.606). For

the purpose of finding the multiplicities of the diagrams, it is convenient to represent here

by a vertex the coupling strength −λ/4! rather than g/4 in Section 3.20.
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to this equation is obtained by setting λ = 0:

W (0)[G0] =
1

2
Tr log(G0). (3.607)

Explicitly, the right-hand side is equal to the one-loop contribution to the free energy
in Eq. (3.549), apart from a factor −β.

The corrections are found by iteration. For systematic treatment, we writeW [G0]
as a sum of a free and an interacting part,

W [G0] = W (0)[G0] +W int[G0], (3.608)

insert this into Eq. (3.606), and find the differential equation for the interacting
part:

G0W
int
G0

+
λ

3
(G4

0W
int
G0G0

+ 3G3
0W

int
G0

+G4
0W

int
G0
W int

G0
) = 6

−λ
4!
G2

0. (3.609)

This equation is solved iteratively. Setting W int[G0] = 0 in all terms proportional
to λ, we obtain the first-order contribution to W int[G0]:

W int[G0] = 3
−λ
4!
G2

0. (3.610)

This is precisely the contribution (3.545) of the two-loop Feynman diagram (apart
from the different normalization of g).

In order to see how the iteration of Eq. (3.609) may be solved systematically,
let us ignore for the moment the functional nature of Eq. (3.609), and treat G0 as
an ordinary real variable rather than a functional matrix. We expand W [G0] in a
Taylor series:

W int[G0] =
∞
∑

p=1

1

p!
Wp

(

−λ
4!

)p

(G0)
2p, (3.611)

and find for the expansion coefficients the recursion relation

Wp+1 = 4







[2p (2p− 1) + 3(2p)]Wp +
p−1
∑

q=1

(

p
q

)

2qWq × 2(p− q)Wp−q







. (3.612)

Solving this with the initial number W1 = 3, we obtain the multiplicities of the
connected vacuum diagrams of pth order:

3, 96, 9504, 1880064, 616108032, 301093355520, 205062331760640,

185587468924354560, 215430701800551874560, 312052349085504377978880.(3.613)

To check these numbers, we go over to Z[G] = eW [G0], and find the expansion:

Z[G0] = exp





1

2
Tr logG0 +

∞
∑

p=1

1

p!
Wp

(

−λ
4!

)p

(G0)
2p





= Det1/2[G0]



1 +
∞
∑

p=1

1

p!
zp

(

−λ
4!

)p

(G0)
2p



 . (3.614)
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The expansion coefficients zp count the total number of vacuum diagrams of order
p. The exponentiation (3.614) yields zp = (4p− 1)!!, which is the correct number of
Wick contractions of p interactions x4.

In fact, by comparing coefficients in the two expansions in (3.614), we may derive
another recursion relation for Wp:

Wp + 3

(

p−1
1

)

Wp−1+ 7·5 ·3
(

p−1
2

)

+ . . .+ (4p−5)!!

(

p−1
p−1

)

= (4p−1)!!, (3.615)

which is fulfilled by the solutions of (3.612).
In order to find the associated Feynman diagrams, we must perform the dif-

ferentiations in Eq. (3.609) functionally. The numbers Wp become then a sum of
diagrams, for which the recursion relation (3.612) reads

Wp+1= 4



G4
0

d2

d∩2
Wp+ 3 ·G3

0

d

d∩ Wp +
p−1
∑

q=1

(

p
q

)(

d

d∩Wq

)

G2
0 ·G2

0

(

d

d∩Wp−q

)



 ,

(3.616)

where the differentiation d/d∩ removes one line connecting two vertices in all possible
ways. This equation is solved diagrammatically, as shown in Fig. 3.10.

Wp+1 = 4

[

G4
0

d2

d∩2
Wp + 3 ·G3

0

d

d∩ Wp +

p−1
∑

q=1

(

p
q

)(

d

d∩Wq

)

G2
0 ·G2

0

(

d

d∩Wp−q

)

]

Figure 3.10 Diagrammatic representation of recursion relation (3.612). A vertex repre-

sents the coupling strength −λ.

Starting the iteration with W1 = 3 , we have dWp/d∩ = 6 and

d2Wp/d∩2 = 6 . Proceeding to order five loops and going back to the usual vertex
notation −λ, we find the vacuum diagrams with their weight factors as shown in
Fig. 3.11. For more than five loops, the reader is referred to the paper quoted in
Notes and References, and to the internet address from which Mathematica programs
can be downloaded which solve the recursion relations and plot all diagrams ofW [0]
and the resulting two- and four-point functions.

3.22.4 Correlation Functions from Vacuum Diagrams

The vacuum diagrams contain information on all correlation functions of the theory.
One may rightly say that the vacuum is the world. The two- and four-point functions
are given by the functional derivatives (3.595) of the vacuum functional W [K].
Diagrammatically, a derivative with respect to K corresponds to cutting one line of
a vacuum diagram in all possible ways. Thus, all diagrams of the two-point function
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diagrams and multiplicities

g1 3 ❣❣q

g2
1

2!

(

24 ❧✄✂ �✁q q + 72 ❣❣❣q q
)

g3
1

3!

(

1728 ♠
❚❚✔✔
q q
q + 3456 ❧✄✂ �✁

❣
q qq + 2592 ❣❣❣❣q q q + 1728 ❣

❣
❣ ❣
qq q

)

g4
1

4!

(

62208 ❧q
q
q
q

+ 66296 ❣
❣✞

✝
☎
✆q

q
q
q

+ 248832 ❣ ❣
✝ ✆
✞ ☎✞
✝q q q

q
+ 497664 ♠

✐

❚❚✔✔
q q
q
q

+ 165888 ❧
❣ ❣
✄✂ �✁q qq q

+ 248832 ❧
❣

❣
✄✂ �✁q q
q q

165888 ❧
❣
❣

✄✂ �✁q q
q
q + 124416 ❣❣❣❣❣q q q q + 248832 ❣❣❣

❣
❣

q q q
q

+ 62208 ❣
❣
❣
❣
❣q q

q q
)

Figure 3.11 Vacuum diagrams up to five loops and their multiplicities. The

total numbers to orders gn are 3, 96, 9504, 1880064, respectively. In contrast to

Fig. 3.10, and to the previous diagrammatic notation in Fig. 3.7, a vertex stands

here for −λ/4! for brevity. For more than five loops see the tables on the internet

(http://users.physik.fu-berlin/~kleinert/b3/programs).

G(2) can be derived from such cuts, multiplied by a factor 2. As an example, consider
the first-order vacuum diagram of W [K] in Fig. 3.11. Cutting one line, which is
possible in two ways, and recalling that in Fig. 3.11 a vertex stands for −λ/4! rather
than −λ, as in the other diagrams, we find

W1[0] =
1

8
−−−→ G

(2)
1 (τ1, τ2) = 2× 1

8
2 . (3.617)

The second equation in (3.595) tells us that all connected contributions to the
four-point function G(4) may be obtained by cutting two lines in all combinations,
and multiplying the result by a factor 4. As an example, take the second-order
vacuum diagrams of W [0] with the proper translation of vertices by a factor 4!,
which are

W2[0] =
1

16
+

1

48
. (3.618)

Cutting two lines in all possible ways yields the following contributions to the con-
nected diagrams of the two-point function:

G(4) = 4×
(

2 · 1 · 1

16
+ 4 · 3 · 1

48

)

. (3.619)
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It is also possible to find all diagrams of the four-point function from the vacuum
diagrams by forming a derivative of W [0] with respect to the coupling constant −λ,
and multiplying the result by a factor 4!. This follows directly from the fact that
this differentiation applied to Z[0] yields the correlation function

∫

dτ〈x4〉. As an
example, take the first diagram of order g3 in Table 3.11 (with the same vertex
convention as in Fig. 3.11):

W2[0] =
1

48
. (3.620)

Removing one vertex in the three possible ways and multiplying by a factor 4! yields

G(4) = 4!× 1

48
3 . (3.621)

3.22.5 Generating Functional for Vertex Functions.
Effective Action

Apart from the connectedness structure, the most important step in economizing the
calculation of Feynman diagrams consists in the decomposition of higher connected
correlation functions into one-particle irreducible vertex functions and one-particle
irreducible two-particle correlation functions, from which the full amplitudes can
easily be reconstructed. A diagram is called one-particle irreducible if it cannot be
decomposed into two disconnected pieces by cutting a single line.

There is, in fact, a simple algorithm which supplies us in general with such
a decomposition. For this purpose let us introduce a new generating functional
Γ[X ], to be called the effective action of the theory. It is defined via a Legendre
transformation of W [j]:

−Γ[X ] ≡W [j]−Wj j. (3.622)

Here and in the following, we use a short-hand notation for the functional multipli-
cation, Wj j =

∫

dτ Wj(τ)j(τ), which considers fields as vectors with a continuous
index τ . The new variable X is the functional derivative of W [j] with respect to
j(τ) [recall (3.572)]:

X(τ) ≡ δW [j]

δj(τ)
≡ Wj(τ) = 〈x〉j(τ), (3.623)

and thus gives the ground state expectation of the field operator in the presence of
the current j. When rewriting (3.622) as

−Γ[X ] ≡W [j]−X j, (3.624)

and functionally differentiating this with respect to X , we obtain the equation

ΓX [X ] = j. (3.625)
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This equation shows that the physical path expectation X(τ) = 〈x(τ)〉, where the
external current is zero, extremizes the effective action:

ΓX [X ] = 0. (3.626)

We shall study here only physical systems for which the path expectation value is
a constant X(τ) ≡ X0. Thus we shall not consider systems which possess a time-
dependent X0(τ), although such systems can also be described by x4-theories by
admitting more general types of gradient terms, for instance x(∂2 − k20)

2x. The en-
suing τ -dependence of X0(τ) may be oscillatory.17 Thus we shall assume a constant

X0 = 〈x〉|j=0, (3.627)

which may be zero or non-zero, depending on the phase of the system.
Let us now demonstrate that the effective action contains all the information

on the proper vertex functions of the theory. These can be found directly from the
functional derivatives:

Γ(n) (τ1, . . . , τn) ≡
δ

δX(τ1)
. . .

δ

δX(τn)
Γ[X ] . (3.628)

We shall see that the proper vertex functions are obtained from these functions
by a Fourier transform and a simple removal of an overall factor (2π)Dδ (

∑n
i=1 ωi)

to ensure momentum conservation. The functions Γ(n) (τ1, . . . , τn) will therefore be
called vertex functions , without the adjective proper which indicates the absence
of the δ-function. In particular, the Fourier transforms of the vertex functions
Γ(2) (τ1, τ2) and Γ(4) (τ1, τ2, τ3, τ4) are related to their proper versions by

Γ(2)(ω1, ω2) = 2πδ (ω1 + ω2) Γ̄
(2)(ω1), (3.629)

Γ(4)(ω1, ω2, ω3, ω4) = 2πδ

(

4
∑

i=1

ωi

)

Γ̄(4)(ω1, ω2, ω3, ω4). (3.630)

For the functional derivatives (3.628) we shall use the same short-hand notation as
for the functional derivatives (3.572) of W [j], setting

ΓX(τ1)...X(τn) ≡
δ

δX(τ1)
. . .

δ

δX(τn)
Γ[X ] . (3.631)

The arguments τ1, . . . , τn will usually be suppressed.
In order to derive relations between the derivatives of the effective action and

the connected correlation functions, we first observe that the connected one-point
function G(1)

c at a nonzero source j is simply the path expectation X [recall (3.581)]:

G(1)
c = X. (3.632)

17In higher dimensions there can be crystal- or quasicrystal-like modulations. See, for exam-
ple, H. Kleinert and K. Maki, Fortschr. Phys. 29, 1 (1981) (http://www.physik.fu-ber-
lin.de/~kleinert/75). This paper was the first to investigate in detail icosahedral quasicrys-
talline structures discovered later in aluminum.
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Second, we see that the connected two-point function at a nonzero source j is given
by

G(2)
c = G

(1)
j = Wjj =

δX

δj
=

(

δj

δX

)−1

= Γ−1
XX . (3.633)

The inverse symbols on the right-hand side are to be understood in the functional
sense, i.e., Γ−1

XX denotes the functional matrix:

Γ −1
X(τ)X(y) ≡

[

δ2Γ

δX(τ)δX(τ ′)

]−1

, (3.634)

which satisfies
∫

dτ ′ Γ −1
X(τ)X(τ ′)ΓX(τ ′)X(τ ′′ = δ(τ − τ ′′). (3.635)

Relation (3.633) states that the second derivative of the effective action deter-
mines directly the connected correlation function G(2)

c (ω) of the interacting theory
in the presence of the external source j. Since j is an auxiliary quantity, which
eventually be set equal to zero thus making X equal to X0, the actual physical
propagator is given by

G(2)
c

∣

∣

∣

j=0
= Γ −1

XX

∣

∣

∣

X=X0

. (3.636)

By Fourier-transforming this relation and removing a δ-function for the overall mo-
mentum conservation, the full propagator Gω2(ω) is related to the vertex function
Γ(2)(ω), defined in (3.629) by

Gω2(ω) ≡ Ḡ(2)(k) =
1

Γ̄(2)(ω)
. (3.637)

The third derivative of the generating functionalW [j] is obtained by functionally
differentiatingWjj in Eq. (3.633) once more with respect to j, and applying the chain
rule:

Wjjj = −Γ−2
XXΓXXX

δX

δj
= −Γ−3

XXΓXXX = −G(2)
c

3
ΓXXX . (3.638)

This equation has a simple physical meaning. The third derivative of W [j] on the
left-hand side is the full three-point function at a nonzero source j, so that

G(3)
c =Wjjj = −G(2)

c

3
ΓXXX . (3.639)

This equation states that the full three-point function arises from a third derivative
of Γ[X ] by attaching to each derivation a full propagator, apart from a minus sign.

We shall express Eq. (3.639) diagrammatically as follows:
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where

denotes the connected n-point function, and

the negative n-point vertex function.
For the general analysis of the diagrammatic content of the effective action, we

observe that according to Eq. (3.638), the functional derivative of the correlation
function G with respect to the current j satisfies

G(2)
c j =Wjjj = G(3)

c = −G(2)
c

3
ΓXXX . (3.640)

This is pictured diagrammatically as follows:

(3.641)

This equation may be differentiated further with respect to j in a diagrammatic
way. From the definition (3.560) we deduce the trivial recursion relation

G(n)
c (τ1, . . . , τn) =

δ

δj(τn)
G(n−1)

c (τ1, . . . , τn−1) , (3.642)

which is represented diagrammatically as

By applying δ/δj repeatedly to the left-hand side of Eq. (3.640), we generate all
higher connected correlation functions. On the right-hand side of (3.640), the chain
rule leads to a derivative of all correlation functions G = G(2)

c with respect to j,
thereby changing a line into a line with an extra three-point vertex as indicated in
the diagrammatic equation (3.641). On the other hand, the vertex function ΓXXX

must be differentiated with respect to j. Using the chain rule, we obtain for any
n-point vertex function:

ΓX...Xj = ΓX...XX
δX

δj
= ΓX...XXG

(2)
c , (3.643)
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which may be represented diagrammatically as

With these diagrammatic rules, we can differentiate (3.638) any number of times,
and derive the diagrammatic structure of the connected correlation functions with
an arbitrary number of external legs. The result up to n = 5 is shown in Fig. 3.12.

Figure 3.12 Diagrammatic differentiations for deriving tree decomposition of connected

correlation functions. The last term in each decomposition yields, after amputation and

removal of an overall δ-function of momentum conservation, precisely all one-particle ir-

reducible diagrams.

The diagrams generated in this way have a tree-like structure, and for this reason
they are called tree diagrams . The tree decomposition reduces all diagrams to their
one-particle irreducible contents.
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The effective action Γ[X ] can be used to prove an important composition the-
orem: The full propagator G can be expressed as a geometric series involving the
so-called self-energy . Let us decompose the vertex function as

Γ̄(2) = G−1
0 + Γ̄int

XX , (3.644)

such that the full propagator (3.636) can be rewritten as

G =
(

1 +G0Γ̄
int
XX

)−1
G0. (3.645)

Expanding the denominator, this can also be expressed in the form of an integral
equation:

G = G0 −G0Γ̄
int
XXG0 +G0Γ̄

int
XXG0Γ̄

int
XXG0 − . . . . (3.646)

The quantity −Γ̄int
XX is called the self-energy, commonly denoted by Σ:

Σ ≡ −Γ̄int
XX , (3.647)

i.e., the self-energy is given by the interacting part of the second functional derivative
of the effective action, except for the opposite sign.

According to Eq. (3.646), all diagrams in G can be obtained from a repetition of
self-energy diagrams connected by a single line. In terms of Σ, the full propagator
reads, according to Eq. (3.645):

G ≡ [G−1
0 − Σ]−1. (3.648)

This equation can, incidentally, be rewritten in the form of an integral equation for
the correlation function G:

G = G0 +G0ΣG. (3.649)

3.22.6 Ginzburg-Landau Approximation to Generating

Functional

Since the vertex functions are the functional derivatives of the effective action [see
(3.628)], we can expand the effective action into a functional Taylor series

Γ[X ] =
∞
∑

n=0

1

n!

∫

dτ1 . . . dτnΓ
(n)(τ1, . . . , τn)X(τ1) . . .X(τn). (3.650)

The expansion in the number of loops of the generating functional Γ[X ] collects
systematically the contributions of fluctuations. To zeroth order, all fluctuations
are neglected, and the effective action reduces to the initial action, which is the
mean-field approximation to the effective action. In fact, in the absence of loop
diagrams, the vertex functions contain only the lowest-order terms in Γ(2) and Γ(4):

Γ
(2)
0 (τ1, τ2) = M

(

−∂2τ1 + ω2
)

δ(τ1−τ2), (3.651)

Γ
(4)
0 (τ1, τ2, τ3, τ4) = λ δ(τ1−τ2)δ(τ1 − τ3)δ(τ1 − τ4). (3.652)
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Inserted into (3.650), this yields the zero-loop approximation to Γ[X ]:

Γ0[X ] =
M

2!

∫

dτ [(∂τX)2 + ω2X2] +
λ

4!

∫

dτ X4. (3.653)

This is precisely the original action functional (3.562). By generalizing X(τ) to be a
magnetization vector field, X(τ) → M(x), which depends on the three-dimensional
space variables x rather than the Euclidean time, the functional (3.653) coincides
with the phenomenological energy functional set up by Ginzburg and Landau to
describe the behavior of magnetic materials near the Curie point, which they wrote
as18

Γ[M] =
∫

d3x

[

1

2

3
∑

i=1

(∂iM)2 +
m2

2!
M2 +

λ

4!
M4

]

. (3.654)

The use of this functional is also referred to as mean-field theory or mean-field

approximation to the full theory.

3.22.7 Composite Fields

Sometimes it is of interest to study also correlation functions in which two fields
coincide at one point, for instance

G(1,n)(τ, τ1, . . . , τn) =
1

2
〈x2(τ)x(τ1) · · ·x(τn)〉. (3.655)

If multiplied by a factor Mω2, the composite operator Mω2x2(τ)/2 is precisely
the frequency term in the action energy functional (3.562). For this reason one
speaks of a frequency insertion, or, since in the Ginzburg-Landau action (3.654) the
frequency ω is denoted by the mass symbol m, one speaks of a mass insertion into
the correlation function G(n)(τ1, . . . , τn).

Actually, we shall never make use of the full correlation function (3.655), but only
of the integral over τ in (3.655). This can be obtained directly from the generating
functional Z[j] of all correlation functions by differentiation with respect to the
square mass in addition to the source terms

∫

dτ G(1,n)(τ, τ1, . . . , τn) = − Z−1 ∂

M∂ω2

δ

δj(τ1)
· · · δ

δj(τn)
Z[j]

∣

∣

∣

∣

∣

j=0

. (3.656)

By going over to the generating functional W [j], we obtain in a similar way the
connected parts:

∫

dτ G(1,n)
c (τ, τ1, . . . , τn) = − ∂

M∂ω2

δ

δj(τ1)
· · · δ

δj(τn)
W [j]

∣

∣

∣

∣

∣

j=0

. (3.657)

18L.D. Landau, J.E.T.P. 7 , 627 (1937).
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The right-hand side can be rewritten as

∫

dτ G(1,n)
c (τ, τ1, . . . , τn) = − ∂

M∂ω2
G(n)

c (τ1, . . . , τn). (3.658)

The connected correlation functions G(1,n)
c (τ, τ1, . . . , τn) can be decomposed into

tree diagrams consisting of lines and one-particle irreducible vertex functions
Γ(1,n)(τ, τ1, . . . , τn). If integrated over τ , these are defined from Legendre transform
(3.622) by a further differentiation with respect to Mω2:

∫

dτ Γ(1,n)(τ, τ1, . . . , τn) = − ∂

M∂ω2

δ

δX(τ1)
· · · δ

δX(τn)
Γ[X ]

∣

∣

∣

∣

∣

X0

, (3.659)

implying the relation

∫

dτ Γ(1,n)(τ, τ1, . . . , τn) = − ∂

M∂ω2
Γ(n)(τ1, . . . , τn). (3.660)

3.23 Path Integral Calculation of Effective Action
by Loop Expansion

Path integrals give the most direct access to the effective action of a theory avoiding
the cumbersome Legendre transforms. The derivation will proceed diagrammatically
loop by loop, which will turn out to be organized by the powers of the Planck
constant h̄. This will now be kept explicit in all formulas. For later applications to
quantum mechanics we shall work with real time.

3.23.1 General Formalism

Consider the generating functional of all Green functions

Z[j] = eiW [j]/h̄, (3.661)

where W [j] is the generating functional of all connected Green functions. The vac-
uum expectation of the field, the average

X(t) ≡ 〈x(t)〉, (3.662)

is given by the first functional derivative

X(t) = δW [j]/δj(t). (3.663)

This can be inverted to yield j(t) as a functional of X(t):

j(t) = j[X ](t), (3.664)

which leads to the Legendre transform of W [j]:

Γ[X ] ≡W [j]−
∫

dt j(t)X(t), (3.665)
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where the right-hand side is replaced by (3.664). This is the effective action of the
theory. The effective action for time independent X(t) ≡ X defines the effective

potential

V eff(X) ≡ − 1

tb − ta
Γ[X ]. (3.666)

The first functional derivative of the effective action gives back the current

δΓ[X ]

δX(t)
= −j(t). (3.667)

The generating functional of all connected Green functions can be recovered from
the effective action by the inverse Legendre transform

W [j] = Γ[X ] +
∫

dt j(t)X(t). (3.668)

We now calculate these quantities from the path integral formula (3.561) for the
generating functional Z[j]:

Z[j] =
∫

Dx(t)e(i/h̄){A[x]+
∫

dt j(t)x(t)}. (3.669)

With (3.661), this amounts to the path integral formula for Γ[X ]:

e
i
h̄{Γ[X]+

∫

dt j(t)X(t)} =
∫

Dx(t)e(i/h̄){A[x]+
∫

dt j(t)x(t)}. (3.670)

The action quantum h̄ is a measure for the size of quantum fluctuations. Under many
physical circumstances, quantum fluctuations are small, which makes it desirable to
develop a method of evaluating (3.670) as an expansion in powers of h̄.

3.23.2 Mean-Field Approximation

For h̄ → 0, the path integral over the path x(t) in (3.669) is dominated by the
classical solution xcl(t) which extremizes the exponent

δA[x]

δx(t)

∣

∣

∣

∣

∣

x=xcl(t)

= −j(t), (3.671)

and is a functional of j(t) which may be written, more explicitly, as xcl(t)[j]. At
this level we can identify

W [j] = Γ[X ] +
∫

dt j(t)X(t) ≈ A[xcl[j]] +
∫

dt j(t)xcl(t)[j]. (3.672)

By differentiating W [j] with respect to j, we have from the general first part of
Eq. (3.662):

X =
δW

δj
=

δΓ

δX

δX

δj
+X + j

δX

δj
. (3.673)

H. Kleinert, PATH INTEGRALS



3.23 Path Integral Calculation of Effective Action by Loop Expansion 309

Inserting the classical equation of motion (3.671), this becomes

X =
δA
δxcl

δxcl
δj

+ xcl + j
δxcl
δj

= xcl. (3.674)

Thus, to this approximation, X(t) coincides with the classical path xcl(t). Replacing
xcl(t) → X(t) on the right-hand side of Eq. (3.672), we obtain the lowest-order result,
which is of zeroth order in h̄, the classical approximation to the effective action:

Γ0[X ] = A[X ]. (3.675)

For an anharmonic oscillator in N dimensions with unit mass and an interaction
x4, where x = (x1, . . . , xN), which is symmetric under N -dimensional rotations
O(N), the lowest-order effective action reads

Γ0[X] =
∫

dt
[

1

2

(

Ẋ2
a − ω2X2

a

)

− g

4!

(

X2
a

)2
]

, (3.676)

where repeated indices a, b, . . . are summed from 1 to N following Einstein’s sum-
mation convention. The effective potential (3.666) is simply the initial potential

V eff
0 (X) = V (X) =

ω2

2
X2

a +
g

4!

(

X2
a

)2
. (3.677)

For ω2 > 0, this has a minimum at X ≡ 0, and there are only two non-vanishing
vertex functions Γ(n)(t1, . . . , tn):

For n = 2:

Γ(2)(t1, t2)ab ≡ δ2Γ

δXa(t1)δXb(t2)

∣

∣

∣

∣

∣

Xa=0

=
δ2A

xa(t1)xb(t2)

∣

∣

∣

∣

∣

xa=Xa=0

= (−∂2t − ω2)δabδ(t1 − t2). (3.678)

This determines the inverse of the propagator:

Γ(2)(t1, t2)ab = [ih̄G−1]ab(t1, t2). (3.679)

Thus we find to this zeroth-order approximation that Gab(t1, t2) is equal to the free
propagator:

Gab(t1, t2) = G0ab(t1, t2). (3.680)

For n = 4:

Γ(4)(t1, t2, t3, t4)abcd ≡
δ4Γ

δXa(t1)δXb(t2)δXc(t3)δXd(t4)
= gTabcd, (3.681)

with

Tabcd =
1

3
(δabδcd + δacδbd + δadδbc). (3.682)
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According to the definition of the effective action, all diagrams of the theory
can be composed from the propagator Gab(t1, t2) and this vertex via tree diagrams.
Thus we see that in this lowest approximation, we recover precisely the subset of
all original Feynman diagrams with a tree-like topology. These are all diagrams
which do not involve any loops. Since the limit h̄ → 0 corresponds to the classical
equations of motion with no quantum fluctuations we conclude: Classical theory
corresponds to tree diagrams.

For ω2 < 0 the discussion is more involved since the minimum of the potential
(3.677) lies no longer at X = 0, but at a nonzero vector X0 with an arbitrary
direction, and a length

|X0| =
√

−6ω2/g. (3.683)

The second functional derivative (3.678) at X is anisotropic and reads

V eff(X)

X1

X2

ω2 > 0 ω2 < 0 V eff(X)

X2

X1

Figure 3.13 Effective potential for ω2 > 0 and ω2 < 0 in mean-field approximation,

pictured for the case of two componentsX1,X2. The right-hand figure looks like a Mexican

hat or the bottom of a champaign bottle..

Γ(2)(t1, t2)ab ≡ δ2Γ

δXa(t1)δXb(t2)

∣

∣

∣

∣

∣

Xa 6=0

=
δ2A

xa(t1)xb(t2)

∣

∣

∣

∣

∣

xa=Xa 6=0

=
[

−∂2t − ω2 − g

6

(

δabX
2
c + 2XaXb

)

]

δ(t1 − t2). (3.684)

This is conveniently separated into longitudinal and transversal derivatives with
respect to the direction X̂ = X/|X|. We introduce associated projection matrices:

PLab(X̂) = X̂aX̂b, PTab(X̂) = δab − X̂aX̂b, (3.685)

and decompose

Γ(2)(t1, t2)ab = Γ
(2)
L (t1, t2)abPLab(X̂) + Γ

(2)
T (t1, t2)abPTab(X̂), (3.686)
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where

Γ
(2)
T (t1, t2)ab =

[

−∂2t −
(

ω2 +
g

6
X2
)]

δ(t1 − t2), (3.687)

and

Γ
(2)
L (t1, t2)ab =

[

−∂2t −
(

ω2 + 3
g

6
X2
)]

δ(t1 − t2). (3.688)

This can easily be inverted to find the propagator

G(t1, t2)ab= ih̄
[

Γ(2)(t1, t2)
]−1

ab
=GL(t1, t2)abPLab(X̂)+GT (t1, t2)abPTab(X̂), (3.689)

where

GL(t1, t2)ab =
ih̄

ΓL(t1, t2)
=

ih̄

−∂2t − ω2
L(X)

, (3.690)

GT (t1, t2)ab =
ih̄

Γ
(2)
T (t1, t2)

=
ih̄

−∂2t − ω2
T (X)

(3.691)

are the longitudinal and transversal parts of the Green function. For convenience,
we have introduced the X-dependent frequencies of the longitudinal and transversal
Green functions:

ω2
L(X) ≡ ω2 + 3

g

6
X2, ω2

T (X) ≡ ω2 +
g

6
X2. (3.692)

To emphasize the fact that this propagator is a functional of X we represent it by
the calligraphic letter G. For ω2 > 0, we perform the fluctuation expansion around
the minimum of the potential (3.666) at X = 0, where the two Green functions
coincide, both having the same frequency ω:

GL(t1, t2)ab |X=0 = GT (t1, t2)ab |X=0 = G(t1, t2)ab |X=0 =
ih̄

−∂2t − ω2
, (3.693)

For ω2 < 0, however, where the minimum lies at the vector X0 of length (3.683),
they are different:

GL(t1, t2)ab |X=X0
=

ih̄

−∂2t + 2ω2
, GT (t1, t2)ab |X=X0

=
ih̄

−∂2t
. (3.694)

Since the curvature of the potential at the minimum in radial direction of X is
positive at the minimum, the longitudinal part has now the positive frequency −2ω2.
The movement along the valley of the minimum, on the other hand, does not increase
the energy. For this reason, the transverse part has zero frequency. This feature,
observed here in lowest order of the fluctuation expansion, is a very general one,
and can be found in the effective action to any loop order. In quantum field theory,
there exists a theorem asserting this called Nambu-Goldstone theorem. It states
that if a quantum field theory without long-range interactions has a continuous
symmetry which is broken by a nonzero expectation value of the field corresponding
to the present X [recall (3.662)], then the fluctuations transverse to it have a zero
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mass. They are called Nambu-Goldstone modes or, because of their bosonic nature,
Nambu-Goldstone bosons . The exclusion of long-range interactions is necessary,
since these can mix with the zero-mass modes and make it massive. This happens, for
example, in a superconductor where they make the magnetic field massive, giving it
a finite penetration depth, the famousMeissner effect . One expresses this pictorially
by saying that the long-range mode can eat up the Nambu-Goldstone modes and
become massive. The same mechanism is used in elementary particle physics to
explain the mass of the W± and Z0 vector bosons as a consequence of having eaten
up a would be Nambu-Goldstone boson of an auxiliary Higgs-field theory.

In quantum-mechanical systems, however, a nonzero expectation value with the
associated zero frequency mode in the transverse direction is found only as an artifact
of perturbation theory. If all fluctuation corrections are summed, the minimum of
the effective potential lies always at the origin. For example, it is well known, that
the ground state wave functions of a particle in a double-well potential is symmetric,
implying a zero expectation value of the particle position. This symmetry is caused
by quantum-mechanical tunneling, a phenomenon which will be discussed in detail
in Chapter 17. This phenomenon is of a nonperturbative nature which cannot
be described by an effective potential calculated order by order in the fluctuation
expansion. Such a potential does, in general, posses a nonzero minimum at some
X0 somewhere near the zero-order minimum (3.683). Due to this shortcoming, it
is possible to derive the Nambu-Goldstone theorem from the quantum-mechanical
effective action in the loop expansion, even though the nonzero expectation value
X0 assumed in the derivation of the zero-frequency mode does not really exist in
quantum mechanics. The derivation will be given in Section 3.24.

The use of the initial action to approximate the effective action neglecting cor-
rections caused by the fluctuations is referred to as mean-field approximation.

3.23.3 Corrections from Quadratic Fluctuations

In order to find the first h̄-correction to the mean-field approximation we expand
the action in powers of the fluctuations of the paths around the classical solution

δx(t) ≡ x(t)− xcl(t), (3.695)

and perform a perturbation expansion. The quadratic term in δx(t) is taken to be
the free-particle action, the higher powers in δx(t) are the interactions. Up to second
order in the fluctuations δx(t), the action is expanded as follows:

A[xcl + δx] +
∫

dt j(t) [xcl(t) + δx(t)]

= A[xcl] +
∫

dt j(t) xcl(t) +
∫

dt

{

j(t) +
δA
δx(t)

∣

∣

∣

∣

∣

x=xcl







δx(t)

+
1

2

∫

dt dt′ δx(t)
δ2A

δx(t)δx(t′)

∣

∣

∣

∣

∣

x=xcl

δx(t′) +O
(

(δx)3
)

. (3.696)
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The curly bracket multiplying the linear terms in the variation δx(t) vanish due
to the extremality property of the classical path xcl expressed by the equation of
motion (3.671). Inserting this expansion into (3.670), we obtain the approximate
expression

Z[j] ≈ e(i/h̄){A[xcl]+
∫

dt j(t)xcl(t)}
∫

Dδx exp






i

h̄

∫

dt dt′ δx(t)
δ2A

δx(t)δx(t′)

∣

∣

∣

∣

∣

x=xcl

δx(t′)







.

(3.697)
We now observe that the fluctuations δx(t) will be of average size

√
h̄ due to the

h̄-denominator in the Fresnel exponent. Thus the fluctuations (δx)n are of average
size

√
h̄

n
. The approximate path integral (3.697) is of the Fresnel type and my be

integrated to yield

e(i/h̄){A[xcl]+
∫

dt j(t)xcl(t)}
[

det
δ2A

δx(t)δx(t′)

]−1/2

x=xcl

(3.698)

= e(i/h̄){A[xcl]+
∫

dt j(t)xcl(t)+i(h̄/2)Tr log[δ2A/δx(t)δx(t′)|x=xcl}.

Comparing this with the left-hand side of (3.670), we find that to first order in h̄,
the effective action may be recovered by equating

Γ[X ] +
∫

dt j(t)X(t)=A[xcl[j]] +
∫

dt j(t) xcl(t)[j] +
ih̄

2
Tr log

δ2A [xcl[j]]

δx(t)δx(t′)
. (3.699)

In the limit h̄→ 0, the tracelog term disappears and (3.699) reduces to the classical
expression (3.672).

To include the h̄-correction into Γ[X ], we expand W [j] as

W [j] = W0[j] + h̄W1[j] +O(h̄2). (3.700)

Correspondingly, the path X differs from Xcl by a correction term of order h̄:

X = xcl + h̄ X1 +O(h̄2). (3.701)

Inserting this into (3.699), we find

Γ[X ] +
∫

dt jX = A [X−h̄X1] +
∫

dt jX − h̄
∫

dt jX1

+
i

2
h̄Tr log

δ2A
δxaδxb

∣

∣

∣

∣

∣

x=X−h̄X1

+O
(

h̄2
)

. (3.702)

Expanding the action up to the same order in h̄ gives

Γ[X ] = A[X ]− h̄
∫

dt

{

δA[X ]

δX
+ j

}

X1 +
i

2
h̄Tr log

δ2A
δxaδxb

∣

∣

∣

∣

∣

x=X

+O
(

h̄2
)

. (3.703)
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Due to (3.671), the curly-bracket term is only of order h̄2, so that we find the one-
loop form of the effective action

Γ[X ] = Γ0[X ] + h̄Γ1[X ] =
∫

dt

[

1

2
Ẋ2 − ω2

2
X2

a −
g

4!

(

X2
a

)2
]

+
i

2
h̄Tr log

[

−∂2t − ω2 − g

6

(

δabX
2
c + 2XaXb

)

]

. (3.704)

Using the decomposition (3.686), the tracelog term can be written as a sum of
transversal and longitudinal parts

h̄Γ1[X ] =
i

2
h̄Tr log Γ

(2)
L (t1, t2)ab +

i

2
(N − 1)h̄Tr log Γ

(2)
T (t1, t2)ab (3.705)

=
i

2
h̄Tr log

(

−∂2t − ω2
L(X)

)

+
i

2
(N − 1)h̄Tr log

(

−∂2t − ω2
T (X)

)

.

What is the graphical content in the Green functions at this level of approxima-
tion? Assuming ω2 > 0, we find for j = 0 that the minimum lies at X̄ = 0, as in
the mean-field approximation. Around this minimum, we may expand the tracelog
in powers of X. For the simplest case of a single X-variable, we obtain

i

2
h̄Tr log

(

−∂2t −ω2− g

2
X2
)

=
i

2
h̄Tr log

(

−∂2t −ω2
)

+
i

2
h̄Tr log

(

1+
i

−∂2t −ω2
ig
X2

2

)

= i
h̄

2
Tr log

(

−∂2t − ω2
)

− i
h̄

2

∞
∑

n=1

(

−ig
2

)n 1

n
Tr

(

i

−∂2t − ω2
X2

)n

. (3.706)

If we insert

G0 =
i

−∂2t − ω2
, (3.707)

this can be written as

i
h̄

2
Tr log

(

−∂2t − ω2
)

− i
h̄

2

∞
∑

n=1

(

−ig
2

)n 1

n
Tr

(

G0X
2
)n
. (3.708)

More explicitly, the terms with n = 1 and n = 2 read:

− h̄
4
g
∫

dt dt′ δ(t− t′)G0(t, t
′)X2(t′)

+ih̄
g2

16

∫

dt dt′ dt′′ δ4(t− t′′)G0(t, t
′)X2(t′)G0(t

′, t′′)X2(t′′) + . . . . (3.709)

The expansion terms of (3.708) for n ≥ 1 correspond obviously to the Feynman
diagrams (omitting multiplicity factors)

A[xcl] = (3.710)
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The series (3.708) is therefore a sum of all diagrams with one loop and any number
of fundamental X4-vertices

To systematize the entire expansion (3.708), the tracelog term is [compare
(3.549)] pictured by a single-loop diagram

i
h̄

2
Tr log

(

−∂2t − ω2
)

=
1

2
. (3.711)

The first two diagrams in (3.710) contribute corrections to the vertices Γ(2) and
Γ(4). The remaining diagrams produce higher vertex functions and lead to more
involved tree diagrams. In Fourier space we find from (3.709)

Γ(2)(q) = q2 − ω2 − h̄
g

2

∫

dk

2π

i

k2 − ω2 + iη
(3.712)

Γ(4)(qi) = g − i
g2

2

[

∫

dk

2π

i

k2 − ω2 + iη

i

(q1 + q2 − k)2 − ω2 + iη
+ 2 perm

]

.

(3.713)

We may write (3.712) in Euclidean form as

Γ(2)(q) = −q2 − ω2 − h̄
g

2

∫

dk

2π

1

k2 + ω2

= −
(

q2 + ω2 + h̄
g

2

1

2ω

)

, (3.714)

Γ(4)(qi) = g − h̄
g2

2
[I (q1 + q2) + 2 perm] , (3.715)

with the Euclidean two-loop integral

I(q1 + q2) =
∫

dk

2π

1

k2 + ω2

i

(q1 + q2 − k)2 + ω2
, (3.716)

to be calculated explicitly in Chapter 10. It is equal to J((q1 + q2)
2)/2π with the

functions J(z) of Eq. (10.259).
For ω2 < 0 where the minimum of the effective action lies at X̄ 6= 0, the expansion

of the trace of the logarithm in (3.704) must distinguish longitudinal and transverse
parts.

3.23.4 Effective Action to Order -h2

Let us now find the next correction to the effective action.19 Instead of truncating
the expansion (3.696), we keep all terms, reorganizing only the linear and quadratic
terms as in (3.697). This yields

e(i/h̄){Γ[X]+jX} = ei(h̄/2)W [j] = e(i/h̄){(A[xcl]+jxcl)+(ih̄/2)Tr logAxx[xcl]} e(i/h̄)h̄
2W2[xcl].

(3.717)

19R. Jackiw, Phys. Rev. D 9 , 1687 (1976)
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The functional W2[xcl] is defined by the path integral over the fluctuations

e(i/h̄)h̄
2W2[xcl] =

∫ Dx exp i
h̄

{

1
2
δxD[xcl]δx+R[xcl, δx]

}

∫ Dδx exp i
h̄

{

1
2
δxAxx[xcl]δx

} , (3.718)

where D[xcl] ≡ Axx[xcl] is the second functional derivative of the action at x =
xcl. The subscripts x of Axx denote functional differentiation. For the anharmonic
oscillator:

D[xcl] ≡ Axx[xcl] = −∂2t − ω2 − g

2
x2cl. (3.719)

The functional R collects all unharmonic terms:

R [xcl, δx] = A [xcl + δx]−A[xcl]−
∫

dtAx[xcl](t)δx(t)

− 1

2

∫

dtdt′ δx(t)Axx[xcl](t, t
′)δx(t′). (3.720)

In condensed functional vector notation, we shall write expressions like the last term
as

1

2

∫

dtdt′ δx(t)Axx[xcl](t, t
′)δx(t′) → 1

2
δxAxx[xcl]δx. (3.721)

By construction, R is at least cubic in δx. The path integral (3.718) may thus be
considered as the generating functional Zfl of a fluctuating variable δx(τ) with a
propagator

G[xcl] = ih̄{Axx[xcl]}−1 ≡ ih̄D−1[xcl],

and an interactionR[xcl, ẋ], both depending on j via xcl. We know from the previous
sections, and will immediately see this explicitly, that h̄2W2[xcl] is of order h̄

2. Let
us write the full generating functional W [j] in the form

W [j] = A[xcl] + xclj + h̄∆1[xcl], (3.722)

where the last term collects one- and two-loop corrections (in higher-order calcula-
tions, of course, also higher loops):

∆1[xcl] =
i

2
Tr logD[xcl] + h̄W2[xcl]. (3.723)

From (3.722) we find the vacuum expectation value X = 〈x〉 as the functional
derivative

X =
δW [j]

δj
= xcl + h̄∆1xcl

[xcl]
δxcl
δj

, (3.724)

implying the correction term X1:

X1 = ∆1xcl
[xcl]

δxcl
δj

. (3.725)
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The only explicit dependence of W [j] on j comes from the second term in (3.722).
In all others, the j-dependence is due to xcl[j]. We may use this fact to express j as
a function of xcl. For this we consider W [j] for a moment as a functional of xcl:

W [xcl] = A[xcl] + xcl j[xcl] + h̄∆1[xcl]. (3.726)

The combination W [xcl]− jX gives us the effective action Γ[X ] [recall (3.665)]. We
therefore express xcl in (3.726) as X − h̄X1 − O(h̄2) from (3.701), and re-expand
everything around X rather than xcl, yields

Γ[X ] = A[X ]− h̄AX [X ]X1 − h̄X1 j[X ] + h̄2X1 jX [X ]X1 +
1

2
h̄2X1D[X ]X1

+ h̄∆1[X ]− h̄2∆1X [X ]X1 +O(h̄3). (3.727)

Since the action is extremal at xcl, we have

AX [X − h̄X1] = −j[X ] +O(h̄2), (3.728)

and thus

AX [X ] = −j[X ] + h̄AXX [X ]X1 +O(h̄2) = −j[X ] + h̄D[X ]X1 +O(h̄2), (3.729)

and therefore:

Γ[X ] = A[X ] + h̄∆1[X ] + h̄2
{

−1

2
X1D[X ]X1 +X1jX [X ]X1 −∆1XX1

}

. (3.730)

From (3.725) we see that

δj

δxcl
X1 = ∆1xcl

[xcl]. (3.731)

Replacing xcl → X with an error of order h̄, this implies

δj

δX
X = ∆1X [X ] +O(h̄). (3.732)

Inserting this into (3.730), the last two terms in the curly brackets cancel, and the
only remaining h̄2-terms are

− h̄
2

2
X1D[X ]X1 + h̄2W2[X ] +O(h̄3). (3.733)

From the classical equation of motion (3.671) one has a further equation for δj/δxcl:

δj

δxcl
= −Axx[xcl] = −D[xcl]. (3.734)

Inserting this into (3.725) and replacing again xcl → X , we find

X1 = −D−1[X ]∆1X [X ] +O(h̄). (3.735)
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We now express ∆1X [X ] via (3.723). This yields

∆1X [X ] =
i

2
Tr

(

D−1[X ]
δ

δX
D[X ]

)

+ h̄W2X [X ] +O(h̄2). (3.736)

Inserting this into (3.735) and further into (3.730), we find for the effective action
the expansion up to the order h̄2:

Γ[X ] = A[X ] + h̄Γ1[X ] + h̄2Γ2[X ]

= A[X ] + i
h̄

2
Tr logD[X ] + h̄2W2[X ]

+
h̄2

2

1

2
Tr

(

D−1[X ]
δ

δX
D[X ]

)

D−1[X ]
1

2
Tr

(

D−1[X ]
δ

δX
D[X ]

)

. (3.737)

We now calculate W2[X ] to lowest order in h̄. The remainder R[X ; x] in (3.720) has
the expansion

R[X ; δx] =
1

3!
AXXX [X ]δx δx δx+

1

4!
AXXXX [X ]δx δx δx δx+ . . . . (3.738)

Being interested only in the h̄2-corrections, we have simply replaced xcl by X . In
order to obtain W2[X ], we have to calculate all connected vacuum diagrams for the
interaction terms in R[X ; δx] with a δx(t)-propagator

G[X ] = ih̄{AXX [X ]}−1 ≡ ih̄D−1[X ].

Since every contraction brings in a factor h̄, we can truncate the expansion (3.738)
after δx4. Thus, the only contributions to ih̄W2[X ] come from the connected vac-
uum diagrams

1
8 + 1

12 + 1
8 ,

(3.739)

where a line stands now for G[X ], a four-vertex for

(i/h̄)AXXXX [X ] = (i/h̄)DXX [X ], (3.740)

and a three-vertex for

(i/h̄)AXXX [X ] = (i/h̄)DX [X ]. (3.741)

Only the first two diagrams are one-particle irreducible. As a pleasant result, the
third diagram which is one-particle reducible cancels with the last term in (3.737).
To see this we write that term more explicitly as

h̄2

8
D−1

X1X2
AX1X2X3D−1

X3X3′
AX3′X1′X2′

D−1
X1′X2′

, (3.742)
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which corresponds precisely to the third diagram in Γ2[X ], except for an opposite
sign. Note that the diagram has a multiplicity 9.

Thus, at the end, only the one-particle irreducible vacuum diagrams contribute
to the h̄2-correction to Γ[X ]:

iΓ2[X ]= i
3

4!
D−1

12 AX1X2X3X4D−1
34 + i

1

4!2
AX1X2X3D−1

X1X1′
D−1

X2X2′
D−1

X3X3′
AX1X2X3.

(3.743)

Their diagrammatic representation is

1
8 + 1

12
i
h̄
h̄2Γ2[X ] = . (3.744)

The one-particle irreducible nature of the diagrams is found to all orders in h̄.

3.23.5 Finite-Temperature Two-Loop Effective Action

At finite temperature, and in D dimensions, the expansion proceeds with the imaginary-time
versions of the X-dependent Green functions (3.690) and (3.691)

GL(τ1, τ2) =
h̄

2MωL

cosh(ωL|τ1 − τ2| − h̄βωL/2)

sinh(h̄βωL/2)
, (3.745)

and

GT (τ1, τ2) =
h̄

2MωT

cosh(ωT |τ1 − τ2| − h̄βωT /2)

sinh(h̄βωT /2)
, (3.746)

where we have omitted the argument X in ωL(X) and ωT (X). Treating here the general rotationally

symmetric potential V (x) = v(x), x =
√
x2, the two frequencies are

ω2
L(X) ≡ 1

M
v′′(X), ω2

T (X) ≡ 1

MX
v′(X). (3.747)

We also decompose the vertex functions into longitudinal and transverse parts. The three-point
vertex is a sum

∂3v(X)

∂Xi∂Xj∂Xk
= PL

ijkv
′′′(X) + PT

ijk

[

v′′(X)

X
− v′(X)

X2

]

, (3.748)

with the symmetric tensors

PL
ijk ≡ XiXjXk

X3
and PT

ijk ≡ δij
Xk

X
+ δik

Xj

X
+ δjk

Xi

X
− 3PL

ijk . (3.749)

The four-point vertex reads

∂4v(X)

∂Xi∂Xj∂Xk∂Xl
= PL

ijklv
(4)(X) + PT

ijkl

v′′′(X)

X
+ PS

ijkl

[

v′′(X)

X2
− v′(X)

X3

]

, (3.750)

with the symmetric tensors

PL
ijkl =

XiXjXkXl

X4
, (3.751)

PT
ijkl = δij

XkXl

X2
+δik

XjXl

X2
+δil

XjXk

X2
+δjk

XiXl

X2
+δjl

XiXk

X2
+δkl

XiXk

X2
−6PL

ijkl, (3.752)

PS
ijkl = δijδkl + δikδjl + δilδjk − 3PL

ijkl − 3PT
ijkl . (3.753)
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The tensors obey the following relations:

Xi

X
PL
ijk = PL

jk ,
Xi

X
PT
ijk = PT

jk , (3.754)

PL
ijP

L
ikl = PL

jkl, P
T
ijP

T
ikl =

Xk

X
PT
jl +

Xl

X
PT
jk, P

L
ijP

T
ikl =

Xj

X
PT
kl , P

T
ijP

L
ikl = 0, (3.755)

PL
hijP

L
hkl = PL

ijkl , PT
hijP

T
hkl = PT

ijP
T
kl + PL

ikP
T
jl + PL

il P
T
jk + PL

jkP
T
il + PL

jlP
T
ik, (3.756)

PL
hijP

T
hkl = PL

ijP
T
kl , P

T
hijP

L
hkl = PT

ijP
L
kl, P

L
ijP

L
ijkl = PL

kl, P
T
ijP

T
ijkl = (D−1)PL

kl, (3.757)

PL
ijP

T
ijkl = PT

kl , PT
ijP

L
ijkl = 0 , (3.758)

PL
ijP

S
ijkl = −2PT

kl, PT
ijP

S
ijkl = (D + 1)PT

kl − 2(D − 1)PL
kl. (3.759)

Instead of the effective action, the diagrammatic expansion (3.744) yields now the free energy

(i/h̄)Γ[X] → −βF (X). (3.760)

Using the above formulas we obtain immediately the mean field contribution to the free energy

−βFMF = −
∫ h̄β

0

dτ

[

M

2
Ẋ2 + v(X)

]

, (3.761)

and the one-loop contribution [from the trace-log term in Eq. (3.737)]:

−βF1−loop = − log [2 sinh(h̄βωL/2)] − (D − 1) log [2 sinh(h̄βωT /2)] . (3.762)

The first of the two-loop diagrams in (3.744) yields the contribution to the free energy

−β∆1F2−loop = −β
{

G2
L(τ, τ)v(4)(X) + (D2 − 1)G2

T (τ, τ)

[

v′′(X)

X2
− v′(X)

X3

]

+ 2(D−1)GL(τ, τ)GT (τ, τ)

[

v′′′(X)

X
− 2v′′(X)

X2
+

2v′(X)

X3

]}

. (3.763)

From the second diagram we obtain the contribution

−β∆2F2−loop =
1

h̄2

∫ h̄β

0

dτ1

∫ h̄β

0

dτ2

{

G3
L(τ1, τ2) [v′′′(X)]

2

+ 3(D − 1)GL(τ1, τ2)G2
T (τ1, τ2)

[

v′′(X)

X
− v′(X)

X2

]2}

. (3.764)

The explicit evaluation yields

−β∆1F2−loop = − h̄2β

(2M)2

{

1

ω2
L

coth2(h̄βωL/2)v(4)(X) (3.765)

+
D2 − 1

ω2
T

coth2(h̄βωT /2)

[

v′′(X)

X2
− v′(X)

X3

]

+
2(D − 1)

ωLωT
coth(h̄βωL/2) coth(h̄βωT /2)

[

v′′′(X)

X
− 2v′′(X)

X2
+

2v′(X)

X3

]}

.

and

−β∆2F2−loop =
2h̄2β

ωL

1

(2MωL)3
[v′′′(X)]2

[

1

3
+

1

sinh2(h̄βωL/2)

]

+
6h̄2β(D − 1)

2ωT + ωL

1

2MωL

1

(2MωT )2

[

v′′(X)

X
− v′(X)

X2

]2

(3.766)

×
[

coth2(h̄βωT /2) +
ωT

ωL

1

sinh2(h̄βωT /2)
+

ωT

2ωT−ωL

sinh[h̄β(2ωT−ωL)/2]

sinh(h̄βωL/2) sinh2(h̄βωT /2)

]

.
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In the limit of zero temperature, the effective potential in the free energy becomes

Veff(X) =
T→0

v(X) +
h̄ωL

2
+ (D − 1)

h̄ωT

2
+

h̄2

8(2M)2

{

1

ω2
L

v(4)(X)

+
D2 − 1

ω2
T

[

v′′(X)

X2
− v′(X)

X3

]

+
2(D − 1)

ωLωT

[

v′′′(X)

X
− 2v′′(X)

X2
+

2v′(X)

X3

]

}

− h̄2

6(2M)3

{

1

3ω4
L

[v′′′(X)]2 +
3(D − 1)

2ωT + ωL

1

ωLω2
T

[

v′′(X)

X
− v′(X)

X2

]2
}

+ O(h̄3). (3.767)

For the one-dimensional potential

V (x) =
M

2
ω2x2 +

g3
3!
x3 +

g4
4!
x4 , (3.768)

the effective potential becomes, up to two loops,

Veff(X) =
M

2
ω2X2+g3X

3+g4X
4+

1

β
log (2 sinh h̄βω/2)+h̄2

g4
8(2Mω)2

1

tanh2(h̄βω/2)

− h̄2

6ω

(g3 + g4X)2

(2Mω)3

[

1

3
+

1

sinh2(h̄βω/2)

]

+ O(h̄3) , (3.769)

whose T → 0 limit is

Veff(X) =
T→0

M

2
ω2X2 +

g3
3!
X3 +

g4
4!
X4 +

h̄ω

2
+ h̄2

g4
8(2Mω)2

− h̄2

18ω

(g3 + g4X)2

(2Mω)3
+ O(h̄3) . (3.770)

If the potential is a polynomial in X, the effective potential at zero temperature can be solved
more efficiently than here and to much higher loop orders with the help of recursion relations. This
will be shown in Appendix 3C.5.

3.23.6 Background Field Method for Effective Action

In order to find the rules for the loop expansion to any order, let us separate the
total effective action into a sum of the classical action A[X] and a term Γfl[X] which
collects the contribution of all quantum fluctuations:

Γ[X] = A[X] + Γfl[X]. (3.771)

To calculate the fluctuation part Γfl[X], we expand the paths x(t) around some
arbitrarily chosen background path X(t):20

x(t) = X(t) + δx(t), (3.772)

and calculate the generating functional W [j] by performing the path integral over
the fluctuations:

exp
{

i

h̄
W [j]

}

=
∫

Dδx exp
{

i

h̄

(

A [X+ δx] + j[X](X+ δx)
)

}

. (3.773)

20In the theory of fluctuating fields, this is replaced by a more general background field which
explains the name of the method.
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From W [j] we find a j-dependent expectation value Xj = 〈x〉j as Xj = δW [j]/δj,
and the Legendre transform Γ[X] = W [j]− jXj. In terms of Xj, Eq. (3.773) can be
rewritten as

exp
{

i

h̄

(

Γ[Xj] + j[Xj]Xj
)

}

=
∫

Dδx exp
{

i

h̄

(

A [X+ δx] + j[X](X+ δx)
)

}

. (3.774)

The expectation value Xj has the property of extremizing Γ[X], i.e., it satisfies the
equation

j = −δΓ[X]

∂X

∣

∣

∣

∣

∣

X=Xj

= −ΓX[X
j]. (3.775)

We now choose j in such a way that Xj equals the initially chosen X, and find

exp
{

i

h̄
Γ[X]

}

=
∫

Dδx exp
(

i

h̄

{

A [X+δx]− ΓX[X]δx
}

)

. (3.776)

This is a functional integro-differential equation for the effective action Γ[X] which
we can solve perturbatively order by order in h̄. This is done diagrammatically. The
diagrammatic elements are lines representing the propagator (3.689)

= Gab[X] ≡ ih̄

[

δ2A[X]

δXaδXb

]−1

ab

, (3.777)

and vertices

1 5

2

n

4

6

3

=
δnA[X]

δXa1δXa2 . . . δXan

. (3.778)

From the explicit calculations in the last two subsections we expect the effective
action to be the sum of all one-particle irreducible vacuum diagrams formed with
these propagators and vertices. This will now be proved to all orders in perturbation
theory.

We introduce an auxiliary generating functional W̃
[

X, j̃
]

which governs the cor-
relation functions of the fluctuations δx around the above fixed backgound X:

exp
{

iW̃
[

X, j̃
]

/h̄
}

≡
∫

Dδx exp
(

i

h̄

{

Ã [X, δx] +
∫

dt j̃(t) δx(t)
})

, (3.779)

with the action of fluctuations

Ã[X, δx] = A[X+ δx]−A[X]−AX[X]δx, (3.780)
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whose expansion in powers of δx(t) starts out with a quadratic term. A source j̃(t)
is coupled to the fluctuations δx(t). By comparing (3.779) with (3.776) we see that
for the special choice of the current

j̃ = −ΓX[X] +AX[X] = −Γ̃X[X], (3.781)

the right-hand sides coincide, such that the auxiliary functional W̃ [X, j̃] contains pre-
cisely the diagrams in Γfl[X] which we want to calculate. We now form the Legendre
transform of W̃ [X, j̃], which is an auxiliary effective action with two arguments:

Γ̃
[

X, X̃
]

≡ W̃ [X, j̃]−
∫

dt j̃ X̃, (3.782)

with the auxiliary conjugate variable

X̃ =
δW̃ [X, j̃]

δj̃
= X̃[X, j̃]. (3.783)

This is the expectation value of the fluctuations 〈δx〉 in the path integral (3.779). If
j̃ has the value (3.781), this expectation vanishes, i.e. X̃ = 0. The auxiliary action
Γ̃ [X, 0] coincides with the fluctuating part Γfl[X] of the effective action which we
want to calculate.

The functional derivatives of W̃ [X, j̃] with respect to j̃ yield all connected cor-
relation functions of the fluctuating variables δx(t). The functional derivatives of

Γ̃
[

X, X̃
]

with respect to X̃ select from these the one-particle irreducible correlation

functions. For X̃ = 0, only vacuum diagrams survive.
Thus we have proved that the full effective action is obtained from the sum of the

classical action Γ0[X] = A[X], the one-loop contribution Γ1[X] given by the trace
of the logarithm in Eq. (3.705), the two-loop contribution Γ2[X] in (3.744), and the
sum of all connected one-particle irreducible vacuum diagrams with more than two
loops

i

h̄

∑

n≥3

ih̄nΓn[X] =

(3.784)

Observe that in the expansion of Γ[X ]/h̄, each line carries a factor h̄, whereas each
n-point vertex contributes a factor h̄−1. The contribution of an n-loop diagram to
Γ[X ] is therefore of order h̄n. The higher-loop diagrams are most easily generated
by a recursive treatment of the type developed in Subsection 3.22.3.

For a harmonic oscillator, the expansion stops after the trace of the logarithm
(3.705), and reads simply, in one dimension:

Γ[X ] = A[X ] +
i

2
h̄Tr log Γ(2)(tb, ta)

=
∫ tb

ta
dt

[

M

2
Ẋ2 − Mω2

2
X2

]

+
i

2
h̄Tr log

(

−∂2t − ω2
)

. (3.785)
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Evaluating the trace of the logarithm we find for a constant X the effective potential
(3.666):

V eff(X) = V (X)− i

2(tb − ta)
log{2πi sin[ω(tb − ta)] /Mω}. (3.786)

If the boundary conditions are periodic, so that the analytic continuation of the
result can be used for quantum statistical calculations, the result is

V eff(X) = V (X)− i

(tb − ta)
log{2i sin[ω(tb − ta)/2]}. (3.787)

It is important to keep in mind that a line in the above diagrams contains
an infinite series of fundamental Feynman diagrams of the original perturbation
expansion, as can be seen by expanding the denominators in the propagator Gab in
Eqs. (3.689)–(3.691) in powers of X2. This expansion produces a sum of diagrams
which can be obtained from the loop diagrams in the expansion of the trace of the
logarithm in (3.710) by cutting the loop.

If the potential is a polynomial in X, the effective potential at zero temperature
can be solved most efficiently to high loop orders with the help of recursion relations.
This is shown in detail in Appendix 3C.5.

3.24 Nambu-Goldstone Theorem

The appearance of a zero-frequency mode as a consequence of a nonzero expecta-
tion value X can easily be proved for any continuous symmetry and to all orders
in perturbation theory by using the full effective action. To be more specific we
consider as before the case of O(N)-symmetry, and perform infinitesimal symmetry
transformations on the currents j in the generating functional W [j]:

ja → ja − iǫcd (Lcd)ab jb, (3.788)

where Lcd are the N(N−1)/2 generators of O(N)-rotations with the matrix elements

(Lcd)ab = i (δcaδdb − δdaδcb) , (3.789)

and ǫab are the infinitesimal angles of the rotations. Under these, the generating
functional is assumed to be invariant:

δW [j] = 0 =
∫

dt
δW [j]

δja(x)
i (Lcd)ab jbǫcd = 0. (3.790)

Expressing the integrand in terms of Legendre-transformed quantities via
Eqs. (3.623) and (3.625), we obtain

∫

dtXa(t)i (Lcd)ab
δΓ[X]

δXb(t)
ǫcd = 0. (3.791)
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This expresses the infinitesimal invariance of the effective action Γ[X] under in-
finitesimal rotations

Xa → Xa − iǫcd (Lcd)abXb.

The invariance property (3.791) is called the Ward-Takakashi identity for the func-
tional Γ[X]. It can be used to find an infinite set of equally named identities for all
vertex functions by forming all Γ[X] functional derivatives of Γ[X] and setting X

equal to the expectation value at the minimum of Γ[X]. The first derivative of Γ[X]
gives directly from (3.791) (dropping the infinitesimal parameter ǫcd)

(Lcd)ab jb(t) = (Lcd)ab
δΓ[X]

δX(t)b

= −
∫

dt′Xa′(t
′) (Lcd)a′b

δ2Γ[X]

δXb(t′)δXn(t)
. (3.792)

Denoting the expectation value at the minimum of the effective potential by X̄, this
yields

∫

dt′X̄a′(t
′) (Lcd)a′b

δ2Γ[X]

δXb(t′)δXa(t)

∣

∣

∣

∣

∣

X(t)=X̄

= 0. (3.793)

Now the second derivative is simply the vertex function Γ(2)(t′, t) which is the func-
tional inverse of the correlation function G(2)(t′, t). The integral over t selects the
zero-frequency component of the Fourier transform

Γ̃(2)(ω′) ≡
∫

dt′ eiω
′tΓ(2)(t′, t). (3.794)

If we define the Fourier components of Γ(2)(t′, t) accordingly, we can write (3.793)
in Fourier space as

X0
a′ (Lcd)a′b G̃

−1
ba (ω

′ = 0) = 0. (3.795)

Inserting the matrix elements (3.789) of the generators of the rotations, this equation
shows that for X̄ 6= 0, the fully interacting transverse propagator has to possess a
singularity at ω′ = 0. In quantum field theory, this implies the existence of N − 1
massless particles, the Nambu-Goldstone boson. The conclusion may be drawn
only if there are no massless particles in the theory from the outset, which may be
“eaten up” by the Nambu-Goldstone boson, as explained earlier in the context of
Eq. (3.691).

As mentioned before at the end of Subsection 3.23.1, the Nambu-Goldstone the-
orem does not have any consequences for quantum mechanics since fluctuations are
too violent to allow for the existence of a nonzero expectation value X. The effective
action calculated to any finite order in perturbation theory, however, is incapable of
reproducing this physical property and does have a nonzero extremum and ensuing
transverse zero-frequency modes.



326 3 External Sources, Correlations, and Perturbation Theory

3.25 Effective Classical Potential

The loop expansion of the effective action Γ[X ] in (3.771), consisting of the trace
of the logarithm (3.705) and the one-particle irreducible diagrams (3.744), (3.784)
and the associated effective potential V (X) in Eq. (3.666), can be continued in a
straightforward way to imaginary times setting tb−ta → −ih̄β to form the Euclidean
effective potential Γe[X ]. For the harmonic oscillator, where the expansion stops
after the trace of the logarithm and the effective potential reduces to the simple
expression (3.785), we find the imaginary-time version

V eff(X) = V (X) +
1

β
log

(

2 sinh
βh̄ω

2

)

. (3.796)

Since the effective action contains the effect of all fluctuations, the minimum of the
effective potential V (X) should yield directly the full quantum statistical partition
function of a system:

Z = exp[−βV (X)
∣

∣

∣

min
]. (3.797)

Inserting the harmonic oscillator expression (3.796) we find indeed the correct result
(2.407).

For anharmonic systems, we expect the loop expansion to be able to approx-
imate V (X) rather well to yield a good approximation for the partition function
via Eq. (3.797). It is easy to realize that this cannot be true. We have shown in
Section 2.9 that for high temperatures, the partition function is given by the integral
[recall (2.353)]

Zcl =
∫ ∞

−∞

dx

le(h̄β)
e−V (x)/kBT . (3.798)

This integral can in principle be treated by the same background field method as the
path integral, albeit in a much simpler way. We may write x = X + δx and find a
loop expansion for an effective potential. This expansion evaluated at the extremum
will yield a good approximation to the integral (3.798) only if the potential is very
close to a harmonic one. For any more complicated shape, the integral at small β
will cover the entire range of x and can therefore only be evaluated numerically.
Thus we can never expect a good result for the partition function of anharmonic
systems at high temperatures, if it is calculated from Eq. (3.797).

It is easy to find the culprit for this problem. In a one-dimensional system,
the correlation functions of the fluctuations around X are given by the correlation
function [compare (3.304), (3.251), and (3.690)]

〈δx(τ)δx(τ ′)〉 = G
(2)
Ω2(X)(τ, τ

′)=
h̄

M
Gp

Ω2(X),e(τ − τ ′)

=
h̄

M

1

2Ω(X)

coshΩ(X)(|τ − τ ′| − h̄β/2)

sinh[Ω(X)h̄β/2]
, |τ − τ ′| ∈ [0, h̄β], (3.799)
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with the X-dependent frequency given by

Ω2(X) = ω2 + 3
g

6
X2. (3.800)

At equal times τ = τ ′, this specifies the square width of the fluctuations δx(τ):

〈

[δx(τ)]2
〉

=
h̄

M

1

2Ω(X)
coth

Ω(X)h̄β

2
. (3.801)

The point is now that for large temperatures T , this width grows linearly in T

〈

[δx(τ)]2
〉 T→∞

−−−→ kBT

MΩ2
. (3.802)

The linear behavior follows the historic Dulong-Petit law for the classical fluctuation
width of a harmonic oscillator [compare with the Dulong-Petit law (2.603) for the
thermodynamic quantities]. It is a direct consequence of the equipartition theorem

for purely thermal fluctuations, according to which the potential energy has an
average kBT/2:

MΩ2

2

〈

x2
〉

=
kBT

2
. (3.803)

If we consider the spectral representation (3.248) of the correlation function,

Gp
Ω2,e(τ − τ ′) =

1

h̄β

∞
∑

m=−∞

1

ω2
m + Ω2

e−iωm(τ−τ ′), (3.804)

we see that the linear growth is entirely due to term with zero Matsubara frequency.
The important observation is now that if we remove this zero frequency term

from the correlation function and form the subtracted correlation function [recall
(3.253)]

Gp
Ω2,e
′ (τ)≡Gp

Ω2,e(τ)−
1

h̄βΩ2
=

1

2Ω

coshΩ(|τ |−h̄β/2)
sinh[Ωh̄β/2]

− 1

h̄βΩ2
, (3.805)

we see that the subtracted square width

a2Ω ≡ Gp
Ω2,e
′ (0) =

1

2Ω
coth

Ωh̄β

2
− 1

h̄βΩ2
(3.806)

decrease for large T . This is shown in Fig. 3.14. Due to this decrease, there exists
a method to substantially improve perturbation expansions with the help of the
so-called effective classical potential.

3.25.1 Effective Classical Boltzmann Factor

The above considerations lead us to the conclusion that a useful approximation for
partition function can be obtained only by expanding the path integral in powers of
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Ω

Figure 3.14 Local fluctuation width compared with the unrestricted fluctuation width

of harmonic oscillator and its linear Dulong-Petit approximation. The vertical axis shows

units of h̄/MΩ, a quantity of dimension length2.

the subtracted fluctuations δ′x(τ) which possess no zero Matsubara frequency. The
quantity which is closely related to the effective potential V eff(X) in Eq. (3.666)
but allows for a more accurate evaluation of the partition function is the effective

classical potential V eff cl(x0). Just as V
eff(X), it contains the effects of all quantum

fluctuations, but it keeps separate track of the thermal fluctuations which makes it
a convenient tool for numerical treatment of the partition function. The definition
starts out similar to the background method in Subsection 3.23.6 in Eq. (3.772).
We split the paths as in Eq. (2.443) into a time-independent constant background
x0 and a fluctuation η(τ) with zero temporal average η̄ = 0:

x(τ) = x0 + η(τ) ≡ x0 +
∞
∑

m=1

(

xme
iωmτ + c.c.

)

, x0 = real, x−m ≡ x∗m, (3.807)

and write the partition function using the measure (2.448) as

Z =
∮

Dx e−Ae/h̄ =
∫ ∞

−∞

dx0
le(h̄β)

∮

D′x e−Ae/h̄, (3.808)

where

∮

D′x e−Ae/h̄ =
∞
∏

m=1

[

∫ ∞

−∞

∫ ∞

−∞

dRexm d Imxm
πkBT/Mω2

m

]

e−Ae/h̄. (3.809)

Comparison of (2.447) with the integral expression (2.352) for the classical partition
function Zcl suggests writing the path integral over the components with nonzero
Matsubara frequencies as a Boltzmann factor

B(x0) ≡ e−V eff cl(x0)/kBT (3.810)

and defined the quantity V eff cl(x0) as the effective classical potential. The full
partition function is then given by the integral

Z =
∫ ∞

−∞

dx0
le(h̄β)

e−V eff cl(x0)/kBT , (3.811)
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where the effective classical Boltzmann factor B(x0) contains all information on
the quantum fluctuations of the system and allows to calculate the full quantum
statistical partition function from a single classically looking integral. At high-
temperature, the partition function (3.811) takes the classical limit (2.462). Thus,
by construction, the effective classical potential V eff cl(x0) will approach the initial
potential V (x0):

V eff cl(x0)
T→∞−−−→ V (x0). (3.812)

This is a direct consequence of the shrinking fluctuation width (3.806) for growing
temperature.

The path integral representation of the effective classical Boltzmann factor

B(x0) ≡
∮

D′x e−Ae/h̄ (3.813)

can also be written as a path integral in which one has inserted a δ-function to
ensure the path average

x̄ ≡ 1

h̄β

∫ h̄β

0
dτ x(τ). (3.814)

Let us introduce the slightly modified δ-function [recall (2.353)]

δ̃(x̄− x0) ≡ le(h̄β)δ(x̄− x0) =

√

2πh̄2β

M
δ(x̄− x0). (3.815)

Then we can write

B(x0) ≡ e−V eff cl(x0)/kBT =
∮

D′x e−Ae/h̄ =
∮

Dx δ̃(x̄− x0) e
−Ae/h̄

=
∮

Dη δ̃(η̄) e−Ae/h̄. (3.816)

As a check we evaluate the effective classical Boltzmann factor for the harmonic
action (2.445). With the path splitting (3.807), it reads

Ae[x0 + η] = h̄β
Mω2

2
x20 +

M

2

∫ h̄β

0
dτ

[

η̇2(τ) + ω2η2(τ)
]

. (3.817)

After representing the δ function by a Fourier integral

δ̃(η̄) = le(h̄β)
∫ i∞

−i∞

dλ

2πi
exp

(

λ
1

h̄β

∫

dτ η(τ)

)

, (3.818)

we find the path integral

Bω(x0) =
∮

Dη δ̃(η̄) e−Ae/h̄ = e−βMω2x2
0/2le(h̄β)

∫ i∞

−i∞

dλ

2πi

×
∮

Dη exp

{

−1

h̄

∫ h̄β

0
dτ

[

M

2
η̇2(τ)− λ

β
η(τ)

]}

. (3.819)
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The path integral over η(τ) in the second line can now be performed without the
restriction h̄β = 0 and yields, recalling (3.555), (3.556), and inserting there j(τ) =
λ/β, we obtain for the path integral over η(τ) in the second line of (3.819):

1

2 sinh(βh̄ω/2)
exp

{

λ2

2Mh̄β2

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′Gp

ω2,e(τ − τ ′)

}

. (3.820)

The integrals over τ, τ ′ are most easily performed on the spectral representation
(3.248) of the correlation function:

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′Gp

ω2,e(τ − τ ′)=
∫ h̄β

0
dτ
∫ h̄β

0
dτ ′

1

h̄β

∞
∑

m=−∞

1

ω2
m + ω2

e−iωm(τ−τ ′) =
h̄β

ω2
.

(3.821)

The expression (3.820) has to be integrated over λ and yields

1

2 sinh(βh̄ω/2)

∫ i∞

−i∞

dλ

2πi
exp

(

λ2

2Mω2β

)

=
1

2 sinh(βh̄ω/2)

1

le(h̄β)
ωh̄β. (3.822)

Inserting this into (3.819) we obtain the local Boltzmann factor

Bω(x0) ≡ e−V eff cl
ω (x0)/kBT =

∮

Dη δ̃(η̄) e−Ae/h̄ =
βh̄ω/2

sinh(βh̄ω/2)
e−βMω2x2

0 . (3.823)

The final integral over x0 in (3.808) reproduces the correct partition function (2.409)
of the harmonic oscillator.

3.25.2 Effective Classical Hamiltonian

It is easy to generalize the expression (3.816) to phase space, where we define the
effective classical Hamiltonian Heff cl(p0, x0) and the associated Boltzmann factor
B(p0, x0) by the path integral

B(p0, x0) ≡ exp
[

−βHeff cl(p0, x0)
]

≡
∮

Dx
∮ Dp

2πh̄
δ(x0 − x)2πh̄δ(p0 − p) e−Ae[p,x]/h̄,

(3.824)
where x =

∫ h̄β
0 dτ x(τ)/h̄β and p =

∫ h̄β
0 dτ p(τ)/h̄β are the temporal averages of

position and momentum, and Ae[p, x] is the Euclidean action in phase space

Ae[p, x] =
∫ h̄β

0
dτ [−ip(τ)ẋ(τ) +H(p(τ), x(τ))]. (3.825)

The full quantum-mechanical partition function is obtained from the classical-
looking expression [recall (2.346)]

Z =
∫ ∞

−∞
dx0

∫ ∞

−∞

dp0
2πh̄

e−βHeff cl(p0,x0). (3.826)
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The definition is such that in the classical limit, Heff cl(p0, x0)) becomes the ordinary
Hamiltonian H(p0, x0).

For a harmonic oscillator, the effective classical Hamiltonian can be directly
deduced from Eq. (3.823) by “undoing” the p0-integration:

Bω(p0, x0) ≡ e−Heff cl
ω (p0,x0)/kBT = le(h̄β)

βh̄ω/2

sinh(βh̄ω/2)
e−β(p20/2M+Mω2x2

0). (3.827)

Indeed, inserting this into (3.826), we recover the harmonic partition function
(2.409).

Consider a particle in three dimensions moving in a constant magnetic field B
along the z-axis. For the sake of generality, we allow for an additional harmonic
oscillator centered at the origin with frequencies ω‖ in z-direction and ω⊥ in the
xy-plane (as in Section 2.19). It is then easy to calculate the effective classical
Boltzmann factor for the Hamiltonian [recall (2.689)]

H(p,x) =
1

2M
p2 +

M

2
ω2
⊥x

2
⊥(τ) +

M

2
ω2
‖z

2(τ) + ωBlz(p(τ),x(τ)), (3.828)

where lz(p,x) is the z-component of the angular momentum defined in Eq. (2.647).
We have shifted the center of momentum integration to p0, for later convenience
(see Subsection 5.11.2). The vector x⊥ = (x, y) denotes the orthogonal part of x. As
in the generalized magnetic field action (2.689), we have chosen different frequencies
in front of the harmonic oscillator potential and of the term proportional to lz, for
generality. The effective classical Boltzmann factor follows immediately from (2.703)
by “undoing” the momentum integrations in px, py, and using (3.827) for the motion
in the z-direction:

B(p0,x0)=e
−βHeff cl(p0,x0)= l3e(h̄β)

h̄βω+/2

sinh h̄βω+/2

h̄βω−/2

sinh h̄βω−/2

h̄βω‖/2

sinh h̄βω‖/2
e−βH(p0,x0),

(3.829)
where ω± ≡ ωB ± ω⊥, as in (2.699). As in Eq. (3.823), the restrictions of the path
integrals over x and p to the fixed averages x0 = x̄ and p0 = p̄ give rise to the extra
numerators in comparison to (2.703).

3.25.3 High- and Low-Temperature Behavior

We have remarked before in Eq. (3.812) that in the limit T → ∞, the effective
classical potential V eff cl(x0) converges by construction against the initial potential
V (x0). There exists, in fact, a well-defined power series in h̄ω/kBT which describes
this approach. Let us study this limit explicitly for the effective classical potential
of the harmonic oscillator calculated in (3.823), after rewriting it as

V eff cl
ω (x0) = kBT log

sinh(h̄ω/2kBT )

h̄ω/2kBT
+
M

2
ω2x20 (3.830)

=
M

2
ω2x20 +

h̄ω

2
+ kBT

[

log(1− e−h̄ω/kBT )− log
h̄ω

kBT

]

.
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Due to the subtracted logarithm of ω in the brackets, the effective classical potential
has a power series

V eff cl
ω (x0) =

M

2
ω2x20 + h̄ω





1

24

h̄ω

kBT
− 1

2880

(

h̄ω

kBT

)3

+ . . .



 . (3.831)

This pleasant high-temperature behavior is in contrast to that of the effective po-
tential which reads for the harmonic oscillator

V eff
ω (x0) = kBT log [2 sinh(h̄ω/2kBT )] +

M

2
ω2x20

=
M

2
ω2x20 +

h̄ω

2
+ kBT log(1− e−h̄ω/kBT ), (3.832)

as we can see from (3.796). The logarithm of ω prevents this from having a power
series expansion in h̄ω/kBT , reflecting the increasing width of the unsubtracted
fluctuations.

Consider now the opposite limit T → 0, where the final integral over the Boltz-
mann factor B(x0) can be calculated exactly by the saddle-point method. In this
limit, the effective classical potential V eff cl(x0) coincides with the Euclidean version
of the effective potential:

V eff cl(x0) →
T→0

V eff(x0) ≡ Γe[X ]/β
∣

∣

∣

X=x0

, (3.833)

whose real-time definition was given in Eq. (3.666).
Let us study this limit again explicitly for the harmonic oscillator, where it

becomes

V eff cl
ω (x0)

T→0
−−−→ h̄ω

2
+
M

2
ω2x20 − kBT log

h̄ω

kBT
, (3.834)

i.e., the additional constant tends to h̄ω/2. This is just the quantum-mechanical
zero-point energy which guarantees the correct low-temperature limit

Zω

T→0
−−−→ e−h̄ω/2kBT h̄ω

kBT

∫ ∞

−∞

dx0
le(h̄β)

e−Mω2x2
0/2kBT

= e−h̄ω/2kBT . (3.835)

The limiting partition function is equal to the Boltzmann factor with the zero-point
energy h̄ω/2.

3.25.4 Alternative Candidate for Effective Classical Potential

It is instructive to compare this potential with a related expression which can be
defined in terms of the partition function density defined in Eq. (2.332):

Ṽ eff cl
ω (x) ≡ kBT log [le(h̄β) z(x)] . (3.836)
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This quantity shares with V eff cl
ω (x0) the property that it also yields the partition

function by forming the integral [compare (2.331)]:

Z =
∫ ∞

−∞

dx0
le(h̄β)

e−Ṽ eff cl(x0)/kBT . (3.837)

It may therefore be considered as an alternative candidate for an effective classical
potential.

For the harmonic oscillator, we find from Eq. (2.333) the explicit form

Ṽ eff cl
ω (x)=−kBT

2
log

2h̄ω

kBT
+
h̄ω

2
+kBT

[

log
(

1−e−2h̄ω/kBT
)

+
Mω

h̄
tanh

h̄ω

kBT
x2
]

.(3.838)

This shares with the effective potential V eff(X) in Eq. (3.832) the unpleasant prop-
erty of possessing no power series representation in the high-temperature limit.

The low-temperature limit of Ṽ eff cl
ω (x) looks at first sight quite similar to (3.834):

Ṽ eff cl(x0)
T→0
−−−→ h̄ω

2
+ kBT

Mω

h̄
x2 − kBT

2
log

2h̄ω

kBT
, (3.839)

and the integration leads to the same result (3.835) in only a slightly different way:

Zω

T→0
−−−→ e−h̄ω/2kBT

√

2h̄ω

kBT

∫ ∞

−∞

dx

le(h̄β)
e−Mωx2/h̄

= e−h̄ω/2kBT . (3.840)

There is, however, an important difference of (3.839) with respect to (3.834). The
width of a local Boltzmann factor formed from the partition function density (2.332):

B̃(x) ≡ le(h̄β) z(x) = e−Ṽ eff cl(x)/kBT (3.841)

is much wider than that of the effective classical Boltzmann factor B(x0) =
e−V eff cl(x0)/kBT . Whereas B(x0) has a finite width for T → 0, the Boltzmann fac-
tor B̃(x) has a width growing to infinity in this limit. Thus the integral over x
in (3.840) converges much more slowly than that over x0 in (3.835). This is the
principal reason for introducing V eff cl(x0) as an effective classical potential rather
than Ṽ eff cl(x0).

3.25.5 Harmonic Correlation Function without Zero Mode

By construction, the correlation functions of η(τ) have the desired subtracted form
(3.805):

〈η(τ)η(τ ′)〉ω=
h̄

M
Gp

ω2,e
′ (τ−τ ′)= h̄

2Mω

coshω(|τ − τ ′|−h̄β/2)
sinh(βh̄ω/2)

− 1

h̄βω2
, (3.842)
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with the square width as in (3.806):

〈η2(τ)〉ω ≡ a2ω = Gp
ω2,e
′ (0) =

1

2ω
coth

βh̄ω

2
− 1

h̄βω2
, (3.843)

which decreases with increasing temperature. This can be seen explicitly by adding
a current term − ∫ dτ j(τ)η(τ) to the action (3.817) which winds up in the exponent
of (3.819), replacing λ/β by j(τ)+λ/β and multiplies the exponential in (3.820) by
a factor

1

2Mh̄β2

{

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′

[

λ2 + λβj(τ) + λβj(τ ′)
]

Gp
ω2,e(τ − τ ′)

}

× exp

{

1

2Mh̄

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′ j(τ)Gp

ω2,e(τ − τ ′)j(τ ′)

}

. (3.844)

In the first exponent, one of the τ -integrals over Gp
ω2,e(τ − τ ′), say τ ′, produces a

factor 1/ω2 as in (3.821), so that the first exponent becomes

1

2Mh̄β2

{

λ2
h̄β

ω2
+ 2

λβ

ω2

∫ h̄β

0
dτ j(τ)

}

. (3.845)

If we now perform the integral over λ, the linear term in λ yields, after a quadratic
completion, a factor

exp

{

− 1

2Mβh̄2ω2

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′j(τ)j(τ ′)

}

. (3.846)

Combined with the second exponential in (3.844) this leads to a generating functional
for the subtracted correlation functions (3.842):

Zx0
ω [j] =

βh̄ω/2

sin(βh̄ω/2)
e−βMω2x2

0/2 exp

{

1

2Mh̄

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′ j(τ)Gp

ω2,e
′ (τ−τ ′)j(τ ′)

}

.

(3.847)

For j(τ) ≡ 0, this reduces to the local Boltzmann factor (3.823).

3.25.6 Perturbation Expansion

We can now apply the perturbation expansion (3.483) to the path integral over η(τ)
in Eq. (3.816) for the effective classical Boltzmann factor B(x0). We take the action

Ae[x] =
∫ h̄β

0
dτ
[

M

2
ẋ2 + V (x)

]

, (3.848)

and rewrite it as

Ae = h̄βV (x0) +A(0)
e [η] +Aint,e[x0; η], (3.849)

H. Kleinert, PATH INTEGRALS



3.25 Effective Classical Potential 335

with an unperturbed action

A(0)
e [η] =

∫ h̄β

0
dτ
[

M

2
η̇2(τ) +

M

2
Ω2(x0)η

2(τ)
]

, Ω2(x0) ≡ V ′′(x0)/M, (3.850)

and an interaction

Aint,e[x0; η] =
∫ h̄β

0
dτ V int(x0; η(τ)), (3.851)

containing the subtracted potential

V int(x0; η(τ)) = V (x0 + η(τ))− V (x0)− V ′(x0)η(τ)−
1

2
V ′′(x0)η

2(τ). (3.852)

This has a Taylor expansion starting with the cubic term

V int(x0; η) =
1

3!
V ′′′(x0)η

3 +
1

4!
V (4)(x0)η

4 + . . . . (3.853)

Since η(τ) has a zero temporal average, the linear term
∫ h̄β
0 dτ V ′(x0)η(τ) is absent

in (3.850). The effective classical Boltzmann factor B(x0) in (3.816) has then the
perturbation expansion [compare (3.483)]

B(x0) =
(

1− 1

h̄
〈Aint,e〉x0

Ω +
1

2!h̄2

〈

A2
int,e

〉x0

Ω
− 1

3!h̄3

〈

A3
int,e

〉x0

Ω
+ . . .

)

BΩ(x0). (3.854)

The harmonic expectation values are defined with respect to the harmonic path
integral

BΩ(x0) =
∫

Dη δ̃(η̄) e−A
(0)
e [η]//h̄. (3.855)

For an arbitrary functional F [x] one has to calculate

〈F [x]〉x0
Ω = B−1

Ω (x0)
∫

Dη δ̃(η̄)F [x] e−A
(0)
e [η]/h̄. (3.856)

Some calculations of local expectation values are conveniently done with the
explicit Fourier components of the path integral. Recalling (3.809) and expanding
the action (3.817) in its Fourier components using (3.807), they are given by the
product of integrals

〈F [x]〉x0

Ω = [Zx0
Ω ]−1

∞
∏

m=1

[

∫ dxremdx
im
m

πkBT/Mω2
m

]

e
− M

kBT
Σ∞

m=1[ω
2
m+Ω2(x0)]|xm|2

F [x]. (3.857)

This implies the correlation functions for the Fourier components

〈

xmx
∗
m′

〉x0

Ω
= δmm′

kBT

M

1

ω2
m + Ω2(x0)

. (3.858)
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From these we can calculate once more the correlation functions of the fluctuations
η(τ) as follows:

〈η(τ)η(τ ′)〉x0

Ω =

〈

∞
∑

m,m′ 6=0

xmx
∗
m′e−i(ωm−ωm′ )τ

〉x0

Ω

= 2
1

Mβ

∑

m=1

1

ω2
m + Ω2(x0)

. (3.859)

Performing the sum gives once more the subtracted correlation function Eq. (3.842),
whose generating functional was calculated in (3.847).

The calculation of the harmonic averages in (3.854) leads to a similar loop ex-
pansion as for the effective potential in Subsection 3.23.6 using the background field
method. The path average x0 takes over the role of the background X and the non-
zero Matsubara frequency part of the paths η(τ) corresponds to the fluctuations.
The only difference with respect to the earlier calculations is that the correlation
functions of η(τ) contain no zero-frequency contribution. Thus they are obtained
from the subtracted Green functions Gp

Ω2(x0),e
′ (τ) defined in Eq. (3.805).

All Feynman diagrams in the loop expansion are one-particle irreducible, just as
in the loop expansion of the effective potential. The reducible diagrams are absent
since there is no linear term in the interaction (3.853). This trivial absence is an ad-
vantage with respect to the somewhat involved proof required for the effective action
in Subsection 3.23.6. The diagrams in the two expansions are therefore precisely the
same and can be read off from Eqs. (3.744) and (3.784). The only difference lies
in the replacement X → x0 in the analytic expressions for the lines and vertices.
In addition, there is the final integral over x0 to obtain the partition function Z in
Eq. (3.811). This is in contrast to the partition function expressed in terms of the
effective potential V eff(X), where only the extremum has to be taken.

3.25.7 Effective Potential and Magnetization Curves

The effective classical potential V eff cl(x0) in the Boltzmann factor (3.810) allows us
to estimate the effective potential defined in Eq. (3.666). It can be derived from the
generating functional Z[j] restricted to time-independent external source j(τ) ≡ j,
in which case Z[j] reduces to a mere function of j:

Z(j) =
∫

Dx(τ) exp
{

−
∫ β

0
dτ
[

1

2
ẋ2 + V (x(τ))

]

+ βjx̄

}

, (3.860)

where x̄ is the path average of x(τ). The function Z(j) is obtained from the effective
classical potential by a simple integral over x0:

Z(j) =
∫ ∞

−∞

dx0√
2πβ

e−β[V eff cl(x0)−jx0]. (3.861)

The effective potential V eff(X) is equal to the Legendre transform of W (j) =
logZ(j):

V eff(X) = − 1

β
W (j) +Xj, (3.862)
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Figure 3.15 Magnetization curves in double-well potential V (x) = −x2/2 + gx4/4 with

g = 0.4, at various inverse temperatures β. The integral over these curves returns the

effective potential V eff(X). The curves arising from the approximate effective potential

W1(x0) are labeled by β1 (- - -) and the exact curves (found by solving the Schrödinger

equation numerically) by βex (—–). For comparison we have also drawn the classical curves

(· · ·) obtained by using the potential V (x0) in Eqs. (3.864) and (3.861) rather than W1(x0).

They are labeled by βV . Our approximation W1(x0) is seen to render good magnetization

curves for all temperatures above T = 1/β ∼ 1/10. The label β carries several subscripts

if the corresponding curves are indistinguishable on the plot. Note that all approximations

are monotonous, as they should be (except for the mean field, of course).

where the right-hand side is to be expressed in terms of X using

X = X(j) =
1

β

d

d j
W (j). (3.863)

To picture the effective potential, we calculate the average value of x(τ) from the
integral

X = Z(j)−1
∫ ∞

−∞

dx0√
2πβ

x0 exp
{

−β[V eff cl(x0)− jx0]
}

(3.864)

and plot X = X(j). By exchanging the axes we display the inverse j = j(X) which
is the slope of the effective potential:

j(X) =
dV eff(X)

dX
. (3.865)
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The curves j(X) are shown in Fig. 3.15 for the double-well potential with a coupling
strength g = 0.4 at various temperatures.

Note that the x0-integration makes j(X) necessarily a monotonous function of
X . The effective potential is therefore always a convex function of X , no matter
what the classical potential looks like. This is in contrast to j(X) before fluctuations
are taken into account, the mean-field approximation to (3.865) [recall the discussion
in Subsection 3.23.1], which is given by

j = dV (X)/dX. (3.866)

For the double-well potential, this becomes

j = −X + gX3. (3.867)

Thus, the mean-field effective potential coincides with the classical potential V (X),
which is obviously not convex.

In magnetic systems, j is a constant magnetic field and X its associated magne-
tization. For this reason, plots of j(X) are referred to as magnetization curves .

3.25.8 First-Order Perturbative Result

To first order in the interaction V int(x0; η), the perturbation expansion (3.854) be-
comes

B(x0) =
(

1− 1

h̄
〈Aint,e〉x0

Ω + . . .
)

BΩ(x0), (3.868)

and we have to calculate the harmonic expectation value of Aint,e. Let us assume
that the interaction potential possesses a Fourier transform

V int(x0; η(τ)) =
∫ ∞

−∞

dk

2π
eik(x0+η(τ))Ṽ int(k). (3.869)

Then we can write the expectation of (3.851) as

〈Aint,e[x0; η]〉x0

Ω =
∫ h̄β

0
dτ

∫ ∞

−∞

dk

2π
Ṽ int(k)eikx0

〈

eikη(τ)
〉x0

Ω
. (3.870)

We now use Wick’s rule in the form (3.307) to calculate

〈

eikη(τ)
〉x0

Ω
= e−k2〈η2(τ)〉x0

Ω
/2. (3.871)

We now use Eq. (3.843) to write this as

〈

eikη(τ)
〉x0

Ω
= e

−k2a2
Ω(x0)

/2
. (3.872)

Thus we find for the expectation value (3.870):

〈Aint,e[x0; η]〉x0

Ω =
∫ h̄β

0
dτ

∫ ∞

−∞

dk

2π
Ṽ int(k)e

ikx0−k2a2
Ω(x0)

/2
. (3.873)
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Due to the periodic boundary conditions satisfied by the correlation function and
the associated invariance under time translations, this result is independent of τ , so
that the τ -integral can be performed trivially, yielding simply a factor h̄β. We now
reinsert the Fourier coefficients of the potential

Ṽ int(k) =
∫ ∞

−∞
dx V int(x0; η) e

−ik(x0+η), (3.874)

perform the integral over k via a quadratic completion, and obtain

〈

V int(x(τ))
〉x0

Ω
≡ V

int

a2
Ω
(x0) =

∫ ∞

−∞

dx′0
√

2πa2Ω(x0)

e
−η2/2a2

Ω(x0) V int(x0; η). (3.875)

The expectation
〈

V int(x(τ))
〉x0

Ω
≡ V

int

a2
Ω
(x0) of the potential arises therefore from a

convolution integral of the original potential with a Gaussian distribution of square
width a2Ω(x0)

. The convolution integral smears the original interaction potential

V
int

a2Ω
(x0) out over a length scale aΩ(x0). In this way, the approximation accounts for

the quantum-statistical path fluctuations of the particle.

As a result, we can write the first-order Boltzmann factor (3.868) as follows:

B(x0)≈
Ω(x0)h̄β

2 sin[Ω(x0)h̄β/2]
exp

{

−βMΩ(x0)
2x20/2− βV

int

a2Ω
(x0)

}

. (3.876)

Recalling the harmonic effective classical potential (3.834), this may be written as
a Boltzmann factor associated with the first-order effective classical potential

V eff cl(x0) ≈ V eff cl
Ω(x0)(x0) + V

int

a2Ω
(x0). (3.877)

Given the power series expansion (3.853) of the interaction potential

V int(x0; η) =
∞
∑

k=3

1

k!
V (k)(x0)h̄

k, (3.878)

we may use the integral formula

∫ ∞

−∞

dη√
2πa2

e−η2/2a2ηk=

{

(k − 1)!! ak

0

}

for k=

{

even
odd

}

, (3.879)

we find the explicit smeared potential

V int
a2 (x0) =

∞
∑

k=4,6,...

(k − 1)!!

k!
V (k)(x0)a

k(x0). (3.880)
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3.26 Perturbative Approach to Scattering Amplitude

In Eq. (2.747) we have derived a path integral representation for the scattering amplitude. It
involves calculating a path integral of the general form

∫

d3ya

∫

d3za

∫

D3y

∫

D3z exp

[

i

h̄

∫ tb

ta

dt
M

2

(

ẏ2 − ż2
)

]

F [y(t) − z(0)], (3.881)

where the paths y(t) and z(t) vanish at the final time t = tb whereas the initial positions are
integrated out. In lowest approximation, we may neglect the fluctuations in y(t) and z(0) and
obtain the eikonal approximation (2.750). In order to calculate higher-order corrections to path
integrals of the form (3.881) we find the generating functional of all correlation functions of y(t)−
z(0).

3.26.1 Generating Functional

For the sake of generality we calculate the harmonic path integral over y:

Z[jy] ≡
∫

d3ya

∫

D3y exp

{

i

h̄

∫ tb

ta

dt

[

M

2

(

ẏ2 − ω2y2
)

− jyy

]}

. (3.882)

This differs from the amplitude calculated in (3.168) only by an extra Fresnel integral over the
initial point and a trivial extension to three dimensions. This yields

Z[jy] =

∫

d3ya(ybtb|yata)
jy
ω

= exp

{

i

h̄

∫ tb

ta

dt
1

sinω(tb − ta)

[

yb (sin [ω(t− ta)] + sin [ω(tb − t)]) jy
]

}

× exp

{

− i

h̄2
h̄

M

∫ tb

ta

dt

∫ t

ta

dt′ jy(t)Ḡω2(t, t′)jy(t′)

}

, (3.883)

where Ḡω2(t, t′) is obtained from the Green function (3.36) with Dirichlet boundary conditions by
adding the result of the quadratic completion in the variable yb − ya preceding the evaluation of
the integral over d3ya:

Ḡω2(t, t′) =
1

ω sinω(tb − ta)
sinω(tb − t>) [sinω(t< − ta) + sinω(tb − t<)] . (3.884)

We need the special case ω = 0 where

Ḡω2(t, t′) = tb − t>. (3.885)

In contrast to Gω2(t, t′) of (3.36), this Green function vanishes only at the final time. This reflects
the fact that the path integral (3.881) is evaluated for paths y(t) which vanish at the final time
t = tb.

A similar generating functional for z(t) leads to the same result with opposite sign in the
exponent. Since the variable z(t) appears only with time argument zero in (3.881), the relevant
generating functional is

Z[j] ≡
∫

d3ya

∫

d3za

∫

D3y

∫

D3z

× exp

(

i

h̄

∫ tb

ta

dt

{

M

2

[

ẏ2 − ż2 − ω2
(

y2 − z2
)

− j yz
]

})

, (3.886)

with yb = zb = 0, where we have introduced the subtracted variable

yz(t) ≡ y(t) − z(0), (3.887)
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for brevity. From the above calculations we can immediately write down the result

Z[j] =
1

Dω
exp

{

− i

h̄2
h̄

2M

∫ tb

ta

dt

∫ tb

ta

dt′ j(t)Ḡ′
ω2(t, t′)j(t′)

}

, (3.888)

where Dω is the functional determinant associated with the Green function (3.884) which is ob-
tained by integrating (3.884) over t ∈ (tb, ta) and over ω2:

Dω =
1

cos2[ω(tb − ta)]
exp

[
∫ tb−ta

0

dt

t
(cosωt− 1)

]

, (3.889)

and Ḡ′
ω2(t, t′) is the subtracted Green function (3.884):

Ḡ′
ω2(t, t′) ≡ Ḡω2(t, t′) − Ḡω2(0, 0). (3.890)

For ω = 0 where Dω = 1, this is simply

Ḡ′
0(t, t

′) ≡ −t>, (3.891)

where t> denotes the larger of the times t and t′. It is important to realize that thanks to the
subtraction in the Green function (3.885) caused by the z(0)-fluctuations, the limits ta → −∞ and
tb → ∞ can be taken in (3.888) without any problems.

3.26.2 Application to Scattering Amplitude

We can now apply this result to the path integral (2.747). With the abbreviation (3.887) we write
it as

fpbpa
=

p

2πih̄

∫

d2b e−iqb/h̄

×
∫

D3yz exp

{

i

h̄

∫ ∞

−∞
dt
M

2
yz[Ḡ

′
0(t, t

′)]−1yz

}

[

eiχb,p[yz] − 1
]

, (3.892)

where [Ḡ′
0(t, t

′)]−1 is the functional inverse of the subtracted Green function (3.891), and χb,p[yz]
the integral over the interaction potential V (x):

χb,p[yz] ≡ − 1

h̄

∫ ∞

−∞
dt V

(

b +
p

M
t+ yz(t)

)

. (3.893)

3.26.3 First Correction to Eikonal Approximation

The first correction to the eikonal approximation (2.750) is obtained by expanding (3.893) to first
order in yz(t). This yields

χb,p[y]=χei
b,p − 1

h̄

∫ ∞

−∞
dt∇V

(

b +
p

M
t
)

yz(t). (3.894)

The additional terms can be considered as an interaction

− 1

h̄

∫ ∞

−∞
dtyz(t) j(t), (3.895)

with the current

j(t) = ∇V
(

b +
p

M
t
)

. (3.896)
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Using the generating functional (3.888), this is seen to yield an additional scattering phase

∆1χ
ei
b,p =

1

2Mh̄

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 ∇V

(

b +
p

M
t1

)

∇V
(

b +
p

M
t2

)

t>. (3.897)

To evaluate this we shall always change, as in (2.752), the time variables t1,2 to length variables
z1,2 ≡ p1,2t/M along the direction of p.

For spherically symmetric potentials V (r) with r ≡ |x| =
√
b2 + z2, we may express the

derivatives parallel and orthogonal to the incoming particle momentum p as follows:

∇‖V = z V ′/r, ∇⊥V = bV ′/r. (3.898)

Then (3.897) reduces to

∆1χ
ei
b,p =

M2

2h̄p3

∫ ∞

−∞
dz1

∫ ∞

−∞
dz2

V ′(r1)

r1

V ′(r2)

r2

(

b2 + z1z2
)

z1. (3.899)

The part of the integrand before the bracket is obviously symmetric under z → −z and under the
exchange z1 ↔ z2. For this reason we can rewrite

∆1χ
ei
b,p =

M2

h̄p3

∫ ∞

−∞
dz1 z1

V ′(r1)

r1

∫ ∞

−∞
dz2

V ′(r2)

r2

(

b2 − z22
)

. (3.900)

Now we use the relations (3.898) in the opposite direction as

zV ′/r = ∂zV, bV ′/r = ∂bV, (3.901)

and performing a partial integration in z1 to obtain21

∆1χ
ei
b,p = −M

2

h̄p3
(1 + b∂b)

∫ ∞

−∞
dz V 2

(

√

b2 + z2
)

. (3.902)

Compared to the leading eikonal phase (2.753), this is suppressed by a factor V (0)M/p2.
Note that for the Coulomb potential where V 2(

√
b2 + z2) ∝ 1/(b2 + z2), the integral is pro-

portional to 1/b which is annihilated by the factor 1 + b∂b. Thus there is no first correction to the
eikonal approximation (1.506).

3.26.4 Rayleigh-Schrödinger Expansion of Scattering Amplitude

In Section 1.16 we have introduced the scattering amplitude as the limiting matrix
element [see (1.516)]

〈pb|Ŝ|pa〉 ≡ lim
tb−ta→∞

ei(Eb−Ea)tb/h̄(pb0|pata)e
−iEata/h̄. (3.903)

A perturbation expansion for these quantities can be found via a Fourier transfor-
mation of the expansion (3.477). We only have to set the oscillator frequency of the
harmonic part of the action equal to zero, since the particles in a scattering process
are free far away from the scattering center. Since scattering takes usually place in
three dimensions, all formulas will be written down in such a space.

21This agrees with results from Schrödinger theory by S.J. Wallace, Ann. Phys. 78 , 190 (1973);
S. Sarkar, Phys. Rev. D 21 , 3437 (1980). It differs from R. Rosenfelder’s result (see Footnote 38
on p. 193) who derives a prefactor p cos(θ/2) instead of the incoming momentum p.
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We shall thus consider the perturbation expansion of the amplitude

(pb0|pata) =
∫

d3xbd
3xae

−ipbxb(xb0|xata)e
ipaxa , (3.904)

where (xb0|xata) is expanded as in (3.477). The immediate result looks as in the
expansion (3.500), if we replace the external oscillator wave functions ψn(xb) and
ψa(xb) by free-particle plane waves e−ipbxb and eipaxa:

(pb0|pata) = (pb0|pata)0

+
i

h̄
〈pb|Aint|pa〉0 −

1

2!h̄2
〈pb|A2

int|pa〉0 −
i

3!h̄3
〈pb|A3

int|pa〉0 + . . . . (3.905)

Here
(pb0|pata)0 = (2πh̄)3δ(3)(pb − pa)e

ip2
b
ta/2Mh̄ (3.906)

is the free-particle time evolution amplitude in momentum space [recall (2.73)] and
the matrix elements are defined by

〈pb| . . . |pa〉0 ≡
∫

d3xbd
3xae

−ipbxb

(
∫

D3x . . . eiA0/h̄
)

eipaxa . (3.907)

In contrast to (3.500) we have not divided out the free-particle amplitude (3.906) in
this definition since it is too singular. Let us calculate the successive terms in the
expansion (3.905). First

〈pb|Aint|pa〉0 = −
∫ 0

ta
dt1

∫

d3xbd
3xad

3x1e
−ipbxb(xb0|x1t1)0

× V (x1)(x1t1|xata)0e
ipaxa . (3.908)

Since
∫

d3xbe
−ipbxb(xbtb|x1t1)0 = e−ipbx1e−ip2

b
(tb−t1)/2Mh̄,

∫

d3xa(x1t1|xata)0e
−ipbxb = e−ipax1eip

2
a(t1−ta)/2Mh̄, (3.909)

this becomes

〈pb|Aint|pa〉0 = −
∫ 0

ta
dt1e

i(p2
b
−p2

a)t1/2Mh̄Vpbpa
eip

2
ata/2Mh̄, (3.910)

where

Vpbpa
≡ 〈pb|V̂ |pa〉 =

∫

d3xei(pb−pa)x/h̄V (x) = Ṽ (pb − pa) (3.911)

[recall (1.494)]. Inserting a damping factor eηt1 into the time integral, and replacing
p2/2M by the corresponding energy E, we obtain

i

h̄
〈pb|Aint|pa〉0 = − 1

Eb −Ea − iη
Vpbpa

eiEata . (3.912)
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Inserting this together with (3.906) into the expansion (3.905), we find for the scat-
tering amplitude (3.903) the first-order approximation

〈pb|Ŝ|pa〉 ≡ lim
tb−ta→∞

ei(Eb−Ea)tb/h̄

[

(2πh̄)3δ(3)(pb − pa)−
1

Eb − Ea − iη
Vpbpa

]

(3.913)

corresponding precisely to the first-order approximation of the operator expression
(1.519), the Born approximation.

Continuing the evaluation of the expansion (3.905) we find that Vpbpa
in (3.913)

is replaced by the T -matrix [recall (1.477)]

Tpbpa
= Vpbpa

−
∫

d3pc
(2πh̄)3

Vpbpc

1

Ec − Ea − iη
Vpcpa

(3.914)

+
∫

d3pc
(2πh̄)3

∫

d3pd
(2πh̄)3

Vpbpc

1

Ec − Ea − iη
Vpcpd

1

Ed −Ea − iη
Vpdpa

+ . . . .

This amounts to an integral equation

Tpbpa
= Vpbpa

−
∫

d3pc
(2πh̄)3

Vpbpc

1

Ec − Ea − iη
Tpcpa

, (3.915)

which is recognized as the Lippmann-Schwinger equation (1.525) for the T -matrix.

3.27 Functional Determinants from Green Functions

In Subsection 3.2.1 we have seen that there exists a simple method, due to Wronski,
for constructing Green functions of the differential equation (3.27),

O(t)Gω2(t, t′) ≡ [−∂2t − Ω2(t)]Gω2(t, t′) = δ(t− t′), (3.916)

with Dirichlet boundary conditions. That method did not require any knowledge
of the spectrum and the eigenstates of the differential operator O(t), except for the
condition that zero-modes are absent. The question arises whether this method can
be used to find also functional determinants.22 The answer is positive, and we shall
now demonstrate that Gelfand and Yaglom’s initial-value problem (2.213), (2.214),
(2.215) with the Wronski construction (2.225) for its solution represents the most
concise formula for the functional determinant of the operator O(t). Starting point
is the observation that a functional determinant of an operator O can be written as

DetO = eTr logO, (3.917)

and that a Green function of a harmonic oscillator with an arbitrary time-dependent
frequency has the integral

Tr
{
∫ 1

0
dgΩ2(t)[−∂2t − gΩ2(t)]−1δ(t− t′)

}

= −Tr {log[−∂2t − Ω2(t)]δ(t− t′)}

+Tr {log[−∂2t ]δ(t− t′)}. (3.918)

22See the reference in Footnote 6 on p. 247.
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If we therefore introduce a strength parameter g ∈ [0, 1] and an auxiliary Green
function Gg(t, t

′) satisfying the differential equation

Og(t)Gg(t, t
′) ≡ [−∂2t − gΩ2(t)]Gg(t, t

′) = δ(t− t′), (3.919)

we can express the ratio of functional determinants DetO1/DetO0 as

Det (O−1
0 O1) = e−

∫ 1

0
dgTr [Ω2(t)Gg(t,t′)]. (3.920)

Knowing of the existence of Gelfand-Yaglom’s elegant method for calculating func-
tional determinants in Section 2.4, we now try to relate the right-hand side in (3.920)
to the solution of the Gelfand-Yaglom’s equations (2.215), (2.213), and (2.214):

Og(t)Dg(t) = 0; Dg(ta) = 0, Ḋg(ta) = 1. (3.921)

By differentiating these equations with respect to the parameter g, we obtain for
the g-derivative D′

g(t) ≡ ∂gDg(t) the inhomogeneous initial-value problem

Og(t)D
′
g(t) = Ω2(t)Dg(t); D′

g(ta) = 0, Ḋ′
g(ta) = 0. (3.922)

The unique solution of equations (3.921) can be expressed as in Eq. (2.221) in terms
of an arbitrary set of solutions ηg(t) and ξg(t) as follows

Dg(t) =
ξg(ta)ηg(t)− ξg(t)ηg(ta)

Wg

= ∆g(t, ta), (3.923)

where Wg is the constant Wronski determinant

Wg = ξg(t)η̇g(t)− ηg(t)ξ̇g(t). (3.924)

We may also write

Dg(tb) =
DetΛg

Wg

= ∆g(tb, ta), (3.925)

where Λg is the constant 2× 2 -matrix

Λg =

(

ξg(ta) ηg(ta)
ξg(tb) ηg(tb)

)

. (3.926)

With the help of the solution ∆g(t, t
′) of the homogenous initial-value problem

(3.921) we can easily construct a solution of the inhomogeneous initial-value problem
(3.922) by superposition:

D′
g(t) =

∫ t

ta
dt′Ω2(t′)∆g(t, t

′)∆g(t
′, ta). (3.927)

Comparison with (3.59) shows that at the final point t = tb

D′
g(tb) = ∆g(tb, ta)

∫ tb

ta
dt′ Ω2(t′)Gg(t

′, t′). (3.928)
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Together with (3.925), this implies the following equation for the integral over the
Green function which solves (3.916) with Dirichlet’s boundary conditions:

Tr [Ω2(t)Gg(t, t
′)] = −∂g log

(

det Λg

Wg

)

= −∂g logDg(tb). (3.929)

Inserting this into (3.918), we find for the ratio of functional determinants the simple
formula

Det (O−1
0 Og) = C(tb, ta)Dg(tb). (3.930)

The constant of g-integration, which still depends in general on initial and final
times, is fixed by applying (3.930) to the trivial case g = 0, where O0 = −∂2t and
the solution to the initial-value problem (3.921) is

D0(t) = t− ta. (3.931)

At g = 0, the left-hand side of (3.930) is unity, determining C(tb, ta) = (tb − ta)
−1

and the final result for g = 1:

Det (O−1
0 O1) =

det Λ1

W1

/

DetΛ0

W0
=
D1(tb)

tb − ta
, (3.932)

in agreement with the result of Section 2.7.
The same method permits us to find the Green function Gω2(τ, τ ′) governing

quantum statistical harmonic fluctuations which satisfies the differential equation

Og(τ)G
p,a
g (τ, τ ′) ≡ [∂2τ − gΩ2(τ)]Gp,a

g (τ, τ ′) = δp,a(τ − τ ′), (3.933)

with periodic and antiperiodic boundary conditions, frequency Ω(τ), and δ-function.
The imaginary-time analog of (3.918) for the ratio of functional determinants reads

Det (O−1
0 O1) = e−

∫ 1

0
dgTr [Ω2(τ)Gg(τ,τ ′)]. (3.934)

The boundary conditions satisfied by the Green function Gp,a
g (τ, τ ′) are

Gp,a
g (τb, τ

′) = ±Gp,a
g (τa, τ

′),

Ġp,a
g (τb, τ

′) = ±Ġp,a
g (τa, τ

′). (3.935)

According to Eq. (3.166), the Green functions are given by

Gp,a
g (τ, τ ′) = Gg(τ, τ

′)∓ [∆g(τ, τa)±∆g(τb, τ)][∆g(τ
′, τa)±∆g(τb, τ

′)]

∆̄p,a
g (τa, τb) ·∆g(τa, τb)

, (3.936)

where [compare (3.49)]

∆(τ, τ ′) =
1

W
[ξ(τ)η(τ ′)− ξ(τ ′)η(τ)] , (3.937)
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with the Wronski determinant W = ξ(τ)η̇(τ)− ξ̇(τ)η(τ), and [compare (3.165)]

∆̄p,a
g (τa, τb) = 2± ∂τ∆g(τa, τb)± ∂τ∆g(τb, τa). (3.938)

The solution is unique provided that

det Λ̄p,a
g =Wg ∆̄

p,a
g (τa, τb) 6= 0. (3.939)

The right-hand side is well-defined unless the operator Og(t) has a zero-mode with
ηg(tb) = ±ηg(ta), η̇g(tb) = ±η̇g(ta), which would make the determinant of the 2 × 2
-matrix Λ̄p,a

g vanish.
We are now in a position to rederive the functional determinant of the operator

O(τ) = ∂2τ −Ω2(τ) with periodic or antiperiodic boundary conditions more elegantly
than in Section 2.11. For this we formulate again a homogeneous initial-value prob-
lem, but with boundary conditions dual to Gelfand and Yaglom’s in Eq. (3.921):

Og(τ)D̄g(τ) = 0; D̄g(τa) = 1, ˙̄Dg(τa) = 0. (3.940)

In terms of the previous arbitrary set ηg(t) and ξg(t) of solutions of the homogeneous
differential equation, the unique solution of (3.940) reads

D̄g(τ) =
ξg(τ)η̇g(τa)− ξ̇g(τa)ηg(τ)

Wg
. (3.941)

This can be combined with the time derivative of (3.923) at τ = τb to yield

Ḋg(τb) + D̄g(τb) = ±[2 − ∆̄p,a
g (τa, τb)]. (3.942)

By differentiating Eqs. (3.940) with respect to g, we obtain the following inhomoge-
neous initial-value problem for D̄′

g(τ) = ∂gD̄g(τ):

Og(τ)D̄
′
g(τ) = Ω2(τ)D̄′

g(τ); D̄′
g(τa) = 1, ˙̄D′

g(τa) = 0, (3.943)

whose general solution reads by analogy with (3.927)

D̄′
g(τ) = −

∫ τ

τa
dτ ′ Ω2(τ ′)∆g(τ, τ

′)∆̇g(τa, τ
′), (3.944)

where the dot on ∆̇g(τa, τ
′) acts on the first imaginary-time argument. With the

help of identities (3.942) and (3.943), the combination Ḋ′(τ) + D̄′
g(τ) at τ = τb can

now be expressed in terms of the periodic and antiperiodic Green functions (3.166),
by analogy with (3.928),

Ḋ′
g(τb) + D̄′

g(τb) = ±∆̄p,a
g (τa, τb)

∫ τb

τa
dτ Ω2(τ)Gp,a

g (τ, τ). (3.945)



348 3 External Sources, Correlations, and Perturbation Theory

Together with (3.942), this gives for the temporal integral on the right-hand side of
(3.920) the simple expression analogous to (3.929)

Tr [Ω2(τ)Gp,a
g (τ, τ ′)] = −∂g log

(

det Λ̄p,a
g

Wg

)

= −∂g log
[

2∓ Ḋg(τb)∓ D̄g(τb)
]

, (3.946)

so that we obtain the ratio of functional determinants with periodic and antiperiodic
boundary conditions

Det (Õ−1Og) = C(tb, ta)
[

2∓ Ḋg(τb)∓ D̄g(τb)
]

, (3.947)

where Õ = O0 − ω2 = ∂2τ − ω2. The constant of integration C(tb, ta) is fixed in
the way described after Eq. (3.918). We go to g = 1 and set Ω2(τ) ≡ ω2. For
the operator Oω

1 ≡ −∂2τ − ω2, we can easily solve the Gelfand-Yaglom initial-value
problem (3.921) as well as the dual one (3.940) by

Dω
1 (τ) =

1

ω
sinω(τ − τa), D̄ω

1 (τ) = cosω(τ − τa), (3.948)

so that (3.947) determines C(tb, ta) by

1=C(tb, ta)

{

4 sin2[ω(τb − τa)/2] periodic case,
4cos2[ω(τb − τa)/2] antiperiodic case.

(3.949)

Hence we find the final results for periodic boundary conditions

Det (Õ−1O1) =
det Λ̄p

1

W1

/

DetΛ̄ω p
1

W ω
1

=
2− Ḋ1(τb)− D̄1(τb)

4 sin2[ω(τb − τa)/2]
, (3.950)

and for antiperiodic boundary conditions

Det (Õ−1O1) =
det Λ̄a

1

W1

/

DetΛ̄ω a
1

W ω
1

=
2 + Ḋ1(τb) + D̄1(τb)

4 cos2[ω(τb − τa)/2]
. (3.951)

The intermediate expressions in (3.932), (3.950), and (3.951) show that the ra-
tios of functional determinants are ordinary determinants of two arbitrary indepen-
dent solutions ξ and η of the homogeneous differential equation O1(t)y(t) = 0 or
O1(τ)y(τ) = 0. As such, the results are manifestly invariant under arbitrary linear
transformations of these functions (ξ, η) → (ξ′, η′).

It is useful to express the above formulas for the ratio of functional determinants
(3.932), (3.950), and (3.951) in yet another form. We rewrite the two independent
solutions of the homogenous differential equation [−∂2t − Ω2(t)]y(t) = 0 as follows

ξ(t) = q(t) cosφ(t), η(t) = q(t) sinφ(t). (3.952)
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The two functions q(t) and φ(t) parametrizing ξ(t) and η(t) satisfy the constraint

φ̇(t)q2(t) = W, (3.953)

where W is the constant Wronski determinant. The function q(t) is a soliton of the
Ermankov-Pinney equation23

q̈ + Ω2(t)q −W 2q−3 = 0. (3.954)

For Dirichlet boundary conditions we insert (3.952) into (3.932), and obtain the
ratio of fluctuation determinants in the form

Det (O−1
0 O1) =

1

W

q(ta)q(tb) sin[φ(tb)− φ(ta)]

tb − ta
. (3.955)

For periodic or antiperiodic boundary conditions with a corresponding frequency
Ω(t), the functions q(t) and φ(t) in Eq. (3.952) have the same periodicity. The initial
value φ(ta) may always be assumed to vanish, since otherwise ξ(t) and η(t) could
be combined linearly to that effect. Substituting (3.952) into (3.950) and (3.951),
the function q(t) drops out, and we obtain the ratios of functional determinants for
periodic boundary conditions

Det (Õ−1O1) = 4 sin2 φ(tb)

2

/

4 sin2 ω(tb − ta)

2
, (3.956)

and for antiperiodic boundary conditions

Det (Õ−1O1) = 4 cos2
φ(tb)

2

/

4 cos2
ω(tb − ta)

2
. (3.957)

For a harmonic oscillator with Ω(t) ≡ ω, Eq. (3.954) is solved by

q(t) ≡
√

W

ω
, (3.958)

and Eq. (3.953) yields

φ(t) = ω(t− ta). (3.959)

Inserted into (3.955), (3.956), and (3.957) we reproduce the known results:

Det (O−1
0 O1) =

sinω(tb − ta)

ω(tb − ta)
, Det (Õ−1O1) = 1.

23For more details see J. Rezende, J. Math. Phys. 25, 3264 (1984).
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Appendix 3A Matrix Elements for General Potential

The matrix elements 〈n|V̂ |m〉 can be calculated for an arbitrary potential V̂ = V (x̂) as follows:
We represent V (x̂) by a Fourier integral as a superposition of exponentials

V (x̂) =

∫ i∞

−i∞

dk

2πi
V (k) exp(kx̂), (3A.1)

and express exp(kx̂) in terms of creation and annihilation operators as exp(kx̂) = exp[k(â+â†)/
√

2],
set k ≡

√
2ǫ, and write down the obvious equation

〈n|eǫ
√
2x̂|m〉 =

1√
n!m!

∂n

∂αn

∂m

∂βm
〈0|eαâeǫ(â+â†)eβâ

† |0〉
∣

∣

∣

∣

∣

α=β=0

. (3A.2)

We now make use of the Baker-Campbell-Hausdorff Formula (2A.1) with (2A.6), and rewrite

eÂeB̂ = eÂ+B̂+ 1
2 [Â,B̂]+ 1

12 ([Â,[Â,B̂]]+[B̂,[B̂,Â]])+..... (3A.3)

Identifying Â and B̂ with â and â†, the property [â, â†] = 1 makes this relation very simple:

eǫ(â+â†) = eǫâeǫâ
†

e−ǫ2/2, (3A.4)

and the matrix elements (3A.2) become

〈0|eαâeǫ(â+â†)eβâ
† |0〉 = 〈0|e(α+ǫ)âe(β+ǫ)â†|0〉e−ǫ2/2. (3A.5)

The bra and ket states on the right-hand side are now eigenstates of the annihilation operator â
with eigenvalues α+ ǫ and β + ǫ, respectively. Such states are known as coherent states .24 Using
once more (3A.3), we obtain

〈0|e(α+ǫ)âe(β+ǫ)â† |0〉 = e(ǫ+α)(ǫ+β), (3A.6)

and (3A.2) becomes simply

〈n|eǫ
√
2x̂|m〉 =

1√
n!m!

∂n

∂αn

∂m

∂βm
e(α+ǫ)(β+ǫ)e−ǫ2/2

∣

∣

∣

∣

∣

α=β=0

. (3A.7)

We now calculate the derivatives

∂n

∂αn

∂m

∂βm
e(ǫ+α)(ǫ+β)

∣

∣

∣

∣

∣

α=β=0

=
∂n

∂αn
(ǫ+ α)meǫ(ǫ+α)

∣

∣

∣

∣

∣

α=0

. (3A.8)

Using the chain rule of differentiation for products f(x) = g(x)h(x):

f (n)(x) =
n
∑

l=0

(

n

l

)

g(l)(x)h(n−l)(x), (3A.9)

the right-hand side becomes

∂n

∂αn
(ǫ+ α)meǫ(ǫ+α)

∣

∣

∣

∣

∣

α=0

=
n
∑

l=0

(

n

l

)

∂l

∂αl
(ǫ+ α)m

∂n−l

∂αn−l
eǫ(ǫ+α)

∣

∣

∣

∣

∣

α=0

=

n
∑

l=0

(

n

l

)

m(m− 1) · · · (m− l + 1)ǫn+m−2leǫ
2

. (3A.10)

24The use of coherent states was advanced by R.J. Glauber, Phys. Rev. 131, 2766 (1963).
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Hence we find

〈n|eǫ
√
2x̂|m〉 =

1√
n!m!

n
∑

l=0

(

n

l

)(

m

l

)

l!ǫn+m−2leǫ
2/2. (3A.11)

From this we obtain the matrix elements of single powers x̂p by forming, with the help of (3A.9)

and (∂q/∂ǫq)eǫ
2/2|ǫ=0 = q!!, the derivatives

∂p

∂ǫp
ǫn+m−2leǫ

2/2

∣

∣

∣

∣

∣

ǫ=0

=

(

p

n+m−2l

)

[2l − (n+m− p)]!! =
p!

2l−(n+m−p)/2[l − p− (n+m−p)/2]!
.

(3A.12)
The result is

〈n|x̂p|m〉 =
1√
n!m!

min(n,m)
∑

l=(n+m−p)/2

(

n

l

)(

m

l

)

l!
p!

2l+p−(n+m)/2[l − (n+m− p)/2]!
. (3A.13)

For the special case of a pure fourth-order interaction, this becomes

〈n|x̂4|n− 4〉 = 1
4

√
n− 3

√
n− 2

√
n− 1

√
n,

〈n|x̂4|n− 2〉 = 1
4 (4n− 2)

√
n− 1

√
n,

〈n|x̂4|n〉 = 1
4 (6n2 + 6n+ 3), (3A.14)

〈n|x̂4|n+ 2〉 = 1
4 (4n+ 6)

√
n+ 1

√
n+ 2,

〈n|x̂4|n+ 4〉 = 1
4

√
n+ 1

√
n+ 2

√
n+ 3

√
n+ 4.

For a general potential (3A.1) we find

〈n|V (x̂)|m〉 =
1√
n!m!

n
∑

l=0

(

n

l

)(

m

l

)

l!
1

2l−(n+m)/2

∫ i∞

−i∞

dk

2πi
V (k)kn+m−2lek

2/4. (3A.15)

Appendix 3B Energy Shifts for gx4/4 -Interaction

For the specific polynomial interaction V (x) = gx4/4, the shift of the energy E(n) to any desired or-
der is calculated most simply as follows. Consider the expectations of powers x̂4(z1)x̂

4(z2) · · · x̂4(zn)
of the operator x̂(z) = (â†z + âz−1) between the excited oscillator states 〈n| and |n〉. Here
â and â† are the usual creation and annihilation operators of the harmonic oscillator, and
|n〉 = (a†)n|0〉/

√
n! . To evaluate these expectations, we make repeated use of the commutation

rules [â, â†] = 1 and of the ground state property â|0〉 = 0. For n = 0 this gives

〈x4(z)〉ω = 3,

〈x4(z1)x4(z2)〉ω = 72z−2
1 z22 + 24z−4

1 z42 + 9, (3B.1)

〈x4(z1)x4(z2)x4(z3)〉ω = 27 · 8z−2
1 z22 + 63 · 32z−2

1 z−2
2 z43

+ 351 · 8z−2
1 z23 + 9 · 8z−4

1 z42 + 63 · 32z−4
1 z22z

2
3 + 369 · 8z−4

1 z43

+ 27 · 8z−2
2 z23 + 9 · 8z−4

2 z43 + 27.

The cumulants are

〈x4(z1)x4(z2)〉ω,c = 72z−2
1 z22 + 24z−4

1 z42 , (3B.2)

〈x4(z1)x4(z2)x4(z3)〉ω,c = 288(7z−2
1 z−2

2 z43 + 9z−2
1 z23 + 7z−4

1 z22z
2
3 + 10z−4

1 z43).

The powers of z show by how many steps the intermediate states have been excited. They determine
the energy denominators in the formulas (3.518) and (3.519). Apart from a factor (g/4)n and a
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factor 1/(2ω)2n which carries the correct length scale of x(z), the energy shifts ∆E = ∆1E0 +
∆2E0 + ∆3E0 are thus found to be given by

∆1E0 = 3,

∆2E0 = −
(

72 · 1

2
+ 24 · 1

4

)

, (3B.3)

∆3E0 = 288

(

7 · 1

2
· 1

4
+ 9 · 1

2
· 1

2
+ 7 · 1

4
· 1

2
+ 10 · 1

4
· 1

4

)

= 333 · 4.

Between excited states, the calculation is somewhat more tedious and yields

〈x4(z)〉ω = 6n2 + 6n+ 3, (3B.4)

〈x4(z1)x4(z2)〉ω,c = (16n4 + 96n3 + 212n2 + 204n+ 72)z−2
1 z22

+ (n4 + 10n3 + 35n2 + 50n+ 24)z−4
1 z42

+ (n4 − 6n3 + 11n2 − 6n)z41z
−4
2

+ (16n4 − 32n3 + 20n2 − 4n)z21z
−2
2 , (3B.5)

〈x4(z1)x4(z2)x4(z3)〉ω,c = [(16n6 + 240n5 + 1444n4 + 4440n3 + 7324n2 + 6120n+ 2016)

× (z−2
1 z−2

2 z43+z−4
1 z22z

2
3)

+ (384n5 + 2880n4 + 8544n3 + 12528n2 + 9072n+ 2592)z−2
1 z23

+ (48n5 + 600n4 + 2880n3 + 6600n2 + 7152n+ 2880)z−4
1 z43

+ (16n6 − 144n5 + 484n4 − 744n3 + 508n2 − 120n)z41z
−2
2 z−2

3

+ (−48n5 + 360n4 − 960n3 + 1080n2 − 432n)z41z
−4
3

+ (16n6 + 48n5 + 4n4 − 72n3 − 20n2 + 24n)z21z
−4
2 z23

+ (−384n5 + 960n4 − 864n3 + 336n2 − 48n)z21z
−2
3

+ (16n6 − 144n5 + 484n4 − 744n3 + 508n2 − 120n)z21z
2
2z

−4
3

+ (16n6 + 48n5 + 4n4 − 72n3 − 20n2 + 24n)z−2
1 z42z

−2
3 ]. (3B.6)

From these we obtain the reduced energy shifts:

∆1E0 = 6n2 + 6n+ 3, (3B.7)

∆2E0 = −(16n4 + 96n3 + 212n2 + 204n+ 72) · 1
2

−(n4 + 10n3 + 35n2 + 50n+ 24) · 1
4

−(n4 − 6n3 + 11n2 − 6n) · −1
4

−(16n4 − 32n3 + 20n2 − 4n) · −1
2

= 2 · (34n3 + 51n2 + 59n+ 21), (3B.8)

∆3E0 = [(16n6 + 240n5 + 1444n4 + 4440n3 + 7324n2 + 6120n+ 2016) · ( 1
2 · 1

4 + 1
4 · 1

2 )

+(384n5 + 2880n4 + 8544n3 + 12528n2 + 9072n+ 2592) · 1
2 · 1

2

+(48n5 + 600n4 + 2880n3 + 6600n2 + 7152n+ 2880) · 1
4 · 1

4

+(16n6 − 144n5 + 484n4 − 744n3 + 508n2 − 120n) · 1
4 · 1

2

+(−48n5 + 360n4 − 960n3 + 1080n2 − 432n) · 1
4 · 1

4

+(16n6 + 48n5 + 4n4 − 72n3 − 20n2 + 24n) · 1
2 · 1

4

+(−384n5 + 960n4 − 864n3 + 336n2 − 48n) · 1
2 · 1

2

+(16n6 − 144n5 + 484n4 − 744n3 + 508n2 − 120n) · 1
2 · 1

4

+(16n6 + 48n5 + 4n4 − 72n3 − 20n2 + 24n) · 1
2 · −1

2 ]

= 4 · 3 · (125n4 + 250n3 + 472n2 + 347n+ 111). (3B.9)
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Appendix 3C Recursion Relations for Perturbation
Coefficients of Anharmonic Oscillator

Bender and Wu25 were the first to solve to high orders recursion relations for the perturbation
coefficients of the ground state energy of an anharmonic oscillator with a potential x2/2 + gx4/4.
Their relations are similar to Eqs. (3.537), (3.538), and (3.539), but not the same. Extending
their method, we derive here a recursion relation for the perturbation coefficients of all energy
levels of the anharmonic oscillator in any number of dimensions D, where the radial potential is
l(l+D− 2)/2r2 + r2/2 + (g/2)(a4r

4 + a6r
6 + . . .+ a2qx

2q), where the first term is the centrifugal
barrier of angular momentum l in D dimensions. We shall do this in several steps.

3C.1 One-Dimensional Interaction x4

In natural physical units with h̄ = 1, ω = 1,M = 1, the Schrödinger equation to be solved reads

(

−1

2

d2

dx2
+

1

2
x2 + gx4

)

ψ(n)(x) = E(n)ψ(n)(x). (3C.1)

At g = 0, this is solved by the harmonic oscillator wave functions

ψ(n)(x, g = 0) = Nne−x2/2Hn(x), (3C.2)

with proper normalization constant Nn, where Hn(x) are the Hermite polynomial of nth degree

Hn(x) =

n
∑

p=0

hpnx
p. (3C.3)

Generalizing this to the anharmonic case, we solve the Schrödinger equation (3C.1) with the power
series ansatz

ψ(n)(x) = e−x2/2
∞
∑

k=0

(−g)k Φ
(n)
k (x), (3C.4)

E(n) =

∞
∑

k=0

gkE
(n)
k . (3C.5)

To make room for derivative symbols, the superscript of Φ
(n)
k (x) is now dropped. Inserting (3C.4)

and (3C.5) into (3C.1) and equating the coefficients of equal powers of g, we obtain the equations

xΦ′
k(x) − nΦk(x) =

1

2
Φ′′

k(x) − x4Φk−1(x) +

k
∑

k′=1

(−1)k
′

E
(n)
k′ Φk−k′ (x), (3C.6)

where we have inserted the unperturbed energy

E
(n)
0 = n+ 1/2, (3C.7)

and defined Φk(x) ≡ 0 for k < 0. The functions Φk(x) are anharmonic versions of the Hermite
polynomials. They turn out to be polynomials of (4k + n)th degree:

Φk(x) =

4k+n
∑

p=0

Ap
kx

p. (3C.8)

25C.M. Bender and T.T. Wu, Phys. Rev. 184 , 1231 (1969); Phys. Rev. D 7 , 1620 (1973).
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In a more explicit notation, the expansion coefficients Ap
k would of course carry the dropped

superscript of Φ
(n)
k . All higher coefficients vanish:

Ap
k ≡ 0 for p ≥ 4k + n+ 1. (3C.9)

From the harmonic wave functions (3C.2),

Φ0(x) = NnHn(x) = Nn
n
∑

p=0

hpnx
p, (3C.10)

we see that the recursion starts with

Ap
0 = hpnN

n. (3C.11)

For levels with an even principal quantum number n, the functions Φk(x) are symmetric. It is
convenient to choose the normalization ψ(n)(0) = 1, such that Nn = 1/h0n and

A0
k = δ0k. (3C.12)

For odd values of n, the wave functions Φk(x) are antisymmetric. Here we choose the normalization
ψ(n)′(0) = 3, so that Nn = 3/h1n and

A1
k = 3δ0k. (3C.13)

Defining

Ap
k ≡ 0 for p < 0 or k < 0, (3C.14)

we find from (3C.6), by comparing coefficients of xp,

(p− n)Ap
k =

1

2
(p+ 2)(p+ 1)Ap+2

k +Ap−4
k−1 +

k
∑

k′=1

(−1)k
′

E
(n)
k′ A

p
k−k′ . (3C.15)

The last term on the right-hand side arises after exchanging the order of summation as follows:

k
∑

k′=1

(−1)k
′

E
(n)
k′

4(k−k′)+n
∑

p=0

Ap
k−k′x

p =

4k+n
∑

p=0

xp
k
∑

k′=1

(−1)k
′

E
(n)
k′ A

p
k−k′ . (3C.16)

For even n, Eq. (3C.15) with p = 0 and k > 0 yields [using (3C.14) and (3C.12)] the desired
expansion coefficients of the energies

E
(n)
k = −(−1)kA2

k. (3C.17)

For odd n, we take Eq. (3C.15) with p = 1 and odd k > 0 and find [using (3C.13) and (3C.14)]
the expansion coefficients of the energies:

E
(n)
k = −(−1)kA3

k. (3C.18)

For even n, the recursion relations (3C.15) obviously relate only coefficients carrying even
indices with each other. It is therefore useful to set

n = 2n′ , p = 2p′ , A2p′

k = Cp′

k , (3C.19)

leading to

2(p′ − n′)Cp′

k = (2p′ + 1)(p′ + 1)Cp′+1
k + Cp′−2

k−1 −
k
∑

k′=1

C1
k′C

p′

k−k′ . (3C.20)
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For odd n, the substitution

n = 2n′ + 1 , p = 2p′ + 1 , A2p′+1
k = Cp′

k , (3C.21)

leads to

2(p′ − n′)Cp′

k = (2p′ + 3)(p′ + 1)Cp′+1
k + Cp′−2

k−1 −
k
∑

k′=1

C1
k′C

p′

k−k′ . (3C.22)

The rewritten recursion relations (3C.20) and (3C.22) are the same for even and odd n, except

for the prefactor of the coefficient Cp′+1
k . The common initial values are

Cp′

0 =

{

h2p
′

n /h0n for 0 ≤ p′ ≤ n′,
0 otherwise.

(3C.23)

The energy expansion coefficients are given in either case by

E
(n)
k = −(−1)kC1

k . (3C.24)

The solution of the recursion relations proceeds in three steps as follows. Suppose we have

calculated for some value of k all coefficients Cp′

k−1 for an upper index in the range 1 ≤ p′ ≤
2(k − 1) + n′.

In a first step, we find Cp′

k for 1 ≤ p′ ≤ 2k + n′ by solving Eq. (3C.20) or (3C.22), starting
with p′ = 2k+ n′ and lowering p′ down to p′ = n′ + 1. Note that the knowledge of the coefficients
C1

k (which determine the yet unknown energies and are contained in the last term of the recursion

relations) is not required for p′ > n′, since they are accompanied by factors Cp′

0 which vanish due
to (3C.23).

Next we use the recursion relation with p′ = n′ to find equations for the coefficients C1
k

contained in the last term. The result is, for even k,

C1
k =

[

(2n′ + 1)(n′ + 1)Cn′+1
k + Cn′−2

k−1 −
k−1
∑

k′=1

C1
k′Cn′

k−k′

]

1

Cn′

0

. (3C.25)

For odd k, the factor (2n′ + 1) is replaced by (2n′ + 3). These equations contain once more the
coefficients Cn′

k .

Finally, we take the recursion relations for p′ < n′, and relate the coefficients Cn′−1
k , . . . , C1

k to

Cn′

k . Combining the results we determine from Eq. (3C.24) all expansion coefficients E
(n)
k .

The relations can easily be extended to interactions which are an arbitrary linear combination

V (x) =

∞
∑

n=2

a2nǫ
nx2n. (3C.26)

A short Mathematica program solving the relations can be downloaded from the internet.26

The expansion coefficients have the remarkable property of growing, for large order k, like

E
(n)
k −−−→ − 1

π

√

6

π

12

n!
(−3)kΓ(k + n+ 1/2). (3C.27)

This will be shown in Eq. (17.323). Such a factorial growth implies the perturbation expansion to
have a zero radius of convergence. The reason for this will be explained in Section 17.10. At the
expansion point g = 0, the energies possess an essential singularity. In order to extract meaningful
numbers from a Taylor series expansion around such a singularity, it will be necessary to find a
convergent resummation method. This will be provided by the variational perturbation theory to
be developed in Section 5.14.

26See http://www.physik.fu-berlin/~kleinert/b3/programs.
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3C.2 General One-Dimensional Interaction

Consider now an arbirary interaction which is expandable in a power series

v(x) =

∞
∑

k=1

gkvk+2x
k+2. (3C.28)

Note that the coupling constant corresponds now to the square root of the previous one, the lowest
interaction terms being gv3x

3 + g2v4x
4 + . . . . The powers of g count the number of loops of the

associated Feynman diagrams. Then Eqs. (3C.6) and (3C.15) become

xΦ′
k(x) − nΦk(x) =

1

2
Φ′′

k(x) −
k
∑

k′=1

(−1)k
′

vk′+2x
k′+2Φk−k′ +

k
∑

k′=1

(−1)k
′

E
(n)
k′ Φk−k′ (x), (3C.29)

and

(p− n)Ap
k =

1

2
(p+ 2)(p+ 1)Ap+2

k −
k
∑

k′=1

(−1)k
′

vk′+2A
p−j−2
k−k′ +

k
∑

k′=1

(−1)k
′

E
(n)
k′ A

p
k−k′ . (3C.30)

The expansion coefficients of the energies are, as before, given by (3C.17) and (3C.18) for even and
odd n, respectively, but the recursion relation (3C.30) has to be solved now in full.

3C.3 Cumulative Treatment of Interactions x4 and x3

There exists a slightly different recursive treatment which we shall illustrate for the simplest mixed
interaction potential

V (x) =
M

2
ω2x2 + gv3x

3 + g2v4x
4 . (3C.31)

Instead of the ansatz (3C.4) we shall now factorize the wave function of the ground state as follows:

ψ(n)(x) =

(

Mω

πh̄

)1/4

exp

[

−Mω

2h̄
x2 + φ(n)(x)

]

, (3C.32)

i.e., we allow for powers series expansion in the exponent:

φ(n)(x) =

∞
∑

k=1

gk φ
(n)
k (x) . (3C.33)

We shall find that this expansion contains fewer terms than in the Bender-Wu expansion of the
correction factor in Eq. (3C.4). For completeness, we keep here physical dimensions with explicit
constants h̄, ω,M .

Inserting (3C.32) into the Schrödinger equation

[

− h̄2

2M

d2

dx2
+

(

M

2
ω2x2 + gv3x

3 + g2v4x
4

)

− E(n)

]

ψ(n)(x) = 0, (3C.34)

we obtain, after dropping everywhere the superscript (n), the differential equation for φ(n)(x):

− h̄2

2M
φ′′(x) + h̄ω xφ′(x) − h̄2

2M
[φ′(x)]

2
+ gv3x

3 + g2v4x
4 = nh̄ω + ǫ, (3C.35)

where ǫ denotes the correction to the harmonic energy

E = h̄ω

(

n+
1

2

)

+ ǫ . (3C.36)
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We shall calculate ǫ as a power series in g:

ǫ =

∞
∑

k=1

gk ǫk . (3C.37)

From now on we shall consuder only the ground state with n = 0. Inserting expansion (3C.33) into
(3C.35), and comparing coefficients, we obtain the infinite set of differential equations for φk(x):

− h̄2

2M
φ′′k(x) + h̄ω xφ′k(x) − h̄2

2M

k−1
∑

l=1

φ′k−l(x)φ
′
l(x) + δk,1v3x

3+ δk,2v4x
4 = ǫk. (3C.38)

Assuming that φk(x) is a polynomial, we can show by induction that its degree cannot be greater
than k + 2, i.e.,

φk(x) =

∞
∑

m=1

c(k)m xm , with c(k)m ≡ 0 for m > k + 2 , (3C.39)

The lowest terms c
(k)
0 have been omitted since they will be determined at the end the normalization

of the wave function ψ(x). Inserting (3C.39) into (3C.38) for k = 1, we find

c
(1)
1 = − v3

Mω2
, c

(1)
2 = 0, c

(1)
3 = − v3

3h̄ω
, ǫ1 = 0 . (3C.40)

For k = 2, we obtain

c
(2)
1 = 0, c

(2)
2 =

7v23
8M2ω4

− 3v4
4Mω2

, c
(2)
3 = 0, c

(2)
4 =

v23
8Mh̄ω3

− v4
4h̄ω

, (3C.41)

ǫ2 = − 11v23h̄
2

8M3ω4
+

3v4h̄
2

4M2ω2
. (3C.42)

For the higher-order terms we must solve the recursion relations

c(k)m =
(m+ 2)(m+ 1)h̄

2mMω
c
(k)
m+2 +

h̄

2mMω

k−1
∑

l=1

m+1
∑

n=1

n(m+ 2 − n) c(l)n c
(k−l)
m+2−n, (3C.43)

ǫk = − h̄
2

M
c
(k)
2 − h̄2

2M

k−1
∑

l=1

c
(l)
1 c

(k−l)
1 . (3C.44)

Evaluating this for k = 3 yields

c
(3)
1 = − 5v33h̄

M4ω7
+

6v3v4h̄

M3ω5
, c

(3)
2 = 0, c

(3)
3 = − 13v33

12M3ω6
+

3v3v4
2M2ω4

,

c
(3)
4 = 0, c

(3)
5 = − v33

10M2h̄ω5
+

v3v4
5Mh̄ω3

, ǫ3 = 0, (3C.45)

and for k = 4:

c
(4)
1 = 0, c

(4)
2 =

305v43h̄

32M5ω9
− 123v23v4h̄

8M4ω7
+

21v24h̄

8M3ω5
, c

(4)
3 =0, c

(4)
4 =

99v43
64M4ω8

− 47v23v4
16Mω6

+
11v24

16M2ω4
,

c
(4)
5 = 0, c

(4)
6 =

5v43
48M3h̄ω7

− v23v4
4M2h̄ω5

+
v24

12Mh̄ω3
, (3C.46)

ǫ4 = − 465v43h̄
3

32M6ω9
+

171v23v4h̄
3

8M5ω7
− 21v24h̄

3

8M4ω5
. (3C.47)
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The general form of the coefficients is, now in natural units with h̄ = 1, M = 1,:

c(k)m =

⌊k/2⌋
∑

λ=0

vk−2λ
3 vλ4

ω5k/2−m/2−2λ
c
(k)
m,λ, with c

(k)
m,λ ≡ 0 for m > k + 2, or λ >

⌊

k

2

⌋

, (3C.48)

ǫk =

⌊k/2⌋
∑

λ=0

vk−2λ
3 vλ4

ω5k/2−1−2λ
ǫk,λ. (3C.49)

This leads to the recursion relations

c
(k)
m,λ=

(m+2)(m+1)

2m
c
(k)
m+2,λ +

1

2m

k−1
∑

l=1

m+1
∑

n=1

λ
∑

λ′=0

n(m+ 2 − n)c
(l)
n,λ−λ′c

(k−l)
m+2−n,λ′, (3C.50)

with c
(k)
m,λ ≡ 0 for m > k + 2 or λ > ⌊k/2⌋. The starting values follow by comparing (3C.40) and

(3C.41) with (3C.48):

c
(1)
1,0 = −1, c

(1)
2,0 = 0, c

(1)
3,0 = −1

3
, (3C.51)

c
(2)
1,0 = 0, c

(2)
1,1 = 0, c

(2)
2,0 =

7

8
, c

(2)
2,1 = −3

4
,

c
(2)
3,0 = 0, c

(2)
3,1 = 0, c

(2)
4,0 =

1

8
, c

(2)
4,1 = −1

4
. (3C.52)

The expansion coefficients ǫk,λ for the energy corrections ǫk are obtained by inserting (3C.49) and
(3C.48) into (3C.44) and going to natural units:

ǫk,λ = −c(k)2,λ − 1

2

k−1
∑

l=1

λ
∑

λ′=0

c
(l)
1,λ−λ′c

(k−l)
1,λ′ . (3C.53)

Table 3.1 shows the nonzero even energy corrections ǫk up to the tenth order.

3C.4 Ground-State Energy with External Current

In the presence of a constant external current j, the time-independent Schrödinger reads

− h̄2

2M
ψ′′(x) +

(

M

2
ω2x2 + gv3x

3 + g2v4x
4 − jx

)

ψ(x) = Eψ(x). (3C.54)

For zero coupling constant g = 0, we may simply introduce the new variables x′ and E′:

x′ = x− j

Mω2
and E′ = E +

j2

2Mω2
, (3C.55)

and the system becomes a harmonic oscillator in x′ with energy E′ = h̄ω/2. Thus we make the
ansatz for the wave function

ψ(x) ∝ eφ(x), with φ(x) =
j

h̄ω
x− Mω

2h̄
x2 +

∞
∑

k=1

gkφk(x), (3C.56)

and for the energy

E(j) =
h̄ω

2
− j2

2Mω2
+

∞
∑

k=1

gkǫk. (3C.57)
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k ǫk

2
−11v23 + 6v4ω

2

8ω4

4 −465v43 − 684v23v4ω
2 + 84v24ω

4

32ω9

6
−39709v63 + 91014v43v4ω

2 − 47308v23v
2
4ω

4 + 2664v34ω
6

128ω14

8 −3(6416935v83 − 19945048v63v4ω
2 + 18373480v43v

2
4ω

4

+4962400v23v
3
4ω

6164720v44ω
8)/(2048ω19)

10 (−2944491879v103 + 11565716526v83v4ω
2 − 15341262168v63v

2
4ω

4

+7905514480v43v
3
4ω

6 − 1320414512v23v
4
4ω

8 + 29335392v54ω
10)/(8192ω24)

Table 3.1 Expansion coefficients for the ground-state energy of the anharmonic oscillator

(3C.31) up to the 10th order.

The equations (3C.38) become now

− h̄2

2M
φ′′k(x)− h̄2

2M

k−1
∑

l=1

φ′k−l(x)φ
′
l(x) +

(

h̄ωx− jh̄

Mω

)

φ′k(x) + δk,1v3x
3 + δk,2v4x

4=ǫk.

(3C.58)

The results are now for k = 1

c
(1)
1 = − v3

Mω2
− j2v3
M2h̄ω5

, c
(1)
2 = − jv3

2Mh̄ω3
, c

(1)
3 = − v3

3h̄ω
, ǫ1 =

3h̄jv3
2Mω3

+
j3v3
M3ω6

,

(3C.59)

and for k = 2:

c
(2)
1 =

17jv23
4M3ω6

+
4j3v23
M4h̄ω9

− 5jv4
2M2ω4

− j3v4
M3h̄ω7

,

c
(2)
2 =

7v23
8M2ω4

+
3j2v23

2M3h̄ω7
− 3v4

4Mω2
− j2v4

2M2h̄ω5
,

c
(2)
3 =

jv23
2M2h̄ω5

− jv4
3Mh̄ω3

, c
(2)
4 =

v23
8Mh̄ω3

− v4
4h̄ω

,

ǫ2 = − 11h̄2v23
8M3ω4

− 27h̄j2v23
4M4ω7

− 9j4v23
2M5ω10

+
3h̄2v4

4M2ω2
+

3h̄j2v4
M3ω5

+
j4v4
M4ω8

. (3C.60)

The recursive equations (3C.43) and (3C.44) become

c(k)m =
(m+ 2)(m+ 1)h̄

2mMω
c
(k)
m+2 +

h̄

2mMω

k−1
∑

l=1

m+1
∑

n=1

n(m+ 2 − n)c(l)n c
(k−l)
m+2−n

+
j(m+ 1)

Mmω2
c
(k)
m+1, (3C.61)
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ǫk = − jh̄

Mω
c
(k)
1 − h̄2

M
c
(k)
2 − h̄2

2M

k−1
∑

l=1

c
(l)
1 c

(k−l)
1 . (3C.62)

Table 3.2 shows the energy corrections ǫk in the presence of an external current up to the sixth
order using natural units, h̄ = 1, M = 1.

k ǫk

1
v3j(2j

2 + 3ω3)

2ω6

2
2v4ω

2(4j4 + 12j2ω3 + 3ω6) − v23(36j4 + 54j2ω3 + 11ω6)

8ω10

3
v3j[3v

2
3(36j4 + 63j2ω3 + 22ω6) − 2v4ω

2(24j4 + 66j2ω3 + 31ω6)]

4ω14

4 [36v23v4ω
2(112j6 + 324j4ω3 + 212j2ω6 + 19ω9)

−4v24ω
4(64j6 + 264j4ω3 + 248j2ω6 + 21ω9)

−3v43(2016j6 + 4158j4ω3 + 2112j2ω6 + 155ω9)]/(32ω10)

5 v3j[27v43(1728j6 + 4158j4ω3 + 2816j2ω6 + 465ω9)
+4v24ω

4(1536j6 + 6408j4ω3 + 7072j2ω6 + 1683ω9)
−12v23v4ω

2(3456j6 + 10908j4ω3 + 9176j2ω6 + 1817ω9)]/(32ω22)

6 [8v34ω
6(1536j8 + 8544j6ω3 + 14144j4ω6 + 6732j2ω9 + 333ω12)

−4v23v
2
4ω

4(103680j8 + 454032j6ω3 + 584928j4ω6 + 221706j2ω9 + 11827ω12)
+6v43v4ω

2(285120j8 + 991224j6ω3 + 1024224j4ω6 + 323544j2ω9 + 15169ω12)
−v63(1539648j8 + 4266108j6ω3 + 3649536j4ω6 + 979290j2ω9 + 39709ω12)]/(128ω26)

Table 3.2 Expansion coefficients for the ground-state energy of the anharmonic oscillator

(3C.31) in the presence of an external current up to the 6th order.

3C.5 Recursion Relation for Effective Potential

It is possible to derive a recursion relation directly for the zero-temperature effective potential
(5.259). To this we observe that according to Eq. (3.774), the fluctuating part of the effective
potential is given by the Euclidean path integral

e−βV fl
eff (X)=

∫

Dδx exp

(

− 1

h̄

{

A [X+δx]−A [X ]−AX [X ]δx−V fl
effX(X)δx

}

)

. (3C.63)

This can be rewritten as [recall (3.771)]

e−β[Veff(X)−V (X)] =

∮

Dδx exp

{

− 1

h̄

∫ h̄β

0

dτ

×
[

M

2
δẋ2(τ) + V (X + δx) − V (X) − V ′

eff(X)δx

]}

. (3C.64)
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Going back to the integration variable x = X + δx, and taking all terms depending only on X to
the left-hand side, this becomes

e−β[Veff(X)−V ′
eff (X)X] =

∮

Dx exp

{

− 1

h̄

∫ h̄β

0

dτ

[

M

2
ẋ2(τ) + V (x) − V ′

eff(X)x

]}

. (3C.65)

In the limit of zero temperature, the right-hand side is equal to e−βE(0)(X), where E(0)(X) is the
ground state of the Schrödinger equation associated with the path integral. Hence we obtain

− h̄2

2M
ψ′′(x) + [V (x) − V ′

eff(X)x]ψ(x) = [Veff(X) − V ′
eff(X)X ]ψ(x). (3C.66)

For the mixed interaction of the previous subsection, this reads

− h̄2

2M
ψ′′(x) +

[

M

2
ω2x2 + gv3x

3 + g2v4x
4 − V ′

eff(X)x

]

ψ(x)

= [Veff(X) − V ′
eff(X)X ]ψ(x), (3C.67)

and may be solved recursively. We expand the effective potential in powers of is expanded in the
coupling constant g:

Veff(X) =

∞
∑

k=0

gkVk(X) , (3C.68)

and assume Vk(X) to be a polynomial in X :

Vk(X) =

k+2
∑

m=0

C(k)
m Xm . (3C.69)

Comparison with Eq. (3C.54) shows that we may set j = V ′
eff(X) and calculate Veff(X)−V ′

eff(X)X
by analogy to the energy in (3C.57). Inserting the ansatz (3C.68), (3C.69) into (3C.67) we find all
equations for Vk(X) by comparing coefficients of gk and Xm. It turns out that for even or odd k,
also Vk(X) is even or odd in X , respectively. Table 3.3 shows the first six orders of the effective
potential, which have been obtained in this way.

The equations for Vk(X) are obtained as follows. We insert into (3C.67) the ansatz for the
wave function ψ(x) ∝ eφ(x) with

φ(x) =
MωX

h̄
x− Mω

2h̄
x2 +

∞
∑

k=1

gkφk(x), (3C.70)

and expand

Veff(X) =
h̄ω

2
+
M

2
ω2X2 +

∞
∑

k=1

gkVk(X), (3C.71)

to obtain the set of equations

− h̄2

2M
φ′′k(x) − h̄2

2M

k−1
∑

l=1

φ′k−l(x)φ
′
l(x) + h̄ω(x−X)φ′k(x)−xV ′

k(X) + δk,1v3x
3 + δk,2v4x

4

= Vk(X) − V ′
k(X)X. (3C.72)

From these we find for k = 1:

c
(1)
1 =

v3
2Mω2

+
2v3X

2

h̄ω
, c

(1)
2 =−v3X

2h̄ω
, c

(1)
3 =− v3

3h̄ω
, V1(X)=

3v3h̄

2Mω
+ v3X

3, (3C.73)
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k Vk(X)

0
ω

2
+
ω2

2
X2

1 v3X
3 +

3v3
2ω

X

2 v4X
4 − v23(1 + 9ωX2) + v4ω

2(3 + 12ωX2)

4ω4

3
v3X [3v23(4 + 9ωX2) − 2v4ω

2(13 + 18ωX2)]

4ω6

4 −[4v24ω
4(21 + 104ωX2 + 72ω2X4) − 12v23v4ω

2(13 + 152ωX2 + 108ω2X4)
+v43(51 + 864ωX2 + 810ω2X4)]/(32ω9)

5 3v3X [9v43(51 + 256ωX2 + 126ω2X4) + 4v24ω
4(209 + 544ωX2 + 216ω2X4)

−4v23v4ω
2(341 + 1296ωX2 + 540ω2X4)]/(32ω11)

6 [24v34ω
6(111 + 836ωX2 + 1088ω2X4 + 288ω3X6)

−36v23v
2
4ω

4(365 + 5654ωX2 + 8448ω2X4 + 2160ω3X6)
+6v43v4ω

2(2129 + 46008ωX2 + 85248ω2X4 + 22680ω3X6)
−v63(3331 + 90882ωX2 + 207360ω2X4 + 61236ω3X6)]/(128ω14)

Table 3.3 Effective potential of the anharmonic oscillator (3C.31) up to the 6th order,

expanded in the coupling constant g (in natural units with h̄ = 1 and M = 1). The lowest

terms agree, of course, with the two-loop result (3.770).

and for k = 2:

c
(2)
1 = − 13v23X

4M2ω4
− 2v23X

3

Mh̄ω3
+

7v4X

2Mω2
+

3v4X
3

h̄ω
, c

(2)
2 =

v23
8M2ω4

− 3v4
4Mω2

− v4X
2

2h̄ω
,

c
(2)
3 =

v23X

2Mh̄ω3
− v4X

3h̄ω
,c
(2)
4 =

v23
8Mh̄ω3

− v4
4h̄ω

, (3C.74)

V2(X) = − h̄2v23
4M3ω4

− 9h̄v23X
2

4M2ω3
+

3h̄2v4
4M2ω2

+
3h̄v4X

2

Mω
+ v4X

4. (3C.75)

For k ≥ 3, we must solve recursively

c(k)m =
(m+ 2)(m+ 1)h̄

2mMω
c
(k)
m+2 +

h̄

2mMω

k−1
∑

l=1

m+1
∑

n=1

n(m+ 2 − n)c(l)n c
(k−l)
m+2−n

+
X(m+ 1)

m
c
(k)
m+1 for m ≥ 2 and with c(k)m ≡ 0 for m > k + 2, (3C.76)

c
(k)
1 =

3h̄

Mω
c
(k)
3 + 2Xc

(k)
2 +

h̄

Mω

k−1
∑

l=1

(

c
(k−l)
2 c

(l)
1 + c

(k−l)
1 c

(l)
2

)

+
1

h̄ω
V ′
k(X), (3C.77)
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Vk(X) = − h̄
2

M
c
(k)
2 − 3h̄2

M
Xc

(k)
3 − 2h̄ωX2c

(k)
2 − h̄2

M
X

k−1
∑

l=1

(

c
(k−l)
2 c

(l)
1 + c

(k−l)
1 c

(l)
2

)

− h̄2

2M

k−1
∑

l=1

c
(l)
1 c

(k−l)
1 . (3C.78)

The results are listed in Table 3.3.

3C.6 Interaction r4 in D -Dimensional Radial Oscillator

It is easy to generalize these relations further to find the perturbation expansions for the eigenvalues
of the radial Schrödinger equation of an anharmonic oscillator in D dimensions

[

−1

2

d2

dr2
− 1

2

D − 1

r

d

dr
+
l(l +D − 2)

2r2
+

1

2
r2 +

g

4
r4
]

Rn(r) = E(n)Rn(r). (3C.79)

The case g = 0 will be solved in Section 9.2, with the energy eigenvalues

E(n) = 2n′ + l+D/2 = n+D/2, n = 0, 1, 2, 3, . . . , l = 0, 1, 2, 3, . . . . (3C.80)

For a fixed principal quantum number n = 2nr + l, the angular momentum runs through l =
0, 2, . . . , n for even, and l = 1, 3, . . . , n for odd n. There are (n + 1)(n + 2)/2 degenerate levels.
Removing a factor rl from Rn(r), and defining Rn(r) = rlwn(r), the Schrödinger equation becomes

(

−1

2

d2

dr2
− 1

2

2l+D − 1

r

d

dr
+

1

2
r2 +

g

4
r4
)

wn(r) = E(n)wn(r). (3C.81)

The second term modifies the differential equation (3C.6) to

rΦ′
k(r)−2n′Φk(r)=

1

2
Φ′′

k(r)+
(2l+D − 1)

2r
Φ′

k(r)+r
4Φk−1(r)+

k
∑

k′=1

(−1)k
′

E
(n)
k′ Φk−k′ (r). (3C.82)

The extra terms change the recursion relation (3C.15) into

(p− 2n′)Ap
k =

1

2
[(p+ 2)(p+ 1) + (p+ 2)(2l+D−1)]Ap+2

k +Ap−4
k−1 +

k
∑

k′=1

(−1)k
′

E
(n)
k′ A

p
k−k′ .(3C.83)

For even n = 2n′ + l with l = 0, 2, 4, . . . , n, we normalize the wave functions by setting

C0
k = (2l+D)δ0k, (3C.84)

rather than (3C.12), and obtain

2(p′−n′)Cp′

k =[(2p′+1)(p′+1)+(p′+1)(l+D/2−1/2)]Cp′+1
k + Cp′−2

k−1 −
k
∑

k′=1

C1
k′ C

p′

k−k′ , (3C.85)

instead of (3C.20).
For odd n = 2n′ + l with l = 1, 3, 5, . . . , n, the equations analogous to (3C.13) and (3C.22) are

C1
k = 3(2l +D)δ0k (3C.86)

and

2(p′−n′)Cp′

k =[(2p′+3)(p′+1)+(p′+3/2)(l+D/2−1/2)]Cp′+1
k + Cp′−2

k−1 −
k
∑

k′=1

C1
k′ C

p′

k−k′ . (3C.87)

In either case, the expansion coefficients of the energy are given by

E
(n)
k = − (−1)k

2

2l+D + 1

2l +D
C1

k . (3C.88)
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3C.7 Interaction r2q in D Dimensions

A further extension of the recursion relation applies to interactions gx2q/4. Then Eqs. (3C.20) and

(3C.22) are changed in the second terms on the right-hand side which become Cp′−q
k . In a first

step, these equations are now solved for Cp′

k for 1 ≤ p ≤ qk + n, starting with p′ = qk + n′ and
lowering p′ down to p′ = n′ + 1. As before, the knowledge of the coefficients C1

k (which determine
the yet unknown energies and are contained in the last term of the recursion relations) is not
required for p′ > n′. The second and third steps are completely analogous to the case q = 2.

The same generalization applies to the D-dimensional case.

3C.8 Polynomial Interaction in D Dimensions

If the Schrödinger equation has the general form

[

−1

2

d2

dr2
− 1

2

D − 1

r

d

dr
+
l(l+D − 2)

2r2
+

1

2
r2

+
g

4
(a4r

4 + a6r
6 + . . .+ a2qx

2q)
]

Rn(r) = E(n)Rn(r), (3C.89)

we simply have to replace in the recursion relations (3C.85) and (3C.87) the second term on the
right-hand side as follows

Cp′−2
k−1 → a4C

p′−2
k−1 + a6C

p′−3
k−1 + . . .+ a2qC

p′−q
k−1 , (3C.90)

and perform otherwise the same steps as for the potential gr2q/4 alone.

Appendix 3D Feynman Integrals for T=/ 0

The calculation of the Feynman integrals (3.550) can be done straightforwardly with the help of
the symbolic program Mathematica. The first integral in Eqs. (3.550) is trivial. The second and
forth integrals are simple, since one overall integration over, say, τ3 yields merely a factor h̄β, due
to translational invariance of the integrand along the τ -axis. The triple integrals can then be split
as

∫ h̄β

0

∫ h̄β

0

∫ h̄β

0

dτ1dτ2dτ3 f(|τ1 − τ2|, |τ2 − τ3|, |τ3 − τ1|)

= h̄β

∫ h̄β

0

∫ h̄β

0

dτ1dτ2 f(|τ1 − τ2|, |τ2|, |τ1|) (3D.1)

= h̄β

(

∫ h̄β

0

dτ2

∫ τ2

0

dτ1f(τ2 − τ1, τ2, τ1) +

∫ h̄β

0

dτ2

∫ h̄β

τ2

dτ1f(τ1 − τ2, τ2, τ1)

)

,

to ensure that the arguments of the Green function have the same sign in each term. The lines
represent the thermal correlation function

G(2)(τ, τ ′) =
h̄

2Mω

coshω[|τ − τ ′| − h̄β/2]

sinh(ωh̄β/2)
. (3D.2)

With the dimensionless variable x ≡ ωh̄β, the result for the quantities α2L
V defined in (3.550) in

the Feynman diagrams with L lines and V vertices is

a2 =
1

2
coth

x

2
, (3D.3)

α4
2 =

1

8

1

sinh2 x
2

(x+ sinhx) , (3D.4)
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α6
3 =

1

64

1

sinh3 x
2

(

−3 cosh
x

2
+ 2 x2 cosh

x

2
+ 3 cosh

3x

2
+ 6 x sinh

x

2

)

, (3D.5)

α8
2 =

1

256

1

sinh4 x
2

(6 x+ 8 sinhx+ sinh 2x) , (3D.6)

α10
3 =

1

4096

1

sinh5 x
2

(

−40 cosh
x

2
+ 24 x2 cosh

x

2
+ 35 cosh

3x

2

+ 5 cosh
5x

2
+ 72 x sinh

x

2
+ 12 x sinh

3x

2

)

, (3D.7)

α12
3 =

1

16384

1

sinh6 x
2

(

− 48 + 32 x2 − 3 coshx+ 8 x2 coshx

+ 48 cosh 2 x+ 3 cosh 3 x+ 108 x sinhx
)

, (3D.8)

α6
2 =

1

24

1

sinh2 x
2

(5 +24 coshx) , (3D.9)

α8
3 =

1

72

1

sinh3 x
2

(

3 x cosh
x

2
+ 9 sinh

x

2
+ sinh

3x

2

)

, (3D.10)

α10
3′ =

1

2304

1

sinh4 x
2

(30 x+ 104 sinhx+ 5 sinh2x) . (3D.11)

For completeness, we have also listed the integrals α6
2, α

8
3, and α10

3′ , corresponding to the three
diagrams

, , , (3D.12)

respectively, which occur in perturbation expansions with a cubic interaction potential x3. These
will appear in a modified version in Chapter 5.

In the low-temperature limit where x = ωh̄β → ∞, the x-dependent factors α2L
V in Eqs. (3D.3)–

(3D.11) converge towards the constants

1/2, 1/4, 3/16, 1/32, 5/(8 · 25), 3/(8 · 26), 1/12, 1/18, 5/(9 · 25), (3D.13)

respectively. From these numbers we deduce the relations (3.553) and, in addition,

a62 → 2

3
a6, a83 → 8

9
a8, a103′ → 5

9
a10. (3D.14)

In the high-temperature limit x → 0, the Feynman integrals h̄β(1/ω)V−1a2LV with L lines and V
vertices diverge like βV (1/β)L. The first V factors are due to the V -integrals over τ , the second
are the consequence of the product of n/2 factors a2. Thus, a2LV behaves for x→ 0 like

a2LV ∝
(

h̄

Mω

)L

xV −1−L. (3D.15)

Indeed, the x-dependent factors α2L
V in (3D.3)–(3D.11) grow like

α2 ≈ 1/x+ x/12 + . . . ,

α4
2 ≈ 1/x+ x3/720,

α6
3 ≈ 1/x+ x5/30240 + . . . ,

α8
2 ≈ 1/x3 + x/120 − x3/3780 + x5/80640 + . . . ,

α10
3 ≈ 1/x3 + x/240 − x3/15120 + x7/6652800 + . . . ,
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α12
3 ≈ 1/x4 + 1/240 + x2/15120− x6/4989600 + 701 x8/34871316480+ . . . ,

α6
2 ≈ 1/x2 + x2/240 − x4/6048 + . . . ,

α8
3 ≈ 1/x2 + x2/720 − x6/518400 + . . . ,

α10
3′ ≈ 1/x3 + x/360 − x5/1209600 + 629 x9/261534873600+ . . . . (3D.16)

For the temperature behavior of these Feynman integrals see Fig. 3.16. We have plotted the
reduced Feynman integrals â2LV (x) in which the low-temperature behaviors (3.553) and (3D.14)
have been divided out of a2LV .

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

1.2

L/x

â2LV

a2

Figure 3.16 Plot of reduced Feynman integrals â2LV (x) as a function of L/x = LkBT/h̄ω.

The integrals (3D.4)–(3D.11) are indicated by decreasing dash-lengths.

The integrals (3D.4) and (3D.5) for a42 and a63 can be obtained from the integral (3D.3) for a2

by the operation

h̄n

n!Mn

(

− ∂

∂ω2

)n

=
h̄n

n!Mn

(

− 1

2ω

∂

∂ω

)n

, (3D.17)

with n = 1 and n = 2, respectively. This follows immediately from the fact that the Green function

G(2)
ω (τ, τ ′) =

1

h̄Mβ

∞
∑

m=−∞
e−iωm(τ−τ ′) h̄

ω2
m + ω2

, (3D.18)

with ω2 shifted to ω2 + δω2 can be expanded into a geometric series

pace−1.9cmG
(2)√
ω2+δω2

(τ, τ ′) =
1

h̄Mβ

∞
∑

m=−∞
e−iωm(τ−τ ′)

[

h̄

ω2
m + ω2

− δω2

h̄

h̄2

(ω2
m + ω2)2

pace1.0cm+

(

δω2

h̄

)2
h̄3

(ω2
m + ω2)3

+. . .

]

, (3D.19)

which corresponds to a series of convoluted τ -integrals

G
(2)√
ω2+δω2

(τ, τ ′) = G(2)
ω (τ, τ ′) − Mδω2

h̄

∫ h̄β

0

dτ1G
(2)
ω (τ, τ1)G

(2)
ω (τ1, τ

′) (3D.20)

+

(

Mδω2

h̄

)2 ∫ h̄β

0

∫ h̄β

0

dτ1dτ2G
(2)
ω (τ, τ1)G

(2)
ω (τ1, τ2)G

(2)
ω (τ2, τ

′) + . . . .

In the diagrammatic representation, the derivatives (3D.17) insert n points into a line. In quantum
field theory, this operation is called a mass insertion. Similarly, the Feynman integral (3D.7) is
obtained from (3D.6) via a differentiation (3D.17) with n = 1 [see the corresponding diagrams in
(3.550)]. A factor 4 must be removed, since the differentiation inserts a point into each of the four
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lines which are indistinguishable. Note that from these rules, we obtain directly the relations 1, 2,
and 4 of (3.553).

Note that the same type of expansion allows us to derive the three integrals from the one-loop
diagram (3.549). After inserting (3D.20) into (3.549) and re-expanding the logarithm we find the
series of Feynman integrals

ω2+δω2

−−−→ +
Mδω2

h̄
−
(

Mδω2

h̄

)2
1

2
+

(

Mδω2

h̄

)3
1

3
− . . . ,

from which the integrals (3D.3)–(3D.5) can be extracted. As an example, consider the Feynman
integral

= h̄β
1

ω
a42.

It is obtained from the second-order Taylor expansion term of the tracelog as follows:

−1

2
h̄β

1

ω
a41 =

h̄2

2!M2

(

∂

∂ω2

)2

[−2βVω]. (3D.21)

A straightforward calculation, on the other hand, yields once more a42 of Eq. (3D.5).

Notes and References

The theory of generating functionals in quantum field theory is elaborated by
J. Rzewuski, Field Theory, Hafner, New York, 1969.
For the usual operator derivation of the Wick expansion, see
S.S. Schweber, An Introduction to Relativistic Quantum Field Theory, Harper and Row, New York,
1962, p. 435.

The derivation of the recursion relation in Fig. 3.10 was given in
H. Kleinert, Fortschr. Physik. 30, 187 (1986) (http://www.physik.fu-berlin.de/~klei-
nert/82), Fortschr. Physik. 30, 351 (1986) (ibid.http/84).
See in particular Eqs. (51)–(61).
Its efficient graphical evaluation is given in
H. Kleinert, A. Pelster, B. Kastening, M. Bachmann, Recursive Graphical Construction of Feyn-

man Diagrams and Their Multiplicities in x4- and in x2A-Theory, Phys. Rev. D 61, 085017
(2000) (hep-th/9907044).
This paper develops a Mathematica program for a fast calculation of diagrams beyond five loops,
which can be downloaded from the internet at ibid.http/b3/programs.

The Mathematica program solving the Bender-Wu-like recursion relations for the general anhar-
monic potential (3C.26) is found in the same directory. This program was written in collaboration
with W. Janke.

The path integral calculation of the effective action in Section 3.23 can be found in
R. Jackiw, Phys. Rev. D 9, 1686 (1974).
See also
C. De Dominicis, J. Math. Phys. 3, 983 (1962),
C. De Dominicis and P.C. Martin, ibid. 5, 16, 31 (1964),
B.S. DeWitt, in Dynamical Theory of Groups and Fields , Gordon and Breach, N.Y., 1965,
A.N. Vassiliev and A.K. Kazanskii, Teor. Math. Phys. 12, 875 (1972),
J.M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Rev. D 10, 1428 (1974),
and the above papers by the author in Fortschr. Physik 30.



368 3 External Sources, Correlations, and Perturbation Theory

The path integral of a particle in a dissipative medium is discussed in A.O. Caldeira and A.J.
Leggett, Ann. Phys. 149, 374 (1983), 153; 445(E) (1984).
See also
A.J. Leggett, Phys. Rev. B 30, 1208 (1984);
A.I. Larkin, and Y.N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 86, 719 (1984) [Sov. Phys. JETP 59,
420 (1984)]; J. Stat. Phys. 41, 425 (1985);
H. Grabert and U. Weiss, Z. Phys. B 56, 171 (1984);
L.-D. Chang and S. Chakravarty, Phys. Rev. B 29, 130 (1984);
D. Waxman and A.J. Leggett, Phys. Rev. B 32, 4450 (1985);
P. Hänggi, H. Grabert, G.-L. Ingold, and U. Weiss, Phys. Rev. Lett. 55, 761 (1985);
D. Esteve, M.H. Devoret, and J.M. Martinis, Phys. Rev. B 34, 158 (1986);
E. Freidkin, P. Riseborough, and P. Hänggi, Phys. Rev. B 34, 1952 (1986);
H. Grabert, P. Olschowski and U. Weiss, Phys. Rev. B 36, 1931 (1987),
and in the textbook
U. Weiss, Quantum Dissipative Systems , World Scientific, Singapore, 1993.
See also Notes and References in Chapter 18.

For alternative approaches to the damped oscillator see
F. Haake and R. Reibold, Phys. Rev. A 32, 2462 (1985),
A. Hanke and W. Zwerger, Phys. Rev. E 52, 6875 (1995);
S. Kehrein and A. Mielke, Ann. Phys. (Leipzig) 6, 90 (1997) (cond-mat/9701123).
X.L. Li, G.W. Ford, and R.F. O’Connell, Phys. Rev. A 42, 4519 (1990).

The effective potential (5.259) was derived in D dimensions by
H. Kleinert and B. Van den Bossche, Nucl. Phys. B 632, 51 (2002) (cond-mat/0104102).
By inserting D = 1 and changing the notation appropriately, one finds (5.259).
The finite-temperature expressions (3.763)–(3.766) are taken from S.F. Brandt, Beyond Effective

Potential via Variational Perturbation Theory, M.S. thesis, FU-Berlin 2004 (http://hbar.wustl.
edu/~sbrandt/diplomarbeit.pdf). See also
S.F. Brandt, H. Kleinert, and A. Pelster, J. Math. Phys. 46, 032101 (2005) (quant-ph/0406206) .

H. Kleinert, PATH INTEGRALS



H. Kleinert, PATH INTEGRALS
September 19, 2013 (/home/kleinert/kleinert/books/pathis/pthic4.tex)

Take the gentle path
George Herbert (1593-1633), Discipline

4

Semiclassical Time Evolution Amplitude

The path integral approach renders a clear intuitive understanding of quantum-
mechanical effects in terms of quantum fluctuations, exhibiting precisely how the
laws of classical mechanics are modified by these fluctuations. In some limiting
situations, the modifications may be small, for instance, if an electron in an atom
is highly excited. Its wave packet encircles the nucleus in almost the same way
as a point particle in classical mechanics. Then it is relatively easy to calculate
quite accurate quantum-mechanical amplitudes by expanding them around classical
expressions in powers of the fluctuation width.

4.1 Wentzel-Kramers-Brillouin (WKB)
Approximation

In Schrödinger’s theory, an important step towards understanding the relation be-
tween classical and quantum mechanics consists in proving that the center of a
Schrödinger wave packet moves like a classical particle. The approach to the classical
limit is described by the so-called eikonal approximation, or the Wentzel-Kramers-

Brillouin approximation (short: WKB approximation), which proceeds as follows:

First, one rewrites the time-independent Schrödinger equation of a point particle

{

− h̄2

2M
∇

2 − [E − V (x)]

}

ψ(x) = 0 (4.1)

in the form
[

−h̄2∇2 − p2(x)
]

ψ(x) = 0, (4.2)

where
p(x) ≡

√

2M [E − V (x)] (4.3)

is the local classical momentum of the particle.
In a second step, one re-expresses the wave function as an exponential

ψ(x) = eiS(x)/h̄. (4.4)
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370 4 Semiclassical Time Evolution Amplitude

For the exponent S(x), called the eikonal , the Schrödinger equation amounts to the
a differential equation :

−ih̄∇2S(x) + [∇S(x)]2 − p2(x) = 0. (4.5)

To solve this equation approximately, one assumes that the function p(x) shows
little relative change over the de Broglie wavelength

λ ≡ 2π

k(x)
≡ 2πh̄

p(x)
, (4.6)

i.e.,

ε ≡ 2πh̄

p(x)

∣

∣

∣

∣

∣

∇p(x)

p(x)

∣

∣

∣

∣

∣

≪ 1. (4.7)

This condition is called the WKB condition. In the extreme case of p(x) being a
constant the condition is certainly fulfilled and the Riccati equation is solved by the
trivial eikonal

S = px + const , (4.8)

which makes (4.4) a plain wave. For slow variations, the first term in the Riccati
equation is much smaller than the others and can be treated systematically in a
“smoothness expansion”. Since the small ratio (4.7) carries a prefactor h̄, the Planck
constant may be used to count the powers of the smallness parameter ε, i.e., it may
formally be considered as a small expansion parameter.

The limit h̄ → 0 of the equation determines the lowest-order approximation to
the eikonal, S0(x), by

[∇S0(x)]
2 − p2(x) = 0. (4.9)

Being independent of h̄, this is a classical equation. Indeed, it is equivalent to the
Hamilton-Jacobi differential equation of classical mechanics: For time-independent
systems, the action can be written as

A(x, t) = S0(x)− tE, (4.10)

where S0(x) is defined by

S0(x) ≡
∫

dtp(t)ẋ(t), (4.11)

and E is the constant energy of the orbit under consideration. The action solves the
Hamilton-Jacobi equation (1.64). In three dimensions, it is a function A(x, t) of the
orbital endpoints. According to Eq. (1.62), the derivative of A(x, t) is equal to the
momentum p. Since E is a constant, the same thing holds for S0(x, t). Hence

p ≡∇A(x) = ∇S0(x). (4.12)

In terms of the action A, the Hamilton-Jacobi equation reads

1

2M
(∇A)2 + V (x) = −∂tA. (4.13)
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By inserting Eqs. (4.10) and (4.12), we recover Eq. (4.9). This is why S0(x) is also
called the classical eikonal .

The corrections to the classical eikonal are calculated most systematically by
imagining h̄ 6= 0 to be a small quantity and expanding the eikonal around S0(x) in
a power series in h̄:

S = S0 − ih̄S1 + (−ih̄)2S2 + (−ih̄)3S3 + . . . . (4.14)

This is called the semiclassical expansion of the eikonal. Inserting it into the Riccati
equation, we find the sequence of WKB equations

(∇S0)
2 − p2 = 0,

∇
2S0 + 2∇S0 ·∇S1 = 0,

∇
2S1 + (∇S1)

2 + 2∇S0 ·∇S2 = 0,

∇
2S2 + 2∇S1 ·∇S2 + 2∇S0 ·∇S3 = 0,

...

∇
2Sn +

n+1
∑

m=0

∇Sm ·∇Sn+1−m = 0, (4.15)

... .

Note that these equations involve only the vectors

qn = ∇Sn (4.16)

and allow for a successive determination of S0, S1, S2, . . . , giving higher and higher
corrections to the eikonal S(x).

In one dimension we recognize in (4.5) the Riccati differential equation (2.547)
fulfilled by ∂τS(x), if we identify x with τ

√
2M , and v(τ) with E − V (τ), where

(4.5) reads
−ih̄∂τ [∂τS(τ)] + [∂τS(τ)]

2 = p2(τ) = v(τ). (4.17)

If we re-express the expansion terms (2.552) in terms of w(τ) =
√

v(τ), we may

replace w(τ), w′(τ), . . . by p(x), p′(x), . . . , and find directly

q0(x) = ±p(x), q1(x) = −
1

2

p′(x)

p(x)
=

V ′

4(E − V ) ,

q2(x) = ±
[

1

4

p′′(x)

p2(x)
− 3

8

p′2(x)

p3(x)

]

= ∓4V
′′(E − V ) + 5V ′2

32
√
2M(E − V )5/2

≡ ∓p(x)g(x),

q3(x) =
1

2
g′(x) =

15V ′3 + 18V ′V ′′(E − V ) + 4V ′′′(E − V )2
128M(E − V )4

. (4.18)

Note that q2(x) can also be written as

q2(x) =
1

4S ′(x)
{S ′, x},
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where {h, x} denotes the so-called Schwartz derivative [1]:

{h, x} ≡ h′′′

h′
− 3

2

(

h′′

h′

)2

(4.19)

of the function h(x). The equation for q2(x) defines also the quantity g(x) ≡
q2(x)/p(x) appearing in the equation for q3(x).

It is useful to introduce also the expansion

q(x) ≡ S ′(x) = q0(x) + h̄q1(x) + h̄2q2(x) + . . . . (4.20)

Then the eikonal has the expansion

S(x) =
∫

dx q(x) = ±
∫

dx p(x)[1 + h̄2g(x)] + h̄
i

2
[log p(x) + h̄2g(x)]± . . . . (4.21)

Keeping only terms up to the order h̄, which is possible if h̄2|ǫ(x)| ≪ 1, we find the
(as yet unnormalized) WKB wave function

ψWKB(x) = e(i/h̄)
∫ x

dx′q(x′) =
1

√

p(x)
e±(i/h̄)

∫ x
dx′p(x′). (4.22)

In the classically accessible regime V (x) ≤ E, this is an oscillating wave function;
in the inaccessible regime V (x) ≥ E, it decreases or increases exponentially. The
transition from one to the other is nontrivial since for V (x) ≈ E, the WKB approx-
imation breaks down. After some analytic work1, however, it is possible to derive
simple connection rules for the linearly independent solutions. Let k(x) ≡ p(x)/h̄
in the oscillating regime and κ(x) ≡ |p(x)|/h̄ in the exponential regime. Suppose
that there is a crossover at x = a connecting an inaccessible regime on the left of
x = a with an accessible one on the right. Then the connection rules are

V (x) > E V (x) < E
1√
κ
e−
∫ a

x
dx′κ −−−→−−−→←− 2√

k
cos

(∫ x

a
dx′k − π

4

)

, (4.23)

1√
κ
e
∫ a

x
dx′κ ←−←−−−−→ − 1√

k
sin

(∫ x

a
dx′k − π

4

)

. (4.24)

In the opposite situation at the point x = b, they turn into

V (x) < E V (x) > E

2√
k
cos

(

∫ b

x
dx′k − π

4

)

←−←−−−−→ 1√
κ
e−
∫ x

b
dx′κ, (4.25)

− 1√
k
sin

(

∫ b

x
dx′k − π

4

)

−−−→−−−→←− 2√
κ
e
∫ x

b
dx′κ. (4.26)

1R.E. Langer, Phys. Rev. 51 , 669 (1937). See also W.H. Furry, Phys. Rev. 71 , 360 (1947),
and the textbooks S. Flügge, Practical Quantum Mechanics , Springer, Berlin, 1974; L.I. Schiff,
Quantum Mechanics , McGraw-Hill, New York, 1955; N. Fröman and P.O. Fröman, JWKB-

Approximation, North-Holland, Amsterdam, 1965.
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The connection rules can be used safely only along the direction of the double arrows.
For their derivation one solves the Schrödinger equation exactly in the neighbor-

hood of the turning points where the potential rises or falls approximately linearly.
These solutions are connected with adjacent WKB wave functions. The connection
formulas can also be found directly by a formal trick: When approaching the dan-
gerous turning points, one escapes into the complex x-plane and passes around the
singularities at a finite distance. This has to be sufficiently large to preserve the
WKB condition (4.7), but small enough to allow for the linear approximation of the
potential near the turning point. Take for example the connection rule at x = b.
When approaching the turning point at x = b from the right, the function κ(x) is
approximately proportional to

√
x− b. Going around this zero in the upper com-

plex half-plane takes κ(x) into ik(x) and the wave function
√
κ

−1
e−
∫ x

b
dx′κ becomes

e−iπ/4
√
k

−1
e−i

∫ x

b
dx′k. Going around the turning point in the lower half-plane pro-

duces eiπ/4
√
k

−1
ei
∫ x

b
dx′k. The sum of the two terms is 2

√
k
−1

cos(
∫ b
x dx

′k−π/4). The
argument does not show why one should use the sum rather than the average. This
becomes clear only after a more detailed discussion found in quantum-mechanical
textbooks2. The simplest derivation of the connection formulas is based on the
large-distance behaviors (2.625) and (2.630) of wave the function to the right and
left of a linearly rising potential and applying this to the linearly rising section of
the general potential near the turning point.

In a simple potential well, the function p(x) has two zeros, say one at x = a and
one at x = b. The bound-state wave functions must satisfy the boundary condition
to vanish exponentially fast at x = ±∞. Imposing these, the connection formulas
lead to the semiclassical or Bohr-Sommerfeld quantization rule

∫ b

a
dx k(x) = (n+ 1/2)π, n = 0,±1,±2, . . . . (4.27)

It was pointed out by Dunham3 that due to the square-root nature of the cut between
a and b, this condition implies that the anticlockwise contour integral around the cut
over the eikonal expansion (4.21) up to order h̄, where q(x) ≈ ±p(x)+i(h̄/2) log p(x),
is an integer multiple of h̄:

∮

dx q(x) = 2πnh̄. (4.28)

The contour encloses the classical turning points and no other singularities of
q(x). This property ensures the single-valuedness of the wave function ψ(x) =
exp[iS(x)/h̄] = exp[i

∫

dx q(x)/h̄] at the semiclassical level.
Moreover, the single-valuedness is a necessary property to all orders in the ex-

pansion (4.21). This makes (4.28) an exact quantization rule.4 In fact, in Sub-

2See for example E. Merzbacher, Quantum Theory, John Wiley & Sons, New York, 1970, p. 122;
M.L. Goldberger and K.M. Watson, Collision Theory, John Wiley & Sons, New York, 1964, p. 324.
The analytic argument is given in L.D. Landau and E.M. Lifshitz, Quantum Mechanics , Pergamon,
London, 1965, p. 158.

3J.L. Dunham, Phys. Rev. 41, 21 (1932)
4J.R. Krieger and C. Rosenzweig, Phys. Rev. 164, 171 (1967).
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section 4.9.6 we shall arrive at the quantization condition (4.28) from a different
starting point and calculate vary accurate energy levels for the quartic potential
gx4/4 by evaluating (4.28) to high orders in h̄.

Note that the first term −ih̄q1(x) in the semiclassical expansion (4.20) of q(x) =
S ′(x) contributes, via Cauchy’s residue theorem, a value −πh̄ to the contour integral
(4.28). This expansion term can therefore be moved from the left- to the right-hand
side of (4.28) by simply changing the right-hand side from 2πnh̄ to 2π(n+ 1

2)h̄. This
is the origin of the difference between the Bohr-Sommerfeld quantization condition
(4.27) and the old the Bohr quantization condition which has only nπ on the right-
hand side of (4.27). Remarkably, the next odd expansion terms q3(x) is a pure
derivative which does not contribute to the contour integral in (4.28) at all. Using
all terms up to q4(x), and applying partial integrations, the quantization condition
(4.28) can be re-written as

∮

{

(E−V )1/2− ˜̄h
2 V ′2

32(E−V )5/2
− ˜̄h

449V ′4−16(E−V )2V ′V ′′′′

2048(E−V )11/2 + . . .

}

=2π(n+ 1
2)˜̄h,

where ˜̄h ≡ h̄/
√
2M . In terms of q̃2(x) ≡ 2Mq2(x) = E − V (x), this becomes

∮







q̃ −
˜̄h
2

32

(q̃2)′2

q̃5
−

˜̄h
4

2048

[

49(q̃2)′4

q̃11
−16(q̃2)′(q̃2)′′′

q̃7

]

+ . . .







=2π(n+ 1
2)˜̄h. (4.29)

For the harmonic oscillator, the semiclassical quantization rule (4.27) gives the
exact energy levels. Indeed, for an energy E, the classical crossover points with
V (xE) = E are

xc = ±
√

2E

Mω2
, (4.30)

to be identified in (4.27) with a and b, respectively. Inserting further

k(x) =
p(x)

h̄
=

√

2M

h̄2

(

E − 1

2
Mω2x2

)

, (4.31)

we obtain the WKB approximation for the energy levels

∫ xE

−xE

dx′k(x) =
E

h̄ω
π = (n + 1

2)π, (4.32)

which indeed coincides with the exact ones. Only nonnegative values n = 0, 1, 2, . . .
lead to oscillatory waves.

As an example consider the quartic potential V (x) = gx4/2 for which the
Schrödinger equation cannot be solved exactly. Inserting this into equation (4.32),
we obtain

1

h̄

∫ xE

−xE

dx
√

2M(E − gx4/4) ≡ ν(E)π = (n + 1
2)π, (4.33)
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with the turning points ±xE = ±(4E/g)1/4. The integral is done using the formula5

∫ 1

0
dt tµ−1(1− tλ)ν−1 =

1

λ
B(µ/λ, ν) (4.34)

which for µ = 1, λ = 4, and ν = 3/2 yields (1/4)B(1/4, 3/2), so that
the left-hand side of Eq.(4.33) can be written with Γ(1/4) = 2π/Γ(3/4)

√
2 as

ν(E)π ≡ E3/42M1/2π3/2/3h̄g1/4Γ2(3/4), and (4.33) determines the energy with prin-
cipal quantum numebr n in the Bohr-Sommerfeld approximation by the consition
ν(E) = n+ 1

2 resulting in

E
(n)
BS = h̄ωκ

(n)
BS

(

gh̄

4M2ω3

)1/3

, (4.35)

with

κ
(n)
BS =

1

π2/3

(

3

2

)4/3

Γ8/3(3/4) (n+ 1
2)

4/3 ≈ 0.688 253 702× 2(n+ 1
2)

4/3. (4.36)

This large-n result may be compared with the precise of κ(0) = 0.667986 . . . to be
derived in Section 5.19 (see Table 5.9).

If the potential contains a centrifugal term Vcf(r) = l(l+1)h̄2/2Mr2 in addition
to the potential V (x), the singularity at r = 0 is too strong to apply the WKB
approximation. In addition, the factor h̄2 in front of this term ruins the systematics
of the expansion terms (4.14) if one starts out with (∇S0)

2 = p2 = 2M [E − V −
l(l+1)h̄2/2Mr2]. In this situation, the semiclassical treatment needs a modification
sketched.

For a rotationally symmetric potential, the wave function in the Schrödinger
equation (4.1) can be factorized into a radial part R(r)/r and spherical harmonic
Ylm(θ, φ) [see (1.420)]. The radial wave function satisfies the radial Schrödinger
equation

{

− h̄2

2M
∂2r − [E − V (r)− Vcf(r)]

}

R(r) = 0. (4.37)

In this equation, one moves the singularity at r = 0 to ξ = −∞ by a coordinate trans-
formation r = eξ, leading to the following nonsingular equation ξ(ξ) ≡ e−ξ/2R(eξ):

[

− h̄2

2M
∂2ξ − q2(ξ)

]

χ(ξ) = 0. (4.38)

with

q̃2(ξ) ≡ e2ξ
[

E−V (eξ)−Vcf(eξ)−
h̄2e−2ξ

8M

]

= e2ξ
[

E − V (eξ)− (l + 1
2)

2h̄2e−2ξ

2M

]

.(4.39)

Inserting this into the quantization condition (4.29), only the first semiclassical
term contributes, and all the higher terms vaish, leading to the exact energies for the

5I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 3.251.1.
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Coulomb potential V (r) = −e2/r with an additional centrifugal barrier Vcf(x). They
are the same as the energies obtained from the initial Bohr-Sommerfeld quantization
condition (4.27) if we exchange the factor l(l+1) in the centrifugal barrier by (l+ 1

2)
2.

This exchange is called the Langer correction. For a one-dimensional hydrogen atom,
the singularity of the Coulomb potential at r = 0 is also so strong that one must
change the variable r to ξ. Inserting q̃2(ξ) = e2ξ

[

E + e2e−ξ − 1
8
e−2π

]

into the Bohr-

Sommerfeld quantization condition (4.27), we obtain the equation, re-expressed in
terms of r,

∫ rb

ra
(dr/r)

√

2(−1/8 + e2r + Er2) =
π

2
+

π√
−2E = (n+ 1

2)π,

where ra,b are the turning points ra,b =
(

e2 ∓
√
2e2 + E

)

/(−4E). For simplicity,
we have gone to natural units with h̄ = 1, M = 1. Thus we find the semiclassical
energies E = −e4/2n2 (n = 1, 2, 3, . . .), which are exact. Without the 1/8-term from
the variable change r = eξ, the integral would have been equal to π/

√
−2E yielding

the approximate energies E = −e4/2(n+ 1
2)

2. These will be derived once more from
another semiclassical expansion at the end of Appendix 4A.

4.2 Saddle Point Approximation

Let us now look at the semiclassical expansion within the path integral approach to
quantum mechanics. Consider the time evolution amplitude

(xbtb|xata) =
∫

Dx eiA[x]/h̄, (4.40)

imagining Planck’s constant h̄ to be again a free parameter which is very small com-
pared to the typical fluctuations of the action. With h̄ appearing in the denominator
of an imaginary exponent we see that in the limit h̄→ 0, the path integral becomes
a sum of rapidly oscillating terms which will approximately cancel each other. This
phenomenon is known from ordinary integrals

∫

dx√
2πih̄

eia(x)/h̄, (4.41)

which converge to zero for h̄ → 0 according to the Riemann-Lebesgue lemma. The
precise behavior is given by the saddle point expansion of integrals which we shall
first recapitulate.

4.2.1 Ordinary Integrals

The evaluation of an integral of the type (4.41) proceeds for small h̄ via the so-called
saddle point approximation. In the limit h̄ → 0, the integral is dominated by the
extremum of the function a(x) with the smallest absolute value, call it xcl (assuming
it to be unique, for simplicity), where

a′(xcl) = 0. (4.42)
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In the path integral, the point xcl in this example corresponds to the classical orbit for
which the functional derivative vanishes. This is the reason for using the subscript
cl. For x near the extremum, the oscillations of the integrand are weakest. The
leading oscillatory behavior of the integral is given by

∫ ∞

−∞

dx√
2πih̄

eia(x)/h̄
h̄→0
−−−→ const× eia(xcl)/h̄, (4.43)

with a constant proportionality factor independent of h̄. This can be calculated by
expanding a(x) around its extremum as

a(x) = a(xcl) +
1

2
a′′(xcl)(δx)

2 +
1

3!
a(3)(xcl)(δx)

3 + . . . , (4.44)

where δx ≡ x − xcl is the deviation from xcl. It is the analog of the quantum

fluctuation introduced in Section 2.2. Due to (4.42), the linear term in δx is absent.
If a′′(xcl) 6= 0 and the higher derivatives are neglected, the integral is of the Fresnel
type and can be done, yielding

∫ ∞

−∞

dx√
2πih̄

eia(x)/h̄ → eia(xcl)/h̄
∫ ∞

−∞

dδx√
2πih̄

eia
′′(xcl)(δx)

2/2h̄ =
eia(xcl)/h̄

√

a′′(xcl)
. (4.45)

The right-hand side is the saddle point approximation to the integral (4.41).
The saddle point approximation may be viewed as the consequence of the clas-

sical limit of the exponential function:

eia(x)/h̄
h̄→0−−−→

√
2πih̄

√

a′′(xcl)
δ(x− xcl) . (4.46)

Corrections can be calculated perturbatively by expanding the integral in powers
of h̄, leading to what is called the saddle point expansion. For this we expand the
remaining exponent in powers of δx:

exp
{

i

h̄

[

1

3!
a(3)(xcl)(δx)

3 +
1

4!
a(4)(xcl)(δx)

4 + . . .
]}

= 1 +
i

h̄

[

1

3!
a(3)(xcl)(δx)

3 +
1

4!
a(4)(xcl)(δx)

4 + . . .
]

− 1

h̄2

[

1

72
a(3)(xcl)

2(δx)6 + . . .
]

+ . . . (4.47)

and perform the resulting integrals of the type

∫ ∞

−∞

dδx√
2πih̄

eia
′′(xcl)(δx)

2/2h̄(δx)n =











(n− 1)!!

[a′′(xcl)](1+n)/2
(ih̄)n/2, n = even,

0, n = odd.
(4.48)

Each factor δx in (4.47) introduces a power
√

h̄/a′′(xcl). This is the average relative
size of the quantum fluctuations. The increasing powers of h̄ ensure the decreasing
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importance of the higher terms for small h̄. For instance, the fourth-order term
a(4)(xcl)(δx)

4/4! is accompanied by h̄, and the lowest correction amounts to a factor

1− ia(4)(xcl)
3!!

4!

h̄

[a′′(xcl)]2
. (4.49)

The cubic term a(3)(xcl)(δx)
3/3! yields a factor

1 + i[a(3)(xcl)]
25!!

72

h̄

[a′′(xcl)]3
. (4.50)

Thus we obtain the saddle point expansion to the integral is
∫ ∞

−∞

dx√
2πih̄

eia(x)/h̄ =
eia(xcl)/h̄

√

a′′(xcl)

{

1− ih̄
[

1

8

a(4)(xcl)

[a′′(xcl)]2
− 5

24

[a(3)(xcl)]
2

[a′′(xcl)]3

]

+O(h̄2)
}

.

(4.51)
Expectation values in this integral can also be expanded in powers of h̄, for

instance 〈x〉 = xcl + 〈δx〉 where

〈δx〉 = −ih̄1
2

a(3)(xcl)

[a′′(xcl)]2

− h̄2
[

2

3

a(3)(xcl)a
(4)(xcl)

[a′′(xcl)]4
− 5

8

[a(3)(xcl)]
3

[a′′(xcl)]5
− 1

8

a(5)(xcl)

[a′′(xcl)]3

]

+O(h̄3). (4.52)

Since the saddle point expansion is organized in powers of h̄, it corresponds precisely
to the semiclassical expansion of the eikonal in the previous section.

The saddle point expansion can be used for very small h̄ to calculate an integral
with increasing accuracy. It is impossible, however, to achieve arbitrary accuracy
since the resulting series is divergent for all physically interesting systems. It is
merely an asymptotic series whose usefulness decreases rapidly with an increasing
size of the expansion parameter. A variational expansion must be used to achieve
convergence. For more details, see Sections 5.15 and 17.9.

An important property of the semiclassical approximation is that Fourier trans-
formations become very simple. Consider the Fourier integral

∫ ∞

−∞
dx e−ipx/h̄eia(x)/h̄. (4.53)

For small h̄, this can be done in the saddle point approximation according to the
rule (4.46), and obtain

∫ ∞

−∞
dx e−ipx/h̄eia(x)/h̄ →

√
2πih̄

ei[a(xcl)−pxcl]/h̄

√

a′′(xcl)
, (4.54)

where xcl is now the extremum of the action with a source term p, i.e., it is deter-
mined by the equation p = a′(xcl). Note that the formula holds also if the exponen-
tial carries an x-dependent prefactor, since the x-dependence gives only corrections
of the order of h̄ in the exponent:

∫ ∞

−∞
dx e−ipx/h̄c(x)eia(x)/h̄ →

√
2πih̄ c(xcl)

ei[a(xcl)−pxcl]/h̄

√

a′′(xcl)
. (4.55)
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If the equation p = a′(xcl) is inverted to find xcl as a function xcl(p), the exponent
a(xcl)− pxcl may be considered as a function of p:

b(p) = a(xcl)− pxcl, p = a′(xcl). (4.56)

This function is recognized as being the Legendre transform of the function a(x)
[recall (1.9)].

The original function a(x) can be recovered from b(p) via an inverse Legendre
transformation

a(x) = b(pcl) + xpcl, x = −b′(pcl). (4.57)

This formalism is the basis for many thermodynamic calculations. For large sta-
tistical systems, fluctuations of global properties such as the volume and the total
internal energy are very small so that the saddle point approximation is very good.
In this chapter, the formalism will be applied on many occasions.

4.2.2 Path Integrals

A similar saddle point expansion exists for the path integral (4.40). For small h̄, the
amplitudes eiA/h̄ from the various paths will mostly cancel each other by interference.
The dominant contribution comes from the functional regime where the oscillations
are weakest, which is from extremum of the action

δA[x] = 0. (4.58)

This gives the classical Euler-Lagrange equation of motion. For a point particle with
the action

A[x] =
∫ tb

ta
dt
[

M

2
ẋ2 − V (x)

]

, (4.59)

it reads
Mẍ = −V ′(x). (4.60)

Let xcl(t) denote the classical orbit. After multiplying (4.60) by ẋ, an integration in
t yields the law of energy conservation

E =
M

2
ẋ2cl + V (xcl) = const . (4.61)

This implies that the classical momentum

pcl(t) ≡Mẋcl(t) (4.62)

can be written as

pcl(t) = p(xcl(t)), (4.63)

where p(x) is the local classical momentum defined in (4.3). From (4.61), the time
dependence of the classical orbit xcl(t) is given by

t− t0 =
∫ xcl

0
dx

M

p(x)
=
∫ xcl

0
dx

M
√

2M [E − V (x)]
. (4.64)



380 4 Semiclassical Time Evolution Amplitude

When solving the integral on the right-hand side we find for a given time interval
t = tb − ta the energy for which a pair of positions xa, xb can be connected by a
classical orbit:

E = E(xb, xa; tb − ta). (4.65)

The classical action is given by

A[xcl] =
∫ tb

ta
dt
[

M

2
ẋcl

2 − V (xcl)
]

=
∫ tb

ta
dt [pcl(t)ẋcl −H(pcl, xcl)]

=
∫ xb

xa

dxp(x)− (tb − ta)E. (4.66)

Just like E, the classical action is a function of xb, xa and tb − ta, to be denoted by
A(xb, xa; tb − ta), for which (4.66) reads more explicitly

A(xb, xa; tb − ta) ≡
∫ xb

xa

dx p(x)− (tb − ta)E(xb, xa; tb − ta). (4.67)

Recalling (4.11), the first term on the right-hand side is seen to be the classical
eikonal

S(xb, xa;E) =
∫ xb

xa

dx p(x), (4.68)

where E is the energy function (4.65) and p(x) is given by (4.3),
The eikonal may be viewed as a functional SE[x] of paths x(t) of a fixed energy,

in which case it is extremal on the classical orbits. This was observed as early as
1744 by Maupertius [2]. The proof for this is quite simple: We insert the classical
momentum (4.3) into SE[x] and write

SE [x] ≡
∫

p(x)dx =
∫

dt p(x)ẋ =
∫

dt LE(x, ẋ) =
∫

dt
√

2M [E − V (x)]ẋ, (4.69)

thus introducing a Lagrangian LE(x, ẋ) for this problem. The associated Euler-
Lagrange equation reads

d

dt

∂LE

∂ẋ
=
∂LE

∂x
. (4.70)

Inserting LE(x, ẋ) = p(x)ẋ we find the correct equation of motion ṗ = −V ′(x).
There is an interesting geometrical aspect to this variational procedure. In order

to see this let us go to D dimensions and write the eikonal (4.69) as

SE[x] =
∫

dt LE(x, ẋ) =
∫

dt
√

gij(x)ẋi(t)ẋj(t), (4.71)

with an energy-dependent metric

gij(x) = p2E(x)δij . (4.72)
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Then the Euler-Lagrange equations for x(t) coincides with the equation (1.72) for
the geodesics in a Riemannian space with a metric gij(x). In this way, the dynamical
problem has been reduced to a geometric problem. The metric gij(x) may be called
dynamical metric of the space with respect to the potential V (x). This geometric
view is further enhanced by the fact that the eikonal (4.69) is, in fact, independent
of the parametrization of the trajectory. Instead of the time t we could have used
any parameter τ to describe x(τ) and write the eikonal (4.69) as

SE[x] =
∫

dτ
√

gij(x)ẋi(τ)ẋj(τ). (4.73)

Einstein has certainly been inspired by this ancient description of classical trajec-
tories when geometrizing the relativistic Kepler motion by attributing a dynamical
Riemannian geometry to spacetime.

It is worth pointing out a subtlety in this variational principle, in view of a
closely related situation to be encountered later in Chapter 10. The variations are
supposed to be carried out at a fixed energy

E =
M

2
ẋ2 + V (x). (4.74)

This is a nonholonomic constraint which destroys the independence of the variation
δx(t) and δẋ. They are related by

ẋ δẋ = − 1

M
∇V (x)δx. (4.75)

It is, however, possible to regain the independence by allowing for a simultaneous
variation of the time argument in x(t) when varying x(t). As a consequence, we
can no longer employ the standard equality δẋ = dδx/dt which is necessary for the
derivation of the Euler-Lagrange equation (4.70). Instead, we calculate

δẋ =
dx+ dδx

dt+ dδt
− ẋ =

d

dt
δx− ẋ

d

dt
δt, (4.76)

which shows that variation and time derivatives no longer commute with each other.
Combining this with the relation (4.75) we see that the variations of x and ẋ can
be made independent if we vary t along the orbit according to the relation

ẋ2 d

dt
δt = ẋ

d

dt
δx +

1

M
∇V (x)δx. (4.77)

With (4.76), the variations of the eikonal (4.71) are

δSE[x] =
∫

dt

(

∂LE

∂ẋ

d

dt
δx+

∂LE

∂x
δx

)

+
∫

dt

(

LE −
∂LE

∂ẋ
ẋ

)

d

dt
δt , (4.78)

where we have kept the usual commutativity of variation and time derivative of the
time itself. In the second integral, we may set

−LE +
∂LE

∂ẋ
ẋ ≡ HE. (4.79)
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The function HE arises from LE by the same combination of LE(x, ẋ) and
∂LE/∂ẋ(x, ẋ) as in a Legendre transformation which brings a Lagrangian to the
associated Hamiltonian [recall (1.13)]. But in contrast to the usual procedure we do
not eliminate ẋ in favor of a canonical momentum variable ∂LE/∂ẋ [recall (1.14)],
i.e., the HE is a function HE(x, ẋ). Note that it is not equal to the energy.

The variation (4.78) shows that the extra variation δt of the time does not
change the Euler-Lagrange equations for the above Lagrangian in Eq. (4.71), LE =
√

2M [E − V (x)]ẋ2. Being linear in ẋ, the associated HE vanishes identically, so
that the second term disappears and we recover the ordinary equation of motion

d

dt

∂LE

∂ẋ
=
∂LE

∂x
. (4.80)

In general, however, we must keep the second term. Expressing dδt/dt via (4.77),
we find

δSE [x] =
∫

dt

[

∂LE

∂ẋ
−HE

ẋ

ẋ2

]

d

dt
δx

+
∫

dt

[

∂LE

∂x
−HE

1

ẋ2

1

M
∇V (x)

]

δx, (4.81)

and the general equation of motion becomes

d

dt

[

∂LE

∂ẋ
−HE

ẋ

ẋ2

]

=
∂LE

∂x
−HE

1

ẋ2

1

M
∇V (x), (4.82)

rather than (4.80). Let us illustrate this by rewriting the eikonal as a functional

SE[x] =
∫

dt L′
E(x, ẋ) =M

∫

dt ẋ2(t), (4.83)

which is the same functional as (4.69) as long as the energy E is kept fixed. If we
insert the new Lagrangian L′

E into (4.82), we obtain the correct equation of motion

M ẍ = −∇V (x). (4.84)

In this case, the equation of motion can actually be found more directly. We vary
the eikonal (4.83) as follows:

δSE [x] =M
∫

δdt ẋ2 +M
∫

dt ẋ δẋ+M
∫

dt ẋ δẋ. (4.85)

In the last term we insert the relation (4.76) and write

δSE[x] =M

[

∫

δdt ẋ2 +
∫

dt ẋ δẋ+
∫

dt ẋ
d

dt
δx−

∫

dt ẋ2 d

dt
δt

]

. (4.86)

The two terms containing δt cancel each other, so that relation (4.77) is no longer
needed. Using now (4.75), we obtain directly the equation of motion (4.84).
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With the help of the eikonal (4.68), we write the classical action (4.66) as

A(xb, xa; tb − ta) ≡ S(xb, xa;E)− (tb − ta)E, (4.87)

where E is given by (4.65).
The action has the property that its derivatives with respect to the endpoints

xb, xa at a fixed tb − ta yield the initial and final classical momenta:

∂

∂xb,a
A(xb, xa; tb − ta) = ±p(xb,a). (4.88)

Indeed, the differentiation gives

∂A

∂xb
= p(xb) +

[

∫ xb

xa

dx
∂p(x)

∂E
− (tb − ta)

]

∂E

∂xb
, (4.89)

and using

∂p(x)

∂E
=

M

p(x)
=

1

ẋ
, (4.90)

we see that

∫ xb

xa

dx
∂p(x)

∂E
=
∫ tb

ta
dt = tb − ta, (4.91)

so that the bracket in (4.89) vanishes, and (4.88) is indeed fulfilled [compare also
(4.12)]. The relation (4.91) implies that the eikonal (4.68) has the energy derivative

∂

∂E
S(xb, xa;E) = tb − ta. (4.92)

As a conjugate relation, the derivative of the action with respect to the time tb at
fixed xb gives the energy with a minus sign [compare (4.10)]:

∂

∂tb
A(xb, xa; tb − ta) = −E(xb, xa; tb − ta). (4.93)

This is easily verified:

∂

∂tb
A =

[

∫ xb

xa

dx
∂p

∂E
− (tb − ta)

]

∂E

∂tb
− E = −E. (4.94)

Thus, the classical action function A(xb, xa; tb − ta) and the eikonal S(xb, xa;E) are
Legendre transforms of each other.

The equation

1

2M
(∂xA)

2 + V (x) = ∂tA (4.95)
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is, of course, the Hamilton-Jacobi equation (4.13) of classical mechanics.
We have therefore found the leading term in the semiclassical approximation to

the amplitude [corresponding to the approximation (4.43)]:

(xbtb|xata)
h̄→0−−−→ const× eiA(xb,xa;tb−ta)/h̄. (4.96)

In general, this leading term will be multiplied by a fluctuation factor

(xbtb|xata) = eiA(xb,xa;tb−ta)/h̄F (xb, xa; tb − ta). (4.97)

In contrast to the purely harmonic case in Eq. (2.153) this will depend on the initial
and final coordinates xa and xb.

The calculation of the leading contribution to the fluctuation factor is the next
step in the saddle point expansion of the path integral (4.40). For this we expand the
action (4.59) in the neighborhood of the classical orbit in powers of the fluctuations

δx(t) = x(t)− xcl(t). (4.98)

This yields the fluctuation expansion

A[x, ẋ] = A[xcl] +
∫ tb

ta
dt

δA
δx(t)

δx(t)

+
1

2

∫ tb

ta
dtdt′

δ2A
δx(t)δx(t′)

δx(t)δx(t′) (4.99)

+
1

3!

∫ tb

ta
dtdt′dt′′

δ3A
δx(t)δx(t′)δx(t′′)

δx(t)δx(t′)δx(t′′) + . . . ,

where all functional derivatives on the right-hand side are evaluated along the clas-
sical orbit x(t) = xcl(t). The linear term in the quantum fluctuation δx(t) is absent
since A[x, ẋ] is extremal at xcl(t). For a point particle, the quadratic term is

1

2

∫ tb

ta
dtdt′

δ2A
δx(t)δx(t′)

δx(t)δx(t′) =
∫ tb

ta
dt
[

M

2
(δẋ)2 +

1

2
V ′′(xcl(t))(δx)

2
]

.

(4.100)

Thus the fluctuations behave like those of a harmonic oscillator with a time-
dependent frequency

Ω2(t) =
1

M
V ′′(xcl(t)). (4.101)

By definition, the fluctuations vanish at the endpoints:

δx(ta) = 0, δx(tb) = 0. (4.102)

If we include only the quadratic terms in the fluctuation expansion (4.99), we can
integrate out the fluctuations in the path integral (4.40). Since x(t) and δx(t)
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differ only by a fixed additive function xcl(t), the measure of the path integral over
x(t) transforms trivially into that over δx(t). Thus we conclude that the leading
semiclassical limit of the amplitude is given by the product

(xbtb|xata)sc = eiA(xb,xa;tb−ta)/h̄Fsc(xb, xa; tb − ta), (4.103)

with the semiclassical fluctuation factor [compare (2.200)]

Fsc(xb, xa; tb − ta) =
∫

Dδx(t) exp
{

i

h̄

∫ ta

tb

dt
M

2
[δẋ2 − Ω2(t)δx2]

}

=
1

√

2πiǫh̄/M
det (−∇∇− Ω2(t))−1/2

=
1

√

2πih̄(tb − ta)/M

√

√

√

√

det (−∂2t )
det (−∂2t − Ω2(t))

. (4.104)

In principle, we would now have to solve the differential equation

[−∂2t − Ω2(t)]yn(t) = [−∂2t − V ′′(xcl(t))/M ]yn(t) = λnyn(t), (4.105)

and find the energies of the eigenmodes yn(t) of the fluctuations. The ratio of
fluctuation determinants

D0

D
=

det (−∂2t )
det (−∂2t − Ω2(t))

(4.106)

in the second line of (4.104) would then be found from the product of ratios of
eigenvalues, λn/λ

0
n, where λ

0
n are the eigenvalues of the differential equation

−∂2t yn(t) = λ0nyn(t). (4.107)

Fortunately, we can save ourselves all this work using the Gelfand-Yaglom method
of Section 2.4 which provides a much simpler and more direct way of calculating
fluctuation determinants with a time-dependent frequency without the knowledge
of the eigenvalues λn.

4.3 Van Vleck-Pauli-Morette Determinant

According to the Gelfand-Yaglom method of Section 2.4, a functional determinant
of the form

det (−∂2t − Ω2(t))

is found by solving the differential equation (4.105) at zero eigenvalue

[−∂2t − Ω2(t)]Da(t) = 0,

with the initial conditions

Da(ta) = 0, Ḋa(ta) = 1. (4.108)
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Then Da(tb) is the desired fluctuation determinant. In Eq. (2.240), we have con-
structed the solution to these equations in terms of an arbitrary solution ξ(t) of the
homogenous equation

[−∂2t − Ω2(t)]ξ(t) = 0 (4.109)

as

Dren = ξ(t)ξ(ta)
∫ tb

ta

dt′

ξ2(t′)
. (4.110)

In general, it is difficult to find an analytic solution to Eq. (4.109). In the present
fluctuation problem, however, the time-dependent frequency Ω(t) has a special form
Ω2(t) = V ′′(xcl(t))/M of (4.101). We shall now prove that, just as in the purely
harmonic action in Section 2.5, all information on the fluctuation determinant is
contained in the classical orbit xcl(t), and ultimately in the mixed spatial derivatives
∂xb

∂xa
of the classical action A(xb, xa; tb − ta). In fact, the solution ξ(t) is simply

equal to the velocity

ξ(t) = ẋcl(t). (4.111)

This is seen directly by differentiating the equation of motion (4.60) with respect to
t, yielding

∂t[Mẍcl + V ′(xcl(t))] = [M∂2t + V ′′(xcl(t))]ẋcl(t) = 0, (4.112)

which is precisely the homogenous differential equation (4.109) for ẋcl(t).
There is a simple symmetry argument to understand (4.111) as a completely

general consequence of the time translation invariance of the system. The fluctuation
δx(t) ∝ ẋcl(t) describes an infinitesimal translation of the classical solution xcl(t)
in time, xcl(t) → xcl(t + ǫ) = xcl + ǫẋcl + . . . . Interpreted as a translational

fluctuation of the solution xcl(t) along the time axis it cannot carry any energy λn
and y0(t) ∝ ẋcl(t) must therefore solve Eq. (4.105) with λ0 = 0.

With the special solution (4.111), the functional determinant (4.110) becomes

Dren = ẋcl(tb)ẋcl(ta)
∫ tb

ta

dt

ẋ2cl(t)
. (4.113)

Note that also the Green-function of the quadratic fluctuations associated with
Eq. (4.109) can be given explicitly in terms of the classical solution xcl(t). For Dirich-
let boundary conditions, it is equal to the combination (3.61) of the solutions Da(t)
and Db(t) of the homogeneous differential equation (4.109) satisfying the boundary
conditions (2.228) and (2.229), whose d’Alembert construction (2.239) becomes here

Da(t) = ẋcl(t)ẋcl(ta)
∫ t

ta

dt

ẋ2cl(t)
, Db(t) = ẋcl(tb)ẋcl(t)

∫ tb

t

dt

ẋ2cl(t)
. (4.114)

In Eqs. (2.252) and (2.269) we have found two simple expressions for the fluctu-
ation determinant in terms of the classical action

Dren = −
(

∂ẋb
∂xa

)−1

= −M
[

∂2

∂xb∂xa
Acl

]−1

. (4.115)
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These were derived for purely quadratic actions with an arbitrary time-dependent
frequency Ω2(t). But they hold for any action. First, the equality between the
second and third expression is a consequence of the general relation (4.88). Second,
we may consider the semiclassical approximation to the path integral as an exact

path integral associated with the lowest quadratic approximation to the action in
(4.99), (4.100):

Aqu[x, ẋ] = A[xcl] +
∫ tb

ta
dt
[

M

2
(δẋ)2 + Ω2(t)(δx)2

]

, (4.116)

with Ω2(t) = V ′′(xcl(t))/M of (4.101). Then, since the classical orbit running from
xa to xb satisfies the equation of motion (4.112), also a slightly different orbit (xcl +
δxcl)(t) from x′a = xa + δxa to x′b = xa + δxb satisfies (4.112). Although the small
change of the classical orbit gives rise to a slightly different frequency Ω2(t) =
V ′′((xcl + δxcl)(t))/M , this contributes only to second order in δxa and δxb. As a
consequence, the derivative Da(t) = −∂ẋb(t)/∂xa satisfies Eq. (4.112) as well. Also
the boundary conditions of Da(t) are the same as those of Da(t) in Eqs. (2.228).
Hence the quantity Da(tb) is the correct fluctuation determinant also for the general
action in the semiclassical approximation under study.

Another way to derive this formula makes use of the general relation (4.88), from
which we find

∂

∂xb

∂

∂xa
A(xb, xa; tb − ta) =

∂

∂xa
p(xb) =

M

p(xb)

∂E

∂xa
. (4.117)

On the right-hand side we have suppressed the arguments of the function
E(xb, xa; tb − ta). After rewriting

∂E

∂xa
= − ∂

∂xa

∂A

∂tb
= − ∂

∂tb

∂A

∂xa
(4.118)

=
∂

∂tb
p(xa) =

M

p(xa)

∂E

∂tb
,

we see that

∂

∂xb

∂

∂xa
A(xb, xa; tb − ta) =

1

ẋ(tb)ẋ(ta)

∂E

∂tb
. (4.119)

From (4.64) we calculate

∂E

∂tb
=

(

∂tb
∂E

)−1

=

[

−
∫ xb

xa

dx
M

p2
∂p

∂E

]−1

(4.120)

=

[

−
∫ xb

xa

dx
M2

p3

]−1

=

[

−M
∫ tb

ta

dt

p2

]−1

=

[

− 1

M

∫ tb

ta

dt

ẋ2cl(t)

]−1

.

Inserting this into (4.119), we obtain once more formula (4.115) for the fluctuation
determinant.
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A relation following from (4.92):

∂E

∂tb
=

(

∂2S

∂E2

)−1

, (4.121)

leads to an alternative expression

Dren = −Mẋcl(tb)ẋcl(ta)
∂2S

∂E2
. (4.122)

The fluctuation factor is therefore also here [recall the normalization from
Eqs. (2.202), (2.204), and (2.212)]

F (xb, ta; tb−ta) =
1

√

2πih̄/M

[

∂ẋb
∂xa

]1/2

=
1√
2πih̄

[−∂xb
∂xa

A(xb, xa; tb−ta)]1/2. (4.123)

Its D-dimensional generalization of (4.123) is

F (xb,xa; tb − ta) =
1

√
2πih̄

D

{

detD[−∂xi
b
∂xj

a
A(xb,xa; tb − ta)]

}1/2
, (4.124)

and the semiclassical time evolution amplitude reads

(xbtb|xata)=
1

√
2πih̄

D

{

detD[−∂xi
b
∂xj

a
A(xb,xa; tb − ta)]

}1/2
eiA(xb,xa;tb−ta)/h̄. (4.125)

The D × D -determinant in the curly brackets is the so-called Van Vleck-Pauli-

Morette determinant .6 It is the analog of the determinant in the right-hand part
of Eq. (2.270). As discussed there, the result is initially valid only as long as the
fluctuation determinant is regular. Otherwise we must replace the determinant by
its absolute value, and multiply the fluctuation factor by the phase factor e−iν/2

with the Maslov-Morse index ν [see Eq. (2.271)]. Using the relation (4.88) in D
dimensions

∂xi
b
∂xj

a
A(xb,xa; tb − ta) =

∂pib
∂xja

, (4.126)

we shall often write (4.125) as

(xbtb|xata)=
1

√
2πih̄

D

[

detD

(

−∂pb

∂xa

)]1/2

eiA(xb,xa;tb−ta)/h̄, (4.127)

where the subscripts a and b can be interchanged in the determinant, if the sign is
changed [recall (2.252)]. This concludes the calculation of the semiclassical approx-
imation to the time evolution amplitude.

6J.H. Van Vleck, Proc. Nat. Acad. Sci. (USA) 14 , 178 (1928); W. Pauli, Selected Topics in

Field Quantization, MIT Press, Cambridge, Mass. (1973); C. DeWitt-Morette, Phys. Rev. 81 , 848
(1951).
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As a simple application, we use this formula to write down the semiclassical
amplitude for a free particle and a harmonic oscillator. The first has the classical
action

A(xb, xa; tb − ta) =
M

2

(xb − xa)2
tb − ta

, (4.128)

and Eq. (4.115) gives

Dren = tb − ta, (4.129)

as it should. The harmonic-oscillator action is

A(xb, xa; tb − ta) =
Mω

2 sinω(tb − ta)
[

(x2b + x2a) cosω(tb − ta)− 2xbxa
]

, (4.130)

and has the second derivative

−∂xb
∂xa

A =
Mω

sinω(tb − ta)
, (4.131)

so that (4.123) coincides with fluctuation factor (2.216).

4.4 Fundamental Composition Law for Semiclassical
Time Evolution Amplitude

The determinant ensures that the semiclassical approximation for the time evolution
amplitude satisfies the fundamental composition law (2.4) in D dimensions

(xbtb|xata) =
N
∏

n=1

[∫ ∞

−∞
dDxn

]N+1
∏

n=1

(xntn|xn−1tn−1), (4.132)

if the intermediate x-integrals are evaluated in the saddle point approximation. To
leading order in h̄, only those intermediate x-values contribute which lie on the clas-
sical trajectory determined by the endpoints of the combined amplitude. To next
order in h̄, the quadratic correction to the intermediate integrals renders an inverse
square root of the fluctuation determinant. If two such amplitudes are connected
with each other by an intermediate integration according to the composition law
(4.132), the product of the two fluctuation factors turns into the correct fluctua-
tion factor of the combined time interval. This is seen after rewriting the matrix
∂xi

b
∂xj

a
A(xb,xa; tb−ta) with the help of (4.12) as ∂pb/∂xa. The intermediate integral

over x in the product of two amplitudes receives a contribution only from continuous
paths since, at the saddle point, the adjacent momenta have to be equal:

∂

∂x
A(xb,x; tb − t) +

∂

∂x
A(x,xa; t− ta) = −p′(xb,x; tb − t) + p(x,xa; t− ta) = 0.

(4.133)
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To obtain the combined amplitude, we obviously need the relation

detD



− ∂pb

∂x

∣

∣

∣

∣

∣

xb















detD



− ∂p′

∂x

∣

∣

∣

∣

∣

xb

+
∂p

∂x

∣

∣

∣

∣

∣

xa





p′=p











−1

detD

(

− ∂p

∂xa

∣

∣

∣

∣

∣

x

)

= detD



− ∂pb

∂xa

∣

∣

∣

∣

∣

xb



 , (4.134)

where we have indicated explicitly the variables kept fixed in p′(xb,x; tb − t) and
p(x,xa; t − ta) when forming the partial derivatives. To prove (4.134), we use the
product rule for determinants

det−1
D



− ∂pb

∂x

∣

∣

∣

∣

∣

xb



 detD



− ∂pb

∂xa

∣

∣

∣

∣

∣

xb



 = detD





∂x

∂xa

∣

∣

∣

∣

∣

xb



 (4.135)

to rewrite (4.134) as

detD

(

− ∂p

∂xa

∣

∣

∣

∣

∣

x

)

= detD



− ∂p′

∂x

∣

∣

∣

∣

∣

xb

+
∂p

∂x

∣

∣

∣

∣

∣

xa





p′=p

detD





∂x

∂xa

∣

∣

∣

∣

∣

xb



 . (4.136)

This equation is true due to the chain rule of differentiation applied to the momen-
tum p′(xb,x; tb − t)= p(x,xa; t − ta), after expressing p(x,xa; t − ta) explicitly in
terms of the variables xb and xa as p(x(xb,xa; tb − ta),xa; t − ta), to enable us to
hold xb fixed in the second partial derivative:

∂p′

∂x

∣

∣

∣

∣

∣

xb

=
∂p

∂x

∣

∣

∣

∣

∣

xb

=
∂p(x(xb,xa; tb − ta),xa; t− ta)

∂x

∣

∣

∣

∣

∣

xb

=
∂p

∂x

∣

∣

∣

∣

∣

x

∂xa

∂x

∣

∣

∣

∣

∣

xb

+
∂p

∂x

∣

∣

∣

∣

∣

xa

.

(4.137)
It may be expected, and can indeed be proved, that it is possible to proceed in

the opposite direction and derive the semiclassical expressions (4.125) and (4.127)
with the Van Vleck-Pauli-Morette determinant from the fundamental composition
law (4.132).7

In the semiclassical approximation, the composition law (4.132) can also be writ-
ten as a temporal integral (in D dimensions)

(xbtb|xata) =
∫

dt(xbtb|xcl(t)t) ẋcl(t) (xcl(t)t|xata) (4.138)

over a classical orbit xcl(t), where the t-integration is done in the saddle point
approximation, assuming that the fluctuation determinant does not happen to be
degenerate.

Just as in the saddle point expansion of ordinary integrals, it is possible to
calculate higher corrections in h̄. The result is a saddle point expansion of the path

7H. Kleinert and B. Van den Bossche, Berlin preprint 2000 (http://www.physik.fu-ber-
lin.de/~kleinert/301).
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integral which is again a semiclassical expansion. The counting of the h̄-powers is
the same as for the integral. The lowest approximation is of the exponential form
eiAcl/h̄. Thus, in the exponent, the leading term is of order 1/h̄.8 The fluctuation
factor F contributes to this an additive term logF , which is of order h̄0. To first
order in h̄, one finds expressions containing the third and fourth functional derivative
of the action in the expansion (4.99), corresponding to the expressions (4.49) and
(4.50) in the integral. Unfortunately, the functional case offers little opportunity for
further analytic corrections, so we shall not dwell on this more academic possibility.

4.5 Semiclassical Fixed-Energy Amplitude

As pointed out at the end of Subsection 4.2.1, we have observed that the semi-
classical approximation allows for a simple evaluation of Fourier integrals. As an
application of the rules presented there, let us evaluate the Fourier transform of the
time evolution amplitude, the fixed-energy amplitude introduced in (1.311). It is
given by the temporal integral

(xb|xa)E =
1√
2πih̄

∫ ∞

ta
dtb[−∂xb

∂xa
A(xb, xa; tb − ta)]1/2

× ei[A(xb,xa;tb−ta)+(tb−ta)E]/h̄, (4.139)

which may be evaluated in the same saddle point approximation as the path integral.
The extremum lies at

∂

∂t
A(xb, xa; tb − ta) = −E. (4.140)

Because of (4.93), the left-hand side is the function −E(xb, xa; tb − ta). At the
extremum, the time interval tb− ta is some function of the endpoints and the energy
E:

tb − ta = t(xb, xa;E). (4.141)

The exponent is equal to the eikonal function S(xb, xa;E) of Eq. (4.87), whose
derivative with respect to the energy gives [recalling (4.92)]

∂

∂E
S(xb, xa;E) = t(xb, xa;E). (4.142)

The expansion of the exponent around the extremum has the quadratic term

i

h̄

∂2A(xb, xa; tb − ta)
∂t2b

[tb − ta − t(xb, xa;E)]2. (4.143)

The time integral over tb yields a factor

√
2πih̄

[

∂2A(xb, xa; tb − ta)
∂t2b

]−1/2

. (4.144)

8Since h̄ has the dimension of an action, the dimensionless number h̄/Acl should really be
used as an appropriate dimensionless expansion parameter, but it has become customary to count
directly the orders in h̄.
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With this, the fixed-energy amplitude has precisely the form (4.55):

(xb|xa)E =
[

−∂xb
∂xa

A(xb, xa; t)/∂
2
tA(xb, xa; t)

]1/2
eiS(xb,xa;E)/h̄. (4.145)

Since the fluctuation factor has to be evaluated at a fixed energy E, it is advan-
tageous to express it in terms of S(xb, xa;E). For ∂2tA, the evaluation is simple
since

∂2A

∂t2
= −∂E

∂t
= −

(

∂t

∂E

)−1

= −
(

∂2S

∂E2

)−1

. (4.146)

For ∂xb
∂xa

A, we observe that the spatial derivatives of the action must be per-
formed at a fixed time, so that a variation of xb implies also a change of the energy
E(xb, xa; t). This is found from the condition

∂t

∂xb
= 0, (4.147)

which after inserting (4.142), goes over into

∂2S

∂E∂xb

∣

∣

∣

∣

∣

t

=
∂2S

∂E∂xb
+
∂2S

∂E2

∂E

∂xb
= 0. (4.148)

We now use the relation

∂A

∂xb

∣

∣

∣

∣

∣

t

=
∂S

∂xb

∣

∣

∣

∣

∣

t

− ∂E

∂xb

∣

∣

∣

∣

∣

t

t =
∂S

∂xb
+
∂S

∂E

∂E

∂xb

∣

∣

∣

∣

∣

t

− ∂E

∂xb

∣

∣

∣

∣

∣

t

t =
∂S

∂xb

∣

∣

∣

∣

∣

E

(4.149)

and find from it

∂2A

∂xb∂xa

∣

∣

∣

∣

∣

t

=
∂2S

∂xb∂xa
+

∂2S

∂xb∂E

∂E

∂xa
(4.150)

=
∂2S

∂xb∂xa
− ∂2S

∂xa∂E

∂2S

∂xb∂E

/

∂2S

∂E2
.

Thus the fixed-energy amplitude (4.139) takes the simple form

(xb|xa)E = D
1/2
S eiS(xb,xa;E)/h̄, (4.151)

with the 2× 2-determinant

DS =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂2S

∂xb∂xa

∂2S

∂E∂xa

∂2S

∂xb∂E

∂2S

∂E2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (4.152)

The determinant can be simplified by the fact that a differentiation of the Hamilton-
Jacobi equation

H

(

∂S

∂xb
, xb

)

= E (4.153)
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with respect to xa leads to the equation

∂H

∂pb

∂2S

∂xb∂xa
= ẋb

∂2S

∂xb∂xa
= 0. (4.154)

It implies the vanishing of the upper left element in (4.152), reducing DS to

DS = − ∂2S

∂xb∂E

∂2S

∂xa∂E
. (4.155)

Since ∂S/∂xb,a = ±pb,a and ∂p/∂E = 1/ẋ, one arrives at

DS =
1

ẋbẋa
. (4.156)

Let us calculate the semiclassical fixed-energy amplitude for a free particle. The
classical action function is

A(xb, xa; tb − ta) =
M

2

(xb − xa)2
tb − ta

, (4.157)

so that the function E(xb, xa; tb − ta) is given by

E(xb, xa; tb − ta) = −
∂

∂tb

M

2

(xb − xa)2
tb − ta

=
M

2

(xb − xa)2
(tb − ta)2

. (4.158)

By a Legendre transformation, or directly from the defining equation (4.68), we
calculate

S(xb, xa;E) =
√
2ME|xb − xa|. (4.159)

From this we calculate the determinant (4.156) as

Ds =
M

2E
, (4.160)

and the fixed-energy amplitude (4.151) becomes

(xb|xa)E =

√

M

2E
ei

√
2ME|xb−xa|/h̄. (4.161)

4.6 Semiclassical Amplitude in Momentum Space

The simple way of finding Fourier transforms in the semiclassical approximation
can be used to derive easily amplitudes in momentum space. Consider first the
time evolution amplitude (xbtb|xata)sc. The momentum space version is given by
the two-dimensional Fourier integral [recall (2.37) and insert (4.103)]

(pbtb|pata)sc =
∫

dxb dxa e
−i(pbxb−paxa)/h̄eiA(xb,xa;tb−ta)/h̄F (xb, xa; tb − ta). (4.162)
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The semiclassical evaluation according to the general rule (4.55) yields

(pbtb|pata)sc =
√
2πih̄√
detH

[−∂xb
∂xa

A(xb, xa; tb − ta)]1/2ei[A(xb,xa;tb−ta)−pbxb+paxa]/h̄,(4.163)

where H is the matrix

H =





∂2xb
A(xb, xa; tb − ta) ∂xb

∂xa
A(xb, xa; tb − ta)

∂xa
∂xb
A(xb, xa; tb − ta) ∂2xa

A(xb, xa; tb − ta)



 . (4.164)

The exponent must be evaluated at the extremum with respect to xb and xa, which
lies at

pb = ∂xb
A(xb, xa; tb − ta), pa = −∂xb

A(xb, xa; tb − ta). (4.165)

The exponent contains then the Legendre transform of the action A(xb, xa; tb − ta)
which depends naturally on pb and pa:

A(pb, pa; tb − ta) = A(xb, xa; tb − ta)− pbxb + paxa. (4.166)

The inverse Legendre transformation to (4.165) is

xb = −∂pbA(xb, xa; tb − ta), xa = ∂xb
A(xb, xa; tb − ta). (4.167)

The important observation which greatly simplifies the result is that for a 2× 2
matrix Hab with (a, b = 1, 2), the matrix element −H12/detH is equal to H12. By
writing the matrix H and its inverse as

H =











∂pb
∂xb

∂pb
∂xa

−∂pa
∂xb

−∂pa
∂xa











, H−1 =













∂xb
∂pb

−∂xb
∂pa

∂xa
∂pb

−∂xa
∂pa













, (4.168)

we see that, just as in the Eqs. (2.278) and (2.279):

H−1
12 =

∂xa
∂pb

=
∂2A(pb, pa; tb − ta)

∂pb∂pa
. (4.169)

As a result, the semiclassical time evolution amplitude in momentum space (4.163)
takes the simple form

(pbtb|pata)sc =
2πh̄√
2πih̄

[−∂pb∂paA(pb, pa; tb − ta)]1/2eiA(pb,pa;tb−ta)/h̄. (4.170)

In D dimensions, this becomes

(pbtb|pata)=
1

√
2πih̄

D

{

detD[−∂pi
b
∂pjaA(pb,pa; tb − ta)]

}1/2
eiA(pb,pa;tb−ta)/h̄, (4.171)

H. Kleinert, PATH INTEGRALS



4.7 Semiclassical Quantum-Mechanical Partition Function 395

or

(pbtb|ppta)=
1

√
2πih̄

D

{

detD

[

−∂pb

∂xa

]}1/2

eiA(pb,pa;tb−ta)/h̄, (4.172)

these results being completely analogous to the x-space expression (4.125) and
(4.127), respectively. As before, the subscripts a and b can be interchanged in
the determinant.

If we apply these formulas to the harmonic oscillator with a time-dependent
frequency, we obtain precisely the amplitude (2.285). Thus in this case, the semi-
classical time evolution amplitude (pbtb|pata)sc happens to coincide with the exact
one.

For a free particle with the action A(xb, xa; tb − ta) = M(xb − xa)
2/2(tb − ta),

the formula (4.163) cannot be applied since determinant of H vanishes, so that the
saddle point approximation is inapplicable. The formal infinity one obtains when
trying to apply Eq. (4.163) is a reflection of the δ-function in the exact expression
(2.73), which has no semiclassical approximation. The Legendre transform of the
action can, however, be calculated correctly and yields with the derivatives pb =
∂xb

A(xb, xa; tb − ta) = pa = −∂xa
A(xb, xa; tb − ta) =M(xb − xa)/(tb − ta) = p [recall

(4.88)] the expression

A(pb, pa; tb − ta) = −
p2

2
(tb − ta), (4.173)

which agrees with the exponent of (2.73).

4.7 Semiclassical Quantum-Mechanical Partition Function

From the result (4.103) we can easily derive the quantum-mechanical partition func-
tion (1.540) in semiclassical approximation:

Zsc
QM(tb − ta) =

∫

dxa(xatb|xata)sc =
∫

dxaF (xa, xa; tb − ta)eiA(xa,xa;tb−ta)/h̄. (4.174)

Within the semiclassical approximation the path integral, as the final trace integral
may be performed using the saddle point approximation. At the saddle point one
has [as in (4.133)]

∂

∂xa
A(xa, xa; tb − ta) =

∂

∂xb
A(xb, xa; tb − ta)

∣

∣

∣

∣

∣

xb=xa

+
∂

∂xa
A(xb, xa; tb − ta)

∣

∣

∣

∣

∣

xb=xa

= pb − pa = 0, (4.175)

i.e., only classical orbits contribute whose momenta are equal at the coinciding end-
points. This restricts the orbits to periodic solutions of the equations of motion.
The semiclassical limit selects, among all paths with xa = xb, the paths solving the
equation of motion, ensuring the continuity of the internal momenta along these
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paths. The integration in (4.174) enforces the equality of the initial and final mo-
menta on these paths and permits a continuation of the equations of motion beyond
the final time tb in a periodic fashion, leading to periodic orbits. Along each of these
orbits, the energy E(xa, xa, tb − ta) and the action A(xa, xa, tb − ta) do not depend
on the choice of xa. The phase factor eiA/h̄ in the integral (4.174) is therefore a
constant. The integral must be performed over a full period between the turning
points of each orbit in the forward and backward direction. It contains a nontrivial
xa-dependence only in the fluctuation factor. Thus, (4.174) can be written as

Zsc
QM(tb − ta) =

[∫

dxaF (xa, xa; tb − ta)
]

eiA(xa,xa;tb−ta)/h̄. (4.176)

For the integration over the fluctuation factor we use the expression (4.123) and the
equation

∂

∂xb

∂

∂xa
A(xb, xa; tb − ta) = −

1

ẋbẋa

∂2A

∂t2b
, (4.177)

following from (4.119) and (4.93), and have

F (xb, xa; tb − ta) =
1√
2πih̄

[

1

ẋ(tb)ẋ(ta)

∂2A

∂t2b

]1/2

. (4.178)

Inserting xa = xb leads to

F (xa, xa; tb − ta) =
1√
2πih̄

1

ẋa

[

∂2A

∂t2b

]1/2

. (4.179)

The action of a periodic path does not depend on xa,so that the xb-integration in
(4.174) requires only integrating 1/ẋa forward and back, which produces the total
period:

tb − ta = 2
∫ x+

x−

dxa
1

ẋa
= 2

∫ x+

x−

dx
M

√

2M [E − V (x)]
. (4.180)

Hence we obtain from (4.174):

Zsc
QM(tb − ta) =

tb − ta√
2πih̄

∣

∣

∣

∣

∣

∂2A

∂t2b

∣

∣

∣

∣

∣

1/2

eiA(tb−ta)/h̄−iπ. (4.181)

There is a phase factor e−iπ associated with a Maslov-Morse index ν = 2, first in-
troduced in the fluctuation factor (2.271). In the present context, this phase factor
arises from the fact that when doing the integral (4.176), the periodic orbit passes
through the turning points x− and x+ where the integrand of (4.180) becomes singu-
lar, even though the integral remains finite. Near the turning points, the semiclas-
sical approximation breaks down, as discussed in Section 4.1 in the context of the
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WKB approximation to the Schrödinger equation. This breakdown required special
attention in the derivation of the connection formulas relating the wave functions on
one side of the turning points to those on the other side. There, the breakdown was
circumvented by escaping into the complex x-plane. When going around the singu-

larity in the clockwise sense, the prefactor 1/p(x) = 1/
√

2M(E − V (x))
1/2

acquired

a phase factor e−iπ/2. For a periodic orbit, both turning points had to be encircled
producing twice this phase factor, which is precisely the phase e−iπ given in (4.181).

The result (4.181) takes an especially simple form after a Fourier transform
action:

Z̃sc
QM(E) =

∫ ∞

ta
dtbe

iE(tb−ta)/h̄Zsc
QM(tb − ta)

=
1√
2πih̄

∫ ∞

ta
dtb(tb − ta)

∣

∣

∣

∣

∣

∂2A

∂t2b

∣

∣

∣

∣

∣

1/2

ei[A(tb−ta)+(tb−ta)E]/h̄−iπ. (4.182)

In the semiclassical approximation, the main contribution to the integral at a given
energy E comes from the time where tb − ta is equal to the period of the particle
orbit with this energy. It is determined as in (4.139) by the extremum of

A(tb − ta) + (tb − ta)E. (4.183)

Thus it satisfies

− ∂

∂tb
A(tb − ta) = E. (4.184)

As in (4.140), the extremum determines the period tb − ta of the orbit with an
energy E. It will be denoted by t(E). The second derivative of the exponent is
(i/h̄)∂2A(tb − ta)/∂t2b . For this reason, the quadratic correction in the saddle point
approximation to the integral over tb cancels the corresponding prefactor in (4.182)
and leads to the simple expression

Z̃sc
QM(E) = t(E)ei[A(t)+t(E)E]/h̄−iπ. (4.185)

The exponent contains again the eikonal S(E) = A(t)+ t(E)E, the Legendre trans-
form of the action A(t) defined by

S(E) = A(t)− t∂A(t)
∂t

, (4.186)

where the variable t has to be replaced by E(t) = −∂A(t)/∂t. Via the inverse
Legendre transformation, the derivative ∂S(E)/∂E = t leads back to

A(t) = S(E)− ∂S(E)

∂E
E. (4.187)

Explicitly, S(E) is given by the integral (4.68):

S(E) = 2
∫ x+

x−

dx p(x) = 2
∫ x+

x−

dx
√

2M [E − V (x)]. (4.188)
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Finally, we have to take into account that the periodic orbit is repeatedly traversed
for an arbitrary number of times. Each period yields a phase factor eiS(E)/h̄−iπ. The
sum is

Z̃sc
QM(E) =

∞
∑

n=1

t(E)ein[S(E)/h̄−π] = −t(E) eiS(E)/h̄

1 + eiS(E)/h̄
. (4.189)

This expression possesses poles in the complex energy plane at points where the
eikonal satisfies the condition

S(En) = 2πh̄(n + 1/2), n = 0,±1,±2, . . . . (4.190)

This condition agrees precisely with the Bohr-Sommerfeld rule (4.27) for semiclas-
sical quantization. At the poles, one has

Z̃sc
QM(E) ≈ t(E)

ih̄

S ′(En)(E −En)
. (4.191)

Due to (4.92), the pole terms acquire the simple form

Z̃sc
QM(E) ≈

ih̄

E − En

. (4.192)

From (4.189) we derive the density of states defined in (1.583). For this we use
the general formula

ρ(E) =
1

2πh̄
disc Z̃QM(E), (4.193)

where disc ZQM(E) is the discontinuity ZQM(E + iη) − ZQM(E − iη) across the
singularities defined in Eq. (1.328). If we equip the energies En in (4.192) with the
usual small imaginary part −iη, we can also write (4.193) as

ρ(E) =
1

πh̄
ReZ̃QM(E). (4.194)

Inserting here the Fourier representation (4.189), we obtain the semiclassical ap-
proximation

ρ̄sc(E) =
t(E)

πh̄

∞
∑

n=1

cos{n[S(E)/h̄− π]} (4.195)

or

∆ρsc(E) =
t(E)

2πh̄

(

−1 +
∞
∑

n=−∞
ein[S(E)/h̄−π]

)

. (4.196)

We have added a ∆-symbol to this quantity since it is really the semiclasscial cor-
rection to the classical density of states ρ(E), as we sall see in a moment. With the
help of Poisson’s summation formula (1.197), this goes over into

∆ρsc(E) = −
t(E)

2πh̄
+
t(E)

h̄

∞
∑

n=−∞
δ[S(E)/h̄− 2π(n+ 1/2)]. (4.197)
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The right-hand side contains δ-functions which are singular at the semiclassical
energy values (4.190). Using once more the relation (4.92), the formula δ(ax) =
a−1δ(x) leads to the simple expression

∆ρsc(E) = −
t(E)

2πh̄
+

∞
∑

n=−∞
δ(E − En). (4.198)

This result has a surprising property: Consider the spacing between the energy levels

∆En = En − En−1 = 2πh̄
∆En

∆Sn
(4.199)

and average the sum in (4.198) over a small energy interval ∆E containing several
energy levels. Then we obtain an average density of states:

ρav(E) =
S ′(E)

2πh̄
=
t(E)

2πh̄
. (4.200)

It cancels precisely the first term in (4.198). Thus, the semiclassical formula (4.189)
possesses a vanishing average density of states. This cannot be correct and we
conclude that in the derivation of the formula, a contribution must have been over-
looked. This contribution comes from the classical partition function. Within the
above analysis of periodic orbits, there are also those which return to the point of
departure after an infinitesimally small time (which leaves them with no time to
fluctuate). The expansion (4.189) does not contain them, since the saddle point
approximation to the time integration (4.182) used for its derivation fails at short
times. The reason for this failure is the singular behavior of the fluctuation factor
∝ 1/(tb − ta)1/2 in (4.103).

In order to recover the classical contribution, one simply uses the short-time
amplitude in the form (2.349) to calculate the purely classical contribution to Z(E):

Zcl(E) ≡
∫

dx
∫

dp

2πh̄

ih̄

E −H(p, x)
. (4.201)

This implies a classical contribution to the density of states

ρcl(E) ≡
∫

dx ρcl(E; x), (4.202)

which is a spatial integral over the classical local density of states

ρcl(E; x) ≡
∫

dp

2πh̄
δ[E −H(p, x)]. (4.203)

The δ-function in the integrand can be rewritten as

δ(E −H(p, x)) =
M

p(E; x)
[δ(p− p(E; x)) + δ(p+ p(E; x))] , (4.204)
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where p(E; x) is the local momentum associated with the energy E

p(E; x) =
√

2M [E − V (x)], (4.205)

which was defined in (4.3), except that we have now added the energy to the ar-
gument, to have a more explicit notation. It is then trivial to evaluate the integral
(4.203) and (4.202) yielding the classical local density of states

ρcl(E; x) =
1

πh̄

M

p(E; x)
, (4.206)

and its integral

ρcl(E) =
∫

dx
1

πh̄

M

p(E; x)
=

1

2πh̄
t(E) = ρav(E), (4.207)

which coincides with the average classical density of states in (4.200).
Thus the full semiclassical density of states consists of the sum of (4.198) and

(4.207):
ρsc(E) = ρcl(E) + ∆ρsc(E). (4.208)

This has, on the average, the correct classical value.
Note that by Eq. (4.200), the eikonal S(E) is related to the integral over the

classical density of states ρcl(E) by a factor 2πh̄:

S(E) = 2πh̄
∫ E

−∞
dE ρcl(E). (4.209)

Recalling the definition (1.587) of the number of states up to the energy E we see
that

S(E) = 2πh̄N(E), (4.210)

which shows that the Bohr-Sommerfeld quantization condition (4.190) is the semi-
classical version of the completely general equation (1.588).

4.8 Multi-Dimensional Systems

The D-dimensional generalization of the classical partition function (4.201) reads

Zcl(E) ≡
∫

dDx
∫ dDp

2πh̄

ih̄

E −H(p,x)
, (4.211)

and of the density of states (4.203):

ρcl(E;x) ≡
∫

dDp

(2πh̄)D
δ[E −H(p,x)]. (4.212)

The Hamiltonian of the standard formH(p,x) = p2/2M+V (x) allows us to perform
the momentum integration by separating it into radial and angular parts,

∫

dDp

(2πh̄)D
=
∫

dp pD−1
∫

dp̂. (4.213)
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The angular integral yields the surface of a unit sphere in D dimensions:

∫

dp̂ = SD =
2πD/2

Γ(D/2)
. (4.214)

The δ-function δ(E − H(p,x)) can again be rewritten as in (4.204), which selects
the momenta of magnitude

p(E;x) =
√

2M [E − V (x)]. (4.215)

Thus we find

ρcl(E) ≡
∫

dDx ρcl(E;x), (4.216)

where ρcl(E;x) is the classical local density of states .

ρcl(E;x)=SD
M

p2(E;x)

pD(E;x)

(2πh̄)D
=

1

(4πh̄2)D/2

2M

Γ(D/2)
{2M [E − V (x)]}D/2−1, (4.217)

generalizing expression (4.207). The number of states with energies between E and
E + dE in the volume element dDx is dEd3xρcl(E;x).

For completeness we state some features of the semiclassical results which appear
when generalizing the theory to D dimensions. For a detailed derivation see the rich
literature on this subject quoted at the end of the chapter.

For an arbitrary number D of dimensions. the Van Vleck-Pauli-Morette deter-
minant (4.124) takes the form

F (xb,xa; tb − ta) =
1

√
2πih̄

D

∣

∣

∣detD[−∂xi
b
∂xj

a
A(xb,xa; tb − ta)]

∣

∣

∣

1/2
e−iπν/2,

(4.218)

where ν is the Maslov-Morse index.
The fixed-energy amplitude becomes the sum over all periodic orbits:9

(xb|xa)E =
1

√
2πih̄

D−1

∑

p

|DS|1/2eiS(xb,xa;E)/h̄−iπν′/2, (4.219)

where S(xb,xa;E) is the D-dimensional generalization of (4.68) and DS the (D +
1)× (D + 1)-determinant:

DS = (−1)D+1det













∂2S

∂xb∂xa

∂2S

∂E∂xa

∂2S

∂xb∂E

∂2S

∂E∂E













. (4.220)

9M.C. Gutzwiller, J. Math. Phys. 8 , 1979 (1967); 11 , 1791 (1970); 12 , 343 (1971).



402 4 Semiclassical Time Evolution Amplitude

The factor (−1)D+1 makes the determinant positive for short trajectories. The index
ν ′ differs from ν by one unit if ∂2S/∂E2 = ∂t(E)/∂E is negative.

In D dimensions, the Hamilton-Jacobi equation leads to

∂H

∂pb

· ∂2S

∂xb∂xa

= ẋb ·
∂2S

∂xb∂xa

= 0, (4.221)

instead of (4.154). Only the longitudinal projection of theD×D-matrix ∂2S/∂xb∂xa

along the direction of motion vanishes now. In this direction

ẋb ·
∂2S

∂xb∂E
= 1, (4.222)

so that the determinant (4.220) can be reduced to

DS =
1

|ẋb||ẋa|
det

(

− ∂2S

∂x⊥
b ∂x

⊥
a

)

, (4.223)

instead of (4.156). Here x⊥
b,a denotes the deviations from the orbit orthogonal to

ẋb,a, and we have used (2.290) to arrive at (4.223).
As an example, let us write down the D-dimensional generalization of the free-

particle amplitude (4.161). The eikonal is obviously

S(xa,xb;E) =
√
2ME|xb − xa|, (4.224)

and the determinant (4.223) becomes

DS =
M

2E

(2ME)(D−1)/2

|xa − xb|D−1
. (4.225)

Thus we find

(xb|xa)E =

√

M

2E

1

(2πih̄)(D−1)/2

(2ME)(D−1)/4

|xa − xb|(D−1)/2
ei

√
2ME|xb−xa|/h̄. (4.226)

For D = 1, this reduces to (4.161).
Note that the semiclassical result coincides with the large-distance behavior

(1.359) of the exact result (1.355), since the semiclassical limit implies a large mo-
menta k in the Bessel function (1.355).

When calculating the partition function, one has to perform a D-dimensional
integral over all xb = xa. This is best decomposed into a one-dimensional integral
along the orbit and a D− 1 -dimensional one orthogonal to it. The eikonal function
S(xa,xa;E) is constant along the orbit, as in the one-dimensional case. When
leaving the orbit, however, this is no longer true. The quadratic deviation of S
orthogonal to the orbit is

1

2
(x− x⊥)T

∂2S(x,x;E)

∂x⊥∂x⊥ (x− x⊥), (4.227)
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where the superscript T denotes the transposed vector to be multiplied from the
left with the matrix in the middle. After the exact trace integration along the orbit
and a quadratic approximation in the transversal direction for each primitive orbit,
which is not repeated, we obtain the contribution to the partition function

Zsc = t(E)

∣

∣

∣

∣

∣

∂2S(xb,xa;E)

∂x⊥
b ∂x

⊥
a

∣

∣

∣

∣

∣

1/2

xb=xa=x
∣

∣

∣

∣

∣

∂2S(x,x;E)

∂x⊥∂x⊥

∣

∣

∣

∣

∣

1/2

∞
∑

n=1

ein[S(E)/h̄−iπν/2], (4.228)

where ν is the Maslov-Morse index of the orbit. The ratio of the determinants is
conveniently expressed in terms of the determinant of the so-called stability matrix

M in phase space, which is introduced in classical mechanics as follows:
Consider a classical orbit in phase space and vary slightly the initial point, mov-

ing it orthogonally away from the orbit by δx⊥
a , δp

⊥
a . This produces variations at

the final point δx⊥
b , δp

⊥
b , related to those at the initial point by the linear equation

(

δx⊥
b

δp⊥
b

)

=

(

A B
C D

)(

δx⊥
a

δp⊥
a

)

≡M

(

δx⊥
a

δp⊥
a

)

. (4.229)

The 2(D − 1) × 2(D − 1)-dimensional matrix is the stability matrix M . It can be
expressed in terms of the second derivatives of S(xb,xa;E). These appear in the
relation

(

δp⊥
a

δp⊥
b

)

=

(

−a −b
bT c

)(

δx⊥
a

δx⊥
b

)

, (4.230)

where a, b, and c are the (D − 1)× (D − 1)-dimensional matrices

a =
∂2S

∂x⊥
a ∂x

⊥
a

, b =
∂2S

∂x⊥
a ∂x

⊥
b

, c =
∂2S

∂x⊥
b ∂x

⊥
b

. (4.231)

From this one calculates the matrix elements of the stability matrix (4.229):

A = −b−1a, B = −b−1, C = bT − cb−1a, D = −cb−1. (4.232)

The stability properties of the classical orbits are classified by the eigenvalues of
the stability matrix (4.229). In three dimensions, the eigenvalues are given by the
zeros of the characteristic polynomial of the 4× 4 -matrix M :

P (λ) = |M − λ| =
∣

∣

∣

∣

∣

A− λ B
C D − λ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

− b−1a− λ −b−1

bT − cb−1a −cb−1 − λ

∣

∣

∣

∣

∣

. (4.233)

The usual manipulations bring this to the form

P (λ) =

∣

∣

∣

∣

∣

−b−1a− λ −b−1

bT + λ −λ

∣

∣

∣

∣

∣

=
1

|b|

∣

∣

∣

∣

∣

−a− λb −1
bT + (a+ c)λ+ λ2b 0

∣

∣

∣

∣

∣

=
1

|b|
∣

∣

∣bT + (a+ c)λ+ λ2b
∣

∣

∣ . (4.234)
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Precisely this expression appears, with xb = xa, in the prefactor of (4.228) if this is
rewritten as

∣

∣

∣

∣

∣

∂2S

∂x⊥
b ∂x

⊥
a

∣

∣

∣

∣

∣

1/2

xb≈xa=x
∣

∣

∣

∣

∣

∂2S

∂x⊥
b ∂x

⊥
b

+ 2
∂S

∂x⊥
b

∂S

∂x⊥
a

+
∂2S

∂x⊥
a ∂x

⊥
a

∣

∣

∣

∣

∣

1/2

xb=xa=x

. (4.235)

Due to (4.232), this coincides with P (1)−1/2. The semiclassical limit to the
quantum-mechanical partition function takes therefore the simple form referred to
as Gutzwiller’s trace formula

Zsc(E) = t(E)
1

P (1)1/2
eiS(E)−iπν/2

1− eiS(E)−iπν/2
. (4.236)

The energy eigenvalues lie at the poles and satisfy the quantization rules [compare
(4.27), (4.190)]

S(En) = 2πh̄(n+ ν/4). (4.237)

The eigenvalues of the stability matrix come always in pairs λ, 1/λ, as is obvious
from (4.234). For this reason, one has to classify only two eigenvalues. These must
be either both real or mutually complex-conjugate. One distinguishes the following
cases:

1. elliptic, if λ = eiχ, e−iχ, with a real phase χ 6= 0,

2. direct parabolic,
inverse parabolic,

if
λ = 1,
λ = −1,

3. direct hyperbolic,
inverse hyperbolic,

if
λ = e±χ,
λ = −e±χ,

4. loxodromic, if λ = eu±v.

In these cases,

P (1) =
2
∏

i=1

(λi − 1)(1/λi − 1) (4.238)

has the values

1. 4 sin2(χ/2),

2. 0 or 4,

3. − 4 sinh2(χ/2) or 4 cosh2(χ/2),

4. 4 sin[(u+ v)/2] sin[(u− v)/2].
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Only in the parabolic case are the equations of motion integrable, this being obvi-
ously an exception rather than a rule, since it requires the fulfillment of the equation
a+ c = ±2b. Actually, since the transverse part of the trace integration in the par-
tition function results in a singular determinant in the denominator of (4.236), this
case requires a careful treatment to arrive at the correct result.10 In general, a sys-
tem will show a mixture of elliptic and hyperbolic behavior, and the particle orbits
exhibit what is called a smooth chaos . In the case of a purely hyperbolic behavior
one speaks of a hard chaos , which is simpler to understand. The semiclassical ap-
proximation is based precisely on those orbits of a system which are exceptional in
a chaotic system, namely, the periodic orbits.

The expression (4.236) also serves to obtain the semiclassical density of states in
D-dimensional systems via Eq. (4.193). In D dimensions the paths, with vanishing
length contribute to the partition function the classical expression [compare (4.211)].
Application of semiclassical formulas has led to surprisingly simple explanations
of extremely complex experimental data on highly excited atomic spectra which
classically behave in a chaotic manner.

For completeness, let us also state the momentum space representation of the
semiclassical fixed-energy amplitude (4.145). It is given by the momentum space
analog of (4.219):

(pb|pa)E =
(2πh̄)D
√
2πih̄

D−1

∑

p

|D̃S|1/2eiS(pb,pa;E)/h̄−iπν′/2, (4.239)

where S(pb,pa;E) is the Legendre transform of the eikonal

S(pb,pa;E) = S(pb,pa;E)− pbxb + paxa, (4.240)

evaluated at the classical momenta pb = ∂pb
S(pb,pa;E) and pa = ∂pa

S(pb,pa;E).
The determinant can be brought to the form:

DS =
1

|ṗb||ṗa|
det

(

− ∂2S

∂p⊥
b ∂p

⊥
a

)

, (4.241)

where p⊥
a is the momentum orthogonal to ṗa.

This formula cannot be applied to the free particle fixed-energy amplitude (3.219)
for the same degeneracy reason as before.

Higher h̄-corrections to the trace formula (4.236) have also been derived, but the
resulting expressions are very complicated to handle. See the citations at the end
of this chapter.

4.9 Quantum Corrections to Classical Density of States

There exists a simple way of calculating quantum corrections to the semiclassical
expressions (4.207) and its D-dimensional generalization (4.216) for the density of

10M.V. Berry and M. Tabor, J. Phys. A 10 , 371 (1977), Proc. Roy. Soc. A 356 , 375 (1977).
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states. To derive them we introduce an operator δ-function δ(E−Ĥ) via the spectral
representation

δ(E − Ĥ) ≡
∑

n

δ(E −En)|n〉〈n|, (4.242)

where |n〉 are the eigenstates of the Hamiltonian operator Ĥ. The δ-function (4.242)
has the Fourier representation [recall (1.193)]

δ(E − Ĥ) =
∫ ∞

−∞

dt

2πh̄
e−i(Ĥ−E)t/h̄. (4.243)

Its matrix elements between eigenstates |x〉 of the position operator,

ρ(E;x) = 〈x|δ(E − Ĥ)|x〉 =
∫ ∞

−∞

dt

2πh̄
eiEt/h̄〈x|e−iĤt/h̄|x〉, (4.244)

define the quantum-mechanical local density of states . The amplitude on the right-
hand side is the time evolution amplitude

〈x|e−iĤt/h̄|x〉 = (x t|x 0), (4.245)

which can be represented by a path integral as described in Chapter 2. In the
semiclassical limit, only the short-time behavior of (x t|x 0) is relevant.

4.9.1 One-Dimensional Case

For a one-dimensional harmonic oscillator, the short-time expansion of (4.245) can
easily be derived. We shall to do this for a slightly generalized harmonic potential
which contains also a linear term to

V (x) =
ω2

2
(x2 − 2ax) =

ω2

2
(x− a)2 − ω2

2
a2. (4.246)

Then the diagonal amplitude (4.245) becomes [see also (2.333)]

(x tb|x ta) =
1

√

2πih̄/M

√

ω

sinωt
exp

[

i
Mω

h̄

(

tan
ωt

2
(x− a)2 − ωta2

2

)]

. (4.247)

For t ≡ tb − ta < 1/ω, we expand this in a power series of t as follows:

(x tb|x ta) =
e−iM

2
ω2(x2−2ax)t/h̄

√

2πih̄t/M

{

1 +
t2ω2

12
− iM

h̄

t3

24
ω4(x− a)2

+
t4ω4

160
− iM

h̄

11 t5ω2

1440
ω4(x− a)2 + . . .

}

. (4.248)

This expansion can be generalized to an arbitrary smooth potential V (x) if the
exponential prefactor containing the harmonic potential is replaced by

e−iV (x)t/h̄, (4.249)
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whereas ω2 and ω4x2 are substituted as follows:

ω2 → 1

M
V ′′(x), (4.250)

ω4(x− a)2 → 1

M2
[V ′(x)]2. (4.251)

The presence of a is important for this identification. Without it we could not tell
whether the harmonic term ω4x2 represents [V ′(x)]2/M2 or 2V (x)V ′′(x)/M2. Thus
we find

(x tb|x ta) =
e−iV (x)t/h̄

√

2πih̄t/M

{

1 +
t2

12M
V ′′(x)− i

h̄

t3

24M
[V ′(x)]2

+
t4

160
[V ′′(x)]2 − i

h̄

11 t5

1440M
[V ′(x)]2V ′′(x) + . . .

}

.(4.252)

For positive E − V (x), the integration along the real axis can be deformed into
the upper complex plane to enclose the square-root cut along the positive imagi-
nary t-axis in the anti-clockwise sense. Setting t = iτ and using the fact that the
discontinuity across a square root cut produces a factor two, the lowest three terms
become

ρ(E; x)=2
∫ ∞

0

dτ

2πh̄

e−[E−V (x)]τ/h̄

√

2πh̄τ/M

{

1− τ 2

12M
V ′′(x)− 1

h̄

τ 3

24M
[V ′(x)]2 + . . .

}

. (4.253)

The first term can easily be integrated for E > V (x), and yields the classical local
density of states (4.207):

ρcl(E; x) =
1

πh̄

M
√

2M [E − V (x)]
=
M

πh̄

1

p(E; x)
. (4.254)

In order to calculate the effect of the correction terms in the expansion (4.253),
we observe that a factor τ in the integrand is the same as a derivative h̄d/dV applied
to the exponential. Thus we find directly the semiclassical expansion for the density
of states (4.253), valid for E > V (x):

ρ(E; x) =

{

1− h̄2

12M
V ′′(x)

d2

dV 2
− h̄2

24M
[V ′(x)]2

d3

dV 3
+ . . .

}

ρcl(E; x). (4.255)

Inserting (4.254) and performing the differentiations with respect to V we obtain

ρ(E; x) =
1

πh̄

√

M

2

{

1

[E − V (x)]1/2
− h̄2

12M
V ′′(x)

3

4

1

[E − V (x)]5/2

− h̄2

24M
[V ′(x)]2

15

8

1

[E − V (x)]7/2
+ . . .

}

.(4.256)
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Note that the higher expansion terms contain powers of higher and higher gradients
of the potential. It is a so-called gradient expansion of the density of states.

The integral over (4.256) yields a gradient expansion for ρ(E) [3] . The second
term can be integrated by parts which, under the assumption that V (x) vanishes at
the boundaries, simply changes the sign of the third term, so that we find

ρ(E)=
1

πh̄

√

M

2

∫

dx

{

1

[E − V (x)]1/2
+

h̄2

24M
[V ′(x)]2

15

8

1

[E − V (x)]7/2 + . . .

}

.(4.257)

4.9.2 Arbitrary Dimensions

In D dimensions, the short-time expansion of the time evolution amplitude (4.252)
takes the form

(x tb|x ta) =
e−iV (x)t/h̄

√

2πih̄t/M
D

{

1 +
t2

12M
∇

2V (x)− i

h̄

t3

24M
[∇V (x)]2 + . . .

}

. (4.258)

Recalling the iη-prescription on page 115, according to which the singularity at t = 0
has to be shifted slightly into the upper half plane by replacing t → t − iη, we use
the formula11

∫ ∞

−∞

dt

2π

1

(it + η)ν
eita = Θ(a)

aν−1

Γ(ν)
e−aη, (4.259)

and obtain the obvious generalization of (4.255):

ρ(E;x) =

{

1− h̄2

12M
∇

2V (x)
d2

dV 2
− h̄2

24M
[∇V (x)]2

d3

dV 3
+ . . .

}

ρcl(E;x), (4.260)

where ρcl(E;x) is the classical D-dimensional local density of states (4.217). The
way this appears here is quite different from that in the earlier classical calculation
(4.212), which may be expressed with the help of the local momentum (4.215) as an
integral

ρcl(E;x) =
∫

dDp

(2πh̄)D
δ[E −H(p,x)] =

∫

dDp

(2πh̄)D
M

p(E;x)
δ[p− p(E;x)]. (4.261)

In order to see the relation to the appearance in (4.260) we insert the Fourier de-
composition of the leading term of the short-time expansion of the time evolution
amplitude

(x t|x 0)cl =
∫

dDp

(2πh̄)D
e−i[p2/2M+V (x)]t/h̄ (4.262)

11I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 3.382.6. The formula is easily derived by
expressing (it + η)−ν = Γ−1(ν)

∫∞
0 dττν−1e−τ(it+η).
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into the integral representation (4.244) which takes the form

ρ(E;x) =
∫ ∞

−∞

dt

2πh̄

∫

dDp

(2πh̄)D
e−i[p2−p2(E;x)]t/2Mh̄. (4.263)

By doing the integral over the time first, the size of the momentum is fixed to
the local momentum p2(E;x) resulting in the original representation (4.261). The
expression (4.217) for the density of states, on the other hand, corresponds to first
integrating over all momenta. The time integration selects from the result of this
the correct local momenta p2(E;x).

This generalizes (4.256) to

ρ(E;x) =
(

M

2πh̄2

)D/2
{

1

Γ(D/2)
[E − V (x)]D/2−1

− h̄2

12M

[

∇
2V (x)

] 1

Γ(D/2− 2)
[E − V (x)]D/2−3

+
h̄2

24M
[∇V (x)]2

1

Γ(D/2− 3)
[E − V (x)]D/2−4 + . . .

}

. (4.264)

When integrating the density (4.264) over all x, the second term in the curly
brackets can again be converted into the third term changing its sign, as in (4.257).
The right-hand side can easily be integrated for all pure power potentials. This will
be done in Appendix 4A.

4.9.3 Bilocal Density of States

It is useful to generalize the local density of states (4.244) and introduce a bilocal

density of states :

ρ(E;xb,xa) = 〈xb|δ(E − Ĥ)|xa〉 =
∫ ∞

−∞

dt

2πh̄
eiEt/h̄ 〈xb|e−iĤt/h̄|xa〉

=
∫ ∞

−∞

dt

2πh̄
eiEt/h̄ (xb t|xa 0). (4.265)

The semiclassical expansion requires now the nondiagonal version of the short-time
expansions (4.258). For a D-dimensional harmonic oscillator, the expansion (4.248)
with a = 0 is generalized to

(xbtb|xata) =
eiM∆x2/2th̄

√

2πih̄t/M
D e

−iMω2x̄2t/2h̄

{

1+
t2D

12
ω2− iM

h̄

t3

24
ω4x̄2− iM

h̄

t

24
∆x2ω2

−iM
h̄

t3

1440
∆x2ω4− iM

h̄

t3D

288
∆x2ω4 +

t4(D+ 5
4D

2)

360
ω4− 1

h̄2
∆x4 t2

1152
ω4x̄2+ . . .

}

,

(4.266)

where x̄ = (xb + xa)/2 is the mean position of the two endpoints. In this expansion
we have included all terms whose size is of the order t4, keeping in mind that ∆x2
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is of the order h̄ in a finite amplitude. Performing the substitutions (4.250) and
(4.251), for a = 0, this expansion is generalized to

(xbtb|xata) =
eiM∆x2/2th̄

√

2πih̄t/M
D
e−iV (x̄)t/h̄

{

1 +
t2

12M
∇

2V − i

h̄

t3

24M
[∇V ]2 − i

h̄

t

24
(∆x∇)2V

− i

h̄

t3

1440M
[(∆x∇)∆xi∇jV ]∇i∇jV ]− iM

h̄

t3

288
(∆x)2[∇2V ]2 +

t4

360M2

(

[∇i∇jV ]2 +
5

4
[∇V ]2

)

− t2

1152h̄2
[∆xi∆xj∇k∇lV ][∆xk∆xl∇i∇jV ] + . . .

}

.(4.267)

where we have omitted the arguments x̄ in all potentials. The substitution of the
term ∆x2Mω2 in (4.266) by

∆x2Mω2 → (∆x∇)2V (x̄), (4.268)

rather than ∆x2
∇

2V (x̄), follows from the fact that there is no factor D. The other
substitutions follow similary.

For a derivation without the substitution tricks (4.250), (4.251), (4.268), see
Appendix 4B.

A recursive calculation is possible by writing the amplitude as

(x t|x′0) =
eiM∆x2/2th̄

√

2πih̄t/M
DA(x,∆x, t), (4.269)

with the the amplitude A(x,∆x′; t), satisfying the differential equation

h̄i∂tA(x,∆x′; t) =

[

− h̄2

2M
∇

2 − V (x)

]

A− ih̄

t
∆x∇A(x,∆x; t). (4.270)

After expanding

A(x,∆x; t) = 1 +
∞
∑

n=1

tn
∞
∑

p=0

∆xi1 · · ·∆xip a(n)i1,...,ip(x), (4.271)

we can calculate the coefficients order by order in n and p.
Inserting the amplitude (4.267) into the integral in Eq. (4.265), we obtain from

the lowest expansion terms the bilocal density of states

ρ(E;xb,xa) =
∫ ∞

−∞

dt

2πh̄

eiM∆x2/2th̄

√

2πih̄t/M
D e

−i[V (x̄)−E]t/h̄

×
{

1 +
t2

12M
∇

2V (x̄)− i

h̄

t3

24M
[∇V (x̄)]2 − i

h̄

t

24
(∆x∇)2V (x̄) + . . .

}

.(4.272)

The leading term is simply the time evolution amplitude of the free-particle in a
constant potential V (x̄) which has the Fourier decomposition [recall (1.335)]:
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(xbtb|xata)cl =
∫

dDp

(2πh̄)D
eip(xb−xa)/h̄e−iH(p,x̄)t/h̄. (4.273)

Indeed, inserting this into (4.265), and performing the integration over time, we find

ρcl(E;xb,xa) =
∫

dDp

(2πh̄)D
δ(E −H(p, x̄))eip(xb−xa)/h̄. (4.274)

Decomposing the momentum integral into radial and angular parts as in (4.213), we
can integrate out the radial part as in (4.203), whereas the angular integral yields
the following function of R = |xb − xa|:

∫

dp̂ eip(xb−xa)/h̄ = SD(pR/h̄), (4.275)

which is a direct generalization of the surface of a sphere in D dimensions (4.214).
It reduces to it for p = 0. This integral will be calculated in Section 9.1. The result
is

SD(z) = (2π)D/2JD/2−1(z)/z
D/2−1, (4.276)

where Jν(z) are Bessel functions. For small z, these behave like12

Jν(z) ≈
(z/2)ν

Γ(ν + 1)
, (4.277)

thus ensuring that SD(kR) is indeed equal to SD at R = 0.
Altogether, the classical limit of the bilocal density of states is

ρcl(E;xb,xa) =
(

1

2πh̄2

)D/2

M
JD/2−1(p(E; x̄)R/h̄)

(R/h̄)D/2−1
. (4.278)

At xb = xa, this reduces to the density (4.212).
In three dimensions, the Bessel function becomes

J1/2(z) =

√

2

πz
sin z, (4.279)

and (4.278) yields

ρcl(E;xb,xa) =
(

1

2πh̄2

)3/2 1

Γ(3/2)

M√
2

sin[p(E; x̄)R/h̄]

R/h̄
. (4.280)

From the D-dimensional version of the short-time expansion (4.272) we obtain,
after using once more the equivalence of t and ih̄d/dV ,

ρ(E;xb,xa) =

{

1− h̄2

12M

[

∇
2V (x̄)

] d2

dV 2
− h̄2

24M
[∇V (x̄)]2

d3

dV 3

+
1

24
[(xb−xa)∇]2V (x̄)

d

dV
+ . . .

}

ρcl(E;xb,xa).(4.281)

12M. Abramowitz and I. Stegun, op. cit., Formula 9.1.7.
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4.9.4 Gradient Expansions of Tracelog of Hamiltonian Operator

Starting point is formula (1.590) for the tracelog of the Hamiltonian operator. By performing the
trace in the local basis |x〉, we arrive at the useful formula involving the density of states (4.244)

Tr log Ĥ =

∫

dDx

∫ ∞

−∞
dE ρ(E;x) logE. (4.282)

Inserting here the classical density of states (4.217), the integral over the classical spectrum E ∈
(E0,∞) can be performed, where E0 is the bottom of the potential V (x), and yields the classical
limit of the tracelog:

[Tr log Ĥ ]cl =

∫

dDx

∫ ∞

E0

dE ρcl(E;x) logE =

(

M

2πh̄2

)D/2 ∫

dDx ID/2(V (x)), (4.283)

where

Iα(V ) ≡ 1

Γ(α)

∫ ∞

V

dE (E − V )α−1 logE. (4.284)

The integrals ID/2(V (x)) diverge, but can be calculated with the techniques explained in Section
2.15 from the analytically regularized integrals13

Iηα(V ) ≡ 1

Γ(α)

∫ ∞

V

dE (E − V )α−1 E−η = V α−η Γ(−α + η)

Γ(η)
. (4.285)

Since E−η = 1− η logE +O(η2), the coefficient of −η in the Taylor series of Iηα(V ) will yield the
desired integral. Since 1/Γ(η) ≈ η, we obtain directly

Iα(V ) = −Γ(−α)V α, (4.286)

so that (4.283) becomes

[Tr log Ĥ ]cl = −
(

M

2πh̄2

)D/2

Γ(−D/2)

∫

dDx [V (x)]D/2. (4.287)

The same result can be obtained with the help of formulas (4.244), (4.258), and (2.506) as

[Tr log Ĥ ]cl = −
∫

dDx

∫ ∞

−∞
dE

∫ ∞

−∞

dt

2πh̄

eit[E−V (x)]/h̄

(2πih̄t/M)D/2

∫ ∞

0

dt′

t′
e−iEt′/h̄. (4.288)

Integrating over the energy yields

[Tr log Ĥ ]cl = −
∫

dDx

∫ ∞

0

dt

t

1

(2πih̄t/M)D/2
e−itV (x)/h̄. (4.289)

Deforming the contour of integration by the substitution t = −iτ , we arrive at the integral repre-
sentation of the Gamma function (2.498) which reproduces immediately the result (4.287).

The full quantum mechanical expression for the trace log contains the diagonal time evolution
amplitude

Tr log Ĥ = −
∫

dDx

∫ ∞

0

dt

t
〈x|e−iĤt/h̄|x〉. (4.290)

Inserting here the short-time expansion (4.258), we obtain the semiclassical expansion for the trace
of the logarithm. If the factors tn in the integrand are repaced by derivatives with respect to the

13I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 3.196.2.
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potential V (x), we obtain the semiclassical expansion containing the prefactor in curly brackets in
the expansion (4.260):

Tr log Ĥ = −
(

M

2πh̄2

)D/2

Γ(−D/2)

×
∫

dDx

{

1− h̄2

12M
∇

2V (x)
d2

dV 2
− h̄2

24M
[∇V (x)]2

d3

dV 3
+ . . .

}

[V (x)]D/2. (4.291)

The second term can be integrated by parts, which replaces ∇
2V (x)→ −[∇V (x)]2d/dV , so that

we obtain the gradient expansion

Tr log Ĥ = −
(

M

2πh̄2

)D/2

Γ(−D/2)

∫

dDx

{

1 +
h̄2

24M
[∇V (x)]2

d3

dV 3
+ . . .

}

[V (x)]D/2. (4.292)

The expression in curly brackets can obviously be replaced by

{

1− h̄2

24M

Γ(3 −D/2)

Γ(−D/2)

[∇V (x)]2

[V (x)]3
+ . . .

}

. (4.293)

In one dimension and with M = 1/2, this amounts to the formula

Tr log[−h̄2∂2
x + V (x)] =

1

h̄

∫

dx
√

V (x)

{

1 +
h̄2

32

[V ′(x)]2

V 3(x)
+ . . .

}

. (4.294)

It is a useful exercise to rederive this with the help of the Gelfand-Yaglom method in Section 2.4.
There exists another method for deriving the gradient expansion (4.291). We split V (x) into

a constant term V and a small x-dependent term δV (x), and rewrite

Tr log

[

− h̄2

2M
∇

2 + V (x)

]

= Tr log

[

− h̄2

2M
∇

2 + V + δV (x)

]

= Tr log

(

− h̄2

2M
∇

2 + V

)

+Tr log (1 + ∆V δV ) , (4.295)

where ∆V denotes the functional matrix

∆V (x,x′) =

(

− h̄2

2M
∇

2 + V

)−1

=

∫

dDp

(2πh̄)D
eip(x−x′)/h̄

p2/2M + V
≡ ∆V (x − x′). (4.296)

This coincides with the fixed-energy amplitude (i/h̄)(x|x′)E at E = −V [recall Eq. (1.348)].
The first term in (4.295) is equal to (4.287) if we replace V (x) in that expression by the

constant V , so that we may write

Tr log Ĥ = [Tr log Ĥ ]cl

∣

∣

∣

V (x)→V
+ Tr log (1 + ∆V δV ) . (4.297)

We now expand the remainder

Tr log (1 + ∆V δV ) = Tr∆V δV − 1

2
Tr (∆V δV )2 + . . . , (4.298)

and evaluate the expansion terms. The first term is simply

Tr ∆V δV =

∫

dDx∆V (x,x)δV (x) = ∆V (0)

∫

dDx δV (x). (4.299)

where

∆V (0) =

∫

dDp

(2πh̄)D
1

p2/2M + V
= ∂V [Tr log Ĥ ]cl

∣

∣

V (x)→V
. (4.300)
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The result of the integration was given in Eq. (1.352).
The second term in the remainder (4.298) reads explicitly

−1

2
Tr (∆V δV )

2
= −1

2

∫

dDx

∫

dDx′ ∆V (x,x′)δV (x′)∆V (x′,x)δV (x). (4.301)

We now make use of the operator relation

[f(Â), B̂] = f ′(Â)[Â, B̂]− 1

2
f ′′(Â)[Â, [Â, B̂]] + . . . , (4.302)

to expand

δV ∆V = ∆V δV + ∆2
V

[

T̂ , δV
]

+ ∆3
V

[

T̂ , [T̂ , δV ]
]

+ . . . , (4.303)

where T̂ is the operator of the kinetic energy p̂2/2M . It commutes with any function f(x) as
follows:

[T̂ , f ] = − h̄2

2M

[(

∇
2f
)

+ 2 (∇f) ·∇
]

, (4.304)

[T̂ , [T̂ , f ]] =
h̄4

4M2

{[

(∇2)2f
]

+ 4[∇∇
2f ] ·∇ + 4[∇i∇if ]∇i∇j

}

, (4.305)

... .

Inserting this into (4.301), we obtain a first contribution

−1

2

∫

dDx

∫

dDx′ ∆V (x,x′)∆V (x′,x)[δV (x)]2. (4.306)

The spatial integrals are performed by going to momentum space, where we derive the general
formula

∫

dDx

∫

dDx1 · · ·
∫

dDxn ∆V (x,x1)∆V (x1,x2) · · ·∆V (xn−1,xn)∆V (xn,x)

=

∫

dDp

(2πh̄)D
1

(p2/2M +V )
n+1 =

(−1)n

n!
∂n
V ∆V (0). (4.307)

This simplifies (4.306) to

1

2
∂V ∆V (0)

∫

dDx [δV (x)]2. (4.308)

We may now combine the non-gradient terms of δV (x) consisting of the first term in (4.297),
of (4.299), and of (4.308), and replace in the latter ∆V (0) according to (4.300), to obtain the first
three expansion terms of [Tr log Ĥ ]cl with the full x-dependent V (x) in Eq. (4.287).

The next contribution to (4.301) coming from (4.304) is

h̄2

4M

∫

dDx

∫

dDx1

∫

dDx2 ∆V (x,x1)∆V (x1,x2)∆V (x2,x)

×
{

[

∇
2δV (x)

]

δV (x) + 2 [∇δV (x)]
2

+ 2[∇δV (x)]δV (x)∇
}

, (4.309)

where the last ∇ acts on the first x in ∆V (x,x1), due to the trace. It does not contribute to the
integral since it is odd in x− x1.

We now perform the integrals over x1 and x2 using formula (4.307) and find

h̄2

8M

∫

dDx
{

[

∇
2δV (x)

]

[δV (x)]+2 [∇δV (x)]
2
}

∂2
V ∆V (0). (4.310)
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The first term can be integrated by parts, after which it removes half of the second term.
A third contribution to (4.301) which contains only the lowest gradients of δV (x) comes from

the third term in (4.305):

− h̄4

8M2

∫

dDx

∫

dDx1

∫

dDx2

∫

dDx3∆V (x,x1)∆V (x1,x2)∆V (x2,x3)∆V (x3,x)

× 4 [∇i∇jδV (x)] δV (x)∇i∇j , (4.311)

where the last ∇i∇j acts again on we men the first x in ∆V (x,x1), as a consequence of the trace.
In momentum space, we encounter the integral

∫

dDp

(2πh̄)D
−4pipj/h̄

2

(p2/2M + V )
4 = −8M

h̄2

δij
D

∫

dDp

(2πh̄)D

[

1

(p2/2M +V )
3−

V

(p2/2M +V )
4

]

= −8M

h̄2

δij
D

(

1

2
∂2
V +

1

6
V ∂3

V

)

∆V (0). (4.312)

so that the third contribution to (4.301) reads, after an integration by parts,

− h̄2

M

∫

dDx [∇δV (x)]
2 δij
D

(

1

2
∂2
V +

1

6
V ∂3

V

)

∆V (0). (4.313)

Combining all gradient terms in [∇V (x)]2 and replacing ∆V (0) according to (4.300), we recover
the previous result (4.292) with the curly brackets (4.293).

For the one-dimensional tracelog, this leads to the formula

Tr log[−h̄2∂2
x + V (x)] =

1

h̄

∫

dx
√

V (x)

{

1 +
h̄2

32

[V ′(x)]2

V 3(x)
+ . . .

}

. (4.314)

It is a useful exercise to rederive this with the help of the Gelfand-Yaglom method in Section 2.4.
This one-dimensional result can easily be carried to much higher order, with the help of the

gradient expansion of the trace of the logarithm of the operator−h̄2∂2
τ+w2(τ) derived in Subsection

2.15.4. If we replace τ by x/h̄ and v(τ) by V (x), we obtain from (2.550)–(2.552):

1

h̄

∫

dx
√

V (x)

{

1− h̄
V ′

4V 3/2
− h̄2

(

5V ′2

32V 3
− V ′′

8V 2

)

− h̄3

(

15V ′3

64V 9/2
− 9V ′V ′′

32V 7/2
+

V (3)

16V 5/2

)

− h̄4

(

1105V ′4

2048V 6
− 221V ′2V ′′

256V 5
+

19V ′′2

128V 4
+

7V ′V (3)

32V 4
− V (4)

32V 3

)}

. (4.315)

The terms accompanying the odd powers of h̄ in the curly brackets can be combined to a total
derivative and can be ignored if V (x) is the same at the upper and lower boundaries. The h̄2 term
goes over into the h̄2-term in (4.314). The h̄4-terms in the curly brackets can be integrated by
parts, which brings V ′4/V 6 → 2

3V
′2V ′′/V 5, V ′V (3)/V 4 → 7

2V
′2V ′′/V 5 − V ′′2/V 4, V (4)/V 3 →

35
4 V ′2V ′′/V 5 − 5

2V
′′2/V 4, so that the total h̄4-term is equivalent to −h̄4(− 35

3072V
′2V ′′/V 5 +

1
128V

′′2/V 4).
A third procedure to find the gradient expansion is based on an operator calculation [4]. We

write the amplitude in (4.265) as

〈x|e−iĤt/h̄|x′〉 = e−it[p̂2/2M+V (x)]/h̄〈x|x′〉 =
∫

dDk

(2π)D
e−it[−h̄2

∇
2/2M+V (x)]/h̄eik(x−x′), (4.316)

and take the plane wave exponential to the left of the time evolution operator with the help of
Lie’s expansion formula (1.297)

e−ikx
∇eikx = ∇ + ik. (4.317)
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In this way we obtain the formula

〈x|e−iĤt/h̄|x′〉 =

∫

dDk

(2π)D
eik(x−x′)e−it[−h̄2(∇+ik)2/2M+V (x)]/h̄, (4.318)

We rewrite this as

〈x|e−iĤt/h̄|x′〉 =
∫

dDk

(2π)D
eik(x−x′)−ith̄k2/2Me−itV (x)/h̄C(x;k, t) (4.319)

where

C(x;k, t) ≡ eit[h̄
2k2+V (x)]/h̄e−it[−h̄2(∇+ik)2/2M+V (x)]/h̄ = eitV (x)/h̄e−it[Ĥ−ih̄2k∇/M ]/h̄. (4.320)

We now expand C(x;k, t) in powers of t:

C(x;k, t) =
∞
∑

n=0

tnC(n)(x;k). (4.321)

The expansion coefficients are most easily obtained by expanding only the second exponential in
powers of t and dropping the pure bthe power o the potential V (x). After this we evaluate the
integrals over powers of k with the help of the Gaussian formula

∫

dDk

(2π)D
eik(x−x′)−ith̄k2/2M =

1

(2πih̄/M)D/2
eiM(x−x′)2/2h̄t. (4.322)

If we define the momentum average with respect to this integral as

〈f(k)〉k ≡
∫

dDk

(2π)D
eik(x−x′)−ith̄k2/2Mf(k)

/∫

dDk

(2π)D
eik(x−x′)−ith̄k2/2M , (4.323)

we see that

〈f(k)〉k = f(−i∇x)e
iM(x−x′)2/2h̄t, (4.324)

so that the expectation values of products of momenta are

〈ki〉k = −i∇i e
iM(x−x′)2/2h̄t = κie

iM(∆x)2/2h̄t, κi ≡
M

h̄

(x− x′)i
t

,

〈kikj〉k = i∇i∇je
iM(x−x′)2/2h̄t =

(

κiκj +
M

ih̄t
δij

)

eiM(∆x)2/2h̄t, (4.325)

〈kikjkk〉k = −∇i∇j∇ke
iM∆x2/2h̄t =

[

κiκjκk +
M

ih̄t
(δijκk + δjkκi + δkiκj)

]

eiM(∆x)2/2h̄t.

The list can easily be continued using Leibnitz’ chain rule of differentiation and the derivative
−i∇iκj = δijM/ih̄t. A compact formula for the result is

〈x|e−iĤt/h̄|x′〉 =
1

(2πih̄/M)D/2
〈C(x,k, t)〉q

=
1

(2πih̄/M)D/2
C(x;−i∇x, t)e

iM(x−x′)2/2h̄t. (4.326)

Our goal is to obtain the amplitude 〈x|e−iĤt/h̄|x′〉 as a short-time expansion

〈x|e−iĤt/h̄|x′〉 =
eiM(∆x)2/2h̄t

(2πih̄/M)D/2

∞
∑

n=0

tnan(x,∆x). (4.327)
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The above k-averages show, however, that the expectations of the coefficients of the expansion
(4.321) contain powers of t up to tn. These must be rearranged to find the power series (4.327).
An explicit expression for the expansion coefficients an(x,∆x) is found by by rescaling k and
introducing q ≡ k

√

th̄/Mi and rewriting C(x;q
√

iM/th̄, t) as

C(x;q
√

M/th̄, t) =
[

e−it[−h̄2
∇

2/2M+V (x)−iq
√

ih̄/Mt h̄∇]/h̄
]

/Vn
, (4.328)

where the symbol [. . .]/Vn indicates that we have to drop all pure powers V n(x) in the nthe expansion
coefficients of the exponential. With this we can rewrite (4.319) as

〈x|e−iĤt/h̄|x′〉 =
eiM(∆x)2/2h̄t

(2πih̄/M)D/2

[

e−∆x2/2
〈

C(x,q
√

M/th̄, t)
〉

q

]

/Vn
, (4.329)

where the q-averages are obtained from formulas (4.325) in which and M is set equal to ih̄t. They
are defined by the Gaussian integrals

〈 f(q) 〉q ≡
∫

dDq

(2π)D
f(q)eiq∆x−q2/2

/

∫

dDq

(2π)D
eiq∆x−q2/2. (4.330)

whose power series can be evaluated with the help of the integrals

∫

dDq

(2π)D
e−q2/2

{

1, qiqj , qi1qi2qi3q4, . . . . . . , qi1qi2 · · · qi2n−1
qi2n , . . .

}

=
1

(2π)D/2

{

1, δij , δi1i2i3i4 , . . . , δi1i2...i2n−1i2n , . . .
}

. (4.331)

The results are the analogs of the equations in (4.325):

〈qi〉q = −i∇i e
−(∆x)2/2 = ∆xie

−(∆x)2/2,

〈qiqj〉q = i∇i∇je
−(x−x′)2/2 = (∆xi∆xj + δij) e

−(∆x)2/2, (4.332)

〈qiqjqq〉q = −∇i∇j∇ke
iM∆x2/2 = [∆xi∆xj∆xk + (δij∆xk + δjk∆xi + δki∆xj)] e

−(∆x)2/2.

Here δi1i2...i2n−1i2n are the so-called contraction tensors defined for n > 2 recursively by the
relation

δi1...i2n = δi1i2δi3i4...i2n + δi1i3δi2i4...i2n + . . . + δi1i2nδi2i3...i2n−1
. (4.333)

With these formulas, the calculation of the diagonal expansion coefficients which have ∆x = 0
is quite simple. For the sake of generality we also allow for the presence of a vector potential via
the minimal substitution law (2.644). In the operator language, where p is represented by the
differential operator p̂ = −ih̄∇ [recall (1.89), the derivatives ∇ in (4.328) must be replaced by the
covariant derivatives D ≡ ∇ − i(e/ch̄)A. The commutator of these derivatives is no longer zero
but proportional to the magnetic field:

[Di, Dj ] = −iǫijk(e/ch̄)Bk (4.334)

Expanding (4.328) up to second order in t we find

a0 = 1, a1 = 0,

a2 =

〈

1

2
(−Ĥ2 − V 2)− h̄2

3!M

[

Ĥ(qD)2 + (qD)Ĥ(qD) + (qD)2Ĥ
]

− h̄4

4!M2
(qD)4

〉

q

. (4.335)

Performing the momentum averages with the help of (4.332), a2 becomes

a2 = −1

2
(Ĥ2 − V 2)− h̄2

3!M

[

ĤD2 + DĤD + D2Ĥ
]

− h̄4

8M2
(D4 + DiDjDiDj + DiD

2Di). (4.336)
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Inserting here Ĥ = −h̄2D2/2M + V , this takes the form

a2 = −1

2

[

(

h̄2D2

2M

)2

− h̄2

2M
(D2V + VD2)

]

− h̄2

3!M

[

ĤD2 + DĤD + D2Ĥ
]

− h̄4

8M2
(D4 + DiDjDiDj + DiD

2Di). (4.337)

After some algebra this becomes

a2 =
h̄2

12M
[D2V (x) + V (x)D2]− h̄2

6M
DiV (x)Di −

h̄4

48M2
[Di, Dj ]

2, (4.338)

where the derivative terms which have no functions of x behind it vanish. In the absence of a
magnetic field, a2 reduces to

a2 =
h̄2

12M
∇

2V (x), (4.339)

in agreement with the second expansion term in Eq. (4.258). A magnetic field B orthogonal to
the 12-plane adds to this a term

∆aB2 = − h̄4

48M2
([D1, D2]

2 + [D2, D1]
2) =

h̄2

24M2

(e

c

)2

B2. (4.340)

This can be compared to the exact result in Eq. (2.668) where the diagonal amplitude has a
unit exponential factor, and the small-t expansion is coming only from the Taylor series of the
fluctuation factor (ωLt/2)/ sin(ωLt/2). This starts out like 1+ω2

Lt
2/24 = 1+t2(h̄2/24M2)(e/c)2B2,

in agreement with the above magnetic term.

4.9.5 Local Density of States on a Circle

For future use, let us also calculate this determinant for x on a circle x = (0, b), so that, as a
side result, we obtain also the gradient expansion of the tracelog of the operator (−∂2

τ +ω2(τ)) at
a finite temperature. For this we recall that for a τ -independent frequency, the starting point is
Eq. (2.558), according to which the tracelog of the operator (−∂2

τ + ω2) with periodic boundary
conditions in τ ∈ (0, h̄β) is given by

Fω = − h̄√
π

∫ ∞

0

dτ

τ
τ−1/2

[

1 + 2

∞
∑

n=1

e−(nh̄β)2/4τ

]

e−τω2

. (4.341)

The first term is the zero-temperature expression, the second comes from the Poisson summation
formula and gives the finite-temperature effects. In the first (classical) term of the density (4.253),
the factor 1/

√

2πh̄τ/M came from the integral over the Boltzmann factor involving the kinetic

energy
∫∞
−∞(dk/2π)e−τh̄k2/2M . For periodic boundary conditions in x ∈ (0, b), this is changed to

(1/b)
∑

m e−τh̄k2
m/2M , where km = 2πm/b. By Poisson’s formula (1.205), this can be replaced by

the integral and an auxiliary sum

1

b

∑

m

e−τh̄k2
m/2M =

∞
∑

n=−∞

∫ ∞

−∞

dk

2π
e−τh̄k2/2M+ibkn =

1
√

2πh̄τ/M

∞
∑

n=−∞
e−n2Mb2/2h̄τ. (4.342)

If the sum is inserted into the integral (4.253), we obtain the density ρ(E;x) on a circle of circum-
ference b, with the classical contribution

ρcl(b, E;x) = 2

∫ ∞

0

dτ

2πh̄

∞
∑

n=−∞

e−n2Mb2/2h̄τ−τ [E−V (x)]/h̄

(2πh̄τ/M)1/2
. (4.343)
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The n = 0 -term in the sum leads back to the original expression (4.253) on an infinite x-axis. The
τ -integrals are now done with the help of formula (2.559) which yields, due to Kν(z) = K−ν(z),

∫ ∞

0

dτ

τ
τνe−n2Mb2/2h̄τ−[E−V (x)]τ/h̄ = 2

[

nMb

p(E;x)

]ν

Kν(np(E;x)b/h̄), (4.344)

and we obtain, instead of (4.254),

ρcl(b, E;x) =
1

πh̄

1
√

2πh̄/M
2

∞
∑

n=0

[

nMb

p(E;x)

]1/2

K1/2(np(E;x)b/h̄). (4.345)

Inserting K1/2(z) =
√

π/2z e−z [recall (2.561)], this becomes

ρcl(b, E;x) =
M

πh̄

1

p(E;x)

(

1 + 2

∞
∑

n=1

e−np(E;x)b/h̄

)

. (4.346)

The sum
∑∞

n=1 α
n is equal to α/(1− α), so that we obtain

ρcl(b, E;x) =
M

πh̄

coth[p(E;x)b/2h̄]

p(E;x)
=

M

πh̄

coth
√

2M [E − V (x)] b/2h̄
√

2M [E − V (x)]
. (4.347)

For b→∞, this reduces to the previous density (4.254).
If we include the higher powers of τ in (4.253), we obtain the generalization of expression

(4.255):

ρ(b, E;x) =

{

1− h̄2

12M
V ′′(x)

d2

dV 2
− h̄2

24M
[V ′(x)]2

d3

dV 3
+ . . .

}

ρcl(b, E;x). (4.348)

The tracelog is obtained by integrating this over dE logE from V (x) to infinity. The integral
diverges, and we must employ analytic regularization. We proceed as in (4.288), by using the
real-time version of (4.343) and rewriting logE as an integral −

∫∞
0 (dt′/t′)e−iEt′/h̄, so that the

leading term in (4.348) is given by

[Tr log Ĥ ]cl = −
∫ b

0

dx

∫ ∞

−∞
dE

∫ ∞

−∞

dt

2πh̄

∞
∑

n=−∞

e−in2Mb2/2h̄t+it[E−V (x)]/h̄

(2πih̄t/M)1/2

∫ ∞

0

dt′

t′
e−iEt′/h̄. (4.349)

The integral over E leads now to

[Tr log Ĥ ]cl = −
∞
∑

n=−∞

∫ b

0

dx

∫ ∞

0

dt

t

1

(2πih̄t/M)1/2
e−in2Mb2/2h̄t−itV (x)/h̄. (4.350)

Deforming again the contour of integration by the substitution t = −iτ , creating the τ−1 in the
denominator by an integration over V (x)/h̄, we see that

[Tr log Ĥ ]cl = −π
∫ b

0

dx

∫ ∞

V (x)

dV ρcl(b, E;x)
∣

∣

∣

E−V (x)→V

= π

∫ b

0

dx

∫ ∞

V (x)

dV

Eb

1

4πb

coth 1
2

√

V/Eb

1
2

√

V/Eb

, (4.351)

where Eb ≡ h̄/2Mb2 is the energy associated with the length b. The integration over V produces
a factor h̄/τ in the integrand.
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Thus we obtain

Tr log Ĥ=

∫ b

0

dx

{

1 +
h̄2

24M
[V ′(x)]2

d3

dV 3
+ . . .

}

2

b
log







2 sinh





1

2

√

V (x)

Eb











. (4.352)

For M = h̄2/2, this give us the finite-b correction to formula (4.314). Replacing x by the Euclidean
time τ , b by h̄β, and V (x) by the time-dependent square frequency ω2(τ), we obtain the gradient
expansion

Tr log[−∂2
τ +ω2(τ)]=

∫ h̄β

0

dτ

{

1 +
[∂τω

2(τ)]2

12
∂3
ω2 +. . .

}

2

h̄β
log

[

2 sinh
h̄βω(τ)

2

]

. (4.353)

4.9.6 Quantum Corrections to Bohr-Sommerfeld
Approximation

The expansion (4.315) can be used to obtain a higher-order expansion of the density of states ρ(E),
thereby extending Eq. (4.257). For this we recall Eq. (1.595) according to which we can calculate
the exact density of states from the formula

ρ(E) = − 1

π
∂E ImTr log

{

−∂2
x + [V (x)− E]

}

. (4.354)

Integrating this over the energy yields, according to Eq. (1.596), the number of states times π,
and thus the simple exact quantization condition for a nondegenerate one-dimensional system:

−ImTr log
{

−∂2
x + [V (x)− E]

}

= π(n + 1/2). (4.355)

By comparison with Eq. (4.209) we may define a fullly quantum corrected version of the classical
eikonal:

Sqc(E) = −2h̄ Im Tr log
{

−∂2
x + [V (x) − E]

}

. (4.356)

The semiclassical expansion of this can be obtained from our earlier result (4.315) by replacing
V (x)→ V (x)− E, so that

√

V (x)→ −i
√

E − V (x), yielding

Sqc(E) = 2

∫

dx
√

E − V (x)

{

1 + h̄2

[

5V ′2

32(E−V )
3 +

V ′′

8(E−V )
2

]

−h̄4

[

1105V ′4

2048(E−V )6
+

221V ′2V ′′

256(E−V )5
+

19V ′′2

128(E−V )4
+

7V ′V (3)

32(E−V )4
+

V (4)

32(E−V )3
+ . . .

]}

. (4.357)

The first term in the expansion corresponds to the Bohr-Sommerfeld approximation (4.27), the
remaining ones yield the quantum corrections. The integrand agrees, of course, with the WKB ex-
pansion of the eikonal (4.14) after inserting the expansion terms S0, S1, . . ., obtained by integrating
the relations (4.20) over the functions q0(x), q1(x), . . . of Eq. (4.18).

Using Eq. (4.354) we obtain from Sqc(E) the density of states

ρ(E) =
1

2πh̄
Sqc(E) =

1

2πh̄

∫

dx
1√

E − V

{

1− h̄2

[

25V ′2

32 (E − V )3
+

3V ′′

8 (E − V )2

]

+h̄3

[

12155V ′4

2048 (E − V )
6 +

1989V ′2 V ′′

256 (E − V )
5 +

133V ′′2

128 (E − V )
4 +

49V ′ V (3)

32 (E − V )
4 +

5V (4)

32 (E − V )
3

]}

. (4.358)
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Let us calculate the quantum corrections to the semiclassical energies for a purely quartic
potential V (x) = gx4/4, where the integral over the first term in (4.357) between the turning
points ±xE = ±(4E/g)1/4 gave the Bohr-Sommerfeld approximation (4.33). The integrals of the
higher terms in (4.357) are divergent, but can be calculated in analytically regularized form using
once more the integral formula (4.34). This extends the Bohr-Sommerfeld equation ν(E) = n+1/2
to the exact equation N(E) ≡ Sqc/2πh̄ = n + 1/2 [recall (1.596)]. If we express N(E) in terms of
ν(E) defined in Eq. (4.33) rather than E, we obtain the expansion

N(ν) = ν − 1

12πν
+

11π2

10368Γ8(34 )ν3
+

4697π

1866240Γ8(34 )ν5
− 390065π4

501645312Γ16(34 )ν7

− 53352893π3

7739670528Γ16(34 )ν9
+ . . . = n + 1/2. (4.359)

The function is plotted in Fig. 4.359 for increasing orders in y. Given a solution ν(n) of this
equation, we obtain the energy E(n) from Eq. (4.35) with

κ(n) = [ν(n)3Γ(3/2)2/2
√
π]4/3. (4.360)

For large n, where ν(n) → n, we recover the Bohr-Sommerfeld result (4.36). We can invert the
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log[E(n)/E
(n)
BS − 1]

Figure 4.1 Determination of energy eigenvalues E(n) for purely quartic potential gx4/4

in semiclassical expansion. The intersections of N(ν) with the horizontal lines yield ν(n),

from which E(n) is obtained via Eqs. (4.360) and (4.35). The increasing dash lengths

show the expansions of N(ν) to increasing orders in ν. For the ground state with n = 0,

the expansion is too divergent to give improvements to the lowest approximation without

resumming the series; Right: Comparison between exact and semiclassical energies. The

plot is for log[E(n)/E
(n)
BS − 1].

series (4.359) and obtain

ν(n) = (n + 1
2)

[

1 +
0.026525823

(n + 1
2)

2
− 0.002762954

(n + 1
2 )4

− 0.001299177

(n + 1
2)

6

+
0.003140091

(n + 1
2
)8

+
0.007594497

(n + 1
2
)10

+ . . .

]

. (4.361)

The results are compared with the exact ones in Table 4.1, which approach rapidly the Bohr-
Sommerfeld limit 0.688 253 702 . . . The approach is illustrated in the right-hand part of Fig. 4.1

where log[ν(n)/(n + 1
2)

4/3 − 1] = log[E(n)/E
(n)
BS − 1] is plotted once for the exact values and once

for the semiclassical expansion in Fig. 4.1. The second excited states is very well represented by
the series. Although the series is only asymptotic, the results for higher n are excellent. For a
detailed study of the convergence properties of the semiclassical expansion see Ref. [5].
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Table 4.1 Particle energies in purely anharmonic potential gx4/4 for n = 0, 2, 4, 6, 8, 10.

n E(n)/(gh̄/4M2)1/3 κ(n)/2(n + 1/2)4/3

0 0.667 986 259 155 777 108 3 0.841 609 948 950 895 526
2 4.696 795 386 863 646 196 2 0.692 125 685 914 981 314
4 10.244308 455 438 771 076 0 0.689 449 772 359 340 765
6 16.711890 073 897 950 947 1 0.688 828 486 600 234 466
8 23.889993 634 572 505 935 5 0.688 590 146 947 993 676

10 31.659456 477 221 552 442 8 0.688 474 290 179 981 433

Having obtained the quantum-corrected eikonal Sqc(E) we can write down a quantum-corrected
partition function replacing the classical eikonal S(E) in Eq. (4.236):

Zqc(E) = tqc(E)
1

Pqc(1)1/2
eiSqc(E)−iπν/2

1− eiSqc(E)−iπν/2
. (4.362)

where tqc(E) ≡ S′
qc(E) [compare (4.198)], and Pqc(1)1/2 is the quantum-corrected determinant

(4.234) whose calculation will require extra work.

4.10 Thomas-Fermi Model of Neutral Atoms

The density of states calculated in the last section forms the basis for the Thomas-

Fermi model of neutral atoms. If an atom has a large nuclear charge Z, most of
the electrons move in orbits with large quantum numbers. For Z → ∞, we expect
them to be described by semiclassical limiting formulas, which for decreasing values
of Z require quantum corrections. The largest quantum correction is expected for
electrons near the nucleus which must be calculated separately.

4.10.1 Semiclassical Limit

Filling up all negative energy states with electrons of both spin directions produces
some local particle density n(x), which is easily calculated from the classical local
density (4.217) over all negative energies, yielding the Thomas-Fermi density of

states

ρ
(−)
cl (x) =

∫ 0

V (x)
dE ρcl(E;x) =

(

M

2πh̄2

)D/2 1

Γ(D/2 + 1)
[−V (x)]D/2. (4.363)

This expression can also be obtained directly from the phase space integral over the
accessible free-particle energies. At each point x, the electrons occupy all levels up
to a Fermi energy

EF =
pF (x)

2

2M
+ V (x). (4.364)

The associated local Fermi momentum is equal to the local momentum function
(4.215) at E = EF :

pF (x) = p(EF ;x) =
√

2M [EF − V (x)]. (4.365)
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The electrons fill up the entire Fermi sphere |p| ≤ pF (x):

ρ
(−)
cl (x) =

∫

|p|≤pF (x)

dDp

(2πh̄)D
=

1

(2πh̄)D
SD

∫ pF (x)

0
dp pD−1 =

1

(2πh̄)D
2πD/2

Γ(D/2)

pDF (x)

D
.

(4.366)
For neutral atoms, the Fermi energy is zero and we recover the density (4.363).

By occupying each state of negative energy twice, we find the classical electron
density

n(x) = 2ρ
(−)
cl (x). (4.367)

The potential energy density associated with the levels of negative energy is obvi-
ously

E
(−)
pot TF(x) = V (x)ρ

(−)
cl (x) = −

(

M

2πh̄2

)D/2 1

Γ(D/2 + 1)
[−V (x)]D/2+1. (4.368)

To find the kinetic energy density we integrate

E
(−)
kinTF(x) =

∫ 0

V (x)
dE [E − V (x)]ρcl(E;x)

=
D/2

D/2 + 1

(

M

2πh̄2

)D/2 1

Γ(D/2 + 1)
[−V (x)]D/2+1. (4.369)

As in the case of the density of states (4.366), this expression can be obtained
directly from the phase space integral over the free-particle energies

E
(−)
kinTF(x) =

∫

|p|≤pF (x)

dDp

(2πh̄)D
p2

2M
. (4.370)

Performing the momentum integral on the right-hand side yields the energy density

E
(−)
kinTF(x) =

1

(2πh̄)D
SD

1

2M

∫ pF (x)

0
dp pD+1 =

1

(2πh̄)D
SD

D + 2

pD+2
F (x)

2M
, (4.371)

in agreement with (4.369). The sum of the two is the Thomas-Fermi energy density

E
(−)
TF (x) =

∫ 0

V (x)
dE E ρcl(E;x)

= − 1

D/2 + 1

(

M

2πh̄2

)D/2 1

Γ(D/2 + 1)
[−V (x)]D/2+1. (4.372)

The three energies are related by

E
(−)
TF (x) = −

1

D/2
E

(−)
kinTF(x) =

1

D/2 + 1
E

(−)
pot TF(x). (4.373)

Note that the Thomas-Fermi model can also be applied to ions.14 Then the
energy levels are filled up to a nonzero Fermi energy EF , so that the density of

14H.J. Brudner and S. Borowitz, Phys. Rev. 120 , 2054 (1960).
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states (4.363) and the kinetic energy (4.369) have −V replaced by EF − V . This
follows immediately from the representations (4.366) and (4.370) where the right-

hand sides depend only on pF (x) =
√

2M [EF − V (x)]. In the potential energy

(4.368), the expression (−V )D/2+1 is replaced by (−V )(EF − V )D/2, whereas in the
Thomas-Fermi energy density (4.372) it becomes (1− EF∂/EF )(EF − V )D/2+1.

4.10.2 Self-Consistent Field Equation

The total electrostatic potential energy V (x) caused by the combined charges of the
nucleus and the electron cloud is found by solving the Poisson equation

∇
2V (x) = 4πe2[Zδ(3)(x)− n(x)] ≡ 4πe2[nC(x)− n(x)]. (4.374)

The nucleus is treated as a point charge which by itself gives rise to the Coulomb
potential

VC(x) = −
Ze2

r
. (4.375)

Recall that in these units e2 = αh̄c, where α is the dimensionless fine-structure
constant (1.505). A single electron near the ground state of this potential has orbits
with diameters of the order naH/Z, where n is the principal quantum number and
aH the Bohr radius of the hydrogen atom, which will be discussed in detail in
Chapter 13. The latter is expressed in terms of the electron charge e and mass M
as

aH =
h̄2

Me2
=

1

α
λCM . (4.376)

This equation implies that aH is about 137 times larger than the Compton wavelength

of the electron
λCM ≡ h̄/Mc ≈ 3.861 593 23× 10−13 cm. (4.377)

It is convenient to describe the screening effect of the electron cloud upon the
Coulomb potential (4.375) by a multiplicative dimensionless function f(x). Restrict-
ing our attention to the ground state, which is rotationally symmetric, we shall write
the solution of the Poisson equation (4.374) as

V (x) = −Ze
2

r
f(r). (4.378)

At the origin the function f(r) is normalized to unity,

f(0) = 1, (4.379)

to ensure that the nuclear charge is not changed by the electrons.
It is useful to introduce a length scale of the electron cloud

aTF =
1

e2Z1/3

2πh̄2

M

[

Γ(5/2)

2 · 4π

]2/3

=
1

2

(

3π

4

)2/3 aH
Z1/3

≈ 0.8853
aH
Z1/3

, (4.380)
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which is larger than the smallest orbit aH/Z by roughly a factor Z2/3. All length
scales will now be specified in units of aTF , i.e., we set

r = aTF ξ. (4.381)

In these units, the electron density (4.367) becomes simply

n(x) = −(2Ze
2M)

3/2

3π2h̄3

[

f(ξ)

aTF ξ

]3/2

=
Z

4πa3TF

[

f(ξ)

ξ

]3/2

. (4.382)

The left-hand side of the Poisson equation (4.374) reads

∇
2V (x) =

1

r

d

dr2
rV (x) = −Ze

2

a3TF

1

ξ
f ′′(ξ), (4.383)

so that we obtain the self-consistent Thomas-Fermi equation

f ′′(ξ) =
1√
ξ
f 3/2(ξ), ξ > 0. (4.384)

This equation ensures that the volume integral over the above electron density is
equal to Z. The condition ξ > 0 excludes the nuclear charge from the equation,
whose correct magnitude is incorporated by the initial condition (4.379).

ξ

f(ξ)

Figure 4.2 Solution for screening function f(ξ) in Thomas-Fermi model.

The differential equation (4.384) is solved numerically by the function shown in
Fig. 4.2. Near the origin, it starts out like

f(ξ) = 1− sξ + . . . , (4.385)

with a slope
s ≈ 1.58807. (4.386)

The higher powers of the expansion can be calculated recursively as shown in Ap-
pendix 4C. The are, however, useless for an evaluation of the function since the
expansion is divergent. A technique for evaluating such expansions will be devel-
oped in Chapter 5.
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For large ξ, the function goes to zero like

f(ξ) ≈ 144

ξ3
. (4.387)

This power falloff is a weakness of the model since the true screened potential should
fall off exponentially fast. The right-hand side by itself happens to be an exact
solution of (4.384), but does not satisfy the desired boundary condition f(0) = 1.

4.10.3 Energy Functional of Thomas-Fermi Atom

Let us derive an energy functional whose functional extremization yields the
Thomas-Fermi equation (4.384). First, there is the kinetic energy of the spin-up
and spin-down electrons in a potential V (x). It is given by the volume integral over
twice the Thomas-Fermi expression (4.369):

E
(−)
kin = 2

3

5

(

M

2πh̄2

)3/2 1

Γ(5/2)

∫

d3x [−V (x)]5/2. (4.388)

This can be expressed in terms of the electron density (4.367) as

E
(−)
kin =

3

5
κ
∫

d3xn5/3(x), (4.389)

where

κ ≡ h̄

2M

(

3π2
)2/3

. (4.390)

The potential energy

E
(−)
pot =

∫

d3xV (x)n(x) (4.391)

is related to E
(−)
kin via relation (4.373) as

E
(−)
pot = −5

3
E

(−)
kin , (4.392)

and the total electron energy in the potential V (x) is

E(−)
e = E

(−)
kin + E

(−)
pot =

2

5
E

(−)
pot . (4.393)

We now observe that if we consider the energy as a functional of an arbitrary density
n(x),

E(−)
e = Ee[n] ≡

3

5
κ
∫

d3xn5/3(x) +
∫

d3xV (x)n(x), (4.394)

the physical particle density (4.367) constitutes a minimum of the functional, which
satisfies κn2/3(x) = −V (x). In the Thomas-Fermi atom, V (x) on the right-hand
side of (4.394) is, of course, the nuclear Coulomb potential, i.e.,

E
(−)
pot = E

(−)
C ≡

∫

d3xVC(x)n(x). (4.395)
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The energy E(−)
e has to be supplemented by the energy due to the Coulomb

repulsion between the electrons

E(−)
ee = Eee[n] =

e2

2

∫

d3xd3x′ n(x)
1

|x− x′|n(x
′). (4.396)

The physical energy density should now be obtained from the minimum of the
combined energy functional

Etot[n] =
3

5
κ
∫

d3xn5/3(x) +
∫

d3xVC(x)n(x) +
e2

2

∫

d3xd3x′ n(x)
1

|x− x′|n(x
′).

(4.397)
Since we are not very familiar with extremizing nonlocal functionals, it will be
convenient to turn this into a local functional. This is done as follows. We introduce
an auxiliary local field ϕ(x) and rewrite the interaction term as

Eee[n, ϕ] = Eϕ[n, ϕ]− Eϕϕ[ϕ] ≡
∫

d3xϕ(x)n(x)− 1

8πe2

∫

d3x∇ϕ(x)∇ϕ(x). (4.398)

Extremizing this in ϕ(x), under the assumption of a vanishing ϕ(x) at spatial infin-
ity, yields the electric potential of the electron cloud

∇
2ϕ(x) = −4πe2n(x), (4.399)

which is the same as (4.374), but without the nuclear point charge at the origin.
Inserting this into (4.398) we reobtain precisely to the repulsive electron-electron
interaction energy (4.396).

Replacing the last term in (4.397) by the functional (4.398), we obtain a total
energy functional Etot[n, ϕ], for which it is easy to find the extremum with respect
to n(x). This lies at

κn2/3(x) = −V (x), (4.400)

where

V (x) = VC(x) + ϕ(x) (4.401)

is the combined Thomas-Fermi potential of the nucleus and the electron cloud solving
the Poisson equation (4.374).

If the extremal density (4.400) is inserted into the total energy functional
Etot[n, ϕ], we may use the relation (4.392) to derive the following functional of ϕ(x):

Etot[ϕ] = −
2

5

∫

d3xV (x)n(x) +
1

8πe2

∫

d3xϕ(x)∇2ϕ(x). (4.402)

When extremizing this expression with respect to ϕ(x) we must remember that
V (x) = VC(x) + ϕ(x) is also present in n(x) with a power 3/2. The extremum lies
therefore again at a field satisfying the Poisson equation (4.399).
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4.10.4 Calculation of Energies

We now proceed to calculate explicitly the energies occuring in Eq. (4.402). They
turn out to depend only on the slope of the screening function f(ξ) at the origin.

Consider first E
(−)
pot . The common prefactor appearing in all energy expressions can

be expressed in terms of the Thomas-Fermi length scale aTF of Eq. (4.380) as

2
M3/2

(2πh̄)3/2
4π

Γ(5/2)
e3 =

Z−1/2

a
3/2
TF

. (4.403)

We therefore obtain the simple energy integral involving the screening function f(ξ):

E
(−)
pot = −Z

2e2

a

∫ ∞

0
dξ

1√
ξ
f 5/2(ξ). (4.404)

The interaction energy between the electrons at the extremal ϕ(x) satisfying (4.399)
becomes simply

E(−)
ee =

1

2

∫

d3xn(x)ϕ(x), (4.405)

which can be rewritten as

E(−)
ee =

1

2

∫

d3xn(x)[V (x)− VC(x)] =
1

2
E

(−)
pot −

1

2
E

(−)
C . (4.406)

Inserting this into (4.402) we find the alternative expression for the total energy

E
(−)
tot =

2

5
E

(−)
pot −E(−)

ee = − 1

10
E

(−)
pot +

1

2
E

(−)
C . (4.407)

The energy E
(−)
C of the electrons in the Coulomb potential is evaluated as follows.

Replacing n(x) by −∇2ϕ(x)/4πe2, we have, after two partial integrations with
vanishing boundary terms and recalling (4.374),

E
(−)
C = − 1

4πe2

∫

d3xϕ(x)∇2VC(x) = −
∫

d3xϕ(x)nC(x). (4.408)

Now, since

ϕ(x) = V (x)− VC(x) = −
Ze2

r
[f(ξ)− 1], nC = Zδ(3)(x), (4.409)

we see that the Coulomb energy E
(−)
C depends only on ϕ(0), which can be expressed

in terms of the negative slope (4.386) of the function f(ξ) as:

ϕ(0) =
Ze2

a
s. (4.410)

Thus we obtain

E
(−)
C = −Z

2e2

a
s. (4.411)
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We now turn to the integral associated with the potential energy in Eq. (4.404):

I[f ] =
∫ ∞

0
dξ

1√
ξ
f 5/2(ξ). (4.412)

By a trick it can again be expressed in terms of the slope parameter s. We express
the energy functional (4.402) in terms of the screening function f(ξ) as

Etot[ϕ]=−
Z2e2

aTF

ε[f ], (4.413)

with the dimensionless functional

ε[f ] ≡ 2

5
I[f ] +

1

2
J [f ] =

∫ ∞

0
dξ

{

2

5

1√
ξ
f 5/2(ξ)− 1

2
[f(ξ)− 1]f ′′(ξ)

}

. (4.414)

The second integral can also be rewritten as

J [f ] =
∫ ∞

0
dξ [f ′(ξ)]2. (4.415)

This follows from a partial integration

J [f ] = −
∫ ∞

0
dξ [f(ξ)− 1]f ′′(ξ) =

∫ ∞

0
dξ [f ′(ξ)]2 − [f(ξ)− 1]f ′(ξ)|∞0 , (4.416)

inserting the boundary condition f(ξ)− 1 = 0 at ξ = 0 and f ′(ξ) = 0 at ξ =∞.
We easily verify that the Euler-Lagrange equation following from ε[f ] is the

Thomas-Fermi differential equation (4.384).
As a next step in calculating the integrals I and J , we make use of the fact that

under a scaling transformation

f(ξ)→ f̄(ξ) = f(λξ), (4.417)

the functional ε[f ] goes over into

ελ[f ] =
2

5
λ−1/2I[f ] +

1

2
λJ [f ]. (4.418)

This must be extremal at λ = 1, from which we deduce that for f(ξ) satisfying the
differential equation (4.384):

I[f ] =
5

2
J [f ]. (4.419)

This relation permits us to express the integral J in terms of the slope of f(ξ) at
the origin. For this we separate the two terms in (4.416), and replace f ′′(ξ) via the
Thomas-Fermi differential equation (4.384) to obtain

J=−
∫ ∞

0
dξ f(ξ)f ′′(ξ) +

∫ ∞

0
dξ f ′′(ξ)= −

∫ ∞

0
dξ

1√
ξ
f 5/2(ξ)−f ′(0) = −I + s. (4.420)
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Together with (4.419), this implies

I =
5

7
s, J =

2

7
s. (4.421)

Thus we obtain for the various energies:

E
(−)
kin =

3

5

Z2e2

aTF

5

7
s, E

(−)
pot = −Z

2e2

aTF

5

7
s, E(−)

e = −2
5

Z2e2

aTF

5

7
s,

E
(−)
C = −Z

2e2

aTF
s, E(−)

ee =
Z2e2

aTF

1

7
s,

(4.422)

and the total energy is

E
(−)
tot =

2

5
E

(−)
pot−E(−)

ee = − 1

10
E

(−)
pot+

1

2
E

(−)
C = −3

7

Z2e2

aTF
s ≈ −0.7687Z7/3 e

2

aH
. (4.423)

The energy increases with the nuclear charge Z like Z2/aTF ∝ Z7/3.
At the extremum, we may express the energy functional ε[f ] with the help of

(4.420) as

ε̄[f ] = − 1

10

∫ ∞

0
dξ

1√
ξ
f 5/2(ξ)− 1

2
f(0)f ′(0), (4.424)

or in a form corresponding to (4.407):

¯̄ε[f ] ≡ − 1

10
I[f ] +

1

2
JC[f ] = −

1

10

∫ ∞

0
dξ

1√
ξ
f 5/2(ξ) +

1

2

∫ ∞

0
dξ

1√
ξ
f 3/2(ξ). (4.425)

Using the Thomas-Fermi equation (4.384), the second integral corresponding to the
Coulomb energy can be reduced to a surface term yielding JC[f ] = s, so that (4.425)
gives the same total energy as (4.414).

4.10.5 Virial Theorem

Note that the total energy is equal in magnitude and opposite in sign to the kinetic
energy. This is a general consequence of the so-called viral theorem for Coulomb
systems. The kinetic energy of the many-electron Schrödinger equation contains the
Laplace differential operator proportional to ∇

2, whereas the Coulomb potentials
are proportional to 1/r. For this reason, a rescaling x → λx changes the sum of
kinetic and total potential energies

Etot = Ekin + Epot (4.426)

into
λ2Ekin + λEpot. (4.427)

Since this must be extremal at λ = 1, one has the relation

2Ekin + Epot = 0, (4.428)

which proves the virial theorem

Etot = −Ekin. (4.429)

In the Thomas-Fermi model, the role of total potential energy is played by the
combination E

(−)
pot − E(−)

ee , and Eq. (4.422) shows that the theorem is satisfied.
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4.10.6 Exchange Energy

In many-body theory it is shown that due to the Fermi statistics of the electronic
wave functions, there exists an additional electron-electron exchange interaction

which we shall now take into account. For this purpose we introduce the bilocal
density of all states of negative energy by analogy with (4.363):

ρ
(−)
cl (xb,xa) =

∫ 0

V (x̄)
dEρ

(−)
cl (E;xb,xa). (4.430)

In three dimensions we insert (4.280) and rewrite the energy integral as

∫ 0

V (x̄)
dE =

1

M

∫ pF (x̄)

0
dp p , (4.431)

with the Fermi momentum pF (x̄) of the neutral atom at the point x̄ [see (4.365)].
In this way we find

ρ
(−)
cl (xb,xa) =

p3F (x̄)

2π2h̄3
1

z3
(sin z − z cos z), (4.432)

where
z ≡ pF (x̄)R/h̄. (4.433)

This expression can, incidentally, be obtained alternatively by analogy with the
local expression (4.366) from a momentum integral over free wavefunctions

ρ
(−)
cl (xb,xa) =

∫

|p|≤pF (x̄)

d3p

(2πh̄)D
eip(xb−xa)/h̄. (4.434)

The simplest way to derive the exchange energy is to re-express the density of
states ρ(−)(E;x) as the diagonal elements of the bilocal density

ρ(−)(x) = ρ(−)(xb,xa) (4.435)

and rewrite the electron-electron energy (4.396) as

E(−)
ee = 4× e2

2

∫

d3xd3x′ρ(−)(x,x)
1

4π|x− x′|ρ
(−)(x′,x′). (4.436)

The factor 4 accounts for the four different spin pairs in the first and the second
bilocal density.

↑ ↑; ↑ ↑; ↑ ↑; ↓ ↓; ↓ ↓; ↑ ↑; ↓ ↓; ↓ ↓ .

In the first and last case, there exists an exchange interaction which is obtained by
interchanging the second arguments of the bilocal densities and changing the sign.
This yields

E
(−)
exch = −2 × e2

2

∫

d3xd3x′ρ(−)(x,x′)
1

4π|x− x′|ρ
(−)(x′,x). (4.437)
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The integral over x− x′ may be performed using the formula

∫ ∞

0
dzz2

1

z

[

1

z3
(sin z − z cos z)

]2

=
1

4
, (4.438)

and we obtain the exchange energy

E
(−)
exch = − e2

4π3

∫

d3x̄

[

pF (x̄)

h̄

]4

. (4.439)

Inserting

pF (x) =

√

2Z

aHaTF

f(ξ)

ξ
, (4.440)

the exchange energy becomes

E
(−)
exch = − 4

π2

aTF

aH
I2
Z2

aH
≈ −0.3588Z5/3 e

2

aH
I2, (4.441)

where I2 is the integral

I2 ≡
∫ ∞

0
dξ f 2(ξ) ≈ 0.6154. (4.442)

Hence we obtain

E
(−)
exch ≈ −0.2208Z5/3 e

2

aH
, (4.443)

giving rise to a correction factor

Cexch(Z) = 1 + 0.2872Z−2/3 (4.444)

to the Thomas-Fermi energy (4.423).

4.10.7 Quantum Correction Near Origin

The Thomas-Fermi energy with exchange corrections calculated so far would be re-
liable for large-Z only if the potential was smooth so that the semiclassical approx-
imation is applicable. Near the origin, however, the Coulomb potential is singular
and this condition is no longer satisfied. Some more calculational effort is necessary
to account for the quantum effects near the singularity, based on the following ob-
servation [6]. For levels with an energy smaller than some value ε < 0, which is large
compared to the ground state energy Z2e2/aH , but much smaller than the average
Thomas Fermi energy per particle Z2e2/aZ ∼ Z2e2/aHZ

2/3, i.e., for

Z2e2

aH

1

Z2/3
≪ −ε≪ Z2e2

aH
, (4.445)

we have to recalculate the energy. Let us define a parameter ν by

−ε ≡ Z2

2aHν2
, (4.446)
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which satisfies
1≪ ν2 ≪ Z2/3. (4.447)

The contribution of the levels with energy

p2

2M
− Ze2

r
< −ε (4.448)

to E
(−)
kin,TF is given by an integral like (4.371), where the momentum runs from 0

to p−ε(x) =
√

2M [−ε − V (x)]. In the kinetic energy (4.372), the potential V (x) is

simply replaced by −ε − V (x), and the spatial integral covers the small sphere of
radius rmax, where −ε − V (x) > 0. For the screening function f(ξ) = V (r)r/Ze2

this implies the replacement

f(ξ)→ [−ε− V (r)] r

Ze2
= f(ξ)− ξ/ξm, (4.449)

where

ξm =
2ν2

Z

aH
a

(4.450)

is small of the order Z−2/3. Using relation (4.429) between total and kinetic energies
we find the additional total energy

∆E
(−)
tot = −3

5

Z2e2

a

∫ ξmax

0
dξ

1√
ξ
[f(ξ)− ξ/ξm]5/2 , (4.451)

where ξmax ≡ rmax/a is the place at which the integrand vanishes, i.e., where

ξmax = Ze2εf(ξmax)/a, (4.452)

this being the dimensionless version of

−ε− V (rmax) = 0. (4.453)

Under the condition (4.447), the slope of f(ξ) may be ignored and we can use the
approximation

ξmax ≈ ξm (4.454)

corresponding to rmax = Ze2/ε, with an error of relative order Z−2/3. After this, the
integral

∫ 1/c

0
dλ

1√
λ
(1− cλ)5/2 =

1√
c
B (1/2, 7/2) =

1√
c

5

8
π, (4.455)

yielding a Beta function B(x, y) ≡ Γ(x)Γ(y)/Γ(x+ y), leads to an energy

∆E
(−)
tot = −3

5

Z2e2

a

5

8

π

M

√

aH
2a

ν

Z1/3
, (4.456)
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showing that the correction to the energy will be of relative order 1/Z1/3. Expressing
a in terms of aH via (4.380), we find

∆E
(−)
tot = −Z

2e2

aH
ν. (4.457)

The point is now that this energy can easily be calculated more precisely. Since
the slope of the screening function can be ignored in the small selected radius,
the potential is Coulomb-like and we may simply sum all occupied exact quantum-
mechanical energies En in a Coulomb potential −Ze2/r which lie below the total
energy −ε. They depend on the principal quantum number n in the well-known
way:

En = −Z
2e2

aH

1

2n2
. (4.458)

Each level occurs with angular momentum l = 0, . . . , n − 1, and with two spin
directions so that the total degeneracy is 2n2. By Eq. (4.446), the maximal energy
−ε corresponds to a maximal quantum number nmax = ν. The sum of all energies
En up to the energy ε is therefore given by

∆QME
(−)
tot = −2Z

2e2

aH

1

2

ν
∑

n=0

1

= −Z
2e2

aH
[ν] , (4.459)

where [ν] is the largest integer number smaller than ν. The difference between the
semiclassical energy (4.456) and the true quantum-mechanical one (4.459) yields the
desired quantum correction

∆E(−)
corr = −

Z2e2

aH
([ν]− ν). (4.460)

For large ν, we must average over the step function [ν], and find

〈[ν]〉 = ν − 1

2
, (4.461)

and therefore

∆E(−)
corr =

Z2e2

aH

1

2
. (4.462)

This is the correction to the energy of the atom due to the failure of the quasi-
classical expansion near the singularity of the Coulomb potential. With respect to
the Thomas-Fermi energy (4.423) which grows with increasing nuclear charge Z like
−0.7687Z7/3e2/aH , this produces a correction factor

Csing(Z) = 1− 7aTF

6aHs
≈ 1− 0.6504Z−1/3 (4.463)

to the Thomas-Fermi energy (4.423).
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4.10.8 Systematic Quantum Corrections to Thomas-Fermi
Energies

Just as for the density of states in Section 4.9, we can derive the quantum corrections to the energies
in the Thomas-Fermi atom. The electrons fill up all negative-energy levels in the combined potential
V (x). The density of states in these levels can be selected by a Heaviside function of the negative
Hamiltonian operator as follows:

ρ(−)(x) = 〈x|Θ(−Ĥ)|x〉. (4.464)

Using the Fourier representation (1.312) for the Heaviside function we write

Θ(−Ĥ) =

∫ ∞

−∞

dt

2πi(t− iη)
e−iĤt/h̄, (4.465)

and obtain the integral representation

ρ(−)(x) =

∫ ∞

−∞

dt

2πi(t− iη)
(x t|x 0). (4.466)

Inserting the short-time expansion (4.258), and the correspondence t → ih̄d/dV in the time
integral, we find

ρ(x) =

{

1− h̄2

12M
∇

2V (x)
d2

dV 2
− h̄2

24M
[∇V (x)]2

d3

dV 3
+ . . .

}

ρTF(x). (4.467)

The potential energy is simply given by

E
(−)
pot (x) = 〈x|V (x)Θ(−Ĥ)|x〉 =

∫

d3xV (x)ρ(−)(x). (4.468)

With (4.467), this becomes

E
(−)
pot (x) = V (x)

{

1− h̄2

12M
∇

2V (x)
d2

dV 2
− h̄2

24M
[∇V (x)]2

d3

dV 3
+ . . .

}

ρTF(x). (4.469)

For the energy of all negative-energy states we may introduce a density function

E(−)(x) = 〈x|ĤΘ(−Ĥ)|x〉. (4.470)

The derivative of this with respect to V (x) is equal to the density of states (4.464):

∂

∂V (x)
E(−)(x) = ρ(−)(x). (4.471)

This follows right-away from ∂Ĥ/∂V (x) = 1 and ∂[xΘ(x)]/δx = Θ(x).
Inserting the representation (4.465), the factor Ĥ can be obtained by applying the differential

operator ih̄∂t to the exponential function. After a partial integration, we arrive at the integral
representation

E(−)(x) = ih̄

∫ ∞

−∞

dt

2πi(t− iη)2
(x t|x 0). (4.472)

Inserting on the right-hand side the expansion (4.258), the leading term produces the local Thomas-

Fermi energy density (4.372):

E
(−)
TF (x) = −

(

M

2πh̄

)D/2
1

Γ(D/2 + 2)
[−V (x)]D/2+1. (4.473)
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The short-time expansion terms yield, with the correspondence t→ ih̄d/dV , the energy including
the quantum corrections

E(−)(x) =

{

1− h̄2

12M
∇

2V (x)
d2

dV 2
− h̄2

24M
[∇V (x)]2

d3

dV 3
+ . . .

}

E
(−)
TF (x). (4.474)

One may also calculate selectively the kinetic energy density from the expression

E(−)(x) =
1

2M
〈x|p̂2Θ(−Ĥ)|x〉. (4.475)

This can obviously be extracted from (4.472) by a differentiation with respect to the mass:

E
(−)
kin (x) = −M ∂

∂M
ih̄

∫ ∞

−∞

dt

2πi(t− iη)2
〈x|e−iĤt/h̄|x〉

= −M ∂

∂M
E(−)(x). (4.476)

According to Eq. (4.474), the first quantum correction to the energy E
(−)
e is

∆E(−)
e = −

∫

d3x

[

− h̄2

12M
∇

2V
d2

dV 2
− h̄2

24M
(∇V )2

d3

dV 3

]

× 2
2

5

(

M

2πh̄

)3/2
1

Γ(5/2)
(−V )5/2

=

√
2M

12h̄π2

∫

d3x

[

(−V )1/2∇2V − 1

4
(−V )−3/2(∇V )2

]

. (4.477)

It is useful to bring the second term to a more convenient form. For this we note that by the chain
rule of differentiation

∇
2V 3/2 =

3

2
∇

[

V 1/2
∇V

]

=
3

4

[

V −1/2(∇V )2 + 2V 1/2
∇

2V
]

. (4.478)

As a consequence we find

∆E(−)
e =

√
2M

24h̄π2

∫

d3x

[

(−V )1/2∇2V − 2

3
∇

2(−V )3/2
]

. (4.479)

This energy evaluated with the potential V determined above describes directly the lowest
correction to the total energy. To prove this, consider the new total energy [recall (4.398)]

E
(−)
tot = E(−)

e + ∆E(−)
e − Eϕϕ[ϕ]. (4.480)

Extremizing this in the field ϕ(x) and denoting the new extremal field by ϕ(x)+∆ϕ(x), we obtain
for ∆ϕ(x) the field equation:

δ

δV (x)
[E(−)

e + ∆E(−)
e ] +

1

e2
∇

2[ϕ(x) + ∆ϕ(x)] = 0. (4.481)

Taking advantage of the initial extremality condition (4.399), we derive the field equation

1

e2
∇

2 ∆ϕ(x) = −δ∆E
(−)
e

δV (x)
. (4.482)

If we now expand the corrected energy up to first order in ∆E
(−)
e and ∆ϕ(x), we obtain

E
(−)
tot = E(−)

e + ∆E(−)
e +

∫

d3x
δE

(−)
e

δV (x)
∆ϕ(x) − Eϕϕ[ϕ]− 1

4πe2

∫

d3x∇ϕ(x)∇∆ϕ(x). (4.483)
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Due to the extremality property (4.399) of the uncorrected energy at the original field ϕ(x) , the
second and fourth terms cancel each other, and the correction to the total energy is indeed given
by (4.479).

Actually, the statement that the energy (4.479) is the next quantum correction is not quite true.
When calculating the first quantum correction in Subsection 4.10.7, we subtracted the contribution
of all orbits with total energies

E < −ε. (4.484)

After that we calculated in (4.459) the exact quantum corrections coming from the neighborhood

r < rmax = Ze2ε (4.485)

of the origin. Thus we have to omit this neighborhood from all successive terms in the semiclassical

expansion, in particular from (4.479). According to the remarks after Eq. (4.372), the energy E
(−)
e

of electrons filling all levels up to a total energy EF is found from (4.368) by replacing (−V )D/2+1

by (1− EF∂/EF )(EF − V )D/2+1. The energy level satisfying (4.484) correspond to a Fermi level
EF , so that the energy of the electrons in these levels is

E(−)
e =2

2

5
E

(−)
potTF= −2

2

5

(

M

2πh̄

)3/2
1

Γ(5/2)
(1−EF∂EF

)

∫

d3x[−EF− V (x)]5/2. (4.486)

We therefore have to subtract from the correction (4.477) a term

∆subE
(−)
e =(1−EF∂EF

)

√
2M

12h̄π2

∫

d3x

[

(−EF− V )1/2∇2V − 1

4
(−EF− V )−3/2(∇V )2

]

. (4.487)

The true correction can then be decomposed into a contribution from the finite region outside the
small sphere

∆E
(−)
outside =

√
2M

24h̄π2

∫

r≥rmax

d3x(−V )1/2∇2V, (4.488)

plus a subtracted contribution from the inside

∆E
(−)
inside =

√
2M

24h̄π2

∫

r<rmax

d3x
[

(−V )1/2 − (1− EF ∂EF
)(−EF− V )1/2

]

∇
2V, (4.489)

plus a pure gradient term

∆E
(−)
grad = −

√
2M

24h̄π2

2

3

[∫

d3x∇2(−V )3/2−
∫

r<rmax

d3x∇2(1 − EF∂EF
)(−EF− V )3/2

]

.

(4.490)

The last two volume integrals can be converted into surface integrals. Either integrand vanishes
on its outer surface [recall (4.452)]. At the inner surface, an infinitesimal sphere around the origin,
the integrands coincide so that the energy (4.490) vanishes.

The energy (4.489) does not vanish but can be ignored in the present approximation. At
the δ-function at the nuclear charge in ∇

2V , the difference (−V )1/2 − (1−EF∂EF
)(−EF − V )1/2

vanishes. In the integral, we may therefore replace ∇2V (x) by −4πe2n(x) [dropping the δ-function
in (4.374)]. In the small neighborhood of the origin, the integral is suppressed by a power of Z−4/3

as will be seen below.
Thus, only the outside energy (4.488) needs to be evaluated, where the small sphere excludes

the nuclear charge, so that we may replace ∇
2V (x) as in the last integral. Thus we obtain

∆E
(−)
outside = −2e2M2M

9π3h̄4

∫

r<rmax

d3x[−V (x)]2. (4.491)
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Expressing V in terms of the screening function and going to reduced variables, the quantum
correction takes the final form

∆E
(−)
outside = − 8

9π2

a

aH

[∫

dξf2(ξ)

]

Z5/3

≈ −0.07971
e2

aH
I2Z

5/3 ≈ −0.04905Z5/3 e
2

aH
, (4.492)

where I2 is the integral over f2(ξ) calculated in Eq. (4.442). We have re-extended the integration
over the entire space with a relative error of order Z−2/3, due to the smallness of the sphere. The
correction factor to the leading Thomas-Fermi energy caused by this is

CQM = 1 + 0.06381Z−2/3. (4.493)

In the reduced variables, the order of magnitude of the ignored energy (4.489) can most easily be
estimated. It reads

∆E
(−)
inside = − 8

9π2

a

aH

∫ ξmax

0

dξ
[

f2(ξ)−
√

f(ξ)− ξ/ξmf
3/2(ξ)

]

Z5/3. (4.494)

Since ξmax and ξm are of the order Z−2/3, this energy is of the relative order Z−4/3 and thus
negligible since we want to find here only corrections up to Z−2/3.

Observe that the quantum correction (4.495) is of relative order Z−2/3 and precisely a fraction
2/9 of the exchange energy (4.441). Both energies together are therefore

∆E
(−)
inside + E

(−)
exch =

11

9
E

(−)
exch ≈ −0.2699Z5/3 e

2

aH
. (4.495)

The corrections of order Z−2/3 can be collected in the expression

∆E
(−)
inside + E

(−)
exch = −0.7687Z7/3 e

2

aH
× C2(Z), (4.496)

where C2(Z) is the correction factor

C2(Z) = 1 + 0.3510Z−2/3 + . . . . (4.497)

Including also the Z−1/3-correction (4.463) from the origin we obtain the total energy

E
(−)
tot = −0.7687Z7/3 e2

aH
× Ctot(Z), (4.498)

with the total correction factor

Ctot(Z) = 1− 0.6504Z−1/3 + 0.3510Z−2/3 + . . . . (4.499)

This large-Z approximation is surprisingly accurate. The experimental binding energy of
mercury with Z = 80 is

Eexp
Hg ≈ −18130, (4.500)

in units of e2/aH = 2 Ry, whereas the large-Z formula (4.498) with the correction factor (4.499)
yields the successive approximations including the first, second, and third term in (4.499):

EHg ≈ −(21200, 18000, 18312) for C(80) = (1, 0.849, 0.868). (4.501)

Even at the lowest value Z = 1, the binding energy of the hydrogen atom

Eexp
H ≈ −1

2
(4.502)

is quite rapidly approached by the successive approximations

EH ≈ −(0.7687, 0.2687, 0.5386) for C(1) = (1, 0.350, 0.701). (4.503)
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4.11 Classical Action of Coulomb System

Consider an electron of mass M in an attractive Coulomb potential of a proton at
the coordinate origin

VC(x) = −
e2

r
. (4.504)

If the proton is substituted by a heavier nucleus, e2 has to be multiplied by the
charge Z of that nucleon. The Lagrangian of this system is

L =
M

2
ẋ2 − e2

r
. (4.505)

Because of rotational invariance, the orbital angular momentum is conserved and
the motion is restricted to a plane, say x − y. If φ denotes the azimuthal angle in
this plane, the constant orbital momentum is

l =Mr2φ̇. (4.506)

The conserved energy is

E =
M

2
(ṙ2 + r2φ̇2)− e2

r
. (4.507)

Together with (4.506) we find

ṙ =
1

M
pE(r); pE(r) =

√

2M [E − Veff(r)], (4.508)

where Veff(r) = VC(r) + Vl(r) is the sum of the Coulomb potential and the angular

barrier potential

Vl(r) =
l2

2Mr2
. (4.509)

The differential equation (4.508) is solved by the integral relation

t =
∫

dr
M

pE(r)
. (4.510)

For the angle φ, Eq. (4.506) implies

dφ

dr
=

l

r2pE(r)
, (4.511)

which is solved by the integral

φ = l
∫

dr
1

r2pE(r)
. (4.512)

Inserting pE(r) from (4.508) this becomes explicitly

φ = l
∫

dr

r

[

2ME

(

r2 +
e2r

E
− l2

2ME

)]−1/2

, (4.513)
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while (4.510) reads

t =M
∫

dr r

[

2ME

(

r2 +
e2r

E
− l2

2ME

)]−1/2

. (4.514)

Consider now the motion for negative energies. Defining

p̄E ≡ p−E(∞) =
√
−2ME, (4.515)

and introducing the parameters

a ≡ e2

2|E| =
Me2

p̄2E
, ǫ2 ≡ 1− l2p̄2E

M2e4
= 1− l2

aMe2
= 1− l2v2a

e4
, va =

√

e2

aM
=
p̄E
M
,

(4.516)
we obtain

φ =
l

Mva

∫

dr

r

1
√

a2ǫ2 − (r − a)2
, (4.517)

t =
1

va

∫

dr
r

√

a2ǫ2 − (r − a)2
, (4.518)

where va is the velocity associated with the momentum p̄E . The ratio

ω =
va
a

(4.519)

is the inverse period of the orbit, also called mean motion, which satisfies ω2a3 =
e2/M , the third Kepler law . In the limit E → 0, the major semiaxis a becomes
infinite, and so does ω. The eccentricity vanishes and the orbit is parabolic.

Introducing the variable

h ≡ a(1− ǫ2) = l2

Me2
=

l2

p̄2Ea
, (4.520)

and observing that
l

Mva
= a
√
1− ǫ2, (4.521)

the first equation is solved by

h

r
= 1 + ǫ cos(φ− φ0). (4.522)

This follows immediately from the fact that

sin(φ− φ0) =

√
1− ǫ2
ǫr

√

a2ǫ2 − (r − a)2. (4.523)

The relation (4.522) describes an ellipse with principal axes a = h/(1 − ǫ2) , b =
h/
√
1− ǫ2, and an eccentricity ǫ (see Fig. 4.3). In the orbital plane, the Cartesian
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h h

aǫ

a(ǫ − 1)

a(ǫ + 1)

a

b
φ φ φ

E < 0 E > 0 E > 0

xxx

y

y

y

Figure 4.3 Orbits in Coulomb potential showing the parameter h and the eccentricity

ǫ of ellipse (E < 0) and hyperbola (E > 0) in attractive and repulsive cases.

coordinates of the motion are

x = h
cos(φ− φ0)

1 + ǫ sin(φ− φ0)
, y = h

sin(φ− φ0)

1 + ǫ sin(φ− φ0)
. (4.524)

For positive energy, we define a momentum

pE = pE(∞) =
√
2ME, (4.525)

and the parameters

a ≡ e2

2|E| =
Me2

p2E
, ǫ2 ≡ 1 +

l2p2E
M2e4

= 1 +
l2

aMe2
= 1 +

l2v2a
e4

, va =

√

e2

aM
=
pE
M
.

(4.526)
The eccentricity ǫ is now larger than unity. Apart from this, the solutions to the
equations of motion are the same as before, and the orbits are hyperbolas as shown
in Fig. 4.3. The y-coordinate above the focus is now

h = a(ǫ2 − 1) =
l2

Me2
=

l2

p2Ea
. (4.527)

For a repulsive interaction, we change the sign of e2 in the above equations. The
equation (4.522) for r becomes now

h

r
= −1 + ǫ cos(φ− φ0), (4.528)

and yields the right-hand hyperbola shown in Fig. 4.3.
For later discussions in Chapter 13, where we shall solve the path integral of the

Coulomb system exactly, we also note that by introducing a new variable in terms
of the variable ξ, to so-called eccentric anomaly

r = a(1− ǫ cos ξ), (4.529)
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we can immediately perform the integral (4.518) to find

t =
a

va

∫

dξ (1− ǫ cos ξ) = 1

ω
(ξ − ǫ sin ξ), (4.530)

where we have chosen the integration constant to zero. Using Eq. (4.528) we see
that

x = r cos φ =
h− r
ǫ

= a(cos ξ − ǫ), (4.531)

y = r sin φ =
√
r2 − x2 = a

√
1− ǫ2 sin ξ = b sin ξ. (4.532)

Equations (4.529) and (4.530) represent a parametric representation of the orbit.
From Eqs. (4.530) and (4.529) we see that

dt

r
=

1

a
d(ξ/ω), (4.533)

exhibiting ξ/ω is a path-dependent pseudotime. As a function of this pseudotime,
the coordinates x and y oscillate harmonically.

The pseudotime facilitates the calculation of the classical action A(xb,xa; tb−ta),
as done first in the eighteenth century by Lambert.15 If we denote the derivative
with respect to ξ by a prime, the classical action reads

A =
∫ ξb

ξa
dξ

[

M

2r
aω

(

x′2 + y′2
)

+
e2

aω

]

. (4.534)

For an elliptic orbit with principal axes a, b, this becomes

A =
∫ ξb

ξa
dξ

[

M

2
ω
a2 sin2 ξ + b2 cos2 ξ

1− ǫ cos ξ

]

+Mωa2(ξb − ξa). (4.535)

After performing the integral using the formula

∫

dξ

1− ǫ cos ξ =
2

1− ǫ2 arctan
√
1− ǫ2 tan(ξ/2)

1− ǫ , (4.536)

we find

A =
M

2
a2ω [3(ξb − ξa) + ǫ(sin ξb − sin ξa)] . (4.537)

Introducing the parameters α, β, γ, and δ by the relations

cosα ≡ ǫ cos[(ξb + ξa)/2], β ≡ (ξb − ξa)/2, γ ≡ α + β, δ ≡ α− β, (4.538)

15 Johann Heinrich Lambert (1728–1777) was an ingenious autodidactic taylor’s son who with
16 years found Lambert’s law for the apparent motion of comets (and planets) on the sky: If the
sun lies on the concave (convex) side of the apparent orbit, comet is closer to (farther from) the
sun than the earth. In addition, he laid the foundations to photometry.
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the action becomes

A =
M

2
a2ω [(3γ + sin γ)− (3δ + sin δ)] . (4.539)

Using (4.530), we find for the elapsed time tb − ta the relation

tb − ta =
1

ω
[(γ − sin γ)∓ (δ − sin δ)] . (4.540)

The ∓-signs apply to an ellipse whose short or long arc connects the two endpoints,
respectively. The parameters γ and δ in the action and in the elapsed time are
related to the endpoints xb and xa by

rb + ra +R = 4a sin2(γ/2) ≡ 4aρ+ , rb + ra − R = 4a sin2(δ/2) ≡ 4aρ− , (4.541)

where rb ≡ |xb|, ra ≡ |xa|, R ≡ |xb−xa|, and ρ± ∈ [0, 1]. Expressing the semimajor
axis in (4.539) in terms of ω as a = (e2/Mω2)1/3, and ω in terms of tb− ta we obtain
the desired classical action A(xb,xa; tb − ta).

The elapsed time depends on the endpoints via a transcendental equation which
can only be solved by a convergent power series (Lambert’s series)

tb − ta =
1√
2ω

∞
∑

j=1

(2j)!

22jj!2
1

j2 − 1/4
ǫj−1

(

ρ
j+1/2
+ ± ρj+1/2

−
)

. (4.542)

In the limit of a parabolic orbit the series has only the first term, yielding

tb − ta =
√
2

3ω
(ρ

3/2
+ ± ρ3/2− ). (4.543)

We can also express a and ω in terms of the energy E as e2/(−2E) and
√

−2E/Ma2, respectively, and go over to the eikonal S(xb,xa;E) via the Legen-

dre transformation (4.87). Substituting for tb − ta the relation (4.540), we obtain
for the short arc of the ellipse

S(xb,xa;E) = A(xb,xa;E) + (tb − ta)E =
M

2
a2ω 4(γ − δ). (4.544)

For a complete orbit, the expression (4.537) yields a total action

A =
M

2
a2ω 2π(1 + 2) =

M

2
v2a

2π

ω
(1 + 2) =

p̄E
2M

2π

ω
(1 + 2), (4.545)

where the numbers 1 and 2 indicate the source of the contributions from the kinetic
and potential parts of the action (4.534), respectively. Since the action is the dif-
ference between kinetic and potential energy, the average potential energy is minus
twice as big as the kinetic energy, which is the single-particle version of the virial
theorem observed in the Thomas-Fermi approximation (4.428).
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For positive energies E, the eccentricity is ǫ > 1 and the orbit is a hyperbola
(see Fig. 4.3). Then equations (4.529)–(4.532) become

r = a(ǫ cosh ξ − 1), t =
a

va
(ξ − ǫ sin ξ), (4.546)

x = −aǫ(cosh ξ − ǫ), y = a
√
ǫ2 − 1 sinh ξ. (4.547)

The orbits take a simple form in momentum space. Using Eq. (4.506), we find
from (4.524):

px = − l
h
[ǫ+ sin(φ− φ0)] , py =

l

h
cos(φ− φ0). (4.548)

As a function of time, the momenta describe a circle of radius

p0 =
l

h
=
Me2

l
=

p̄E√
1− ǫ2

(4.549)

around a center on the py-axis with (see Fig. 4.4)

pcx = − l
h
ǫ = − ǫ√

1− ǫ2
. (4.550)

1√
ǫ2−1

1√
1−ǫ2

1
1

ǫ√
ǫ2−1

ǫ√
1−ǫ2

E < 0 E > 0E > 0

px px

py py

Figure 4.4 Circular orbits in momentum space in units p̄E for E < 0 and pE for E > 0.

For positive energies, the above solutions can be used to describe the scattering
of electrons or ions on a central atom. For helium nuclei obtained by α-decay of
radioactive atoms, this is the famous Rutherford scattering process. The potential
is then repulsive, and e2 in the potential (4.504) must be replaced by −2Ze2, where
2e is the charge of the projectiles and Ze the charge of the central atom. As we
can see on Fig. 4.5, the trajectories in an attractive potential are simply related to
those in a repulsive potential. The momentum p̄E is the asymptotic momentum of
the projectile, and may be called p∞. The impact parameter b of the projectile fixes
the angular momentum via

l = bp∞ = bp̄E . (4.551)

Inserting l and p̄E we see that b coincides with the previous parameter b.
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The relation of the impact parameter b with the scattering angle θ may be taken
from Fig. 4.5, which shows that (see also Fig. 4.4)

tan
θ

2
=

p0
p∞

=
1

ǫ2 − 1
. (4.552)

Thus we have

b = a cot
θ

2
. (4.553)

The particles impinging into a circular annulus of radii b and b + db come out
between the angles θ and θ + dθ, with db/dθ = −a/2 sin2(θ/2). The area of the
annulus dσ = 2πbdb is the differential cross section for this scattering process. The
absolute ratio with respect to the associated solid angle dΩ ≡ 2π sin θdθ is then

dσ

dΩ
=

b

sin θ

∣

∣

∣

∣

∣

db

dθ

∣

∣

∣

∣

∣

=
a2

4 sin4(θ/2)
=

Z2α2M2

4p4∞ sin4(θ/2)
. (4.554)

The right-hand side is the famous Rutherford formula, which arises after express-
ing a in terms of the incoming momentum p∞ [recall (4.526)] as a = Ze2/2E =
Zαh̄cM/p2∞.

pa

pa

pa

(pb)

pb

pb

pb

(pa)

E = const.
scattering
center

φa

γa

θ

b

p0

p∞

p∞

Figure 4.5 Geometry of scattering in momentum space. The solid curves are for at-

tractive Coulomb potential, the dashed curves for repulsive (Rutherford scattering). The

right-hand part of the figure shows the circle on which the momentum moves from pa to

pb as the angle φ runs from φa to φb. The distance b is the impact parameter, and θ is

the scattering angle.
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Let us also calculate the classical eikonal in momentum space. We shall do this
for the attractive interaction at positive energy. Inserting (4.524) and (4.548) we
have

S(pb,pa;E) = −l
∫ φb

φa

dφ

1 + ǫ(φ− φ0)
. (4.555)

Using the formula16

∫ dξ

1 + ǫ cos ξ
=

2√
ǫ2 − 1

log
1 + ǫ+

√
ǫ2 − 1 tan(ξ/2)

1− ǫ−
√
ǫ2 − 1 tan(ξ/2)

. (4.556)

Inserting l/
√
1− ǫ2 =Mvaa =Me2/p∞, we find after some algebra

S(pb,pa;E) = −
Me2

p∞
log

ζ + 1

ζ − 1
, p∞ =

√
2ME, (4.557)

with

ζ ≡
√

√

√

√1 +
(p2b − p2∞)(p2b − p2∞)

p2∞|pb − pa|2
. (4.558)

The expression (4.557) has no definite limit if the impinging particle comes in
from spatial infinity where pa becomes equal to p∞. There is a logarithmic divergence
which is due to the infinite range of the Coulomb potential. In nature, the charges
are always screened at some finite radius R, after which the logarithmic divergence
disappears. This was discussed before when deriving the eikonal approximation
(1.502) to Coulomb scattering.

There is a simple geometric meaning to the quantity ζ . Since the force is central,
the change in momentum along a classical orbit is always in the direction of the
center, so that (4.555) can also be written as

S(pb,pa;E) = −
∫ pb

pa

r dp. (4.559)

Expressing r in terms of momentum and total energy, this becomes for an attractive
(repulsive) potential

S(pb,pa;E) = ±2Me2
∫ pb

pa

dp

p2 − 2ME
. (4.560)

Now we observe, that for E < 0, the integrand is the arc length on a sphere of
radius 1/p̄E in a four-dimensional momentum space. Indeed, the three-dimensional
momentum space can be mapped onto the surface of a four-dimensional unit sphere
by the following transformation

n4 ≡
p2 − p̄2E
p2 + p̄2E

, n ≡ 2p̄Ep

p2 + p̄2E
. (4.561)

16See the previous footnote.
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Then we find that
dp

p2 + p̄2E
=

dϑ

2p̄E
, (4.562)

where dϑ is the infinitesimal arc length on the unit sphere. But then the eikonal
becomes simply

S(pb,pa;E) = ±
2Me2

p̄E
ϑba, (4.563)

where ϑ is the angular difference between the images of the momenta pb and pa.
This is easily calculated. From (4.561) we find directly

cosϑba =
4p̄2E pb · pa + (p2b − p̄2E)(p2a − p̄2E)

(p2b + p̄2E)(p
2
a + p̄2E)

= 1− 2
p̄2E(pb − pa)

2

(p2b + p̄2E)(p
2
a + p̄2E)

. (4.564)

Continuing E analytically to positive energies, we may replace p̄E by ip∞ = 2ME,
and obtain

cos ϑba = 1 + 2
p2∞(pb − pa)

2

(p2b − p2∞)(p2a − p2∞)
. (4.565)

Hence ϑ becomes imaginary, ϑ = iϑ̄, with

sin
ϑ̄

2
=

p2∞(pb − pa)
2

(p2b − p2∞)(p2a − p2∞)
, (4.566)

and the eikonal function (4.567) takes the form

S(pb,pa;E) = ±
2Me2

p∞
ϑ̄ba. (4.567)

This is precisely the expression (4.557) with ζ = 1/ tanh(ϑ̄ab/2).

4.12 Semiclassical Scattering

Let us also derive the semiclassical limit for the scattering amplitude.

4.12.1 General Formulation

Consider a particle impinging with a momentum pa and energy E = Ea = p2
a/2M

upon a nonzero potential concentrated around the origin. After a long time, it
will be found far from the potential with some momentum pb and the same energy
E = Eb = p2

b/2M . Let us derive the scattering amplitude for such a process from
the heuristic formula (1.510):

fpbpa
=
pb
M

√

2πh̄M/i
3

(2πh̄)3
lim
tb→∞

1

t
1/2
b

eiEb(tb−ta)/h̄ [(pbtb|pata)−〈pb|pa〉] . (4.568)

In the semiclassical approximation we replace the exact propagator in the momen-
tum representation by a sum over all classical trajectories and associated phases,
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connecting pa to pb in the time tb − ta. According to formula (4.172) we have in
three dimensions

(pbtb|pata)−〈pb|pa〉 =
(2πh̄)3

(2πh̄/i)3/2
∑

class. traj.

′

∣

∣

∣

∣

det

(

−∂xa

∂pb

)

∣

∣

∣

∣

1/2

eiA(pb,pa;tb−ta)/h̄−iνπh̄/2.

(4.569)

The sum carries a prime to indicate that unscattered trajectories are omitted. The
classical action in momentum space is

A(pb,pa; tb − ta) =
∫ pa

pb

x · ṗ−
∫ tb

ta
Hdt = S(pb,pa;E)− E(tb − ta), (4.570)

where S(pb,pa;E) is the eikonal function introduced in Eqs. (4.240) and (4.68).
Inserting (4.569) into (1.510) we obtain the semiclassical scattering transition

amplitude

fpbpa
= lim

tb→∞

∑

class. traj.

′ pb√
tbM

∣

∣

∣

∣

det
∂xa

∂pb

∣

∣

∣

∣

1/2

eiS(pb,pa;E)/h̄−iνπ/2. (4.571)

The determinant has a simple physical meaning. To see this we rewrite

∂xa

∂pb

∣

∣

∣

∣

∣

pa

=
∂pb

∂xa

∣

∣

∣

∣

∣

−1

pa

, (4.572)

so that (4.573) becomes

fpbpa
= lim

tb→∞

∑

class. traj.

′ p√
tbM

∣

∣

∣

∣

det
∂pb

∂xa

∣

∣

∣

∣

−1/2

pa

eiS(pb,pa;E)/h̄−iνπ/2. (4.573)

We now note that for large tb

pb = p(tb) =Mxb(tb)/tb (4.574)

along any trajectory. Thus we find

fpbpa
= lim

tb→∞

∑

class. traj.

′

rb

∣

∣

∣

∣

det
∂xb

∂xa

∣

∣

∣

∣

−1/2

pb

eiS(pb,pa;E)/h̄−iνπ/2, (4.575)

where rb = |xb|.
From the definition of the scattering amplitude (1.497) we expect the prefactor of

the exponential to be equal to the square root of the classical differential cross section
dσcl/dΩ. Let us choose convenient coordinates in which the particle trajectories start
out at a point with cartesian coordinates xa = (xa, ya, za) with a large negative
za and a momentum pa ≈ paẑ, where ẑ is the direction of the z-axis. The final
points xb of the trajectories will be described in spherical coordinates. If p̂b =

H. Kleinert, PATH INTEGRALS



4.12 Semiclassical Scattering 449

(sin θb cosφb, sin θ sinφb, cos θb) denotes the direction of the final momentum pb =
pbp̂b, then xb = rbp̂. Let us introduce an auxiliary triplet of spherical coordinates
sb ≡ (rb, θb, φb). Then we factorize the determinant in (4.575) as

det
∂xb

∂xa
= det

∂xb

∂sa
× det

∂sb
∂xa

= r2b det
∂sb
∂xa

.

We further calculate

det
∂sb
∂xa

=























∂rb
∂xa

∂rb
∂ya

∂rb
∂za

∂θb
∂xa

∂θb
∂ya

∂θb
∂za

∂φb

∂xa

∂φb

∂ya

∂φb

∂za























. (4.576)

Long after the collision, for tb →∞, a small change of the starting point along the
trajectory dza will not affect the scattering angle. Thus we may approximate the
matrix elements in the third column by ∂za ≈ ∂φ/∂za ≈ 0. After the same amount
of time the particle will only wind up at a slightly more distant rb, where drb ≈ dzb.
Thus we may replace the matrix element in the right upper corner by 1, so that the
determinant (4.576) becomes in the limit

lim
tb→∞

det
∂sb
∂xa

≈ det











∂θb
∂xa

∂θb
∂ya

∂φb

∂xa

∂φb

∂ya











=
dθbdφb

dxbdyb
=
dΩ

dσ
, (4.577)

where dΩ = sin θbdθdφb is the element of the solid angle of the emerging trajectories,
and dσ the area element in the x− y -plane, for which the trajectories arrive in an
element of the final solid angle dΩ. Thus we obtain

[

det
∂xb

∂xa

]−1

≈ 1

r2b

dσ

dΩ
. (4.578)

The ratio dσ/dΩ is precisely the classical differential cross section of the scattering
process.

Combining (4.575) and (4.577), we see that the contribution of an individual
trajectory to the semiclassical amplitude is of the expected form [7]

fpbpa
=

√

dσcl
dΩ

×
∑

class. traj.

′

eiS(pb,pa;E)/h̄−iνπ/2. (4.579)

Note that this equation is also valid for some potentials which are not restricted to
a finite regime around the origin, such as the Coulomb potentials. In the operator
theory of quantum-mechanical scattering processes, such potentials always cause
considerable problems since the outgoing wave functions remain distorted even at
large distances from the scattering center.



450 4 Semiclassical Time Evolution Amplitude

Usually, there are only a few trajectories contributing to a process with a given
scattering angle. If the actions of these trajectories differ by less than h̄, the semi-
classical approximation fails since the fluctuation integrals overlap. Examples are
the light scattering causing the ordinary rainbow in nature, and glory effects seen
at night around the moonlight.

We now turn to a derivation of the amplitude (4.579) from the more reliable
formula (1.531) for the interacting wave function

〈xb |ÛI(0, ta)|pa〉 = lim
ta→−∞

(

−2πih̄ta
M

)3/2

(xbtb|xata)e
i(paxa−p2ata/2M)/h̄

∣

∣

∣

xa=pata/M
,

by isolating the factor of eiparb/rb for large rb, as discussed at the end of Section 1.16.
On the right-hand side we now insert the x-space form (4.127) of the semiclassical
amplitude, and use (4.87) to write

〈xb |ÛI(0, ta)|pa〉 = lim
ta→−∞

(−ta
M

)3/2
[

det3

(

−∂pa

∂xb

)]1/2

× ei[S(xb,xa;Ea)+ipaxa−iνπ/2]/h̄
∣

∣

∣

xa=pata/M
. (4.580)

Now we observe that

(−ta
M

)3/2
[

det3

(

−∂pa

∂xb

)]1/2

=

[

det3

(

∂xa

∂xb

)]1/2

. (4.581)

In Eq. (4.578) we have found that this determinant is equal to
√

dσ/dΩ/rb, bringing

Eq. (4.580) to the form

〈xb |ÛI(0, ta)|pa〉 = lim
ta→−∞

1

rb

√

dσcl
dΩ

ei[S(xb,xa;Ea)+ipaxa−iνπ/2]/h̄

∣

∣

∣

∣

∣

∣

xa=pata/M

. (4.582)

For large xb in the direction of the final momentum pb, we can rewrite the exponent
as [recalling (4.240)]

S(xb,xa;Ea) + ipaxa = pbrb + S(pb,pa;Ea) (4.583)

so that (4.582) consists of an outgoing spherical wave function eipbrb/h̄/rb multiplied
by the scattering amplitude

fpbpa
=

√

dσcl
dΩ

×
∑

class. traj.

′

eiS(pb,pa;E)/h̄−iνπ/2, (4.584)

the same as in (4.579).
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4.12.2 Semiclassical Cross Section of Mott Scattering

If the scattering particle is distinguishable from the target particles, the extra phase
in the semiclassical formula (4.584) does not change the classical result (4.554).
A quantum-mechanical effect becomes visible only if we consider electron-electron
scattering, also referred to as Mott scattering . The potential is repulsive, and the
above Coulomb potential holds for the relative motion of the two identical particles
in their center-of-mass frame. Moreover, the identity of particles requires us to add
the amplitudes for the trajectories going to pb and to −pb [see Fig. 4.6], so that the
differential cross section is

dσsc
dΩ

= |fpbpa
− fpb,−pa

|2. (4.585)

The minus sign accounts for the Fermi statistics of the two electrons. For two
identical bosons, we have to use a plus sign instead. Now the eikonal function
S(p,p, E) enters into the result. According to Eq. (4.557), this is given by

pa

pb

−pb

Figure 4.6 Classical trajectories in Coulomb potential plotted in the center-of-mass

frame. For identical particles, trajectories which merge with a scattering angle θ and π−θ

are indistinguishable. Their amplitudes must be subtracted from each other, yielding the

differential cross section (4.585).

S(pb,pa;E) = −
Mh̄cα

p∞
log

√
1 + ∆+ 1√
1 + ∆− 1

, (4.586)

where p∞ =
√
2ME is the impinging momentum at infinite distance, and

∆ ≡ (p2b − p2∞)(pa
2 − p2∞)

p2∞|pb − pa|2
. (4.587)

The eikonal function is needed only for momenta pb, pa in the asymptotic regime
where pb, pa ≈ p∞, so that ∆ is small and

S(pb,pa;E) ≈
Mh̄cα

p∞
log∆, (4.588)
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which may be rewritten as

S(p,paE) ≈ 2σ0 −
Mh̄cα

p∞
log(sin2 θ/2), (4.589)

with

σ0 =
Mh̄cα

2p∞
log

[

(p2b − p2∞)(pa
2 − p2∞)

p4∞

]

, (4.590)

and the scattering angle determined by cos θ = [pb · pa/pbpa]. The logarithmically
diverging constant σ0 for pa = pbp∞ does, fortunately, not depend on the scattering
angle, and is therefore the semiclassical approximation for the phase shift at angu-
lar momentum l = 0. It therefore drops, fortunately, out of the difference of the
amplitudes in Eq. (4.585). Inserting (4.589) with (4.590) into (4.584) and (4.585),
we obtain the differential cross section for Mott scattering (see Fig. 4.7 for a plot)

dσ

dΩ
=

(

h̄cα

4E

)2 {
1

sin4 θ/2
+

1

cos4 θ/2
± 1

sin2 θ/2 cos2 θ/2
2 cos

[

2αMc

p∞
log(cot θ/2)

]}

.

(4.591)
This semiclassical result happens to be identical to the exact result. The exactness is
caused by two properties of the Coulomb motion: First there is only one trajectory
for each scattering angle, second the motion can be mapped onto that of a harmonic
oscillator in four dimensions, as we shall see in Chapter 13.

dσ

dΩ

dσ

dΩ

θ θ

fermions bosons

Figure 4.7 Oscillations in differential Mott scattering cross section caused by statistics.

For scattering angle θ = 900, the cross section vanishes due to the Pauli exclusion principle.

The right-hand plot shows the situation for identical bosons.

Appendix 4A Semiclassical Quantization for Pure Power
Potentials

Let us calculate the local density of states (4.264) for the general pure power potential V (x) = gxp/p
in D dimensions. For D = 1 and p = 2, we shall recover the exact spectrum of the harmonic
oscillator. For p = 4, we shall find the energies of the purely quartic potential which can be
compared with the strong-coupling limit of the anharmonic oscillator with V (x) = ω2x2/2+ gx4/4
to be calculated in Section 5.16. The integrals on the right-hand side of Eq. (4.264) can be
calculated using the formula
∫

dDx rµ[E−V (x)]ν = SD

∫ rE

0

dr rD−1+µ

(

E − g

p
rp
)ν
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= SD
Γ(1 + ν)Γ((D + µ)/p)

pΓ(1 + ν + (D + µ)/p)

(

g

p

)−(D+µ)/p

Eν+(D+µ)/p , p > 0, (4A.1)

where rE = (pE/g)1/p. For p < 0, the result is

∫

dDx rµ[E−V (x)]ν=SD
Γ(1 + ν)Γ(−ν−(D+µ)/p)

pΓ(1−(D+µ)/p)

(

−g

p

)−(D+µ)/p

(−E)ν+(D+µ)/p, p < 0. (4A.2)

Recalling (4.214), we find the total density of states for p > 0:

ρ(E) =
2

Γ
(

D
2

)

p

(

M

2h̄2

)D/2(
g

p

)−D/p Γ
(

D
p

)

Γ
(

D
2 + D

p )
)

{

1− h̄2

24M

(

g

p

)2/p

×
p2 Γ

(

D−2
p + 2

)

Γ
(

D
2 + D

p )
)

Γ
(

D−2
2 (1 + 2

p )
)

Γ
(

D
p

) E−1−2/p+ . . .

}

E(D/2)(1+2/p)−1, p > 0, (4A.3)

and for p < 0:

ρ(E) = − 2

Γ(D2 ) p

(

M

2h̄2

)D/2(

−g

p

)−D/p Γ
(

1− D
2 − D

p

)

Γ
(

1− D
p

)

{

1 +
h̄2

24M

(

−g

p

)2/p

×
p2Γ

(

1− D−2
2 (1+ 2

p )
)

Γ
(

1−D
p

)

Γ
(

−1−D−2
p

)

Γ
(

1−D
2 −D

p )
) (−E)−1−2/p+ . . .

}

(−E)(D/2)(1+2/p)−1, p < 0. (4A.4)

For a harmonic oscillator with p = 2 and g = Mω2, we obtain

ρ(E)=
1

(h̄ω)
D

{

1

Γ(D)
ED−1− h̄2ω2

24

D

Γ(D−2)
ED−3+ . . .

}

. (4A.5)

In one and two dimension, only the first term survives and ρ(E) = 1/h̄ω or ρ(E) = E/(h̄ω)2.

Inserting this into Eq. (1.586), we find the number of states N(E) =
∫ E

0 dE′ ρ(E′) = E/h̄ω or
E2/2(h̄ω)2. According to the exact quantization condition (1.588), we set N(E) = n + 1/2 the
exact energies En = (n + 1/2)h̄ω. Since the semiclassical expansion (4A.3) contains only the
first term, the exact quantization condition (1.588) agrees with the Bohr-Sommerfeld quantization
condition (4.190).

In two dimensions we obtain ρ(E) = E/(h̄ω)2 and N(E) = E2/2(h̄ω)2. Here the exact
quantization condition N(E) = n + 1/2 cannot be used to find the energies En, due to the
degeneracies of the energy eigenvalues En. In order to see that it is nevertheless a true equation,
let us expand the known partition function (2.407) of the two-dimensional oscillator as

Z =
1

[2 sinh(h̄βω/2)]2
= e−h̄βω 1

(1− e−h̄βω)2
=

∞
∑

n=0

(n + 1)e−(n+1)h̄βω. (4A.6)

This shows that the energies are En = (n + 1)h̄ω withy n + 1 -fold degeneracy. The density of
states is found from this by the Fourier transform (1.585):

ρ(E) =

∞
∑

n′=0

(n′ + 1)δ(E − h̄ω(n′ + 1)). (4A.7)

Integrating this over E yields the number of states

N(E) =

∫ E

0

dE′ ρ(E′) =

∞
∑

n′=0

(n′ + 1)Θ(E − En). (4A.8)
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For E = En this becomes [recall (1.313)]

N(En) =

n−1
∑

n′=0

(n′ + 1) + (n + 1)
1

2
=

1

2
(n + 1)2. (4A.9)

This shows that the exact energies En = (n + 1)h̄ω of the two-dimensional oscillator satisfy the
quantization condition N(En) = (n + 1)2/2 rather than (1.588).

For a quartic potential gx4/4, Eq. (4A.3) becomes

ρ(E) =
1

2 Γ(D2 )

Γ(D4 )

Γ(3D4 )

(

gh̄4

M2

)−D
4







1−
(

gh̄4

M2

)

1
2 Γ(32 + D

4 )Γ(3D4 )E− 3
2

3Γ(D4 )Γ
(

3
4 (D − 2)

) + . . .







E
3D
4

−1. (4A.10)

Integrating this over E yields N(E). Setting N(E) = n + 1/2 in one dimension, we obtain the
Bohr-Sommerfeld energies (4.35) plus a first quantum correction. Since we have studied these
corrections to high order in Subsection 4.9.6 (see Fig. 4.1), we do not write the result down here.

A physically important case is p = −1, g = h̄cα, with α of Eq. (1.505), where V (x) = −h̄cα/r
becomes the Coulomb potential. Here we obtain from (4A.10):

ρ(E) =
2

Γ(D2 )

(

Mg2

2πh̄2

)D/2
Γ
(

1 + D
2

)

Γ (1 + D)

×
{

1− h̄2

24Mg−2

p2 Γ
(

D−2
2

)

Γ (1 + D)

Γ (D − 3) Γ
(

1 + D
2 )
)E+ . . .

}

(−E)(D/2)(1+2/p)−1. (4A.11)

For D = 1, only the leading term survives and

ρ(E) =

√

Mg2

2h̄2 (−E)−3/2, (4A.12)

implying that

N(E) = 2

√

Mg2

2h̄2 (−E)−1/2. (4A.13)

In order to find the bound-state energies, we must watch out for a subtlety in one dimension:
only the positive half-space is accessible to the particle in a Coulomb potential, due to the strong
singularity at the origin. For this reason, the “surface of a sphere” SD for D = 1 , which is
equal to 2, must be replaced by 1, so that we must equate N(E)/2 to n + 1/2. This yields the
spectrum En = −α2Mc2/2(n+1/2)2. The exact energies follow the same formula with n2 instead
of (n+1/2)2 [7]. In contrast to the harmonic oscillator, the Bohr-Sommerfeld approximation yields
here the correct energies only for large n. We have seen at the end of Section 4.1 how to correct
this defect: we must go to a new variable ξ by the coordinate transformation r = eξ. This moves
the singularity at r = 0 to ξ = −∞ and the semiclassical result becomes exact .

Appendix 4B Derivation of Semiclassical Time Evolution
Amplitude

Here we derive the semiclassical approximation to the time evolution amplitude (4.267). We shall
do this for imaginary times τ = it. Decomposing the path x(τ) into path average of the ends
points x̄ = (xb + xa)/2 and fluctuations �(τ), we calculate the imaginary-time amplitude17

(xbτb|xaτa) =

∫

�(τb)=∆x/2

�(τa)=−∆x/2

D� exp

{

− 1

h̄

∫ τb

τa

dτ

[

M

2
�̇

2(τ) + V
(

x̄ + �(τ)
)

]}

, (4B.1)

17In the mathematical literature this is a heat kernel (see Footnote 16 in Chapter 2). The
expansions in (4B.16) and (4B.59) are called a heat kernel expansions , or Hadamard expansions ,
crediting J. Hadamard, Lectures on Cauchy’s Problem, Yale University Press, New Haven, 1932.
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where ∆x ≡ xb − xa. For smooth potentials we expand

V
(

x̄ + �(τ)
)

= V (x̄) + ∂iV (x̄) ηi(τ) +
1

2
∂i∂jV (x̄) ηi(τ) ηj(τ) + . . . , (4B.2)

where Vij...(x̄) ≡ ∂i∂j · · ·V (x̄), and rewrite the path integral (4B.1) as

(xbτb|xaτa) = e−βV (x̄)

∫

�(τb)=∆x/2

�(τa)=−∆x/2

D� exp

{

− 1

h̄

∫ τb

τa

dτ
M

2
�̇

2(τ)

}

×
{

1− 1

h̄

∫ τb

τa

dτ
[

Vi(x̄) ηi(τ) +
1

2
Vij(x̄) ηi(τ) ηj(τ) + . . .

]

(4B.3)

+
1

2h̄2

∫ τb

τa

dτ

∫ τb

τa

dτ ′
[

Vi(x̄)Vj(x̄) ηi(τ)ηj(τ
′)+. . .

]

+. . .

}

.

At this point it is useful to introduce an auxiliary harmonic imaginary-time amplitude

(∆x/2 τb|−∆x/2 τa) =

∫

�(τb)=∆x/2

�(τa)=−∆x/2

D� exp

{

− 1

h̄

∫ τb

τa

dτ
M

2
�̇

2(τ)

}

(4B.4)

and the harmonic expectation values

〈F [�]〉≡ 1

(∆x/2 τb|−∆x/2 τa)

∫

�(τb)=∆x/2

�(τa)=−∆x/2

D�F [�] exp

{

− 1

h̄

∫ τb

τa

dτ
M

2
�̇

2(τ)

}

, (4B.5)

which allows us to rewrite (4B.3) more concisely as

(xbτb|xaτa) = e−βV (x̄) (∆x/2 τb|−∆x/2 τa)

{

1− 1

h̄

∫ τb

τa

dτ Vi(x̄) 〈ηi(τ)〉 (4B.6)

− 1

2h̄
Vij(x̄)

∫ τb

τa

dτ〈ηi(τ)ηj(τ)〉+ 1

2h̄2Vi(x̄)Vj(x̄)

∫ τb

τa

dτ

∫ τb

τa

dτ ′ 〈ηi(τ)ηj(τ
′)〉+. . .

}

.

The amplitudes (4B.4) reads explicitly, with ∆τ ≡ τb − τa:

(∆x/2 τb| −∆x/2 τa) =

(

M

2πh̄∆τ

)D/2

exp

{

− M

2h̄∆τ
(∆x)2

}

, (4B.7)

and (4B.5) can be calculated from the generating functional

(∆x/2 τb|−∆x/2 τa)[j]=

∫

�(τb)=∆x/2

�(τa)=−∆x/2

D�
{

− 1

h̄

∫ τb

τa

dτ

[

M

2
�̇

2(τ) − j(τ)�(τ)

]}

, (4B.8)

whose explicit solution is

(∆x/2 τb|−∆x/2 τa)[j]=

(

M

2πh̄∆τ

)D/2

exp

{

− M

2h̄∆τ
(∆x)2+

1

h̄∆τ

∫ τb

τa

dτ(τ − τ̄ )∆x j(τ)

+
1

2h̄

∫ τb

τa

dτ

∫ τb

τa

dτ ′
Θ(τ − τ ′)(∆τ − τ)τ ′ + Θ(τ ′ − τ)(∆τ − τ ′)τ

M∆τ
j(τ) j(τ ′)

}

.

The expectation values in (4B.6) and (4B.5) are obtained from the functional derivatives

〈ηi(τ)〉 =
1

(∆x/2 τb| −∆x/2 τa)

h̄δ

δji(τ)
(∆x/2 τb|−∆x/2 τa)[j]

∣

∣

∣

∣

j=0

, (4B.9)

〈ηi(τ)ηj(τ
′)〉 =

1

(∆x/2 τb|−∆x/2 τa)

h̄δ

δji(τ)

h̄δ

δjj(τ ′)
(∆x/2 τb|−∆x/2 τa)[j]

∣

∣

∣

∣

j=0

. (4B.10)
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This yields the ∆x-dependent expectation value

〈ηi(τ)〉 = (τ − τ̄ )
∆xi

∆τ
, (4B.11)

and the ∆x-dependent correlation function

〈ηi(τ)ηj(τ
′)〉 =

h̄

M∆τ
[Θ(τ − τ ′)(∆τ − τ)τ ′ + Θ(τ ′ − τ)(∆τ − τ ′)τ ] δij

+ (τ − τ̄) (τ ′ − τ̄ )
∆xi

∆τ

∆xj

∆τ

≡ G(τ, τ ′)δij + H(τ, τ ′)∆xi∆xj ≡ G∆x
ij (τ, τ ′). (4B.12)

Note that
∫ τb

τa

dτ 〈ηi(τ)〉 = 0, (4B.13)

and
∫ τb

τa

dτ

∫ τb

τa

dτ ′ 〈ηi(τ)ηj(τ
′)〉=

∫ τb

τa

dτ

∫ τb

τa

dτ ′ G∆x
ij (τ, τ ′)=

h̄

12M
∆τ(∆τ2− τ2a )δij , (4B.14)

∫ τb

τa

dτ 〈ηi(τ)ηj(τ)〉=
∫ τb

τa

dτ G∆x
ij (τ, τ)=

h̄

M

[

∆τ2

6
− τ2a

]

δij+
∆τ

12
∆xi∆xj . (4B.15)

Thus we obtain the semiclassical imaginary-time amplitude

(xb τb|xa τa) =

(

M

2πh̄∆τ

)D/2

exp

{

− M

2h̄∆τ
∆x2 − ∆τ

h̄
V (x̄)

}

×
{

1− ∆τ2

12M
∇

2V (x̄)− ∆τ

24h̄
(∆x∇)

2
V (x̄) +

∆τ3

24Mh̄
[∇V (x̄)]

2
+ . . .

}

. (4B.16)

This agrees precisely with the real-time amplitude (4.267).
For the partition function at inverse temperature β = (τb−τa)/h̄, this implies the semiclassical

approximation

Z =

∫

dDx (x h̄β|x 0)

≈
(

M

2πh̄2β

)D/2 ∫

dDx̄

(

1− h̄2β2

12M
∇

2V (x) +
h̄2β3

24M
[∇V (x)]2

)

e−βV (x). (4B.17)

A partial integration simplifies this to

Z ≈
(

M

2πh̄2β

)D/2 ∫

dDx

(

1− h̄2β2

24M
∇

2V (x)

)

e−βV (x)

≈
(

M

2πh̄2β

)D/2 ∫

dDx exp

(

−βV (x)− h̄2β2

24M
∇

2V (x)

)

. (4B.18)

Let us also sketch how to calculate all terms in (4B.16) proportional to V (x̄) and its derivatives.
Instead of the expansion (4B.6), we evaluate

(xbτb|xaτa) = e−βV (x̄) (∆x/2 τb|−∆x/2 τa)

{

1− 1

h̄

∫ τb

τa

dτ 〈V (x̄ + �(τ)) − V (x̄)〉
}

.

(4B.19)
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By rewriting V (x̄ + �) as a Fourier integral

V (x̄ + �) =

∫

dDk

(2π)D
Ṽ (k) exp [ik (x̄ + �)] , (4B.20)

we obtain

(xbτb|xaτa) = (∆x/2 τb|−∆x/2 τa)

× e−βV (x̄)

{

1− 1

h̄

∫ τb

τa

dτ

∫

dDk

(2π)D
Ṽ (k)eikx̄

〈

eik�(τ) − 1
〉

}

. (4B.21)

The expectation value can be calculated using Wick’s theorem (3.310) as

∫ τb

τa

dτ
〈

eik�(τ)
〉

=

∫ τb

τa

dτe−kikj〈ηi(τ)ηj(τ)〉/2 =

∫ τb

τa

dτe−kikj [G(τ,τ)δij+H(τ,τ)∆xi∆xj ]/2.

(4B.22)

where the equal-time functions G(τ, τ), H(τ, τ) are from (4B.12):

G(τ, τ) =
h̄

M∆τ
(∆τ − τ)τ, H(τ, τ) =

(τ − τ̄ )
2

∆τ2
. (4B.23)

Inserting the inverse of the Fourier decomposition (4B.20),

Ṽ (k) =

∫

dDη V (x̄ + �) exp [−ik (x̄ + �)] , (4B.24)

where � is now a time-independent variable of integration, we find

∫ τb

τa

dτ
〈

eik�(τ)
〉

=

∫ τb

τa

dτ

∫

dDηV (x̄ + �)

∫

dDk

(2π)D
e−(1/2)kiG

∆x
ij (τ,τ)kj−ikiηi(τ).

(4B.25)

After a quadratic completion of the exponent, the momentum integral can be performed and yields

∫ τb

τa

dτ
〈

eik�(τ)
〉

=

∫

dDη V (x̄ + �)

∫ τb

τa

dτ
[

detG∆x
ij (τ, τ)

]−1/2
e−(1/2)ηi[G

∆x
ij (τ,τ)]−1ηj . (4B.26)

Using the transverse and longitudinal projection matrices

PT
ij = δij −

∆xi∆xj

(∆x)2
, PL

ij =
∆xi∆xj

(∆x)2
, (4B.27)

satisfying PT 2
= PT , PL2

= PL, we can decompose Gij(τ, τ
′) as

G∆x
ij (τ, τ ′) ≡ G(τ, τ ′)PT

ij +
[

G(τ, τ ′) + H(τ, τ ′)(∆x)2
]

PL
ij . (4B.28)

It is then easy to find the determinant

detG∆x
ij (τ, τ ′) = [G(τ, τ ′)]D−1[G(τ, τ ′) + H(τ, τ ′)(∆x)2], (4B.29)

and the inverse matrix

[G∆x
ij (τ, τ ′)]−1 =

1

G(τ, τ ′)

[

δij −
∆xi∆xj

(∆x)2

]

+
1

G(τ, τ ′) + H(τ, τ ′)(∆x)2
∆xi∆xj

(∆x)2
. (4B.30)

Inserting (4B.26) back into (4B.21), and taking the correction into the exponent, we arrive at

(xbτb|xaτa) = (∆x/2 τb|−∆x/2 τa) e
−
∫

τb

τa
dτV̄ (x̄,τ)/h̄

, (4B.31)



458 4 Semiclassical Time Evolution Amplitude

where V̄ (x̄, τ) is the harmonically smeared potential

V̄ (x̄, τ) ≡
[

detG∆x
ij (τ, τ)

]−1/2
∫

dDη V (x̄ + �)e−(1/2)ηi[G
∆x
ij (τ,τ)]−1ηj . (4B.32)

By expanding V (x̄ + �) to second order in �, the exponent in (4B.31) becomes

−βV (x̄)− 1

2h̄
Vij(x̄)

∫ τb

τa

dτ G∆x
ij (τ, τ) + . . . . (4B.33)

According to Eq. (4B.15), we have

∫ τb

τa

dτ G∆x
ij (τ, τ) =

h̄

M

∆τ2

6
δij +

∆τ

12
∆xi ∆xj , (4B.34)

so that we reobtain the first two correction terms in the curly brackets of (4B.16)
The calculation of the higher-order corrections becomes quite tedious. One rewrites the ex-

pansion (4B.2) as V
(

x̄ + �(τ)
)

= eηi(τ)∂iV (x̄) and (4B.19) as

(xbτb|xaτa) = (∆x/2 τb|−∆x/2 τa)×
∞
∑

n=0

(−1)n

n!

〈 ∞
∏

n=0

∫ τb

τa

dτn e
ηi(τn)∂iV (x̄)

〉

. (4B.35)

Now we apply Wick’s rule (3.310) for harmonically fluctuating variables, to re-express

〈

eη(τ)∂i

〉

= e〈ηi(τ)ηj(τ)〉/2 = eG
∆x
ij (τ,τ)∂i∂j/2,

〈

eηi(τ)∂ieηi(τ
′)∂i

〉

= e[〈ηi(τ)ηj(τ)〉∂i∂j+〈ηi(τ
′)ηj(τ

′)〉∂i∂j+2〈ηi(τ)ηj(τ
′)〉∂i∂j]/2

= e[G
∆x
ij (τ,τ)∂i∂j+G∆x

ij (τ ′,τ ′)∂i∂j+2G∆x
ij (τ,τ ′)∂i∂j]/2

... . (4B.36)

Expanding the exponentials and performing the τ -integrals in (4B.35) yields all desired higher-
order corrections in (4B.16).

For ∆x = 0, the expansion has been driven to high orders in Ref. [8] (including a minimal
interaction with a vector potential).

There exists an efficient operator method for evaluating (4B.1) and deriving (4B.16) which
goes as follows. We rewrite (4B.1) in operator form as

(xbτb|xaτa) = 〈xb|e−∆τH(p̂2,x̂)/h̄|xa〉 = 〈xb|e−∆τ [p̂2/2M+V (x̂)]/h̄|xa〉. (4B.37)

With the help of formula (1.296), this can be expressed es follows:

(xbτb|xaτa) = 〈xb|e−∆τ p̂2/2Mh̄ T̂ exp

{

−
∫ ∆τ

0

dτ eτ p̂
2/2Mh̄V (x)e−τ p̂2/2Mh̄

}

|xa〉. (4B.38)

Now we use the Heisenberg equation (1.277) and evalaute

eτ p̂
2/2Mh̄V (x̂)e−τ p̂′2/2Mh̄ ≡ V (x̂H(τ)) = V (x̂− ip̂τ/M). (4B.39)

This allows us to recast (4B.38) to the form

(xbτb|xaτa) = 〈xb|e−∆τ p̂2/2Mh̄ T̂ exp

{

− 1

h̄

∫ ∆τ

0

dτ ∆V (x̂, p̂, τ)

}

|xa〉e−∆τV (xa)/h̄, (4B.40)
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where

∆V (x̂, p̂, τ) ≡ V (x̂− ip̂τ/M)− V (x̂). (4B.41)

Expressing V (x̂) by its Fourier representation, this is equal to

∆V (x̂, p̂, τ) =

∫

dDk

(2π)D
Ṽ (k)

(

eik(x̂−ip̂τ/M) − eikx̂
)

, (4B.42)

which is also equal to

∆V (x̂, p̂, τ) =

∫

dDx′ V (x′)S(p̂τ, x̂,x′), (4B.43)

where

S(p̂τ, x̂,x′; τ) ≡
∫

dDk

(2π)D

(

eik(x̂−x′−ip̂τ/M) − eik(x̂−x′)
)

(4B.44)

is a smearing operator. Inserting now a completeness relation of the momentum states in front of
the time-ordering operator in Eq. (4B.38), we find

(xbτb|xaτa) ≡
∫

dDp

(2πh̄)D
eip·xb/h̄e−∆τH(p,xa)h̄〈p|T̂ exp

{

− 1

h̄

∫ ∆τ

0

dτ ∆V (x̂, p̂, τ)

}

|xa〉.

(4B.45)

This formula can now be evaluated by expanding the time-ordered product in powers of
∆V (x̂, p̂, τ).

To first-order, we use the Baker-Campbell-Hausdorff formula (2.9) to re-order the exponential
of the operators x̂ and p̂. This leads to the matrix element

〈p|S(p̂τ, x̂,x′)|xa〉 =

∫

dDk

(2π)D
〈p|
(

ekp̂τ/Meik(x̂−x′)e−k2τh̄/2M − eik(x̂−x′)
)

|xa〉

=

∫

dDk

(2π)D

(

eik(xa−x′−ipτ/M)e−k2τh̄/2M − eik(xa−x′)
)

e−ipxa . (4B.46)

It is now useful to introduce a softended δ-function of width τM/η:

δτ (x) ≡
∫

dDk

(2π)D
eikxe−k2τh̄/2M . (4B.47)

It has the properties

∫

dDx δτ (x) = 1,

∫

dDxxixjδτ (x) = τ
h̄

M
δij , . . . . (4B.48)

With the help of this we define the smeared potential

Vτ (x) ≡
∫

dDx′δτ (x− x′)V (x′) =
1

(2πτh̄/M)D/2

∫

dDx′ V (x− x′)e−x′2M/2τh̄ (4B.49)

For small τ , this has an expansion

Vτ (x) ≡ Vτ (x) +
τ

2

h̄

M
∇

2V (x) +
τ2

8

(

h̄

M

)2

∇
4V (x) + . . . . (4B.50)
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Then we arrive at the first-order result

(xbτb|xaτa)=

∫

dDp

(2πh̄)D
eip·∆x/h̄e−∆τH(p,xa)/h̄

{

1− 1

h̄

∫ ∆τ

0

dτ Wpτ + . . .

}

. (4B.51)

where

Wpτ ≡ 〈p|Vτ (x̂− ip̂τ/M)− V (x̂)|xa〉. (4B.52)

We now change the variable of integration from p to p′ ≡ p− iM∆x/τ , and find (after omitting
the prime)

(xbτb|xaτa) = e−M∆x2/2∆τh̄

∫

dDp

(2πh̄)D
e−∆τH(p,xa)/h̄

{

1− 1

h̄

∫ ∆τ

0

dτ Wpτ+iM∆x + . . .

}

. (4B.53)

Performing the momentum integration, we errive at

(xbτb|xaτa) =
e−M∆x2/2∆τh̄

(2π∆τh̄/M)D/2
e−∆τV (xa)/h̄

〈

1− 1

h̄

∫ ∆τ

0

dτ Wpτ+iM∆x + . . .

〉

p

, (4B.54)

where the expectation value of a function 〈 f(p) 〉p denotes the Gaussian momentum average:

〈 f(p) 〉p ≡
∫

dDp

(2πh̄)D
f(p)e−∆τp2/2Mh̄

/

∫

dDp

(2πh̄)D
e−∆τp2/2Mh̄. (4B.55)

Now we expand ∆Vτ (xb−ipτ/M) in powers of p:

∆Vτ (x) ≈ V (xb)− V (xa) +
τ

2

h̄

M
∇

2V (xb)− i
τ

M
p∇V (xb)−

τ2

2!M2
(p∇)2V (xb). (4B.56)

The momentum averages in formula (4B.63) are calculated with the help of the integral formula
(4.331) which reads here

∫

dDp

(2πh̄)D
e−∆τp2/2Mh̄

{

1, pipj, pi1pi2pi3p4, . . . . . . , pi1pi2 · · · pi2n−1pi2n , . . .
}

=
1

(2π∆τh̄/M)D/2

{

1,
Mh̄

∆τ
δij ,

(

Mh̄

∆τ

)2

δi1i2i3i4 , . . . ,

(

Mh̄

∆τ

)n

δi1i2...i2n−1i2n , . . .

}

,(4B.57)

with the contraction tensors (4.333). Applying these to the expression (4B.63) we obtain the
low-order contributions to (4B.63)

(xbτb|xaτa)=
e−M∆x2/2∆τh̄

(2π∆τh̄/M)D/2
e−∆τV (xa)/h̄(1 + A1 + A2 + . . .) , (4B.58)

where

A1 = − 1

h̄

∫ ∆τ

0

dτ

[

V (xb)− V (xa) +

(

τ

2
− τ2

2∆τ

)

h̄

M
∇

2V (xb) + . . .

]

. (4B.59)

After integrating over τ we recover (4B.16).
To second order, the calculation becomes more complicated since we have to find the matrix

element

〈p|S(p̂τ, x̂,x′)S(p̂τ ′, x̂,x′′)|xa〉 =
∫

dDk

(2π)D

∫

dDk′

(2π)D
(4B.60)

×〈p|
(

ekp̂τ/Meik(x̂−x′)e−k2τh̄/2M − eik(x̂−x′)
)(

ek
′p̂τ ′/Meik

′(x̂−x′′)e−k′2τh̄/2M − eik
′(x̂−x′′)

)

|xa〉.
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The first term in the product need re-ordering according to the Baker-Campbell-Hausdorff formula

(2.9) which states that eÂeB̂ = eB̂eÂe[Â,B̂], so that

〈p|ekp̂τ/Meik(x̂−x′)e−k2τh̄/2M ek
′p̂τ ′/M eik

′(x̂−x′)e−k′2τh̄/2M |xa〉
= e−kk′τ ′h̄/M 〈p|ekpτ/Meik(xa−x′′)e−k2τh̄/2M ek

′pτ ′/Meik
′(xa−x′′)e−k′2τh̄/2M |xa〉. (4B.61)

The prefactor can obviously be rewritten as a differential operator:

e−kk′τ ′h̄/M = e(τ
′h̄/M)∇′

∇
′′

. (4B.62)

Apart from that, the integrand consists of the product of the smeared potentials Vτ (x′ − ipτ/M).
Thus the second-order correction in (4B.59) becomes

A2 =

〈

1

h̄2

∫ ∆τ

0

dτ

∫ τ

0

dτ ′ W (2)(p)

〉

p

, (4B.63)

where

W (2)(p) ≡
(

e(τ
′h̄/M)∇′

∇
′′ − 1

)

Vτ (x′ − ipτ/M)Vτ ′(x′′ − ipτ ′/M)

∣

∣

∣

∣

∣

x′=xa,x′′=xa

+ [Vτ (xb − ipτ/M)− V (xa)] [Vτ ′(xb − ipτ ′/M)− V (xa)] . (4B.64)

By evaluating this expression we can extend the expansion (4B.16) to higher orders in β = ∆τ/h̄.
The expression (4B.63) can be used to derive a compact formula for the gradient expansion

of the trace log of the Hamiltonian operator Ĥ = p̂2/2M + V (x̂). We insert (4B.40) into formula
and (4.290), and obtain the Euclidean-time formula

Tr log Ĥ = −
∫

dDx

∫ ∞

0

dτ

τ
〈x|e−τH(p̂,xa)/h̄ T̂ exp

{

− 1

h̄

∫ τ

0

dτ ′ ∆V (x̂, p̂, τ ′)

}

|x〉. (4B.65)

Appendix 4C Potential of Thomas Fermi Model

Let us expand f(ξ) = 1 +
∑∞

n=2 anξ
n/2, and insert this into the self-consistent Thomas-Fermi

equation (4.384) to obtain

∞
∑

k=3

ak
k(k − 2)

4
ξ(k−4)/2 = ξ−1/2 exp

[

3
2
log(1 +

∞
∑

k=2

anξ
n/2)

]

. (4C.1)

This leads to a recursive determination of the coeffcients:

a3 = 4
3 , a4 = 0, a5 = 2

5a2, a6 = 1
3 , a7 = 3

70a
2
2, a8 = 2

15a2,

a9 = 2
27
− 1

252
a32, a10 = 1

175
a22, a11 = 31

1485
a2 + 1

1056
a42, . . . . (4C.2)

Inserting the slope parameter a2 = −s from Eq. (4.386), we obtain a so-called asymptotic expansion
of the function f(ξ). This can, however, be used to obtain the plot in Fig. 4.2 only for very
small ξ, due its divergence. Only after developing the resummation technique called variational
perturbation theory in Chapter 5 will we able to obtain the entire plot from the expansion.

For large ξ, the behavior of f(ξ) is f(ξ) → fas(ξ) ≡ 144/ξ3 as verifed by direct insertion into
Eq. (4.384) [recall Eq. (4.387)]. The next correction to this is

f(ξ) = fas(ξ)
(

1 + b1x
−q + b2x

−2q + . . .
)

, (4C.3)

where

q =
1

2

(√
73− 7

)

, b2 = − 9b21
2
(

7
√

73− 67
) . (4C.4)

with b1 ≈ −13.3. Fixing this parameter is equivalent to fixing the slope paramter s in the small-ξ
expansion.
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Who can believe what varies every day,
Nor ever was, nor will be at a stay?

John Dryden (1631-1700), Hind and the Panther

5

Variational Perturbation Theory

Most path integrals cannot be performed exactly. It is therefore necessary to develop
approximation procedures which allow us to approach the exact result with any
desired accuracy, at least in principle. The perturbation expansion of Chapter 3
does not serve this purpose since it diverges for any coupling strength. Similar
divergencies appear in the semiclassical expansion of Chapter 4.

The present chapter develops a convergent approximation procedure to calculate
Euclidean path integrals at a finite temperature. The basis for this procedure is a
variational approach due to Feynman and Kleinert, which was recently extended to
a systematic and uniformly convergent variational perturbation expansion [1].

5.1 Variational Approach to Effective Classical
Partition Function

Starting point for the variational approach will be the path integral representation
(3.816) for the effective classical potential introduced in Section 3.25. Explicitly, the
effective classical Boltzmann factor B(x0) for a quantum system with an action

Ae =
∫ h̄β

0
dτ
[

M

2
ẋ2(τ) + V (x(τ))

]

(5.1)

has the path integral representation [recall (3.816) and (3.809)]

B(x0) ≡ e−V
eff cl(x0)/kBT =

∮

D′x e−Ae/h̄ =
∞
∏

m=1

[

∫

dxremdx
im
m

πkBT/Mω2
m

]

× (5.2)

× exp

[

− M

kBT

∞
∑

m=1

ω2
m|xm|2 −

1

h̄

∫ h̄/kBT

0
dτV

(

x0 +
∞
∑

m=1

(xme
−iωmτ + c.c.)

)]

,

with the notation xrem = Re xm, x
im
m = Im xm. To make room for later subscripts,

we shall in this chapter write A instead of Ae. In Section 3.25 we have derived a
perturbation expansion for B(x0) = e−βV

eff cl(x0). Here we shall find a simple but
quite accurate approximation for B(x0) whose effective classical potential V eff cl(x0)
approaches the exact expression always from above.
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5.2 Local Harmonic Trial Partition Function

The desired approximation is obtained by comparing the path integral in question
with a solvable trial path integral. The trial path integral consists of a suitable su-
perposition of local harmonic oscillator path integrals centered at arbitrary average
positions x0, each with an own frequency Ω2(x0). The coefficients of the super-
position and the frequencies are chosen in such a way that the effective classical
potential of the trial system is an optimal upper bound to the true effective classi-
cal potential. In systems with a smooth or at least not too singular potential, the
accuracy of the approximation will be very good. In Section 5.13 we show how to
use this approximation as a starting point of a systematic variational perturbation
expansion which permits improving the result to any desired accuracy.

As a local trial action we shall take the harmonic action (3.850), which may also
be considered as the action of a harmonic oscillator centered around some point x0:

Ax0
Ω =

∫ h̄/kBT

0
dτM

[

ẋ2

2
+ Ω2(x0)

(x− x0)
2

2

]

. (5.3)

However, instead of using the specific frequency Ω2(x0) ≡ V ′′(x0)/M in (3.850), we
shall choose Ω(x0) to be an as yet unknown local trial frequency. The effective clas-
sical Boltzmann factor B(x0) associated with this trial action can be taken directly
from (3.823). We simply replace the harmonic potential Mω2x2/2 in the defining
expression (3.816) by the local trial potential Ω(x0)(x− x0)

2/2. Then the first term
in the fluctuation expansion (3.817) of the action vanishes, and we obtain, instead
of (3.823), the local Boltzmann factor

BΩ(x0) ≡ e−V
eff cl(x0)/kBT =

h̄Ω(x0)/2kBT

sinh[h̄Ω(x0)/2kBT ]
≡ Zx0

Ω . (5.4)

The exponential exp (−βMω2x20/2) in (3.823) is absent since the local trial potential
vanishes at x = x0. The local Boltzmann factor BΩ(x0) is a local partition function
of paths whose temporal average is restricted to x0, and this fact will be emphasized
by the alternative notation Zx0

Ω which we shall now find convenient to use. The
effective classical potential of the harmonic oscillators may also be viewed as a local
free energy associated with the local partition function Zx0

Ω which we defined as

F x0
Ω ≡ −kBT logZx0

Ω , (5.5)

such that we may identify

V eff cl
Ω (x0) = F x0

Ω = kBT log

{

sinh[h̄Ω(x0)/2kBT ]

h̄Ω(x0)/2kBT

}

. (5.6)

The harmonic path integral associated with the local partition function Zx0
Ω is

Zx0
Ω =

∫

Dx(τ)δ̃(x̄− x0)e
−Ax0

Ω
/h̄

=
∞
∏

m=1

[

∫

dxremdx
im
m

πkBT/Mω2
m

]

e
− M

kBT

∑∞
m=1

[ω2
m+Ω2(x0)]|xm|2

, (5.7)
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where δ̃(x̄− x0) is the slightly modified δ-function introduced in Eq. (3.815).
We now define the local expectation values of an arbitrary functional F [x(τ)]

within the harmonic path integral (5.7):

〈F [x(τ)]〉x0Ω ≡ [Zx0
Ω ]−1

∫

Dx δ̃(x̄− x0)e
−Ax0

Ω /h̄ F [x(τ)]. (5.8)

The effective classical potential can then be re-expressed as a path integral

e−V
eff cl(x0)/kBT = Zx0 =

∫

Dx δ̃(x̄− x0)e
−A/h̄

≡
∫

Dx δ̃(x̄− x0)e
−Ax0

Ω /h̄e−(A−Ax0
Ω )/h̄

= Zx0
Ω

〈

e−(A−Ax0
Ω

)/h̄
〉x0

Ω
. (5.9)

We now take advantage of the fact that the expectation value on the right-hand
side possesses an easily calculable bound given by the Jensen-Peierls inequality :

〈

e−(A−Ax0
Ω

)/h̄
〉x0

Ω
≥ e−〈A/h̄−Ax0

Ω
/h̄〉x0

Ω . (5.10)

This implies that the effective classical potential has an upper bound

V eff cl(x0) ≤ F x0
Ω (x0) + kBT 〈A/h̄−Ax0

Ω /h̄〉x0Ω . (5.11)

The Jensen-Peierls inequality is a consequence of the convexity of the exponential
function: The average of two exponentials is always larger than the exponential at
the average point (see Fig. 5.1):

e−x1 + e−x2

2
≥ e−

x1+x2
2 . (5.12)

This convexity property of the exponential function can be generalized to an expo-
nential functional. Let O[x] be an arbitrary functional in the space of paths x(τ),
and

〈O[x]〉 ≡
∫

Dµ[x]O[x] (5.13)

Figure 5.1 Illustration of convexity of exponential function e−x, satisfying 〈e−x〉 ≥ e−〈x〉

everywhere.
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an expectation value in this space. The measure of integration µ[x] is supposed to
be normalized so that 〈1〉 = 1. Then (5.12) generalizes to

〈

e−O
〉

≥ e−〈O〉. (5.14)

To prove this we first observe that the inequality (5.12) remains valid if x1, x2 are
replaced by the values of an arbitrary function O(x):

e−O(x1) + e−O(x2)

2
≥ e−

O(x1)+O(x2)
2 . (5.15)

This inequality is then generalized with the help of any positive measure µ(x), with
unit normalization,

∫

dµ(x) = 1, to
∫

dµ(x)e−O(x) ≥ e
∫

dµ(x)e−O(x)

, (5.16)

and further to ∫

Dµ[x]e−O[x] ≥ e
∫

Dµ[x]e−O[x]

, (5.17)

where µ[x] is any positive functional measure with the normalization
∫ Dµ[x] = 1.

This shows that Eq. (5.14) is true, and hence also the Jensen-Peierls inequality
(5.10).

Since the kinetic energies in the two actions A and Ax0
Ω in (5.11) are equal, the

inequality (5.11) can also be written as

V eff cl(x0) ≤ F x0
Ω +

kBT

h̄

∫ h̄/kBT

0
dτ

〈

[

V (x(τ)) −M
Ω2(x0)

2
(x(τ) − x0)

2
]

〉x0

Ω

. (5.18)

The local expectation value on the right-hand side is easily calculated. Recalling
the definition (3.856) we have to use the correlation functions of η(τ) without the
zero frequency in Eq. (3.842):

〈η(τ)η(τ ′)〉x0Ω ≡ a2ττ ′(x0) =
h̄

M

[

1

2Ω(x0)

cosh Ω(x0)(|τ−τ ′| − h̄β/2)

sinh(Ω(x0)h̄β/2)
− 1

h̄βΩ2

]

, (5.19)

valid for arguments τ, τ ′ ∈ [0, h̄β]. By analogy with (3.806) we may denote this
quantity by a2Ω(x0)

(τ, τ ′), which we have shortened to a2ττ ′(x0), to avoid a pile-up of
indices.

All subtracted correlation functions can be obtained from the functional deriva-
tives of the local generating functional

Zx0
Ω [j] ≡

∫

Dx(τ)δ̃(x̄− x0) e
−(1/h̄)

∫ h̄β

0
dτ[M2 {ẋ2(τ)+Ω2(x0)[x(τ)−x0]2]−j(τ)[x(τ)−x0]},(5.20)

whose explicit form was calculated in (3.847):

Zx0
Ω [j] = Zx0

Ω exp

{

1

2Mh̄

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′j(τ)Gp

Ω2(x0),e
′ (τ−τ ′)j(τ ′)

}

. (5.21)
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If desired, the Green function can be continued analytically to the real-time
retarded Green function

GR
Ω2(t, t′) =

M

h̄
Θ(t− t′) 〈x(t)x(t′)〉 (5.22)

in a way to be explained later in Section 18.2.
With the help of the spectral decomposition of these correlation functions to be

derived in Section 18.2, it is possible to show that the lowest frequency content of
the zero-temperature Green function (5.22) contains the information on the lowest
excitation energy of a physical system. For the frequncy ω of an oscillator Green
function this is trivially true. It is then obvious that in the above approximation
where the Green function is a superposition of oscillator Green functions of frequen-
cies Ω(x0), the minimal zero-temperature value of h̄Ω(x0) gives an approximation
to the energy difference between ground and first excited states. In Table 5.1 we see
that for the anharmonic oscillator, this approximation is quite good.

As shown in Fig. 3.14, the local fluctuation square width

〈

η2(τ)
〉x0

Ω
=
〈

(x(τ) − x0)
2
〉x0

Ω
= a2ττ (x0) ≡ a2Ω(x0), (5.23)

with the explicit form (3.806),

a2Ω(x0)
=

2

Mβ

∞
∑

m=1

1

ω2
m + Ω2(x0)

=
1

MβΩ2(x0)

[

h̄βΩ(x0)

2
coth

h̄βΩ(x0)

2
− 1

]

, (5.24)

goes to zero for high temperature like

a2Ω(x0)
−−−→
T→∞

h̄2/12MkBT. (5.25)

This is in contrast to the unrestricted expectation 〈(x(τ) − x0)
2〉Ω(x0)

of the harmonic
oscillator which includes the ωm = 0 -term in the spectral decomposition (3.803):

a2tot ≡
〈

(x(τ) − x0)
2
〉

Ω(x0)
= a2Ω(x0)

+
kBT

MΩ2(x0)
. (5.26)

This grows linearly with T following the equipartition theorem (3.803).
As discussed in Section 3.25, this difference is essential for the reliability of a

perturbation expansion of the effective classical potential. It will also be essential
for the quality of the variational approach in this chapter.

The local fluctuation square width a2Ω(x0)
measures the importance of quantum

fluctuations at nonzero temperatures. These decrease with increasing temperatures.
In contrast, the square width of the ω0 = 0 -term grows with the temperature
showing the growing importance of classical fluctuations.

This behavior of the fluctuation width is in accordance with our previous ob-
servation after Eq. (3.840) on the finite width of the Boltzmann factor B(x0) =
e−V

eff cl(x0)/kBT for low temperatures in comparison to the diverging width of the
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alternative Boltzmann factor (3.841) formed from the partition function density

B̃(x0) ≡ le(h̄β) z(x) = e−Ṽ
eff cl(x0)/kBT .

Since a2Ω(x0)
is finite at all temperatures, the quantum fluctuations can be treated

approximately. The approximation improves with growing temperatures where
a2Ω(x0)

tends to zero. The thermal fluctuations, on the other hand, diverge at high
temperatures. Their evaluation requires a numeric integration over x0 in the final
effective classical partition function (3.811).

Having determined a2Ω(x0)
, the calculation of the local expectation value

〈V (x(τ))〉x0Ω is quite easy following the steps in Subsection 3.25.8. The result is
the smearing formula analogous to (3.875): We write V (x(τ)) as a Fourier integral

V (x(τ)) =
∫ ∞

−∞

dk

2π
eikx(τ)Ṽ (k), (5.27)

and obtain with the help of Wick’s rule (3.307) the expectation value

〈V (x(τ))〉x0Ω = Va2(x0) ≡
∫ ∞

−∞

dk

2π
Ṽ (k)eikx0−a

2(x0)k2/2. (5.28)

For brevity, we have used the shorter notation a2(x0) for a2Ω(x0)
, and shall do so in

the remainder of this chapter. Reinsert the Fourier coefficients of the potential

Ṽ (k) =
∫ ∞

−∞
dx V (x)e−ikx, (5.29)

we may perform the integral over k and obtain the convolution integral

〈V (x(τ))〉x0Ω = Va2(x0) ≡
∫ ∞

−∞

dx′0
√

2πa2(x0)
e−(x′0−x0)2/2a2(x0) V (x′0). (5.30)

As in (3.875), the convolution integral smears the original potential V (x0) out over
a length scale a(x0), thus accounting for the effects of quantum-statistical path
fluctuations.

The expectation value 〈(x(τ) − x0)
2〉x0Ω in Eq. (5.26) is, of course, a special case

of this general smearing rule:

(x− x0)
2
a2 =

∫ ∞

−∞

dx′√
2πa2

e−(1/2a2)(x′−x0)2(x′ − x0)
2

= a2(x0). (5.31)

Hence we obtain for the effective classical potential the approximation

WΩ
1 (x0) ≡ F x0

Ω + Va2(x0) −
M

2
Ω2(x0)a

2(x0), (5.32)

which by the Jensen-Peierls inequality lies always above the true result:

WΩ
1 (x0) ≥ V eff cl(x0). (5.33)
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A minimization of WΩ
1 (x0) in Ω(x0) produces an optimal variational approximation

to be denoted by W1(x0).
For the harmonic potential V (x) = Mω2x2/2, the smearing process leads to

Va2(x0) = Mω2(x20 + a2)/2. The extremum of WΩ
1 (x0) lies at Ω(x0) ≡ ω, so that the

optimal upper bound is

W1(x0) = F x0
ω +Mω2x

2
0

2
. (5.34)

Thus, for the harmonic oscillator, WΩ
1 (x0) happens to coincide with the exact effec-

tive classical potential V eff cl
ω (x0) found in (3.830).

5.3 The Optimal Upper Bound

We now determine the frequency Ω(x0) of the local trial oscillator which optimizes
the upper bound in Eq. (5.33). The derivative of WΩ

1 (x0) with respect to Ω2(x0)
has two terms:

dWΩ
1 (x0)

dΩ2(x0)
=
∂WΩ

1 (x0)

∂Ω2(x0)
+
∂WΩ

1 (x0)

∂a2(x0)

∣

∣

∣

∣

∣

Ω(x0)

∂a2(x0)

∂Ω2(x0)
.

The first term is

∂W1(x0)

∂Ω2(x0)
=
M

2

{

kBT

MΩ2(x0)

[

h̄Ω

2kBT
coth

(

h̄Ω

2kBT

)

− 1

]

− a2(x0)

}

. (5.35)

It vanishes automatically due to (5.24). Thus we only have to minimize WΩ
1 (x0)

with respect to a2(x0) by satisfying the condition

∂WΩ
1 (x0)

∂a2(x0)
= 0. (5.36)

Inserting (5.32), this determines the trial frequency

Ω2(x0) =
2

M

∂Va2(x0)

∂a2(x0)
. (5.37)

In the Fourier integral (5.28) for Va2(x0), the derivative 2(∂/∂a2)Va2 is represented
by a factor −k2 which, in turn, is equivalent to ∂/∂x20. This leads to the alternative
equation:

Ω2(x0) =
1

M

[

∂2

∂x20
Va2(x0)

]

a2=a2(x0)

. (5.38)

Note that the partial derivatives must be taken at fixed a2 which is to be set equal
to a2(x0) at the end.

The potential WΩ
1 (x0) with the extremal Ω2(x0) and the associated a2(x0) of

(5.24) constitutes the Feynman-Kleinert approximation W1(x0) to the effective clas-
sical potential V eff cl(x0).
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It is worth noting that due to the vanishing of the partial derivative
∂WΩ

1 (x0)/∂Ω
2(x0) in (5.35) we may consider Ω2(x0) and a2(x0) as arbitrary varia-

tional parameters in the expression (5.32) for WΩ
1 (x0). Then the independent vari-

ation of WΩ
1 (x0) with respect to these two parameters yields both (5.24) and the

minimization condition (5.37) for Ω2(x0).

From the extremal WΩ
1 (x0) we obtain the approximation for the partition func-

tion and the free energy [recall (3.837)]

Z1 = e−F1/kBT =
∫ ∞

−∞

dx0
le(h̄β)

e−W1(x0)/kBT ≤ Z, (5.39)

where le(h̄β) is the thermal de Broglie length defined in Eq. (2.353). We leave it to
the reader to calculate the second derivative of WΩ

1 (x0) with respect to Ω2(x0) and
to prove that it is nonnegative, implying that the above extremal solution is a local
minimum.

5.4 Accuracy of Variational Approximation

The accuracy of the approximate effective classical potential W1(x0) can be esti-
mated by the following observation: In the limit of high temperatures, the approx-
imation is perfect by construction, due the shrinking width (5.25) of the nonzero
frequency fluctuations. This makes W1(x0) in (5.31) converge against V (x0), just as
the exact effective classical potential in Eq. (3.812).

In the opposite limit of low temperatures, the integral over x0 in the general
expression (3.811) is dominated by the minimum of the effective classical potential.
If its position is denoted by xm, we have the saddle point approximation (see Section
4.2)

Z −−−→
T→0

e−V
eff cl(xm)/kBT

∫

dx0
le(h̄β)

e−[V eff cl(xm)]′′(x0−xm)2/2kBT . (5.40)

The exponential of the prefactor yields the leading low-temperature behavior of the
free energy:

F −−−→
T→0

V eff cl(xm). (5.41)

The Gaussian integral over x0 contributes a term

∆F = kBT log







h̄

kBT

√

[V eff cl(xm)]′′

M







, (5.42)

which accounts for the entropy of x0 fluctuations around xm [recall Eq. (1.568)].
Moreover, at zero temperature, the free energy F converges against the ground
state energy E(0) of the system, so that

E(0) = V eff cl(xm). (5.43)
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The minimum of the approximate effective classical potential, WΩ
1 (x0) with respect

to Ω(x0) supplies us with a variational approximation to the free energy F1, which
in the limit T → 0 yields a variational approximation to the ground state energy

E
(0)
1 = F1|T=0 ≡ W1(xm)|T=0 . (5.44)

By taking the T → 0 limit in (5.32) we see that

lim
T→0

WΩ
1 (x0) =

1

2

[

h̄Ω(x0) −MΩ2(x0)a
2(x0)

]

+ Va2(x0). (5.45)

In the same limit, Eq. (5.24) gives

lim
T→0

a2(x0) =
h̄

2MΩ(x0)
, (5.46)

so that

lim
T→0

WΩ
1 (x0) =

1

4
h̄Ω(x0) + Va2(x0) =

1

8

h̄2

Ma2(x0)
+ Va2(x0) . (5.47)

The right-hand side is recognized as the expectation value of the Hamiltonian oper-
ator

Ĥ =
p̂2

2M
+ V (x) (5.48)

in a normalized Gaussian wave packet of width a centered at x0:

ψ(x) =
1

(2πa2)1/4
exp

[

− 1

4a2
(x− x0)

2
]

. (5.49)

Indeed,
〈

Ĥ
〉

ψ
≡
∫ ∞

−∞
dxψ∗(x)Ĥψ(x) =

1

8

h̄2

Ma2
+ Va2(x0). (5.50)

Let E1 be the minimum of this expectation under the variation of x0 and a2:

E1 = minx0,a2
〈

Ĥ
〉

ψ
. (5.51)

This is the variational approximation to the ground state energy provided by the
Rayleigh-Ritz method .

In the low temperature limit, the approximation F1 to the free energy converges
toward E1:

lim
T→0

F1 = E1. (5.52)

The approximate effective classical potential W1(x0) is for all temperatures and
x0 more accurate than the estimate of the ground state energy E0 by the minimal
expectation value (5.51) of the Hamiltonian operator in a Gaussian wave packet. For
potentials with a pronounced unique minimum of quadratic shape, this estimate is
known to be excellent.
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Table 5.1 Comparison of variational energy E1 = limT→0 F1, obtained from Gaussian

trial wave function, with exact ground state energy E
(0)
ex . The energies of the first two

excited states E
(1)
ex and E

(2)
ex are listed as well. The level splitting ∆E

(0)
ex = E

(1)
ex − E

(0)
ex to

the first excited state is shown in column 6. We see that it is well approximated by the

value of Ω(0), as it should (see the discussion after Eq. (5.21).

g/4 E1 E
(0)
ex E

(1)
ex E

(2)
ex ∆E

(0)
ex Ω(0) a2(0)

0.1 0.5603 0.559146 1.76950 3.13862 1.21035 1.222 0.4094
0.2 0.6049 0.602405 1.95054 3.53630 1.34810 1.370 0.3650
0.3 0.6416 0.637992 2.09464 3.84478 1.45665 1.487 0.3363
0.4 0.6734 0.668773 2.21693 4.10284 1.54816 1.585 0.3154
0.5 0.7017 0.696176 2.32441 4.32752 1.62823 1.627 0.2991
0.6 0.7273 0.721039 2.42102 4.52812 1.69998 1.749 0.2859
0.7 0.7509 0.743904 2.50923 4.71033 1.76533 1.819 0.2749
0.8 0.7721 0.765144 2.59070 4.87793 1.82556 1.884 0.2654
0.9 0.7932 0.785032 2.66663 5.03360 1.86286 1.944 0.2572
1.0 0.8125 0.803771 2.73789 5.17929 1.93412 2.000 0.2500
10 1.5313 1.50497 5.32161 10.3471 3.81694 4.000 0.1250
50 2.5476 2.49971 8.91510 17.4370 6.41339 6.744 0.0741

100 3.1924 3.13138 11.1873 21.9069 8.05590 8.474 0.0590
500 5.4258 5.31989 19.0434 37.3407 13.7235 14.446 0.0346

1000 6.8279 6.69422 23.9722 47.0173 17.2780 18.190 0.0275

In Table 5.1 we list the energies E1 = W1(0) for a particle in an anharmonic
oscillator potential. Its action will be specified in Section 5.7, where the approxi-
mation W1(x0) will be calculated and discussed in detail. The table shows that this
approximation promises to be quite good [2].

With the effective classical potential having good high- and low-temperature
limits, it is no surprise that the approximation is quite reliable at all temperatures.

Even if the potential minimum is not smooth, the low-temperature limit can be
of acceptable accuracy. An example is the three-dimensional Coulomb system for
which the limit (5.51) becomes (with the obvious optimal choice x0 = 0)

E1 = mina

(

3

8

h̄2

Ma2
− 2√

π

e2√
2a2

)

= −3

8

h̄2

Ma2min

. (5.53)

The minimal value of a is amin =
√

9π/32aH where aH = h̄2/Me2 is the Bohr

radius (4.376) of the hydrogen atom. In terms of it, the minimal energy has the
value E1 = −(4/3π)e2/aH . This is only 15% percent different from the true ground
state energy of the Coulomb system E(0)

ex = −(1/2)e2/aH . Such a high degree of
accuracy may seem somewhat surprising since the exact Coulomb wave function
ψ(x) = (πa3H)−1/2 exp(−r/aH) is far from being a Gaussian.

The partition function of the Coulomb system can be calculated only after sub-
tracting the free-particle partition function and screening the 1/r -behavior down
to a finite range. The effective classical free energy F1 of the Coulomb potential
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obtained by this method is, at any temperature, more accurate than the difference
between E1 and E(0)

ex . More details will be given in Section 5.10.

5.5 Weakly Bound Ground State Energy
in Finite-Range Potential Well

The variational approach allows us to derive a simple approximation for the bound-
state energy in an arbitrarily shaped potential of finite range, for which the binding
energy is very weak. Precisely speaking, the falloff of the ground state wave function
has to lie outside the range of the potential. A typical example for this situation is
the binding of electrons to Cooper pairs in a superconductor. The attractive force
comes from the electron-phonon interaction which is weakened by the Coulomb
repulsion. The potential has a complicated shape, but the binding energy is so
weak that the wave function of a Cooper pair reaches out to several thousand lattice
spacings, which is much larger than the range of the potential, which extends only
over maximally a hundred lattice spacings. In this case one may practically replace
the potential by an equivalent δ-function potential.

The present considerations apply to this situation. Let us assume the absolute
minimum of the potential to lie at the origin. The first-order variational energy at
the origin is given by

W1(0) =
Ω

2
+ Va2(0), (5.54)

where by (5.30)

Va2(0) =
∫ ∞

−∞

dx′0√
2πa2

e−x
′
0
2/2a2 V (x′0). (5.55)

By assumption, the binding energy is so small that the ground state wave function
does not fall off within the range of V (x0). Hence we can approximate

Va2(0) ≈
√

Ω

π

∫ ∞

−∞
dx′0 V (x′0), (5.56)

where we have inserted a2 = 1/2Ω. Extremizing this in Ω yields the approximate
ground state energy

E
(0)
1 ≈ − 1

2π

[

−
∫ ∞

−∞
dx′0 V (x′0)

]2

. (5.57)

By applying this result to a simple δ-function potential at the origin,

V (x) = −gδ(x), g > 0, (5.58)

we find an approximate ground state energy

E
(0)
1 = − 1

2π
g2. (5.59)

The exact value is

E(0) = −1

2
g2. (5.60)
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The failure of the variational approximation is due to the fact that outside the range
of the potential, the wave function is a simple exponential e−k|x| with k =

√
−2E(0),

and not a Gaussian. In fact, if we consider the expectation value of the Hamiltonian
operator

H = −1

2

d2

dx2
− gδ(x) (5.61)

for a normalized trial wave function

ψ(x) =
√
Ke−K|x|, (5.62)

we obtain a variational energy

W1 =
K2

2
− gK, (5.63)

whose minimum gives the exact ground state energy (5.60). Thus, problems of the
present type call for the development of a variational perturbation theory for which
Eq. (5.54) and (5.55) read

W (0) =
K2

2
+ VK(0), (5.64)

where

VK(0) = K
∫ ∞

−∞

dx′0
a
e−K|x0| V (x0). (5.65)

For an arbitrary attractive potential whose range is much shorter than a, this leads
to the correct energy for a weakly bound ground state

E
(0)
1 ≈ −1

2

[

−
∫ ∞

−∞
dx′0 V (x0)

]2

. (5.66)

5.6 Possible Direct Generalizations

Let us remark that there is a possible immediate generalization of the above variational procedure.
One may treat higher components xm with m > 0 accurately, say up to m = m̄ − 1, where m̄ is
some integer > 1, using the ansatz

Zm̄ ≡
∫

Dx(τ) exp

{

− 1

h̄

∫ h̄/kBT

0

M

2

[

ẋ2(τ)

2
+ Ω2(x0, . . . , xm̄)

×
(

x(τ) − x0 −
m̄−1
∑

m=1

(xme
−iωmτ + c.c.)

)2










e−(1/kBT )Lm̄(x0,...,xm̄)

=

∫ ∞

−∞

dx0
le(h̄β)

m̄−1
∏

n=1

[∫

dxrem dximm
πkBT/Mω2

m

ω2
m + Ω2(x0)

ω2
m

]

× h̄Ω(x0)/2kBT

sinh(h̄Ω(x0)/2kBT )
e−Lm̄(x0,...,xm̄)/kBT , (5.67)

with the trial function Lm̄:

Lm̄(x0, . . . , xm̄) =
kBT

h̄

∫ h̄/kBT

0

dτ Va2
m̄

(

x0 +

m̄−1
∑

m=1

(xme
−iωmτ + c.c.)

)

− M

2
Ω2(x0, . . . , xm̄)a2m̄,

(5.68)
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and a smearing square width of the potential

a2m̄ =
2kBT

M

∞
∑

m=m̄

1

ω2
m + Ω2

(5.69)

=
kBT

MΩ2

(

h̄Ω

2kBT
coth

h̄Ω

2kBT
− 1

)

− 2kBT

M

m̄−1
∑

m=1

1

ω2
m + Ω2

.

For the partition function alone the additional work turns out to be not very rewarding since it
renders only small improvements. It turns out that in the low-temperature limit T → 0, the free
energy is still equal to the optimal expectation of the Hamiltonian operator in the Gaussian wave
packet (5.49).

Note that the ansatz (5.7) [as well as (5.67)] cannot be improved by allowing the trial fre-

quency Ω(x0) to be a matrix Ωmm′(x0) in the space of Fourier components xm [i.e., by using
∑

m,m′ Ωmm′(x0)x
∗
mxm′ instead of Ω(x0)

∑

m |xm|2]. This would also lead to an exactly integrable

trial partition function. However, after going through the minimization procedure one would fall

back to the diagonal solution Ωmm′(x0) = δmm′Ω(x0).

5.7 Effective Classical Potential for Anharmonic
Oscillator and Double-Well Potential

For a typical application of the approximation method consider the Euclidean action

A[x] =
∫ h̄/kBT

0
dτ
[

M

2

(

ẋ2 + ω2x2
)

+
g

4
x4
]

. (5.70)

Let us write 1/kBT as β and use natural units with M = 1, h̄ = kB = 1. We have
to distinguish two cases:

a) Case ω2 > 0, Anharmonic Oscillator

Setting ω2 = 1, the smeared potential (5.30) is according to formula (3.879):

Va2(x0) =
x20
2

+
g

4
x40 +

a2

2
+

3

2
gx20a

2 +
3g

4
a4. (5.71)

Differentiating this with respect to a2/2 gives, via (5.37),

Ω2(x0) = [1 + 3gx20 + 3ga2(x0)]. (5.72)

This equation is solved at each x0 by iteration together with (5.24),

a2(x0) =
1

βΩ2(x0)

[

βΩ(x0)

2
coth

βΩ(x0)

2
− 1

]

. (5.73)

An initial approximation such as Ω(x0) = 0 is inserted into (5.73) to find a2(x0) ≡
β/12, which serves to calculate from (5.72) an improved Ω2(x0), and so on. The
iteration converges rapidly. Inserting the final a2(x0),Ω

2(x0) into (5.71) and (5.32),
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Figure 5.2 Approximate free energy F1 of anharmonic oscillator as compared with the

exact energy Fex, the classical limit Fcl = −(1/β) log
∫∞
−∞(dx/

√
2πβ)e−βV (x), as well as

an earlier approximation F0 = −(1/β) logZ0 of Feynman’s corresponding to F1 for the

nonoptimal choice Ω = 0, a2 = β/12. Note that F0, F1 satisfy the inequality F0,1 ≥ F ,

while Fcl does not.

we obtain the desired approximation W1(x0) to the effective classical potential
V eff cl(x0). By performing the integral (5.39) in x0 we find the approximate free
energy F1 plotted as a function of β in Fig. 5.2. The exact free-energy values are
obtained from the known energy eigenvalues of the anharmonic oscillator. They are
seen to lie closely below the approximate F1 curve. For comparison, we have also
plotted the classical approximation Fcl = −(1/β) logZcl which does not satisfy the
Jensen-Peierls inequality and lies below the exact curve.

In his book on statistical mechanics [3], Feynman gives another approximation,
called here F0, which can be obtained from the present W1(x0) by ending the it-
eration of (5.72), (5.73) after the first step, i.e., by using the constant nonminimal
variational parameters Ω(x0) ≡ 0, a2(x0) ≡ h̄2β/12M . This leads to the approxi-
mation

Va2(x0) ≈ V (x0) +
1

2

h̄2β

12M
V ′′(x0) +

1

8

(

h̄2β

12M

)2

V (4)(x0) + . . . , (5.74)
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referred to as Wigner’s expansion [4]. The approximation F0 is good only at higher
temperatures, as seen in Fig. 5.2. Just like F1, the curve F0 lies also above the
exact curve since it is subject to the Jensen-Peierls inequality. Indeed, the inequal-
ity holds for the potential W1(x0) in the general form (5.32), i.e., irrespective of
the minimization in a2(x0). Thus it is valid for arbitrary Ω2(x0), in particular for
Ω2(x0) ≡ 0.

In the limit T → 0, the free energy F1 yields the following approximation for the
ground state energy E(0) of the anharmonic oscillator:

E
(0)
1 =

1

4Ω
+

Ω

4
+

3

4

g

4Ω2
. (5.75)

This approximation is very good for all coupling strengths, including the strong-
coupling limit. In this limit, the optimal frequency and energy have the expansions

Ω1 =
(

g

4

)1/3
[

61/3 +
1

21/334/3
1

(g/4)2/3
+ . . .

]

, (5.76)

and

E
(0)
1 (g)≈

(

g

4

)1/3
[

(

3

4

)4/3

+
1

27/331/3
1

(g/4)2/3
+ . . .

]

≈
(

g

4

)1/3
[

0.681420 + 0.13758
1

(g/4)2/3
+ . . .

]

. (5.77)

The coefficients are quite close to the precise limiting expression to be calculated in
Section 5.15 (listed in Table 5.9).

b) Case ω2 < 0: The Double-Well Potential

For ω2 = −1, we slightly modify the potential by adding a constant 1/4g, so that it
becomes

V (x) = −x
2

2
+
g

4
x4 +

1

4g
. (5.78)

The additional constant ensures a smooth behavior of the energies in the limit g → 0.
Since the potential possesses now two symmetric minima, it is called the double-well

potential . Its smeared version Va2(x0) can be taken from (5.71), after a sign change
in the first and third terms (and after adding the constant 1/4g).

Now the trial frequency

Ω2(x0) = −1 + 3gx20 + 3ga2(x0) (5.79)

can become negative, although it turns out to remain always larger than −4π2/β2,
since the solution is incapable of crossing the first singularity in the sum (5.24)
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from the right. Hence the smearing square width a2(x0) is always positive. For
Ω2 ∈ (−4π2/β2, 0), the sum (5.24) gives

a2(x0) =
2

β

∞
∑

m=1

1

ω2
m + Ω2(x0)

=
1

βΩ2(x0)

(

β|Ω(x0)|
2

cot
β|Ω(x0)|

2
− 1

)

, (5.80)

which is the expression (5.73), continued analytically to imaginary Ω(x0). The
above procedure for finding a2(x0) and Ω2(x0) by iteration of (5.79) and (5.80) is
not applicable near the central peak of the double well, where it does not converge.
There one finds the solution by searching for the zero of the function of Ω2(x0)

f(Ω2(x0)) ≡ a2(x0) −
1

3g
[1 + Ω2(x0) − 3gx20], (5.81)

with a2(x0) calculated from (5.80) or (5.73). At T = 0, the curves have for g ≤ gc
two symmetric nontrivial minima at ±xm with

xm =

√

1 − 3ga2

g
, (5.82)

where Eq. (5.79) becomes

Ω2(xm) = 2 − 6ga2(xm). (5.83)

These disappear for

g > gc =
4

9

√

2

3
≈ 0.3629 . (5.84)

The resulting effective classical potentials and the free energies are plotted in
Figs. 5.3 and 5.4.

It is useful to compare the approximate effective classical potential W1(x) with
the true one V eff cl(x) in Fig. 5.5. The latter was obtained by Monte Carlo simulations
of the path integral of the double-well potential, holding the path average x̄ =
(1/β)

∫ β
0 dτx(τ) fixed at x0. The coupling strength is chosen as g = 0.4, where the

worst agreement is expected.

In the limit T → 0, the approximation F1 yields an approximation E
(0)
1 for the

ground state energy. In the strong-coupling limit, the leading behavior is the same
as in Eq. (5.77) for the anharmonic oscillator.

Let us end this section with the following remark. The entire approximation
procedure can certainly also be applied to a time-sliced path integral in which the
time axis contains N + 1 discrete points τn = nǫ, n = 0, 1, . . .N . The only change
in the above treatment consists in the replacement

ω2
m → ΩmΩ̄m =

1

ǫ2
[2 − 2 cos(ǫωm)]. (5.85)
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Figure 5.3 Effective classical potential of double well V (x) = −x2/2 + gx4/4 + 1/4g

at various g for T = 0 and T = ∞ [where it is equal to the potential V (x) itself]. The

quantum fluctuations at T = 0 smear out the double well completely if g >∼ 0.4, but not if

g = 0.2.

Hence the expression for the smearing square width parameter a2(x0) of (5.24) is
replaced by

a2(x0) =
2kBT

M

∂

∂Ω2(x0)
log

mmax
∏

m=1

[

ΩmΩm + Ω2(x0)
]

=
kBT

M

1

Ω

∂

∂Ω
log

sinh(h̄ΩN (x0)/2kBT )

h̄Ω(x0)/2kBT
(5.86)

=
kBT

MΩ2(x0)

[

h̄Ω(x0)

2kBT
coth

h̄ΩN (x0)

2kBT

1

cosh(ǫΩN (x0)/2)
− 1

]

,

where mmax = N/2 for even and (N − 1)/2 for odd N [recall (2.391)], and ΩN(x0)
is defined by

sinh[ǫΩN (x0)/2] ≡ ǫΩ(x0)/2 (5.87)

[see Eq. (2.399)]. The trial potential W1(x0) now reads

W1(x0) ≡ kBT log
sinh h̄ΩN (x0)/2kBT

h̄Ω(x0)/2kBT
+ Va2(x0)(x0) −

M

2
Ω2(x0)a

2(x0), (5.88)

rather than (5.32). Minimizing this in a2(x0) gives again (5.37) and (5.38) for Ω2(x0).
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Figure 5.4 Free energy F1 in double-well potential (5.78), compared with the exact free

energy Fex, the classical limit Fcl, and Feynman’s approximation F0 (which coincides with

F1 for the nonminimal values Ω = 0, a2 = β/12).

In Fig. 5.6 we have plotted the resulting approximate effective classical potential
W1(x0) of the double-well potential (5.78) with g = 0.4 at a fixed large value β = 20
for various numbers of lattice points N + 1. It is interesting to compare these plots
with the exact curves, obtained again from Monte Carlo simulations. For N = 1,
the agreement is exact. For small N , the agreement is good near and outside the
potential minima. For larger N , the exact effective classical potential has oscillations
which are not reproduced by the approximation.

5.8 Particle Densities

It is possible to find approximate particle densities from the optimal effective classical
potential W1(x0) [5, 6]. Certainly, the results cannot be as accurate as those for the
free energies. In Schrödinger quantum mechanics, it is well known that variational
methods can give quite accurate energies even if the trial wave functions are only
of moderate quality. This has also been seen in the Eq. (5.53) estimate to the
ground state energy of the Coulomb system by a Gaussian wave packet. The energy
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Figure 5.5 Comparison of approximate effective classical potential W1(x0) (dashed

curves) and W3(x0) (solid curves) with exact V eff cl(x0) (dots) at various inverse tempera-

tures β = 1/T . The data dots are obtained from Monte Carlo simulations using 105 config-

urations [W. Janke and H. Kleinert, Chem. Phys. Lett. 137 , 162 (1987) (http://www.phy-

sik.fu-berlin.de/~kleinert/154)]. We have picked the worst case, g = 0.4. The solid

lines represent the higher approximation W3(x0), to be calculated in Section 5.13.

is a rather global property of the system. For physical quantities such as particle
densities which contain local information on the wave functions, the approximation
is expected to be much worse. Let us nevertheless calculate particle densities of
a quantum-mechanical system. For this we tie down the periodic particle orbit in
the trial partition function Z1 for an arbitrary time at a particular position, say xa.
Mathematically, this is enforced with the help of a δ-function:

δ(xa − x(τ)) = δ(xa − x0 −
∞
∑

m=1

(xme
−iωmτ + c.c.))

=
∫ ∞

−∞

dk

2π
exp

{

ik

[

xa − x0 −
∞
∑

m=1

(xme
−iωmτ + c.c.)

]}

. (5.89)

With this, we write the path integral for the particle density [compare (2.353)]ref(2.353)
lab(2.length)
est(2.234)

ρ(xa) = Z−1
∮

Dx δ(xa − x(τ))e−A/h̄ (5.90)
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Figure 5.6 Effective classical potential W1(x0) for double-well potential (5.78) with

g = 0.4 at fixed low temperature T = 1/β = 1/20, for various numbers of time slices

N+1 = 2 (×t), 4 (△), 8 (▽), 16 (✸), 32 (+), 64 ( ). The dashed line represents the original

potential V (x0). For the source of the data points, see the previous figure caption.

and decompose

ρ(xa) = Z−1
∫ ∞

−∞

dx0
le(h̄β)

∫

dk

2π
eik(xa−x0)

×
∫

Dxδ̃(x̄− x0)e
−ikΣ∞

m=1(xm+c.c.)e−A/h̄. (5.91)

The approximation W1(x0) is based on a quasiharmonic treatment of the xm-
fluctuations for m > 0. For harmonic fluctuations we use Wick’s rule of Section 3.10
to evaluate

〈

e−ikΣ
∞
m=1(xme

−iωmτ+c.c.)
〉x0

Ω
≈ e−k

2Σ∞
m=1〈|xm|2〉x0

Ω ≡ e−k
2a2/2, (5.92)

which is true for any τ . Thus we could have chosen any τ in the δ-function (5.89)
to find the distribution function. Inserting (5.92) into (5.91) we can integrate out k
and find the approximation to the particle density

ρ(xa) ≈ Z−1
∫ ∞

−∞

dx0
le(h̄β)

e−(xa−x0)2/2a2(x0)
√

2πa2(x0)
e−V

eff cl(x0)/kBT . (5.93)

By inserting for V eff cl(x0) the approximation W1(x0), which for Z yields the approxi-
mation Z1, we arrive at the corresponding approximation for the particle distribution
function:

ρ1(xa) = Z−1
1

∫ ∞

−∞

dx0
le(h̄β)

e−(xa−x0)2/2a2(x0)
√

2πa2(x0)
e−W1(x0)/kBT . (5.94)
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Figure 5.7 Approximate particle density (5.94;r:5.63,a:5.93) of anharmonic oscillator

for g = 40, as compared with the exact density ρ(x) = Z−1∑

n |ψn(x)|2e−βEn , obtained

by integrating the Schrödinger equation numerically. The curves are labeled by their β

values with the subscripts 1, ex, cl indicating the approximation.

This has obviously the correct normalization
∫∞
−∞ dxaρ1(xa) = 1. Figure 5.7 shows

a comparison of the approximate particle distribution functions of the anharmonic
oscillator with the exact ones. Both agree reasonably well with each other. In
Fig. 5.8, the same plot is given for the double-well potential at a coupling g = 0.4.
Here the agreement at very low temperature is not as good as in Fig. 5.7. Compare,
for example, the zero-temperature curve ∞1 with the exact curve ∞ex. The first
has only a single central peak, the second a double peak. The reason for this
discrepancy is the correspondence of the approximate distribution to an optimal
Gaussian wave function which happens to be centered at the origin, in spite of the
double-well shape of the potential. In Fig. 5.3 we see the reason for this: The
approximate effective classical potential W1(x0) has, at small temperatures up to
T ∼ 1/10, only one minimum at the origin, and this becomes the center of the
optimal Gaussian wave function. For larger temperatures, there are two minima and
the approximate distribution function ρ1(x) corresponds roughly to two Gaussian
wave packets centered around these minima. Then, the agreement with the exact
distribution becomes better. We have intentionally chosen the coupling g = 0.4,
where the result would be about the worst. For g ≫ 0.4, both the true and the
approximate distributions have a single central peak. For g ≪ 0.4, both have two
peaks at small temperatures. In both limits, the approximation is acceptable.
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Figure 5.8 Particle density (5.94) in double-well potential (5.78) for the worst choice

of the coupling constant, g = 0.4. Comparison is made with the exact density ρ(x) =

Z−1∑

n |ψn(x)|2e−βEn obtained by integrating the Schrödinger equation numerically. The

curves are labeled by their β values with the subscripts 1, ex, cl indicating the approxima-

tion. For β → ∞, the distribution tends to the Gaussian e−x
2/2a2/

√
2πa2 with a2 = 1.030

(see Table 5.1).

5.9 Extension to D Dimensions

The method can easily be extended to approximate the path integral of a particle
moving in a D-dimensional x-space. Let xi be the D components of x. Then the
trial frequency Ω2

ij(x0) in (5.7) must be taken as a D × D -matrix. In the special

case of V (x) being rotationally symmetric and depending only on r =
√
x2, we

may introduce, as in the discussion of the effective action in Eqs. (3.684)–(3.689),
longitudinal and transverse parts of Ω2

ij(x0) via the decomposition

Ω2
ij(x0) = Ω2

L(r0)PLij(x0) + Ω2
T (r0)PT ij(x0), (5.95)

where

PLij(x̂0) = x0ix0j/r
2
0, PT ij(x̂0) = δij − x0ix0j/r

2
0, (5.96)

are projection matrices into the longitudinal and transverse directions of x0. Anal-
ogous projections of a vector are defined by xL ≡ PL(x0)x, xT ≡ PT (x0)x. Then
the anisotropic generalization of WΩ

1 (x0) becomes

W


1 (r0) = kBT

[

log
sinh h̄ΩL/2kBT

h̄ΩL/2kBT
+ (D − 1) log

sinh h̄ΩT/2kBT

h̄ΩT/2kBT

]

− M

2

[

Ω2
La

2
L + (D − 1)Ω2

Ta
2
T

]

+ VaL,aT , (5.97)
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with all functions on the right-hand side depending only on r0. The bold-face su-
perscript indicates the presence of two variational frequencies 
 ≡ (ΩL,ΩT ). The
smeared potential is now given by

VaL,aT (r0) =
1

√

2πa2L

1
√

2πa2T
D−1

D
∏

i=1

[∫ ∞

−∞
dδxi

]

× exp
[

−1

2

(

a−2
L δx2L + a−2

T δx2
T

)

]

V (x0 + δx), (5.98)

which can also be written as

VaL,aT (r0)=
1

√

(2π)Da2La
2D−2
T

∫

dδxL

∫

dD−1δxT exp

[

−δx
2
L

2a2L
− δx 2

T

2a2T

]

V (x0+δx). (5.99)

For higher temperatures where the smearing widths a2L, a
2
T are small, we set V (x) ≡

v(r2), so that

V (x) = v(r20 + 2r0δxL + δx2L + δx2
T ) =

∞
∑

n=0

1

n!
v(n)(r20)

(

2r0δxL + δx2L + δx2
T

)n

=
[

v(r20 + ∂λ)e
λ(2r0δxL+δx2L+δx2

T )
]

λ=0
. (5.100)

Inserting this into the right-hand side of (5.98), we find

VaL,aT (r0) =





v(r20 + ∂λ)
1

√

1 − 2a2Lλ

1
√

1 − 2a2Tλ
D−1 e

2r20λ
2a2L/(1−2a2Lλ)







λ=0

, (5.101)

which has the expansion

VaL,aT (r0) = v(r20) + v′(r20)[a
2
L + (D − 1)a2T ]

+
1

2
v′′(r20)[3a

4
L + 2(D − 1)a2La

2
T + (D2 − 1)a4T + 4r20a

2
L] + . . . . (5.102)

The prime abbreviates the derivative with respect to r20.
In general it is useful to insert into (5.98) the Fourier representation for the

potential

V (x) =
∫

dDk

(2π)D
eikxV (k), (5.103)

which makes the x-integration Gaussian, so that (5.99) becomes

Va2L,a2T (r0) =
∫

dDk

(2π)D
V (k) exp

(

−a
2
L

2
k2L − a2T

2
k2T − ir0kL

)

. (5.104)

Exploiting the rotational symmetry of the potential by writing V (k) ≡ v(k2), we
decompose the measure of integration as

∫

dDk

(2π)D
=

SD−1

(2π)D

∫ ∞

−∞
dkL

∫ ∞

0
dkT k

D−2
T , (5.105)
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where

SD =
2πD/2

Γ(D/2)
(5.106)

is the surface of a sphere in D dimensions, and further with kL = k cosφ, kT =
k sinφ:

∫

dDk

(2π)D
=

SD−1

(2π)D

∫ 1

−1
d cosφ

∫ ∞

0
dk kD−1. (5.107)

This brings (5.104) to the form

Va2
L
,a2

T
(r0) =

SD−1

(2π)D

∫ 1

−1
du
∫ ∞

−1
dk kD−1v(k2)

× exp
{

−1

2

[(

a2Lu
2 + a2T (1 − u2)

)

k2 − ir0u
]

}

. (5.108)

The final effective classical potential is found by minimizing W1(r0) at each r0 in
aL, aT ,ΩL,ΩT . To gain a rough idea about the solution, it is usually of advantage to
study first the isotropic approximation obtained by assuming a2T (r0) = a2L(r0), and
to proceed later to the anisotropic approximation.

5.10 Application to Coulomb and Yukawa Potentials

The effective classical potential can be useful also for singular potentials as long as
the smearing procedure makes sense. An example is the Yukawa potential

V (r) = −(e2/r)e−mr, (5.109)

which reduces to the Coulomb potential for m ≡ 0. Using the Fourier representation

V (r) = 4π
∫ d3k

(2π)3
eikx

k2 +m2
= 4π

∫ ∞

0
dτ
∫ d3k

(2π)3
e−τ(k

2+m2), (5.110)

we easily calculate the isotropically smeared potential

Va2(r0) = −e2
∫

d3x
√

2πa2
3 exp

[

− 1

2a2
(x0 − x)2

]

V (r)

= −e2 2πem
2a2/2

∫ ∞

a2
da′

2 1
√

2πa′2
3 exp

(

−r20/2a′
2 −m2a′

2
/2
)

= −e2 2em
2a2/2

√
π

1

r0

∫ r0/
√
2a2

0
dte−(t2+m2r20/4t

2). (5.111)

In the Coulomb limit m→ 0, the smeared potential becomes equal to the Coulomb
potential multiplied by an error function,

Va2(r0) = −e
2

r0
erf(r0/

√
2a2), (5.112)
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where the error function is defined by

erf(z) ≡ 2√
π

∫ z

0
dxe−x

2

. (5.113)

The smeared potential is no longer singular at the origin,

Va2(0) = −e
2

a

√

2

π
em

2a2/2. (5.114)

The singularity has been removed by quantum fluctuations. In this way the effective
classical potential explains the stability of matter in quantum physics, i.e., the fact
that atomic electrons do not fall into the origin. The effective classical potential of
the Coulomb system is then by the isotropic version of (5.97)

WΩ
1 (x0) =

3

β
ln

sinh[h̄βΩ(x0)/2]

h̄βΩ(x0)/2
− e2

|x0|
erf





|x0|
√

2a2(x0)



− 3

2
MΩ2(x0)a

2(x0). (5.115)

Minimizing W1(r0) with respect to a2(r0) gives an equation analogous to Eq. (5.37)
determining the frequency Ω2(r0) to be

Ω2(r0) = e2
2

3

1√
2π

1

(a2)3/2
e−r

2
0/2a

2

. (5.116)

We have gone to atomic units in which e = M= h̄= kB= 1, so that energies and
temperatures are measured in units of E0 = Me4/Mh̄2 ≈ 4.36×10−11erg ≈ 27.21eV
and T0 = E0/kB ≈ 31575K, respectively. Solving (5.116) together with (5.24),
we find a2(r0) and the approximate effective classical potential (5.32). The result
is shown in Fig. 5.9 as a dashed curve. The above approximation may now be
improved by treating the fluctuations anisotropically, as described in the previous
section, with different Ω2(x0) for radial and tangential fluctuations δxL and δxT ,
and the effective potential following Eqs. (5.97) and (5.98). For the anisotropically
smeared Coulomb potential we calculate from (5.108):

Va2L,a2T (r0) = −
√

1

2π

∫ 1

−1
du

e2
√

a2Lu
2 + a2T (1 − u2)

exp

{

− r20u
2

2 [a2Lu
2 + a2T (1 − u2)]

}

.

(5.117)

Introducing the variable λ =
√

a2Lu/
√

a2Lλ
2 + a2T (1 − λ2), which runs through the

same interval [−1, 1] as u, we rewrite this as

Va2
L
,a2

T
(r0) = −e2

√

a2L
2π

∫ 1

−1
dλ

exp[−(r20/2a
2
L)λ

2]

a2L(1 − λ2) + a2Tλ
2
. (5.118)
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Figure 5.9 Approximate effective classical potential W1(r0) of Coulomb system at var-

ious temperatures (in multiples of 104K). It is calculated once in the isotropic (dashed

curves) and once in the anisotropic approximation. The improvement is visible in the

insert which shows W1/V . The inverse temperature values of the different curves are

β = 31.58, 15.78, 7.89, 3.945, 1.9725, 0.9863, 0 atomic units, respectively.

Extremization of W1(r0) in Eq. (5.97) yields the equations for the trial frequencies

Ω2
T (r0) ≡ ∂

∂a2T
Va2T ,a2L = e2

√

a2L
2π

∫ 1

−1
dλ
λ2 exp[−(r20/2a

2
L)λ

2]

[a2L(1 − λ2) + a2Tλ
2]2
, (5.119)

Ω2(r0) ≡ 1

3
[Ω2

L + 2Ω2
T ] =

1

3

[

∂

∂a2L
+ 2

∂

∂a2T

]

Va2T ,a2L

= e2
2

3

1√
2π

1
√

a2La
4
T

exp(−r20/2a2L). (5.120)

These equations have to be solved together with

a2L,T (r0) =
1

βΩ2
L,T (r0)

[

βΩL,T (r0)

2
coth

βΩL,T (r0)

2
− 1

]

. (5.121)

Upon inserting the solutions into (5.97), we find the approximate effective classical
potential plotted in Fig. 5.9 as a solid curve. Let us calculate the approximate parti-
cle distribution functions using a three-dimensional anisotropic version of Eq. (5.94).
With the potential W1(r0), we arrive at the integral [6]

ρ1(r) =
∫

d3x0
e−(z0−r)2/2a2L
√

2πa2L(r0)

e−(x20+y
2
0)/2a

2
T

2πa2T (r0)

e−βW1(r0)

(2πβ)3/2
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Figure 5.10 Particle distribution g(r) ≡ √
2πβ

3
ρ(r) in Coulomb potential at dif-

ferent temperatures T (the same as in Fig. 5.9), calculated once in the isotropic and

once in the anisotropic approximation. The dotted curves show the classical distribu-

tion. For low and intermediate temperatures the exact distributions of R.G. Storer,

J. Math. Phys. 9 , 964 (1968) are well represented by the two lowest energy lev-

els for which ρ(r)=π−1e−2reβ/2+(1/8π)(1 − r + r2/2)e−reβ/8+(1/38π)(243 − 324r +

216r2−48r3+4r4)e−2r/3eβ/18.

= 2π
∫ ∞

0
dr0

∫ 1

−1
dλ
e−(λr0−r)2/2a2L
√

2πa2L(r0)

e−r
2
0(1−λ2)/2a2T

2πa2T (r0)

e−βW1(r0)

(2πβ)3/2
. (5.122)

The resulting curves to different temperatures are plotted in Fig. 5.10 and compared
with the exact distribution as given by Storer. The distribution obtained from the
earlier isotropic approximation (5.116) to the trial frequency Ω2(r0) is also shown.

5.11 Hydrogen Atom in Strong Magnetic Field

The recent discovery of magnetars [7] has renewed interest in the behavior of charged
particle systems in the presence of extremely strong external magnetic fields. In this
new type of neutron stars, electrons and protons from decaying neutrons produce
magnetic fields B reaching up to 1015 G, much larger than those in neutron stars
and white dwarfs, where B is of order 1010 − 1012 G and 106 − 108 G, respectively.

Analytic treatments of the strong-field properties of an atomic system are dif-
ficult, even in the zero-temperature limit. The reason is a logarithmic asymptotic
behavior of the ground state energy to be derived in Eq. (5.132). In the weak-field
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limit, on the other hand, perturbative approaches yield well-known series expansions
in powers of B2 up to B60 [8]. These are useful, however, only for B ≪ B0, where B0

is the atomic magnetic field strength B0 = e3M2/h̄3 ≈ 2.35× 105 T = 2.35 × 109 G.
So far, the most reliable values for strong uniform fields were obtained by nu-

merical calculations [9].
The variational approach can be used to derive a single analytic expression for

the effective classical potential applicable to all field strengths and temperatures [10].
The Hamiltonian of the electron in a hydrogen atom in a uniform external magnetic
field pointing along the positive z-axis is the obvious extension of the expression in
Eq. (2.646) by a Coulomb potential:

H(p,x) =
1

2M
p2 +

M

2
ω2
Bx

2 − ωBlz(p,x) − e2

|x| , (5.123)

where ωB denotes the B-dependent magnetic frequency ωL/2 = eB/2Mc of
Eq. (2.651), i.e., half the Landau or cyclotron frequency. The magnetic vector
potential has been chosen in the symmetric gauge (2.640). Recall that lz is the
z-component of the orbital angular momentum lz(p,x) = (x× p)z [see (2.647)].

At first, we restrict ourselves here to zero temperature. From the imaginary-time
version of the classical action (2.640) we see that the particle distribution function
in the orthogonal direction of the magnetic field is, for xb = 0, yb = 0, proportional
to

exp
(

−M
2
ωBx

2
a

)

. (5.124)

This is the same distribution as for a transverse harmonic oscillator with frequency
ωB. Being at zero temperature, the first-order variational energy requires knowing
the smeared potential at the origin. Allowing for a different smearing width a2‖ and

a2⊥ along an orthogonal to the magnetic field, we may use Eq. (5.118) to write

Va2‖,a
2
⊥
(0) = −e2

√

√

√

√

1

2πa2‖

∫ 1

−1
dλ

1

(1 − λ2) + λ2a2⊥/a
2
‖
. (5.125)

Performing the integral yields

Va2‖,a
2
⊥
(0) = −e2

√

√

√

√

1

2π(a2‖ − a2⊥)
2 arccosh

a‖
a⊥

. (5.126)

Since the ground state energies of the parallel and orthogonal oscillators are Ω‖/2
and 2 × Ω⊥/2, we obtain immediately the first-order variational energy

W1(0) = Ω⊥ +
Ω‖
2

+ Va2‖,a
2
⊥
(0) +

M

2
(ω2

‖ − Ω2
‖)a

2
‖ +M(ω2

B − Ω2
⊥)a2⊥ , (5.127)

with ω‖ = 0 and a2‖,⊥ = 1/2Ω‖,⊥. In this expression we have ignored the second term
in the Hamiltonian (5.123), since the angular momentum lz of the ground state must
have a zero expectation value.
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For very strong magnetic fields, the transverse variational frequency ΩT will
become equal to ωB = h̄e/2Mc, such that in this limit

W (0) ≈ ωB +
Ω‖
4

− e2
√

Ω‖
π

log
8ωB
Ω‖

. (5.128)

Extremizing this in Ω‖ yields

Ω‖ ≈
4e4

π
log2 2πωB

e4
, (5.129)

and thus an approximate ground state energy

E
(0)
1 ≈ ωB − e4

π
log2 2πωB

e4
. (5.130)

The approach to very strong fields can be found by extremizing the energy (5.127)
also in Ω⊥. Going over to atomic units with e = 1 and M = 1, where energies are
measured in units of ǫ0 = Me4/h̄2 ≡ 2 Ryd ≈ 27.21 eV, temperatures in ǫ0/kB ≈
3.16× 105 K, distances in Bohr radii aB = h̄2/Me2 ≈ 0.53 × 10−8 cm, and magnetic
field strengths in B0 = e3M2/h̄3 ≈ 2.35 × 105 T = 2.35 × 109 G, the extremization
yields

Ω‖ ≈
B

2
,

√

Ω⊥ =
2√
π

(

lnB − 2lnlnB +
2a

lnB
+

a2

ln2B
+ b

)

+ O(ln−3B),

(5.131)
with abbreviations a = 2 − ln 2 ≈ 1.307 and b = ln(π/2) − 2 ≈ −1.548. The
associated optimized ground state energy is, up to terms of order ln−2B,

E(0)(B) =
B

2
− 1

π

{

ln2B − 4 lnB lnlnB + 4 ln2lnB − 4b lnlnB + 2(b+ 2) lnB + b2

− 1

lnB

[

8 ln2lnB − 8b lnlnB + 2b2
]

}

+ O(ln−2B). (5.132)

The prefactor 1/π of the leading ln2B-term using a variational ansatz of the type
(5.64), (5.65) for the transverse degree of freedom is in contrast to the value 1/2
calculated in the textbook by Landau and Lifshitz [11]. The calculation of higher
orders in variational perturbation theory would drive our value towards 1/2.

The convergence of the expansion (5.132) is quite slow. At a magnetic field
strength B = 105B0, which corresponds to 2.35 × 1010 T = 2.35 × 1014 G, the con-
tribution from the first six terms is 22.87 [2 Ryd]. The next three terms suppressed
by a factor ln−1B contribute −2.29 [2 Ryd], while an estimate for the ln−2B-terms
yields nearly −0.3 [2 Ryd]. Thus we find ε(1)(105) = 20.58 ± 0.3 [2 Ryd].

Table 5.2 lists the values of the first six terms of Eq. (5.132). This shows in
particular the significance of the second term in (5.132), which is of the same order
of the leading first term, but with an opposite sign.
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Table 5.2 Example for competing leading six terms in large-B expansion (5.132) at

B = 105B0 ≈ 2.35 × 1014 G.

(1/π)ln2B −(4/π)lnB lnlnB (4/π) ln2lnB −(4b/π) lnlnB [2(b+ 2)/π] lnB b2/π

42.1912 −35.8181 7.6019 4.8173 3.3098 0.7632
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0
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B=B

0

"

(1)

(B)=2Ryd
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B/B0

ǫ(B)/2RydLandau:− log2 B2/2

Figure 5.11 First-order variational result for binding energy (5.133) as a function of

the strength of the magnetic field. The dots indicate the values derived in the reference

given in Ref. [12]. The long-dashed curve on the left-hand side shows the simple estimate

0.5 ln2B of the textbook by Landau and Lifshitz [11]. The right-hand side shows the

successive approximations from the strong-field expansion (5.134) for N = 0, 1, 2, 3, 4,

with decreasing dash length. Fat curve is our variational approximation.

The field dependence of the binding energy

ε(B) ≡ B

2
− E(0) (5.133)

is plotted in Fig. 5.11, where it is compared with the results of other authors who
used completely different methods, with satisfactory agreement [12]. On the strong-
coupling side we have plotted successive orders of a strong-field expansion [24]. The
curves result from an iterative solution of the sequence of implicit equations for the

quantity w(B) =
√

ǫ(4B)/2 for N = 1, 2, 3, 4:

w =
1

2
log

B

w2
+

N
∑

n=1

an(B,w), (5.134)

where

a1 ≡ −1

2
(γ+log 2), a2 ≡

π2

12w
, a3 ≡ −

√

2

B

(

log
B

2w2
−
√
πw

)

, a4 =

√

2

B

√
π

2
D,

(5.135)
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and D denotes the integral D ≡ γ−2
∫∞
0 dy (y/

√
y2 + 1−1) log y ≈ −0.03648, where

γ ≈ 0.5773 is the Euler-Mascheroni constant (2.469).
Our results are of similar accuracy as those of other first-order calculations based

on an operator optimization method [25]. The advantage of our variational approach
is that it yields good results for all magnetic field strengths and temperatures, and
that it can be improved systematically by methods to be developed in Section 5.13,
with rapid convergence. The figure shows also the energy of Landau and Lifshitz
which grossly overestimates the binding energies even at very large magnetic fields,
such as 2000B0 ∝ 1012 G. Obviously, the nonleading terms in Eq. (5.132) give
important contributions to the asymptotic behavior even at such large magnetic
fields. As an peculiar property of the asymptotic behavior, the absolute value of
the difference between the Landau-Lifshitz result and our approximation (5.132)
diverges with increasing magnetic field strengths B. Only the relative difference
decreases.

5.11.1 Weak-Field Behavior

Let us also calculate the weak-field behavior of the variational energy (5.127). Set-
ting η ≡ Ω‖/Ω⊥, we rewrite W1(0) as

W1(0) =
Ω⊥
2

(

1 +
η

2

)

+
B2

8Ω⊥
+

√

ηΩ⊥
π

1√
1 − η

ln
1 −√

1 − η

1 +
√

1 − η
. (5.136)

This is minimized in η and Ω⊥ by expanding η(B) and Ω(B) in powers of B2 with
unknown coefficients, and inserting these expansions into extremality equations. The
expansion coefficients are then determined order by order. The optimal expansions
are inserted into (5.136), yielding the optimized binding energy ε(1)(B) as a power
series

W1(0) =
∞
∑

n=0

εnB
2n. (5.137)

The coefficients εn are listed in Table 5.3 and compared with the exact ones. Of
course, the higher-order coefficients of this first-order variational approximation be-
come rapidly inaccurate, but the results can be improved, if desired, by going to
higher orders in variational perturbation theory of Section 5.13.

5.11.2 Effective Classical Hamiltonian

The quantum statistical properties of the system at an arbitrary temperature are
contained in the effective classical potential Heff cl(p0,x0) defined by the three-
dimensional version of Eq. (3.824):

B(p0,x0)≡e−βH
eff cl(p0,x0)≡

∮

D3x
∮ D3p

(2πh̄)3
δ(3)(x0 − x)(2πh̄)3δ(p0 − p) e−A[p,x]/h̄,

(5.138)
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Table 5.3 Perturbation coefficients up to order B6 in weak-field expansions of variational

parameters, and binding energy in comparison to exact ones (from J.E. Avron et al. and

B.G. Adams et al. quoted in Notes and References).

n 0 1 2 3

ηn 1.0 −405π2

7168
≈ −0.5576

16828965π4

1258815488
≈ 1.3023 −3886999332075π6

884272562962432
≈ −4.2260

Ωn
32

9π
≈ 1.1318

99π

224
≈ 1.3885 −1293975π3

19668992
≈ −2.03982

524431667187π5

27633517592576
≈ 5.8077

εn − 4

3π
≈ −0.4244

9π

128
≈ 0.2209 − 8019π3

1835008
≈ −0.1355

256449807π5

322256764928
≈ 0.2435

εexn −0.5 0.25 − 53

192
≈ −0.2760

5581

4608
≈ 1.2112

where Ae[p,x] is the Euclidean action

Ae[p,x] =
∫ h̄β

0
dτ [−ip(τ)ẋ(τ) +H(p(τ),x(τ))], (5.139)

and x =
∫ h̄β
0 dτ x(τ)/h̄β and p =

∫ h̄β
0 dτ p(τ)/h̄β are the temporal averages of

position and momentum. Note that the deviations of p(τ) from the average p0 share
with x(τ)−x0 the property that the averages of the squares go to zero with increasing
temperatures like 1/T , and remains finite for T → 0. while the expectation of p2

grows linearly with T (Dulong-Petit law). For T → 0, the averages of the squares of
p(τ) remain finite. This property is the basis for a reliable accuracy of the variational
treatment.

Thus we separate the action (5.139) (omitting the subscript e) as

Ae[p,x] = βH(p0,x0) + Ap0,x0

Ω [p,x] + Aint[p,x], (5.140)

where Ap0,x0
Ω [p,x] is the most general harmonic trial action containing the magnetic

field. It has the form (3.828), except that we use capital frequencies to emphasize
that they are now variational parameters:

Ap0,x0

Ω [p,x] =
∫ h̄β

0
dτ
{

− i[p(τ) − p0] · ẋ(τ) +
1

2M
[p(τ) − p0]

2

+ΩBlz(p(τ)−p0,x(τ)−x0) +
M

2
Ω2

⊥ [x⊥(τ)−x0⊥]2+
M

2
Ω2

‖[z(τ) − z0]
2
}

. (5.141)

The vector x⊥ = (x, y) is the projection of x orthogonal to B.
The trial frequencies Ω = (ΩB,Ω⊥,Ω‖) are arbitrary functions of p0, x0, and B.

Inserting the decomposition (5.140) into (5.138), we expand the exponential of the
interaction, exp {−Aint[p,x]/h̄}, and obtain a series of expectation values of powers
of the interaction 〈An

int[p,x] 〉p0,x0

Ω , defined in general by the path integral

〈O[p,x] 〉p0,x0

Ω =
1

Zp0,x0

Ω

∮

D3x
D3p

(2πh̄)3
O[p,x] δ(3)(x0 − x)(2πh̄)3δ(p0 − p)

× exp
{

−1

h̄
Ap0,x0

Ω [p,x]
}

, (5.142)
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where the local partition function in phase space Zp0,x0
Ω is the normalization factor

which ensures that 〈 1 〉p0,x0

Ω = 1. From Eq. (3.829) we know that

Zp0,x0

Ω ≡ e−βF
p0,x0

 = l3e(h̄β)

h̄βΩ+/2

sinh h̄βΩ+/2

h̄βΩ−/2

sinh h̄βΩ−/2

h̄βΩ‖/2

sinh h̄βΩ‖/2
, (5.143)

where Ω± ≡ ΩB ± Ω⊥. In comparison to (3.829), the classical Boltzmann factor
e−βH(p0,x0) is absent due to the shift of the integration variables in the action (5.141).
Note that the fluctuations p(τ) − p0 decouple from p0 just as x(τ) − x0 decoupled
from x0 due to the absence of zero frequencies in the fluctuations.

Rewriting the perturbation series as a cumulant expansion, evaluating the
expectation values, and integrating out the momenta on the right-hand side of
Eq. (5.138) leads to a series representation for the effective classical potential
Veff(x0). Since it is impossible to sum up the series, the perturbation expansion

must be truncated, leading to an Nth-order approximation W
(N)
Ω (x0) for the ef-

fective classical potential. Since the parameters Ω are arbitrary, W
(N)
Ω (x0) should

depend minimally on Ω. This determines the optimal values of Ω to be equal
to Ω(N)(x0) = (Ω

(N)
B (x0),Ω

(N)
⊥ (x0),Ω

(N)
‖ (x0)) of Nth order. Reinserting these into

W
(N)
Ω (x0) yields the optimal approximation W (N)(x0) ≡W

(N)

Ω(N)(x0).
The first-order approximation to the effective classical potential is then, with

ω‖ = 0, ω⊥ = ωB,

W
(1)
Ω (x0) = F p0,x0

Ω − M

2
ΩB(x0)[ωB − ΩB(x0)] b

2
⊥(x0) a

2
⊥(x0)

+
M

2

[

ω2
B − Ω2

⊥(x0)
]

− 1

2
Ω2

‖a
2
‖(x0) −

〈

e2

|x|

〉p0,x0

Ω

. (5.144)

The smearing of the Coulomb potential is performed as in Section 5.10. This yields
the result (5.117). with the longitudinal width

a2‖(x0) = G(2)x0
zz (τ, τ) =

1

βMΩ2
‖(x0)

[

h̄βΩ‖(x0)

2
coth

h̄βΩ‖(x0)

2
− 1

]

, (5.145)

and an analog transverse width.
The quantity b2⊥(x0) is new in this discussion based on the canonical path in-

tegral. It denotes the expectation value associated with the z-component of the
angular momentum

b2⊥(x0) ≡
1

MΩB
〈 lz 〉p0,x0

Ω , (5.146)

which can also be written as

b2⊥(x0) =
2

MΩT1

〈x(τ)py(τ) 〉p0,x0

Ω
. (5.147)

According to Eq. (3.358), the correlation function 〈 x(τ)py(τ) 〉p0,x0

Ω
is given by

〈x(τ)py(τ ′) 〉p0,x0

Ω
= iM∂τ ′G

(2)
ω2,B,xx(τ, τ

′) −MωBG
(2)
ω2,B,xy(τ, τ

′), (5.148)

H. Kleinert, PATH INTEGRALS



5.11 Hydrogen Atom in Strong Magnetic Field 497

0 5 10 15 20
−1

0

1

2

3

�

0

=a

B

; z

0

=a

B

W

(1)

=2Ryd

B = 0

B = 2

B = 5

Figure 5.12 Effective classical potential of atom in strong magnetic field plotted along

two directions: once as a function of the coordinate ρ0 =
√

x20 + y20 perpendicular to the

field lines at z0 = 0 (solid curves), and once parallel to the magnetic field as a function

of z0 at ρ0 = 0 (dashed curves). The inverse temperature is fixed at β = 100, and the

strengths of the magnetic field B are varied (all in natural units).

where the expressions on the right-hand side are those of Eqs. (3.329) and (3.331),
with ω replaced by Ω.

The variational energy (5.144) is minimized at each x0, and the resulting
W (N)(x0) is displayed for a low temperature and different magnetic fields in Fig. 5.12.
The plots show the anisotropy with respect to the magnetic field direction. The
anisotropy grows when lowering the temperature and increasing the field strength.
Far away from the proton at the origin, the potential becomes isotropic, due to the
decreasing influence of the Coulomb interaction. Analytically, this is seen by going
to the limits ρ0 → ∞ or z0 → ∞, where the expectation value of the Coulomb
potential tends to zero, leaving an effective classical potential

W
(1)
Ω (x0) → F p0,x0

Ω −MΩB(ω⊥ − ΩB) b2⊥ +M
(

ω2
⊥ − Ω2

⊥
)

a2⊥ − M

2
Ω2

‖a
2
‖. (5.149)

This is x0-independent, and optimization yields the constants Ω
(1)
B = Ω

(1)
⊥ = ωB and

Ω
(1)
‖ = 0, with the asymptotic energy

W (1)(x0) → − 1

β
log

βh̄ωB
sinh βh̄ωB

. (5.150)

The B = 0 -curves agree, of course, with those obtained from the previous variational
perturbation theory of the hydrogen atom [26].

For large temperatures, the anisotropy decreases since the violent thermal fluc-
tuations have a smaller preference of the z-direction.
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5.12 Variational Approach to Excitation Energies

As explained in Section 5.4, the success of the above variational treatment is rooted
in the fact that for smooth potentials, the ground state energy can be approximated
quite well by the optimal expectation value of the Hamiltonian operators in a Gaus-
sian wave packet. The question arises as to whether the energies of excited states
can also be obtained by calculating an optimized expectation value between excited
oscillator wave functions. If the potential shape has only a rough similarity with
that of a harmonic oscillator, when there are no multiple minima, the answer is
positive. Consider again the anharmonic oscillator with the action

A[x] =
∫ h̄β

0
dτ
[

M

2

(

ẋ2 + ω2x2
)

+
1

4
gx4

]

. (5.151)

As for the ground state, we replace the action A by Ax0
Ω +Ax0

int with the trial oscillator
action centered around the arbitrary point x0

Ax0
Ω =

∫ h̄β

0
dτM

[

1

2
ẋ2 +

Ω2

2
(x− x0)

2

]

, (5.152)

and a remainder

Ax0
int =

∫ β

0
dτ

[

M
ω2 − Ω2

2
(x− x0)

2 +
g

4
x4
]

(5.153)

to be treated as an interaction. Let ψ
(n)
Ω (x − x0) be the wave functions of the trial

oscillator.1 With these, we form the projections

Z
(n)
Ω (x0) ≡

∫

dxbdxaψ
(n)∗
Ω (xb)(xbτb|xaτa)ψ(n)

Ω (xa)

=
∫

dxbdxaψ
(n)∗
Ω (xb)

(

∫

(xa,0)❀(xb,h̄β)
Dxe−A/h̄

)

ψ
(n)
Ω (xa). (5.154)

If the temperature tends to zero, an optimization in the parameters x0 and Ω(x0)
should yield information on the energy E(n) of this state by containing an exponen-
tially decreasing function

Z(n) ≈ e−βE
(n)

. (5.155)

Since the trial wave functions ψ
(n)
Ω (x−x0) are not the true ones, the behavior (5.155)

contains an admixture of Boltzmann factors e−βE
(n′)

with n′ 6= n, which have to be
eliminated. They are easily recognized by the powers of g which they carry.

The calculation of (5.154) is done in the same approximation that rendered good
results for the ground state, i.e., we approximate the part of Z(n) behaving like
(5.155) as follows:

Z(n) ≈ Z
(n)
Ω e−〈A

x0
int/h̄〉(n)

Ω , (5.156)

1In contrast to the earlier notation, we now use superscripts in parentheses to indicate the
principal quantum numbers. The subscripts specify the level of approximation.
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where Z
(n)
Ω denotes the contribution of the nth excited state to the oscillator partition

function
Z

(n)
Ω = e−βh̄Ω(n+1/2), (5.157)

and 〈Ax0
int/h̄〉(n)Ω stands for the expectation of Ax0

int/h̄ in the state ψ
(n)
Ω (x− x0). This

approximation corresponds precisely to the first term in the perturbation expansion
(3.509) (after continuing to imaginary times). ref(3.509)

lab(x3.203)
est(3.209)

Note that the approximation on the right-hand side of (5.156) is not necessarily
smaller than the left-hand side, as in the Jensen-Peierls inequality (5.10), since the
measure of integration in (5.154) is no longer positive.

For the action (5.151), the best value of x0 lies at the coordinate origin. This

simplifies the calculation of the expectation 〈Ax0
int/h̄〉(n)Ω . The expectation of x2k in

the state ψ
(n)
Ω (x) is given by

〈

x2k
〉(n)

Ω
=

h̄k

(MΩ)k
n2k, (5.158)

where

n2 = (n+ 1/2), n4 =
3

2
(n2 + n + 1/2), n6 =

5

4
(2n3 + 3n2 + 4n+ 3/2),

n8 =
1

16
(70n4 + 140n3 + 344n2 + 280n+ 105), . . . . (5.159)

After inserting (5.153) into (5.156), the expectations (5.158) yield the approximation

Z(n) ≈ exp

{

−β
[

1

2

(

Ω2 + ω2
) h̄n2

Ω
+
g

4

h̄2n4

M2Ω2

]}

. (5.160)

With the dimensionless coupling constant g′ ≡ gh̄/M2ω3, this corresponds to the
variational energies

W (n) = h̄

[

1

2

(

Ω +
ω2

Ω

)

n2 +
g′

4

ω3

Ω2
n4

]

. (5.161)

They are optimized by the extremal Ω-values

Ω = Ω
(n)
1 =











2√
3
ω cosh

[

1
3arcosh (g/g(n))

]

2√
3
ω cos

[

1
3 arccos(g/g(n))

] for
g > g(n),
g < g(n),

(5.162)

where

g(n) ≡ 2

3
√

3

n2

n4

M2ω3

h̄
. (5.163)

The optimized W (n) yield the desired approximations E(n)
app for the excited energies

of the anharmonic oscillator.
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For large g, the trial frequency grows like

Ω(n) ≡ 61/3
(

gh̄

4M2ω3

)1/3

ñ, (5.164)

where

ñ ≡ 4n4/3

2n2
=
n2 + n + 1/2

n+ 1/2
, (5.165)

making the energy E(n)
app grow like

E
(n)
BS → h̄ωκ(n)

(

gh̄

4M2ω3

)1/3

, for large g, (5.166)

with

κ(n) =
3 · 61/3

8
(2n+ 1) ñ1/3≈ 0.68142 × (2n+ 1) ñ1/3. (5.167)

For n = 0, this is in good agreement with the precise growth behavior to be calcu-
lated in Section 5.16 where we shall find κ(0)ex = 0.667 986 . . . (see Table 5.9).

In the limit of large g and n, this can be compared with the exact behavior
obtained from the semiclassical approximation of Bohr and Sommerfeld, which
gives the same leading powers in g and n as in (5.166), but a 3% larger pre-
factor 0.688 253 702 × 2 [recall (4.36)]. The exact values of E(n)/(gh̄/4M2) and
1
2κ

(n)/(n+ 1/2)4/3 are for n = 0, 2, 4, 6, 8, 10 are shown in Table 5.4.
A comparison of the approximate energies E(n)

app with the precise numerical solu-
tions of the Schrödinger equation in natural units h̄ = 1, M = 1 in Table 5.5 shows
an excellent agreement for all coupling strengths.

Near the strong-coupling limit, the optimal frequencies Ω
(n)
1 and the approximate

energies E
(n)
1 behave as follows [in natural units; compare (5.76) and (5.77)]:

Ω
(n)
1 = 61/3

(

ñg

4

)1/3
[

1 +
1

9

(

3

4

)1/3 1

(ñg/4)2/3
+ . . .

]

,

E
(n)
1 =

(

3

4

)4/3

(2n+ 1)
(

ñg

4

)1/3
[

1 +
61/3

9

1

(ñg/4)2/3
+ . . .

]

. (5.168)

Table 5.4 Approach of variational energies of nth excited state to Bohr-Sommerfeld

approximation with increasing n. Values in the last column converge rapidly towards the

Bohr-Sommerfeld value 0.688 253 702 . . . in Eq. (4.36).

n E(n)/(gh̄/4M2) 1
2κ

(n)/(n+ 1/2)4/3

0 0.667 986 259 155 777 108 3 0.841 609 948 112 105 001
2 4.696 795 386 863 646 196 2 0.692 125 685 914 981 314
4 10.244308 455 438 771 076 0 0.689 449 772 359 340 765
6 16.711890 073 897 950 947 1 0.688 828 486 600 234 466
8 23.889993 634 572 505 935 5 0.688 590 146 947 993 676
10 31.659456 477 221 552 442 8 0.688 474 290 179 981 433
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Table 5.5 Energies of the nth excited states of anharmonic oscillator ω2x2/2 + gx4/4

for various coupling strengths g (in natural units). In each entry, the upper number shows

the energies obtained from a numerical integration of the Schrödinger equation, whereas

the lower number is our variational result.

g/4 E(0) E(1) E(2) E(3) E(4) E(5) E(6) E(7) E(8)

0.1 0.559 146
0.560 307

1.769 50
1.773 39

3.138 62
3.138 24

4.628 88
4.621 93

6.220 30
6.205 19

7.899 77
7.875 22

9.657 84
9.622 76

11.4873
11.4407

13.3790
13.3235

0.2 0.602 405
0.604 901

1.950 54
1.958 04

3.536 30
3.534 89

5.291 27
5.278 55

7.184 46
7.158 70

9.196 34
9.156 13

11.313 2
11.257 3

13.5249
13.4522

15.8222
15.7328

0.3 0.637 992
0.641 630

2.094 64
2.104 98

3.844 78
3.842 40

5.796 57
5.779 48

7.911 75
7.878 23

10.1665
10.1151

12.5443
12.4736

15.0328
14.9417

17.6224
17.5099

0.4 0.668 773
0.673 394

2.216 93
2.229 62

4.102 84
4.099 59

6.215 59
6.194 95

8.511 41
8.471 69

10.9631
10.9028

13.5520
13.4698

16.2642
16.1588

19.0889
18.9591

0.5 0.696 176
0.701 667

2.324 41
2.339 19

4.327 52
4.323 52

6.578 40
6.554 75

9.028 78
8.983 83

11.6487
11.5809

14.4177
14.3257

17.3220
17.2029

20.3452
20.2009

0.6 0.721 039
0.727 296

2.421 02
2.437 50

4.528 12
4.523 43

6.901 05
6.874 77

9.487 73
9.438 25

12.2557
12.1816

15.1832
15.0828

18.2535
18.1256

21.4542
21.2974

0.7 0.743 904
0.750 859

2.509 23
2.527 29

4.710 33
4.705 01

7.193 27
7.164 64

9.902 61
9.849 11

12.8039
12.7240

15.8737
15.7658

19.0945
18.9573

22.4530
22.2852

0.8 0.765 144
0.772 736

2.590 70
2.610 21

4.877 93
4.872 04

7.461 45
7.430 71

10.2828
10.2257

13.3057
13.2206

16.5053
16.3907

19.8634
19.7179

23.3658
23.1880

0.9 0.785 032
0.793 213

2.666 63
2.687 45

5.033 60
5.027 18

7.710 07
7.677 39

10.6349
10.5744

13.7700
13.6801

17.0894
16.9687

20.5740
20.4209

24.2091
24.0221

1 0.803 771
0.812 500

2.737 89
2.759 94

5.179 29
5.172 37

7.942 40
7.907 93

10.9636
10.9000

14.2031
14.1090

17.6340
17.5076

21.2364
21.0763

24.9950
24.7996

10 1.504 97
1.531 25

5.321 61
5.382 13

10.3471
10.3244

16.0901
15.9993

22.4088
22.2484

29.2115
28.9793

36.4369
36.1301

44.0401
43.6559

51.9865
51.5221

50 2.499 71
2.547 58

8.915 10
9.023 38

17.4370
17.3952

27.1926
27.0314

37.9385
37.6562

49.5164
49.1094

61.8203
61.2842

74.7728
74.1029

88.3143
87.5059

100 3.131 38
3.192 44

11.1873
11.3249

21.9069
21.8535

34.1825
33.9779

47.7072
47.3495

62.2812
61.7660

77.7708
77.0924

94.0780
93.2307

111.128
110.106

500 5.319 89
5.425 76

19.0434
19.2811

37.3407
37.2477

58.3016
57.9489

81.4012
80.7856

106.297
105.411

132.760
131.595

160.622
159.167

189.756
188.001

1000 6.694 22
6.827 95

23.9722
24.2721

47.0173
46.9000

73.4191
72.9741

102.516
101.740

133.877
132.760

167.212
165.743

202.311
200.476

239.012
236.799

The tabulated energies can be used to calculate an approximate partition func-
tion at all temperatures:

Z ≈
∞
∑

n=0

e−βE
(n)
app . (5.169)

The resulting free energies F ′
1 = − logZ/β agree well with the previous variational

results of the Feynman-Kleinert approximation — in the plots of Fig. 5.2, the curves
are indistinguishable. This is not astonishing since both approximations are dom-
inated near zero temperature by the same optimal energy E(0)

app, while approaching
the semiclassical behavior at high temperatures. The previous free energy F1 does
so exactly, the free energy F ′

1 to a very good approximation.
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By combining the Boltzmann factors with the oscillator wave functions ψ
(n)
Ω (x),

we also calculate the density matrix (xbτb|xaτa) and the distribution functions ρ(x) =
(x h̄β|x 0) in this approximation:

(xbτb|xaτa) ≈
∞
∑

n=0

ψ(n)(xb)ψ
(n)∗(xa)e

−βE(n)
app . (5.170)

They are in general less accurate than the earlier calculated particle density ρ1(x0)
of (5.94).

5.13 Systematic Improvement of Feynman-Kleinert
Approximation. Variational Perturbation Theory

A systematic improvement of the variational approach leads to a convergent vari-

ational perturbation expansion for the effective classical potential of a quantum-
mechanical system [27]. To derive it, we expand the action in powers of the devia-
tions of the path from its average x0 = x̄:

δx(τ) ≡ x(τ) − x0. (5.171)

The expansion reads

A = V (x0) + Ax0
Ω + A′x0

int, (5.172)

where Ax0
Ω is the quadratic action of the deviations δx(τ)

Ax0
Ω =

∫ h̄/kBT

0
dτ
M

2

{

[δẋ(τ)]2 + Ω2(x0)[δx(τ)]
2
}

, (5.173)

and A′x0
int contains all higher powers in δx(τ):

A′x0
int =

∫ h̄β

0
dτ
{

g2
2!

[δx(τ)]2 +
g3
3!

[δx(τ)]3 +
g4
4!

[δx(τ)]4 + . . .
}

. (5.174)

The coupling constants are, in general, x0-dependent:

gi(x0) = V (i)(x0) − Ω2δi2, V (i)(x0) ≡
diV (x0)

dxi0
. (5.175)

For the anharmonic oscillator, they take the values

g2(x0) = M [ω2 − Ω2(x0)] + 3gx20,

g3(x0) = 6gx0, (5.176)

g4(x0) = 6g.

Introducing the parameter

r2 = 2M(ω2 − Ω2)/g, (5.177)
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which has the dimension length square, we write g2(x0) as

g2(x0) = g(r2/2 + 3x20). (5.178)

With the decomposition (5.172), the Feynman-Kleinert approximation (5.32) to
the effective classical potential can be written as

WΩ
1 (x0) = V (x0) + F x0

Ω +
1

h̄β
〈Ax0

int〉x0Ω . (5.179)

To generalize this, we replace the local free energy F x0
Ω by F x0

Ω +∆F x0 , where ∆F x0

denotes the local analog of the cumulant expansion (3.487). This leads to the vari-
ational perturbation expansion for the effective classical potential

V eff cl(x0) = V (x0) + F x0
Ω +

1

h̄β
〈Ax0

int〉x0Ω (5.180)

− 1

2!h̄2β

〈

Ax0
int

2
〉x0

Ω,c
+

1

3!h̄3β

〈

Ax0
int

3
〉x0

Ω,c
+ . . .

in terms of the connected expectation values of powers of the interaction:
〈

Ax0
int

2
〉x0

Ω,c
≡

〈

Ax0
int

2
〉x0

Ω
− 〈Ax0

int〉x0Ω 2, (5.181)
〈

Ax0
int

3
〉x0

Ω,c
≡

〈

Ax0
int

3
〉x0

Ω
− 3

〈

Ax0
int

2
〉x0

Ω
〈Ax0

int〉x0Ω + 2 〈Ax0
int〉x0Ω 3, (5.182)

... .

By construction, the infinite sum (5.180) is independent of the choice of the trial
frequency Ω(x0).

When truncating (5.180) after the Nth order, we obtain the approximation
WΩ
N (x0) to the effective classical potential V eff cl(x0). In many applications, it is

sufficient to work with the third-order approximation

WΩ
3 (x0) = V (x0) + F x0

Ω +
1

h̄β
〈A′x0

int〉
x0
Ω (5.183)

− 1

2h̄2β

〈

A′x0
int

2
〉x0

Ω,c
+

1

6h̄3β

〈

A′x0
int

3
〉x0

Ω,c
.

In contrast to (5.180), the truncated sums WN(x0) do depend on Ω(x0). Since the
infinite sum is Ω(x0)-independent, the best truncated sum WN(x0) should lie at the
frequency ΩN (x0) where WΩ

N (x0) depends minimally on it. The optimal ΩN (x0) is
called the frequency of least dependence. Thus we require for (5.183)

∂WΩ
3 (x0)

∂Ω(x0)
= 0. (5.184)

At the frequency Ω3(x0) fixed by this condition, Eq. (5.183) yields the desired third-
order approximation W3(x0) to the effective classical potential.
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The explicit calculation of the expectation values on the right-hand side of (5.183)
proceeds according to the rules of Section 3.18. We have to evaluate the Feynman
integrals associated with all vacuum diagrams. These are composed of p-particle ver-
tices carrying the coupling constant gp/p!h̄, and of lines representing the correlation
function of the fluctuations introduced in (5.23):

〈δx(τ)δx(τ ′)〉x0Ω =
h̄

M
G′x0

Ω (τ − τ ′)

= a2(τ − τ ′, x0). (5.185)

Since this correlation function contains no zero frequency, diagrams of the type
shown in Fig. 5.13 do not contribute. Their characteristic property is to fall apart
when cutting a single line. They are called one-particle reducible diagrams . A vac-
uum subdiagram connected with the remainder by a single line is called a tadpole

diagram, alluding to its biological shape. Tadpole diagrams do not contribute to
the variational perturbation expansion since they vanish as a consequence of energy
conservation: the connecting line ending in the vacuum, must have a vanishing fre-
quency where the spectral representation of the correlation function 〈δx(τ)δx(τ ′)〉x0Ω
has no support, by construction.

The number of Feynman diagrams to be evaluated is reduced by ignoring at first
all diagrams containing the vertices g2. The omitted diagrams can be recovered from
the diagrams without g2-vertices by calculating the latter at the initial frequency ω,
and by replacing ω by a modified local trial frequency,

ω → Ω̃(x0) ≡
√

Ω2(x0) + g2(x0)/M. (5.186)

After this replacement, which will be referred to as the square-root trick , all diagrams
are re-expanded in powers of g [remembering that g2(x0) is by (5.178) proportional
to g] up to the maximal power g3.

5.14 Applications of Variational Perturbation Expansion

The third-order approximation W3(x0) is far more accurate than W1(x0). This will
now be illustrated by performing the variational perturbation expansion for the an-

Figure 5.13 Structure of a one-particle reducible vacuum diagram. The dashed box

encloses a so-called tadpole diagram. Such diagrams vanish in the present expansion since

an ending line cannot carry any energy and since the correlation function 〈δx(τ)δx(τ ′)〉
contains no zero frequency.
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harmonic oscillator and the double-well potential. The reason for the great increase
in accuracy will become clear in Section 5.15, where we shall demonstrate that this
expansion converges rapidly towards the exact result at all coupling strengths, in
contrast to ordinary perturbation expansions which diverges even for arbitrarily
small values of g.

5.14.1 Anharmonic Oscillator at T =0

Consider first the case of zero temperature, where the calculation is simplest and the
approximation should be the worst. At T = 0, only the point x0 = 0 contributes,
and δx(τ) coincides with the path itself ≡ x(τ). Thus we may omit the superscript
x0 in all equations, so that the interaction in (5.182) becomes writing it as

Aint =
g

4

∫ h̄β

0
dτ(r2x2 + x4). (5.187)

The effect of the r2-term is found by replacing the frequency ω in the original
perturbation expansion for the anharmonic oscillator according to the square-root
trick (5.186), which for x0 = 0 is simply

ω → Ω̃ ≡
√

Ω2 + (ω2 − Ω2) =
√

Ω2 + gr2/2M. (5.188)

After this replacement, all terms are re-expanded in powers of g. Finally, r2 is again
replaced by

r2 → 2M

g
(ω2 − Ω2). (5.189)

Since the interaction is even in x, the zero-temperature expansion is automati-
cally free of tadpole diagrams.

The perturbation expansion to third order was given in Eq. (3.554). With the ref(3.554)
lab(x3.192)
est(3.197)

above replacement it leads to the free energy

F =
h̄Ω̃

2
+
g

4
3a4 +

(

g

4

)2

42a8
1

h̄Ω̃
+
(

g

4

)3

4 · 333a12
(

1

h̄Ω̃

)2

, (5.190)

with

a2 =
h̄

2MΩ̃
. (5.191)

The higher orders can most easily be calculated with the help of the Bender-Wu
recursion relations derived in Appendix 3C.2

By expanding F in powers of g up to g3 we obtain

WΩ
3 =

h̄Ω

2
+ g(3a4 − r2a2)/4 − g2(21a8/8 + 3a6r2/4 + a4r4/16)/h̄Ω

+g3(333a12/16 + 105a10r2/16 + 3a8r4/4 + a6r6/32)/(h̄Ω)2. (5.192)

After the replacement (5.189), we minimize W3 in Ω, and obtain the third-order

2The Mathematica program is available on the internet under http://www.physik.fu-berlin.
de/~kleinert/294/programs.
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Table 5.6 Second- and third-order approximations to ground state energy, in units of

h̄ω, of anharmonic oscillator at various coupling constants g in comparison with exact

values E
(0)
ex (g) and the Feynman-Kleinert approximation E

(0)
1 (g) of previous section.

g/4 E
(0)
ex (g) E

(0)
1 (g) E

(0)
2 (g) E

(0)
3 (g)

0.1 0.559146 0.560307371 0.559152139 0.559154219
0.2 0.602405 0.604900748 0.602450713 0.602430621
0.3 0.637992 0.641629862 0.638088735 0.638035760
0.4 0.668773 0.673394715 0.668922455 0.668834137
0.5 0.696176 0.701661643 0.696376950 0.696253632
0.6 0.721039 0.727295668 0.721288789 0.721131776
0.7 0.743904 0.750857818 0.744199436 0.744010317
0.8 0.765144 0.772736359 0.765483301 0.765263697
0.9 0.785032 0.793213066 0.785412037 0.785163494

1 0.803771 0.812500000 0.804190095 0.803914053
10 1.50497 1.53125000 1.50674000 1.50549750
50 2.49971 2.54758040 2.50312133 2.50069963

100 3.13138 3.19244404 3.13578530 3.13265656
500 5.31989 5.42575605 5.32761969 5.32211709

1000 6.69422 6.82795331 6.70400326 6.69703286

1 1.5 2 2.5 3

Ω

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

W

N        =1

N        =2

N        =3

Figure 5.14 Typical Ω-dependence of approximations W1,2,3 at T = 0. The coupling

constant has the value g = 0.4. The second-order approximation WΩ
2 has no extremum.

Here the minimal Ω-dependence lies at the turning point, and the condition ∂2WΩ
2 /∂Ω2

renders the best approximation to the energy (short dashes).

approximation E
(0)
3 (g) to the ground state energy. Its accuracy at various coupling

strengths is seen in Table 5.6 where it is compared with the exact values obtained
from numerical solutions of the Schrödinger equation. The improvement with respect
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to the earlier approximation W1 is roughly a factor 50. The maximal error is now
smaller than 0.05%.

We shall see in the last subsection that up to rather high orders N , the minimum
happens to be unique.

Observe that when truncating the expansion (5.183) after the second order and
working with the approximation WΩ

2 (x0), there exists no minimum in Ω, as can
be seen in Fig. 5.14. The reason for this is the alternating sign of the cumulants
in (5.183). This gives an alternating sign to the highest power a and thus to the
highest power of 1/Ω in the gn-terms of Eq. (5.192), causing the trial energy of order
N to diverge for Ω → 0 like (−1)N−1gN × (1/Ω)3N−1. Since the trial energy goes for
large Ω to positive infinity, only the odd approximations are guaranteed to possess
a minimum.

The second-order approximationW2 can nevertheless be used to find an improved
energy value. As shown by Fig. 5.14, the frequency of least dependence Ω2 is well
defined. It is the frequency where the Ω-dependence of W2 has its minimal absolute
value. Thus we optimize Ω with the condition

∂2WΩ
2

∂Ω2
= 0. (5.193)

This leads to the energy values E
(0)
2 (g) listed in Table 5.6. They are more accurate

than the values E
(0)
1 (g) by an order of magnitude.

5.14.2 Anharmonic Oscillator for T > 0

Consider now the anharmonic oscillator at a finite temperature, where the expansion
(5.183) consists of the sum of one-particle irreducible vacuum diagrams

W Ω̃
3 =

1

β

{

− 1

2

Ω̃

+
Ω̃

3

− 1

2!

( Ω̃

72

+

Ω̃

24

+

Ω̃

6

)

(5.194)

+
1

3!

( Ω̃

2592

+

Ω̃

1728

+

Ω̃

3456

+

Ω̃

1728

+

Ω̃

648

+

Ω̃

648

)}

.

The vertices represent the couplings g3(x0)/3!h̄, g4(x0)/4!h̄, whereas the lines stand
for the correlation function G′x0

Ω̃
(τ, τ ′). The numbers under each diagram are their

multiplicities acting as factors.
Only the five integrals associated with the diagrams

; ; ; ;
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need to be evaluated explicitly; all others arise by the expansion of Ω̃ or by factor-
ization. The explicit form of three of these integrals can be found in the first, forth,
and sixth of Eqs. (3.550). The results of the integrations are listed in Appendix 5A.

Only the second and fourth diagrams are new since they involve vertices with
three legs. They can be found in Eqs. (3D.7) and (3D.8).

In quantum field theory one usually calculates Feynman integrals in momentum
space. At finite temperatures, this requires the evaluation of multiple sums over
Matsubara frequencies. The present quantum-mechanical example corresponds to
a D = 1 -dimensional quantum field theory. Here it is more convenient to evaluate
the integrals in τ -space. The diagrams

; ,

for example, are found by performing the integrals

h̄βa2 ≡
∫ h̄β

0
dτG2(τ, τ),

h̄β
(

1

ω

)2

a123 ≡
∫ h̄β

0

∫ h̄β

0

∫ h̄β

0
G2(τ1, τ2)G

2(τ2, τ3)G
2(τ3, τ1) dτ1dτ2dτ3.

The factor h̄β on the left-hand side is due to an overall τ -integral and reflects
the temporal translation symmetry of the system; the factors 1/ω arise from the
remaining τ -integrations whose range is limited by the correlation time 1/ω.

In general, the β- and x0-dependent parameters a2LV have the dimension of a
length to the nth power and the associated diagrams consist of m vertices and n/2
lines (defining a21 ≡ a2).

We now use the rule (5.188) to replace ω by Ω̃ and expand everything in powers
of g2 up to the third order. The expansion can be performed diagrammatically in
each Feynman diagram. Letting a dot on a line indicate the coupling g2/2h̄, the
one-loop diagram is expanded as follows:

Ω̃

= − 2 + −1

3
. (5.195)

The other diagrams are expanded likewise:

Ω̃

= − +
1

6
+

1

6
,

1

2

Ω̃

=
1

2
−1

6
,

1

2

Ω̃

=
1

2
−1

6
,
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1

2

Ω̃

=
1

2
−1

6
−1

6
.

In this way, we obtain from (5.194) the complete graphical expansion for WΩ
3 (x0)

including all vertices associated with the coupling g2(x0):

βWΩ
3 (x0) = −1

2
+
(

1

2
+

1

8

)

− 1

2!

[

1

2
+

1

2
+

1

8
+

1

24
+

1

6

]

+
1

3!

[

+ 3
(

1

4
+

1

2

)

+ 3





1

4
+

1

4
+

1

6
+

1

2





+





3

16
+

1

8
+

1

4
+

1

8

+
3

4
+

3

4





]

. (5.196)

In the latter diagrams, the vertices represent directly the couplings gn/h̄. The de-
nominators n! of the previous vertices gn/n!h̄ have been combined with the multiplic-
ities of the diagrams yielding the indicated prefactors. The corresponding analytic
expression for WΩ

3 (x0) is

WΩ
3 (x0) = V (x0) + F x0

Ω +
(

g2
2
a2 +

g4
8
a4
)

− 1

2!h̄Ω

[

g22
2
a42 +

g2g4
2
a42a

2 +
g24
8
a42a

4 +
g24
24
a82 +

g23
6
a62

]

+
1

3!h̄2Ω2

[

g32a
6
3 + 3

(

g22g4
4

(a42)
2 +

g22g4
2
a63a

2

)

(5.197)

+3

(

g2g
2
4

4
(a42)

2a2 +
g2g

2
4

4
a63a

4 +
g2g

2
4

6
a103 +

g2g
2
3

2
a83

)

+

(

3g34
16

(a42a
2)2 +

g34
8
a63a

6 +
g34
4
a103 a

2 +
g34
8
a123 +

3g23g4
4

a103′ +
3g23g4

4
a83a

2

)]

.

The quantities a2LV are ordered in the same way as the associated diagrams in (5.196).
As before, we have omitted the variable x0 in all but the first three terms, for brevity.

The optimal trial frequency Ω(x0) is found numerically by searching, at each
value of x0, for the real roots of the first derivate of WΩ

3 (x0) with respect to Ω(x0).
Just as for zero temperature, the solution happens to be unique.
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By calculating the integral

Z3 =
∫ ∞

−∞

dx0
le(h̄β)

e−W3(x0)/kBT , (5.198)

we obtain the approximate free energy

F3 = − 1

β
lnZ3. (5.199)

The results are listed in Table 5.7 for various coupling constants g and temperatures.
They are compared with the exact free energy

Fex = − 1

β
log

∑

n

exp(−βEn), (5.200)

whose energies En were obtained by numerically solving the Schrödinger equation.

g β F1 F3 Fex

0.002 2.0 0.427937 0.427937 0.427741
0.4 1.0 0.226084 0.226075 0.226074

5.0 0.559155 0.558678 0.558675
2.0 1.0 0.492685 0.492578 0.492579

5.0 0.699431 0.696180 0.696118
10.0 0.700934 0.696285 0.696176

4.0 1.0 0.657396 0.6571051 0.6571049
5.0 0.809835 0.803911 0.803758

20 1.0 1.18102 1.17864 1.17863
5.0 1.24158 1.22516 1.22459

10.0 1.24353 1.22515 1.22459
200 5.0 2.54587 2.50117 2.49971
2000 0.1 2.6997 2.69834 2.69834

1.0 5.40827 5.32319 5.31989
10.0 5.4525 5.3225 5.3199

80000 0.1 18.1517 18.0470 18.0451
3.0 18.501 18.146 18.137

Table 5.7 Free energy of anharmonic oscillator with potential V (x) = x2/2 + gx4/4 for

various coupling strengths g and β = 1/kT .

We see that to third order, the new approximation yields energies which are
better than those of F1 by a factor of 30 to 50. The remaining difference with
respect to the exact energies lies in the fourth digit.

In the high-temperature limit, all approximations WN(x0) tend to the classical
result V (x0), as they should. Thus, for small β, the approximations W3(x0) and
W1(x0) are practically indistinguishable.
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The accuracy is worst at zero temperature. Using the T → 0 -limits of the
Feynman integrals a2LV given in (3.553) and (3D.14), the approximation WΩ

3 takes
the simple form

WΩ
3 (x0) = V (x0) +

h̄Ω(x0)

2
+
g2
2
a2 +

g4
8
a4

− 1

2h̄Ω

[

g22
2
a4 +

g2g4
2
a6 +

g23
6

2

3
a6 +

g24
24

7

2
a8
]

(5.201)

+
1

6h̄2Ω2

[

g32
3

2
a6 + g2g

2
3

4

3
a8 + g2

2g43a
8 + g23g4

13

3
a10 + g2g

2
4

35

16
a10 + g34

37

64
a12
]

,

where a2 = h̄/2MΩ. As in (5.197), we have omitted the arguments x0 in Ω and
gi, for brevity. At zero temperature, the remaining integral over x0 in the partition
function (5.198) receives its only contribution from the point x0 = 0, where W3(0)
is minimal. There it reduces to the energy W3 of Eq. (5.192).

5.15 Convergence of Variational Perturbation Expansion

For a single interaction xp, the approximation WN at zero temperature can easily
be carried to high orders [13, 14]. The perturbation coefficients are available exactly
from recursion relations, which were derived for the anharmonic oscillator with p = 4
in Appendix 3C. The starting point is the ordinary perturbation expansion for the
energy levels of the anharmonic oscillator

E(n) = ω
∞
∑

k=0

E
(n)
k

(

g

4ω3

)k

. (5.202)

It was remarked in (3C.27) and will be proved in Section 17.10 [see Eq. (17.323)]

that the coefficients E
(n)
k grow for large k like

E
(n)
k −−−→ −1

π

√

6

π

12n

n!
(−3)kΓ(k + n+ 1/2). (5.203)

Using Stirling’s formula3

n! ≈ (2π)1/2nn−1/2e−n, (5.204)

this amounts to

E
(n)
k −−−→ −2

√
3

π

(−4)n

n!

[

−3(k + n)

e

]n+k

. (5.205)

Thus, E
(n)
k grows faster than any power in k. Such a strong growth implies that

the expansion has a zero radius of convergence. It is a manifestation of the fact that
the energy possesses an essential singularity in the complex g-plane at the expansion
point g = 0. The series is a so-called asymptotic series. The precise form of the

3M. Abramowitz and I. Stegun, op. cit., Formulas 6.1.37 and 6.1.38.
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Figure 5.15 Typical Ω-dependence of Nth approximations WN at T = 0 for increasing

orders N . The coupling constant has the value g/4 = 0.1. The dashed horizontal line

indicates the exact energy.

singularity will be calculated in Section 17.10 with the help of the semiclassical
approximation.

If we want to extract meaningful numbers from a divergent perturbation series
such as (5.202), it is necessary to find a convergent resummation procedure. Such a
procedure is supplied by the variational perturbation expansion, as we now demon-
strate for the ground state energy of the anharmonic oscillator.

Truncating the infinite sum (5.202) after the Nth term, the replacement (5.188)
followed by a re-expansion in powers of g up to order N leads to the approximation
WN at zero temperature:

WΩ
N = Ω

N
∑

l=0

ε
(0)
l

(

g

4Ω3

)l

, (5.206)
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1.4 1.6 1.8 2 2.2
Ω

0.55914625

0.55914635

W

         =11N

         =15N
         =21N

Figure 5.16 New plateaus in WN developing for higher orders N ≥ 15 in addition to the

minimum which now gives worse results. For N = 11 the new plateau is not yet extremal,

but it is the proper region of least Ω-dependence yielding the best approximation to the

exact energy indicated by the dashed horizontal line. The minimum has fallen far below

this value and is no longer useful. The figure looks similar for all couplings (in the plot,

g = 0.4). The reason is the scaling property (5.215) proved in Appendix 5B.

with the re-expansion coefficients

ε
(0)
l =

l
∑

j=0

E
(0)
j

(

(1 − 3j)/2
l − j

)

(−4σ)l−j . (5.207)

Here σ denotes the dimensionless function of Ω

σ ≡ −1

2
Ωr2 =

Ω(Ω2 − 1)

g
. (5.208)

In Fig. 5.15 we have plotted the Ω-dependence ofWN for increasingN at the coupling
constant g/4 = 0.1. For odd and even N , an increasingly flat plateau develops at
the optimal energy.

At larger orders N ≥ 15, the initially flat plateau is deformed into a minimum
with a larger curvature and is no longer a good approximation. However, a new
plateau has developed yielding the best energy. This is seen on the high-resolution
plot in Fig. 5.16. At N = 11, the new plateau is not yet extremal but close to the
correct energy.

The worsening extrema in Fig. 5.16 correspond here to points leaving the optimal
dashed into the upward direction. The newly forming plateaus lie always on the
dashed curve.

The set of all extremal ΩN -values for odd N up to N = 91 is shown in Fig. 5.17.
The optimal frequencies with smallest curvature are marked by a fat dot. In Sub-
section 17.10.5. we shall derive that

σN =
ΩN(Ω2

N − 1)

g
(5.209)
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Ω
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Figure 5.17 Trial frequencies ΩN extremizing the variational approximation WN at

T = 0 for odd N ≤ 91. The coupling is g/4 = 1. The dashed curve corresponds to the

approximation (5.211) [related to ΩN via (5.208)]. The frequencies on this curve produce

the fastest convergence. The worsening extrema in Fig. 5.16 correspond here to points

leaving the optimal dashed into the upward direction. The newly forming plateaus lie

always on the dashed curve.

grows for large N like

σN ≈ cN, c = 0.186047 . . . , (5.210)

so that ΩN grows like ΩN ≈ (cNg)1/3. For smaller N , the best ΩN -values in Fig. 5.17
can be fitted with the help of the corrected formula (5.210):

σN ≈ cN
(

1 +
6.85

N2/3

)

. (5.211)

The associated ΩN -curve is shown as a dashed line. It is the lower envelope of the
extremal frequencies.

The set of extremal and turning point frequencies ΩN is shown in Fig. 5.18 for
even and odd N up to N = 30. The optimal extrema with smallest curvature
are again marked by a fat dot. The theoretical curve for an optimal convergence
calculated from (5.211) and (5.209) is again plotted as a dashed line.

In Table 5.8, we illustrate the precision reached for large orders N at various
coupling constants g by a comparison with accurate energies derived from numerical
solutions of the Schrödinger equation.

The approach to the exact energy values is illustrated in Fig. 5.19 which shows
that a good convergence is achieved by using the lowest of all extremal frequencies,
which lie roughly on the dashed theoretical curve in Fig. 5.17 and specify the position
of the plateaus. The frequencies ΩN on the higher branches leaving the dashed
curve in that figure, on the other hand, do not yield converging energy values. The
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N
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Ω
N

g/4 =1

Figure 5.18 Extremal and turning point frequencies ΩN in variational approximation

WN at T = 0 for even and odd N ≤ 30. The coupling is g/4 = 1. The dashed curve

corresponds to the approximation (5.211) [related to ΩN via (5.208)].
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  |E-E |ex
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Figure 5.19 Difference between approximate ground state energies E = WN and exact

energies Eex for odd N corresponding to the ΩN -values shown in Fig. 5.17. The coupling is

g/4 = 1. The lower curve follows roughly the error estimate to be derived in Eq. (17.409).

The extrema in Fig. (5.17) which move away from the dashed curve lie here on horizontal

curves whose accuracy does not increase.

sharper minima in Fig. 5.16 correspond precisely to those branches which no longer
determine the region of weakest Ω-dependence.

The anharmonic oscillator has the remarkable property that a plot of the ΩN -
values in the N, σN -plane is universal in the coupling strengths g; the plots do not
depend on g. To see the reason for this, we reinsert explicitly the frequency ω (which
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N g/4 =0.1 g/4 = 0.3 g/4 =0.5 g/4 =1.0 g/4 =2.0
1 0.5603073711 0.6416298621 0.7016616429 0.8125000000 0.9644035598
2 0.5591521393 0.6380887347 0.6963769499 0.8041900946 0.9522936298
3 0.5591542188 0.6380357598 0.6962536326 0.8039140528 0.9517997694
4 0.5591457408 0.6379878713 0.6961684978 0.8037563457 0.9515444198
5 0.5591461596 0.6379899084 0.6961717475 0.8037615232 0.9515517450

10 0.5591463266 0.6379917677 0.6961757782 0.8037705329 0.9515682249
15 0.5591463272 0.6379917838 0.6961758231 0.8037706596 0.9515684933
20 0.5591463272 0.6379917836 0.6961743059 0.8037706575 0.9515684887
25 0.5591463272 0.6379917832 0.6961758208 0.8037706513 0.9515584121

exact 0.5591463272 0.6379917832 0.6961758208 0.8037706514 0.9515684727
N g/4 =50 g/4 =200 g/4 =1000 g/4 =8000 g/4 =20000
1 2.5475803996 4.0084608812 6.8279533136 13.635282593 18.501658712
2 2.5031213253 3.9365586048 6.7040032606 13.386598486 18.163979967
3 2.5006996279 3.9325538203 6.6970328638 13.372561189 18.144908389
4 2.4995980125 3.9307488127 6.6939036178 13.366269038 18.136361642
5 2.4996213227 3.9307857892 6.6939667971 13.366395347 18.136533060

10 2.4997071960 3.9309286743 6.6942161680 13.366898079 18.137216200
15 2.4997089403 3.9309316283 6.6942213631 13.366908583 18.137230481
20 2.4997089079 3.9309315732 6.6942212659 13.366908387 18.137230214
25 2.4997087731 3.9309313396 6.6942208522 13.366907551 18.137230022

exact 2.4997087726 3.9309313391 6.6942208505 13.366907544 18.137229073

Table 5.8 Comparison of the variational approximations WN at T = 0 for increasing N

with the exact ground state energy at various coupling constants g.

was earlier set equal to unity). Then the re-expanded energy WN in Eq. (5.206) has
the general scaling form

WΩ
N = ΩwN (ĝ, ω̂2), (5.212)

where wN is a dimensionless function of the reduced coupling constant and frequency

ĝ ≡ g

Ω3
, ω̂ ≡ ω

Ω
, (5.213)

respectively. When differentiating (5.212),

d

dΩ
WN =

[

1 − 3ĝ
d

dĝ
− 2ω̂2 d

dω̂2

]

wN(ĝ, ω̂2), (5.214)

we discover that the right-hand side can be written as a product of ĝN and a dimen-
sionless polynomial of order N depending only on σ = Ω(Ω2 − ω2)/g:

d

dΩ
WΩ
N = ĝNpN(σ). (5.215)

A proof of this will be given in Appendix 5B for any interaction xp. The universal
optimal σN -values are obtained from the zeros of pN(σ).

It is possible to achieve the same universality for the optimal frequencies of the
even approximations WN by determining them from the extrema of pN(σ) rather
than from the turning points of WN as a function of Ω.

The universal functions pN(σ) are found most easily by replacing the variable σ

in the coefficients ε
(0)
l of the re-expansion (5.206) by its ω = 0 -limit σ|ω=0 = Ω3/g =

1/ĝ. This yields the simpler expression

WΩ
N = ΩwN(ĝ, 0) = Ω

N
∑

l=0

ε
(0)
l

(

ĝ

4

)l

, (5.216)
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with

ε
(0)
l =

l
∑

j=0

E
(0)
j

(

(1 − 3j)/2
l − j

)

(−4/ĝ)l−j. (5.217)

The derivative of WN with respect to Ω yields

pN(σ) = ĝ−N
[

1 − 3ĝ
d

dĝ

]

wN(ĝ, 0)

∣

∣

∣

∣

∣

ĝ=1/σ

. (5.218)

In Section 17.10, we show the re-expansion coefficients ε
(0)
k in (5.207) to be for

large k proportional to E
(0)
k :

ε
(0)
k ≈ e−2σNE

(0)
k , σN =

ΩN (Ω2
N − 1)

g
(5.219)

[see Eq. (17.396)]. Thus, at any fixed Ω, the re-expanded series has the same asymp-
totic growth as the original series with the same vanishing radius of convergence.
The behavior (5.219) can be seen in Fig. 5.20(a) where we have plotted the logarithm
of the absolute value of the kth term

Sk = ε
(0)
k

(

ĝ

4

)k

(5.220)

of the re-expanded perturbation series (5.202) for various optimal values ΩN and
g = 40. All curves show a growth ∝ kk. The terms in the original series start grow-
ing immediately (precocious growth). Those in the re-expanded series, on the other
hand, decrease initially and go through a minimum before they start growing (re-
tarded growth). The dashed curves indicate the analytically calculated asymptotic
behavior (5.219).
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Figure 5.20 Logarithmic plot of kth terms in re-expanded perturbation series at a

coupling constant g/4 = 1:

(a) Frequencies ΩN extremizing the approximation WN . The dashed curves indicate the

theoretical asymptotic behavior (5.219).

(b) Frequencies ΩN corresponding to the dashed curve in Fig. 5.17. The minima lie for

each N precisely at k = N , producing the fastest convergence. The curves labeled Ω = ω

indicate the kth term in the original perturbation series.
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The increasingly retarded growth is the reason why energies obtained from the
variational expansion converge towards the exact result. Consider the terms Sk
of the resummed series with frequencies ΩN taken from the theoretical curve of
optimal convergence in Fig. 5.17 (or 5.18). In Fig. 5.20(b) we see that the terms Sk
are minimal at k = N , i.e., at the last term contained in the approximation WN . In
general, a divergent series yields an optimal result if it is truncated after the smallest
term Sk. The size of the last term gives the order of magnitude of the error in the
truncated evaluation. The re-expansion makes it possible to find, for every N , a
frequency ΩN which makes the truncation optimal in this sense.

5.16 Variational Perturbation Theory for Strong-Coupling
Expansion

From the ω → 0 -limit of (5.206), we obtain directly the strong-coupling behavior
of WN . Since Ω = (g/ĝ)1/3, we can write

WN = (g/ĝ)1/3wN(ĝ, 0), (5.221)

and evaluate this at the optimal value ĝ = 1/σN . The large-g behavior of WN is
therefore

WN −−−→
g→∞

(g/4)1/3b0, (5.222)

with the coefficient

b0 = (4/ĝ)1/3wN(ĝ, 0)|ĝ=1/σN . (5.223)

log |α0 − αex
0 | log |α1 − αex

1 |

81/3 271/3 641/3 1251/3 2161/3

N1/3
81/3 271/3 641/3 1251/3 2161/3

N1/3

Figure 5.21 Logarithmic plot of N -behavior of strong-coupling expansion coefficients

b0 and b1.
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Figure 5.22 Oscillations of approximate strong-coupling expansion coefficient b0 as

a function of N when approaching exponentially fast the exact limit. The exponential

behavior has been factored out. The upper and lower points show the odd-N and even-N

approximations, respectively.

The higher corrections to the leading behavior (5.222) are found just as easily.
By expanding wN(ĝ, ω̂2) in powers of ω̂2,

WN =

(

g

ĝ

)1/3


1 + ω̂2 d

dω̂2
+
ω̂4

2!

(

d

dω̂2

)2

+ . . .



wN(ĝ, ω̂2)

∣

∣

∣

∣

∣

∣

ω̂2=0

, (5.224)

and inserting

ω̂2 =
ĝ2/3

(g/ω3)2/3
, (5.225)

we obtain the expansion

WN =
(

g

4

)1/3
[

b0 + b1

(

g

4ω3

)−2/3

+ b2

(

g

4ω3

)−4/3

+ . . .

]

, (5.226)

with the coefficients

bn =
1

n!

(

ĝ

4

)(2n−1)/3 (
d

dω̂2

)n

wN(ĝ, ω̂2)

∣

∣

∣

∣

∣

∣

ĝ=1/σN ,ω̂2=0

. (5.227)

The derivatives on the right-hand side have the expansions

(

d

dω̂2

)n

wN(ĝ, ω̂2) =
N
∑

l=0

ε
(0)
n l

(

ĝ

4

)l

, (5.228)
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Table 5.9 Coefficients bn of strong-coupling expansion of ground state energy of an-

harmonic oscillator obtained from a perturbation expansion of order 251. An extremely

precise value for b0 was given by F. Vinette and J. Cizek, J. Math. Phys. 32, 3392 (1991):

b0 = 0.667 986 259 155 777 108 270 962 016 198 601 994 304 049 36 . . . .

n bn
0 0.667 986 259 155 777 108 270 96
1 0.143 668 783 380 864 910 020 3
2 −0.008 627 565 680 802 279 128
3 0.000 818 208 905 756 349 543
4 −0.000 082 429 217 130 077 221
5 0.000 008 069 494 235 040 966
6 −0.000 000 727 977 005 945 775
7 0.000 000 056 145 997 222 354
8 −0.000 000 002 949 562 732 712
9 −0.000 000 000 064 215 331 954

10 0.000 000 000 048 214 263 787
11 −0.000 000 000 008 940 319 867
12 0.000 000 000 001 205 637 215
13 −0.000 000 000 000 130 347 650
14 0.000 000 000 000 010 760 089
15 −0.000 000 000 000 000 445 890 1
16 −0.000 000 000 000 000 058 989 8
17 0.000 000 000 000 000 019 196 00
18 −0.000 000 000 000 000 003 288 13
19 0.000 000 000 000 000 000 429 62
20 −0.000 000 000 000 000 000 044 438
21 0.000 000 000 000 000 000 003 230 5
22 −0.000 000 000 000 000 000 000 031 4

with the re-expansion coefficients

1

n!
ε
(0)
n l =

l−n
∑

j=0

E
(0)
j

(

(1 − 3j)/2
l − j

)(

l − j
n

)

(−1)l−j−n(4/ĝ)l−j. (5.229)

For increasing N , the coefficients b0, b1, . . . converge rapidly against the values
shown in Table 5.9. From the logarithmic plot in Fig. 5.21 we extract a convergence

|b0 − bex0 | ∼ e8.2−9.7N1/3

, |b1 − bex1 | ∼ e6.4−9.1N1/3

. (5.230)

This behavior will be derived in Subsection 17.10.5, where we shall find that for any
g > 0, the error decreases at largeN roughly like e−[9.7+(cg)−2/3]N1/3

[see Eq. (17.409)].

The approach to this limiting behavior is oscillatory, as seen in Fig. 5.22 where
we have removed the exponential falloff and plotted e−6.5+9.42N1/3

(b0 − bex0 ) against
N [16].
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For the proof of the convergence of the variational perturbation expansion in
Subsection 17.10.5. it will be important to know that the strong-coupling expansion
for the ground state energy

E(0) =
(

g

4

)1/3
[

b0 + b1

(

g

4ω3

)−2/3

+ b2

(

g

4ω3

)−4/3

+ . . .

]

, (5.231)

converges for large enough
g > gs. (5.232)

The same is true for the excited energies.

5.17 General Strong-Coupling Expansions

The coefficients of the strong-coupling expansion can be derived for any divergent
perturbation series

EN (g) =
N
∑

n=0

ang
n, (5.233)

for which we know that it behaves at large couplings g like

E(g) = gp/q
M
∑

m=0

bm(g−2/q)m. (5.234)

The series (5.233) can trivially be rewritten as

EN (g) = ωp
N
∑

n=0

an

(

g

ωq

)n

, (5.235)

with ω = 1. We now apply the square-root trick (5.188) and replace ω by the iden-
tical expression

ω ≡
√

Ω2 + (ω2 − Ω2), (5.236)

containing a dummy scaling parameter Ω. The series (5.235) is then re-expanded
in powers of g up to the order N , thereby treating ω2 − Ω2 as a quantity of order
g. The result is most conveniently expressed in terms of dimensionless parameters
ĝ ≡ g/Ωq and σ ≡ (1 − ω̂2)/ĝ, where ω̂ ≡ ω/Ω. Then the replacement (5.236)
amounts to

ω −−−→ Ω(1 − σĝ)1/2, (5.237)

so that the re-expanded series reads explicitly

WN (ĝ, σ) = Ωp
N
∑

n=0

εn(σ) (ĝ)n , (5.238)

with the coefficients:

εn(σ) =
n
∑

j=0

aj

(

(p− qj)/2
n− j

)

(−σ)n−j. (5.239)
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For any fixed g, we form the first and second derivatives of WΩ
N (g) with respect to Ω,

calculate the Ω-values of the extrema and the turning points, and select the smallest
of these as the optimal scaling parameter ΩN . The function WN (g) ≡ WN(g,ΩN)
constitutes the Nth variational approximation EN(g) to the function E(g).

We now take this approximation to the strong-coupling limit g → ∞. For this
we observe that (5.238) has the general scaling form

WΩ
N (g) = ΩpwN(ĝ, ω̂2). (5.240)

For dimensional reasons, the optimal ΩN increases with g for large g like ΩN ≈
g1/qcN , so that ĝ = c−qN and σ = 1/ĝ = cqN remain finite in the strong-coupling limit,
whereas ω̂2 goes to zero like 1/[cN(g/ωq)1/q]2. Hence

WΩN
N (g) ≈ gp/qcpNwN(c−qN , 0). (5.241)

Here cN plays the role of the variational parameter to be determined by the lowest
extremum or turning point of cpNwN(c−qN , 0).

The full strong-coupling expansion is obtained by expanding wN(ĝ, ω̂2) in powers
of ω̂2 = (g/ωqĝ)−2/q at a fixed ĝ. The result is

WN(g) = gp/q
[

b̄0(ĝ) + b̄1(ĝ)
(

g

ωq

)−2/q

+ b̄2(ĝ)
(

g

ωq

)−4/q

+ . . .

]

, (5.242)

with

b̄n(ĝ) =
1

n!

(

d

dω̂2

)n

w
(n)
N (ĝ, ω̂2)

∣

∣

∣

∣

∣

ω̂2=0

ĝ(2n−p)/q, (5.243)

with respect to ω̂2. Explicitly:

1

n!
w

(n)
N (ĝ, 0) =

N
∑

l=0

(−1)l+n
l−n
∑

j=0

aj

(

(p− qj)/2
l − j

)(

l − j
n

)

(−ĝ)j . (5.244)

Since ĝ = c−qN , the coefficients b̄n(ĝ) may be written as functions of the parameter c:

b̄n(c) =
N
∑

l=0

al
N−l
∑

j=0

(

(p− lq)/2

j

)

(

j

n

)

(−1)j−ncp−lq−2n. (5.245)

The values of c which optimize WN(g) for fixed g yield the desired values of cN . The
optimization may be performed stepwise using directly the expansion coefficients
b̄n(c). First we optimize the leading coefficient b0(c) as a function of c and identifying
the smallest of them as cN . Next we have to take into account that for large but
finite α, the trial frequency Ω has corrections to the behavior ĝ1/qc. The coefficient
c will depend on ĝ like
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c(ĝ) = c+ γ1

(

ĝ

ωq

)−2/q

+ γ2

(

ĝ

ωq

)−4/q

+ . . . , (5.246)

requiring a re-expansion of c-dependent coefficients b̄n in (5.242). The expansion
coefficients c and γn for n = 1, 2, . . . are determined by extremizing b̄2n(c). The
final result can again be written in the form (5.242) with b̄(c)n replaced by the final
bn:

WN(g) = gp/q
[

b0 + b1

(

g

ωq

)−2/q

+ b2

(

g

ωq

)−4/q

+ . . .

]

. (5.247)

The final bn are determined by the equations shown in Table 5.10. The two leading
coefficients receive no correction and are omitted.

The extremal values of ĝ will have a strong-coupling expansion corresponding to
(5.246):

ĝ = c−qN

[

1 + δ1

(

g

ωq

)−2/q

+ δ2

(

g

ωq

)−4/q

+ · · ·
]

. (5.248)

Table 5.10 Equations determining coefficients bn in strong-coupling expansion (5.247)

from the functions b̄n(c) in (5.245) and their derivatives. For brevity, we have suppressed

the argument c in the entries.

n bn −γn−1

2 b̄2 + γ1b̄
′
1 + 1

2
γ21 b̄

′′
0 b̄′1/b̄

′′
0

3 b̄3 + γ2b̄
′
1 + γ1b̄

′
2 + γ1γ2b̄

′′
0 + 1

2
γ21 b̄

′′
1 + 1

6
γ31 b̄

(3)
0 (b̄′2 + γ1b̄

′′
1 + 1

2
γ21 b̄

(3)
0 )/b̄′′0

4 b̄4 + γ3b̄
′
1 + γ2b̄

′
2 + γ1b̄

′
3 + (1

2
γ22 + γ1γ3)b̄

′′
0 (b̄′3 + γ2b̄

′′
1 + γ1b̄

′′
2 + γ1γ2b̄

(3)
0

+γ1γ2b̄
′′
1 + 1

2
γ21 b̄

′′
2 + 1

2
γ21γ2b̄

(3)
0 + 1

6
γ31 b̄

(3)
1 + 1

24
γ41 b̄

(4)
0 +1

2
γ21 b̄

(3)
1 + 1

6
γ31 b̄

(4)
0 )/b̄′′0

The convergence of the general strong-coupling expansion is similar to the one
observed for the anharmonic oscillator. This will be seen in Subsection 17.10.5.

The general strong-coupling expansion has important applications in the theory
of critical phenomena. This theory renders expansions of the above type for the so-
called critical exponents, which have to be evaluated at infinitely strong (bare) cou-
plings of scalar field theories with gφ4 interactions. The results of these applications
are better than those obtained previously with a much more involved theory based
on a combination of renormalization group equations and Padé-Borel resummation
techniques [28]. The critical exponents have power series expansions in powers of
g/ω in the physically most interesting three-dimensional systems, where ω2/2 is the
factor in front of the quadratic field term φ2. The important phenomenon observed
in such systems is the appearance of anomalous dimensions . These imply that the
expansion terms (g/ω)n cannot simply be treated with the square-root trick (5.236).
The anomalous dimension requires that (g/ω)n must be treated as if it were (g/ωq)n



524 5 Variational Perturbation Theory

when applying the square-root trick. Thus we must use the anomalous square-root

trick

ω → Ω

[

1 +
(

ω

Ω

)2/q
]q/2

. (5.249)

The power 2/q appearing in the strong-coupling expansion (5.234) is experimentally
observable since it governs the approach of the system to the scaling limit. This
exponent is usually denoted by the letter ω, and is referred to as the Wegner exponent

[29]. This exponent ω is not to be confused with the frequency ω in the present
discussion. In superfluid helium, for example, this critical exponent is very close to
the value 4/5, implying q ≈ 5/2. The Wegner exponent of fluctuating quantum fields
cannot be deduced, as in quantum mechanics, from simple scaling analyses of the
action. It is, however, calculable by applying variational perturbation theory to the
logarithmic derivative of the power series of the other critical exponents. These are
called β-functions and have to vanish for the correct ω. This procedure is referred to
as dynamical determination of ω and has led to values in excellent agreement with
experiment [17].

In the above variational procedure, the existence of anomalous dimensions is
signalized by the appearance of a nonzero slope in the plateaus of Figs. 5.14. If this
happens, the power q in the replacement (5.249) must be modified until the plateaus
are flat. This method is a practical alternative to determining the Wegner exponent
ω = 2/q via the β-function.

5.18 Variational Interpolation between Weak and Strong-
Coupling Expansions

The possibility of calculating the strong-coupling coefficients from the perturbation
coefficients can be used to find a variational interpolation of a function with known
weak- and strong-coupling coefficients [18]. Such pairs of expansions are known for
many other physical systems, for example most lattice models of statistical mechan-
ics [19]. If applied to the ground state energy of the anharmonic oscillator, this
method converges exponentially fast [15]. The weak-coupling expansion of the
ground state energy of the anharmonic oscillator has the form (5.233). In natural
units with h̄ = M = ω = 1, the lowest coefficient a0 is trivially determined to
be a0 = 1/2 by the ground state energy of the harmonic oscillator. If we identify
α = g/4 with the coupling constant in (5.233), to save factors 1/4, the first coeffi-
cient is a1 = 3/4 [see (5.190)]. We have seen before in Section 5.12 that even the
lowest order variational perturbation theory yields leading strong-coupling coeffi-
cient in excellent agreement with the exact one [with a maximal error of ≈ 2%, see
Eq. (5.167)]. In Fig. 5.23 we have plotted the relative deviation of the variational
approximation from the exact one in percent.

The strong-coupling behavior is known from (5.226). It starts out like g1/3,
followed by powers of g−1/3, g−1, g−5/3. Comparison with (5.234) shows that this
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log g/4

W1/E
(0)
ex

Figure 5.23 Ratio of approximate and exact ground state energy of anharmonic oscillator

from lowest-order variational interpolation. Dashed curve shows first-order Feynman-

Kleinert approximation W1(g). The accuracy is everywhere better than 99.5 %. For

comparison, we also display the much worse (although quite good) variational perturbation

result using the exact aex1 = 3/4.

corresponds to p = 1 and q = 3. The leading coefficient is given in Table 5.9 with
extreme accuracy: b0 = 0.667 986 259 155 777 108 270 962 016 919 860 . . . .

In a variational interpolation, this value is used to determine an approximate a1
(forgetting that we know the exact value aex1 = 3/4). The energy (5.238) reads for
N = 1 (with α = g/4 instead of g):

W1(α,Ω) =
(

Ω

2
+

1

2Ω

)

a0 +
a1
Ω2
α. (5.250)

Equation (5.245) yields, for n = 0:

b0 =
c

2
a0 +

a1
c2
. (5.251)

Minimizing b0 with respect to c we find c = c1 ≡ 2(a1/2a0)
1/3 with b0 = 3a0c1/4 =

3(a20a1/2)1/3/2. Inserting this into (5.251) fixes a1 = 2(2/3b0)
3/a20 = 0.773 970 . . . ,

quite close to the exact value 3/4. With our approximate a1 we calculate W1(α,Ω)
at its minimum, where

Ω1 =











2√
3
ω cosh

[

1
3
acosh(g/g(0))

]

2√
3
ω cos

[

1
3
arccos(g/g(0))

] for
g > g(0),
g < g(0),

(5.252)

with g(0) ≡ 2ω3a0/3
√

3a1. The result is shown in Fig. 5.23. Since the difference
with respect to the exact solution would be too small to be visible on a direct plot
of the energy, we display the ratio with respect to the exact energy W1(g)/E

0
ex. The

accuracy is everywhere better than 99.5 %.
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5.19 Systematic Improvement of Excited Energies

The variational method for the energies of excited states developed in Section 5.12
can also be improved systematically. Recall the n-dependent level shift formulas
(3.518) and (3.519), according to which

∆E(n) = ∆1E
(n) + ∆2E

(n) + ∆3E
(n) = ∆Vnn −

∑

k 6=n

∆Vnk∆Vkn
Ek − En

+
∑

k 6=n

∑

l 6=n

∆Vnk∆Vkl∆Vln
(Ek − En)(El − En)

− ∆Vnn
∑

k 6=n

∆Vnk∆Vkn
(Ek −En)2

. (5.253)

By applying the substitution rule (5.188) to the total energies

E(n) = h̄Ω(n + 1/2) + ∆E(n),

and expanding each term in powers of g up to g3, we find the contributions to the
level shift

∆1E
(n) =

g

4
[3(2n2 + 2n+ 1)a4 + (2n+ 1)a2r2],

∆2E
(n) = −

(

g

4

)2

[2(34n3 + 51n2 + 59n+ 21)a8

+4 · 3(2n2 + 2n+ 1)a6r2 + (2n+ 1)a4r4]
1

h̄Ω
,

∆3E
(n) =

(

g

4

)3

[4 · 3(125n4 + 250n3 + 472n2 + 347n+ 111)a12

+4 · 5(34n3 + 51n2 + 59n+ 21)a10r2 (5.254)

+16 · 3(2n2 + 2n+ 1)a8r4 + 2 · (2n+ 1)a6r6]
1

h̄2Ω2
,

which for n = 0 reduce to the corresponding terms in (5.192). The extremization in
Ω leads to energies which lie only very little above the exact values for all n. This is
illustrated in Table 5.11 for n = 8 (compare with the energies in Table 5.5). A sum

over the Boltzmann factors e−βE
(n)
3 produces an approximate partition function Z3

which deviates from the exact one by less than 50.1%.

It will be interesting to use the improved variational approach for the calculation
of density matrices, particle distributions, and magnetization curves.
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Table 5.11 Higher approximations to excited energy with n = 8 of anharmonic oscillator

at various coupling constants g. The third-order approximation E
(8)
3 (g) is compared with

the exact values E
(8)
ex (g), with the approximation E

(8)
1 (g) of the last section, and with the

lower approximation of even order E
(8)
2 (g) (all in units of h̄ω).

g/4 E
(8)
ex (g) E

(8)
1 (g) E

(8)
2 (g) E

(8)
3 (g)

0.1 13.3790 13.3235257 13.3766211 13.3847643
0.2 15.8222 15.7327929 15.8135994 15.8275802
0.3 17.6224 17.5099190 17.6099785 17.6281810
0.4 19.0889 18.9591071 19.0742800 19.0958388
0.5 20.3452 20.2009502 20.3287326 20.3531080
0.6 21.4542 21.2974258 21.4361207 21.4629384
0.7 22.4530 22.2851972 22.4335694 22.4625543
0.8 23.3658 23.1879959 23.3451009 23.3760415
0.9 24.2091 24.0221820 24.1872711 24.2199988

1 24.9950 24.7995745 24.9720376 25.0064145
10 51.9865 51.5221384 51.9301030 51.9986710
50 88.3143 87.5058600 88.2154879 88.3500454

100 111.128 110.105819 111.002842 111.173183
500 189.756 188.001018 189.540577 189.833415

1000 239.012 236.799221 238.740320 239.109584

5.20 Variational Treatment of Double-Well Potential

Let us also calculate the approximate effective classical potential of third order W3(x0) for the
double-well potential

V (x) = M
ω2

2
x2 +

g

4
x4 +

M2ω4

4g
, ω2 = −1. (5.255)

In the expression (5.197), the sign change of ω2 affects only the coupling g2(x0), which becomes

g2(x0) = M [−1 − Ω2(x0)] + 3gx20 = gr2/2 + 3gx20 (5.256)

[recall (5.176)]. Note the constant energyM2ω4/4g in V (x) which shifts the minima of the potential
to zero [compare (5.78)].

To see the improved accuracy of W3 with respect to the first approximation W1(x0) discussed
in Section 5.7 [corresponding to the first line of (5.197)], we study the limit of zero temperature
where the accuracy is expected to be the worst. In this limit, W3(x0) reduces to (5.201) and is
easily minimized in x0 and Ω.

At larger coupling constants g > gc ≈ 0.3, the energy has a minimum at x0 = 0. For g ≤ gc,
there is an additional symmetric pair of minima at x0 = ±xm 6= 0 (recall Figs. 5.5 and 5.6). The
resultingW3(0) is plotted in Fig. 5.24 together withW1(0). The figure also contains the first excited
energy which is obtained by setting ω2 = −1 in r2 = 2M(ω2 − Ω2)/g of Eqs. (5.253)–(5.255).

For small couplings g, the energies W1(0), W3(0), . . . diverge and the minima at x = ±xm of
Eq. (5.82) become relevant. Moreover, there is quantum tunneling across the central barrier from
one minimum to the other which takes place for g ≤ gc ≈ 0.3 and is unaccounted for by W3(0) and
W3(xm). Tunneling leads to a level splitting to be calculated in Chapter 17. In this chapter, we
test the accuracy of W1(xm) and W3(xm) by comparing them with the averages of the two lowest
energies. Figure 5.24 shows that the accuracy of the approximation W3(xm) is quite good.
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E

E

Figure 5.24 Lowest two energies in double-well potential as function of coupling strength g.

The approximations are W1(0) (dashed line) and W3(0) (solid line). The dots indicate numeric

results of the Schrödinger equation. The lower part of the figure shows W1(xm) and W3(0) in

comparison with the average of the Schrödinger energies (small dots). Note that W1 misses the

slope by 25%. Tunneling causes a level splitting to be calculated in Chapter 17 (dotted curves).

Note that the approximation W1(xm) does not possess the correct slope in g, which is missed
by 25%. In fact, a Taylor expansion of W1(xm) reads

W1(xm) =

√
2

2
− 3

16
g − 9

√
2

128
g2 − 27

256
g3 + . . . , (5.257)

whereas the true expansion starts out with

E(0) =

√
2

2
− 1

4
g + . . . . (5.258)

The optimal frequency associated with (5.257) has the expansion

Ω1(xm) =
√

2 − 3

4
g − 27

√
2

64
g2 − 27

32
g3 + . . . .

Let us also compare the x0-behavior of W3(x0) with that of the true effective classical potential
calculated numerically by Monte Carlo simulations. The curves are plotted in Fig. 5.5, and the
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agreement is seen to be excellent. There are significant deviations only for low temperatures with
β >∼ 20.

At zero temperature, there exists a simple way of recovering the effective classical potential
from the classical potential calculated up to two loops in Eq. (3.770). As we learned in Eq. (3.833),
x0 coincides at zero temperature. with X in Eq. (3.770) Thus we merely have to employ the
square-root trick (5.186) to the effective potential (3.770) and interchange X by x0 to obtain
the variational approximation W1(x0) to the effective classical potantial to be varied. Explicitly,
we replace, as in (5.188), the one-loop contribtions, ground state energies h̄ωT,L in (3.770) by
√

Ω2
T,L + (ω2

T,L(X) − Ω2
T,L) ≈ ΩT,L + (ω2

T,L(X) − Ω2
T,L)/2ΩT,L, and exchange ωL,T (X) of the

remaining two-loop terms by ΩT,L. This yields for the D-dimensional rotated double-well potential
(the Mexical hat potential in Fig. 3.13]:

W (x0) =
T→0

{

v(X) + h̄

[

ΩL

4
+
ω2
L(X)

4ΩL

]

+ (D − 1)h̄

[

ΩT

4
+
ω2
T (X)

4ΩT

]

+
h̄2

8(2M)2

{

1

Ω2
L

v(4)(X)

+
D2 − 1

Ω2
T

[

v′′(X)

X2
− v′(X)

X3

]

+
2(D − 1)

ΩLΩT

[

v′′′(X)

X
− 2v′′(X)

X2
+

2v′(X)

X3

]

}

− h̄2

6(2M)3

{

1

3Ω4
L

[v′′′(X)]2 +
3(D − 1)

2ΩT + ΩL

1

ΩLΩ2
T

[

v′′(X)

X
− v′(X)

X2

]2
}

+ O(h̄3)

}

X→x0

. (5.259)

This has to be extremized in ΩT,L at fixed x0.

5.21 Higher-Order Effective Classical Potential for
Nonpolynomial Interactions

The systematic improvement of the Feynman-Kleinert approximation in Section 5.13 was based
on Feynman diagrams and therefore applicable only to polynomial potentials. If we want to calcu-
late higher-order effective classical potentials for nonpolynomial interactions such as the Coulomb
interaction, we need a generalization of the smearing rule (5.30) to the correlation functions of
interaction potentials which occur in the expansion (5.180). The second-order term, for example,
requires the calculation of

〈

Ax0

int
2
〉x0

Ω,c
=

∫ h̄β

0

dτ

∫ h̄β

0

dτ ′ 〈V x0

int (x(τ))V
x0

int (x(τ ′))〉x0

Ω,c , (5.260)

where

V x0

int (x) = V (x) − 1

2
MΩ2(x0)(x− x0)

2. (5.261)

Thus we need an efficient smearing formula for local expectations of the form

〈F1(x(τ1)) . . . Fn(x(τn))〉x0

Ω =
1

Zx0

Ω

×
∮

Dx(τ)F1(x(τ1)) · · ·Fn(x(τn))δ(x − x0) exp

{

− 1

h̄
Ax0

Ω [x(τ)]

}

, (5.262)

where Ax0

Ω [x(τ)] and Zx0

Ω are the local action and partition function of Eqs. (5.3) and (5.4). After
rearranging the correlation functions to connected ones according to Eqs. (5.182) we find the
cumulant expansion for the effective classical potential [see (5.180)]

V eff,cl(x0)=F
x0

Ω +
1

h̄β

h̄β
∫

0

dτ1 〈V x0

int (x(τ1))〉
x0

Ω,c
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− 1

2h̄2β

h̄β
∫

0

dτ1

h̄β
∫

0

dτ2 〈V x0

int (x(τ1))V
x0

int (x(τ2))〉
x0

Ω,c (5.263)

+
1

6h̄3β

h̄β
∫

0

dτ1

h̄β
∫

0

dτ2

h̄β
∫

0

dτ3 〈V x0

int (x(τ1))V
x0

int (x(τ2))V
x0

int (x(τ3))〉
x0

Ω,c + . . . .

It differs from the previous expansion (5.180) for polynomial interactions by the potential V (x)
not being expanded around x0. The first term on the right-hand side is the local free energy (5.6).

5.21.1 Evaluation of Path Integrals

The local pair correlation function was given in Eq. (5.19):

〈δx(τ)δx(τ ′)〉x0

Ω ≡ 〈[x(τ) − x0][x(τ
′) − x0]〉x0

Ω =
h̄

M
G

(2)x0

Ω (τ, τ ′) = a2ττ ′(x0), (5.264)

with [recall (5.19)–(5.24)]

a2ττ ′(x0) =
h̄

2MΩ(x0)

cosh[Ω(x0)(τ−τ ′ − h̄β/2)]

sinh[Ω(x0)h̄β/2]
− 1

MβΩ2(x0)
, τ ∈ (0, h̄β). (5.265)

Higher correlation functions are expanded in products of these according to Wick’s rule (3.305).
For an even number of δx(τ)’s one has

〈δx(τ1)δx(τ2) · · · δx(τn)〉x0

Ω =
∑

pairs

a2τp(1)τp(2)(x0) · · · a
2
τp(n−1)τp(n)

(x0) , (5.266)

where the sum runs over all (n− 1)!! pair contractions. For an exponential, Wick’s rule implies

〈

exp

[

i

∫ h̄β

0

dτj(τ) δx(τ)

]〉x0

Ω

= exp

[

−1

2

∫ h̄β

0

dτ

∫ h̄β

0

dτ ′j(τ)a2ττ ′(x0)j(τ
′)

]

. (5.267)

Inserting j(τ) =
∑n

i=1 kiδ(τ − τi), this gives for the expectation value of a sum of exponentials

〈

exp

[

i

n
∑

i=1

ki δx(τi)

]〉x0

Ω

= exp



−1

2

n
∑

i=1

n
∑

j=1

a2τiτj (x0)kikj



 . (5.268)

By Fourier-decomposing the functions F (x(τ)) =
∫

(dk/2π)F (k) exp ik [x0 + δx(τ)] in (5.262), we
obtain from (5.268) the new smearing formula

〈F1(x(τ1)) · · ·Fn(x(τn))〉x0

Ω =







n
∏

k=1

+∞
∫

−∞

d δxkFk(x0 + δxk)







× 1
√

(2π)nDet
[

a2τkτk′
(x0)

]

exp

{

−1

2

n
∑

k=1

n
∑

k′=1

δxk a
−2
τkτk′

(x0) δxk′

}

, (5.269)

where a−2
τiτj (x0) is the inverse of the n × n -matrix a2τiτj (x0). This smearing formula determines

the harmonic expectation values in the variational perturbation expansion (5.263) as convolutions
with Gaussian functions.

For n = 1 and only the diagonal elements a2(x0) = a2ττ (x0) appear in the smearing formula
(5.269), which reduces to the previous one in Eq. (5.30) [F (x(τ)) = V (x(τ))].
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For polynomials F (x(τ)), we set x(τ) = x0 + δx(τ) and expand in powers of δx(τ), and see
that the smearing formula (5.269) reproduces the Wick expansion (5.266).

For two functions, the smearing formula (5.269) reads explicitly

〈F1(x(τ1))F2(x(τ2))〉x0

Ω =

+∞
∫

−∞

dx1

+∞
∫

−∞

dx2 F1(x1)F2(x2)
1

√

(2π)2[a4(x0) − a4τ1τ2(x0)]

× exp

{

−a
2(x0)(x1−x0)2−2a2τ1τ2(x0)(x1−x0)(x2 − x0)+a

2(x0)(x2−x0)2
2[a4(x0) − a4τ1τ2(x0)]

}

. (5.270)

Specializing F2(x(τ2)) to quadratic functions in x(τ), we obtain from this

〈

F1(x(τ1)) [x(τ2) − x0]
2
〉x0

Ω
= 〈F1(x(τ1))〉x0

Ω a2(x0)

[

1 − a4τ1τ2(x0)

a4(x0)

]

+
〈

F1(x(τ1)) [x(τ1) − x0]
2
〉x0

Ω

a4τ1τ2(x0)

a4(x0)
, (5.271)

and
〈

[x(τ1) − x0]
2
[x(τ2) − x0]

2
〉x0

Ω
= a4(x0) + 2a4τ1τ2(x0) . (5.272)

5.21.2 Higher-Order Smearing Formula in D Dimensions

The smearing formula can easily be generalized to D-dimensional systems, where the local pair
correlation function (5.264) becomes a D ×D -dimensional matrix:

〈δxi(τ)δxj(τ ′)〉x0

Ω = a2ij;ττ ′(x0). (5.273)

For rotationally-invariant systems, the matrix can be decomposed in the same way as the trial
frequency Ω2

ij(x0) in (5.95) into longitudinal and transversal components with respect to x0:

a2ij;ττ ′(x0) = a2L;ττ ′(r0)PL;ij(x̂0) + a2T ;ττ ′(r0)PT ;ij(x̂0), (5.274)

where PL;ij(x̂0) and PT ;ij(x̂0) are longitudinal and transversal projection matrices introduced in
(5.96). Denoting the matrix (5.274) by a2τ,τ ′(x0), we can write the D-dimensional generalization
of the smearing formula (5.275) as

〈F1(x(τ1)) · · ·Fn(x(τn))〉x0

Ω =







n
∏

k=1

+∞
∫

−∞

d δxkFk(x0 + δxk)







× 1
√

(2π)nDet
[

a2τkτk′
(x0)

]

exp

{

−1

2

n
∑

k=1

n
∑

k′=1

δxk a
−2
τkτk′

(x0) δxk′

}

. (5.275)

The inverse D × D -matrix a−2
τkτk′

(x0) is formed by simply inverting the n × n -matrices

a−2
L;τkτk′

(r0), a
−2
T ;τkτk′

(r0) in the projection formula (5.274) with projection matrices PL(x̂0) and

PT (x̂0):
a−2
τkτk′

(x0) = a−2
L;τkτk′

(r0)PL(x̂0) + a−2
T ;τkτk′

(r0)PT (x̂0). (5.276)

In D dimensions, the trial potential contains a D ×D frequency matrix and reads

M

2
Ω2

ij(x0)(xi − x0i)(xj − x0j) ,
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with the analogous decomposition

Ω2
ij(x0) = Ω2

L(x0)
x0ix0j
r20

+ Ω2
T (x0)

(

δij −
x0ix0j
r20

)

. (5.277)

The interaction potential (5.261) becomes

V x0

int (x) = V (x) − M

2
Ω2

ij(x0)(xi − x0i)(xj − x0j) . (5.278)

To first order, the anisotropic smearing formula (5.275) reads

〈F1(x(τ1)〉r0ΩT ,ΩL
=

+∞
∫

−∞

d3x1F1(x1)
1

√

(2π)3a4T a
2
L

exp

{

− (x1L − r0)
2

2a2L
− x2

1T

2a2T

}

, (5.279)

with the special cases
〈

[δx(τ1)]
2
T

〉r0

ΩT ,ΩL

= 2a2T ,
〈

[δx(τ1)]
2
L

〉r0

ΩT ,ΩL

= a2L . (5.280)

Inserting this into formula (5.263) we obtain the first-order approximation for the effective classical
potential

W1(x0)=F
x0

Ω +
1

h̄β

h̄β
∫

0

dτ1 〈V x0

int (x(τ1))〉x0

Ω,c , (5.281)

in agreement with the earlier result (5.97).
To second-order, the smearing formula (5.275) yields [33]

〈F1(x(τ1)F2(x(τ2)〉r0ΩT ,ΩL
=

+∞
∫

−∞

d3x1

+∞
∫

−∞

d3x2 F1(x1)F2(x2)

× 1

(2π)3(a4T − a4Tτ1τ2
)
√

a4L − a4Lτ1τ2

exp

{

−
a2Tx

2
1T − 2a2Tτ1τ2

x1Tx2T + a2Tx
2
2T

2(a4T − a4Tτ1τ2
)

}

× exp

{

−
a2L(x1L − r0)

2 − 2a2Lτ1τ2
(x1L − r0)(x2L − r0) + a2L(x2L − r0)

2

2(a4L − a4Lτ1τ2
)

}

, (5.282)

so that rule (5.271) for expectation values generalizes to

〈

F1(x(τ1) [δx(τ2)]
2
T

〉r0

ΩT ,ΩL

= 2a2T

[

1 −
a4Tτ1τ2

a4T

]

〈F1(x(τ1))〉r0ΩT ,ΩL

+
a4Tτ1τ2

a4T

〈

F1(x(τ1)) [δx(τ1)]
2
T

〉r0

ΩT ,ΩL

, (5.283)

〈

F1(x(τ1) [δx(τ2)]
2
L

〉r0

ΩT ,ΩL

= a2L

[

1 −
a4Lτ1τ2

a4L

]

〈F1(x(τ1))〉r0ΩT ,ΩL

+
a4Lτ1τ2

a4L

〈

F1(x(τ1)[δx(τ1)]
2
L

〉r0

ΩT ,ΩL
. (5.284)

Specializing F (x) to quadratic function, we obtain the generalizations of (5.272)
〈

[δx(τ1)]
2
T [δx(τ2)]

2
T

〉r0

ΩT ,ΩL

= 4a4T + 4a4Tτ1τ2 , (5.285)

〈

[δx(τ1)]
2
T [δx(τ2)]

2
L

〉r0

ΩT ,ΩL

= 2a2Ta
2
L , (5.286)

〈

[δx(τ1)]
2
L [δx(τ2)]

2
L

〉r0

ΩT ,ΩL

= a4L + 2a4Lτ1τ2 . (5.287)
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5.21.3 Isotropic Second-Order Approximation
to Coulomb Problem

To demonstrate the use of the higher-order smearing formula (5.275), we calculate the effective
classical potential of the three-dimensional Coulomb potential

V (x) = − e2

|x| (5.288)

to second order in variational perturbation theory, thus going beyond the earlier results in Eq. (5.53)
and Section 5.10. The interaction potential corresponding to (5.278) is

V x0

int (x) = − e2

|x| −
M

2
Ω2(x0)(x− x0)

2 . (5.289)

For simplicity, we consider only the isotropic approximation with only a single trial frequency. Then
all formulas derived in the beginning of this section have a trivial extension to three dimensions.
Better results will, of course be obtained with two trial frequencies Ω2

L(r0) and Ω2
T (r0) of Section

5.9.
The Fourier transform 4πe2/|k|2 of the Coulomb potential e2/|x| is most conveniently written

in a proper-time type of representation as

V (k) =
4πe2

2

∫ ∞

0

dσe−σk2/2−ikx, (5.290)

where σ has the dimension length square. The lowest-order smeared potentials were calculated
before in Section 5.10. For brevity, we consider here only the isotropic approximation in which
longitudinal and transverse trial frequencies are identified [compare (5.112)]:

〈

[x(τ1) − x0]
2
〉x0

Ω
= 3a2(x0) ,

〈

1

|x(τ1)|

〉x0

Ω

=
1

|x0|
erf

[

|x0|
√

2a2(x0)

]

. (5.291)

The first-order variational approximation to the effective classical potential (5.281) is then given
by the earlier-calculated expression (5.115).

To second order in variational perturbation theory we calculate expectation values
〈

[x(τ1) − x0]
2
[x(τ2) − x0]

2
〉x0

Ω
= 9a4(x0) + 6a4τ1τ2(x0) , (5.292)

〈

[x(τ1) − x0]
2 1

|x(τ2)|

〉x0

Ω

=
2[3a4(x0) − a4τ1τ2(x0)]

√

πa6(x0)
, (5.293)

which follow from the obvious generalization of (5.271), (5.272) to three dimensions. More involved
is the Coulomb-Coulomb correlation function

〈

1

|x(τ1)|
1

|x(τ2)|

〉x0

Ω

=
1

2π

+∞
∫

0

dσ1

+∞
∫

0

dσ2
1

√

[a2(x0) + σ1][a2(x0) + σ2] − a4τ1τ2(x0)
3

× exp

{

−x2
0

a2(x0) + σ1/2 + σ2/2 − a2τ1τ2(x0)

[a2(x0) + σ1][a2(x0) + σ2] − a4τ1τ2(x0)

}

. (5.294)

Using these smearing results we calculate the second connected correlation functions of the inter-
action potential (5.289) appearing in (5.263) and find the effective classical potential to second
order in variational perturbation theory

W2(x0) = W1(x0) +

[

Me2Ω(x0)

h̄
√

2πa6(x0)
− 3M2Ω3(x0)

4h̄

]

l4(x0)

− e4

2h̄

h̄β
∫

0

dτ

〈

1

|x(τ)|
1

|x(0)|

〉x0

Ω

, (5.295)
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with the abbreviation

l4(x0) ≡
h̄
[

4 + h̄2β2Ω2(x0) − 4 cosh h̄βΩ(x0) + h̄βΩ(x0) sinh h̄βΩ(x0)
]

8βM2Ω3(x0) sinh[h̄βΩ(x0)/2]
, (5.296)

the symbol indicating that this is a quantity of dimension length to the forth power. After an
extremization of (5.295) with respect to the trial frequency Ω(x0), which has to be done numerically,
we obtain the second-order approximation for the effective classical potential of the Coulomb system
plotted in Fig. 5.25 for various temperatures. The curves lie all below the first-order ones, and the
difference between the two decreases with increasing temperature and increasing distance from the
origin.
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Figure 5.25 Isotropic approximation to effective classical potential of Coulomb system in the

first (lines) and second order (dots). The temperatures are 10−4, 10−3, 10−2, 10−1, and ∞ from

top to bottom in atomic units. Compare also Fig. 5.9.

5.21.4 Anisotropic Second-Order Approximation
to Coulomb Problem

The first-order effective classical potential W1(x0) was derived in Eqs. (5.97) and (5.117)–(5.121).
To obtain the second-order approximation W2(x0), we insert the Coulomb potential in the repre-
sentation (5.290) into the second-order smearing formula (5.282), and find

〈

1

|x(τ1)|
[δx(τ2)]

2
T

〉r0

ΩT ,ΩL

=

√

2a2L
π

1
∫

0

dλ e
−

r2
0

2a2
L

λ2
{

2a2T
(a2T − a2L)λ2 + a2L

−
2a4Tτ1τ2

λ2

[(a2T − a2L)λ2 + a2L]2

}

,

〈

1

|x(τ1)|
[δx(τ2)]

2
L

〉r0

ΩT ,ΩL

=

√

2a2L
π

1
∫

0

dλ e
−

r2
0

2a2
L

λ2 a6L + a4Lτ1τ2
[r20λ

4 − a2Lλ
2]

a4L[(a2T − a2L)λ2 + a2L]
. (5.297)

These are special cases of the more general expectation value

〈

1

|x(τ1)|
F (x(τ2))

〉r0

ΩT ,ΩL

=
1

2π2

+∞
∫

0

dσ

exp

{

− a2Lr
2
0

2[a4L − a4Lτ1τ2
+ 2a2Lσ]

}

[a4T − a4Tτ1τ2
+ 2a2Tσ]

√

a4L − a4Lτ1τ2
+ 2a2Lσ

×
∫

d3xF (x) exp

{

− (a2T +2σ)x2
T

2[a4T−a4Tτ1τ2
+2a2Tσ]

−
(a2L+2σ)(xL−r0)2+2a2Lτ1τ2

r0(xL−r0)
2[a4L−a4Lτ1τ2

+2a2Lσ]

}

, (5.298)
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which furthermore leads to

〈

1

|x(τ1)|
1

|x(τ2)|

〉r0

ΩT ,ΩL

=
2

π

+∞
∫

0

dσ1

+∞
∫

0

dσ2
1

[a2T + 2σ1][a2T + 2σ2] − a4Tτ1τ2

× 1
√

[a2L + 2σ1][a2L + 2σ2] − a4Lτ1τ2

exp

{

−
r20 [a

2
L + σ1 + σ2 − a2Lτ1τ2

]

[a2L + 2σ1][a2L + 2σ2] − a4Lτ1τ2

}

. (5.299)

From these smearing results we calculate the second-order approximation to the effective classical
potential

W2(x0)=F
x0

Ω +
1

h̄β

h̄β
∫

0

dτ1 〈V x0

int (x(τ1))〉x0

Ω,c −
1

2h̄2β

h̄β
∫

0

dτ1

h̄β
∫

0

dτ2 〈V x0

int (x(τ1))V
x0

int (x(τ2))〉x0

Ω,c . (5.300)

The result is

WΩT ,ΩL

2 (r0) = WΩT ,ΩL

1 (r0)

+
e2M

2h̄

√

2a2L
π

1
∫

0

dλ

{

2ΩT l
4
Tλ

2

[(a2T − a2L)λ2 + a2L]2
− ΩLl

4
L[r20λ

4 − a2Lλ
2]

a4L[(a2T − a2L)λ2 + a2L]

}

e−r20λ
2/2a2

L

− M2[2Ω3
T l

4
T + Ω3

Ll
4
L]

4h̄
− e4

2h̄2β

h̄β
∫

0

dτ1

h̄β
∫

0

dτ2

〈

1

|x(τ1)|
1

|x(τ2)|

〉r0

ΩT ,ΩL,c

, (5.301)

with the abbreviation

l4T,L =
h̄
[

4 + h̄2β2Ω2
T,L − 4 cosh h̄βΩT,L + h̄βΩT,L sinh h̄βΩT,L

]

8βM2Ω3
T,L sinh[h̄βΩT,L/2]

, (5.302)

which is a quantity of dimension (length)4. After an extremization of (5.115) and (5.301) with
respect to the trial frequencies ΩT ,ΩL which has to be done numerically, we obtain the second-order
approximation for the effective classical potential of the Coulomb system plotted in Fig. 5.26 for
various temperatures. The second order curves lie all below the first-order ones, and the difference
between the two decreases with increasing temperature and increasing distance from the origin.

5.21.5 Zero-Temperature Limit

As a cross check of our result we take (5.301) to the limit T → 0. Just as in the lowest-order
discussion in Sect. (5.4), the x0-integral can be evaluated in the saddle-point approximation which
becomes exact in this limit, so that the minimum of WN (x0) in x0 yields the nth approximation

to the free energy at T = 0 and thus the nth approximations E
(0)
N the ground state energy E(0)

of the Coulomb system. In this limit, the results should coincide with those derived from a direct
variational treatment of the Rayleigh-Schrödinger perturbation expansion in Section 3.18. With
the help of such a treatment, we shall also carry the approximation to the next order, thereby
illustrating the convergence of the variational perturbation expansions. For symmetry reasons, the
minimum of the effective classical potential occurs for all temperatures at the origin, such that
we may restrict (5.115) and (5.301) to this point. Recalling the zero-temperature limit of the
two-point correlations (5.19) from (3.249),

lim
β→∞

a2ττ ′(x0) =
h̄

2MΩ(x0)
exp {−Ω(x0) |τ − τ ′|} , (5.303)
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we immediately deduce for the first order approximation (5.115) with Ω = Ω(0) the limit

E
(0)
1 (Ω) = lim

β→∞
WΩ

1 (0) =
3

4
h̄Ω − 2√

π

√

MΩ

h̄
e2 . (5.304)

In the second-order expression (5.301), the zero-temperature limit is more tedious to take. Per-
forming the integrals over σ1 and σ2, we obtain the connected correlation function

〈

1

|x(τ1)|
1

|x(τ2)|

〉x0

Ω,c

=
1

a4τ1τ2(0)
− 2

πa4τ1τ2(0)
arctan

√

a2τ1τ2(0)

aτ1τ2(0)
− 1 − 2

πa2τ1τ2(0)
. (5.305)

Inserting (5.303), setting τ1 = 0 and integrating over the imaginary times τ = τ2 ∈ [0, h̄β], we find

h̄β
∫

0

dτ

〈

1

|x(τ)|
1

|x(0)|

〉x0

Ω,c

≈
β→∞

4M

h̄2βΩ

{

eh̄βΩ − 1 − h̄βΩ − h̄2β2Ω2

π
− 2

π

×






eh̄βΩ arcsin

√

1 − e−2h̄βΩ +
1

2
lnα(β) − 1

8
[lnα(β)]

2 − 1

2

1
∫

α(β)

du
lnu

1 + u

















, (5.306)

with the abbreviation

α(β) =
1 −

√
1 − e−2h̄βΩ

1 +
√

1 − e−2h̄βΩ
. (5.307)

Inserting this into (5.301) and going to the limit β → ∞ we obtain

E
(0)
2 (Ω) = lim

β→∞
WΩ

2 (0) =
9

16
h̄Ω − 3

2
√
π

√

MΩ

h̄
e2 − 4

π

(

1 + ln 2 − π

2

)M

h̄2
e4. (5.308)
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Figure 5.26 Isotropic and anisotropic approximations to effective classical potential of Coulomb

system in first and second order at temperature 0.1 in atomic units. The lowest line represents the

high temperature limit in which all isotropic and anisotropic approximations coincide.
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Postponing for a moment the extremization of (5.304) and (5.308) with respect to the trial fre-
quency Ω, let us first rederive this result from a variational treatment of the ordinary Rayleigh-
Schrödinger perturbation expansion for the ground state energy in Section 3.18. According to the
replacement rule (5.186), we must first calculate the ground state energy for a Coulomb potential
in the presence of a harmonic potential of frequency ω:

V (x) =
M

2
ω2x2 − e2

|x| . (5.309)

After this, we make the trivial replacement ω →
√

Ω2 + ω2 − Ω2 and re-expand the energy in
powers of ω2 − Ω2, considering this quantity as being of the order e2 and truncating the re-
expansion accordingly. At the end we go to ω = 0, since the original Coulomb system contains
no oscillator potential. The result of this treatment will be precisely the expansions (5.304) and
(5.308).

The Rayleigh-Schrödinger perturbation expansion of the ground state energy E
(0)
N (ω) for the

potential (5.309) in Section 3.18 requires knowledge of the matrix elements of the Coulomb potential
(5.288) with respect to the eigenfunctions of the harmonic oscillator with the frequency ω:

Vn,l,m;n′,l′,m′ =

2π
∫

0

dϕ

π
∫

0

dϑ sinϑ

∞
∫

0

dr r2 ψ∗
n,l,m(r, ϑ, ϕ)

−e2
r
ψn′,l′,m′(r, ϑ, ϕ), (5.310)

where [see (9.67), (9.68), and (9.53)]

ψn,l,m(r, ϑ, ϕ) =

√

2n!

Γ(n+ l + 3/2)
4

√

Mω

h̄

(

Mω

h̄
r2
)(l+1)/2

×Ll+1/2
n

(

Mω

h̄
r2
)

exp

{

−Mω

2h̄
r2
}

Yl,m(ϑ, ϕ) . (5.311)

Here n denotes the radial quantum number, Lα
n(x) the Laguerre polynomials and Yl,m(ϑ, ϕ) the

spherical harmonics obeying the orthonormality relation

2π
∫

0

dϕ

π
∫

0

dϑ sinϑY ∗
l,m(ϑ, ϕ)Yl′,m′(ϑ, ϕ) = δl,l′δm,m′ . (5.312)

Inserting (5.311) into (5.310), and evaluating the integrals, we find

Vn,l,m;n′,l′,m′ = −e2
√

Mω

πh̄

Γ(l + 1)Γ(n+ 1/2)

Γ(l + 3/2)

√

Γ(n′ + l + 3/2)

n!n′!Γ(n+ l + 3/2)

× 3F2

(

−n′, l + 1,
1

2
; l+

3

2
,
1

2
− n; 1

)

δl,l′ δm,m′ , (5.313)

with the generalized hypergeometric series [compare (1.453)]

3F2(α1, α2, α3;β1, β2;x) =

∞
∑

k=0

(α1)k(α2)k(α3)k
(β1)k(β2)k

xk

k!
(5.314)

and the Pochhammer symbol (α)k = Γ(α+ k)/Γ(α).
These matrix elements are now inserted into the Rayleigh-Schrödinger perturbation expansion for
the ground state energy

E(0)(ω) = E0,0,0 + V0,0,0;0,0,0 +
∑

n,l,m

′V0,0,0;n,l,mVn,l,m;0,0,0

E0,0,0 − En,l,m
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−
∑

n,l,m

′V0,0,0;0,0,0
V0,0,0;n,l,mVn,l,m;0,0,0

[E0,0,0 − En,l,m]
2

+
∑

n,l,m

′
∑

n′,l′,m′

′V0,0,0;n,l,mVn,l,m;n′,l′,m′Vn′,l′,m′;0,0,0

[E0,0,0 − En,l,m] [E0,0,0 − En′,l′,m′ ]
+ . . . , (5.315)

the denominators containing the energy eigenvalues of the harmonic oscillator

En,l,m = h̄ω

(

2n+ l +
3

2

)

. (5.316)

The primed sums in (5.315) run over all values of the quantum numbers n, l = −∞, . . . ,+∞ and
m = −l, . . . ,+l, excluding those for which the denominators vanish. For the first three orders we
obtain from (5.313)–(5.316)

E(0)(ω) =
3

2
h̄ω − 2√

π

√

Mω

h̄
e2 − 4

π

(

1 + ln 2 − π

2

)M

h̄2
e4 − c

√

M3

h̄7ω
e6 + . . . , (5.317)

with the constant

c =
1

π3/2

{

∞
∑

n=1

1 · 3 · · · · (2n− 1)

2 · 4 · · · 2n
1

n2 (n+ 1/2)
−

∞
∑

n=1

∞
∑

n′=1

1 · 3 · · · (2n− 1)

2 · 4 · · · 2n

× 1 · 3 · · · (2n′ − 1)

2 · 4 · · · 2n′

3F2

(

−n′, l+ 1, 12 ; l+ 3
2 ,

1
2 − n; 1

)

nn′ (n+ 1/2)

}

≈ 0.031801 . (5.318)

Since we are interested only in the energies in the pure Coulomb system with ω = 0, the variational
re-expansion procedure described after (5.309) becomes particularly simple: We simply have to
replace ω by

√
Ω2 − Ω2 which is appropriately re-expanded in the second Ω2, thereby considering

Ω2 as a quantity of order e2. For the first term in the energy (5.317) which is proportional to Ω
itself this amounts to a multiplication by a factor (1 − 1)1/2 which is re-expanded in the second
“1” up to the third order as 1 − 1

2 − 1
8 − 1

16 = 5
16 . The term 3ω/2 in (5.317) becomes therefore

15/32ω. By the same rule, the factor ω1/2 in the second term of the energy (5.317) goes over into
Ω1/2(1 − 1)1/4, re-expanded to second order in the second ”1”, i.e., into Ω1/4(1 − 1

4 − 3
32 ) = 21

32 .
The next term in (5.317) happens to be independent of ω and needs no re-expansion, whereas the
last term remains unchanged since it is already of highest order in e2. In this way we obtain from
(5.317) the third-order variational perturbation expansion

E
(0)
3 (Ω) =

15

32
h̄Ω − 21

16
√
π

√

MΩ

h̄
e2 − 4

π

(

1 + ln 2 − π

2

) M

h̄2
e4 − c

√

M3

h̄7Ω
e6 . (5.319)

Extremizing (5.304), (5.308), and (5.317) successively with respect to the trial frequency Ω we find
to orders 1, 2, and 3 the optimal values

Ω1 = Ω2 =
16

9π

Me4

h̄3
, Ω3 = c′

Me4

h̄3
, (5.320)

with c′ ≈ 0.52621. The corresponding approximations to the ground state energy are

E
(0)
N (ΩN ) = −γN

Me4

h̄2
, (5.321)

with the constants

γ1 =
4

3π
≈ 0.42441 , γ2 =

5 + 4 ln 2

π
− 2 ≈ 0.47409 , γ3 ≈ 0.49012 , (5.322)

approaching exponentially fast the exact value γ = 0.5, as shown in Fig. 5.27.
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Figure 5.27 Approach of the variational approximations of first, second, and third order to the

correct ground state energy −0.5, in atomic units.

5.22 Polarons

An important role in the development of variational methods for the approximate
solution of path integrals was played by the polaron problem [34]. Polarons arise
when electrons travel through ionic crystals thereby producing an electrostatic de-
formation in their neighborhood. If Pi(x, t) denotes electric polarization density
caused by the displacement of the positive against the negative ions, an electron
sees a local ionic charge distribution

ρi(x, t) = ∇ ·Pi(x, t), (5.323)

which gives rise to an electric potential satisfying

∇
2A0(x, t) = 4π∇ ·Pi(x, t). (5.324)

The Fourier transform of this,

A0
k(t) ≡

∫ ∞

−∞
d3xA0(x, t)e−ikp, (5.325)

and that of Pi(x, t),

Pi
k(t) =

∫ ∞

−∞
d3xPi(x, t)e−ikx, (5.326)

are related by

A0
k(t) = − 4π

k2
ik ·Pi

k(t). (5.327)

Only longitudinal phonons which have Pi
k(t) ∝ k and correspond to density fluctu-

ations in the crystal contribute. For these, an electron at position x(t) experiences
an electric potential

A0(x, t) = −
∑

k

A0
k(t)

eikx√
V

= i
∑

k

4π

|k|Pk(τ)
eikx√
V
. (5.328)

In the regime of optical phonons, each Fourier component oscillates with approxi-
mately the same frequency ω, the frequency of longitudinal optical phonons. The
variables Pi

k(t) have therefore a Lagrangian

L(t) =
1

2µ

∑

k

[

Ṗi
−k(t)Ṗ

i
k(t) − ω2Pi

−k(t)P
i
k(t)

]

, (5.329)
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with some material constant µ and Pi
−k(t) = Pi

k

∗
(t), since the polarization is a real

field. This can be expressed in terms of measurable properties of the crystal. For
this we note that the interaction of the polarization field with a given total charge
distribution ρ(x, t) is described by a Lagrangian

Lint(t) = −
∫

d3x ρ(x, t)V (x, t). (5.330)

Inserting (5.325) and performing a partial

Lint(t) = 4π
∫

d3x
1

∇
2 ∇ρ(x, t) ·Pi(x′, t). (5.331)

Recalling the Gauss law ∇ · D(x, t) = 4πρ(x, t) we identify the factor of Pi(x, t)
with the total electric displacement field and write

Lint(t) = 4π
∫

d3x D(x, t) ·Pi(x, t). (5.332)

In combination with (5.329) this leads to an equation of motion

1

µ

[

P̈i
k(t) + ω2Pi

k(t)
]

= Dk(t). (5.333)

If we go over to the temporal Fourier components Pi
ω′,k of the ionic polarization, we

find the relation

1

µ

(

ω2 − ω′2
)

Pi
ω′,k = Dω′,k. (5.334)

For very slow deformations, this becomes

ω2

µ
Pi
ω′,k ≈ D0,k. (5.335)

Using the general relation

Dω′,k = Eω′,k + 4πPω′,k, (5.336)

where 4πPω′,k contains both ionic and electronic polarizations, we obtain

4πPω′,k =
(

1 − 1

ǫω′

)

Dω′,k, (5.337)

with ǫω′ being the dielectric constant at frequency ω′. For a slowly moving electron,
the lattice deformations have small frequencies, and we can write the time-dependent
equation

4πPk(t) ≈
(

1 − 1

ǫ0

)

Dk(t). (5.338)
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By comparison with Eq. (5.335) we determine the parameter µ. Before we can do
so, however, we must subtract from (5.338) the contribution of the electrons. These
fulfill the approximate time-dependent equation

4πPel
k(t) ≈

(

1 − 1

ǫ∞

)

Dk(t), (5.339)

where ǫ∞ is the dielectric constant at high frequency where only electrons can follow
the field oscillations. The purely ionic polarization field is therefore given by

4πPi
k(t) ≈

(

1

ǫ∞
− 1

ǫ0

)

Dk(t). (5.340)

By comparison with (5.334) we identify

µ ≈ ω2

4π

(

1

ǫ∞
− 1

ǫ0

)

. (5.341)

5.22.1 Partition Function

The partition function of the combined system of an electron and the oscillating
polarization is therefore described by the imaginary-time path integral

Z =
∫

D3x
∏

k

∫

D3Pk exp

(

− 1

h̄

∫ h̄β

0
dτ

{

M

2
ẋ2(τ)

+
∑

k

1

2µ

[

Ṗi
−k(t)Ṗ

i
k(t) − ω2Pi

−k(t)P
i
k(t)

]

+ ie
∑

k

4π

|k|Pk(τ)
eikx(τ)√

V

} )

, (5.342)

where V is the volume of the system. The path integral is Gaussian in the Fourier
components Pk(τ). These can therefore be integrated out with the rules of Sub-
section 3.8.2. For the correlation function of the polarizations we shall use the
representation of the Green function (3.251) as a sum of periodic repetitions of the
zero-temperature Green function

〈Pk(τ)P−k(τ)〉 =
h̄

2ω

∞
∑

n=−∞
e−ω|τ−τ

′+nh̄β|. (5.343)

Abbreviating

∞
∑

n=−∞
e−ω|τ−τ

′+nh̄β| ≡ e−ω|τ−τ
′|

per =
1

2ω

(

e−ω|τ−τ
′| − e−ω(h̄β−|τ−τ ′|)

) 1

1 − e−h̄βω
, (5.344)

the right-hand side being valid for h̄β > τ, τ ′ > 0, we find

Z =
∫

D3x exp

{

−1

h̄

∫ h̄β

0
dτ
M

2
ẋ2(τ)

+
µ

2h̄2
4πe2

h̄

2ω

1

V

∑

k

4π

k2

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′eik[x(τ)−x(τ ′)]e−ω|τ−τ

′|
per

}

. (5.345)
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Performing the sum over all wave vectors k using the formula

1

V

∑

k

4π

k2
eikx =

1

|x| , (5.346)

we obtain the path integral

Z=
∫

D3x exp

{

−1

h̄

[

∫ h̄β

0
dτ
M

2
ẋ2(τ) − a

2
√

2

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′

e−ω|τ−τ
′|

per

|x(τ)−x(τ ′)|

]}

, (5.347)

where

a ≡ µ

h̄
4πe2

h̄

2ω

√
2. (5.348)

The factor
√

2 is a matter of historic convention. Staying with this convention,
we use the characteristic length scale (9.73) associated with the mass M and the
frequency ω:

λω ≡
√

h̄

Mω
. (5.349)

This length scale will appear in the wave functions of the harmonic oscillator in
Eq. (9.73). Using this we introduce a dimensionless coupling constant α defined by

α ≡ 1√
2

(

1

ǫω
− 1

ǫ0

)

e2

h̄ωλω
. (5.350)

A typical value of α is 5 for sodium chloride. In different crystals it varies between
1 and 20, thus requiring a strong-coupling treatment. In terms of α, one has

a = h̄ω2λωα. (5.351)

The expression (5.348) is the famous path integral of the polaron problem written
down in 1955 by Feynman [20] and solved approximately by a variational perturba-
tion approach.

In order to allow for later calculations of a particle density in an external poten-
tial, we decompose the paths in a Fourier series with fixed endpoints x(β) ≡ xb = xa:

x(τ) = xa +
∞
∑

n=1

xn sin νnτ, νn ≡ nπ/h̄β. (5.352)

The path integral is then the limit N → ∞ of the product of integrals

∫

D3x ≡
∫

d2xa
√

2πh̄2β/M
3

∞
∏

n=1







∫

d3xn
√

4π/Mν2nβ
3





 . (5.353)

The correctness of this measure is verified by considering the free particle in which
case the action is

A0 =
1

2

∞
∑

n=1

A0
nx

2
n, with A0

n ≡ M

2
h̄β ν2n. (5.354)
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The Fourier components xn can be integrated leaving a final integral

Z =
∫

d2xa
√

2πh̄2β/M
3 , (5.355)

which is the correct partition function of a free particle [compare with the one-
dimensional expression (3.811)].

The endpoints xb = xa do not appear in the integrand of (5.347) as a manifesta-
tion of translational invariance. The integral over the endpoints produces therefore
a total volume factor V . We may imagine performing the path integral with fixed
endpoints which produces the particle density.

5.22.2 Harmonic Trial System

The harmonic trial system used by Feynman as a starting point of his variational
treatment has the generating functional

ZΩ,C[ j ] =
∫

D3x exp

{

− 1

h̄

∫ h̄β

0
dτ

[

M

2
ẋ2(τ) − j(τ)x(τ)

]

− C

2

M

h̄

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′ [x(τ) − x(τ ′)]

2
e−Ω|τ−τ ′|
per

}

. (5.356)

The external current is Fourier-decomposed in the same way as x(τ) in (5.352). To
preserve translational invariance, we assume the current to vanish at the endpoints:
ja = 0. Then the first two terms in the action in (5.356) are

A[ j ] =
1

2

∞
∑

n=1

(

A0
nx

2
n − β jnxn

)

. (5.357)

The Fourier decomposition of the double integral in (5.356) reads

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′

[ ∞
∑

n=1

(sin νnτ − sin νnτ
′)xn

]2

e−Ω|τ−τ ′|
per . (5.358)

With the help of trigonometric identities and a change of variables to σ = (τ + τ ′)/2
and ∆τ = (τ − τ ′)/2, this becomes

2
∫ h̄β

0
dσ
∫ 2h̄β

0
d∆τ

[ ∞
∑

n=1

cos νnσ sin(νn∆τ/2)xn

]2

e−Ω|∆τ |
per . (5.359)

Integrating out σ leaves

h̄β
∫ 2h̄β

0
d∆τ

∞
∑

n=1

sin2(νn∆τ/2)x2
n e

−Ω|∆τ |
per , (5.360)
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and performing the integral over δτ gives for (5.358) the result

h̄β

2

(

1 − e−2h̄βΩ
)

(

1 + 2
∞
∑

n′=1

e−n
′h̄βΩ

) ∞
∑

n=1

x2
n

ν2n
ν2n + Ω2

. (5.361)

Hence we can write the interaction term in (5.356) as

−CβMβ

4Ω

∞
∑

n=1

x2
n

ν2n
ν2n + Ω2

, Cβ ≡ C
(

1 − e−2h̄βΩ
)

coth
h̄βΩ

2
. (5.362)

This changes A0
n in (5.357) into

An ≡ Mh̄βν2n
2

(

1 +
Cβ
Ω

1

ν2n + Ω2

)

= A0
n

(

1 +
Cβ
Ω

1

ν2n + Ω2

)

. (5.363)

The trial partition function without external source is then approximately equal to

ZΩ,C ≡
T≈0

∫

D3x
∫

d2xa
√

2πh̄2β/M
3

∞
∏

n=1

√

A0
n

An

3

. (5.364)

The product is calculated as follows:

∞
∏

n=1

√

A0
n

An

3

=
∞
∏

n=1

√

1 +
Cβ
Ω

1

ν2n + Ω2

−3

= e−βF
Ω,C

, (5.365)

resulting in the approximate free energy

FΩ,C =
T≈0

1

β

∞
∑

n=1

log
ν2n + Γ2

β

ν2n + Ω2
, (5.366)

where we have introduced the function of the trial frequency Ω:

Γ2
β(Ω) ≡ Ω2 + Cβ/Ω. (5.367)

With the help of formula (2.173) we find therefore

FΩ,C =
3

2β
log

sinh h̄βΓβ
sinh h̄βΩ

. (5.368)

For simplicity, we shall from now on consider only the low-temperature regime where
Cβ− > C, Γβ → Ω2 + C/Ω, and the free energy (5.368) becomes approximately

FΩ,C =
T≈0

3h̄

2
(Γ − Ω) ≡ EΩ,C

0 . (5.369)

The right-hand side is the ground state energy of the harmonic trial system (5.356).
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In Feynman’s variational approach, the ground state energy of the polaron is
smaller than this given by the minimum of [compare (5.18), (5.32) and (5.45)]

E0 ≤ EΩ,C
0 + ∆EΩ,C

int − ∆EΩ,C
int,harm, (5.370)

where the two additional terms are the limits β → ∞ of the harmonic expectation
values

∆EΩ,C
int = − 1

h̄β
〈Aint〉Ω,C ≡ 1

h̄β

〈

− a

2
√

2

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′

e−ω|τ−τ
′|

|x(τ) − x(τ ′)|

〉Ω,C

, (5.371)

and

∆EΩ,C
int,harm = − 1

h̄β
〈Aint,harm〉Ω,C≡

1

h̄β

〈

C

2

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′ [x(τ)−x(τ ′)]

2
e−Ω|τ−τ ′|

〉Ω,C

.

(5.372)
The calculation of the first expectation value is most easily done using the Fourier
decomposition (5.345), where we must find the expectation value

〈

eik[x(τ)−x(τ ′)]
〉Ω,C

. (5.373)

In the trial path integral (5.356), the exponential corresponds to a source

j(τ ′′) = h̄k
[

δ(3)(τ − τ ′′) − δ(3)(τ ′ − τ ′′)
]

, (5.374)

in terms of which (5.373) reads

〈

ei
∫

dτ j(τ)x(τ)/h̄
〉Ω,C

. (5.375)

Introducing the correlation function

〈xi(τ)xj(τ ′)〉Ω,C ≡ δijG
Ω,Γ(τ, τ ′), (5.376)

and using Wick’s rule (3.309) for harmonically fluctuating paths, the expectation
value (5.375) is equal to

〈

ei
∫

dτ j(τ)x(τ)/h̄
〉Ω,C

= exp

{

− 1

2h̄2

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′ j(τ)GΩ,Γ(τ, τ ′) j(τ ′)

}

. (5.377)

Inserting the special source (5.373), we obtain

〈

eik[x(τ)−x(τ ′)]
〉Ω,C

= IΩ,C(k, τ, τ ′) ≡ exp
[

k2 ḠΩ,Γ(τ, τ ′)
]

, (5.378)

where the exponent contains the subtracted Green function

ḠΩ,Γ(τ, τ ′) ≡ GΩ,Γ(τ, τ ′)−1

2
GΩ,Γ(τ, τ)−1

2
GΩ,Γ(τ ′, τ ′). (5.379)
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The Green function GΩ,Γ(τ, τ ′) itself has the Fourier expansion

GΩ,Γ(τ, τ ′) = h̄
∞
∑

n=1

sin νnτ sin νnτ
′

2An/h̄β
=

h̄

M

∞
∑

n=1

ν2n + Ω2

ν2n(ν
2
n + Γ2

β)
sin νnτ sin νnτ

′. (5.380)

It solves the Euler-Lagrange equation which extremizes the action in (5.356) for a
source j(τ) = MÆ(τ − τ ′):

{

−∂2τ + 2C
∫ h̄β

0
dτ ′ [xi(τ) − xi(τ

′)] e−Ω|τ−τ ′|
per

}

GΩ,Γ(τ, τ ′) = δ(τ − τ ′). (5.381)

Decomposing
ν2n + Ω2

ν2n(ν
2
n + Γ2

β)
=

Ω2

Γ2
β

× 1

ν2n
+

Γ2
β − Ω2

Γ2
β

× 1

ν2n + Γ2
β

, (5.382)

we obtain a combination of ordinary Green functions of the second-order operator
differential equation (3.239), but with Dirichlet boundary conditions. For such Green
functions, the spectral sum over n was calculated in Section 3.4 for real time [see
(3.36) and (3.145)]. The imaginary-time result is

Gω2(τ, τ ′) =
∞
∑

n=1

sin νnτ sin νnτ
′

ν2n + ω2
=

sinhω(h̄β − τ) sinhωτ ′

ω sinhωh̄β
, for τ > τ ′ > 0. (5.383)

In the low-temperature limit, this becomes

Gω2(τ, τ ′) =
1

2ω

(

e−ω(τ−τ
′) − e−ω(τ+τ

′)
)

, for τ > τ ′ > 0, (5.384)

such that

ḠΓ2(τ, τ ′) =
1

2Γ

(

e−Γ(τ−τ ′) − 1 − e−Γ(τ+τ ′) +
1

2
e−2Γτ +

1

2
e−2Γτ ′

)

, for τ > τ ′ > 0.

(5.385)
In the limit Γ → 0, this becomes −1

2
|τ − τ ′|. We therefore obtain at zero tempera-

ture

ḠΩ,Γ(τ, τ ′) =
T=0

h̄

2M

[

Ω2

Γ2
Ḡ0(τ, τ

′) +
Γ2 − Ω2

Γ2
Ḡ0(τ, τ

′)

]

(5.386)

= − h̄

2M

{

Ω2

Γ2
|τ−τ ′| +

Γ2−Ω2

Γ3

(

1 − e−Γ|τ−τ ′| + e−Γ(τ+τ ′) − 1

2
e−2Γτ − 1

2
e−2Γτ ′

)

}

,

to be inserted into (5.378) to get the expectation value
〈

eik[x(τ)−x(τ ′)]
〉

. The last
three terms can be avoided by shifting the time interval under consideration and
thus the Fourier expansion (5.352) from (0, h̄β) to (−h̄β/2, h̄β/2), which changes
Green function (5.387) to

Gω2(τ, τ ′) =
∞
∑

n=1

sin νn(τ + h̄β/2) sin νn(τ
′ + h̄β/2)

ν2n + ω2

=
sinhω(h̄β/2 − τ) sinhω(τ ′ + h̄β/2)

ω sinhωh̄β
, for τ > τ ′ > 0. (5.387)
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We have seen before at the end of Section 3.20 that such a shift is important when
discussing the limit T → 0 which we want to do in the sequel. With the symmetric
limits of integration, the Green function (5.384) loses its last term [compare with
(3.147) for real times] and (5.386) simplifies to

ḠΩ,Γ(τ, τ ′) ≈
T=0

− h̄

2M

{

Ω2

Γ2
|τ − τ ′| + Γ2 − Ω2

Γ3

(

1 − e−Γ|τ−τ ′|
)

}

. (5.388)

At any temperature, we have the complicated expression for τ > τ ′:

ḠΩ,Γ(τ, τ ′) = − h̄

2M

{

Ω2

Γ2
β

[

τ − τ ′ − 1

h̄β
(τ − τ ′)

2

]

(5.389)

− Γ2
β − Ω2

Γ2
β sinh h̄βΓβ

[sinh Γβ(h̄β/2−τ) sinh Γβ(τ
′ + h̄β/2)−(τ ′ → τ)−(τ → τ ′)

]}

.

With the help of the Fourier integral (5.346) we find from this the expectation value
of the interaction in (5.347):

〈

1

|x(τ) − x(τ ′)|

〉

=
∫

d3k

(2π)3
4π

k2

〈

eik[x(τ)−x(τ ′)]
〉

=
∫

d3k

(2π)3
4π

k2
IΩ,C(k, τ, τ ′). (5.390)

For zero temperature, this leads directly to the expectation value of the interaction
in (5.347):

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′

〈

e−ω|τ−τ
′|

|x(τ) − x(τ ′)|

〉

≈ 2h̄β
∫ h̄β/2

0
d∆τ e−ω∆τ

∫

d3k

(2π)3
4π

k2
ek

2ḠΩ,Γ(∆τ,0)

≈ 4
h̄β√

2πωλω

∫ ∞

0
d∆τ

e−ω∆τ
√

−2ḠΩ,Γ(∆τ, 0)
. (5.391)

The expectation value of the harmonic trial interaction in (5.356), on the other
hand, is simply found from the correlation function (5.376) [or equivalently from the
second derivative of IΩ,C(k, τ, τ ′) with respect to the momenta]:

〈

[x(τ) − x(τ ′)]
2
〉Ω,C

= −6ḠΩ,Γ(τ, τ ′). (5.392)

At low temperatures, this leads to an integral

CM

2h̄

∫ h̄β

0
dτ
∫ h̄β

0
dτ ′

〈

[x(τ) − x(τ ′)]
2
〉Ω,C

e−Ω|τ−τ ′|
per =

T=0
h̄β

3C

4ΩΓ
. (5.393)

This expectation value contributes to the ground state energy a term

∆EΩ,C
int, var =

3h̄C

4ΩΓ
. (5.394)
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Note that this term can be derived from the derivative of the ground state en-
ergy (5.368) as C∂CE

Ω,C
0 . Together with −a/2

√
2 times the result of (5.391), the

inequality (5.370) for the ground state energy becomes

E0 ≤
3h̄

4Γ
(Γ − Ω)2 − h̄ω

αω√
πω

∫ ∞

0
d∆τ

e−ω∆τ
√

−2ḠΩ,Γ(∆τ, 0)
. (5.395)

This has to be minimized in Ω and C, or equivalently, in Ω and Γ. Considering the
low-temperature limit, we have taken the upper limit of integration to infinity (the
frequency ω corresponds usually to temperatures of the order of 1000 K).

For small α, the optimal parameters Ω and Γ differ by terms of order α. We
can therefore expand the integral in (5.395) and find that the minimum lies, in
natural units with h̄ = ω = 1, at Ω = 3 and Γ = 3[1 + 2α(1 − P )/3Γ, where
P = 2[(1 − Γ)1/2 − 1]. From this we obtain the upper bound

E0 ≤ −α− α2

81
+ . . . ≈ −α − 0.0123α2 + . . . . (5.396)

This agrees well with the perturbative result [21]

Eex
w = −α− 0.0159196220α2 − 0.000806070048α3 −O(α4). (5.397)

The second term has the exact value
[

1√
2
− log

(

1 + 3
√

2/4
)

]

α2. (5.398)

In the strong-coupling region, the best parameters are Ω = 1, Γ = 4α2/9π−[4(log 2+
γ/2) − 1], where γ ≈ 0.5773156649 is the Euler-Mascheroni constant (2.469). At
these values, we obtain the upper bound

E0 ≤ −α
2

3π
− 3

(

1

4
+ log 2

)

+ O(α−2) ≈ −0.1061α− 2.8294 + O(α−2). (5.399)

This agrees reasonably well with the precise strong-coupling expansion [23].

Eex
s = −0.108513α2 − 2.836 − O(α−2). (5.400)

The numerical results for variational parameters and energy are shown in Table 5.12.

5.22.3 Effective Mass

By performing a shift in the velocity of the path integral (5.347), Feynman calculated
also an effective mass for the polaron. The result is

M eff = M



1 +
α

3

ω√
πω

Γ2
∫ ∞

0
d∆τ

(∆τ)2e−ω∆τ
√

−2ḠΩ,Γ(∆τ, 0)



 . (5.401)
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Table 5.12 Numerical results for variational parameters and energy.

α Γ Ω E0 ∆E
(2)
0 Etot correction

1 3.110 2.871 -1.01 -0.0035 -1.02 0.35 %
3 3.421 2.560 -3.13 -0.031 -3.16 1.0 %
5 4.034 2.140 -5.44 -0.083 -5.52 1.5 %
7 5.810 1.604 -8.11 -0.13 -8.24 1.6 %
9 9.850 1.282 -11.5 -0.17 -11.7 1.4 %

11 15.41 1.162 -15.7 -0.22 -15.9 1.4 %
15 30.08 1.076 -26.7 -0.39 -27.1 1.5 %

The reduced effective mass m ≡M eff/M has the weak-coupling expansion

mw = 1 +
α

6
+ 2.469136 × 10−2α2 + 3.566719× 10−3α3 + . . . (5.402)

and behaves for strong couplings like

ms ≈ 16

81π2
α4− 4

3π
(1 + log 4)α2+ 11.85579 + . . .

≈ 0.020141α4− 1.012775α2+ 11.85579 + . . . . (5.403)

The exact expansions are [31]

mex
w = 1 +

α

6
+ 2.362763× 10−2α2 +O(α4), (5.404)

mex
s = 0.0227019α4 +O(α2). (5.405)

5.22.4 Second-Order Correction

With some effort, also the second-order contribution to the variational energy has
been calculated at zero temperature [32]. It gives a contribution to the ground state
energy

∆E
(2)
0 = − 1

2h̄β

1

h̄2

〈

(Aint −Aint,harm)2
〉Ω,C

c
. (5.406)

Recall the definitions of the interactions in Eqs. (5.371) and (5.372). There are three
terms

∆E
(2,1)
0 = − 1

2h̄β

1

h̄2

{

〈

A2
int

〉Ω,C −
[

〈Aint〉Ω,C
]2
}

, (5.407)

∆E
(2,2)
0 = 2

1

2h̄β

1

h̄2

{

〈AintAint,harm〉Ω,C − 〈Aint〉Ω,C 〈Aint,harm〉Ω,C
}

, (5.408)
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and

∆E
(2,3)
0 = − 1

2h̄β

1

h̄2

{

〈

A2
int,harm

〉Ω,C −
[

〈Aint,harm〉Ω,C
]2
}

. (5.409)

The second term can be written as

∆E
(2,2)
0 = − 1

2h̄β

1

h̄2

{

−2C∂C 〈Aint〉Ω,C
}

, (5.410)

the third as

∆E
(2,3)
0 = − 1

2h̄β

1

h̄2

{

{1 − C∂C ] 〈Aint,harm〉Ω,C
}

. (5.411)

The final expression is rather involved and given in Appendix 5C. The second-order
correction leads to the second term (5.398) found in perturbation theory. In the
strong coupling limit, it changes the leading term −α2/3π ≈ −0.1061 in (5.399)
into

− 1

4π
− 2

π

∞
∑

n=1

(2n)!

24n(n!)2n(2n+ 1)
=

−17+64 arcsin(

√
2−

√
3

2
)−32 log(4

√
2−

√
3

2
)

4 π
, (5.412)

which is approximately equal to −0.1078. The corrections are shown numerically in
the previous Table 5.12.

5.22.5 Polaron in Magnetic Field, Bipolarons, Small Polarons,
Polaronic Excitons, and More

Feynman’s solution of the polaron problem has instigated a great deal of research on
this subject [34]. There are many publications dealing with a polaron in a magnetic
field. In particular, there was considerable discussion on the validity of the Jensen-
Peierls inequality (5.10) in the presence of a magnetic field until it was shown by
Larsen in 1985 that the variational energy does indeed lie below the exact energy for
sufficiently strong magnetic fields. On the basis of this result he criticized the entire
approach. The problem was, however, solved by Devreese and collaborators who
determined the range of variational parameters for which the inequality remained
valid.

In the light of the systematic higher-order variational perturbation theory de-
veloped in this chapter we do not consider problems with the inequality any more
as an obstacle to variational procedures. The optimization procedure introduced
in Section 5.13 for even and odd approximations does not require an inequality.
We have seen that for higher orders, the exact result will be approached rapidly
with exponential convergence. The inequality is useful only in Feynman’s original
lowest-order variational approach where it is important to know the direction of the
error. For higher orders, the importance of this information decreases rapidly since
the convergence behavior allows us to estimate the limiting value quantitatively,
whereas the inequality tells us merely the sign of the error which is often quite large
in the lowest-order variational approach, for instance in the Coulomb system.
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There is also considerable interest in bound states of two polarons called bipo-
larons. Such investigations have become popular since the discovery of high-
temperature superconductivity.3

5.22.6 Variational Interpolation for Polaron Energy and Mass

Let us apply the method of variational interpolation developed in Section 5.18 to
the polaron. Starting from the presently known weak-coupling expansions (5.397)
and (5.404) we fix a few more expansion coefficients such that the curves fit also
the strong-coupling expansions (5.400) and (5.405). We find it convenient to make
the series start out with α0 by removing an overall factor −α from E and deal with
the quantity −Eex

w /α. Then we see from (5.400) that the correct leading power
in the strong-coupling expansion requires taking p = 1, q = 1. The knowledge
of b0 and b1 allows us to extend the known weak coupling expansion (5.397) by
two further expansion terms. Their coefficients a3, a4 are solutions of the equations
[recall (5.245)]

b0 =
35

128
a0c+ a1 +

15

8

a2
c

+
2a3
c2

+
a4
c3
, (5.413)

b1 =
35

32

a0
c
− 5

4

a2
c3

− a3
c3
. (5.414)

The constant c governing the growth of ΩN for α → ∞ is obtained by extremizing
b0 in c, which yields the equation

35

128
a0 −

15

8

a2
c2

− 4a3
c3

− 4a4
c5

= 0. (5.415)

The simultaneous solution of (5.413)–(5.415) renders

c4 = 0.09819868,

a3 = 6.43047343× 10−4, (5.416)

a4 = −8.4505836 × 10−5.

The re-expanded energy (5.238) reads explicitly as a function of α and Ω (for E
including the earlier-removed factor −α)

W4(α,Ω) = a0α
(

− 35

128
Ω − 35

32Ω
+

35

64Ω3
− 7

32Ω5
+

5

128Ω7

)

− a1α
2

+ a2α
3
(

− 15

8Ω
+

5

4Ω3
− 3

8Ω5

)

+ a3α
4
(

− 2

Ω2
+

1

Ω4

)

− a4α
5 1

Ω3
. (5.417)

Extremizing this we find Ω4 as a function of α [it turns out to be quite well approxi-
mated by the simple function Ω4 ≈ c4α+1/(1+0.07α)]. This is to be compared with
the optimal frequency obtained from minimizing the lower approximation W2(α,Ω):

Ω2
2 = 1 +

4a2
3a0

x2 +

√

(

1 +
4a2
3a0

x2
)2

− 1, (5.418)
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which behaves like c2α+1+. . . with c2 =
√

8a2/3a0 ≈ 0.120154. The resulting energy
is shown in Fig. 5.28, where it is compared with the Feynman variational energy.
For completeness, we have also plotted the weak-coupling expansion, the strong-
coupling expansion, the lower approximation W2(α), and two Padé approximants
given in Ref. [22] as upper and lower bounds to the energy.

α

E

Figure 5.28 Variational interpolation of polaron energy (solid line) between the weak-

coupling expansion (dashed) and the strong-coupling expansion (short-dashed) shown in

comparison with Feynman’s variational approximation (fat dots), which is an upper bound

to the energy. The dotted curves are upper and lower bounds coming from Padé approxi-

mants [22]. The dot-dashed curve shows the variational perturbation theory W2(α) which

does not make use of the strong-coupling information.

Consider now the effective mass of the polaron, where the strong-coupling be-
havior (5.405) fixes p = 4, q = 1. The coefficient b0 allows us to determine an
approximate coefficient a3 and to calculate the variational perturbation expansion
W3(α). From (5.245) we find the equation

b0 = −a1c3/8 + a3c, (5.419)

whose minimum lies at c3 =
√

8a2/3a0 where b0 =
√

32a33/27a1. Equating b0 of

Eq. (5.419) with the leading coefficient in the strong-coupling expansion (5.405), we
obtain a3 = [27a1b

2
0/32]1/3 ≈ 0.0416929.

The variational expression for the polaron mass is from (5.238)

W3(α, ω) = a0 + a1α

(

−Ω3

8
+

3Ω

4
+

3

8Ω

)

+ a2α
2 + a3α

3Ω. (5.420)

This is extremal at

Ω2
3 = 1 +

4a3
3a1

x2 +

√

(

1 +
4a3
3a1

x2
)2

− 1. (5.421)
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α

m/(1 + b0α
4)

Figure 5.29 Variational interpolation of polaron effective mass between the weak-

(dashed) and strong-coupling expansions (short-dashed). To see better the differences

between the strongly rising functions, we have divided out the asymptotic behavior

mas = 1 + b0α
4 before plotting the curves. The fat dots show Feynman’s variational

approximation. The dotted curves are upper and lower bounds coming from Padé approx-

imants [22].

From this we may find once more c3 =
√

8a2/3a0. The approximation W3(α) =

W3(α,Ω3) for the polaron mass is shown in Fig. 5.29, where it is compared with the
weak and strong-coupling expansions and with Feynman’s variational result. To see
better the differences between the curves which all grow fast with α, we have divided
out the asymptotic behavior mas = 1 + b0α

4 before plotting the data. As for the
energy, we have again displayed two Padé approximants given in Ref. [22] as upper
and lower bounds to the energy. Note that our interpolation differs considerably
from Feynman’s and higher order expansion coefficients in the weak- or the strong-
coupling expansions will be necessary to find out which is the true behavior of the
model.

Our curve has, incidentally, the strong-coupling expansion

ms = 0.0227019α4 + 0.125722α2 + 1.15304 +O(α−2), (5.422)

the second term ∝ α2-term being in sharp contrast with Feynman’s expression
(5.403). On the weak-coupling side, a comparison of our expansion with Feynman’s
in Eq. (5.402) shows that our coefficient a3 ≈ 0.0416929 is about 10 times larger
than his.

Both differences are the reason for our curve forming a positive arch in Fig. 2,
whereas Feynman’s has a valley. It will be interesting to find out how the polaron
mass really behaves. This would be possible by calculating a few more terms in
either the weak- or the strong-coupling expansion.
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Note that our interpolation algorithm is much more powerful than Padé’s. First,
we can account for an arbitrary fractional leading power behavior αp as α → ∞.
Second, the successive lower powers in the strong-coupling expansion can be spaced
by an arbitrary 2/q. Third, our functions have in general a cut in the complex α-
plane approximating the cuts in the function to be interpolated (see the discussion
in Subsection 17.10.4). Padé approximants, in contrast, have always an integer
power behavior in the strong-coupling limit, a unit spacing in the strong-coupling
expansion, and poles to approximate cuts.

5.23 Density Matrices

In path integrals with fixed end points, the separate treatment of the path aver-
age x0 ≡ (1/h̄β)

∫ h̄β
0 dτ x(τ) loses its special virtues. Recall that the success of

this separation in the variational approach was based on the fact that for fixed
x0, the fluctuation square width a2(x0) shrinks to zero for large temperatures like
h̄2/12MkBT [recall (5.25)]. A similar shrinking occurs for paths whose endpoints
held fixed, which is the case in path integrals for the density. Thus there is no
need for a separate treatment of x0, and one may develop a variational perturbation
theory for fixed endpoints instead. These may, moreover, be taken to be different
from one another xb 6= xa, thus allowing us to calculate directly density matrices.4

The density matrix is defined by the normalized expression

ρ(xb, xa) =
1

Z
ρ̃(xb, xa) , (5.423)

where ρ̃(xb, xa) is the unnormalized transition amplitude given by the path integral

ρ̃(xb, xa) = (xb h̄β|xa0) =
∫

(xa,0)❀(xb,h̄/kBT )

Dx exp {−A[x]/h̄} , (5.424)

summing all paths with the fixed endpoints x(0) = xa and x(h̄/kBT ) = xb. The
diagonal matrix elements of the density matrix in the integrand yield, of course, the
particle density (5.90). The diagonal elements coincide with the partition function
density z(x) introduced in Eq. (2.333).

The partition function divided out in (5.423) is found from the trace

Z =

∞
∫

−∞
dx ρ̃(x, x). (5.425)

5.23.1 Harmonic Oscillator

As usual in the variational approach, we shall base the approximations to be devel-
oped on the exactly solvable density matrix of the harmonic oscillator. For the sake
of generality, this will be assumed to be centered around xm, with an action

AΩ,xm[x] =
∫ h̄/kBT

0
dτ

{

1

2
Mẋ2(τ) +

1

2
MΩ2[x(τ) − xm]2

}

. (5.426)

4H. Kleinert, M. Bachmann, and A. Pelster, Phys. Rev. A 60 , 3429 (1999) (quant-ph/9812063).
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Its unnormalized density matrix is [see (2.411)]

ρ̃ Ω,xm
0 (xb, xa) =

√

MΩ

2πh̄ sinh h̄Ω/kBT

× exp

{

− MΩ

2h̄ sinh h̄Ω/kBT

[

(x̃2b + x̃2a) cosh h̄Ω/kBT − 2x̃bx̃a
]

}

, (5.427)

with the abbreviation

x̃(τ) ≡ x(τ) − xm. (5.428)

At fixed endpoints xb, xa and oscillation center xm, the quantum-mechanical corre-
lation functions are given by the path integral

〈O1(x(τ1))O2(x(τ2)) · · · 〉Ω,xmxb,xa
=

1

ρ̃ Ω,xm
0 (xb, xa)

×
∫

(xa,0)❀(xb,h̄/kBT )

DxO1(x(τ1))O2(x(τ2)) · · · exp {−AΩ,xm[x]/h̄} . (5.429)

The path x(τ) at a fixed imaginary time τ has a distribution

p(x, τ) ≡ 〈 δ(x− x(τ)) 〉Ω,xmxb,xa
=

1
√

2πb2(τ)
exp

[

−(x̃− xcl(τ))
2

2b2(τ)

]

, (5.430)

where xcl(τ) is the classical path of a particle in the harmonic potential

xcl(τ) =
x̃b sinh Ωτ + x̃a sinh Ω(h̄/kBT − τ)

sinh h̄Ω/kBT
, (5.431)

and b2(τ) is the square width

b2(τ) =
h̄

2MΩ

{

coth
h̄Ω

kBT
− cosh[Ω(2τ − h̄/kBT )]

sinh h̄Ω/kBT

}

. (5.432)

In contrast to the square width a2(x0) in Eq. (5.24) this depends on the Euclidean
time τ , which makes calculations more cumbersome than before. Since the τ lies in
the interval 0 ≤ τ ≤ h̄/kBT , the width (5.432) is bounded by

b2(τ) ≤ h̄

2MΩ
tanh

h̄Ω

2kBT
, (5.433)

thus sharing with a2(x0) the property of remaining finite at all temperatures. The
temporal average of (5.432) is

b2 =
kBT

h̄

∫ h̄/kBT

0
dτ b2(τ) =

h̄

2MΩ

(

coth
h̄Ω

kBT
− kBT

h̄Ω

)

. (5.434)

Just as a2(x0), this goes to zero for T → ∞. Note however, that the asymptotic
behavior is

b2 −−−→
T→∞

h̄Ω/6kBT, (5.435)

which is twice as big as that of a2(x0) in Eq. (5.25) (see Fig. 5.30).
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b2

a2tot

a2(x0)

a2tot,cl

kBT/h̄Ω

l2

fluctuation
width

0.0 1.0 2.0
0.0

0.5

1.0

Figure 5.30 Temperature dependence of fluctuation widths of any point x(τ) on the path

in a harmonic oscillator (l2 is the generic square length in units of h̄/MΩ). The quantity

a2 (dashed) is the quantum-mechanical width, whereas a2(x0) (dash-dotted) shares the

width after separating out the fluctuations around the path average x0. The quantity

a2cl (long-dashed) is the width of the classical distribution, and b2 (solid curve) is the

fluctuation width at fixed ends which is relevant for the calculation of the density matrix

by variational perturbation theory (compare Fig. 3.14).

5.23.2 Variational Perturbation Theory for Density Matrices

To obtain a variational approximation for the density matrix, we separate the full
action into the harmonic trial action and a remainder

A[x] = AΩ,xm[x] + Aint[x], (5.436)

with an interaction

Aint[x(τ)] =
∫ h̄β

0
dτ Vint(x(τ)), (5.437)

where the interaction potential is the difference between the original one V (x) and
the inserted displaced harmonic oscillator:

Vint(x(τ)) = V (x(τ)) − 1

2
MΩ2[x(τ) − xm]2. (5.438)

The path integral (5.424) is then expanded perturbatively around the harmonic
expression (5.427) as

ρ̃(xb, xa) = ρ̃ Ω,xm
0 (xb, xa)

[

1 − 1

h̄
〈Aint[x] 〉Ω,xmxb,xa

+
1

2h̄2

〈

A2
int[x]

〉Ω,xm

xb,xa
− . . .

]

, (5.439)
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with the harmonic expectation values defined in (5.429). The sum can be evaluated
as an exponential of its connected parts, going over to the cumulant expansion:

ρ̃(xb, xa)= ρ̃ Ω,xm
0 (xb, xa) exp

[

−1

h̄
〈Aint[x] 〉Ω,xmxb,xa,c

+
1

2h̄2

〈

A2
int[x]

〉Ω,xm

xb,xa,c
− . . .

]

,(5.440)

where the cumulants are defined as usual [see (3.485), (3.486)]. The series (5.440)
is truncated after the N -th term, resulting in the N -th order approximant for the
quantum statistical density matrix

ρ̃ Ω,xm
N (xb, xa) = ρ̃ Ω,xm

0 (xb, xa) exp

[

N
∑

n=1

(−1)n

n!h̄n
〈An

int[x] 〉Ω,xmxb,xa,c

]

, (5.441)

which explicitly depends on the two variational parameters Ω and xm.
By analogy with classical statistics, where the Boltzmann distribution in con-

figuration space is controlled by the classical potential V (x) according to [recall
(2.354)]

ρ̃cl(x) =

√

M

2πh̄2β
exp [−βV (x)] , (5.442)

we shall now work with the alternative type of effective classical potential

Ṽ eff,cl(xa, xb) introduced in Subsection 3.25.4. It governs the unnormalized density
matrix [see Eq. (3.837)]

ρ̃(xb, xa) =

√

M

2πh̄2β
exp

[

−βṼ eff,cl(xb, xa)
]

. (5.443)

Variational approximations to Ṽ eff,cl(xb, xa) of Nth order are obtained from (5.427),
(5.441), and (5.443) as a cumulant expansion

W̃Ω,xm
N (xb, xa) =

1

2β
ln

sinh h̄βΩ

h̄βΩ
+

MΩ

2h̄β sinh h̄βΩ

{

(x̃2b + x̃2a) cosh h̄βΩ − 2x̃bx̃a
}

− 1

β

N
∑

n=1

(−1)n

n!h̄n
〈An

int[x] 〉Ω,xmxb,xa,c
. (5.444)

They have to be optimized in the variational parameters Ω and xm for a pair of
endpoints xb, xa. The result is denoted by W̃N(xb, xa). The optimal values Ω(xa, xb)
and xm(xa, xb) are denoted by ΩN(xa, xb), x

N
m(xa, xb). The Nth-order approximation

for the normalized density matrix is then given by

ρN (xb, xa) = Z−1
N ρ̃

Ω2
N ,x

N
m

N (xb, xa), (5.445)

where the corresponding partition function reads

ZN =
∫ ∞

−∞
dxa ρ̃

Ω2
N ,x

N
m

N (xa, xa). (5.446)

In principle, one could also optimize the entire ratio (5.445), but this would be
harder to do in practice. Moreover, the optimization of the unnormalized density
matrix is the only option, if the normalization diverges due to singularities of the
potential, for example in the hydrogen atom
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5.23.3 Smearing Formula for Density Matrices

In order to calculate the connected correlation functions in the variational pertur-
bation expansion (5.441), we must find efficient formulas for evaluating expectation
values (5.429) of any power of the interaction (5.437)

〈An
int[x] 〉Ω,xmxb,xa

=
1

ρ̃ Ω,xm
0 (xb, xa)

x̃b,h̄β
∫

x̃a,0

Dx̃
n
∏

l=1

[

∫ h̄β

0
dτl Vint(x̃(τl) + xm)

]

× exp
{

−1

h̄
AΩ,xm[x̃+ xm]

}

. (5.447)

This can be done by an extension of the smearing formula (5.30). For this we rewrite
the interaction potential as

Vint(x̃(τl) + xm)=

∞
∫

−∞
dzl Vint(zl + xm)

∞
∫

−∞

dλl
2π

eiλlzl exp

[

−
∫ h̄β

0
dτ iλlδ(τ − τl)x̃(τ)

]

,

(5.448)

and introduce a current

J(τ) =
n
∑

l=1

ih̄λlδ(τ − τl), (5.449)

so that (5.447) becomes

〈An
int[x] 〉Ω,xmxb,xa

=
1

ρ̃ Ω,xm
0 (xb, xa)

n
∏

l=1

[

∫ h̄β

0
dτl

∫ ∞

−∞
dzlVint(zl + xmin)

∫ ∞

−∞

dλl
2π

eiλlzl
]

KΩ,xm[j].

(5.450)

The kernel KΩ,xm[j] represents the generating functional for all correlation functions
of the displaced harmonic oscillator

KΩ,xm[j] =

x̃b,h̄β
∫

x̃a,0

Dx̃ exp

{

−1

h̄

∫ h̄β

0
dτ
[

m

2
˙̃x
2
(τ) +

1

2
MΩ2x̃2(τ) + j(τ)x̃(τ)

]

}

. (5.451)

For zero current j, this generating functional reduces to the Euclidean harmonic
propagator (5.427):

KΩ,xm [j = 0] = ρ̃ Ω,xm
0 (xb, xa), (5.452)

and the solution of the functional integral (5.451) is given by (recall Section 3.1)

KΩ,xm[j] = ρ̃ Ω,xm
0 (xb, xa) exp

[

−1

h̄

∫ h̄β

0
dτ j(τ) xcl(τ)

+
1

2h̄2

∫ h̄β

0
dτ

∫ h̄β

0
dτ ′ j(τ)G

(2)
Ω2 (τ, τ

′) j(τ ′)

]

, (5.453)
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where xcl(τ) denotes the classical path (5.431) and G
(2)
Ω2 (τ, τ ′) the harmonic Green

function with Dirichlet boundary conditions (3.389), to be written here as

G
(2)
Ω2 (τ, τ

′) =
h̄

2MΩ

cosh Ω(|τ − τ ′| − h̄β) − cosh Ω(τ + τ ′ − h̄β)

sinh h̄βΩ
. (5.454)

The expression (5.453) can be simplified by using the explicit expression (5.449) for
the current j. This leads to a generating functional

KΩ,xm[j] = ρ̃ Ω,xm
0 (xb, xa) exp

(

−i�Txcl −
1

2
�

T G�
)

, (5.455)

where we have introduced the n-dimensional vectors � = (λ1, . . . , λn) and xcl =
(xcl(τ1), . . . , xcl(τn))

T with the superscript T denoting transposition, and the sym-

metric n× n-matrix G whose elements are Gkl = G
(2)
Ω2 (τk, τl). Inserting (5.455) into

(5.450), and performing the integrals with respect to λ1, . . . , λn, we obtain the n-th
order smearing formula for the density matrix

〈An
int[x] 〉Ω,xmxb,xa

=
n
∏

l=1

[

∫ h̄β

0
dτl

∫ ∞

−∞
dzl Vint(zl + xm)

]

× 1
√

(2π)n detG
exp







−1

2

n
∑

k,l=1

[zk− xcl(τk)]G
−1
kl [zl− xcl(τl)]







. (5.456)

The integrand contains an n-dimensional Gaussian distribution describing both ther-
mal and quantum fluctuations around the harmonic classical path xcl(τ) of Eq.
(5.431) in a trial oscillator centered at xm, whose width is governed by the Green
functions (5.454).

For closed paths with coinciding endpoints (xb = xa), formula (5.456) leads to
the n-th order smearing formula for particle densities

ρ(xa) =
1

Z
ρ̃(xa, xa) =

1

Z

∮

Dx δ(x(τ = 0) − xa) exp{−A[x]/h̄}, (5.457)

which can be written as

〈An
int[x] 〉Ω,xmxa,xa

=
1

ρΩ,xm0 (xa)

n
∏

l=1

[

∫ h̄β

0
dτl

∫ ∞

−∞
dzl Vint(zl + xm)

]

× 1
√

(2π)n+1 det a2
exp



−1

2

n
∑

k,l=0

zk a
−2
kl zl



 , (5.458)

with z0 = x̃a. Here a denotes a symmetric (n+ 1)× (n+ 1)-matrix whose elements
a2kl = a2(τk, τl) are obtained from the harmonic Green function for periodic paths

G
(2)
Ω2 (τ, τ ′) of Eq. (3.304):

a2(τ, τ ′) ≡ h̄

M
G

(2)
Ω2 (τ, τ

′) =
h̄

2MΩ

cosh Ω(|τ − τ ′| − h̄β/2)

sinh h̄βΩ/2
. (5.459)
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The diagonal elements a2 = a(τ, τ) are all equal to the fluctuation square width
(5.24).

Both smearing formulas (5.456) and (5.458) allow us to calculate all harmonic
expectation values for the variational perturbation theory of density matrices and
particle densities in terms of ordinary Gaussian integrals. Unfortunately, in many
applications containing nonpolynomial potentials, it is impossible to solve neither
the spatial nor the temporal integrals analytically. This circumstance drastically
increases the numerical effort in higher-order calculations.

5.23.4 First-Order Variational Approximation

The first-order variational approximation gives usually a reasonable estimate for any
desired quantity. Let us investigate the classical and the quantum-mechanical limit
of this approximation. To facilitate the discussion, we first derive a new representa-
tion for the first-order smearing formula (5.458) which allows a direct evaluation of
the imaginary time integral. The resulting expression will depend only on temper-
ature, whose low- and high-temperature limits can easily be extracted.

Alternative First-Order Smearing Formula

For simplicity, we restrict ourselves to the case of particle densities and allow only
symmetric potentials V (x) centered at the origin. If V (x) has only one minimum at
the origin, then also xm will be zero. If V (x) has several symmetric minima, then
xm goes to zero only at sufficiently high temperatures as in Section 5.7.

To first order, the smearing formula (5.458) reads

〈Aint[x] 〉Ωxa,xa=
1

ρΩ0 (xa)

h̄β
∫

0

dτ

∞
∫

−∞

dz

2π
Vint(z)

1
√

a200−a201
exp

{

−1

2

(z2+x2a)a00−2zxaa01
a200−a201

}

.

(5.460)

Expanding the exponential with the help of Mehler’s formula (2.297), we obtain the
following expansion in terms of Hermite polynomials Hn(x):

〈Aint[x] 〉Ωxa,xa=
∞
∑

n=0

h̄β

2nn!
C

(n)
β Hn





z
√

2a200





∞
∫

−∞

dz
√

2πa200
Vint(z) e

−z2/2a200 Hn





z
√

2a200



 .

(5.461)

Its temperature dependence stems from the diagonal elements of the harmonic Green
function (5.459). The dimensionless functions C

(n)
β are defined by

C
(n)
β =

1

h̄β

h̄β
∫

0

dτ

(

a201
a200

)n

. (5.462)

H. Kleinert, PATH INTEGRALS



5.23 Density Matrices 561

C
(n)
β

h̄βΩ

n = 8
7
6
5

4

3

2

1

0

0.0 2.0 4.0 6.0 8.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.31 Temperature-dependence of first 9 functions C
(n)
β , where β = 1/kBT .

Inserting (5.459) and performing the integral over τ , we obtain

C
(n)
β =

1

2n coshn h̄βΩ/2

n
∑

k=0

(

n

k

)

sinh h̄βΩ(n/2 − k)

h̄βΩ(n/2 − k)
. (5.463)

At high temperatures, these functions of β go to unity:

lim
β→0

C
(n)
β = 1. (5.464)

Their zero-temperature limits are

lim
β→∞

C
(n)
β =











1, n = 0,
2

h̄βΩn
, n > 0.

(5.465)

According to (5.444), the first-order approximation to the new effective potential
is given by

W̃Ω
1 (xa) =

1

2β
ln

sinh h̄βΩ

h̄βΩ
+
MΩ

h̄β
x2a tanh

h̄βΩ

2
+ V Ω

a2(xa), (5.466)

with the smeared interaction potential

V Ω
a2(xa) =

1

h̄β
〈Aint[x] 〉Ωxa,xa . (5.467)

It is instructive to discuss separately the limits β → 0 and β → ∞ to see the effects
of pure classical and pure quantum fluctuations.
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a) Classical Limit of Effective Classical Potential

In the classical limit β → 0, the first-order effective classical potential (5.466) reduces
to

W̃Ω,cl
1 (xa) =

1

2
MΩ2x2a + lim

β→0
V Ω
a2(xa). (5.468)

The second term is determined by inserting the high-temperature limit of the total
fluctuation width (5.26):

a2tot,cl =
kBT

MΩ2
, (5.469)

and of the polynomials (5.464) into the expansion (5.461), leading to

V Ω
a2(xa) ≈

T→∞

∞
∑

n=0

1

2nn!
Hn





√

MΩ2β

2
xa





∞
∫

−∞

dz
√

2π/MΩ2β
Vint(z)e

−MΩ2βz2/2Hn

(

MΩ2β

2
z

)

.

(5.470)

Then we make use of the completeness relation for Hermite polynomials

1√
π
e−x

2
∞
∑

n=0

1

2nn!
Hn(x)Hn(x

′) = δ(x− x′), (5.471)

which may be derived from Mehler’s formula (2.297) in the limit b→ 1−, to reduce
the smeared interaction potential V Ω

a2(xa) to the pure interaction potential (5.438):

lim
β→0

V Ω
a2(xa) = Vint(xa). (5.472)

Recalling (5.438) we see that the first-order effective classical potential (5.468) ap-
proaches the classical one:

lim
β→0

W̃Ω,cl
1 (xa) = V (xa). (5.473)

This is a consequence of the vanishing fluctuation width b2 of the paths around the
classical orbits. This property is universal to all higher-order approximations to
the effective classical potential (5.444). Thus all correction terms with n > 1 must
disappear in the limit β → 0,

lim
β→0

−1

β

∞
∑

n=2

(−1)n

n!h̄n
〈An

int[x] 〉Ωxa,xa,c = 0. (5.474)

b) Zero-Temperature Limit

At low temperatures, the first-order effective classical potential (5.466) becomes

W̃Ω,qm
1 (xa) =

h̄Ω

2
+ lim

β→∞
V Ω
a2(xa). (5.475)
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The zero-temperature limit of the smeared potential in the second term defined in
(5.467) follows from Eq. (5.461) by taking into account the limiting procedure for the

polynomials C
(n)
β in (5.465) and the zero-temperature limit of the total fluctuation

width (5.26), which is equal to the zero-temperature limit of a2(x0): a
2
tot,0 =

T=0
a2tot =

h̄/2MΩ. Thus we obtain with H0(x) = 1 and the inverse length κ ≡ 1/λΩ =
√

MΩ/h̄ [recall (2.303)]:

lim
β→∞

V Ω
a2(xa) =

∞
∫

−∞
dz

√

κ2

π
H0(κz)

2 exp{−κ2z2} Vint(z). (5.476)

Introducing the harmonic eigenvalues

EΩ
n = h̄Ω

(

n +
1

2

)

, (5.477)

and the harmonic eigenfunctions [recall (2.301) and (2.302)]

ψΩ
n (x) =

1√
n!2n

(

κ2

π

)1/4

e−
1
2
κ2x2 Hn(κx), (5.478)

we can re-express the zero-temperature limit of the first-order effective classical
potential (5.475) with (5.476) by

W̃Ω,qm
1 (xa) = EΩ

0 + 〈ψΩ
0 | Vint |ψΩ

0 〉. (5.479)

This is recognized as the first-order Rayleigh-Schrödinger perturbative result for the
ground state energy.

For the discussion of the quantum-mechanical limit of the first-order normalized
density,

ρΩ1 (xa) =
ρ̃ Ω
1 (xa)

Z
= ρΩ0 (xa)

exp
{

− 1
h̄
〈Aint[x] 〉Ωxa,xa

}

∫∞
−∞ dxa ρ

Ω
0 (xa) exp

{

− 1
h̄
〈Aint[x] 〉Ωxa,xa

} , (5.480)

we proceed as follows. First we expand (5.480) up to first order in the interaction,
leading to

ρΩ1 (xa) = ρΩ0 (xa)



1 − 1

h̄



〈Aint[x] 〉Ωxa,xa −
∞
∫

−∞
dxa ρ

Ω
0 (xa) 〈Aint[x] 〉Ωxa,xa







 .(5.481)

Inserting (5.428) and (5.461) into the third term in (5.481), and assuming Ω not to
depend explicitly on xa, the xa-integral reduces to the orthonormality relation for
Hermite polynomials

1

2nn!
√
π

∞
∫

−∞
dxaHn(xa)H0(xa)e

−x2a = δn0, (5.482)



564 5 Variational Perturbation Theory

so that the third term in (5.481) eventually becomes

−
∞
∫

−∞
dxa ρ

Ω
0 (xa) 〈Aint[x] 〉Ωxa,xa = −β

∞
∫

−∞
dz

√

κ2

π
Vint(z) exp{−κ2z2}H0(κz). (5.483)

But this is just the n = 0 -term of (5.461) with an opposite sign, thus canceling the
zeroth component of the second term in (5.481), which would have been divergent
for β → ∞.

The resulting expression for the first-order normalized density is

ρΩ1 (xa)=ρΩ0 (xa)



1 −
∞
∑

n=1

β

2nn!
C

(n)
β Hn(κxa)

∞
∫

−∞
dz

√

κ2

π
Vint(z) exp(−κ2z2)Hn(κz)



 .

(5.484)

The zero-temperature limit of C
(n)
β is from (5.465) and (5.477)

lim
β→∞

βC
(n)
β =

2

EΩ
n −EΩ

0

, (5.485)

so that we obtain from (5.484) the limit

ρΩ1 (xa) = ρΩ0 (xa)

[

1 − 2
∞
∑

n=1

1

2nn!

1

EΩ
n −EΩ

0

Hn(κxa)

×
∞
∫

−∞
dz

√

κ2

π
Vint(z) exp{−κ2z2}Hn(κz)H0(κz)

]

. (5.486)

Taking into account the harmonic eigenfunctions (5.478), we can rewrite (5.486) as

ρΩ1 (xa) = |ψ0(xa)|2 = [ψΩ
0 (xa)]

2 − 2ψΩ
0 (xa)

∑

n>0

ψΩ
n (xa)

〈ψΩ
n | Vint |ψΩ

0 〉
EΩ
n −EΩ

0

, (5.487)

which is just equivalent to the harmonic first-order Rayleigh-Schrödinger result for
particle densities.

Summarizing the results of this section, we have shown that our method has
properly reproduced the high- and low-temperature limits. Due to relation (5.487),
the variational approach for particle densities can be used to determine approxi-
mately the ground state wave function ψ0(xa) for the system of interest.

5.23.5 Smearing Formula in Higher Spatial Dimensions

Most physical systems possess many degrees of freedom. This requires an extension of our method
to higher spatial dimensions. In general, we must consider anisotropic harmonic trial systems,
where the previous variational parameter Ω2 becomes a D×D -matrix Ω2

µν with µ, ν = 1, 2, . . . , D.
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a) Isotropic Approximation

An isotropic trial ansatz

Ω2
µν = Ω2δµν (5.488)

can give rough initial estimates for the properties of the system. In this case, the n-th order
smearing formula (5.458) generalizes directly to

〈An
int[r] 〉

Ω
ra,ra

=
1

ρΩ0 (ra)

n
∏

l=1

[

∫ h̄β

0

dτl

∫

dDzl Vint(zl)

]

× 1
√

(2π)n+1 det a2
D

exp



−1

2

n
∑

k,l=0

zk a
−2
kl zl



 , (5.489)

with the D-dimensional vectors zl = (z1l, z2l, . . . , zDl)
T . Note, that Greek labels µ, ν, . . . =

1, 2, . . . , D specify spatial indices and Latin labels k, l, . . . = 0, 1, 2, . . . , n refer to the different
imaginary times. The vector z0 denotes ra, the matrix a2 is the same as in Subsection 5.23.3. The
harmonic density reads

ρΩ0 (r) =

√

1

2πa200

D

exp

[

− 1

2 a200

D
∑

µ=1

x2µ

]

. (5.490)

b) Anisotropic Approximation

In the discussion of the anisotropic approximation, we shall only consider radially-symmetric po-
tentials V (r) = V (|r|) because of their simplicity and their major occurrence in physics. The trial
frequencies decompose naturally into a radial frequency ΩL and a transverse one ΩT as in (5.95):

Ω2
µν = Ω2

L

xaµxaν
r2a

+ Ω2
T

(

δµν − xaµxaν
r2a

)

, (5.491)

with ra = |ra|. For practical reasons we rotate the coordinate system by x̄n = U xn so that r̄a
points along the first coordinate axis,

(r̄a)µ ≡ z̄µ0 =

{

ra, µ = 1,
0, 2 ≤ µ ≤ D,

(5.492)

and Ω2-matrix is diagonal:

Ω2 =















Ω2
L 0 0 · · · 0
0 Ω2

T 0 · · · 0
0 0 Ω2

T · · · 0
...

...
...

. . .
...

0 0 0 · · · Ω2
T















= U Ω2 U−1. (5.493)

After this rotation, the anisotropic n-th order smearing formula in D dimensions reads

〈An
int[r] 〉ΩL,T

ra,ra
=

1

ρ
ΩL,T

0 (r̄a)

n
∏

l=1

[

∫ h̄β

0

dτl

∫

dDz̄l Vint(|z̄l|)
]

(2π)−D(n+1)/2 (5.494)

× (det a2L)−1/2 (det a2T )−(D−1)/2e
− 1

2

n
∑

k,l=0

z̄1kaL
−2
kl

z̄1l

e
− 1

2

D
∑

µ=2

∑

n

k,l=1
z̄µkaT

−2
kl

z̄µl

.
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The components of the longitudinal and transversal matrices a2L and a2T are

a2Lkl = a2L(τk, τl), a2T kl = a2T (τk, τl) , (5.495)

where the frequency Ω in (5.459) must be substituted by the new variational parameters ΩL,ΩT ,

respectively. For the harmonic density in the rotated system ρ
ΩL,T

0 (r̄) which is used to normalize
(5.494), we find

ρ
ΩL,T

0 (r̄) =

√

1

2πa2L00

√

1

2πa2T 00

D−1

exp

[

− 1

2 a2L00

x̄21 −
1

2 a2T 00

D
∑

µ=2

x̄2µ

]

. (5.496)

Appendix 5A Feynman Integrals for T=/ 0 without
Zero Frequency

The Feynman integrals needed in variational perturbation theory of the anharmonic oscillator at
nonzero temperature can be calculated in close analogy to those of ordinary perturbation theory
in Section 3.20. The calculation proceeds as explained in Appendix 3D, except that the lines
represent now the thermal correlation function (5.19) with the zero-frequency subtracted from the
spectral decomposition:

G
(2)x0

Ω̃
(τ, τ ′) =

1

2Ω̃

[

cosh Ω̃(|τ − τ ′| − h̄β/2)

sinh(Ω̃h̄β/2)

]

− 1

h̄βΩ̃2
.

With the dimensionless variable x ≡ h̄βω̃, the results for the quantities a2LV defined of each Feynman
diagram with L lines and V vertices as in (3.550), but now without the zero Matsubara frequency,
are [compare with the results (3D.3)–(3D.11)]

a2 =
h̄

ω̃

1

x

(x

2
coth

x

2
− 1
)

, (5A.1)

a42 =

(

h̄

ω̃

)2
1

8x

1

sinh2 x

2

(

4 + x2 − 4 coshx+ x sinhx
)

, (5A.2)

a63 =

(

h̄

ω̃

)3
1

64x

1

sinh3 x

2

(

−3 x cosh
x

2
+ 2 x3 cosh

x

2
+ 3 x cosh

3x

2

+48 sinh
x

2
+ 6 x2 sinh

x

2
− 16 sinh

3x

2

)

, (5A.3)

a82 =

(

h̄

ω

)4
1

768x3
1

sinh4 x

2

(

−864 + 18 x4 + 1152 coshx+ 32 x2 coshx

−288 cosh 2x− 32 x2 cosh 2x− 288 x sinhx+ 24 x3 sinhx

+144 x sinh 2x+ 3 x3 sinh 2x
)

, (5A.4)

a103 =

(

h̄

ω̃

)5
1

4096x3
1

sinh5 x

2

(

672 x cosh
x

2
− 8 x3 cosh

x

2
+ 24 x5 cosh

x

2

−1008 x cosh
3x

2
+ 3 x3 cosh

3x

2
+ 336 x cosh

5x

2
+ 5 x3 cosh

5x

2

−7680 sinh
x

2
− 352 x2 sinh

x

2
+ 72 x4 sinh

x

2
+ 3840 sinh

3x

2

+224 x2 sinh
3x

2
+12 x4 sinh

3x

2
−768 sinh

5x

2
− 64 x2 sinh

5x

2

)

, (5A.5)
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a123 =

(

h̄

ω̃

)6
1

49152x4
1

sinh6 x

2

(

−107520− 7360 x2 + 624 x4 + 96 x6

+161280 coshx+ 12000 x2 coshx− 777 x4 coshx+ 24 x6 coshx

−64512 cosh 2x− 5952 x2 cosh 2x+ 144 x4 cosh 2x+ 10752 cosh 3x

−28800 x sinhx+ 1312 x2 cosh 3x+ 9 x4 cosh 3x+ 1120 x3 sinhx

+324 x5 sinhx+ 23040 x sinh 2x− 320 x3 sinh 2x− 5760 x sinh 3x

−160 x3 sinh 3x
)

, (5A.6)

a62 =

(

h̄

ω̃

)3
1

24x2
1

sinh2 x

2

(

−24−4 x2+24 coshx+ x2 coshx− 9 x sinhx
)

,

a83 =

(

h̄

ω̃

)4
1

288x2
1

sinh3 x

2

(

45 x cosh
x

2
− 6 x3 cosh

x

2
− 45 x cosh

3x

2

−432 sinh
x

2
− 54 x2 sinh

x

2
+ 144 sinh

3x

2
+ 4 x2 sinh

3x

2

)

, (5A.7)

a103′ =

(

h̄

ω̃

)5
1

2304x3
1

sinh4 x

2

(

−3456− 414 x2 − 6 x4 + 4608 coshx+

496 x2 coshx− 1152 cosh 2x− 82 x2 cosh 2x− 1008 x sinhx−
16 x3 sinhx+ 504 x sinh 2x+ 5 x3 sinh 2x

)

. (5A.8)

Six of these integrals are the analogs of those in Eqs. (3.550). In addition there are the three
integrals a62, a

8
3, and a103′ , corresponding to the three diagrams

, , , (5A.9)

respectively, which are needed in Subsection 5.14.2. They have been calculated with zero Matsub-
ara frequency in Eqs. (3D.8)–(3D.11).

In the low-temperature limit where x = Ωh̄β → ∞, the x-dependent factors in Eqs. (5A.1)–
(5A.8) converge towards the same constants (3D.13) as those with zero Matsubara frequency, and
the same limiting relations hold as in Eqs. (3.553) and (3D.14).

The high-temperature limits x → 0, however, are quite different from those in Eq. (3D.16).
The present Feynman integrals all vanish rapidly for increasing temperatures. For L lines and V
vertices, h̄β(1/ω̃)V −1a2LV goes to zero like βV (β/12)L. The first V factors are due to the V -integrals
over τ , the second are the consequence of the product of n/2 factors a2. Thus a2LV behaves like

a2LV ∝
(

h̄

ω̃

)L

xV −1+L. (5A.10)

Indeed, the x-dependent factors in (5A.1)–(5A.8) vanish now like

x/12, x3/720, x5/30240,

x5/241920, x7/11404800, 193x8/47551795200,

x4/30240, x6/1814400, x7/59875200, (5A.11)

respectively. When expanding (5A.1)–(5A.8) into a power series, the lowest powers cancel each
other. For the temperature behavior of these Feynman integrals see Fig. 5.32. We have plotted
the reduced Feynman integrals â2LV (x) in which the low-temperature behaviors (3.553) and (3D.14)
have been divided out of a2LV .
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â2LV

a2

Figure 5.32 Plot of the reduced Feynman integrals â2LV (x) as functions of L/x =

LkBT/h̄ω. The integrals (3D.4)–(3D.11) are indicated by decreasing dash-lenghts. Com-

pare Fig. 3.16.

The integrals (5A.2) and (5A.3) for a42 and a63 can be obtained from the integral (5A.1) for a2

via the operation
h̄n

n!

(

− ∂

∂ω̃2

)n

=
h̄n

n!

(

− 1

2ω̃

∂

∂ω̃

)n

, (5A.12)

with n = 1 and n = 2, respectively. This is derived following the same steps as in Eqs. (3D.18)–
(3D.20). The absence of the zero Matsubara frequency does not change the argument.

Also, as in Eqs. (5.195)–(3D.21), the same type of expansion allows us to derive the three
integrals from the one-loop diagram (3.549).

Appendix 5B Proof of Scaling Relation for Extrema of WN

Here we prove the scaling relation (5.215), according to which the derivative of the Nth approxi-
mation WN to the ground state energy can be written as [14]

d

dΩ
WΩ

N =
( g

Ω3

)N

pN (σ), (5B.1)

where pN (σ) is a polynomial of order N in the scaling variable σ = Ω(Ω2 − 1)/g.
For the sake of generality, we consider an anharmonic oscillator with a potential gxP whose

power P is arbitrary. The ubiquitous factor 1/4 accompanying g is omitted, for convenience.
The energy eigenvalue of the ground state (or any excited state) has an Nth order perturbation
expansion

EN (g) = ω

N
∑

l=0

El

( g

ω(P+2)/2

)l

, (5B.2)

where El are rational numbers. After the replacement (5.188), the series is re-expanded at fixed r
in powers of g up to order N , and we obtain

WΩ
N = Ω

N
∑

l=0

εl(σ)
( g

Ω(P+2)/2

)l

, (5B.3)

with the re-expansion coefficients [compare (5.207)]

εl(σ) =

l
∑

j=0

Ej

(

(1 − P+2
2 j)/2

l− j

)

(−σ)l−j . (5B.4)
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Here σ is a scaling variable for the potential gxP generalizing (5.208) (note that it is four times as
big as the previous σ, due to the different normalization of g):

σ ≡ Ω(P−2)/2(Ω2 − ω2)

g
. (5B.5)

We now show that the derivative dWN (g,Ω)/dΩ has the following scaling form generalizing
(5B.1):

dWΩ
N

dΩ
=
( g

Ω(P+2)/2

)N

pN (σ), (5B.6)

where pN (σ) is the following polynomial of order N in the scaling variable σ:

pN (σ) = −2
dεN+1(σ)

dσ

= 2

N
∑

j=0

Ej

(

(1 − P+2
2 j)/2

N + 1 − j

)

(N + 1 − j) (−σ)N−j . (5B.7)

The proof starts by differentiating (5B.3) with respect to Ω, yielding

dWΩ
N

dΩ
=

N
∑

l=0

[

εl(σ) − P + 2

2
lεl(σ) + Ω

dεl
dΩ

]

( g

Ω(P+2)/2

)l

. (5B.8)

Using the chain rule of differentiation we see from (5B.4) that

Ω
dεl
dΩ

=

[

2
Ω(P+2)/2

g
+
P − 2

2
σ

]

dεl
dσ

, (5B.9)

and (5B.8) can be rewritten as

dWΩ
N

dΩ
=

N
∑

l=0

[(

1− P + 2

2
l

)

εl(σ) +

(

2
Ω(P+2)/2

g
+
P − 2

2
σ

)

dεl
dσ

]

( g

Ω(P+2)/2

)l

.

(5B.10)

After rearranging the sum, this becomes

dWΩ
N

dΩ
= 2

dε0
dσ

( g

Ω(P+2)/2

)−1

+
N−1
∑

l=0

[(

1 − P + 2

2
l

)

εl +
P − 2

2
σ
dεl
dσ

+ 2
dεl+1

dσ

]

( g

Ω(P+2)/2

)l

+

[(

1 − P + 2

2
N

)

εN +
P − 2

2
σ
dεN
dσ

]

( g

Ω(P+2)/2

)N

. (5B.11)

The first term vanishes trivially since ε0 happens to be independent of σ. The sum in the second
line vanishes term by term:

(

1 − P + 2

2
l

)

εl +
P − 2

2
σ
dεl
dσ

+ 2
dεl+1

dσ
= 0, l = 1 . . .N − 1. (5B.12)

To see this we form the derivative

2
dεl+1

dσ
= 2

l
∑

j=0

Ej

(

(1 − P+2
2 j)/2

l+ 1 − j

)

(j − l − 1) (−σ)l−j , (5B.13)



570 5 Variational Perturbation Theory

and use the identity

2

(

(1 − P+2
2 j)/2

l + 1 − j

)

=
P−2
2 j + 2l − 1

j − l − 1

(

(1 − P+2
2 j)/2

l− j

)

(5B.14)

to rewrite (5B.13) as

2
dεl+1

dσ
=

l
∑

j=0

Ej

(

(1 − P+2
2 j)/2

l − j

)(

P − 2

2
j + 2l − 1

)

(−σ)l−j , (5B.15)

implying

P − 2

2
σ
dεl
dσ

=
l
∑

j=0

Ej

(

(1 − P+2
2 j)/2

l − j

)

P − 2

2
(l − j)(−σ)l−j . (5B.16)

By combining this with (5B.4), (5B.13), we obtain Eq. (5B.12) which proves that the second line
in (5B.11) vanishes.

Thus we are left with the last term on the right-hand side of Eq. (5B.11). Using (5B.12) for
l = N leads to

dWΩ
N

dΩ
= −2

( g

Ω(P+2)/2

)N dεN+1(σ)

dσ
. (5B.17)

When expressing dεN+1(σ)/dσ with the help of (5B.4), we arrive at

dWΩ
N

dΩ
= 2

( g

Ω(P+2)/2

)N N
∑

j=0

Ej

(

(1 − P+2
2 j)/2

N + 1 − j

)

(N + 1 − j) (−σ)N−j .

(5B.18)

This proves the scaling relation (5B.6) with the polynomial (5B.7).
The proof can easily be extended to physical quantities QN(g) with a different physical dimen-

sion α, which have an expansion

QN (g) = ωα
N
∑

l=0

El

( g

ω(P+2)/2

)l

, α 6= 1, (5B.19)

rather than (5B.2). In this case the quantity [QN (g)]1/α has again an expansion like (5B.2). By
rewriting QN (g) as {[QN (g)]1/α}α and forming the derivative using the chain rule we see that the
derivative vanishes whenever the polynomial pN(σ) vanishes, which is formed from [QN (g)]1/α as
in Eq. (5B.7).

Appendix 5C Second-Order Shift of Polaron Energy

For brevity, we introduce the dimensionless variable ρ ≡ ω∆τ and

F [ρ] ≡ −2Γ2ḠΩ,Γ(ρ, 0). (5C.1)

Going to natural units with h̄ = M = ω = 1, Feynman’s variational energy (5.395) takes the form

E0 =
3

4Γ
(Γ − Ω)2 − 1√

π
Γ

∫ ∞

0

dρ e−ρF−1/2(ρ). (5C.2)

The second-order correction (5.406) reads

∆E
(2)
0 = −412

π
Γ2I +

1

2Γ
√
π

(Γ2 − Ω2)

∫ ∞

0

dρ e−ρF−1/2(ρ) − 3

16Γ3
(Γ2 − Ω2)2

− 1

4
√
π

(Γ2−Ω2)

∫ ∞

0

dρ e−ρF−3/2(ρ)

{(

1+
Ω2

Γ

)

(

1−e−Γρ
)

+
Γ2−Ω2

Γ
ρe−Γρ

}

, (5C.3)
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where I denotes the integral

I =
1

4

∫ ∞

0

∫ ∞

0

∫ ∞

0

dρ1dρ2dρ3e
−ρ1F−1/2(ρ1)e

−ρ2F−1/2(ρ2)

(

arcsinQ

Q
− 1

)

, (5C.4)

with

Q = Q1 for ρ3 − ρ2 + ρ1 ≥ 0 and ρ3 − ρ2 ≥ 0,

Q = Q2 for ρ3 − ρ2 + ρ1 ≥ 0 and ρ3 − ρ2 < 0, (5C.5)

Q = Q3 for ρ3 − ρ2 + ρ1 < 0 and ρ3 − ρ2 < 0,

and

Q1 =
1

2
F−1/2(ρ21)F

−1/2(ρ22)
Γ2− Ω2

Γ
e−Γρ3(1 − e−Γρ1)(eΓρ − 1), (5C.6)

Q2 =
1

2
F−1/2(ρ1)F

−1/2(ρ2)

×
{

Γ2− Ω2

Γ

[

e−Γ(ρ2−ρ3)− e−Γρ3(1 + e−Γ(ρ1−ρ2)− e−Γρ1)
]

− 2Ω2(ρ2 − ρ3)

}

, (5C.7)

Q3 =
1

2
F−1/2(ρ1)F

−1/2(ρ2)

×
{

Γ2− Ω2

Γ

[

−e−Γρ3(1 − e−Γρ1) − e−Γ(ρ2−ρ3)(eΓρ1 − 1)
]

− 2Ω2ρ1

}

. (5C.8)
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In spite of a much higher numerical effort, this generalization improves the ground state
energy only by at most 0.1% (the weak-coupling expansion coefficient −0.012346 in (5.396)
is changed to −0.012598, while the strong-coupling coefficients in (5.399) remain unchanged
at this level of accuracy. For the effective mass, the lowest nontrivial weak-coupling coeffi-
cient of 12 in (5.402) is changed by 0.0252 % while the strong-coupling coefficients in (5.403)
remain unchanged at this level of accuracy.
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Aevo rarissima nostro, simplicitas

Simplicity, a very rare thing in our age
Ovid (43BC–17), Ars Amatoria, Book 1, 241

6

Path Integrals with Topological Constraints

The path integral representations of the time evolution amplitudes considered so far
were derived for orbits x(t) fluctuating in Euclidean space with Cartesian coordi-
nates. Each coordinate runs from minus infinity to plus infinity. In many physical
systems, however, orbits are confined to a topologically restricted part of a Cartesian
coordinate system. This changes the quantum-mechanical completeness relation and
with it the derivation of the path integral from the time-sliced time evolution oper-
ator in Section 2.1. We shall consider here only a point particle moving on a circle,
in a half-space, or in a box. The path integral treatment of these systems is the
prototype for any extension to more general topologies.

6.1 Point Particle on Circle

For a point particle on a circle, the orbits are specified in terms of an angular
variable ϕ(t) ∈ [0, 2π] subject to the topological constraint that ϕ = 0 and ϕ = 2π
be identical points.

The initial step in the derivation of the path integral for such a system is the
same as before: The time evolution operator is decomposed into a product

〈ϕbtb|ϕata〉 = 〈ϕb|exp
[

− i

h̄
(tb − ta)Ĥ

]

|ϕa〉 ≡ 〈ϕb|
N+1
∏

n=1

exp
(

− i

h̄
ǫĤ
)

|ϕa〉. (6.1)

The restricted geometry shows up in the completeness relations to be inserted be-
tween the factors on the right-hand side for n = 1, . . . , N :

∫ 2π

0
dϕn|ϕn〉〈ϕn| = 1. (6.2)

If the integrand is singular at ϕ = 0, the integrations must end at an infinitesimal
piece below 2π. Otherwise there is the danger of double-counting the contributions
from the identical points ϕ = 0 and ϕ = 2π. The orthogonality relations on these
intervals are

〈ϕn|ϕn−1〉 = δ(ϕn − ϕn−1), ϕn ∈ [0, 2π). (6.3)

577
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The δ-function can be expanded into a complete set of periodic functions on the
circle:

δ (ϕn − ϕn−1) =
∞
∑

mn=−∞

1

2π
exp[imn(ϕn − ϕn−1)]. (6.4)

For a trivial system with no Hamiltonian, the scalar products (6.4) lead to the
following representation of the transition amplitude:

(ϕbtb|ϕata)0 =
N
∏

n=1

[
∫ 2π

0
dϕn

]N+1
∏

n=1

[

∑

mn

1

2π

]

exp

[

i
N+1
∑

n=1

mn(ϕn − ϕn−1)

]

. (6.5)

We now introduce a Hamiltonian H(p, ϕ). At each small time step, we calculate

(ϕntn|ϕn−1tn−1) = 〈ϕn| exp
[

− i

h̄
ǫĤ(p, ϕ)

]

|ϕn−1〉

= exp
[

− i

h̄
ǫĤ(−ih̄∂ϕn

, ϕn)
]

〈ϕn|ϕn−1〉.

Replacing the scalar products by their spectral representation (6.4), this becomes

(ϕntn|ϕn−1tn−1) = 〈ϕn| exp
[

− i

h̄
ǫĤ(p, ϕ)

]

|ϕn−1〉

= exp
[

− i

h̄
ǫĤ(−ih̄∂ϕn

, ϕn)
] ∞

∑

mn=−∞

1

2π
exp[imn(ϕn − ϕn−1)]. (6.6)

By applying the operator in front of the sum to each term, we obtain

(ϕn tn|ϕn−1 tn−1) =
∞
∑

mn=−∞

1

2π
exp

[

imn(ϕn − ϕn−1)−
iǫ

h̄
H(h̄mn, ϕn)

]

. (6.7)

The total amplitude can therefore be written as

(ϕbtb|ϕata) ≈
N
∏

n=1

[
∫ 2π

0
dϕn

] N+1
∏

n=1

[

∞
∑

mn=−∞

1

2π

]

(6.8)

× exp

{

i
N+1
∑

n=1

[

mn(ϕn − ϕn−1)−
1

h̄
ǫH(h̄mn, ϕn)

]

}

.

This is the desired generalization of the original path integral from Cartesian to cyclic
coordinates. As a consequence of the indistinguishability of ϕ(t) and ϕ(t) + 2πn,
the momentum integrations have turned into sums over integer numbers. The sums
reflect the fact that the quantum-mechanical wave functions (1/

√
2π) exp(ipϕϕ/h̄)

are single-valued.
The discrete momenta enter into (6.8) via a “momentum step sum” rather than a

proper path integral. At first sight, such an expression looks somewhat hard to deal
with in practical calculations. Fortunately, it can be turned into a more comfortable
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equivalent form, involving a proper continuous path integral. This is possible at the
expense of a single additional infinite sum which guarantees the cyclic invariance in
the variable ϕ. To find the equivalent form, we recall Poisson’s formula (1.197),

∞
∑

l=−∞

e2πikl =
∞
∑

m=−∞

δ(k −m), (6.9)

to make the right-hand side of (6.4) a periodic sum of δ-functions, so that (6.3)
becomes

〈ϕn|ϕn−1〉 =
∞
∑

l=−∞

δ(ϕn − ϕn−1 + 2πl). (6.10)

A Fourier decomposition of the δ-functions yields

〈ϕn|ϕn−1〉 =
∞
∑

l=−∞

∫ ∞

−∞

dkn
2π

exp[ikn(ϕn − ϕn−1) + 2πiknl]. (6.11)

Note that the right-hand side reduces to (6.4) when applying Poisson’s summation
formula (6.9) to the l-sum, which produces a sum of δ-functions for the integer
values of kn = mn = 0, ±1, ±2, . . . . Using this expansion rather than (6.4), the
amplitude (6.5) with no Hamiltonian takes the form

(ϕbtb|ϕata)0 =
N
∏

n=1

[
∫ 2π

0
dϕn

] N+1
∏

n=1





∫ ∞

−∞

dkn
2π

∞
∑

ln=−∞



 ei
∑N+1

n=1
[kn(ϕn−ϕn−1)+2πknln]. (6.12)

In this expression, we observe that the sums over ln can be absorbed into the vari-
ables ϕn by extending their range of integration from [0, 2π) to (−∞,∞). Only in
the last sum

∑

lN+1
, this is impossible, and we arrive at

(ϕbtb|ϕata)0 =
∞
∑

l=−∞

N
∏

n=1

[
∫ ∞

−∞
dϕn

] N+1
∏

n=1

[

∫ ∞

−∞

dkn
2π

]

ei
∑N+1

n=1
kn(ϕn−ϕn−1+2πlδn,N+1).(6.13)

The right-hand side looks just like an Ĥ ≡ 0 -amplitude of an ordinary particle
which would read

(ϕbtb|ϕata)0,noncyclic =
N
∏

n=1

[
∫ ∞

−∞
dϕn

] N+1
∏

n=1

[

∫ ∞

−∞

dkn
2π

]

ei
∑N+1

n=1
kn(ϕn−ϕn−1). (6.14)

The amplitude (6.13) differs from this by the sum over paths running over all periodic
repetitions of the final point ϕb + 2πn, tb. The amplitude (6.13) may therefore be
written as a sum over all periodically repeated final points of the amplitude (6.14):

(ϕbtb|ϕata)0 =
∞
∑

l=−∞

(ϕb + 2πl, tb|ϕata)0,noncyclic . (6.15)
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In each term on the right-hand side, the Hamiltonian can be inserted as usual, and
we arrive at the time-sliced formula

(ϕbtb|ϕata) ≈
∞
∑

l=−∞

N
∏

n=1

[
∫ ∞

−∞
dϕn

] N+1
∏

n=1

[

∫ ∞

−∞

dpn
2πh̄

]

× exp

{

i

h̄

N+1
∑

n=1

[pn(ϕn − ϕn−1 + 2πlδn,N+1)− ǫH(pn, ϕn)]

}

. (6.16)

In the continuum limit, this tends to the path integral

(ϕbtb|ϕata)
ǫ→0

−−−→
∞
∑

l=−∞

∫

ϕa❀ϕb+2πl
Dϕ(t)

∫ Dp(t)
2πh̄

exp
{

i

h̄

∫ tb

ta
dt[pϕ̇−H(p, ϕ)]

}

. (6.17)

The way in which this path integral has replaced the sum over all paths on the circle
ϕ ∈ [0, 2π) by the sum over all paths with the same action on the entire ϕ-axis is
illustrated in Fig. 6.1.

As an example, consider a free particle moving on a circle with a Hamiltonian

H(p, ϕ) =
p2

2M
. (6.18)

The ordinary noncyclic path integral is

(ϕbtb|ϕata)noncyclic =
1

√

2πh̄i(tb − ta)/M
exp

[

i

h̄

M

2

(ϕb − ϕa)
2

tb − ta

]

. (6.19)

Using Eq. (6.15), the cyclic amplitude is given by the periodic Gaussian

(ϕbtb|ϕata) =
1

√

2πh̄i(tb − ta)/M

∞
∑

l=−∞

exp

[

i

h̄

M

2

(ϕb − ϕa + 2πl)2

tb − ta

]

. (6.20)

The same amplitude could, of course, have been obtained by a direct quantum-
mechanical calculation based on the wave functions

ψm(ϕ) =
1√
2π
eimϕ (6.21)

and the energy eigenvalues

H =
h̄2

2M
m2. (6.22)

Within operator quantum mechanics, we find

(ϕbtb|ϕata) = 〈ϕb|exp
[

− i

h̄
(tb − ta)Ĥ

]

|ϕa〉

=
∞
∑

m=−∞

ψm(ϕb)ψ
∗
m(ϕa) exp

[

− i

h̄

h̄2m2

2M
(tb − ta)

]

=
∞
∑

m=−∞

1

2π
exp

[

im(ϕb − ϕa)− i
h̄m2

2M
(tb − ta)

]

. (6.23)
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Figure 6.1 Path with 3 jumps from 2π to 0 at tj1 , tj2 , tj3 , and with one jump from 0

to 2π at t̄1. It can be drawn as a smooth path in the extended zone scheme, arriving at

ϕ(n,n̄) = ϕb + (n − n̄)2π, where n and n̄ count the number of jumps of the first and the

second type, respectively.

If the sum over m is converted into an integral over p and a dual l-sum via Poisson’s
formula (6.9), this coincides with the previous result:

(ϕbtb|ϕata) =
∞
∑

l=−∞

∫ ∞

−∞

dp

2πh̄
exp

{

i

h̄

[

p(ϕb − ϕa + 2πl)− p2

2M
(tb − ta)

]}

=
1

√

2πh̄i(tb − ta)/M

∞
∑

l=−∞

exp

[

i

h̄

M

2

(ϕb − ϕa + 2πl)2

tb − ta

]

. (6.24)

6.2 Infinite Wall

In the case of an infinite wall, only a half-space, say x = r > 0, is accessible to the
particle, and the completeness relation reads

∫ ∞

0
dr|r〉〈r| = 1. (6.25)

For singular integrands, the origin has to be omitted from the integration. The
orthogonality relation is

〈r|r′〉 = δ(r − r′); r, r′ > 0. (6.26)

Given a free particle moving in such a geometry, we want to calculate

(rbtb|rata) = 〈rb|
N+1
∏

n=1

exp
(

− i

h̄
Ĥǫ
)

|ra〉. (6.27)
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As usual, we insert N completeness relations between the N +1 factors. In the case
of a vanishing Hamiltonian, the amplitude (6.27) becomes

(rbtb|rata)0 =
N
∏

n=1

[
∫ ∞

0
drn

] N+1
∏

n=1

〈rn|rn−1〉 = 〈rb|ra〉. (6.28)

For each scalar product 〈rn|rn−1〉 = δ(rn − rn−1), we substitute its spectral rep-
resentation appropriate to the infinite-wall boundary at r = 0. It consists of a
superposition of the free-particle wave functions vanishing at r = 0:

〈r|r′〉 = 2
∫ ∞

0

dk

π
sin kr sin kr′ (6.29)

=
∫ ∞

−∞

dk

2π
[exp ik(r − r′)− exp ik(r + r′)] = δ(r − r′)− δ(r + r′).

This Fourier representation does a bit more than what we need. In addition to
the δ-function at r = r′, there is also a δ-function at the unphysical reflected point
r = −r′. The reflected point plays a similar role as the periodically repeated points
in the representation (6.11). For the same reason as before, we retain the reflected
points in the formula as though r′ were permitted to become zero or negative. Thus
we rewrite the Fourier representation (6.29) as

〈r|r′〉 =
∑

x=±r

∫ ∞

−∞

dp

2πh̄
exp

[

i

h̄
p(x− x′) + iπ(σ(x)− σ(x′))

]

x′=r′
, (6.30)

where
σ(x) ≡ Θ(−x) (6.31)

with the Heaviside function Θ(x) of Eq. (1.313). For symmetry reasons, it is con-
venient to liberate both the initial and final positions r and r′ from their physical
half-space and to introduce the localized states |x〉 whose scalar product exists on
the entire x-axis:

〈x|x′〉 =
∑

x′′=±x

∫ ∞

−∞

dp

2πh̄
exp

[

i

h̄
p(x′′ − x′) + iπ(σ(x′′)− σ(x′))

]

= δ(x− x′)− δ(x+ x′). (6.32)

With these states, we write

〈r|r′〉 = 〈x|x′〉|x=r,x′=r′ . (6.33)

We now take the trivial transition amplitude with zero Hamiltonian

(rbtb|rata)0 = δ(rb − ra), (6.34)

extend it with no harm by the reflected δ-function

(rbtb|rata)0 = δ(rb − ra)− δ(rb + ra), (6.35)
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and factorize it into many time slices:

(rbtb|rata)0 =
N
∏

n=1

[
∫ ∞

0
drn

]N+1
∏

n=1

[

∑

xn=±rn

(xnǫ|xn−10)0

]

(6.36)

(rb = rN+1, ra = r0), where the trivial amplitude of a single slice is

(xnǫ|xn−10)0 = 〈xn|xn−1〉, x ∈ (−∞,∞). (6.37)

With the help of (6.32), this can be written as

(rbtb|rata)0 =
N
∏

n=1

[
∫ ∞

0
drn

]N+1
∏

n=1

[

∑

xn=±rn

∫ ∞

−∞

dpn
2πh̄

]

× exp

{

N+1
∑

n=1

[

i

h̄
p(xn − xn−1) + iπ(σ(xn)− σ(xn−1))

]

}

. (6.38)

The sum over the reflected points xn = ±rn is now combined, at each n, with the
integral

∫∞
0 drn to form an integral over the entire x-axis, including the unphysical

half-space x < 0. Only the last sum cannot be accommodated in this way, so that
we obtain the path integral representation for the trivial amplitude

(rbtb|rata)0 =
∑

xb=±rb

N
∏

n=1

[
∫ ∞

−∞
dxn

] N+1
∏

n=1

[

∫ ∞

−∞

dpn
2πh̄

]

× exp

{

N+1
∑

n=1

[

i

h̄
p(xn − xn−1) + iπ(σ(xn)− σ(xn−1))

]

}

. (6.39)

The measure of this path integral is now of the conventional type, integrating over
all paths which fluctuate through the entire space. The only special feature is the
final symmetrization in xb = ±rb.

It is instructive to see in which way the final symmetrization together with the
phase factor exp[iπσ(x)] = ±1 eliminates all the wrong paths in the extended space,
i.e., those which cross the origin into the unphysical subspace. This is illustrated
in Fig. 6.2. Note that having assumed xa = ra > 0, the initial phase σ(xa) can be
omitted. We have kept it merely for symmetry reasons.

In the continuum limit, the exponent corresponds to an action

Aσ
0 [p, x] =

∫ tb

ta
dt[pẋ+ h̄π∂tσ(x)] ≡ A0[p, x] +Aσ

topol. (6.40)

The first term is the usual canonical expression in the absence of a Hamiltonian.
The second term is new. It is a pure boundary term:

Aσ
topol[x] = h̄π(σ(xb)− σ(xa)), (6.41)

which keeps track of the topology of the half space x > 0 embedded in the full space
x ∈ (−∞,∞). This is why the action carries the subscript “topol”.
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Figure 6.2 Illustration of path counting near reflecting wall. Each path touching the

wall once is canceled by a corresponding path of equal action crossing the wall once into

the unphysical regime (the path is mirror-reflected after the crossing). The phase factor

exp[iπσ(xb)] provides for the opposite sign in the path integral. Only paths not touching

the wall at all cannot be canceled in the path integral.

The topological action (6.41) can be written formally as a local coupling of the
velocity at the origin:

Aσ
topol[x] = −πh̄

∫ tb

ta
dtẋ(t)δ(x(t)). (6.42)

This follows directly from

σ(xb)− σ(xa) =
∫ xb

xa

dxσ′(x) =
∫ xb

xa

dxΘ′(−x) = −
∫ xb

xa

dxδ(x). (6.43)

Consider now a free point particle in the right half-space with the usual Hamil-
tonian

H =
p2

2M
. (6.44)

The action reads

A[p, x] =
∫ tb

ta
dt[pẋ− p2/2M − h̄πẋ(t)δ(x(t))], (6.45)

and the time-sliced path integral looks like (6.39), except for additional energy terms
−p2n/2M in the action. Since the new topological term is a pure boundary term, all
the extended integrals in (6.39) can be evaluated right away in the same way as for
a free particle in the absence of an infinite wall. The result is

(rbtb|rata) =
∑

xb=±rb

1
√

2πh̄i(tb − ta)/M

× exp

[

i

h̄

M

2

(xb − xa)
2

tb − ta
+ iπ(σ(xb)− σ(xa))

]

(6.46)

=
1

√

2πh̄i(tb − ta)/M

{

exp

[

i

h̄

M

2

(rb − ra)
2

tb − ta

]

− (rb → −rb)
}
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with xa = ra.
This is indeed the correct result: Inserting the Fourier transform of the Gaussian

(Fresnel) distribution we see that

(rbtb|rata) =
∫ ∞

−∞

dp

2πh̄

{

exp
[

i

h̄
p(rb − ra)

]

− (rb → −rb)
}

e−ip2(tb−ta)/2Mh̄

= 2
∫ ∞

0

dp

2πh̄
sin(prb/h̄) sin(pra/h̄) exp

[

− i

h̄

p2

2M
(tb − ta)

]

, (6.47)

which is the usual spectral representation of the time evolution amplitude.
Note that the first part of (6.46) may be written more symmetrically as

(rbtb|rata) =
1

√

2πh̄i(tb − ta)/M

1

2

∑

xa=±ra
xb=±rb

exp

[

i

h̄

M

2

(xb − xa)
2

tb − ta
+ iπ(σ(xb)− σ(xa))

]

.

(6.48)

In this form, the phase factors eiπσ(x) are related to what may be considered as even
and odd “spherical harmonics” in one dimension [more after (9.60)]

Ye,o(x̂) =
1√
2
(Θ(x)±Θ(−x)),

namely,

Ye(x̂) =
1√
2
, Yo(x̂) =

1√
2
eiπσ(x). (6.49)

The amplitude (6.48) is therefore simply the odd “partial wave” of the free-particle
amplitude

(rbtb|rata) =
∑

x̂b,x̂a

|xb|=rb,|xa|=ra

Y ∗
o (x̂b)〈xbtb|xata〉Yo(x̂a), (6.50)

which is what we would also have obtained from Schrödinger quantum mechanics.

6.3 Point Particle in Box

If a point particle is confined between two infinitely high walls in the interval x ∈
(0, d), we speak of a particle in a box .1 The box is a geometric constraint. Since
the wave functions vanish at the walls, the scalar product between localized states
is given by the quantum-mechanical orthogonality relation for r ∈ (0, d):

〈r|r′〉 = 2

d

∑

kν>0

sin kνr sin kνr
′, (6.51)

where kν runs over the discrete positive momenta

kν =
π

d
ν, ν = 1, 2, 3, . . . . (6.52)
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We can write the restricted sum in (6.51) also as a sum over all momenta kν with ref(6.51)
lab(6.46)
est(6.51)

ν = 0,±1,±2, . . .:

〈r|r′〉 = 1

2d

∑

kν

[

eikν(r−r′) − eikν(r+r′)
]

. (6.53)

With the help of the Poisson summation formula (6.9), the right-hand side is con-
verted into an integral and an auxiliary sum:

〈r|r′〉 =
∞
∑

l=−∞

∫ ∞

−∞

dk

2π

[

eik(r−r′+2dl) − eik(r+r′+2dl)
]

. (6.54)

Using the potential σ(x) of (6.31), this can be re-expressed as

〈r|r′〉 =
∑

x=±r

∞
∑

l=−∞

∫ ∞

−∞

dk

2π
eik(x−x′+2dl)+iπ(σ(x)−σ(x′)). (6.55)

The trivial path integral for the time evolution amplitude with a zero Hamiltonian
is again obtained by combining a sequence of scalar products (6.51):

(rbtb|rata)0 =
N
∏

n=1

[

∫ d

0
drn

]

〈rn|rn−1〉 (6.56)

=
N
∏

n=1

[

∫ d

0
drn

]

N+1
∏

n=1

2

d

∑

kν

sin kνnrn sin kνn−1rn−1.

The alternative spectral representation (6.55) allows us to extend the restricted
integrals over xn and sums over kν to complete phase space integrals, and we may
write

(rbtb|rata)0 =
∑

xb=±rb

∞
∑

l=−∞

N
∏

n=1

[
∫ ∞

−∞
dxn

]N+1
∏

n=1

[

∫ ∞

−∞

dpn
2πh̄

]

exp
(

i

h̄
AN

0

)

, (6.57)

with the time-sliced H ≡ 0 -action:

AN
0 =

N+1
∑

n=1

[pn(xn − xn−1) + h̄π(σ(xn)− σ(xn−1))] . (6.58)

The final xb is summed over all periodically repeated endpoints rb + 2dl and their
reflections −rb + 2dl.

We now add dynamics to the above path integral by introducing some Hamilto-
nian H(p, x), so that the action reads

A =
∫ tb

ta
dt[pẋ−H(p, x)− h̄πẋδ(x)]. (6.59)

The amplitude is written formally as the path integral

(rbtb|rata) =
∞
∑

l=−∞

∑

xb=±rb+2dl

∫

Dx
∫ Dp

2πh̄
exp

(

i

h̄
A
)

. (6.60)
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Figure 6.3 Illustration of path counting in a box. A path reflected once on the upper and

once on the lower wall of the box is eliminated by a path with the same action running to

x
(1)
b and to x̄

(0)
b , x̄

(1)
b . The latter receive a negative sign in the path integral from the phase

factor exp[iπσ(xb)]. Only paths remaining completely within the walls have no partner

for cancellation.

Figure 6.4 A particle in a box is topologically equivalent to a particle on a circle with

an infinite wall at one point.

In the time-sliced version, the action is

AN = AN
0 − ǫ

N+1
∑

n=1

H(pn, xn). (6.61)

The way in which the sum over the final positions xb = ±rb + 2dl together with the
phase factor exp[iπσ(xb)] eliminates the unphysical paths is illustrated in Fig. 6.3.
The mechanism is obviously a combination of the previous two. A particle in a box
of length d behaves like a particle on a circle of circumference 2d with a periodic
boundary condition, containing an infinite wall at one point. This is illustrated in
Fig. 6.4. The periodicity in 2d selects the momenta

kν = (π/d)ν, ν = 1, 2, 3, . . . ,

as it should.

1See W. Janke and H. Kleinert, Lett. Nuovo Cimento 25 , 297 (1979) (http://www.phy-
sik.fu-berlin.de/~kleinert/64).
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For a free particle with H = p2/2M , the integrations over xn, pn can be done as
usual and we obtain the amplitude (xa = ra)

(rbtb|rata) =
∞
∑

l=−∞

∑

xb=±rb+2dl

1
√

2πh̄i(tb − ta)/M

[

e
i
h̄

M
2

(xb−xa+2dl)2

tb−ta − (xb → −xb)
]

.

(6.62)

A Fourier transform and an application of Poisson’s formula (6.9) shows that this
is, of course, equal to the quantum-mechanical expression

(rbtb|rata) = 〈rb|exp
[

− i

h̄
(tb − ta)Ĥ

]

|ra〉

=
2

d

∞
∑

ν=1

sin kνrb sin kνra exp

[

−ih̄ k2ν
2M

(tb − ta)

]

. (6.63)

In analogy with the discussion in Section 2.6, we identify in the exponentials the
eigenvalues of the energy levels labeled by ν − 1 = 0, 1, 2, . . . :

E(ν−1) =
h̄2k2ν
2M

, ν = 1, 2, 3 . . . . (6.64)

The factors in front determine the wave functions associated with these energies:

ψ(ν−1)(x) =
2

d
sin kνx. (6.65)

6.4 Strong-Coupling Theory for Particle in Box

The strong-coupling theory developed in Chapter 5 open up the possibility of treat-
ing quantum-mechanical systems with hard-wall potentials via perturbation the-
ory. After converting divergent weak-coupling expansions into convergent strong-
coupling expansions, the strong-coupling limit of a function can be evaluated from
its weak-coupling expansion with any desired accuracy. Due to the combination
with the variational procedure, new classes of physical systems become accessible to
perturbation theory. For instance, the important problem of the pressure exerted
by a stack of membranes upon enclosing walls has been solved by this method.2

Here we illustrate the working of that theory for the system treated in the pre-
vious section, the point particle in a one-dimensional box.

This is just a quantum-mechanical exercise for the treatment of physically more
interesting problems. The ground state energy of this system has, according to
Eq. (6.64), the value E(0) = π2/2d2. For simplicity, we shall now use natural units
in which we can omit Planck and Boltzmann constants everywhere, setting them
equal to unity: h̄ = 1, kB = 1. We shall now demonstrate how this result is found
via strong-coupling theory from a perturbation expansion.

2See Notes and References.
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6.4.1 Partition Function

The discussion becomes simplest by considering the quantum statistical partition
function of the particle. It is given by the Euclidean path integral (always in natural
units)

Z =
∫

Du(τ)e 1
2

∫ h̄β

0
dτ(∂u)2 , (6.66)

where the shifted particle coordinate u(τ) ≡ x(τ)−d/2 is restricted to the symmetric
interval −d/2 ≤ u(τ) ≤ d/2. Since such a hard-wall restriction is hard to treat
analytically in (6.66), we make the hard-walls soft by adding to the Euclidean action
E in the exponent of (6.66) a potential term diverging near the walls. Thus we
consider the auxiliary Euclidean action

Ae =
1

2

∫ h̄β

0
dτ
{

[∂u(τ)]2 + V (u(τ))
}

, (6.67)

where V (u) is given by

V (u) =
ω2

2

(

d

π
tan

πu

d

)2

=
ω2

2

(

u2 +
2

3
gu4 + . . .

)

. (6.68)

On the right-hand side we have introduced a parameter g ≡ π2/d2.

6.4.2 Perturbation Expansion

The expansion of the potential in powers of g can now be treated perturbatively,
leading to an expansion of Z around the harmonic part of the partition function.
In this, the integrations over u(τ) run over the entire u-axis, and can be integrated
out as described in Section 2.15. The result is [see Eq. (2.489)]

Zω = e−(1/2)Tr log(∂2+ω2). (6.69)

For β → ∞, the exponent gives a free energy density F = −β−1 logZ equal to the
ground state energy of the harmonic oscillator

Fω =
ω

2
. (6.70)

The treatment of the interaction terms can be organized in powers of g, and give
rise to an expansion of the free energy with the generic form

F = Fω + ω
∞
∑

k=1

ak

(

g

ω

)k

. (6.71)

The calculation of the coefficients ak in this expansion proceeds as follows. First we
expand the potential in (6.67) to identify the power series for the interaction energy

Aint
e =

ω2

2

∫

dτ
(

gv4u
4 + g2v6u

6 + g3v8u
8 + . . .

)

=
ω2

2

∞
∑

k=1

∫

dτ gkv2k+2[u
2(τ)]k+1 , (6.72)
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with coefficients

v4 =
2

3
, v6 =

17

45
, v8 =

62

315
, v10 =

1382

14175
, v12 =

21844

467775
, v14 =

929569

42567525
,

v16 =
6404582

638512875
, v18 =

443861162

97692469875
, v20 =

18888466084

9280784638125
, v22 =

113927491862

126109485376875
,

v24 =
58870668456604

147926426347074375
, v26 =

8374643517010684

48076088562799171875
, v28 =

689005380505609448

9086380738369043484375
,

v30 =
129848163681107301953

3952575621190533915703125
, v32 =

1736640792209901647222

122529844256906551386796875
,

v34 =
418781231495293038913922

68739242628124575327993046875
, . . . . (6.73)

The interaction terms
∫

dτ [u2(τ)]k+1 and their products are expanded according to
Wick’s rule in Section 3.10 into sums of products of harmonic two-point correlation
functions

〈u(τ1)u(τ2)〉 =
∫

dk

2π

eik(τ1−τ2)

k2 + ω2
=
e−ω|τ1−τ2|

2ω
. (6.74)

Associated local expectation values are 〈u2〉 = 1/2ω, and

〈u∂u〉 =
∫

dk

2π

k

k2 + ω2
= 0

〈∂u∂u〉 =
∫

dk

2π

k2

k2 + ω2
= −ω

2
, (6.75)

where the last integral is calculated using dimensional regularization in which
∫

dk kα = 0 for all α. The Wick contractions are organized with the help of the
Feynman diagrams as explained in Section 3.20. Only the connected diagrams con-
tribute to the free energy density. The graphical expansion of free energy up to four
loops is

F =
ω

2
+

(

ω2

2

)

{

gv4 3 + g2v615 + g3v8105
}

− 1

2!

(

ω2

2

)2
{

g2v24 [72 + 24 ] +g3 2v4v6
[

540 + 360
]}

+
1

3!

(

ω2

2

)3

g3v34

{

2592 + 1728 +3456 + 1728
}

. (6.76)

Note different numbers of loops contribute to the terms of order gn. The calculation
of the diagrams in Eq. (6.76) is simplified by the factorization property: If a diagram
consists of two subdiagrams touching each other at a single vertex, the associated
Feynman integral factorizes into those of the subdiagrams. In each diagram, the
last t-integral yields an overall factor β, due to translational invariance along the
t-axis, the others produce a factor 1/ω. Using the explicit expression (6.75) for the
lines in the diagrams, we find the following values for the Feynman integrals:

= β
1

16ω5
, = β

1

64ω8
,
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= β
1

32ω5
, = β

3

128ω8
,

= β
1

32ω6
, = β

5

8 · 64ω8
, (6.77)

= β
1

32ω6
, = β

3

8 · 64ω8
.

Adding all contributions in (6.76), we obtain up to the order g3:

F3 = ω

{

1

2
+

3

8
v4

(

g

ω

)

+
[

15

16
v6 −

21

32
v24

] (

g

ω

)2

+
[

105

32
v8 −

45

8
v4 v6 +

333

128
v34

] (

g

ω

)3
}

,

(6.78)

which has the generic form (6.71).
We can go to higher orders by extending the Bender-Wu recursion relation

(3C.20) for the ground state energy of the quartic anharmonic oscillator as follows:

2p′Cp′

n = (p′ + 1)(2p′ + 1)Cp′

n +
1

2

n
∑

k=1

v2k+2C
p′−k−1
n−k −

n−1
∑

k=1

C1
kC

p′

n−k, 1 ≤ p′ ≤ 2n,

C0
0 = 1, Cp′

n = 0 (n ≥ 1, p′ < 1). (6.79)

After solving these recursion relations, the coefficients ak in (6.71) are given by
ak = (−1)k+1Ck,1. For brevity, we list here the first sixteen expansion coefficients
for F , calculated with the help of MATHEMATICA of REDUCE programs:3

a0 =
1

2
, a1 =

1

4
, a2 =

1

16
, a3 = 0, a4 = − 1

256
, a5 = 0,

a6 =
1

2048
, a7 = 0, a8 = − 5

65536
, a9 = 0,

a10 =
7

524288
, a11 = 0, a12 = − 21

8388608
, a13 = 0,

a14 =
33

67108864
, a15 = 0, a16 = − 429

4294967296
, . . . . (6.80)

6.4.3 Variational Strong-Coupling Approximations

We are now ready to calculate successive strong-coupling approximations to the
function F (g). It will be convenient to remove the expected correct d dependence
π2/d2 from F (g), and study the function F̃ (ḡ) ≡ F (g)/g which depends only on the
dimensionless reduced coupling constant ḡ = g/ω. The limit ω → 0 corresponds
to a strong-coupling limit in the reduced coupling constant ḡ. According to the
general theory of variational perturbation theory and its strong-coupling limit in
Sections 5.14 and 5.17, the Nth order approximation to the strong-coupling limit of
F̃ (ḡ), to be denoted by F̃ ∗, is found by replacing, in the series truncated after the

3The programs can be downloaded from www.physik.fu-berlin.de/˜kleinert/b5/programs
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Nth term, F̃N(g/ω), the frequency ω by the identical expression
√

Ω2 − gr2/2M ,
where

r2 ≡ 2M(Ω2 − ω2)/g. (6.81)

For a moment, this is treated as an independent variable, whereas Ω is a dummy
parameter. Then the square root is expanded binomially in powers of g, and

F̃N(g/
√

Ω2 − gr2/2M) is re-expanded up to order gN . After that, r is replaced

by its proper value. In this way we obtain a function F̃N (g,Ω) which depends on Ω,
which thus becomes a variational parameter. The best approximation is obtained by
extremizing F̃N (g,Ω) with respect to ω. Setting ω = 0, we go to the strong-coupling
limit g → ∞. There the optimal Ω grows proportionally to g, so that g/Ω = c−1 is
finite, and the variational expression F̃N(g,Ω) becomes a function of fN (c). In this
limit, the above re-expansion amounts simply to replacing each power ωn in each
expansion terms of F̃N (ḡ) by the binomial expansion of (1− 1)−n/2 truncated after
the (N − n)th term, and replacing ḡ by c−1. The first nine variational functions
fN(c) are listed in Table 6.1. The functions fN (c) are minimized starting from f2(c)
and searching the minimum of each successive f3(c), f3(c), . . . nearest to the pre-
vious one. The functions fN(c) together with their minima are plotted in Fig. 6.5.
The minima lie at

Table 6.1 First eight variational functions fN (c).

f2(c) =
1
4
+ 1

16 c
+ 3 c

16

f3(c) =
1
4
+ 3

32 c
+ 5 c

32

f4(c) =
1
4
− 1

256 c3
+ 15

128 c
+ 35 c

256

f5(c) =
1
4
− 5

512 c3
+ 35

256 c
+ 63 c

512

f6(c) =
1
4
+ 1

2048 c5
− 35

2048 c3
+ 315

2048 c
+ 231 c

2048

f7(c) =
1
4
+ 7

4096 c5
− 105

4096 c3
+ 693

4096 c
+ 429 c

4096

f8(c) =
1
4
− 5

65536 c7
+ 63

16384 c5
− 1155

32768 c3
+ 3003

16384 c
+ 6435 c

65536

f9(c) =
1
4
− 45

131072 c7
+ 231

32768 c5
− 3003

65536 c3
+ 6435

32768 c
+ 12155 c

131072

0.8 0.85 0.9 0.95

0.49

0.492

0.494

0.496

0.498

fN (c)

c

Figure 6.5 Variational functions fN(c) for particle between walls up toN = 16 are shown

together with their minima whose y-coordinates approach rapidly the correct limiting value

1/2.

H. Kleinert, PATH INTEGRALS



6.4 Strong-Coupling Theory for Particle in Box 593

(N, fmin
N ) = (2, 0.466506), (3, 0.492061), (4, 0.497701),

(5, 0.499253), (6, 0.499738), (7, 0.499903),

(8, 0.499963), (9, 0.499985), (10, 0.499994),

(11, 0.499998), (12, 0.499999), (13, 0.5000),

(14, 0.50000), (15, 0.50000), (16, 0.5000). (6.82)

They converge exponentially fast against the known result 1/2, as shown in Fig. 6.6.

6.4.4 Special Properties of Expansion

The alert reader will have noted that the expansion coefficients (6.80) possess two special prop-
erties: First, they lack the factorial growth at large orders which would be found for a single
power [u2(τ)]k+1 of the interaction potential, as mentioned in Eq.(3C.27) and will be proved in
Eq. (17.323). The factorial growth is canceled by the specific combination of the different powers
in the interaction (6.72), making the series (6.71) convergent inside a certain circle. Still, since
this circle has a finite radius (the ratio test shows that it is unity), this convergent series cannot be
evaluated in the limit of large g which we want to do, so that variational strong-coupling theory is
not superfluous. However, there is a second remarkable property of the coefficients (6.80): They
contain an infinite number of zeros in the sequence of coefficients for each odd number, except
for the first one. We may take advantage of this property by separating off the irregular term
a1g = g/4 = π2/4d2, setting α = g2/4ω2, and rewriting F̃ (ḡ) as

F̃ (α) =
1

4

[

1 +
1√
α
h(α)

]

, h(α) ≡
N
∑

n=0

22n+1a2nα
n. (6.83)

Inserting the numbers (6.80), the expansion of h(α) reads

h(α) = 1 +
α

2
− α2

8
+
α3

16
− 5

128
α4 +

7

256
α5 − 21

1024
α6 +

33

2048
α7 − 429

32768
α8 + . . . .

(6.84)

We now realize that this is the binomial power series expansion of
√

1 + α. Substituting this into
(6.83), we find the exact ground state energy for the Euclidean action (6.67)

E(0) =
π2

4d2

(

1 +

√

1 +
1

α

)

=
π2

4d2

(

1 +

√

1 + 4ω2
d4

π4

)

. (6.85)

0.00005

0.499992

0.499994

0.499996

0.499998

0.5

fmin
N

e−N

Figure 6.6 Exponentially fast convergence of strong-coupling approximations towards

exact value.



594 6 Path Integrals with Topological Constraints

Here we can go directly to the strong-coupling limit α → ∞ to recover the exact ground state
energy E(0) = π2/2d2.

The energy (6.85) can of course be obtained directly by solving the Schrödinger equation
associated with the potential (6.72),

1

2

{

− ∂2

∂x2
+

[

λ(1 − λ)

cos2 x
− 1

]}

ψ(x) =
d2

π2
Eψ(x), (6.86)

where we have replaced u→ dx/π and set ω2d4/π4 ≡ λ(λ − 1), so that

λ =
1

2

(

1 +

√

1 + 4ω2
d4

π4

)

. (6.87)

Equation (6.86) is of the Pöschl-Teller type [see Subsection 14.4.5], and has the ground state wave
function, to be derived in Eq. (14.141),

ψ0(x) = const × cosλ x , (6.88)

with the eigenvalue π2E(0)/d2 = (λ2 − 1)/2, which agrees of course with Eq. (6.85).
If we were to apply the variational procedure to the series h(α)/

√
α in F of Eq. (6.85), by

replacing the factor 1/ω2n contained in each power αn by Ω =
√

Ω2 − rα and re-expanding now in
powers of α rather than g, we would find that all approximation hN (c) would possess a minimum
with unit value, such that the corresponding extremal functions fN(c) yield the correct final energy
in each order N .

6.4.5 Exponentially Fast Convergence

With the exact result being known, let us calculate the exponential approach of the variational
approximations observed in Fig. (6.6). Let us write the exact energy (6.85) as

E(0) =
1

4
(g +

√

g2 + 4ω2). (6.89)

After the replacement ω →
√

Ω2 − ρg, this becomes

E(0) =
Ω

4

(

ĝ +
√

ĝ2 − 4ρĝ + 4
)

, (6.90)

where ĝ ≡ g/Ω2. The Nth-order approximant fN(g) of E(0) is obtained by expanding (6.91) in
powers of ĝ up to order N ,

fN(g) = Ω

N
∑

0

hk(ρ)ĝ
k, (6.91)

and substituting ρ by 2Mr2 = (1 − ω̂2)/ĝ [compare (6.81)], with ω̂2 ≡ ω2/Ω2. The resulting
function of ĝ is then optimized.

It is straightforward to find an integral representation for FN (g). Setting rĝ ≡ z, we have

FN =
1

2πi

∮

C0

dz

zN+1

1 − zN+1

1 − z
f(z), (6.92)

where the contour C0 refers to small circle around the origin and

F (z) =
Ω

4

(

z

r
+

√

z2

r2
− 4z + 4

)

=
1

4r

(

z +
√

(z − z1)(z − z2)
)

, (6.93)

H. Kleinert, PATH INTEGRALS



Notes and References 595

with branch points at z1,2 = 2r2
(

1 ±
√

1 − 1/r2
)

. For z < 1, we rewrite

1 − zN+1 = (1 − z)(1 + z + . . .+ zN) = (1 − z)(N + 1)

−(1 − z)2
[

N + (N − 1)z + . . .+ zN−1
]

(6.94)

and estimate this for z ≈ 1 as

1 − zN+1 = (1 − z)(N + 1) + O(|1 − z|2N2). (6.95)

Dividing the approximant (6.92) by Ω, and indicating this by a hat, we use (6.94) to write F̂N as
a sum over the discontinuities across the two branch cuts:

F̂N =
(N + 1)

2πi

∮

C0

dzF̂ (z)

zN+1
F̂ (z) =

(N + 1)

N !
F̂ (N)(0)

= (N + 1)

2
∑

i=1

∫

∞

zi

dz

zN+1
F̂ (z). (6.96)

The integrals yield a constant plus a product

∆F̂N ≈ (N + 1)(N − 3
2 )!

N !

1

(r2)N
1

(1 + r2)N
, (6.97)

which for large N can be approximated using Stirling’s formula (5.204) by

∆F̂N ≈ A

(r2)N
√
N
e−r2N . (6.98)

In the strong-coupling limit of interest here, ω̂2 = 0, and r = 1/ĝ = Ω/g = c. In Fig. 6.5 we see

that the optimal c-values tend to unity for N → ∞, so that ∆f̂N goes to zero like e−N , as observed
in Fig. 6.6.
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Mirum, quod divina natura dedit agros

It’s wonderful that divine nature has given us fields
Varro (116BC–27BC)

7
Many Particle Orbits –
Statistics and Second Quantization

Realistic physical systems usually contain groups of identical particles such as spe-
cific atoms or electrons. Focusing on a single group, we shall label their orbits by
x(ν)(t) with ν = 1, 2, 3, . . . , N. Their Hamiltonian is invariant under the group of all
N ! permutations of the orbital indices ν. Their Schrödinger wave functions can then
be classified according to the irreducible representations of the permutation group.

Not all possible representations occur in nature. In more than two space dimen-
sions, there exists a superselection rule, whose origin is yet to be explained, which
eliminates all complicated representations and allows only for the two simplest ones
to be realized: those with complete symmetry and those with complete antisymme-
try. Particles which appear always with symmetric wave functions are called bosons .
They all carry an integer-valued spin. Particles with antisymmetric wave functions
are called fermions1 and carry a spin whose value is half-integer.

The symmetric and antisymmetric wave functions give rise to the characteristic
statistical behavior of fermions and bosons. Electrons, for example, being spin-1/2
particles, appear only in antisymmetric wave functions. The antisymmetry is the
origin of the famous Pauli exclusion principle, allowing only a single particle of a
definite spin orientation in a quantum state, which is the principal reason for the
existence of the periodic system of elements, and thus of matter in general. The
atoms in a gas of helium, on the other hand, have zero spin and are described by
symmetric wave functions. These can accommodate an infinite number of particles
in a single quantum state giving rise to the famous phenomenon of Bose-Einstein
condensation. This phenomenon is observable in its purest form in the absence of
interactions, where at zero temperature all particles condense in the ground state.
In interacting systems, Bose-Einstein statistics can lead to the stunning quantum
state of superfluidity.

The particular association of symmetry and spin can be explained within rela-
tivistic quantum field theories in spaces with more than two dimensions where it is
shown to be intimately linked with the locality and causality of the theory.

1Had M. Born as editor of Zeitschrift für Physik not kept a paper by P. Jordan in his suitcase
for half a year in 1925, they would be called jordanons . See the bibliographical notes by B. Schroer
(hep-th/0303241).
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In two dimensions there can be particles with an exceptional statistical behavior.
Their properties will be discussed in Section 7.5. In Chapter 16, such particles will
serve to explain the fractional quantum Hall effect.

The problem to be solved in this chapter is how to incorporate the statistical
properties into a path integral description of the orbits of a many-particle system.
Afterwards we describe the formalism of second quantization or field quantization

in which the path integral of many identical particle orbits is abandoned in favor
of a path integral over a single fluctuating field which is able to account for the
statistical properties in a most natural way.

7.1 Ensembles of Bose and Fermi Particle Orbits

For bosons, the incorporation of the statistical properties into the orbital path in-
tegrals is quite easy. Consider, for the moment, distinguishable particles. Their
many-particle time evolution amplitude is given by the path integral

(x
(1)
b , . . . ,x

(N)
b ; tb|x(1)

a , . . . ,x(N)
a ; ta) =

N
∏

ν=1

[∫

DDx(ν)
]

eiA
(N)/h̄, (7.1)

with an action of the typical form

A(N) =
∫ tb

ta
dt







N
∑

ν=1

[

M (ν)

2
ẋ(ν)2 − V (x(ν))

]

− 1

2

N
∑

ν 6=ν′=1

Vint(x
(ν) − x(ν′))







, (7.2)

where V (x(ν)) is some common background potential for all particles interacting via
the pair potential Vint(x

(ν)−x(ν′)). We shall ignore interactions involving more than
two particles at the same time, for simplicity.

If we want to apply the path integral (7.1) to indistinguishable particles of spin
zero, we merely have to add to the sum over all paths x(ν)(t) running to the final

positions x
(ν)
b the sum of all paths running to the indistinguishable permuted final

positions x
(p(ν))
b . The amplitude for n bosons reads therefore

(x
(1)
b , . . . ,x

(N)
b ; tb|x(1)

a , . . . ,x(N)
a ; ta)=

∑

p(ν)

(x
(p(1))
b , . . . ,x

(p(N))
b ; tb|x(1)

a , . . . ,x(N)
a ; ta), (7.3)

where p(ν) denotes the N ! permutations of the indices ν. For bosons of higher spin,
the same procedure applies to each subset of particles with equal spin orientation.

A similar discussion holds for fermions. Their Schrödinger wave function requires
complete antisymmetrization in the final positions. Correspondingly, the amplitude
(7.1) has to be summed over all permuted final positions x

(p(ν))
b , with an extra minus

sign for each odd permutation p(ν). Thus, the path integral involves both sums and

differences of paths. So far, the measure of path integration has always been a true
sum over paths. For this reason it will be preferable to attribute the alternating
sign to an interaction between the orbits, to be called a statistics interaction. This
interaction will be derived in Section 7.4.
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For the statistical mechanics of Bose- and Fermi systems consider the imaginary-
time version of the amplitude (7.3):

(x
(1)
b , . . . ,x

(N)
b ; h̄β|x(1)

a , . . . ,x
(N)
a ; 0)=

∑

p(ν)

ǫp(ν)(x
(p(1))
b , . . . ,x

(p(N))
b ; h̄β|x(1)

a , . . . ,x
(N)
a ; 0),

(7.4)

where ǫp(ν) = ±1 is the parity of even and odd permutations p(ν), to be used for
Bosons and Fermions, respectively. Its spatial trace integral yields the partition
function of N -particle orbits:

Z(N) =
1

N !

∫

dDx(1) · · · dDx(N) (x(1), . . . ,x(N); h̄β|x(1), . . . ,x(N); 0). (7.5)

A factor 1/N ! accounts for the indistinguishability of the permuted final configura-
tions.

For free particles, each term in the sum (7.4) factorizes:

(x
(p(1))
b , . . . ,x

(p(N))
b ; h̄β|x(1)

a , . . . ,x(N)
a ; 0)0=(x

(p(1))
b h̄β|x(1)

a 0)0 · · · (x(p(N))
b h̄β|x(N)

a 0)0,(7.6)

where each factor has a path integral representation

(x
(p(ν))
b h̄β|x(ν)

a 0)0 =
∫ x(ν)(h̄β)=x

(p(ν))
b

x(ν)(0)=x
(ν)
a

DDx(ν) exp

[

−1

h̄

∫ h̄β

0
dτ
M

2
ẋ(ν)2(τ)

]

, (7.7)

which is solved by the imaginary-time version of (2.74):

(x
(p(ν))
b h̄β|x(ν)

a 0)0 =
1

√

2πh̄2β/M
D exp











−1

h̄

M

2

[

x
(p(ν))
b −x(ν)

a

]2

h̄β











. (7.8)

The partition function can therefore be rewritten in the form

Z
(N)
0 =

1
√

2πh̄2β/M
ND

1

N !

∫

dDx(1) · · ·dDx(N)
∑

p(ν)

ǫp(ν)
N
∏

ν=1

exp











−1

h̄

M

2

[

x(p(ν))−x(ν)
]2

h̄β











.

(7.9)
This is a product of Gaussian convolution integrals which can easily be performed
as before when deriving the time evolution amplitude (2.76) for free particles with
the help of Formula (2.75). Each convolution integral simply extends the temporal
length in the fluctuation factor by h̄β. Due to the indistinguishability of the parti-
cles, only a few paths will have their end points connected to their own initial points,
i.e., they satisfy periodic boundary conditions in the interval (0, h̄β). The sum over
permutations connects the final point of some paths to the initial point of a different
path, as illustrated in Fig. 7.1. Such paths satisfy periodic boundary conditions on
an interval (0, wh̄β), where w is some integer number. This is seen most clearly by
drawing the paths in Fig. 7.1 in an extended zone scheme shown in Fig. 7.2, which
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Figure 7.1 Paths summed in partition function (7.9). Due to indistinguishability of

particles, final points of one path may connect to initial points of another.

Figure 7.2 Periodic representation of paths summed in partition function (7.9), once

in extended zone scheme, and once on D-dimensional hypercylinder embedded in D + 1

dimensions. The paths are shown in Fig. 7.1. There is now only one closed path on the

cylinder. In general there are various disconnected parts of closed paths.

is reminiscent of Fig. 6.1. The extended zone scheme can, moreover, be placed on a
hypercylinder, illustrated in the right-hand part of Fig. 7.2. In this way, all paths
decompose into mutually disconnected groups of closed paths winding around the
cylinder, each with a different winding number w [1]. An example for a connected
path which winds three times 3 around the D-dimensional cylinder contributes to
the partition function a factor [using Formula (2.75)]:

∆Z
(N)
0

3 =
1

√

2πh̄2β/M
3D

∫

dDx(1)dDx(2)dDx(3) exp











−1

h̄

M

2

[

x(3)−x(2)
]2

h̄β











× exp











−1

h̄

M

2

[

x(2)−x(1)
]2

h̄β











exp











−1

h̄

M

2

[

x(1)−x(3)
]2

h̄β











=
VD

√

2πh̄23β/M
D .(7.10)

For cycles of length w the contribution is

∆Z
(N)w
0 = Z0(wβ) , (7.11)
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where Z0(wβ) is the partition function of a free particle in a D-dimensional volume
VD for an imaginary-time interval wh̄β:

Z0(wβ) =
VD

√

2πh̄2wβ/M
D . (7.12)

In terms of the thermal deBroglie length le(h̄β) ≡
√

2πh̄2β/M associated with the
temperature T = 1/kBβ [recall (2.353)], this can be written as

Z0(wβ) =
VD

lDe (wh̄β)
. (7.13)

There is an additional factor 1/w in Eq. (7.11), since the number of connected
windings of the total w! closed paths is (w − 1)!. In group theoretic language, it
is the number of cycles of length w, usually denoted by (1, 2, 3, . . . , w), plus the
(w−1)! permutations of the numbers 2, 3, . . . , w. They are illustrated in Fig. 7.3 for
w = 2, 3, 4. In a decomposition of all N ! permutations as products of cycles, the
number of elements consisting of C1, C2, C3, . . . cycles of length 1, 2, 3, . . . contains

M(C1, C2, . . . , CN) =
N !

∏N
w=1Cw!w

Cw
(7.14)

elements [2].
With the knowledge of these combinatorial factors we can immediately write

down the canonical partition function (7.9) of N bosons or fermions as the sum of
all orbits around the cylinder, decomposed into cycles:

Z
(N)
0 (β) =

1

N !

∑

p(ν)

ǫp(ν)M(C1, . . . , CN)
N
∏

w=1
N = ΣwwCw

[

Z0(wβ)
]Cw

. (7.15)

The sum can be reordered as follows:

Z
(N)
0 =

1

N !

∑

C1,...,CN

N = ΣwwCw

M(C1, . . . , CN) ǫw,C1,...,Cn

N
∏

w=1

[

Z0(wβ)
]Cw

. (7.16)

The parity ǫw,C1,...,Cn
of permutations is equal to (±1)Σw(w+1)Cw . Inserting (7.14),

the sum (7.16) can further be regrouped to

Z
(N)
0 (β) =

∑

C1,...,CN

N = ΣwwCw

1
∏N
w=1Cw!w

Cw
(±1)Σw(w+1)Cw

N
∏

w=1

[

Z0(wβ)
]Cw

=
∑

C1,...,CN

N = ΣwwCw

N
∏

w=1

1

Cw!

[

(±1)w−1
Z0(wβ)

w

]Cw

. (7.17)

For N = 0, this formula yields the trivial partition function Z
(0)
0 (β) = 1 of the no-

particle state, the vacuum. ForN = 1, i.e., a single particle, we find Z
(1)
0 (β) = Z0(β).
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Figure 7.3 Among the w! permutations of the different windings around the cylinder,

(w− 1)! are connected. They are marked by dotted frames. In the cycle notation for per-

mutation group elements, these are (12) for two elements, (123), (132) for three elements,

(1234), (1243), (1324), (1342), (1423), (1432) for four elements. The cycles are shown on

top of each graph, with trivial cycles of unit length omitted. The graphs are ordered

according to a decreasing number of cycles.

The higher Z
(N)
0 can be written down most efficiently if we introduce a characteristic

temperature

T (0)
c ≡ 2πh̄2

kBM

[

N

VDζ(D/2)

]2/D

, (7.18)

and measure the temperature T in units of T (0)
c , defining a reduced temperature

t ≡ T/T (0)
c . Then we can rewrite Z

(1)
0 (β) as tD/2VD. Introducing further the N -

dependent variable

τN ≡
[

N

ζ(D/2)

]2/D

t, (7.19)

we find Z
(1)
0 = τ

D/2
1 . A few low-N examples are for bosons and fermions:

Z
(2)
0 = ±2−1−D/2τ

D/2
2 + τD2 ,

Z
(3)
0 = ±3−1−D/2τ

D/2
3 + 2−1−D/2τD3 ± 3−12−1τ

3D/2
3 , (7.20)

Z
(4)
0 = ±2−2−Dτ

D/2
4 + (2−3−D + 3−1−D/2) τD4 ±2−2−

D
2 τ

3D/2
4 + 3−12−3τ 2D4 .
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From Z
(N)
0 (β) we calculate the specific heat [recall (2.602)] of the free canonical

ensemble:

C
(N)
0 = T

d2

dT 2
[T logZ

(N)
0 ] = τN

d2

dτ 2N
[τN logZ

(N)
0 ], (7.21)

and plot it [3] in Fig. 7.4 against t for increasing particle number N . In the limit
N → ∞, the curves approach a limiting form with a phase transition at T = T (0)

c ,
which will be derived from a grand-canonical ensemble in Eqs. (7.67) and (7.70).

The partition functions can most easily be calculated with the help of a recursion
relation [4, 5], starting from Z

(0)
0 ≡ 1:

Z
(N)
0 (β) =

1

N

N
∑

n=1

(±1)n−1Z0(nβ)Z
(N−n)
0 (β). (7.22)

0.5 1 1.5 2 2.5 3

0.25

0.5

0.75

1

1.25
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2

T/T 0
(c)

C
(N)
0 /NkB

N = ∞
N = 10

✛

✛

Figure 7.4 Plot of the specific heat of free Bose gas with N = 10, 20, 50, 100, 500, ∞
particles. The curve approaches for large T the Dulong-Petit limit 3kBN/2 corresponding

to the three harmonic kinetic degrees of freedom in the classical Hamiltonian p2/2M .

There are no harmonic potential degrees of freedom.

This relation is proved with the help of the grand-canonical partition function
which is obtained by forming the sum over all canonical partition functions Z

(N)
0 (β)

with a weight factor zN :

ZG 0(β) ≡
∞
∑

N=0

Z
(N)
0 (β) zN . (7.23)

The parameter z is the Boltzmann factor of one particle with the chemical potential
µ:

z = z(β) ≡ eβµ. (7.24)

It is called the fugacity of the ensemble. Inserting the cycle decompositions (7.17),
the sum becomes

ZG 0(β) =
∑

C1,...,CN

N = ΣwwCw

N
∏

w=1

1

Cw!

[

(±1)w−1
Z0(wβ)e

wβµ

w

]Cw

. (7.25)
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The right-hand side may be rearranged to

ZG 0(β) =
∞
∏

w=1

∞
∑

Cw=0

1

Cw!

[

(±1)w−1
Z0(wβ)e

wβµ

w

]Cw

= exp

[

∞
∑

w=1

(±1)w−1
Z0(wβ)

w
ewβµ

]

. (7.26)

From this we read off the grand-canonical free energy [recall (1.545)] of noninteract-
ing identical particles

FG(β) ≡ − 1

β
logZG 0(β) = − 1

β

∞
∑

w=1

(±1)w−1
Z0(wβ)

w
ewβµ. (7.27)

This is simply the sum of the contributions (7.11) of connected paths to the canonical
partition function which wind w = 1, 2, 3, . . . times around the cylinder [1, 6]. Thus
we encounter the same situation as observed before in Section 3.20: the free energy
of any quantum-mechanical system can be obtained from the perturbation expansion
of the partition function by keeping only the connected diagrams.

The canonical partition function is obviously obtained from (7.27) by forming
the derivative:

Z
(N)
0 (β) =

1

N !

∂N

∂zN
ZG 0(β)

∣

∣

∣

∣

∣

z=0

. (7.28)

It is now easy to derive the recursion relation (7.22). From the explicit form (7.27),
we see that

∂

∂z
ZG 0 = −

(

∂

∂z
βFG

)

ZG 0 . (7.29)

Applying to this N − 1 more derivatives yields

∂N−1

∂zN−1

[

∂

∂z
ZG 0

]

= −
N−1
∑

l=0

(N − 1)!

l!(N − l − 1)!

(

∂l+1

∂zl+1
βFG

)

∂N−l−1

∂zN−l−1
ZG0 .

To obtain from this Z
(N)
0 we must divide this equation by N ! and evaluate the

derivatives at z = 0. From (7.27) we see that the l + 1st derivative of the grand-
canonical free energy is

∂l+1

∂zl+1
βFG

∣

∣

∣

∣

∣

z=0

= −(±1)l l!Z0((l + 1)β). (7.30)

Thus we obtain

1

N !

∂N

∂zN
ZG 0

∣

∣

∣

∣

∣

z=0

=
1

N

N−1
∑

l=0

(±1)l Z0((l + 1)β)
1

(N − l − 1)!

∂N−l−1

∂zN−l−1
ZG0

∣

∣

∣

∣

∣

z=0

.
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Inserting here (7.28) and replacing l → n−1 we obtain directly the recursion relation
(7.22).

The grand-canonical free energy (7.27) may be simplified by using the property

Z0(wβ) = Z0(β)
1

wD/2
(7.31)

of the free-particle partition function (7.12), to remove a factor 1/
√
w
D
from Z0(wβ).

This brings (7.27) to the form

FG = − 1

β
Z0(β)

∞
∑

w=1

(±1)w−1
ewβµ

wD/2+1
. (7.32)

The average number of particles is found from the derivative with respect to the
chemical potential2

N = − ∂

∂µ
FG = Z0(β)

∞
∑

w=1

(±1)w−1
ewβµ

wD/2
. (7.33)

The sums over w converge certainly for negative or vanishing chemical potential µ,
i.e., for fugacities smaller than unity. In Section 7.3 we shall see that for fermions,
the convergence extends also to positive µ.

If the particles have a nonzero spin S, the above expressions carry a multiplicity
factor gS = 2S + 1, which has the value 2 for electrons.

The grand-canonical free energy (7.32) will now be studied in detail thereby
revealing the interesting properties of many-boson and many-fermion orbits, the
ability of the former to undergo Bose-Einstein condensation, and of the latter to
form a Fermi sphere in momentum space.

7.2 Bose-Einstein Condensation

We shall now discuss the most interesting phenomenon observable in systems con-
taining a large number of bosons, the Bose-Einstein condensation process.

7.2.1 Free Bose Gas

For bosons, the above thermodynamic functions (7.32) and (7.33) contain the func-
tions

ζν(z) ≡
∞
∑

w=1

zw

wν
. (7.34)

These start out for small z like z, and increase for z → 1 to ζ(ν), where ζ(z) is
Riemann’s zeta function (2.521). The functions ζν(z) are called Polylogarithmic

functions in the mathematical literature [7], where they are denoted by Liν(z).

2In grand-canonical ensembles, one always deals with the average particle number 〈N〉 for which
one writes N in all thermodynamic equations [recall (1.551)]. This should be no lead to confusion.
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They are related to the Hurwitz zeta function ζ(ν, a, z) ≡ ∑∞
w=0 z

w/(w + a)ν as
ζν(z) = zζ(ν, 1, z). The functions φ(z, ν, a) = ζ(ν, a, z) are also known as Lerch

functions .
In terms of the functions ζν(z), and the explicit form (7.12) of Z0(β), we may

write FG and N of Eqs. (7.32) and (7.33) simply as

FG = − 1

β
Z0(β)ζD/2+1(z) = − 1

β

VD
lDe (h̄β)

ζD/2+1(z), (7.35)

N = Z0(β)ζD/2(z) =
VD

lDe (h̄β)
ζD/2(z). (7.36)

The most interesting range where we want to know the functions ζν(z) is for
negative small chemical potential µ. There the convergence is very slow and it is
useful to find a faster-convergent representation. As in Subsection 2.15.6 we rewrite
the sum over w for z = eβµ as an integral plus a difference between sum and integral

ζν(e
βµ) ≡

∫ ∞

0
dw

ewβµ

wν
+

(

∞
∑

w=1

−
∫ ∞

0
dw

)

ewβµ

wν
. (7.37)

The integral yields Γ(1− ν)(−βµ)ν−1, and the remainder may be expanded sloppily
in powers of µ to yield the Robinson expansion (2.581):

ζν(e
βµ) = Γ(1− ν)(−βµ)ν−1 +

∞
∑

k=0

1

k!
(βµ)kζ(ν − k). (7.38)

There exists a useful integral representation for the functions ζν(z):

ζν(z) ≡
1

Γ(ν)
iν(βµ), (7.39)

where iν(α) denotes the integral

iν(α) ≡
∫ ∞

0
dε

εν−1

eε−α − 1
, (7.40)

containing the Bose distribution function (3.93):

nb
ε =

1

eε−α − 1
. (7.41)

Indeed, by expanding the denominator in the integrand in a power series

1

eε−α − 1
=
∞
∑

w=1

e−wεewα, (7.42)

and performing the integrals over ε, we obtain directly the series (7.34).
It is instructive to express the grand-canonical free energy FG in terms of the

functions iν(α). Combining Eqs. (7.35) with (7.39) and (7.40), we obtain

FG=− 1

β
Z0(β)

iD/2+1(βµ)

Γ(D/2+1)
=− 1

βΓ(D/2+1)

VD
√

2πh̄2β/M
D

∫ ∞

0
dε

εD/2

eε−βµ − 1
. (7.43)
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The integral can be brought to another form by partial integration, using the fact
that

1

eε−βµ − 1
=

∂

∂ε
log(1− e−ε+βµ). (7.44)

The boundary terms vanish, and we find immediately:

FG =
1

βΓ(D/2)

VD
√

2πh̄2β/M
D

∫ ∞

0
dε εD/2−1 log(1− e−ε+βµ). (7.45)

This expression is obviously equal to the sum over momentum states of oscillators
with energy h̄ωp ≡ p2/2M , evaluated in the thermodynamic limit N → ∞ with
fixed particle density N/V , where the momentum states become continuous:

FG =
1

β

∑

p

log(1− e−βh̄ωp+βµ). (7.46)

This is easily verified if we rewrite the sum with the help of formula (1.558) for the
surface of a unit sphere in D dimensions and a change of variables to the reduced
particle energy ε = βp2/2M as an integral

∑

p

→ VD

∫ dDp

(2πh̄)D
= VDSD

1

(2πh̄)D

∫

dp pD−1 = VDSD
(2M/β)D/2

(2πh̄)D
1

2

∫

dε εD/2−1

=
1

Γ(D/2)

VD
√

2πh̄2β/M
D

∫ ∞

0
dε εD/2−1. (7.47)

Another way of expressing this limit is

∑

p

→
∫ ∞

0
dεNε, (7.48)

where Nε is the reduced density of states per unit energy interval:

Nε ≡
1

Γ(D/2)

VD
√

2πh̄2β/M
D εD/2−1. (7.49)

The free energy of each oscillator (7.46) differs from the usual harmonic oscillator
expression (2.485) by a missing ground-state energy h̄ωp/2. The origin of this
difference will be explained in Sections 7.7 and 7.14.

The particle number corresponding to the integral representations (7.45) and
(7.46) is

N = − ∂

∂µ
FG =

1

Γ(D/2)

VD
√

2πh̄2β/M
D

∫ ∞

0
dε

εD/2−1

eε−βµ − 1
≈
∑

p

1

eβh̄ωp−βµ − 1
. (7.50)
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Figure 7.5 Plot of functions ζν(z) for ν = 3/2 and 5/2 appearing in Bose-Einstein

thermodynamics.

For a given particle number N , Eq. (7.36) allows us to calculate the fugacity as
a function of the inverse temperature, z(β), and from this the chemical potential
µ(β) = β−1 log z(β). This is most simply done by solving Eq. (7.36) for β as a
function of z, and inverting the resulting function β(z). The required functions
ζν(z) are shown in Fig. 7.5.

There exists a solution z(β) only if the total particle number N is smaller than
the characteristic function defined by the right-hand side of (7.36) at unit fugacity
z(β) = 1, or zero chemical potential µ = 0:

N <
VD

lDe (h̄β)
ζ(D/2). (7.51)

Since le(h̄β) decreases with increasing temperature, this condition certainly holds
at sufficiently high T . For decreasing temperature, the solution exists only as long
as the temperature is higher than the critical temperature Tc = 1/kBβc, determined
by

N =
VD

lDe (h̄βc)
ζ(D/2). (7.52)

This determines the critical density of the atoms. The deBroglie length at the crit-
ical temperature will appear so frequently that we shall abbreviate it by ℓc:

le(h̄βc) = ℓc ≡
[

N

VDζ(D/2)

]−1/D

. (7.53)

The critical density is reached at the characteristic temperature T (0)
c introduced in

Eq. (7.18). Note that for a two-dimensional system, Eq. (7.18) yields T (0)
c = 0,

due to ζ(1) = ∞, implying the nonexistence of a condensate. One can observe,
however, definite experimental signals for the vicinity of a transition. In fact, we
have neglected so far the interaction between the atoms, which is usually repulsive.
This will give rise to a special type of phase transition called Kosterlitz-Thouless
transition. For a discussion of this transition see other textbooks [8].
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By combining (7.18) with (7.36) we obtain an equation for the temperature
dependence of z above Tc:

1 =
(

T

Tc

)D/2 ζD/2(z(T ))

ζ(D/2)
, T > Tc. (7.54)

This is solved most easily by calculating T/Tc as a function of z = eβµ. Since for
small z, all functions ην(z) behave like z, the high-temperature-behavior of z is
z ≈ ζ(D/2)(Tc/T )

D/2

If the temperature drops below Tc, the system can no longer accommodate all
particles N in a normal state. A certain fraction of them, say Ncond(T ), is forced to
condense in the ground state of zero momentum, forming the so-called Bose-Einstein

condensate. The condensate acts like a particle reservoir with a chemical potential
zero.

Both phases can be described by the single equation for the number of normal
particles, i.e., those outside the condensate:

Nn(T ) =
VD

lDe (h̄β)
ζD/2(z(β)). (7.55)

For T > Tc, all particles are normal and the relation between µ and the temperature
is found from the equation Nn(T ) = N , where (7.55) reduces to (7.36). For T < Tc,
however, the chemical potential vanishes so that z = 1 and (7.55) reduces to

Nn(T ) =
VD

lDe (h̄β)
ζD/2(1), (7.56)

which yields the temperature dependence of the number of normal particles:

Nn(T )

N
=
(

T

Tc

)D/2

, T < Tc. (7.57)

The density of particles in the condensate is therefore given by

Ncond(T )

N
= 1− Nn(T )

N
= 1−

(

T

Tc

)D/2

. (7.58)

We now calculate the internal energy which is, according to the general thermo-
dynamic relation (1.553), given by

E = FG + TS + µN = FG − T∂TFG + µN = ∂β(βFG) + µN. (7.59)

Expressing N as −∂FG/∂µ, we can also write

E = FG + (β∂β − µ∂µ)FG. (7.60)

Inserting (7.35) we see that only the β-derivative of the prefactor contributes since
(β∂β − µ∂µ) applied to any function of z = eβµ vanishes. Thus we obtain directly

E = −D
2
FG, (7.61)
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which becomes with (7.35) and (7.36):

E =
D

2β
Z0(β)ζD/2+1(z) =

D

2

ζD/2+1(z)

ζD/2(z)
NkBT. (7.62)

The entropy is found using the thermodynamic relation (1.574):

S =
1

T
(E − µN − FG) =

1

T

(

−D + 2

2
FG − µN

)

, (7.63)

or, more explicitly,

S = kB

[

D + 2

2
Z0(β)ζD/2+1(z)− βµN

]

= kBN

[

D + 2

2

ζD/2+1(z)

ζD/2(z)
− βµ

]

. (7.64)

For T < Tc, the entropy is given by (7.64) with µ = 0, z = 1 and N replaced by
the number Nn of normal particles of Eq. (7.57):

S< = kBN
(

T

Tc

)D/2 (D + 2)

2

ζD/2+1(1)

ζD/2(1)
, T < Tc. (7.65)

The particles in the condensate do not contribute since they are in a unique state.
They do not contribute to E and FG either since they have zero energy and µ = 0.
Similarly we find from (7.62):

E< =
D

2
NkBT

(

T

Tc

)D/2 ζD/2+1(1)

ζD/2(1)
=

D

D + 2
TS<, T < Tc. (7.66)

The specific heat C at a constant volume in units of kB is found for T < Tc from
(7.65) via the relation C = T∂TS|N [recall (2.602)]:

C = kBN
(

T

Tc

)D/2 (D + 2)D

4

ζD/2+1(1)

ζD/2(1)
, T < Tc. (7.67)

For T > Tc, the chemical potential at fixed N satisfies the equation

β∂β(βµ) =
D

2

ζD/2(z)

ζD/2−1(z)
. (7.68)

This follows directly from the vanishing derivative β∂βN = 0 implied by the fixed
particle number N . Applying the derivative to Eq. (7.36) and using the relation
z∂zζν(z) = ζν−1(z), as well as β∂βf(z) = z∂zf(z) β∂β(βµ), we obtain

β∂βN = [β∂βZ0(β)]ζD/2(z)+Z0(β)β∂βζD/2(z)

= −D
2
Z0(β)ζD/2(z)+Z0(β) ζD/2−1(z)β∂β(βµ)=0, (7.69)

thus proving (7.68).
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The specific heat C at a constant volume in units of kB is found from the deriva-
tive C = T∂TS|N = −β2∂βE|N , using once more (7.68):

C = kBN

[

(D + 2)D

4

ζD/2+1(z)

ζD/2(z)
− D2

4

ζD/2(z)

ζD/2−1(z)

]

, T > Tc. (7.70)

At high temperatures, C tends to the Dulong-Petit limit DkBN/2 since for small z
all ζν(z) behave like z.

Consider now the physical case D = 3, where the second denominator in (7.70)
contains ζ1/2(z). As the temperature approaches the critical point from above, z
tends to unity from below and ζ1/2(z) diverges. Thus 1/ζ1/2(1) = 0 and the second
term in (7.70) disappears, yielding a maximal value in three dimensions

Cmax = kBN
15

4

ζ5/2(1)

ζ3/2(1)
≈ kBN 1.92567. (7.71)

This value is the same as the critical value of Eq. (7.67) below Tc. The specific heat
is therefore continuous at Tc. It shows, however, a marked kink. To calculate the
jump in the slope we calculate the behavior of the thermodynamic quantities for
T >∼Tc. As T passes Tc from below, the chemical potential starts becoming smaller
than zero, and we can expand Eq. (7.54)

1 =
(

T

Tc

)3/2
[

1 +
∆ζ3/2(z)

ζ3/2(1)

]

, (7.72)

where the symbol ∆ in front of a quantity indicates that the same quantity at zero
chemical potential is subtracted. Near Tc, we can approximate

(

T

Tc

)3/2

− 1 ≈ −∆ζ3/2(z)

ζ3/2(1)
. (7.73)

We now use the Robinson expansion (7.38) to approximate for small negative µ:

ζ3/2(e
βµ)=Γ(−1/2)(−βµ)1/2+ζ(3/2)+βµζ(1/2)+ . . . , (7.74)

with Γ(−1/2) = −2
√
π. The right-hand side of (7.73) becomes therefore

−∆ζ3/2(z)/ζ3/2(1) = −2
√
π/ζ(3/2)(−βµ)1/2. Inserting this into Eq. (7.73), we ob-

tain the temperature dependence of −µ for T >
∼ Tc:

−µ ≈ 1

4π
kBTc ζ

2(3/2)

[

(

T

Tc

)3/2

− 1

]2

. (7.75)

The leading square-root term on the right-hand side of (7.74) can also be de-
rived from the integral representation (7.40) which receives for small α its main
contribution from α ≈ 0, where ∆i3/2(α) can be approximated by

∆i3/2(α)=
∫ ∞

0
dz z1/2

(

1

ez−α−1
− 1

ez−1

)

≈ α
∫ ∞

0
dz

1

z1/2(z − α)
=−π

√
−α. (7.76)
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Using the relation (7.61) for D = 3, we calculate the derivative of the energy with
respect to the chemical potential from

∂E

∂µ

∣

∣

∣

∣

T,V
= −3

2

∂FG
∂µ

∣

∣

∣

∣

T,V
. (7.77)

This allows us to find the internal energy slightly above the critical temperature Tc,
where −µ is small, as

E ≈ E< +
3

2
Nµ = E< − 3

8π
NkBTc ζ

2(3/2)

[

(

T

Tc

)3/2

− 1

]2

. (7.78)

Forming the derivative of this with respect to the temperature we find that the slope
of the specific heat below and above Tc jumps at Tc by

∆

(

∂C

∂T

)

≈ 27

16π
ζ2(3/2)N

kB
Tc

≡ 3.6658N
kB
Tc
, (7.79)

the individual slopes being from (7.66) with D = 3 (using ∂C/∂T = ∂2E/∂T 2):

(

∂C<
∂T

)

=
15

4

3

2

ζ(5/2)

ζ(3/2)

NkB
Tc

≈ 2.8885
NkB
Tc

, T < Tc, (7.80)

and from (7.78):

(

∂C>
∂T

)

=

(

∂C<
∂T

)

−∆

(

∂C

∂T

)

≈ −0.7715
NkB
Tc

, T > Tc. (7.81)

The specific heat of the three-dimensional Bose gas is plotted in Fig. 7.6, where
it is compared with the specific heat of superfluid helium for the appropriate atomic
parameters n = 22.22 nm−3, M = 6.695× 10−27 kg, where the critical temperature
is Tc ≈ 3.145K, which is somewhat larger than Tc ≈ 2.17 K of helium.

There are two major disagreements due to the strong interactions in helium.
First, the small-T behavior is (T/Tc)

3/2 rather than the physical (T/Tc)
3 due to

phonons. Second, the Dulong-Petit limit of an interacting system is closer to that
of harmonic oscillators which is twice as big as the free-particle case. Recall that
according to the Dulong-Petit law (2.603), C receives a contribution NkBT/2 per
harmonic degree of freedom, potential as well as kinetic. Free particle energies are
only harmonic in the momentum.

In 1995, Bose-Einstein condensation was observed in a dilute gas in a way that fits
the above simple theoretical description [9]. When 87Rb atoms were cooled down
in a magnetic trap to temperatures less than 170 nK, about 50 000 atoms were
observed to form a condensate, a kind of “superatom”. Recently, such condensates
have been set into rotation and shown to become perforated by vortex lines [10] just
like rotating superfluid helium II.
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Figure 7.6 Specific heat of ideal Bose gas with phase transition at Tc. For comparison,

we have also plotted the specific heat of superfluid helium for the same atomic parameters.

The experimental curve is reduced by a factor 2 to have the same Dulong-Petit limit as

free bosons.

7.2.2 Bose Gas in Finite Box

The condensation process can be understood better by studying a system in which
there is a large but finite number of bosons enclosed in a large cubic box of size L.
Then the sum on the right-hand side of Eq. (7.50) gives the contribution of the dis-
crete momentum states to the total particle number. This implies that the function
ζD/2(z) in Eq. (7.36) has to be replaced by a function ζboxD/2(z) defined by the sum over
the discrete momentum vectors pn = h̄π(n1, n2, . . . , nD)/L with ni = 1, 2, 3, . . . :

N =
VD

lDe (h̄β)
ζboxD/2(z) =

∑

p
n

1

eβp2
n
/2M−βµ − 1

. (7.82)

This can be expressed in terms of the one-dimensional auxiliary partition function
of a particle in a one-dimensional “box”:

Z1(b) ≡
∞
∑

n=1

e−bn
2/2, b ≡ βh̄2π2/ML2 = πl2e(h̄β)/2L

2, (7.83)

as

N =
VD

lDe (h̄β)
ζboxD/2(z) =

∑

w

ZD
1 (wb)zw. (7.84)

The function Z1(b) is related to the elliptic theta function

ϑ3(u, z) ≡ 1 + 2
∞
∑

n=1

zn
2

cos 2nu (7.85)
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by Z1(b) = [ϑ3(0, e
−b/2) − 1]/2. The small-b behavior of this function is easily

calculated following the technique of Subsection 2.15.6. We rewrite the sum with
the help of Poisson’s summation formula (1.205) as a sum over integrals

ϑ3(0, e
−b/2) =

∞
∑

k=−∞

e−k
2b/2 =

∞
∑

m=−∞

∫ ∞

−∞
dk e−k

2b/2+2πikm

=

√

2π

b

(

1 + 2
∞
∑

m=1

e−2π
2m2/b

)

. (7.86)

Thus, up to exponentially small corrections, we may replace ϑ3(0, e
−b/2) by

√

2π/b,

so that for small b (i.e., large L/
√
β):

Z1(b) =

√

π

2b
− 1

2
+O(e−2π

2/b). (7.87)

For large b, Z1(b) falls exponentially fast to zero.
In the sum (7.82), the lowest energy level with p1,...,1 = h̄π(1, . . . , 1)/L plays a

special role. Its contribution to the total particle number is the number of particles
in the condensate:

Ncond(T ) =
1

eDb/2−βµ − 1
=

zD
1− zD

, zD ≡ eβµ−Db/2. (7.88)

This number diverges for zD → 1, where the box function ζboxD/2(z) has a pole
1/(Db/2− βµ). This pole prevents βµ from becoming exactly equal to Db/2 when
solving the equation (7.82) for the particle number in the box.

For a large but finite system near T = 0, almost all particles will go into the
condensate, so thatDb/2−βµ will be very small, of the order 1/N , but not zero. The
thermodynamic limit can be performed smoothly by defining a regularized function
ζ̄boxD/2(z) in which the lowest, singular term in the sum (7.82) is omitted. Let us
define the number of normal particles which have not condensed into the state of
zero momentum as Nn(T ) = N − Ncond(T ). Then we can rewrite Eq. (7.82) as an
equation for the number of normal particles

Nn(T ) =
VD

lDe (h̄β)
ζ̄boxD/2(z(β)), (7.89)

which reads more explicitly

Nn(T ) = SD(zD) ≡
∞
∑

w=1

[ZD
1 (wb)ewDb/2 − 1]zwD. (7.90)

A would-be critical point may now be determined by setting here zD = 1 and
equating the resulting Nn with the total particle number N . If N is sufficiently
large, we need only the small-b limit of SD(1) which is calculated in Appendix 7A
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[see Eq. (7A.12)], so that the associated temperature T (1)
c is determined from the

equation

N =

√

π

2bc

3

ζ(3/2) +
3π

4b
(1)
c

logC3bc + . . . , (7.91)

where C3 ≈ 0.0186. In the thermodynamic limit, the critical temperature T (0)
c is

obtained by ignoring the second term, yielding

N =

√

π

2b
(0)
c

3

ζ(3/2), (7.92)

in agreement with Eq. (7.52), if we recall b from (7.83). Using this we rewrite (7.91)
as

1 ≡
(

T (1)
c

T
(0)
c

)3/2

+
3

2N

π

2b
(0)
c

logC3b
(0)
c . (7.93)

Expressing b(0)c in terms of N from (7.92), this implies

δT (1)
c

T
(0)
c

≈ 1

ζ2/3(3/2)N1/3
log

2

πC3

N2/3

ζ2/3(3/2)
. (7.94)

Experimentally, the temperature T (1)
c is not immediatly accessible. What is easy

to find is the place where the condensate density has the largest curvature, i.e.,
where d3Ncond/dT

3 = 0. The associated temperature T exp
c is larger than T (1)

c by a
factor 1 + O(1/N), so that it does not modify the leading finite-size correction to
order in 1/N1/3. The proof is given in Appendix 7B.

7.2.3 Effect of Interactions

Superfluid helium has a lower transition temperature than the ideal Bose gas. This
should be expected since the atomic repulsion impedes the condensation process of
the atoms in the zero-momentum state. Indeed, a simple perturbative calculation
based on a potential whose Fourier transform behaves for small momenta like

Ṽ (k) = g
[

1− r2effk
2/6 + . . .

]

(7.95)

gives a negative shift ∆Tc ≡ Tc − T (0)
c proportional to the particle density [11]:

∆Tc

T
(0)
c

= − 1

3h̄2
Mr2effg

N

V
, (7.96)

where V is the three-dimensional volume. When discussing the interacting system we
shall refer to the previously calculated critical temperature of the free system as T (0)

c .
This result follows from the fact that for small g and reff , the free-particle energies
ǫ0(k) = h̄2k2/2M are changed to ǫ(k) = ǫ(0)+h̄2k2/2M∗ with a renormalized inverse
effective mass 1/M∗ = [1 −Mr2effgN/3h̄

2V ]/M . Inserting this into Eq. (7.18), from
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which we may extract the equation for the temperature shift ∆Tc/T
(0)
c =M/M∗−1,

we obtain indeed the result (7.96). The parameter reff is called the effective range of
the potential. The parameter g in (7.95) can be determined by measuring the s-wave
scattering length a in a two-body scattering experiment. The relation is obtained
from a solution of the Lippmann-Schwinger equation (1.525) for the T -matrix. In a
dilute gas, this yields in three dimensions

g =
2πh̄2

M/2
a. (7.97)

The denominator M/2 is the reduced mass of the two identical bosons. In D = 2
dimensions where g has the dimension energy×lengthD , Eq. (7.97) is replaced by
[12, 13, 14, 15, 17]

g =
πD/2−1

22−DΓ(1−D/2)(naD)D−2 + Γ(D/2− 1)

2πh̄2

M/2
aD−2 ≡ γ(D, naD)

2πh̄2

M/2
aD−2.

(7.98)
In the limit D → 2, this becomes

g = − 2πh̄2/M

ln(eγna2/2)
, (7.99)

where γ is the Euler-Mascheroni constant. The logarithm in the denominator implies
that the effective repulsion decreases only very slowly with decreasing density [16].

For a low particle density N/V , the effective range reff becomes irrelevant and
the shift ∆Tc depends on the density with a lower power (N/V )κ/3, κ < 3. The low-
density limit can be treated by keeping in (7.95) only the first term corresponding
to a pure δ-function repulsion

V (x− x′) = g δ(3)(x− x′). (7.100)

For this interaction, the lowest-order correction to the energy is in D dimensions

∆E = g
∫

dDxn2(x), (7.101)

where n(x) is the local particle density. For a homogeneous gas, this changes the
grand-canonical free energy from (7.35) to

FG = − 1

β

VD
lDe (h̄β)

ζD/2+1(z) + g VD

[

ζD/2(z)

lDe (h̄β)

]2

+O(g2), (7.102)

where we have substituted n(x) by the constant density N/VD of Eq. (7.36). We
now introduce a length parameter α proportional to the coupling constant g:

g ≡ 2

β

α

le(h̄β)
lDe (h̄β). (7.103)
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In three dimensions, α coincides in the dilute limit (small naD) with the s-wave
scattering length a of Eq. (7.97). In in D dimensions, the relation is

α = γ(D, naD)

[

a

le(h̄β)

]D−3

a. (7.104)

In two dimensions, this has the limit

α = − le(h̄β)

ln(eγna2/2)
. (7.105)

We further introduce the reduced dimensionless coupling parameter α̂ ≡ α/le(h̄β) =
γ(D, naD) [a/le(h̄β)]

D−2, for brevity [recall (7.104)]. In terms of α̂, the grand-
canonical free energy (7.102) takes the form

FG = − 1

β

VD
lDe (h̄β)

{

ζD/2+1(z)− 2α̂[ζD/2(z)]
2
}

+O(α2). (7.106)

A second-order perturbation calculation extends this by a term [18, 19]

∆FG = − 1

β

VD
lDe (h̄β)

{

8α̂2hD(z)
}

, (7.107)

where hD(z) = h
(1)
D (z) + h

(2)
D (z) is the sum of two terms. The first is simply

h
(1)
D (z) ≡ [ζD/2(z)]

2ζD/2−1(z), (7.108)

the second has been calculated only for D = 3:

h
(2)
3 (z) ≡

∞
∑

n1,n2,n3=1

zn1+n2+n3

√
n1n2n3(n1+n2)(n1+n3)

. (7.109)

The associated particle number is

N =
VD

lDe (h̄β)

{

ζD/2(z)− 4α̂ζD/2−1(z)ζD/2(z) + 8α̂2z
dhD(z)

dz

}

+O(α3). (7.110)

For small α, we may combine the equations for FG and N and derive the following
simple relation between the shift in the critical temperature and the change in the
particle density caused by the interaction

∆Tc

T
(0)
c

≈ − 2

D

∆n

n
, (7.111)

where ∆n is the change in the density at the critical point caused by the interaction.
The equation is correct to lowest order in the interaction strength.

The calculation of ∆Tc/T
(0)
c in three dimensions has turned out to be a difficult

problem. The reason is that the perturbation series for the right-hand side of (7.111)
is found to be an expansion in powers (T − T (0)

c )−n which needs a strong-coupling
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evaluation for T → T (0)
c . Many theoretical papers have given completely different

result, even in sign, and Monte Carlo data to indicate sign and order of magnitude.
The ideal tool for such a calculation, field theoretic variational perturbation theory,
has only recently been developed [20], and led to a result in rough agreement with
Monte Carlo data [21]. Let us briefly review the history.

All theoretical results obtained in the literature have the generic form

∆Tc

T
(0)
c

= c[ζ(3/2)]κ/3
[

a

ℓc

]κ

= c aκ
(

N

V

)κ/3

, (7.112)

where the right-hand part of the equation follows from the middle part via Eq. (7.53).
In an early calculation [22] based on the δ-function potential (7.100), κ was found
to be 1/2, with a downward shift of Tc. More recent studies, however, have lead
to the opposite sign [23]–[38]. The exponents κ found by different authors range
from κ = 1/2 [23, 18, 31] to κ = 3/2 [19]. The most recent calculations yield
κ = 1 [24]–[28], i.e., a direct proportionality of ∆Tc/T

(0)
c to the s-wave scattering

length a, a result also found by Monte Carlo simulations [29, 30, 38], and by an
extrapolation of experimental data measured in the strongly interacting superfluid
4He after diluting it with the help of Vycor glass [40]. As far as the proportionality
constant c is concerned, the literature offers various values which range for κ = 1
from c = 0.34 ± 0.03 [29] to c = 5.1 [40]. A recent negative value c ≈ −0.93 [41]
has been shown to arise from a false assumption on the relation between canonical
and grand-canonical partition function [42]. An older Monte Carlo result found
c ≈ 2.3 [30] lies close to the theoretical results of Refs. [23, 27, 28], who calculated
c1 ≈ −8ζ(1/2)/3ζ1/3(3/2) ≈ 2.83, 8π/3ζ4/3(3/2) ≈ 2.33, 1.9, respectively, while
the extrapolation of the experimental data on 4He in Vycor glass favored c = 5.1,
near the theoretical estimate c = 4.66 of Stoof [24]. The latest Monte Carlo data,
however, point towards a smaller value c ≈ 1.32±0.02, close to theoretical numbers
1.48 and 1.14 in Refs. [35, 39] and 1.14± 0.11 in Ref. [21].

There is no space here to discuss in detail how the evaluation is done. We only
want to point out an initially surprising result that in contrast to a potential with
a finite effective range in (7.96), the δ-function repulsion (7.100) with a pure phase
shift causes no change of Tc linear an1/D if only the first perturbative correction
to the grand-canonical free energy in Eq. (7.106) is taken into account. A simple
nonperturbative approach which shows this goes as follows: We observe that the
one-loop expression for the free energy may be considered as the extremum with
respect to σ of the variational expression

F σ
G = − 1

β

VD
lDe (h̄β)

[

ζD/2+1(ze
σ)− σ2

8α̂

]

, (7.113)

which is certainly correct to first order in a. We have introduced the reduced dimen-
sionless coupling parameter α̂ ≡ α/le(h̄β) = γ(D, naD) [a/le(h̄β)]

D−2, for brevity
[recall (7.104)]. The extremum lies at σ = Σ which solves the implicit equation

Σ ≡ −4α̂ζD/2(ze
Σ). (7.114)
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The extremal free energy is

FΣ
G = − 1

β

VD
lDe (h̄β)

{

ζD/2+1(Z)− 2α̂[ζD/2(Z)]
2
}

, Z ≡ zeΣ. (7.115)

The equation for the particle number, obtained from the derivative of the free energy
(7.113) with respect to −µ, reads

N =
VD

lDe (h̄β)
ζD/2(Z), (7.116)

and fixes Z. This equation has the same form as in the free case (7.36), so that the
phase transition takes place at Z = 1, implying the same transition temperature as
in the free system to this order. As discussed above, a nonzero shift (7.112) can only
be found after summing up many higher-order Feynman diagrams which all diverge
at the critical temperature.

Let us also point out that the path integral approach is not an adequate tool for
discussing the condensed phase below the critical temperature, for which infinitely
many particle orbits are needed. In the condensed phase, a quantum field theoretic
formulation is more appropriate (see Section 7.6). The result of such a discussion
is that due to the positive value of c in (7.112), the phase diagram has an unusual
shape shown in Fig. 7.7. The nose in the phase transition curve implies that the
system can undergo Bose-Einstein condensation slightly above T (0)

c if the interaction
is increased (see Ref. [43]).

1

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1 1.2 1.4

superfluid

normal

T/T
(0)
c

aeff/aeff(T = 0)

Figure 7.7 Reentrant transition in phase diagram of Bose-Einstein condensation for

different interaction strengths. Curves were obtained in Ref. [43] from a variationally im-

proved one-loop approximation to field-theoretic description with properly imposed posi-

tive slope at T
(0)
c (dash length increasing with order of variational perturbation theory).

Short solid curve and dashed straight line starting at T
(0)
c are due to Ref. [38] and [21].

Diamonds correspond to the Monte-Carlo data of Ref. [29] and dots stem from Ref. [44],

both scaled to their critical value aeff(T = 0) ≈ 0.63.
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An important consequence of a repulsive short-range interaction is a change in
the particle excitation energies below Tc. It was shown by Bogoliubov [46] that this
changes the energy from the quadratic form ǫ(p) = p2/2M to

ǫ(p) =
√

ǫ2(p) + 2gnǫ(p), (7.117)

which starts linearly like ǫ(p) =
√

gn/M |p| = h̄
√

4πan/M |p| for small p, the slope
defining the second sound velocity. In the strongly interacting superfluid helium, the
momentum dependence has the form shown in Fig. 7.8. It was shown by Bogoliubov

ǫ(p)/kB

o
K

p/h̄ (A
◦ −1)

Figure 7.8 Energies of elementary excitations of superfluid 4He measured by neutron

scattering showing excitation energy of NG bosons [after R.A. Cowley and A.D. Woods,

Can. J. Phys 49, 177 (1971)].

[46] that a system in which ǫ(p) > vc |p| for some finite critical velocity vc will display
superfluidity as long as it moves with velocity v = ∂ǫ(p)/∂p smaller than vc. This
follows by forming the free energy in a frame moving with velocity v. It is given by
the Legendre transform:

f ≡ ǫ(p)− v · p, (7.118)

which has a minimum at p = 0 if as long as |v| < vc, implying that the particles
do not move. Seen from the moving frame, they keep moving with a constant
velocity −v, without slowing down. This is in contrast to particles with the free
spectrum ǫ(p) = p2/2M for which f has a minimum at p = Mv, implying that
these particles always move with the same velocity as the moving frame. Note
that the second sound waves of long wavelength have an energy ǫ(p = c|p| just
like light waves in the vacuum, with light velocity exchanged by the sound velocity.
Even though the superfluid is nonrelativistic, the sound waves behave like relativistic
particles. This phenomenon is known from the sound waves in crystals which behave
similar to relativistic massless particles. In fact, the Debye theory of specific heat
is very similar to Planck’s black-body theory, except that the lattice size appears
explicitly as a short-wavelength cutoff. It has recently been speculated that the
relativistically invariant world we observe is merely the long-wavelength limit of a
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world crystal whose lattice constant is very small [47], of the order of the Planck
length ℓP ≈ 8.08× 10−33 cm.

7.2.4 Bose-Einstein Condensation in Harmonic Trap

In a harmonic magnetic trap, the path integral (7.7) of the individual orbits becomes

(x
(p(ν))
b h̄β|x(ν)

a 0)ω=
∫ x(p(ν))(τb)=x

(ν)
b

x(ν)(τa)=x
(ν)
a

DDx(ν)exp

{

−1

h̄

∫ h̄β

0
dτ
M

2

[

ẋ(ν)2+ ω2x(ν)2
]

}

, (7.119)

and is solved by [recall (2.411)]

(x
(p(ν))
b h̄β|x(ν)

a 0)ω =
1

√

2πh̄/M
D

√

ω

sinh βh̄ω

D

(7.120)

× exp

{

− 1

2h̄

Mω

sinh βh̄ω
[(x

(p(ν)) 2
b + x(ν) 2

a ) cosh βh̄ω−2x
(p(ν))
b x(ν)

a ]

}

.

The partition function (7.5) can therefore be rewritten in the form

Z(N)
ω =

√

Mω

2πh̄ sinh βh̄ω

ND
1

N !

∫

dDx(1) · · · dDx(N)

×
∑

p(ν)

exp

{

− 1

2h̄

Mω

sinh βh̄ω
[(x(p(ν)) 2 + x(ν) 2) cosh βh̄ω − 2x(p(ν))x(ν)]

}

. (7.121)

7.2.5 Thermodynamic Functions

With the same counting arguments as before we now obtain from the connected
paths, which wind some number w = 1, 2, 3, . . . times around the cylinder, a con-
tribution to the partition function

∆Z(N)w
ω = Zω(wβ)

1

w
=
∫

dDx zω(wβ;x)
1

w
, (7.122)

where

Zω(β) =
1

[2 sinh(βh̄ω/2)]D
(7.123)

is the D-dimensional harmonic partition function (2.407), and zω(wβ;x) the associ-
ated density [compare (2.333) and (2.412)]:

zω(β;x) =

√

ωM

2πh̄ sinh βh̄ω

D

exp

[

−Mω

h̄
tanh

βh̄ω

2
x2

]

. (7.124)

Its spatial integral is the partition function of a free particle at an imaginary-time
interval β [compare (2.412)]. The sum over all connected contributions (7.122) yields
the grand-canonical free energy

FG = − 1

β

∞
∑

w=1

Zω(wβ)
ewβµ

w
= − 1

β

∞
∑

w=1

∫

dDx zω(wβ;x)
ewβµ

w
. (7.125)
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Note the important difference between this and the free-boson expression (7.27).
Whereas in (7.27), the winding number appeared as a factor w−D/2 which was re-
moved from Z0(wβ) by writing Z0(wβ) = Z0(β)/w

D/2 which lead to (7.32), this is
no longer possible here. The average number of particles is thus given by

N = − ∂

∂µ
FG =

∞
∑

w=1

Zω(wβ)e
wβµ =

∫

dDx
∞
∑

w=1

zω(wβ;x)e
wβµ. (7.126)

Since Zω(wβ) ≈ e−wDh̄ωβ/2 for large w, the sum over w converges only for µ <
Dh̄ω/2. Introducing the fugacity associated with the ground-state energy

zD(β) = e−(Dh̄ω/2−µ)β = e−Dβh̄ω/2z, (7.127)

by analogy with the fugacity (7.24) of the zero-momentum state, we may rewrite
(7.126) as

N = − ∂

∂µ
FG = Zω(β)ζD(βh̄ω; zD). (7.128)

Here ζD(βh̄ω; zD) are generalizations of the functions (7.34):

ζD(βh̄ω; zD) ≡
∞
∑

w=1

[

sinh(ωh̄β/2)

sinh(wωh̄β/2)

]D

ewβµ=Z−1ω (β)
∞
∑

w=1

1

(1− e−2wβh̄ω)D/2
zwD, (7.129)

which reduce to ζD(z) in the trapless limit ω → 0, where zD → z. Expression (7.128)
is the closest we can get to the free-boson formula (7.36).

We may define local versions of the functions ζD(βh̄ω; zD) as in Eq.(7.124):

ζD(βh̄ω; zD;x)≡Z−1ω (β)
∞
∑

w=1

1

(1− e−2wβh̄ω)D/2

(

ωM

πh̄

)D/2

e−Mω tanh(wβh̄ω/2)x2/h̄zwD,(7.130)

in terms of which the particle number (7.128) reads

N = − ∂

∂µ
FG =

∫

dDxnω(x) ≡ Zω(β)
∫

dDx ζD(βh̄ω; zD;x), (7.131)

and the free energy (7.125) becomes

FG =
∫

dDx f(x) ≡ − 1

β
Zω(β)

∫

dDx
∫ zD

0

dz

z
ζD(βh̄ω; z;x). (7.132)

For small trap frequency ω, the function (7.130) has a simple limiting form:

ζD(βh̄ω; zD;x)
ω≈0≈

(

βh̄ω

2π

)D/2
1

λDω

∞
∑

w=1

1

wD/2
e−wβ(Mω2x2/2−µ), (7.133)

where λω is the oscillator length scale
√

h̄/Mω of Eq. (2.303). Together with the

prefactor Zω(h̄β) in (7.131), which for small ω becomes Zω(h̄β) ≈ 1/(βh̄ω)D, this
yields the particle density

n0(β; z;x) =
1

lDe (h̄β)

∞
∑

w=1

1

wD/2
e−wβ[V (x)−µ] =

1

lDe (h̄β)
ζD/2(e

−β[V (x)−µ]), (7.134)
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where V (x) = Mω2x2/2 is the oscillator potential and le(h̄β) the thermal length
scale (2.353). There is only one change with respect to the corresponding expression
for the density in the homogeneous gas [compare (7.36)]: the fugacity z = eβµ in
the argument by the local fugacity

z(x) ≡ e−β[V (x)−µ]. (7.135)

The function ζD(βh̄ω; zD) starts out like zD, and diverges for zD → 1 like
[2 sinh(βh̄ω/2)]D/(zD−1). This divergence is the analog of the divergence of the box
function (7.82) which reflects the formation of a condensate in the discrete ground
state with particle number [compare (7.88)]

Ncond =
1

eDβh̄ω/2−βµ − 1
. (7.136)

This number diverges for µ→ Dh̄ω/2 or zD → 1.
In a box with a finite the number of particles, Eq. (7.36) for the particle number

was replaced by the equation for the normal particles (7.89) containing the reg-
ularized box functions ζ̄boxD/2(z). In the thermodynamic limit, this turned into the
function ζD/2(z) in which the momentum sum was evaluated as an integral. The
present functions ζD(βh̄ω; zD) governing the particle number in the harmonic trap
play precisely the role of the previous box functions, with a corresponding singular
term which has to be subtracted, thus defining a regularized function

ζ̄D(βh̄ω; zD) ≡ ζD(βh̄ω; zD)−Z−1ω (β)
zD

1−zD
= Z−1ω (β)SD(βh̄ω; zD), (7.137)

where S(βh̄ω, zD) is the sum

S(βh̄ω, zD) ≡
∞
∑

w=1

[

1

(1−e−wβh̄ω)D
− 1

]

zwD (7.138)

The local function (7.130) has a corresponding divergence and can be regularized
by a similar subtraction.

The sum (7.138) governs directly the number of normal particles

Nn(T ) = Zω(β)ζ̄D(βh̄ω; zD) ≡ SD(βh̄ω, zD). (7.139)

The replacement of the singular equation (7.128) by the regular (7.139) of completely
analogous to the replacement of the singular (7.82) by the regular (7.89) in the box.

7.2.6 Critical Temperature

Bose-Einstein condensation can be observed as a proper phase transition in the
thermodynamic limit, in which N goes to infinity, at a constant average particle
density in the trap defined by N/λDω ∝ NωD. In this limit, ω goes to zero and the
sum (7.139) becomes ζD(zD)/βh̄ω

D. The associated particle equation

Nn =
1

(βh̄ω)D
ζD(zD) (7.140)
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can be solved only as long as zD < 1. Above Tc, this equation determines zD as
a function of T from the condition that all particles are normal, Nn = N . Below
Tc, it determines the temperature dependence of the number of normal particles by
inserting zD = 1, where

Nn =
1

(βh̄ω)D
ζ(D). (7.141)

The particles in the ground state from a condensate, whose fraction is given by
Ncond(T )/N ≡ 1−Nn(T )/N. This is plotted in Fig. 7.9 as a function of the temper-
ature for a total particle number N = 40 000.

The critical point with T = Tc, µ = µc = Dω/2 is reached if Nn is equal to the
total particle number N where

kBT
(0)
c = h̄ω

[

N

ζ(D)

]1/D

. (7.142)

This formula has a solution only for D > 1.
Inserting (7.142) back into (7.162), we may re-express the normal fraction as a

function of the temperature as follows:

N (0)
n

N
≈
(

T

T
(0)
c

)D

, (7.143)

and the condensate fraction as

N
(0)
cond

N
≈ 1−

(

T

T
(0)
c

)D

. (7.144)

Including the next term in (7.162), the condensate fraction becomes

N
(0)
cond

N
≈ 1−

(

T

T
(0)
c + δTc

)D

. (7.145)

It is interesting to re-express the critical temperature (7.142) in terms of the
particle density at the origin which is at the critical point, according to Eq. (7.134),

n0(0) =
1

lDe (h̄βc)
ζ(D/2), (7.146)

where we have shortened the notation on an obvious way. From this we obtain

kBT
(0)
c =

2πh̄2

M

[

n0(0)

ζ(D/2)

]2/D

. (7.147)

Comparing this with the critical temperature without a trap in Eq. (7.18) we see
that both expressions agree if we replace N/V by the uniform density n0(0). As an
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Figure 7.9 Condensate fraction Ncond/N ≡ 1 − Nn/N as function of temperature for

total number of N particles. The long- and short-dashed curves on the left-hand show

the zeroth and first-order approximations (7.144) and (7.163). The dotted curve displays

the free-boson behavior (7.58). The right-hand figure shows experimental data for 40 000
87Rb atoms near Tc by Ensher et. al., Phys. Rev. Lett. 77 , 4984 (1996). The solid

curve describes noninteracting Bose gas in a harmonic trap [cf. (7.144)]. The dotted curve

corrects for finite-N effects [cf. (7.163)]. The dashed curve is the best fit to the data. The

transition lies at Tc ≈ 280 nK, about 3% below the dotted curve.

obvious generalization, we conclude that Bose condensation in any trap will set in
when the density at the lowest point reaches the critical value determined by (7.147)
[and (7.18)].

Note the different power D and argument in ζ(D) in Eq. (7.142) in comparison
with the free-boson argument D/2 in Eq. (7.18). This has the consequence that
in contrast to the free Bose gas, the gas in a trap can form a condensate in two
dimensions. There is now, however, a problem in D = 1 dimension where (7.142)
gives a vanishing transition temperature. The leading-order expression (7.142) for
critical temperature can also be calculated from a simple statistical consideration.
For small ω, the density of states available to the bosons is given by the classical
expression (4.216):

ρcl(E) =
(

M

2πh̄2

)D/2 1

Γ(D/2)

∫

dDx [E − V (x)]D/2−1. (7.148)

The number of normal particles is given by the equation

Nn =
∫ ∞

Emin

dE
ρcl(E)

eE/kBT − 1
, (7.149)

where Emin is the classical ground state energy. For a harmonic trap, the spatial
integral in (7.148) can be done and is proportional to ED, after which the integral
over E in (7.149) yields [kBT/h̄ω]

Dζ(D) = (T/T (0)
c )DN , in agreement with (7.143).
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Alternatively we may use the phase space formula

Nn =
∫

dDx
dDp

(2πh̄)D
1

eβ[p2/2M+V (x)] − 1
=
∞
∑

n=1

∫

dDx
dDp

(2πh̄)D
e−nβ[p

2/2M+V (x)]

=
∞
∑

n=1

1
√

2πh̄2nβ/M
D

∫

dDx e−nβV (x), (7.150)

where the spatial integration produces a factor
√

2π/Mω2nβ so that the right-hand

side becomes again (T/T (0)
c )DN .

7.2.7 More General Anisotropic Trap

The equation (7.150) for the particle number can be easily calculated for a more
general trap where the potential has the anisotropic power behavior

V (x) =
M

2
ω̃2ã2

D
∑

i=1

(

|xi|
ai

)pi

, (7.151)

where ω̃ is some frequency parameter and ã is the geometric average ã ≡
[

ΠD
i=1ai

]1/D
.

Inserting (7.151) into (7.150) we encounter a product of integrals

D
∏

i=1

∫ ∞

−∞
dx e−nβMω̃2ã2(|xi|/ai)pi/2 =

D
∏

i=1

ai
(βMω̃2ã2/2)1/pi

Γ(1 + 1/pi), (7.152)

so that the right-hand side of (7.150) becomes (T/T (0)
c )D̃N , with the critical tem-

perature

kBT
(0)
c =

Mã2ω̃2

2

(

h̄ω̃

Mã2ω̃2

)D/D̃ [
NπD/2

ζ(D̃)
∏D
i=1 Γ(1 + 1/pi)

]1/D̃

, (7.153)

where D̃ is the dimensionless parameter

D̃ ≡ D

2
+

D
∑

i=1

1

pi
. (7.154)

which takes over the role of D in the harmonic formula (7.142). A harmonic
trap with different oscillator frequencies ω1, . . . , ωD along the D Cartesian axes,
is a special case of (7.151) with pi ≡ 2, ω2

i = ω̃2ã2/a2i and D̃ = D, and formula
(7.153) reduces to (7.142) with ω replaced by the geometric average of the frequencies

ω̃ ≡ (ω1 · · ·ωD)1/D. The parameter ã disappears from the formula. A free Bose gas
in a box of size VD =

∏D
i=1(2ai) = 2DãD is described by (7.151) in the limit pi → ∞

where D̃ = D/2. Then Eq. (7.153) reduces to

kBT
(0)
c =

πh̄2

2Mã2

[

N

ζ(D/2)

]2/D

=
2πh̄2

M

[

N

VDζ(D/2)

]2/D

, (7.155)
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in agreement with (7.53) and (7.18).

Another interesting limiting case is that of a box of length L = 2a1 in the x-
direction with p1 = ∞, and two different oscillators of frequency ω2 and ω3 in the
other two directions. To find T (0)

c for such a Bose gas we identify ω̃2ã2/a22,3 = ω2
2,3

in the potential (7.151), so that ω̃4/ã2 = ω2
2ω

2
3/a

2
1, and obtain

kBT
(0)
c = h̄ω̃

(

πh̄

2Mω̃

)1/5 [
N

a1ζ(5/2)

]2/5

= h̄ω̃

(

2πλω1λω2

L2

)1/5 [
N

ζ(5/2)

]2/5

. (7.156)

7.2.8 Rotating Bose-Einstein Gas

Another interesting potential can be prepared in the laboratory by rotating a Bose
condensate [48] with an angular velocity Ω around the z-axis. The vertical trapping
frequencies is ωz ≈ 2π × 11.0Hz ≈ 0.58×nK, the horizontal one is ω⊥ ≈ 6 × ωz.
The centrifugal forces create an additional repulsive harmonic potential, bringing
the rotating potential to the form

V (x) =
Mω2

z

2

(

z2 + 36ηr2⊥ +
κ

2

r4⊥
λ2ωz

)

=
h̄ωz
2

(

z2

λ2ωz

+ 36η
r2⊥
λ2ωz

+
κ

2

r4⊥
λ4ωz

)

, (7.157)

where r2⊥ = x2 + y2, η ≡ 1− Ω2/ω2
⊥, κ ≈ 0.4, and λωz

≡ 3.245µm ≈ 1.42× 10−3K.
For Ω > ω⊥, η turns negative and the potential takes the form of a Mexican hat as
shown in Fig. 3.13, with a circular minimum at r2m = −36ηλ2ωz

/κ. For large rotation
speed, the potential may be approximated by a circular harmonic well, so that we
may apply formula (7.156) with a1 = 2πrm, to obtain the η-independent critical
temperature

kBT
(0)
c ≈ h̄ωz

(

κ

π

)1/5
[

N

ζ(5/2)

]2/5

. (7.158)

For κ = 0.4 and N = 300 000, this yields Tc ≈ 53nK.

At the critical rotation speed Ω = ω⊥, the potential is purely quartic r⊥ =
√

(x2+y2). To estimate T (0)
c we approximate it for a moment by the slightly different

potential (7.151) with the powers p1 = 2, p2 = 4, p3 = 4, a1 = λωz
, a2 = a3 =

λωz
(κ/2)1/4, so that formula (7.153) becomes

kBT
(0)
c = h̄ωz

[

π2κ

16Γ4(5/4)

]1/5 [
N

ζ(5/2)

]2/5

. (7.159)

It is easy to change this result so that it holds for the potential ∝ r4 = (x + y)4

rather than x4 + y4: we multiply the right-hand side of equation (7.149) for N by a
factor

2π
∫

rdrdxdy e−r
4

∫

dxdy e−x4−y4
=

π3/2

Γ[5/4]2
. (7.160)
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This factor arrives inversely in front of N in Eq. (7.161), so that we obtain the
critical temperature in the critically rotating Bose gas

kBT
(0)
c = h̄ωz

(

4κ

π

)1/5
[

N

ζ(5/2)

]2/5

. (7.161)

The critical temperature at Ω = ω⊥ is therefore by a factor 41/5 ≈ 1.32 larger
than at infinite Ω. Actually, this limit is somewhat academic in a semiclassical
approximation since the quantum nature of the oscillator should be accounted for.

7.2.9 Finite-Size Corrections

Experiments never take place in the thermodynamic limit. The particle number
is finite and for comparison with the data we must calculate finite-size corrections
coming from finite N where ll ω ≈ 1/N1/D is small but nonzero. The transition is no
longer sharp and the definition of the critical temperature is not precise. As in the
thermodynamic limit, we shall identify it by the place where zD = 1 in Eq. (7.139)
for Nn = N . For D > 3, the corrections are obtained by expanding the first term
in the sum (7.138) in powers of ω and performing the sums over w and subtracting
ζ(0) for the sum

∑∞
w=1 1:

Nn(Tc) =
1

(βh̄ω)D

[

ζ(D) +
βh̄ω

2
Dζ(D−1) +

(ωh̄β)2

24
D(3D−1)ζ(D−2) + . . .

]

− ζ(0). (7.162)
The higher expansion terms contain logarithmically divergent expressions, for in-
stance in one dimension the first term ζ(1), and in three dimensions ζ(D−2) = ζ(1).
These indicate that the expansion powers of βh̄ω is has been done improperly at
a singular point. Only the terms whose ζ-function have a positive argument can
be trusted. A careful discussion along the lines of Subsection 2.15.6 reveals that
ζ(1) must be replaced by ζreg(1) = − log(βh̄ω) + const., similar to the replacement
(2.590). The expansion is derived in Appendix 7A.

For D > 1, the expansion (7.162) can be used up to the ζ(D − 1) terms and
yields the finite-size correction to the number of normal particles

Nn

N
=

(

T

T
(0)
c

)D

+
D

2

ζ(D − 1)

ζ1−1/D(D)

1

N1/D
. (7.163)

Setting Nn = N , we obtain a shifted critical temperature by a relative amount

δTc

T
(0)
c

= −1

2

ζ(D − 1)

ζ (D−1)/D(D)

1

N1/D
+ . . . . (7.164)

In three dimensions, the first correction shifts the critical temperature T (0)
c down-

wards by 2% for 40 000 atoms.
Note that correction (7.164) has no direct ω-dependence whose size enters only

implicitly via T (0)
c of Eq. (7.142). In an anisotropic harmonic trap, the temperature

H. Kleinert, PATH INTEGRALS



7.2 Bose-Einstein Condensation 629

shift would carry a dimensionless factor ω̃/ω̄ where ω̄ is the arithmetic mean ω̄ ≡
(

∑D
i=1 ωi

)

/D.
The higher finite-size corrections for smaller particle numbers are all calculated

in Appendix 7A. The result can quite simply be deduced by recalling that accord-
ing to the Robinson expansion (2.583), the first term in the naive, wrong power
series expansion of ζν(e

−b) =
∑∞
w=1 e

−wb/wν =
∑∞
k=0(−b)kζ(ν − k)/k! is corrected

by changing the leading term ζ(ν) to Γ(1 − ν)(−b)ν−1 + ζ(ν) which remains finite
for all positive integer ν. Hence we may expect that the correct equation for the
critical temperature is obtained by performing this change in Eq. (7.162) on each
ζ(ν). This expectation is confirmed in Appendix 7A. It yields for D = 3, 2, 1 the
equations for the number of particles in the excited states

Nn =
1

βh̄ω

[

− (log βh̄ω − γ)− βh̄ω

2
ζ(0) +

(βh̄ω)2

12
ζ(−1) + . . .

]

, (7.165)

Nn =
1

(βh̄ω)2

[

ζ(2)− βh̄ω
(

log βh̄ω − γ +
1

2

)

− 7(βh̄ω)2

12
ζ(0) + . . .

]

, (7.166)

Nn =
1

(βh̄ω)3

[

ζ(3) +
3βh̄ω

2
ζ(2)− (βh̄ω)2

(

log βh̄ω − γ +
19

24

)

+ . . .

]

, (7.167)

where γ = 0.5772 . . . is the Euler-Mascheroni number (2.469). Note that all nonlog-
arithmic expansion terms coincide with those of the naive expansion (7.162).

These equations may be solved for β atNn = N to obtain the critical temperature
of the would-be phase transition.

Once we study the position of would-be transitions at finite size, it makes sense
to include also the case D = 1 where the thermodynamic limit has no transition
at all. There is a strong increase of number of particles in the ground state at a
“critical temperature” determined by equating Eq. (7.165) with the total particle
number N , which yields

kBT
(0)
c = h̄ωN

1

(− log βh̄ω + γ)
≈ h̄ωN

1

logN
, D = 1. (7.168)

Note that this result can also be found also from the divergent naive expansion
(7.162) by inserting for the divergent quantity ζ(1) the dimensionally regularized
expression ζreg(1) = − log(βh̄ω) of Eq. (2.590).

7.2.10 Entropy and Specific Heat

By comparing (7.126) with (7.125) we see that the grand-canonical free energy can
be obtained from Nn of Eq. (7.162) by a simple multiplication with −1/β and an
increase of the arguments of the zeta-functions ζ(ν) by one unit. Hence we have, up
to first order corrections in ω

FG(β, µc) = − 1

β(βh̄ω)D

[

ζ(D + 1) + βh̄ω
D

2
ζ(D) + . . .

]

. (7.169)
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From this we calculate immediately the entropy S = −∂TFG = kBβ
2∂βFG as

S = −kB(D + 1)βFG = kB(D + 1)
1

(βh̄ω)D

[

ζ(D + 1) + βh̄ω
D

2
ζ(D) + . . .

]

. (7.170)

In terms of the lowest-order critical temperature (7.142), this becomes

S = kBN(D + 1)







(

T

T
(0)
c

)D
ζ(D + 1)

ζ(D)
+
D

2

[

ζ(D)

N

]1/D (
T

T
(0)
c

)D−1

+ . . .







. (7.171)

From this we obtain the specific heat C = T∂TS below Tc:

C=kBN(D+1)







D

(

T

T
(0)
c

)D
ζ(D+1)

ζ(D)
+
D(D−1)

2

[

ζ(D)

N

]1/D(
T

T
(0)
c

)D−1

+ . . .







.(7.172)

At the critical temperature, this has the maximal value

Cmax≈kBN(D+1)D
ζ(D+1)

ζ(D)

{

1+

[

D−1

2

ζ1+1/D(D)

ζ(D+1)
−D

2

ζ(D−1)

ζ1−1/D(D)

]

1

N1/D

}

. (7.173)

In three dimensions, the lowest two approximations have their maximum at

C(0)
max ≈ kBN 10.805, C(1)

max ≈ kBN 9.556. (7.174)

Above Tc, we expand the total particle number (7.126) in powers of ω as in
(7.162). The fugacity of the ground state is now different from unity:

N(β, µ) =
1

(βh̄ω)D

[

ζD(zD) + βh̄ω
D

2
ζD−1(zD) + . . .

]

. (7.175)

The grand-canonical free energy is

FG(β, µ) = − 1

β(βh̄ω)D

[

ζD+1(zD) + βh̄ω
D

2
ζD(zD) + . . .

]

, (7.176)

and the entropy

S(β, µ)=kB
1

(βh̄ω)D

{

(D + 1)ζD+1(zD) +
1

2

(

βh̄ωD2 − 2βµ
)

ζD(zD) + . . .
}

. (7.177)

The specific heat C is found from the derivative −β∂βS|N as

C(β, µ) = kB
1

(βh̄ω)D

{

(D+1)D ζD+1(zD)

+
1

2

[

D
(

D2 + 1
)

βh̄ω−Dβµ− β∂β(βµ)
]

ζD(zD)+. . .
}

. (7.178)
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The derivative β∂β(βµ) is found as before from the condition: ∂N(β, µ(β))/∂β = 0,
implying

0 =
1

(βh̄ω)D

{

−
[

DζD(zD) + βh̄ω
D

2
(D − 1)ζD−1(zD)

]

+
[

ζD−1(zD) + βh̄ω
D

2
ζD−2(zD)

] [

β∂β(βµ)−βh̄ω
D

2

]

+ . . .
}

, (7.179)

so that we obtain

β∂β(βµ) = D
ζD(zD) + βh̄ω

D

2
ζD−2(zD) + . . .

ζD−1(zD) + βh̄
D

2
ωζD−2(zD) + . . .

. (7.180)

Let us first consider the lowest approximation, where

N(β, µ) ≈ 1

(βh̄ω)D
ζD(z), (7.181)

FG(β, µ) ≈ − 1

β

1

(βh̄ω)D
ζD+1(z) = −N 1

β

ζD+1(z)

ζD(z)
, (7.182)

S(β, µ) ≈ 1

T

[

D + 1

β

1

(βh̄ω)D
ζD+1(z)− µN

]

= NkB

[

D + 1

(βh̄ω)D
ζD+1(z)

ζD(z)
− βµ

]

,

(7.183)
so that from (7.60)

E(β, µ) ≈ D

β

1

(βh̄ω)D
ζD+1(z) = N

D

β

ζD+1(z)

ζD(z)
. (7.184)

The chemical potential at fixed N satisfies the equation

β∂β(βµ) = D
ζD(z)

ζD−1(z)
. (7.185)

The specific heat at a constant volume is

C = kBN

[

(D + 1)D
ζD+1(z)

ζD(z)
−D2 ζD(z)

ζD−1(z)

]

. (7.186)

At high temperatures, C tends to the Dulong-Petit limit DNkB since for small z all
ζν(z) behave like z. This is twice a big as the Dulong-Petit limit of the free Bose
gas since there are twice as many harmonic modes.

As the temperature approaches the critical point from above, z tends to unity
from below and we obtain a maximal value in three dimensions

C(0)
max = kBN

[

12
ζ4(1)

ζ3(1)
− 9

ζ3(1)

ζ2(1)

]

≈ kBN 4.22785. (7.187)

The specific heat for a fixed large number N of particles in a trap has a much
sharper peak than for the free Bose gas. The two curves are compared in Fig. 7.10,
where we also show how the peak is rounded for different finite numbers N .3

3P.W. Courteille, V.S. Bagnato, and V.I. Yukalov, Laser Physics 2 , 659 (2001).
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Figure 7.10 Peak of specific heat for infinite (left-hand plot) and various finite numbers

100, 1000, 10 000 of particles N (right-hand plots) in harmonic trap. The large-N curve

is compared with that of a free Bose gas.

7.2.11 Interactions in Harmonic Trap

Let us now study the effect of interactions on a Bose gas in an isotropic harmonic
trap. This is most easily done by adding to the free part (7.132) the interaction
(7.101) with n(x) taken from (7.131), to express the grand-canonical free energy by
analogy with (7.102) as

FG =
∫

dDx

{

− 1

β
Zω(β)

∫ zD

0

dz

z
ζD(βh̄ω; z;x) + g [Zω(β)ζD(βh̄ω; zD;x)]

2

}

.

(7.188)
Using the relation (7.103), this takes a form more similar to (7.106):

FG = − 1

β
Zω(β)

∫

dDx

{

∫ zD

0

dz

z
ζD(βh̄ω; z;x)−2â lDe (h̄β)Zω(β) [ζD(βh̄ω; zD;x)]

2

}

.

(7.189)
As in Eq. (7.113), we now construct the variational free energy to be extremized

with respect to the local parameter σ(x). Moreover, we shall find it convenient to
express ζ(z) as

∫ z
0 (dz

′/z′)ζ(z′). This leads to the variational expression

F σ
G = − 1

β
Zω(β)

∫

d3x

[

∫ zDe
σ(x)

0

dz

z
ζD(βh̄ω; z;x)−

σ2(x)

8ã

]

, (7.190)

where zD = e−(Dh̄ω/2−µ)β = e−Dβh̄ω/2z and

ã ≡ â lDe (h̄β)Zω(β) =
a

le(h̄β)
lDe (h̄β)Zω(β). (7.191)

The extremum lies at σ(x) = Σ(x) where by analogy with (7.114):

Σ(x) ≡ −4ãζD(βh̄ω; zDe
Σ(x);x). (7.192)

For a small trap frequency ω, we use the function ζD(βh̄ω; zD;x) in the approximate
form (7.133), written as
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ζD(βh̄ω; zD;x) ≡
∞
∑

w=1

√

ω2Mβ

2πw

D

zwDe
−Mwβω2x2/2. (7.193)

In this approximation, Eq. (7.192) becomes

Σ(x)
ω≈0≈ −4ã

∞
∑

w=1

√

ω2Mβ

2πw

D

zwD e
wΣ(x)e−Mwβω2x2/2. (7.194)

For small ã, Σ(x) is also small, so that the factor ewΣ(x) on the right-hand side is
close to unity and can be omitted. This will be inserted into the equation for the
particle number above Tc:

N =
∫

dDxn(x) = Zω(β)
∫

dDx ζ̄D(βh̄ω; zDe
Σ(x);x). (7.195)

Recall that in the thermodynamic limit for D > 1 where the phase transition prop-
erly exists, ζD(βh̄ω; zD;x) and ζ̄D(βh̄ω; zD;x) coincide, due to (7.139) and (7.141).

From (7.195) we may derive the following equation for the critical temperature
as a function of zD:

1 =
Zω(β)

Zω(β
(0)
c )

∫

dDx
ζ̄D(βh̄ω; zDe

Σ(x);x)

ζ̄D(β
(0)
c h̄ω; 1)

, (7.196)

where T (0)
c is the critical temperature in the trap without the repulsive interaction.

The critical temperature Tc of the interacting system is reached if the second argu-
ment of ζ̄D(βh̄ω; zDe

Σ(x);x) hits the boundary of the unit convergence radius of the
expansion (7.130) for x = 0, i.e., if zDe

Σ(0) = 1. Thus we find the equation for Tc:

1 =
Zω(βc)

Zω(β
(0)
c )

∫

dDx
ζ̄D(βch̄ω; e

Σc(x)−Σc(0);x)

ζ̄D(β
(0)
c h̄ω; 1)

, (7.197)

where the subscript of Σc(x) indicates that β in (7.194) has been set equal to βc.
In particular, ã contained in Σc(x) is equal to ãc ≡ a/ℓc. Since this is small by
assumption, we expand the numerator of (7.197) as

1 ≈ Zω(βc)

Zω(β
(0)
c )

{

1 +
1

ζ̄D(β
(0)
c h̄ω; 1)

∫

dDx∆ζ̄D(β
(0)
c h̄ω; 1;x)

}

, (7.198)

where the integral has the explicit small-ω form

∫

dDx
∞
∑

w=1

√

√

√

√
ω2Mβ

(0)
c

2πw

D

e−Mwβ
(0)
c ω2x2/2

(

ew[Σc(x)−Σc(0)] − 1
)

. (7.199)

In the subtracted term we have used the fact that for small ω, ζ̄D(β
(0)
c h̄ω; 1) ≈

ζ̄D(βch̄ω; 1) ≈ ζ(D) is independent of β [see (7.139) and (7.141)].
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Next we approximate near T (0)
c :

Zω(βc)

Zω(β
(0)
c )

≡ 1 +D
∆Tc

T
(0)
c

β(0)
c h̄ω/2

tanh(β
(0)
c h̄ω/2)

ω≈0≈ 1 +D
∆Tc

T
(0)
c

, (7.200)

such that Eq. (7.198) can be solved for ∆Tc/T
(0)
c :

∆Tc

T
(0)
c

≈ − 1

D

1

ζ(D)

∫

dDx∆ζ̄D(β
(0)
c h̄ω; 1;x). (7.201)

On the right-hand side, we now insert (7.199) with the small quantity Σc(x) approx-
imated by Eq. (7.194) at β(0)

c , in which the factor ewΣc(x) on the right-hand side is
replaced by 1, and find for the integral (7.199):

−4ãc

∫

dDx
∞
∑

w=1

√

√

√

√
ω2Mβ

(0)
c

2πw

D

e−Mwβ
(0)
c ω2x2/2 w

∞
∑

w′=1

√

√

√

√
ω2Mβ

(0)
c

2πw′

D
(

eMw′β
(0)
c ω2x2/2−1

)

.

The integral leads to

−4ãc

√

√

√

√
ω2Mβ

(0)
c

2π

D
∞
∑

w,w′=1

1

wD/2−1w′D/2

[

1

(w + w′)D/2
− 1

wD/2

]

≡ −4âcS(D), (7.202)

where S(D) abbreviates the double sum, whose prefactor has been simplifies to −4âc
using (7.191) and the fact that for small ω, Zω(β

(0)
c ) ≈ (ωh̄β(0)

c )−D. For D = 3, the
double sum has the value S(3) ≈ 1.2076−ζ(2)ζ(3/2) ≈ −3.089. Inserting everything
into (7.201), we obtain for small a and small ω the shift in the critical temperature

∆Tc

T
(0)
c

≈ 4âc
D

S(D)

ζ(D)
≈
D=3

− 3.427
a

ℓc
. (7.203)

In contrast to the free Bose gas, where a small δ-function repulsion does not produce
any shift using the same approximation as here [recall (7.116)], and only a high-loop
calculation leads to an upwards shift proportional to a, the critical temperature of
the trapped Bose gas is shifted downwards . We can express ℓc in terms of the length

scale λω ≡
√

h̄/Mω associated with the harmonic oscillator [recall Eq. (2.303)] and

rewrite ℓc = λω
√
2πβch̄ω. Together with the relation (7.142), we find

∆Tc

T
(0)
c

≈ −3.427
1√

2π[ζ(3)]1/6
a

λω
N1/6 ≈ −1.326

a

λω
N1/6. (7.204)

Note that since ω is small, the temperature shift formula (7.201) can also be ex-
pressed in terms of the zero-ω density (7.134) as

∆Tc
ω, ã≈0≈ 2g

∫

d3x [∂µn0(x)] [n0(x)− n0(0)]
∫

d3x ∂Tn0(x)
, (7.205)
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where we have omitted the other arguments β and z of n0(β; z;x), for brevity. To
derive this formula we rewrite the grand-canonical free energy (7.190) as

FG = − 1

β

∫

d3x

[

∫ zeβν(x)

0

dz′

z′
n0(β; z

′;x)− β
ν2(x)

4g

]

, (7.206)

so that the particle number equation Eq. (7.195) takes the form

N =
∫

d3xn0(β; ze
βν(x);x). (7.207)

Extremizing FG in ν(x) yields the self-consistent equation

ν(x) = −2gn0(β; ze
βν(x);x). (7.208)

As before, the critical temperature is reached for zeβν(0) = 1, implying that

N =
∫

d3xn0(βc; ze
−2βg[n0(x)−n0(0)];x). (7.209)

In the exponent we have omitted again the arguments β and z of n0(β; z;x). If we
now impose the condition of constant N , ∆N = (∆Tc∂T +∆µ∂µ)N = 0, and insert
∆µ = −2g[n0(x)−n0(0)], we find (7.205). Inserting into (7.205) the density (7.134)
for the general trap (7.151), we find the generalization of (7.203):

∆Tc

T
(0)
c

≈ 4âc

D̃

1

ζ(D̃)

∞
∑

w,w′=1

1

wD/2−1w′D/2

[

1

(w + w′)D̃−D/2
− 1

wD̃−D/2

]

, (7.210)

which vanishes for the homogeneous gas, as concluded before on the basis of
Eq. (7.116).

Let us compare the result (7.204) with the experimental temperature shift for
87Rb in a trap with a critical temperature Tc ≈ 280 nK which lies about 3% be-
low the noninteracting Bose gas temperature (see Fig. 7.9). Its thermal deBroglie
length is calculated best in atomic units. Then the fundamental length scale is the
Bohr radius aH = h̄/Mpcα, where Mp is the proton mass and α ≈ 1/137.035 the
fine-structure constant. The fundamental energy scale is EH = Mec

2α2. Writing
now the thermal deBroglie length at the critical temperature as

a

ℓc
=

2πh̄2

MkBTc
=

√
2π

√

EH
kBTc

√

Me

87Mp

aH , (7.211)

we estimate with
√

EH/kBTc ≈
√

27.21 eV/(280× 10−9/11 604.447 eV) ≈ 1.06×106

and
√

Me/87Mp ≈
√

0.511eV/(87× 938.27eV) ≈ 0.002502 such that ℓc ≈ 6646aH.

The triplet s-wave scattering length of 87Rb is a ≈ (106 ± 4) aH such that we
find from (7.203)

∆Tc

T
(0)
c

≈ −5.4%, (7.212)

which is compatible with the experimentally data of the trap in Fig. 7.9.
Let us finally mention recent studies of more realistic systems in which bosons

in a trap interact with longer-range interactions [45].



636 7 Many Particle Orbits — Statistics and Second Quantization

7.3 Gas of Free Fermions

For fermions, the thermodynamic functions (7.32) and (7.33) contain the functions

ζ fν(z) ≡
∞
∑

w=1

(−1)w−1
zw

wν
, (7.213)

which starts out for small z like z. For z = 1, this becomes

ζ fν(1) =
1

1
− 1

2ν
+

1

3ν
− 1

4ν
+ . . . =

∞
∑

k=0

1

kν
− 21−ν

∞
∑

k=0

1

kν
=
(

1− 21−ν
)

ζ(ν). (7.214)

In contrast to ζν(z) in Eq. (7.34) this function is perfectly well-defined for all chemical
potentials by analytic continuation. The reason is the alternating sign in the series
(7.213). The analytic continuation is achieved by expressing ζ fν(z) as an integral by
analogy with (7.39), (7.40):

ζ fn(z) ≡
1

Γ(n)
ifn(α), (7.215)

where ifn(α) are the integrals

ifn(α) ≡
∫ ∞

0
dε

εn−1

eε−α + 1
. (7.216)

In the integrand we recognize the Fermi distribution function of Eq. (3.111), in
which ωh̄β is replaced by ε− α:

nf
ε =

1

eε−α + 1
. (7.217)

The quantity ε plays the role of a reduced energy ε = E/kBT , and α is a reduced
chemical potential α = µ/kBT .

Let us also here express the grand-canonical free energy FG in terms of the
functions ifn(α). Combining Eqs. (7.32), (7.213), and (7.216) we obtain for fermions
with gS = 2S + 1 spin orientations:

FG=− 1

β
Z0(β)

gS
Γ(D/2+1)

ifD/2+1(βµ)=− 1

βΓ(D/2+1)

gSVD
√

2πh̄2β/M
D

∫ ∞

0
dε

εD/2

eε−βµ + 1
,

(7.218)
and the integral can be brought by partial integration to the form

FG = − 1

βΓ(D/2)

gSVD
√

2πh̄2β/M
D

∫ ∞

0
dε εD/2−1 log(1 + e−ε+βµ). (7.219)

Recalling Eq. (7.47), this can be rewritten as a sum over momenta of oscillators with
energy h̄ωp ≡ p2/2M :

FG = −gS
β

∑

p

log(1 + e−βh̄ωp+βµ). (7.220)
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This free energy will be studied in detail in Section 7.14.
The particle number corresponding to the integral representations (7.219) and

(7.220) is

N=− ∂

∂µ
FG =

1

Γ(D/2)

gSVD
√

2πh̄2β/M
D

∫ ∞

0
dε

εD/2−1

eε+βµ − 1
=gS

∑

p

1

eβh̄ωp+βµ − 1
. (7.221)

Recalling the reduced density of states, this may be written with the help of the
Fermi distribution function nf

ω of Eq. (7.217) as

N = gSVD

∫ ∞

0
dεNε n

f
ε. (7.222)

The Bose function contains a pole at α = 0 which prevents the existence of a
solution for positive α. In the analytically continued fermionic function (7.215), on
the other hand, the point α = 0 is completely regular.

Consider now a Fermi gas close to zero temperature which is called the degenerate
limit. Then the reduced variables ε = E/kBT and α = µ/kBT become very large
and the distribution function (7.217) reduces to

nf
ε =

{

1
0

for
ε < α
ε > α

}

= Θ(ε− α). (7.223)

All states with energy E lower than the chemical potential µ are filled, all higher
states are empty. The chemical potential µ at zero temperature is called Fermi

energy EF:
µ
∣

∣

∣

T=0
≡ EF. (7.224)

The Fermi energy for a given particle number N in a volume VD is found by per-
forming the integral (7.222) at T = 0:

N = gSVD

∫ EF

0
dεNε=

1

Γ(D/2+1)

gSVDE
D/2
F

√

2πh̄2/M
D =

1

Γ(D/2+1)

gSVD√
4π

D

(

pF
h̄

)D

, (7.225)

where
pF ≡

√

2MEF (7.226)

is the Fermi momentum associated with the Fermi energy. Equation (7.225) is solved
for EF by

EF =
2πh̄2

M

[

Γ(D/2 + 1)

gS

]2/D (
N

VD

)2/D

, (7.227)

and for the Fermi momentum by

pF = 2
√
πh̄

[

Γ(D/2 + 1)

gS

]1/D (
N

VD

)1/D

h̄. (7.228)
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Note that in terms of the particle number N , the density of states per unit energy
interval and volume can be written as

Nε ≡
d

2

N

VD

√

kBT

EF

D/2

εD/2−1. (7.229)

As the gas is heated slightly, the degeneracy in the particle distribution function
in Eq. (7.223) softens. The degree to which this happens is governed by the size of
the ratio kT/EF. It is useful to define a characteristic temperature, the so-called
Fermi temperature

TF ≡ EF

kB
=

1

kB

pF
2

2M
. (7.230)

For electrons in a metal, pF is of the order of h̄/1A
◦

. InsertingM = me = 9.109558×
10−28 g, further kB = 1.380622 × 10−16 erg/K and h̄ = 6.0545919 × 10−27 erg sec,
we see that TF has the order of magnitude

TF ≈ 44 000K. (7.231)

Hence, even far above room temperatures the relation T/TF ≪ 1 is quite well
fulfilled and can be used as an expansion parameter in evaluating the thermodynamic
properties of the electron gas at nonzero temperature.

Let us calculate the finite-T effects in D = 3 dimensions. From Eq. (7.225) we
obtain

N = N(T, µ) ≡ gSV

l3e(h̄β)

2√
π
if3/2

(

µ

kBT

)

. (7.232)

Expressing the particle number in terms of the Fermi energy with the help of
Eq. (7.225), we obtain for the temperature dependence of the chemical potential
an equation analogous to (7.54):

1 =

(

kBT

EF

)3/2
3

2
if3/2

(

µ

kBT

)

. (7.233)

To evaluate this equation, we write the integral representation (7.216) as

ifn(α) =
∫ ∞

−α
dx

(α+ x)n−1

ex + 1

=
∫ α

0
dx

(α− x)n−1

e−x + 1
+
∫ ∞

0
dx

(α + x)n−1

ex + 1
. (7.234)

where ε = x + α. In the first integral we substitute 1/(e−x + 1) = 1 − 1/(ex + 1),
and obtain

ifn(α)=
∫ α

0
dx xn−1 +

∫ ∞

0
dx

(α+x)n−1 − (α−x)n−1
ex + 1

+
∫ ∞

α
dx

(α−x)n−1
ex + 1

. (7.235)
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In the limit α→∞, only the first term survives, whereas the last term is exponentially
small, so that it can be ignored in a series expansion in powers of 1/α. The second
term is expanded in such a series:

2
∞
∑

k=odd

(

n−1

k

)

αn−1−k
∫ ∞

0
dx

xk

ex + 1
= 2

∑

k=odd

(n−1)!

(n−1−k)!α
n−1−k(1− 2−k)ζ(k + 1).

(7.236)
In the last equation we have used the integral formula for Riemann’s ζ-function4

∫ ∞

0
dx

xν−1

eµx + 1
= µ−ν(1− 21−ν)ζ(ν). (7.237)

At even positive and odd negative integer arguments, the zeta function is related to
the Bernoulli numbers by Eq. (2.569). The lowest values of ζ(x) occurring in the
expansion (7.236) are ζ(2), ζ(4), . . . , whose values were given in (2.571), so that the
expansion of ifn(α) starts out like

ifn(α) =
1

n
αn + 2(n−1)

1

2
ζ(2)αn−2 + 2(n−1)(n−2)(n−3)

7

8
ζ(4)αn−4 + . . . . (7.238)

Inserting this into Eq. (7.233) where n = 3/2, we find the low-temperature expansion

1 =

(

kBT

EF

)3/2
3

2

[

2

3

(

µ

kBT

)3/2

+
π2

12

(

µ

kBT

)−1/2

+
7π4

3 · 320
(

µ

kBT

)−5/2

. . .

]

,

(7.239)
implying for µ the expansion

µ = EF



1− π2

12

(

kBT

EF

)2

+
7π4

720

(

kBT

EF

)4

+ . . .



 . (7.240)

These expansions are asymptotic. They have a zero radius of convergence, diverging
for any T . They can, however, be used for calculations if T is sufficiently small or
at all T after a variational resummation à la Section 5.18.

We now turn to the grand-canonical free energy FG. In terms of the function
(7.216), this reads

FG = − 1

β

gSV

l3e(h̄β)

1

Γ(5/2)
if5/2(α). (7.241)

Using again (7.238), this has the expansion

FG(T, µ, V ) = FG(0, µ, V )



1 +
5π2

8

(

kBT

µ

)2

− 7π4

384

(

kBT

µ

)4

+ . . .



 , (7.242)

where

FG(0, µ, V ) ≡ −2

5
gSV

√
2M3/2

3π2h̄3
(µ)3/2 µ = −2

5
N
(

µ

EF

)3/2

µ.

4I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 3.411.3.
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By differentiating FG with respect to the temperature at fixed µ, we obtain the
low-temperature behavior of the entropy

S = kB
π2

2

kBT

EF

N + . . . . (7.243)

From this we find a specific heat at constant volume

C = T
∂S

∂T

∣

∣

∣

∣

V,N

T≈0≈ S = kB
π2

2

kBT

EF

N + . . . . (7.244)

This grows linearly with increasing temperature and saturates at the constant value
3kBN/2 which obeys the Dulong-Petit law of Section 2.12 corresponding to three
kinetic and no potential harmonic degrees of freedom in the classical Hamiltonian
p2/2M . See Fig. 7.11 for the full temperature behavior. The linear behavior is

Figure 7.11 Temperature behavior of specific heat of free Fermi gas. As in the free Bose

gas, the Dulong-Petit rule gives a high-temperature limit 3kBN/2 for the three harmonic

kinetic degrees of freedom in the classical Hamiltonian p2/2M . There are no harmonic

potential degrees of freedom.

due to the progressive softening near the surface of the Fermi distribution which
makes more and more electrons thermally excitable. It is detected experimentally
in metals at low temperature where the contribution of lattice vibrations freezes
out as (T/TD)

3. Here TD is the Debye temperature which characterizes the elastic
stiffness of the crystal and ranges from TD ≈ 90K in soft metals like lead over
TD ≈ 389K for aluminum to TD ≈ 1890K for diamond. The experimental size of
the slope is usually larger than the free electron gas value in (7.244). This can be
explained mainly by the interactions with the lattice which result in a large effective
mass Meff > M .

Note that the quantity FG(0, µ, V ) is temperature dependent via the chemical
potential µ. Inserting (7.240) into (7.242) we find the complete T -dependence

FG(T, µ, V ) = FG(0, EF, V )



1 +
5π2

12

(

kBT

EF

)2

− π4

16

(

kBT

EF

)4

+ . . .



 , (7.245)
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where

FG(0, EF, V ) = −2

5
NEF. (7.246)

As in the boson gas, we have a relation (7.61) between energy and grand-
canonical free energy:

E = −3

2
FG, (7.247)

such that equation (7.245) supplies us with the low-temperature behavior of the
internal energy:

E =
3

5
NEF



1 +
5π2

12

(

kBT

EF

)2

− π4

16

(

kBT

EF

)4

+ . . .



 . (7.248)

The first term is the energy of the zero-temperature Fermi sphere. Using the relation
cV = ∂E/V ∂T , the second term yields once more the leading T → 0 -behavior
(7.244) of specific heat.

This behavior of the specific heat can be observed in metals where the conduction
electrons behave like a free electron gas. Due to Bloch’s theorem, a single electron
in a perfect lattice behaves just like a free particle. For many electrons, this is still
approximately true, if the mass of the electrons is replaced by an effective mass.

Another important macroscopic system where (7.244) can be observed is a liquid
consisting of the fermionic isotope 3He. There are two electron spins and an odd
number of nucleon spins which make this atom a fermion. Also there the strong
interactions in the liquid produce a screening effect which raises to an effective
value of the mass to 8 times that of the atom.

7.4 Statistics Interaction

First, we consider only two identical particles; the generalization to n particles will
be obvious. For simplicity, we ignore the one-body potentials V (x(ν)) in (7.2) since
they cause only inessential complications. The total orbital action is then

A =
∫ tb

ta
dt

[

M (1)

2
ẋ(1)2 +

M (2)

2
ẋ(2)2 − Vint(x

(1) − x(2))

]

. (7.249)

The standard change of variables to center-of-mass and relative coordinates

X = (M (1)x(1) +M (2)x(2))/(M (1) +M (2)), x = (x(1) − x(2)), (7.250)

respectively, separates the action into a free center-of-mass and a relative action

A = ACM +Arel =
∫ tb

ta
dt
M

2
Ẋ2 +

∫ tb

ta
dt
[

µ

2
ẋ2 − Vint(x)

]

, (7.251)

with a total massM =M (1)+M (2) and a reduced mass µ =M (1)M (2)/(M (1)+M (2)).
Correspondingly, the time evolution amplitude of the two-body system factorizes
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into that of an ordinary free particle of mass M , (Xbtb|Xata), and a relative am-
plitude (xbtb|xata). The path integral for the center-of-mass motion is solved as in
Chapter 2. Only the relative amplitude is influenced by the particle statistics and
needs a separate treatment for bosons and fermions.

First we work in one dimension only. Many of the formulas arising in this case are
the same as those of Section 6.2, where we derived the path integral for a particle
moving in a half-space x = r > 0; only the interpretation is different. We take
care of the indistinguishability of the particles by restricting x to the positive semi-
axis x = r ≥ 0; the opposite vector −x describes an identical configuration. The
completeness relation of local states reads therefore

∫ ∞

0
dr|r〉〈r| = 1. (7.252)

To write down the orthogonality relation, we must specify the bosonic or fermionic
nature of the wave functions. Since these are symmetric or antisymmetric, respec-
tively, we express 〈rb|ra〉 in terms of the complete set of functions with these sym-
metry properties:

〈rb|ra〉 = 2
∫ ∞

0

dp

πh̄

{

cos prb/h̄ cos pra/h̄
sin prb/h̄ sin pra/h̄

}

. (7.253)

This may be rewritten as

〈rb|ra〉 =
∫ ∞

−∞

dp

2πh̄

(

eip(rb−ra)/h̄ ± eip(rb+ra)/h̄
)

= δ(rb − ra)± δ(rb + ra). (7.254)

The infinitesimal time evolution amplitude of relative motion is then, in the canon-
ical formulation,

(rn ǫ|rn−1 0) = 〈rn|e−iǫĤrel/h̄|rn−1〉

=
∫ ∞

−∞

dp

2πh̄

(

eip(rn−rn−1)/h̄ ± eip(rn+rn−1)/h̄
)

e−iǫHrel(p,rn)/h̄, (7.255)

where Hrel(p, x) is the Hamiltonian of relative motion associated with the action
Arel in Eq. (7.251). By combining N + 1 factors, we find the time-sliced amplitude

(rbtb|rata) =
N
∏

n=1

[∫ ∞

0
drn

]N+1
∏

n=1

[

∫ ∞

−∞

dpn
2πh̄

]

(7.256)

×
{

exp

[

i

h̄

N+1
∑

n=1

pn(rn − rn−1)

]

± exp

[

i

h̄

N+1
∑

n=1

pn(rn + rn−1)

]}

e−
i
h̄
ǫ
∑N+1

n=1
Hrel(pn,rn),

valid for bosons and fermions, respectively. By extending the radial integral over
the entire space it is possible to remove the term after the ±sign by writing

(rbtb|rata) =
∑

xb=±rb

N
∏

n=1

[∫ ∞

−∞
dxn

]N+1
∏

n=1

[

∫ ∞

−∞

dpn
2πh̄

]

(7.257)

× exp

{

i

h̄

N+1
∑

a=1

[pn(xn − xn−1)− ǫHrel(pn, xn) + h̄π(σ(xn)− σ(xn−1))]

}

,
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where the function σ(x) vanishes identically for bosons while being equal to

σ(x) = Θ(−x) (7.258)

for fermions, where Θ(x) is the Heaviside function (1.313). As usual, we have
identified xb ≡ xN+1 and xa ≡ x0 which is equal to ra. The final sum over xb = ±rb
accounts for the indistinguishability of the two orbits. The phase factors eiπσ(xn)

give the necessary minus signs when exchanging two fermion positions.
Let us use this formula to calculate explicitly the path integral for a free two-

particle relative amplitude. In the bosonic case with a vanishing σ-term, we simply
obtain the free-particle amplitude summed over the final positions ±rb:

(rbtb|rata) =
1

√

2πh̄i(tb − ta)/µ

{

exp

[

i

h̄

µ

2

(rb − ra)
2

tb − ta

]

+ (rb → −rb)
}

. (7.259)

For fermions, the phases σ(xn) in (7.257) cancel each other successively, except for
the boundary term

eiπ(σ(xb)−σ(xa)). (7.260)

When summing over xb = ±rb in (7.257), this causes a sign change of the term with
xb = −rb and leads to the antisymmetric amplitude

(rbtb|rata) =
1

√

2πh̄i(tb − ta)/µ

{

exp

[

i

h̄

µ

2

(rb − ra)
2

(tb − ta)

]

− (rb → −rb)
}

. (7.261)

Let us also write down the continuum limit of the time-sliced action (7.257). It
reads

A = Arel +Af =
∫ tb

ta
dt [pẋ−Hrel(p, x) + h̄πẋ(t)∂xσ(x(t))] . (7.262)

The last term is the desired Fermi statistics interaction. It can also be written as

Af = −h̄π
∫ tb

ta
dtẋ(t)δ(x(t)) = h̄π

∫ tb

ta
dt∂tΘ(−x(t)). (7.263)

The right-hand expression shows clearly the pure boundary character of Af , which
does not change the equations of motion. Such an interaction is called a topological

interaction.
Since the integrals in (7.257) over x and p now cover the entire phase space and

σ(x) enters only at the boundaries of the time axis, it is possible to add to the action
any potential Vint(r). As long as the ordinary path integral can be performed, also
the path integral with the additional σ-terms in (7.257) can be done immediately.

It is easy to generalize this result to any number of fermion orbits x(ν)(t), ν =
1, . . . , n. The statistics interaction is then

∑

ν<ν′ Af [x
(ν,ν′)] with the distance vec-

tors x(ν,ν
′) ≡ x(ν) − x(ν

′). When summing over all permuted final positions, the
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many-fermion wave functions become antisymmetric. The amplitude is given by the
generalization of Eq. (7.257):

(x
(νb)
b ; tb|x(νa)a ; ta) =

∑

p(νb)

n
∏

ν=1

{

N
∏

n=1

[∫ ∞

−∞
dx(ν)n

] N+1
∏

n=1

[

∫ ∞

−∞

dp(ν)n

2πh̄

]}

× exp

(

i

h̄

N+1
∑

n=1

{

n
∑

ν=1

[

p(ν)n (x(ν)n − x
(ν)
n−1)− ǫHrel(p

(ν)
n , x(ν)n )

]

+h̄π
∑

ν<ν′

[

σ(x(ν,ν
′)

n )− σ(x
(ν,ν′)
n−1 )

]









 , (7.264)

where Σp(νb) denotes the sum over all permutations of the final positions. The phases
exp[iπσ(x)] produce the complete antisymmetry for fermions.

Consider now two particles moving in a two-dimensional space. Let the relative
motion be described in terms of polar coordinates. For distinguishable particles, the
scalar product of localized states is

〈rbϕb|raϕa〉 =
∫ ∞

0
dkk

∞
∑

m=−∞

im(krb)im(kra)
1

2π
eim(ϕb−ϕa)

=
1√
rbra

δ(rb − ra)δ(ϕb − ϕa). (7.265)

This follows straightforwardly by expanding the exponentials eikx = eikr cosϕ in the
scalar product

〈xb|xa〉 =
∫

d2k

(2π)2
eikxbe−ikxa = δ(2)(xb − xa) (7.266)

into Bessel functions, according to the well-known formula5

eacosϕ =
∞
∑

m=−∞

im(a)e
imϕ, (7.267)

and by rewriting δ(2)(xb − xa) as (rbra)
−1/2δ(rb − ra)δ(ϕb − ϕa). For indistinguish-

able particles, the angle ϕ is restricted to a half-space, say ϕ ∈ [0, π). When
considering bosons or fermions, the phase factor eim(ϕb−ϕa) must be replaced by
eim(ϕb−ϕa) ± eim(ϕb+π−ϕa), respectively. In the product of such amplitudes in a time-
sliced path integral, the ±-terms in (7.256) can again be accounted for by completing
the half-space in ϕ to the full space [−π, π) and introducing the field σ(ϕ). By in-
cluding a Hamiltonian and returning to Euclidean coordinates x1, x2, we arrive at
the relative amplitude

(xbtb|xat) =
∫

D2x
∫ D2p

2π

{

exp
[

i

h̄
Arel +

i

h̄
Af

]

+ (xb → −xb)
}

, (7.268)

with an obvious time slicing as in (7.257).

5I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 6.633.1.
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The Fermi statistics interaction Af looks in polar coordinates just like (7.263),
but with x replaced by ϕ:

Af = h̄π
∫ tb

ta
dtϕ̇(t)∂ϕσ(ϕ(t)). (7.269)

Adapting the step function σ(ϕ) to the periodic nature of the variable ϕ, we
continue this function periodically in ϕ. Equivalently, we replace it by a step function
σp(ϕ) which jumps by one unit at every integer multiple of π and write

Af = h̄
∫ tb

ta
dt ẋ(t) · a(x(t)), (7.270)

with a vector potential
a(x) ≡ π∇σp(ϕ). (7.271)

When calculating particle distributions or partition functions which satisfy pe-
riodic boundary conditions, this coupling is invariant under local gauge transforma-
tions of the vector potential

a(x) → a(x) +∇Λ(x), (7.272)

with smooth and single-valued functions Λ(x), i.e., with Λ(x) satisfying the integra-
bility condition of Schwarz:

(∂i∂j − ∂j∂i)Λ(x) = 0. (7.273)

Taking advantage of gauge invariance, we can in (7.271) replace σp(ϕ) by any func-
tion of x as long as it changes by one unit when going from ϕb to ϕb+π. A convenient
choice is

σp(x) =
1

π
ϕ(x) ≡ 1

π
arctan

x2
x1
. (7.274)

With this, the statistics interaction (7.270) becomes

Af = h̄
∫ tb

ta
dtẋ∂xϕ(x) = h̄

∫ tb

ta
dtǫij

xiẋj
x2

, (7.275)

where ǫij is the antisymmetric unit tensor of Levi-Civita in two dimensions.
Just like the expression (7.263), this is a purely topological interaction. By

comparison with (7.270), we identify the vector potential of the statistics interaction
as

ai(x) = ∂iϕ = −ǫij
xj
x2
. (7.276)

The Fermi statistics remains obviously in operation if we choose, instead of the
vector potential (7.276), an arbitrary odd multiple of it:

ai(x) = ∂iϕ = −(2n + 1)ǫij
xj
x2
, n = 0,±1,±2, . . .. (7.277)
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The even multiples

ai(x) = ∂iϕ = −2nǫij
xj
x2
, n = 0,±1,±2, . . ., (7.278)

on the other hand, give rise to Bose statistics.
For more than two particles, the amplitude (7.268) is generalized to the two-

dimensional analog of Eq. (7.264). In one and two space dimensions we have thus
succeeded in taking care of the indistinguishability of the particles and the fermionic
nature by the simple statistics interaction terms (7.263) and (7.275). The indistin-
guishability of the particles requires that the path integral over all paths from the
initial point xa to the final point xb has to be extended by those paths which run
to the reflected point −xb. The statistics interaction guarantees the antisymmetry
of the resulting amplitude.

7.5 Fractional Statistics

The above considerations raise an important question. Is it possible that particles
with an arbitrary real multiple of the statistical gauge interaction (7.275) exist in
nature? Such particles would show an unusual statistical behavior. If the prefactor
is denoted by µ0 and the statistics interaction reads

Af = h̄µ0

∫ tb

ta
dt ẋ ·∇ϕ(x) = h̄µ0

∫ tb

ta
dtǫij

xiẋj
x2

, (7.279)

an interchange of the orbital endpoints in the path integral gives rise to a phase
factor eiπµ0 . If µ0 is even or odd, the amplitude describes bosons or fermions,
respectively. For rational values of µ0, however, the particles are neither one nor
the other. They are called anyons . The phase of the amplitude returns to its initial
value only after the particles have been rotated around each other several times. The
statistical behavior of such particles will be studied in detail in Section 16.2. There
we shall see that for two ordinary particles, an anyonic statistical behavior can be
generated by a magnetic interaction. An interaction of the form (7.279) arises from
an infinitesimally thin magnetic flux tube of strength Φ = µ0Φ0 with Φ0 = 2πh̄c/e.
Indeed, the magnetic interaction is given by the gauge-invariant expression

Amg =
e

c

∫ tb

ta
dt ẋ(t)A(x(t)), (7.280)

and the vector potential of a thin magnetic flux tube of flux Φ reads

Ai(x) =
Φ

2π
∂iϕ = −Φǫij

xj
x2
. (7.281)

For the flux Φ0 = 2πh̄c/e or an odd multiple thereof, the magnetic interaction
coincides with the statistics interaction of two fermions (7.275). Bose statistics
holds if Φ is zero or an even multiple of Φ0. The magnetic field can be chosen
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to produce any value of µ0. This analogy will permit us to calculate the second
virial coefficient of a gas of anyons in Section 16.3. There we shall also see that
the statistical parameter µ0 determines the behavior of the wave functions near
the origin. While the wave functions of bosons and fermions carry either even or
odd azimuthal angular momenta m, respectively, and vanish like |x|m for |x| → 0,
those of anyons can carry any integer m, behaving like |x||m+µ0| with a noninteger
exponent.

We shall demonstrate in Section 16.2 that flux tubes whose flux Φ is an integer
multiple of Φ0, i.e., those with a flux corresponding to Fermi or Bose statistics, have
a vanishing scattering amplitude with respect to particles of charge e (Aharonov-
Bohm effect).

Such flux tubes can be used as a theoretical artifact to construct the vector
potential of a magnetic monopole. Although magnetic fields can have no sources,
a monopole can be brought in from infinity inside an infinitely thin tube of flux
Φ = nΦ0 (n = integer), called a Dirac string . Since this cannot be detected by
any electromagnetic scattering experiment the endpoint of the string behaves like
a magnetic monopole.6 In an important aspect, the analogy between the magnetic
and statistics interaction is not perfect and the present path integral is different
from the one governing the magnetic scattering amplitude: The magnetic scattering
amplitude deals with two different particles, one with an electric and the other with
a magnetic charge. The paths are therefore summed with a fixed endpoint. In
the statistics case, on the other hand, the sum includes the final point xb and the
reflected point −xb.

For this reason, the magnetic analogy can be used to impose arbitrary statistics
only upon two particles and not upon an ensemble of many identical particles. The
analogy has nevertheless been useful to guide recent theoretical developments, in
particular the explanation of the fractional quantum Hall effect (to be discussed in
Sections 16.13–16.12).

Particles in two dimensions with fractional statistics have recently become a
source of inspiration in field theory, leading to many new and interesting insights.

7.6 Second-Quantized Bose Fields

We have seen above that the path integral of a system with many identical particles
can become quite cumbersome to handle. Fortunately, there exists a much sim-
pler and more efficient path integral description of many-particle systems. In the
Schrödinger formulation of quantum mechanics, it is possible to generalize the single-
particle Schrödinger equation to an arbitrary and variable number of particles by
letting the complex Schrödinger fields ψ(x, t) be field operators rather than complex
c-numbers. These are denoted by ψ̂(x, t) and postulated to satisfy the harmonic-
oscillator commutation relations at each point x in space. To impose properly such

6See also the discussion in H. Kleinert, Int. J. Mod. Phys. A 7 , 4693 (1992) (http://www.phy-
sik.fu-berlin.de/~kleinert/203); Phys. Lett. B 246 , 127 (1990) (ibid.http/205).
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local quantization rules, space is discretized into little cubes of volume ǫ3, centered
around the points xn = ǫ(n1, n2, n3), with n1,2,3 running through all integers. If we
omit the subscripts n, for brevity, the quantization rules are

[ψ̂(x, t), ψ̂†(x′, t)] = δxx′,

[ψ̂†(x, t), ψ̂†(x′, t)] = 0, (7.282)

[ψ̂(x, t), ψ̂(x′, t)] = 0.

The commutativity of the operators at different places ensures the independence of
the associated oscillators. Imposing the conditions (7.282) is referred to as second

quantization or field quantization. One also speaks of a quantization of particle

number . The commutation relations generate an infinite-dimensional Hilbert space
at each space point x. Applying the operator ψ̂†(x, t) n times to the ground state
of the harmonic oscillator |0〉x at x creates states with n excitations at x:

|n,x〉 = 1√
n!
[ψ̂†(x, 0)]n|0〉. (7.283)

These states are interpreted as states describing n particles at the point x. The
ground state of all oscillators is

|0〉 ≡
∏

x

|0〉x . (7.284)

It is called the vacuum state of the system. The total number of particles at each
time is measured by the operator

N̂(t) =
∑

x

ψ̂†(x, t)ψ̂(x, t). (7.285)

The simplest classical action, whose quantum theory has the above structure,
describes an ensemble of free bosons with a chemical potential µ:

A[ψ∗, ψ] =
∑

x

∫ tb

ta
dt

[

ψ∗(ih̄∂t + µ)ψ(x, t)− h̄2

2M
ψ∗∇x∇xψ(x, t)

]

. (7.286)

The symbols ∇x,∇x denote the difference operators on the discretized three-
dimensional space, each component ∇i, ∇i being defined in the same way as the
difference operators ∇, ∇ on the sliced time axis in Eqs. (2.97). The eigenvalues on
a plane wave of momentum p are

−ih̄∇ie
ipx/h̄ = Pie

ipx/h̄, − ih̄∇ie
ipx/h̄ = P̄ie

ipx/h̄, (7.287)

with

Pi = −ih̄
ǫ

[

eiǫpi/h̄ − 1
]

, P̄i = P ∗i . (7.288)

By Fourier decomposing the field

ψ(x, t) =

√

ǫ3

V

∑

p

eipx/h̄ap(t), (7.289)
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the difference operators ∇x, ∇x are diagonalized and the action is decomposed into
a direct sum of fields a∗p(t), ap(t) of a fixed momentum p,

A[a∗, a] = h̄
∑

p

∫ tb

ta
dt
[

a∗p(t)i∂tap(t)− ω(p)a∗p(t)ap(t)
]

, (7.290)

where ω(p) denotes the single-particle frequencies

ω(p) ≡ 1

h̄

[

|P|2
2M

− µ

]

, (7.291)

with

|P|2 ≡ h̄2

ǫ2
∑

i

2
[

1− cos
(

ǫpi
h̄

)]

. (7.292)

The extremization of (7.286) gives the field equation

(

ih̄∂t + µ+
h̄2

2M
∇x∇x

)

ψ(x, t) = 0. (7.293)

This is the ordinary free-particle Schrödinger equation (the first-quantized field equa-
tion), apart from a constant shift in the energy by the chemical potential µ. Recall
that the chemical potential guarantees a fixed average particle number which, in
experiments, is enforced by contact with an appropriate particle reservoir (see Sec-
tion 1.17). In momentum space, the field equation reads

[i∂t − ω(p)]ap(t) = 0.

Knowing the general relation between the operator and the path integral descrip-
tion of quantum mechanics, we expect that the above rules of second quantization
of operators can be accounted for by assuming the field variables a∗p(t) and ap(t) in
the action to be fluctuating c-number variables and summing over all their configu-
rations with an amplitude exp{(i/h̄)A[a∗, a]}. The precise form of this path integral
can be inferred from the oscillator nature of the commutation relations (7.282).
After the Fourier transform (7.289), the components âp(t), â

†
p(t) satisfy

[âp(t), â
†
p′(t)] = δpp′ ,

[â†p(t), â
†
p′(t)] = 0, (7.294)

[âp(t), âp′(t)] = 0.

Since the oscillators at different momenta p are independent of each other and since
the action is a direct sum, we may drop the subscript p in the sequel and consider
fields of a single momentum only.

The commutators (7.294) are the same as those of a harmonic oscillator, of
course, obtained from the usual canonical commutators

[p̂, x̂] = −ih̄ (7.295)
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by the canonical transformation

â† =
√

M/2h̄ω(ωx̂− ip̂/M), â =
√

M/2h̄ω(ωx̂+ ip̂/M). (7.296)

Note that within the present context, the oscillator momentum p̂ is the conjugate
momentum of the field operator and has no relation to the particle momentum p

(there exists a field operator for each particle momentum p). The transformation
(7.296) changes the Hamiltonian of the harmonic oscillator

Ĥω =
1

2M
p̂2 +

Mω2

2
x̂2 (7.297)

into the creation and annihilation operator form

Ĥω =
h̄ω

2
(â†â+ â â†). (7.298)

The classical action in the canonical form

A[p, q] =
∫ tb

ta
dt [pq̇ −Hω(p, q)] (7.299)

turns into

A[a∗, a] = h̄
∫ tb

ta
dt (a∗i∂ta− ωa∗a). (7.300)

If one wants to describe quantum statistics, one has to replace t→ −iτ and use the
Euclidean action (with β = 1/kBT )

Ae[a
∗, a] = h̄

∫ h̄β

0
dτ (a∗∂τa+ ωa∗a), (7.301)

which coincides precisely with the action (7.290) for particles of a single momentum.

7.7 Fluctuating Bose Fields

We set up a path integral formulation which replaces this second-quantized opera-
tor structure. Since we have studied the harmonic oscillator extensively in real and
imaginary time and since we know how to go back and forth between quantum-
mechanical and -statistical expressions, we consider here only the case of imaginary
time with the Euclidean action (7.301). For simplicity, we calculate only the par-
tition function. The extension to density matrices is straightforward. Correlation
functions will be discussed in detail in Chapter 18.

Since the action (7.300) of the harmonic oscillator is merely a rewritten canonical
action (7.299), the partition function of the harmonic oscillator is given by the path
integral [see (2.339)]ref(2.339)

lab(2.187)
est(2.220)

Zω =
∮

Dx(τ)
∫ Dp(τ)

2πh̄
exp

[

−
∫ h̄β

0
dτ (a∗∂τa+ ωa∗a)

]

, (7.302)
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where the quantum-mechanical trace requires the orbits x(τ) to be periodic in τ →
τ + h̄β, with a Fourier expansion

x(τ) =
1√
h̄β

∞
∑

m=−∞

xme
−iωmτ , ωm = 2πm/h̄β. (7.303)

The momentum integrations are unrestricted.
If the momentum states were used as the diagonal basis for the derivation of the

path integral, the measure would be
∫ Dx ∮ (Dp/2πh̄). Then p(τ) is periodic under

τ → τ + h̄β and the x(τ)-integrations are unrestricted. This would give a different
expression at the time-sliced level; the continuum limit ǫ → 0, however, would be
the same.

Since the explicit conjugate variables in the action are now a and a∗, it is cus-
tomary to express the measure of the path integral in terms of these variables and
write

Zω ≡
∮ Da∗(τ)Da(τ)

π
exp

{

−
∫ h̄β

0
dτ (a∗∂τa+ ωa∗a)

}

, (7.304)

where
∮ Da∗Da stands for the measure

∮

Da∗Da =
∮ ∞

−∞
DRe a

∫ ∞

−∞
D Im a . (7.305)

With the action being the time-sliced oscillator action, the result of the path
integration in the continuum limit is known from (2.409) to be ref(2.409)

lab(2.240)
est(2.280)

Zω =
1

2 sinh(h̄ωβ/2)
. (7.306)

In the context of second quantization, this is not really the desired result. For
large β, the partition function (7.306) behaves like

Zω → e−h̄ωβ/2, (7.307)

exhibiting in the exponent the oscillator ground-state energy E0 = h̄ω/2. In the
second-quantized interpretation, however, the ground state is the no-particle state.
Hence its energy should be zero. In the operator formulation, this can be achieved
by an appropriate operator ordering, choosing the Hamiltonian operator to be

Ĥ = h̄ωâ†â, (7.308)

rather than the oscillator expression (7.298). In the path integral, the same goal is
achieved by suitably time-slicing the path integral (7.304) and writing

ZN
ω =

N
∏

n=0

[

∫

da∗ndan
π

]

exp
{

−1

h̄
AN
ω

}

, (7.309)
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with the sliced action

AN
ω = h̄

N
∑

n=1

[a∗n(an − an−1) + ǫωa∗nan−1] . (7.310)

Expressed in terms of the difference operator, it reads

AN
ω = h̄ǫ

N
∑

n=1

a∗n
[

(1− ǫω)∇+ ω
]

an. (7.311)

The a(τ)-orbits are taken to be periodic functions of τ , with a Fourier expansion

a(τ) =
1√
h̄β

∞
∑

m=−∞

ame
−iωmτ , ωm = 2πm/h̄β. (7.312)

Note that in contrast to the coefficients xm in expansion (7.303), am and a−m are
independent of each other, since a(τ) is complex. The periodicity of a(τ) arises
as follows: In the time-sliced path integral derived in the x-basis with integration
variables x0, . . . , xN+1 and p1, . . . , pN+1, we introduce a fictitious momentum vari-
able p0 which is set identically equal to pN+1. Then the time-sliced

∫ h̄β
0 dτpẋ term,

∑N+1
n=1 pn∇xn, can be replaced by −∑N+1

n=1 xn∇pn [see the rule of partial integration
on the lattice, Eq. (2.103)] or by −∑N+1

n=1 xn∇pn. The first term in the time-sliced
action (7.310) arises by symmetrizing the above two lattice sums.

In order to perform the integrals in (7.309), we make use of the Gaussian formula
valid for ReA > 0,

∫

da∗n dan
π

e−a
∗
nAnan =

1

An
, ReAn > 0. (7.313)

By taking a product of N of these, we have

N
∏

n=0

[

∫

da∗n dan
π

]

e−
∑

n
a∗nAnan =

N+1
∏

n=1

1

An
, ReAn > 0. (7.314)

This is obviously a special case of the matrix formula

Z =
N
∏

n=0

[

∫ da∗n dan
π

]

e
−
∑

n,m
a∗nAnmam =

1

detA
, (7.315)

in which the matrix A = Ad has only diagonal elements with a positive real part.
Now we observe that the measure of integration is certainly invariant under any
unitary transformation of the components an:

an →
∑

n′

Un,n′ an′. (7.316)

So is the determinant of A:

detA→ det (U Ad U †) = detAd. (7.317)
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But then formula (7.315) holds for any matrix A which can be diagonalized by a
unitary transformation and has only eigenvalues with a positive real part. In the
present case, the possibility of diagonalizing A is guaranteed by the fact that A
satisfies AA† = A†A, i.e., it is a normal matrix. This property makes the Hermi-
tian and anti-Hermitian parts of A commute with each other, allowing them to be
diagonalized simultaneously.

In the partition function (7.309), the (N + 1)× (N + 1) matrix A has the form

A = ǫ(1− ǫω)∇+ ǫω =























1 0 0 . . . 0 −1 + ǫω
−1 + ǫω 1 0 . . . 0 0

0 −1 + ǫω 1 . . . 0 0
0 0 −1 + ǫω . . . 0 0
...

...
0 0 0 . . . −1 + ǫω 1























.

(7.318)

This matrix acts on a complex vector space. Its determinant can immediately be
calculated by a repeated expansion along the first row [recall the calculations of the
determinants (2.204) and (2.418)], giving

detN+1A = 1− (1− ǫω)N+1. (7.319)

Hence we obtain the time-sliced partition function

ZN
ω =

1

detN+1[ǫ(1− ǫω)∇+ ǫω]
=

1

1− (1− ǫω)N+1
. (7.320)

It is useful to introduce the auxiliary frequency

ω̄e ≡ −1

ǫ
log(1− ǫω). (7.321)

The subscript e records the Euclidean nature of the time [in analogy with the fre-
quencies ω̃e of Eq. (2.399)]. In terms of ω̄e, Z

N
ω takes the form ref(2.399)

lab(2.230)
est(2.270)

ZN
ω =

1

1− e−βh̄ω̄e
. (7.322)

This is the well-known partition function of Bose particles for a single state of energy
ω̄e. It has the expansion

Zω = 1 + e−βh̄ω̄e + e−2βh̄ω̄e + . . . , (7.323)

in which the nth term exhibits the Boltzmann factor for an occupation of a particle
state by n particles, in accordance with the Hamiltonian operator

Ĥω = h̄ω̄eN̂ = h̄ω̄ea
†a. (7.324)
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In the continuum limit ǫ→ 0, the auxiliary frequency tends to ω,

ω̄e

ǫ→0−−−→ ω, (7.325)

and ZN
ω reduces to

Zω =
1

1− e−βh̄ω
. (7.326)

The generalization of the partition function to a system with a time-dependent
frequency Ω(τ) reads

ZN
ω =

N
∏

n=0

[

∫ da†ndan
π

]

exp
{

−1

h̄
AN

}

, (7.327)

with the sliced action

AN
ω = h̄

N
∑

n=1

[a∗n(an − an−1) + ǫΩna
∗
nan−1] , (7.328)

or, expressed in terms of the difference operator ∇,

AN
ω = h̄ǫ

N
∑

n=1

a∗n
[

(1− ǫΩn)∇+ Ωn
]

an. (7.329)

The result is

ZN
ω =

1

detN+1[ǫ(1− ǫΩ)∇ + ǫΩ]
=

1

1−∏N
n=0(1− ǫΩn)

. (7.330)

Here we introduce the auxiliary frequency

Ω̄e ≡ − 1

(N + 1)ǫ

N
∑

n=0

log(1− ǫΩn), (7.331)

which brings ZN
ω to the form

ZN
ω =

1

1− e−βh̄Ω̄e
. (7.332)

For comparison, let us also evaluate the path integral directly in the continuum
limit. Then the difference operator (7.318) becomes the differential operator

(1− ǫω)∇+ ω → ∂τ + ω, (7.333)

acting on periodic complex functions e−iωmτ with the Matsubara frequencies ωm.
Hence the continuum partition function of a harmonic oscillator could be written as

Zω =
∮ Da∗Da

π
exp

[

−
∫ h̄β

0
dτ (a∗∂τa+ ωa∗a)

]

= Nω
1

det (∂τ + ω)
. (7.334)
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The normalization constant is fixed by comparison with the time-sliced result. The
operator ∂τ + ω has the eigenvalues −iωm + ω. The product of these is calculated
by considering the ratios with respect to the ω = 0 -values

∞
∏

m=−∞, 6=0

−iωm + ω

−iωm
=

sinh(h̄ωβ/2)

h̄ωβ/2
. (7.335)

This product is the ratio of functional determinants

det (∂τ + ω)

det ′(∂τ )
= ω

sinh(h̄ωβ/2)

h̄ωβ/2
, (7.336)

where the prime on the determinant with ω = 0 denotes the omission of the zero
frequency ω0 = 0 in the product of eigenvalues; the prefactor ω accounts for this.

Note that this ratio formula of continuum fluctuation determinants gives nat-
urally only the harmonic oscillator partition function (7.306), not the second-
quantized one (7.322). Indeed, after fixing the normalization factor Nω in (7.334),
the path integral in the continuum formulation can be written as

Zω =
∮ Da∗Da

π
exp

[

−
∫ h̄β

0
dτ (a∗∂τa + ωa∗a)

]

=
kBT

h̄

det ′(∂τ )

det (∂τ + ω)
=

1

2 sinh(h̄ωβ/2)
. (7.337)

In the continuum, the relation with the oscillator fluctuation factor can be estab-
lished most directly by observing that in the determinant, the operator ∂τ+ω can be
replaced by the conjugate operator −∂τ + ω, since all eigenvalues come in complex-
conjugate pairs, except for the m = 0 -value, which is real. Hence the determinant
of ∂τ + ω can be substituted everywhere by

det (∂τ + ω) = det (−∂τ + ω) =
√

det (−∂2τ + ω2), (7.338)

rewriting the partition function (7.337) as

Zω =
kBT

h̄

det ′(∂τ )

det (∂τ + ω)

=
kBT

h̄

[

det ′(−∂2τ )
det (−∂2τ + ω2)

]1/2

=
1

2 sinh(h̄ωβ/2)
, (7.339)

where the second line contains precisely the oscillator expressions (2.396). ref(2.396)
lab(2.227)
est(2.268)

A similar situation holds for an arbitrary time-dependent frequency where the
partition function is

ZΩ(τ)=
∮ Da∗(τ)Da(τ)

π
exp

{

−
∫ h̄β

0
dτ

[

a†∂τa + Ω(τ)a†a
]

}

=
kBT

h̄

[

det ′(−∂2τ )
det (−∂2τ + Ω2(τ))

]1/2

=
1

2sinh(h̄ωβ/2)

[

det (−∂2τ + ω2)

det (−∂2τ + Ω2(τ))

]1/2

. (7.340)
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While the oscillator partition function can be calculated right-away in the continuum
limit after forming ratios of eigenvalues, the second-quantized path integral depends
sensitively on the choice a†nan−1 in the action (7.310). It is easy to verify that
the alternative slicings a†n+1an and a†nan would have led to the partition functions
[eβh̄ω − 1]−1 and [2 sinh(h̄ωβ/2)]−1, respectively. The different time slicings produce
obviously the same physics as the corresponding time-ordered Hamiltonian operators
Ĥ = T̂ â†(t)â(t′) in which t′ approaches t once from the right, once from the left,
and once symmetrically from both sides.

It is easy to decide which of these mathematically possible approaches is the phys-
ically correct one. Classical mechanics is invariant under canonical transformations.
So is Schrödinger theory. Certainly we want path integrals have the same invari-
ance. Since the classical actions (7.300) and (7.301) arise from oscillator actions by
the canonical transformation (7.296), the associated partition functions must be the
same. This fixes the time-slicing of the harmonic oscillator to the symmetric one
with the partition function (7.339), and the general result (7.340).

Another argument in favor of this symmetric ordering of the harmonic oscillator
was given in Subsection 2.15.4. We shall see in Section 10.6 that in order to ensure
invariance of path integrals under coordinate transformations, which is guaranteed in
Schrödinger theory, path integrals should be defined by dimensional regularization.
In this framework, the symmetric result (7.340) emerges.

It must be pointed out, however, that the correctness of the symmetric ordering
for the oscillator action not true for arbitrary actions with an ordering ambiguity, as
will be discussed in detail in Subsection (10.3.1). In fact, there exists to my know-
ledge no general rule how to translate the procedure of dimensional regularization
into an operator-ordering language.

It is also worth noting that the symmetric result (7.339) gives rise to an im-
portant and poorly understood physical problem in many-body theory. Since each

harmonic oscillator in the world has a ground-state energy ω implied by the limiting
form (7.307), each momentum state of each particle field in the world contributes
an energy h̄ω/2 to the vacuum energy. If all these h̄ω/2 are summed up, they pro-
duce a divergence in the cosmological constant, thus eliminating the existence of
our universe. Somehow, the infinities of the free oscillators must be canceled by
short-range interactions, and it may well be that we shall never possess a theory
how this precisely happens. The present quantum feld theories assume only inter-
actions which are completely local. This is certainly a simplification, but it has
the advantage that the effect of interactions can be calculated perturbatively order
by order in the interaction strength. Moreover, if the local Lagrangian is suitably
chosen, the infinities coming from the local interactions are such that our ignorance
about their true short-distance behavior does not matter. The results depend only
on the experimentally measured parameters, such as mass and coupling strength.
Such local Lagrangians are called renormalizable. In a renormalizable theory, it is
a fundamental rule that all infinities can be subtracted and absorbed in the initial
parameters of the action to fit the experimentally observed parameters. The total
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energy of all zero-point oscillations is one of these infinities which can be absorbed
in the vaccum energy to fit the exerimetally observed cosmlogical constant.

Some people want to ignore this subtraction freedom and get a finite sum over
zero-point energies right at the free-field level. The only way to achieve this is by
imagining the universe to contains for each Bose field a Fermi field which, as we
shall see in Eq. (7.427), contributes a negative vacuum energy to the ground state.
Some people have therefore proposed that the world is described by a theory with
a broken supersymmetry , where an underlying action contains fermions and bosons
completely symmetrically. Unfortunately, all elementary particle theories proposed
so far possess completely unphysical particle spectra.

There are, however, important mathematical properties of supersymmetry with
interesting applications. One of them plays a crucial role in the context of gauge
fixing in nonabelian gauge theories, where a residual supersymmetry (the so-called
BRST-symmetry) is important for renormalization. The other occurs in the context
of disorder and will be presented in Section 18.16.

7.8 Coherent States

As long as we calculate the partition function of the harmonic oscillator in the vari-
ables a∗(τ) and a(τ), the path integrals do not differ from those of the harmonic-
oscillator (except for the possibly absent ground-state energy). The situation
changes if we want to calculate the path integral (7.334) for specific initial and
final values aa = a(τa) and ab = a(τb), implying also a∗a = a∗(τa) and a

∗
b = a∗(τb) by

complex conjugation. In the definition of the canonical path integral in Section 2.1
we had to choose between measures (2.46) and (2.47), depending on which of the
two completeness relations

∫

dx |x〉〈x| = 1,
∫

dp

2π
|p〉〈p| = 1 (7.341)

we wanted to insert into the factorized operator version of the Boltzmann factor
e−βĤ into products of e−ǫĤ. The time-sliced path integral (7.309), on the other
hand, runs over a∗(τ) and a(τ) corresponding to an apparent completeness relation

∫

dx
∫

dp

2π
|x p〉〈x p| = 1. (7.342)

This resolution of the identity is at first sight surprising, since in a quantum-
mechanical system either x or p can be specified, but not both. Thus we expect
(7.342) to be structurally different from the completeness relations in (7.341). In
fact, (7.342) may be called an overcompleteness relation.

In order to understand this, we form coherent states [49] similar to those used
earlier in Eq. (3A.5):

|z〉 ≡ ezâ
†−z∗â|0〉, 〈z| ≡ 〈0|e−zâ†+z∗â. (7.343)
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The Baker-Campbell-Hausdorff formula (2.9) allows us to rewrite

ezâ
†−z∗â = ez

∗z[â†,â]/2ezâ
†

e−z
∗â = e−z

∗z/2ezâ
†

e−z
∗â. (7.344)

Since â annihilates the vacuum state, we may expand

|z〉 = e−z
∗z/2ezâ

† |0〉 = e−z
∗z/2

∞
∑

n=0

zn√
n!

|n〉. (7.345)

The states |n〉 and 〈n| can be recovered from the coherent states |z〉 and 〈z| by the
operations:

|n〉 =
[

|z〉ez∗z/2 ←∂nz
]

z=0

1√
n!
, 〈n| = 1√

n!

[

∂nz∗e
z∗z/2〈z|

]

z=0
. (7.346)

For an operator Ô, the trace can be calculated from the integral over the diagonal
elements

tr Ô =
∫ dz∗dz

π
〈z|Ô|z〉 =

∫ dz∗dz

π
e−z

∗z
∞
∑

m,n=0

z∗m√
m!

zn√
n!

〈m|Ô|n〉. (7.347)

Setting z = reiφ, this becomes

tr Ô =
∫

dr2
[

dφ

2π
e−i(m−n)φ

]

e−r
2
∞
∑

m,n=0

(

r2
)(m+n)/2 1√

m!

1√
n!

〈m|Ô|n〉. (7.348)

The integral over φ gives a Kronecker symbol δm,n and the integral over r2 cancels
the factorials, so that we remain with the diagonal sum

tr Ô =
∫

dr2 e−r
2
∞
∑

n=0

(

r2
)n 1

n!
〈n|Ô|n〉 =

∞
∑

n=0

〈n|Ô|n〉. (7.349)

The sum on the right-hand side of (7.345) allows us to calculate immediately the
scalar product of two such states:

〈z1|z2〉 = e−z
∗
1z1/2−z

∗
2z2/2+z

∗
1z2 . (7.350)

The coherent states (7.343) with z = (x + ip)/
√
2 have precisely the property

(7.342), i.e., we may identify:

|x p〉 ≡ |z〉, where z ≡ (x+ ip)/
√
2. (7.351)

Then (7.345) can be written as

|x p〉 = e−(x
2+p2)/4

∞
∑

n=0

(x+ ip)n√
2nn!

|0〉, (7.352)
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and
∫

dx
dp

2π
|x p〉〈x p|=

∫

dx
dp

2π
|x p〉〈x p|e−(x2+p2)/2

∞
∑

m,n=0

(x− ip)m√
2mm!

(x+ ip)n√
2nn!

|m〉〈n|.

(7.353)
Setting (x− ip)/

√
2 ≡ reiφ, this can be rewritten as

∫

dx
dp

2π
|x p〉〈x p|=

∫

dr2
[

dφ

2π
e−i(m−n)φ

]

e−r
2
∞
∑

m,n=0

(

r2
)(m+n)/2 1√

m!

1√
n!
|m〉〈n|. (7.354)

The angular integration enforces m = n, and the integrals over r2 cancel the fac-
torials, as in (7.348), thus proving the resolution of the identity (7.342), which can
also be written as

∫

dz∗dz

π
|z〉〈z| = 1. (7.355)

This resolution of the identity can now be inserted into a product decomposition of
a Boltzmann operator

〈zb|e−βĤω |za〉 = 〈zb|e−βĤω/(N+1)e−βĤω/(N+1) · · · e−βĤω/(N+1)|za〉, (7.356)

to arrive at a sliced path integral [compare (2.2)–(2.4)]

〈zb|e−βĤω |za〉=
N
∏

n=1

[

∫

dz∗ndzn
π

]

N+1
∏

n=1

〈zn|e−ǫĤω |zn−1〉, z0= za, zN+1= zb, ǫ≡β/(N+1).

(7.357)

We now calculate the matrix elements 〈zn|e−ǫĤω |zn−1〉 and find

〈zn|e−ǫĤω |zn−1〉 ≈ 〈zn|1− ǫĤω|zn−1〉 = 〈zn|zn−1〉 − ǫ〈zn|Ĥω|zn−1〉. (7.358)

Using (7.350) we find

〈zn|zn−1〉 = e−z
∗
nzn/2−z

∗
n−1zn−1/2+z∗nzn−1 = e−(1/2)[z

∗
n(zn−zn−1)−(z∗n−z∗n−1)zn−1]. (7.359)

The matrix elements of the operator Hamiltonian (7.298) is easily found. The co-
herent states (7.345) are eigenstates of the annihilation operator â with eigenvalue
z:

â|z〉 = e−z
∗z/2

∞
∑

n=0

zn√
n!
â|n〉 = e−z

∗z/2
∞
∑

n=1

zn
√

(n− 1)!
|n− 1〉 = z|z〉. (7.360)

Thus we find immediately

〈zn|Ĥω|zn−1〉 = h̄ω〈zn|(â†â + â â†)|zn−1〉 = h̄ω
(

z†nzn−1 +
1

2

)

. (7.361)

Inserting this together with (7.359) into (7.358), we obtain for small ǫ the path
integral

〈zb|e−βĤω |za〉 =
N
∏

n=1

[

∫

dz∗ndzn
π

]

e−A
N
ω [z∗,z]/h̄, (7.362)
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with the time-sliced action

AN
ω [z

∗, z] = h̄ǫ
N+1
∑

n=1

{

1

2

[

z∗n∇zn − (∇z∗n)zn−1
]

+ ω
(

z∗nzn−1 +
1

2

)}

. (7.363)

The gradient terms can be regrouped using formula (2.35), and rewriting its right-
hand side as pN+1xN+1 − p0x0 +

∑N+1
n=1 (pn − pn−1)xn−1. This leads to

AN
ω [z

∗, z] =
h̄

2
(−z∗b zb + z∗aza) + h̄ǫ

N+1
∑

n=1

{

z∗n∇zn + ω
(

z∗nzn−1 +
1

2

)}

. (7.364)

Except for the surface terms which disappear for periodic paths, this action agrees
with the time-sliced Euclidean action (7.310), except for a trivial change of variables
a→ z.

As a brief check of formula (7.362) we set N = 0 and find

A0
ω[z
∗, z] =

h̄

2
(−z∗b zb + z∗aza) + h̄z∗b (zb − za) + ω

(

z∗b za +
1

2

)

, (7.365)

and the short-time amplitude (7.364) becomes

〈zb|e−ǫĤω |za〉 = exp
[

−1

2
(z∗b zb + z∗aza) + z∗b za − ǫh̄ω

(

z∗b za +
1

2

)]

. (7.366)

Applying the recovery operations (7.346) we find

〈0|e−ǫĤω |0〉 =
[

e(z
∗
b
zb+z

∗
aza)/2〈zb|e−ǫĤω |za〉

]

z∗=0,z=0
= e−ǫh̄ω/2, (7.367)

〈1|e−ǫĤω |1〉 =
{

∂z
[

e(z
∗
b
zb+z

∗
aza)/2〈zb|e−ǫĤω |za〉

]←

∂
∗
z

}

z∗=0,z=0
= e−ǫ3h̄ω/2, (7.368)

〈0|e−ǫĤω |1〉 = 〈1|e−ǫĤω |0〉 = 0. (7.369)

Thus we have shown that for fixed ends, the path integral gives the amplitude for
an initial coherent state |za〉 to go over to a final coherent state |zb〉. The partition
function (7.337) is obtained from this amplitude by forming the diagonal integral

Zω =
∫ dz∗ dz

π
〈z|e−βĤω |z〉. (7.370)

7.9 Second-Quantized Fermi Fields

The existence of the periodic system of elements is based on the fact that electrons
can occupy each orbital state only once (counting spin-up and -down states sepa-
rately). Particles with this statistics are called fermions . In the above Hilbert space
in which n-particle states at a point x are represented by oscillator states |n,x〉, this
implies that the particle occupation number n can take only the values

n = 0 (no electron),

n = 1 (one electron).
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It is possible to construct such a restricted many-particle Hilbert space explicitly
by subjecting the quantized fields ψ̂†(x), ψ̂(x) or their Fourier components â†p, âp
to anticommutation relations , instead of the commutation relations (7.282), i.e., by
postulating

[ψ̂(x, t), ψ̂†(x′, t)]+ = δxx′,

[ψ̂†(x, t), ψ̂†(x′, t)]+ = 0,

[ψ̂(x, t), ψ̂(x′, t)]+ = 0, (7.371)

or for the Fourier components

[âp(t), â
†
p′(t)]+ = δpp′,

[â†p(t), â
†
p′(t)]+ = 0,

[âp(t), âp′(t)]+ = 0. (7.372)

Here [Â, B̂]+ denotes the anticommutator of the operators Â and B̂

[Â, B̂]+ ≡ ÂB̂ + B̂Â. (7.373)

Apart from the anticommutation relations, the second-quantized description of
Fermi fields is completely analogous to that of Bose fields in Section 7.6.

7.10 Fluctuating Fermi Fields

The question arises as to whether it is possible to find a path integral formulation
which replaces the anticommuting operator structure. The answer is affirmative, but
at the expense of a somewhat unconventional algebraic structure. The fluctuating
paths can no longer be taken as c-numbers. Instead, they must be described by
anticommuting variables.

7.10.1 Grassmann Variables

Mathematically, such objects are known under the name of Grassmann variables .
They are defined by the algebraic property

θ1θ2 = −θ2θ1, (7.374)

which makes them nilpotent :

θ2 = 0. (7.375)

These variables have the curious consequence that an arbitrary function of them
possesses only two Taylor coefficients, F0 and F1,

F (θ) = F0 + F1θ. (7.376)
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They are obtained from F (θ) as follows:

F0 = F (0), (7.377)

F1 = F ′ ≡ ∂

∂θ
F.

The existence of only two parameters in F (θ) is the reason why such functions
naturally collect amplitudes of two local fermion states, F0 for zero occupation, F1

for a single occupation.
It is now possible to define integrals over functions of these variables in such a

way that the previous path integral formalism remains applicable without a change
in the notation, leading to the same results as the second-quantized theory with
anticommutators. Recall that for ordinary real functions, integrals are linear func-
tionals. We postulate this property also for integrals with Grassmann variables.
Since an arbitrary function of a Grassmann variable F (θ) is at most linear in θ, its
integral is completely determined by specifying only the two fundamental integrals
∫

dθ and
∫

dθ θ. The values which render the correct physics with a conventional
path integral notation are

∫

dθ√
2π

= 0, (7.378)

∫

dθ√
2π

θ = 1. (7.379)

Using the linearity property, an arbitrary function F (θ) is found to have the integral

∫

dθ√
2π
F (θ) = F1 = F ′. (7.380)

Thus, integration of F (θ) coincides with differentiation. This must be remembered
whenever Grassmann integration variables are to be changed: The integral is trans-
formed with the inverse of the usual Jacobian. The obvious equation

∫

dθ√
2π
F (c · θ) = c · F ′ = c ·

∫

dθ′√
2π
F (θ′) (7.381)

for any complex number c implies the relation

∫ dθ√
2π
F (θ′(θ)) =

∫ dθ′√
2π

[

dθ

dθ′

]−1

F (θ′). (7.382)

For ordinary integration variables, the Jacobian dθ/dθ′ would appear without the
power −1.

When integrating over a product of two functions F (θ) and G(θ), the rule of
integration by parts holds with the opposite sign with respect to that for ordinary
integrals:

∫

dθ√
2π
G(θ)

∂

∂θ
F (θ) =

∫

dθ√
2π

[

∂

∂θ
G(θ)

]

F (θ). (7.383)
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There exists a simple generalization of the Dirac δ-function to Grassmann vari-
ables. We shall define this function by the integral identity

∫

dθ′√
2π
δ(θ − θ′)F (θ′) ≡ F (θ). (7.384)

Inserting the general form (7.376) for F (θ), we see that the function

δ(θ − θ′) = θ′ − θ (7.385)

satisfies (7.384). Note that the δ-function is a Grassmann variable and, in contrast
to Dirac’s δ-function, antisymmetric. Its derivative has the property

δ′(θ − θ′) ≡ ∂θδ(θ − θ′) = −1. (7.386)

It is interesting to see that δ′ shares with Dirac’s δ′ the following property:

∫

dθ′√
2π
δ′(θ − θ′)F (θ′) = −F ′(θ), (7.387)

with the opposite sign of the Dirac case. This follows from the above rule of partial
integration, or simpler, by inserting (7.386) and the explicit decomposition (7.376)
for F (θ).

The integration may be extended to complex Grassmann variables which are
combinations of two real Grassmann variables θ1, θ2:

a∗ =
1√
2
(θ1 − iθ2), a =

1√
2
(θ1 + iθ2). (7.388)

The measure of integration is defined by

∫ da∗da

π
≡
∫ dθ2dθ1

2πi
≡ −

∫ da da∗

π
. (7.389)

Using (7.378) and (7.379) we see that the integration rules for complex Grassmann
variables are

∫ da∗ da

π
= 0,

∫ da∗ da

π
a = 0,

∫ da∗ da

π
a∗ = 0, (7.390)

∫

da∗ da

π
a∗a =

∫

dθ2 dθ1
2πi

iθ1θ2 = 1. (7.391)

Every function of a∗a has at most two terms:

F (a∗a) = F0 + F1 a
∗a. (7.392)

In particular, the exponential exp{−a∗Aa} with a complex number A has the Taylor
series expansion

e−a
∗Aa = 1− a∗Aa. (7.393)
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Thus we find the following formula for the Gaussian integral:

∫ da∗ da

π
e−a

∗Aa = A. (7.394)

The integration rule (7.390) can be used directly to calculate the Grassmann
version of the product of integrals (7.315). For a matrix A which can be diagonalized
by a unitary transformation, we obtain directly

Z f =
∏

n

[

∫

da∗ndan
π

]

eiΣn,n′a∗nAn,n′an′ = detA. (7.395)

Remarkably, the fermion integration yields precisely the inverse of the boson result
(7.315).

7.10.2 Fermionic Functional Determinant

Consider now the time-sliced path integral of the partition function written like
(7.309) but with fermionic anticommuting variables. In order to find the same results
as in operator quantum mechanics it is necessary to require the anticommuting
Grassmann fields a(τ), a∗(τ) to be antiperiodic on the interval τ ∈ (0, h̄β), i.e.,

a(h̄β) = −a(0), (7.396)

or in the sliced form
aN+1 = −a0. (7.397)

Then the exponent of (7.395) has the same form as in (7.315), except that the matrix
A of Eq. (7.318) is replaced by

Af =ǫ(1− ǫω)∇τ + ǫω =























1 0 0 . . . 0 1− ǫω
−1 + ǫω 1 0 . . . 0 0

0 −1 + ǫω 1 . . . 0 0
0 0 −1 + ǫω . . . 0 0
...

...
0 0 0 . . . −1 + ǫω 1























,

(7.398)

where the rows and columns are counted from 1 to N + 1. The element in the
upper right corner is positive and thus has the opposite sign of the bosonic matrix
in (7.318). This makes an important difference: While for ω = 0 the bosonic matrix
gave

det (−ǫ∇)ω=0 = 0, (7.399)

due to translational invariance in τ , we now have

det (−ǫ∇)ω=0 = 2. (7.400)
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The determinant of the fermionic matrix (7.398) can be calculated by a repeated
expansion along the first row [recall the calculations of the determinants (2.204) and
(2.418)] and is found to be

detN+1A = 1 + (1− ǫω)N+1. (7.401)

Hence we obtain the time-sliced fermion partition function

Z f,N
ω = detN+1[ǫ(1− ǫω)∇+ ǫω] = 1 + (1− ǫω)N+1. (7.402)

As in the boson case, we introduce the auxiliary frequency

ω̄e ≡ −1

ǫ
log(1− ǫω) (7.403)

and write Z f,N
ω in the form

ZN
ω = 1 + e−βh̄ω̄e. (7.404)

This partition function displays the typical property of Fermi particles. There are
only two terms, one for the zero-particle and one for the one-particle state at a point.
Their energies are 0 and h̄ω̄e, corresponding to the Hamiltonian operator

Ĥω = h̄ω̄eN̂ = h̄ω̄ea
†a. (7.405)

In the continuum limit ǫ→ 0, where ω̄e → ω, the partition function ZωN goes over
into

Zω = 1 + e−βh̄ω. (7.406)

Let us generalize also the fermion partition function to a system with a time-
dependent frequency Ω(τ), where it reads

Z f,N
ω =

N
∏

n=0

[

∫

da∗ndan
π

]

exp
(

−1

h̄
AN
ω

)

, (7.407)

with the sliced action

AN
ω = h̄

N
∑

n=1

[a∗n(an − an−1) + ǫΩna
∗
nan−1] , (7.408)

or, expressed in terms of the difference operator ∇,

AN
ω = h̄ǫ

N
∑

n=1

a∗n
[

(1− ǫΩn)∇+ Ωn
]

an. (7.409)

The result is

Z f,N
ω = detN+1[ǫ(1 − ǫΩ)∇ + ǫω] = 1−

N
∏

n=0

(1− ǫΩn). (7.410)
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As in the bosonic case, it is useful to introduce the auxiliary frequency

Ω̄e ≡ − 1

(N + 1)ǫ

N
∑

n=0

log(1− ǫΩn), (7.411)

and write Z f,N
ω in the form

Z f,N
ω = 1 + e−βh̄Ω̄e . (7.412)

If we attempt to write down a path integral formula for fermions directly in
the continuum limit, we meet the same phenomenon as in the bosonic case. The
difference operator (7.318) turns into the corresponding differential operator

(1− ǫω)∇+ ω → ∂τ + ω, (7.413)

which now acts upon periodic complex functions e−iω
f
mτ with the odd Matsubara

frequencies
ωf
m = π(2m+ 1)kBT/h̄, m = 0,±1,±2, . . . . (7.414)

The continuum partition function can be written as a path integral

Z f
ω =

∮ Da∗Da
π

exp

[

−
∫ h̄β

0
dτ (a∗∂τa+ ωa∗a)

]

= Nωdet (∂τ + ω), (7.415)

with some normalization constant Nω determined by comparison with the time-
sliced result. To calculate Z f

ω, we take the eigenvalues of the operator ∂τ +ω, which
are now −iωf

m + ω, and evaluate the product of ratios

∞
∏

m=−∞

−iωf
m + ω

−iωf
m

= cosh(h̄ωβ/2). (7.416)

This corresponds to the ratio of functional determinants

det (∂τ + ω)

det (∂τ )
= cosh(h̄ωβ/2). (7.417)

In contrast to the boson case (7.336), no prime is necessary on the determinant of
∂τ since there is no zero frequency in the product of eigenvalues (7.416). Setting
Nω = 1/2det (∂τ ), the ratio formula produces the correct partition function

Z f
ω = 2cosh(h̄ωβ/2). (7.418)

Thus we may write the free-fermion path integral in the continuum form explicitly
as follows:

Z f
ω =

∮ Da∗Da
π

exp

[

−
∫ h̄β

0
dτ (a∗∂τa+ ωa∗a)

]

= 2
det (∂τ + ω)

det (∂τ )

= 2 cosh(h̄ωβ/2). (7.419)
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The determinant of the operator ∂τ + ω can again be replaced by

det (∂τ + ω) = det (−∂τ + ω) =
√

det (−∂2τ + ω2). (7.420)

As in the bosonic case, this Fermi analog of the harmonic oscillator partition
function agrees with the results of dimensional regularization in Subsection 2.15.4
which will ensure invariance of path integrals under a change of variables, as will
be seen in Section 10.6. The proper fermionic time-sliced partition function corre-
sponding to the dimensional regularization in Subsection 2.15.4 is obtained from a
fermionic version of the time-sliced oscillator partition function by evaluating

Z f,N
ω =

[

detN+1(−ǫ2∇∇̄+ ǫ2ω2)
]1/2

=
N
∏

m=0

[

ǫ2Ωf
mΩ̄

f
m + ǫ2ω2

]1/2

≡
N
∏

m=0

[

2(1− cosωf
mǫ) + ǫ2ω2

]1/2
=

N
∏

m=0

[

2 sin2 ǫω
f
m

2
+ ǫ2ω2

]1/2

, (7.421)

with a product over the odd Matsubara frequencies ωf
m. The result is

Z f,N
ω = 2cosh(h̄ω̃eβ), (7.422)

with ω̃e given by
sinh(ω̃e/2) = ǫω/2. (7.423)

This follows from the Fermi analogs of the product formulas (2.400), (2.402):7 ref(2.400)
lab(2.122b)
est(2.271)
ref(2.402)
lab(2.122bc)
est(2.273)

N/2−1
∏

m=0



1− sin2 x

sin2 (2m+1)π
2(N+1)



 =
cos(N + 1)x

cosx
, N = even, (7.424)

(N−1)/2
∏

m=0



1− sin2 x

sin2 (2m+1)π
2(N+1)



 = cos(N + 1)x, N = odd. (7.425)

For odd N , where all frequencies occur twice, we find from (7.425) that

N
∏

m=0



1− sin2 x

sin2 (2m+1)π
2(N+1)





1/2

= cos(N + 1)x, (7.426)

and thus, with (7.423), directly (7.422). For even N , where the frequency with
m = N/2 occurs only once, formula (7.424) gives once more the same answer, thus
proving (7.426) for even and odd N .

There exists no real fermionic oscillator action since x2 and ẋ2 would vanish
identically for fermions, due to the nilpotency (7.375) of Grassmann variables. The
product of eigenvalues in Eq. (7.421) emerges naturally from a path integral in which
the action (7.408) is replaced by a symmetrically sliced action.

7I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formulas 1.391.2, 1.391.4.
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An important property of the partition function (7.418) of (7.422) is that the
ground-state energy is negative:

E(0) = − h̄ω
2
. (7.427)

As discussed at the end of Section 7.7, such a fermionic vacuum energy is required for
each bosonic vacuum energy to avoid an infinite vacuum energy of the world, which
would produce an infinite cosmological constant, whose experimentally observed
value is extremely small.

7.10.3 Coherent States for Fermions

For the bosonic path integral (7.304) we have studied in Section 7.8, the case that
the endpoint values aa = a(τa) and ab = a(τb) of the paths a(τ) are held fixed.

The result was found to be the matrix element of the Boltzmann operator e−βĤω

between coherent states |a〉 = e−a
∗a/2eaâ

† |0〉 [recall (7.345)]. There exists a similar
interpretation for the fermion path integral (7.415) if we hold the endpoint values
aa = a(τa) and ab = a(τb) of the Grassmann paths fixed. By analogy with Eq. (7.345)
we introduce coherent states [50]

|ζ〉 ≡ e−ζ
∗ζ/2ea

†ζ |0〉 = e−ζ
∗ζ/2

(

|0〉 − ζ |1〉
)

. (7.428)

The corresponding adjoint states read

〈ζ | ≡ e−ζ
∗ζ/2〈0|eζ∗a = e−ζ

∗ζ/2
(

〈0|+ ζ∗〈1|
)

. (7.429)

Note that for consistency of the formalism, the Grassmann elements ζ anticommute
with the fermionic operators. The states |0〉 and 〈1| and their conjugates 〈0| and
〈1| can be recovered from the coherent states |ζ〉 and 〈ζ | by the operations:

|n〉 =
[

|ζ〉eζ∗ζ/2 ←∂nζ
]

ζ=0

1√
n!
, 〈n| = 1√

n!

[

∂nζ∗e
ζ∗ζ/2〈ζ |

]

ζ=0
. (7.430)

These formula simplify here to

|0〉 =
[

|ζ〉eζ∗ζ/2
]

ζ=0
, 〈0| =

[

eζ
∗ζ/2〈ζ |

]

ζ=0
, (7.431)

|1〉 =
[

|ζ〉eζ∗ζ/2 ←∂ ζ
]

ζ=0
, 〈1| =

[

∂ζ∗e
ζ∗ζ/2〈ζ |

]

ζ=0
. (7.432)

For an operator Ô, the trace can be calculated from the integral over the antidi-
agonal elements

tr Ô =
∫

dζ∗dζ

π
〈−ζ |Ô|ζ〉 =

∫

dζ∗dζ

π
e−ζ

∗ζ
(

〈0| − ζ∗〈1|
)

Ô
(

|0〉 − ζ |1〉
)

. (7.433)
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Using the integration rules (7.390) and (7.391), this becomes

tr Ô = 〈0|Ô|0〉+ 〈1|Ô|1〉. (7.434)

The states |ζ〉 form an overcomplete set in the one-fermion Hilbert space. The
scalar products are [compare (7.350)]:

〈ζ1|ζ2〉 = e−ζ
∗
1 ζ1/2−ζ

∗
2 ζ2/2+ζ

∗
1 ζ2

= e−ζ
∗
1 (ζ1−ζ2)/2+(ζ∗1−ζ

∗
2 )ζ2/2.

(7.435)

The resolution of the identity (7.355) is now found as follows [recall (7.390)]:

∫

dζ∗dζ

π
|ζ〉〈ζ | =

∫

dζ∗dζ

π
e−ζ

∗ζ
[

|0〉〈0| − ζ |1〉〈0|+ ζ∗|0〉〈1|
]

=
∫

dζ∗dζ

π

[

|0〉〈0|+ |1〉〈0|ζ + ζ∗|0〉〈1|+ ζζ∗
(

|0〉〈0|+ |1〉〈0|
)]

= 1. (7.436)

We now insert this resolution of the identity into the product of Boltzmann factors

〈ζb|e−βĤω |ζa〉 = 〈ζb|e−ǫĤωe−ǫĤω · · · e−ǫĤω |ζa〉 (7.437)

where ǫ ≡ β/(N + 1), and obtain by analogy with (7.362) the time-sliced path
integral

〈zb|e−βĤω |za〉 =
N
∏

n=1

[

∫ dz∗ndzn
π

]

e−Ae[z∗,z]/h̄, (7.438)

with the a time-sliced action similar to the bosonic one in (7.364):

AN
ω [ζ

∗, ζ ] =
h̄

2
(−ζ∗b ζb + ζ∗aζa) + h̄ǫ

N+1
∑

n=1

{

ζ∗n∇ζn + ω
(

ζ∗nζn−1 +
1

2

)}

. (7.439)

Except for the surface term which disappears for antiperiodic paths, this agrees
with the time-sliced Euclidean action (7.310), except for a trivial change of variables
a→ ζ .

We have shown that as in the Bose case the path integral with fixed ends gives
the amplitude for an initial coherent state |ζa〉 to go over to a final coherent state
|ζb〉. The fermion partition function (7.419) is obtained from this amplitude by

forming the trace of the operator e−βĤω , which by formula (7.434) is given by the
integral over the antidiagonal matrix elements

Z f
ω =

∫ dζ∗ dζ

π
〈−ζ |e−βĤω |ζ〉. (7.440)

The antidiagonal matrix elements lead to antiperiodic boundary conditions of the
fermionic path integral.
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7.11 Hilbert Space of Quantized Grassmann Variable

To understand the Hilbert space associated with a path integral over a Grassmann
variable we recall that a path integral with zero Hamiltonian serves to define the
Hilbert space via all its scalar products as shown in Eq. (2.18):

(xbtb|xata) =
∫

Dx
∫ Dp

2πh̄
exp

[

i
∫

dt p(t)ẋ(t)
]

= 〈xb|xa〉 = δ(xb − xa). (7.441)

A momentum variable inside the integral corresponds to a derivative operator p̂ ≡
−ih̄∂x outside the amplitude, and this operator satisfies with x̂ = x the canonical
commutation relation [p̂, x̂] = −ih̄ [see (2.19)].

By complete analogy with this it is possible to create the Hilbert space of spinor
indices with the help of a path integral over anticommuting Grassmann variables.
In order to understand the Hilbert space, we shall consider three different cases.

7.11.1 Single Real Grassmann Variable

First we consider the path integral of a real Grassmann field with zero Hamiltonian

∫ Dθ
2π

exp

[

i

h̄

∫

dt
ih̄

2
θ(t)θ̇(t)

]

. (7.442)

From the Lagrangian

L(t) = i

2
h̄θ(t)θ̇(t) (7.443)

we obtain a canonical momentum

pθ =
∂L
∂θ̇

= −ih̄
2
θ. (7.444)

Note the minus sign in (7.444) arising from the fact that the derivative with resect
to θ̇ anticommutes with the variable θ on its left.

The canonical momentum is proportional to the dynamical variable. The system
is therefore subject to a constraint

χ = pθ +
ih̄

2
θ = 0. (7.445)

In the Dirac classification this is a second-class constraint, in which case the quan-
tization proceeds by forming the classical Dirac brackets rather than the Poisson
brackets (1.20), and replacing them by ±i/h̄ times commutation or anticommuta-
tion relations, respectively. For n dynamical variables qi and m constraints χp the
Dirac brackets are defined by

{A,B}D = {A,B} − {A, χp}Cpq{χq, B}, (7.446)

where Cpq is the inverse of the matrix

Cpq = {χp, χq}. (7.447)
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For Grassmann variables pi, qi, the Poisson bracket (1.20) carries by definition an
overall minus sign if A contains an odd product of Grassmann variables. Applying
this rule to the present system we insert A = pθ and B = θ into the Poisson bracket
(1.20) we see that it vanishes. The constraint (7.445), on the other hand, satisfies

{χ, χ} =

{

pθ +
ih̄

2
θ, pθ +

ih̄

2
θ

}

= −ih̄{pθ, θ} = −ih̄. (7.448)

Hence C = −ih̄ with an inverse i/h̄. The Dirac bracket is therefore

{pθ, θ}D = {pθ, θ} −
i

h̄
{pθ, χ}{χ, θ} = 0− −i

h̄

(

ih̄

2

)

(h̄) = − h̄
2
. (7.449)

With the substitution rule {A,B}D → (−i/h̄)[Â, B̂]+, we therefore obtain the canon-
ical equal-time anticommutation relation for this constrained system:

[p̂(t), θ̂(t)]+ = −ih̄
2
, (7.450)

or, because of (7.444),
[θ̂(t), θ̂(t)]+ = 1. (7.451)

The proportionality of pθ and θ has led to a factor 1/2 on the right-hand side with
respect to the usual canonical anticommutation relation.

Let ψ(θ) be an arbitrary wave function of the general form (7.376):

ψ(θ) = ψ0 + ψ1θ. (7.452)

The scalar product in the space of all wave functions is defined by the integral

〈ψ′|ψ〉 ≡
∫ dθ

2π
ψ′∗(θ)ψ(θ) = ψ′0

∗ψ1 + ψ′1
∗ψ0 . (7.453)

In the so-defined Hilbert space, the operator θ̂ is diagonal, while the operator p̂ is
given by the differential operator

p̂ = ih̄∂θ, (7.454)

to satisfy (7.450).
The matrix elements of the operator p̂ are

〈ψ′|p̂|ψ〉 ≡
∫

dθ

2π
ψ′∗(θ)ih̄

∂

∂θ
ψ(θ) = ih̄ψ′1

∗ψ1. (7.455)

By calculating

〈p̂ψ′|ψ〉 ≡
∫

dθ

2π

[

ih̄
∂

∂θ
ψ′(θ)

]∗

ψ(θ) = −ih̄ψ′1∗ψ1, (7.456)
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we see that the operator p̂ is anti-Hermitian, this being in accordance with the
opposite sign in the rule (7.383) of integration by parts.

Let |θ〉 be the local eigenstates of which the operator θ̂ is diagonal:

θ̂|θ〉 = θ|θ〉. (7.457)

The operator θ̂ is Hermitian, such that

〈θ|θ̂ = 〈θ|θ = θ〈θ|. (7.458)

The scalar products satisfy therefore the usual relation

(θ′ − θ)〈θ′|θ〉 = 0. (7.459)

On the other hand, the general expansion rule (7.376) tells us that the scalar product
S = 〈θ′|θ〉 must be a linear combination of S0 + S1θ + S ′1θ

′ + S2θθ
′. Inserting this

into (7.459), we find
〈θ′|θ〉 = −θ′ + θ + S2θθ

′, (7.460)

where the proportionality constants S0 and S1 are fixed by the property

〈θ′|θ〉 =
∫

dθ′′

2π
〈θ′|θ′′〉〈θ′′|θ〉. (7.461)

The constant S2 is an arbitrary real number. Recalling (7.385) we see that
Eq. (7.460) implies that the scalar product 〈θ′|θ〉 is equal to a δ-function:

〈θ′|θ〉 = δ(θ − θ′), (7.462)

just as in ordinary quantum mechanics. Note the property

〈θ′|θ〉∗ = −〈θ|θ′〉 = 〈−θ| − θ′〉, (7.463)

and the fact that since the scalar product 〈θ′|θ〉 is a Grassmann object, a Grassmann
variable anticommutes with the scalar product. Having assumed in (7.458) that the
Grassmann variable θ can be taken to the left of the bra-vector 〈θ|, the ket-vector
|θ〉 must be treated like a Grassmann variable, i.e.,

θ̂|θ〉 = θ|θ〉 = −|θ〉θ. (7.464)

The momentum operator has the following matrix elements

〈θ′|p̂|θ〉 = −ih̄∂θ′〈θ′|θ〉 = ih̄. (7.465)

Let |p〉 be an eigenstate of p̂ with eigenvalue ip, then its scalar product with |θ〉
satisfies

〈θ|p̂|p〉 =
∫

dθ′

2π
〈θ|p̂|θ′〉〈θ′|p〉 = ih̄

∫

dθ′

2π
〈θ′|p〉 = ih̄∂θ′〈θ′|p〉, (7.466)
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the last step following from the rule (7.380). Solving (7.466) we find

〈θ|p〉 = eiθp/h̄, (7.467)

the right-hand side being of course equal to 1 + iθp/h̄.
It is easy to find an orthonormal set of basis vectors in the space of wave functions

(7.452):

ψ+(θ) ≡
1√
2
(1 + θ) , ψ−(θ) ≡

1√
2
(1− θ) . (7.468)

We can easily check that these are orthogonal to each other and that they have the
scalar products

∫

dθ

2π
ψ∗±(θ)ψ±(θ) = ±1. (7.469)

The Hilbert space contains states of negative norm which are referred to as ghosts .
Because of the constraint, only half of the Hilbert space is physical. For more details
on these problems see the literature on supersymmetric quantum mechanics.

7.11.2 Quantizing Harmonic Oscillator with Grassmann

Variables

Let us now turn to the more important physical system containing two Grassmann
variables θ1 and θ2, combined to complex Grassmann variables (7.388). The La-
grangian is assumed to have the same form as that of an ordinary harmonic oscilla-
tor:

L(t) = h̄
[

a∗(t)i∂ta(t)− ωa∗(t)a(t)
]

. (7.470)

We may treat a(t) and a∗(t) as independent variables, such that there is no constraint
in the system. The classical equation of motion

iȧ(t) = ωa(t) (7.471)

is solved by
a(t) = e−iωta(0), a†(t) = e−iωta†(0). (7.472)

The canonical momentum reads

pa(t) =
∂L(t)
∂ȧ(t)

= −ih̄a(t), (7.473)

and the system is quantized by the equal-time anticommutation relation

[p̂a(t), â(t)]+ = −ih̄, (7.474)

or
[â†(t), â(t)]+ = 1. (7.475)

In addition we have

[â(t), â(t)]+ = 0, [â†(t), â†(t)]+ = 0. (7.476)
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Due to these anticommutation relations, the time-independent number operator

N̂ ≡ a†(t)a(t) (7.477)

satisfies the commutation relations

[N̂ , a†(t)] = a†(t), [N̂ , a(t)] = −a(t). (7.478)

We can solve the algebra defined by (7.475), (7.476), and (7.478) for any time, say
t = 0, in the usual way, defining a ground state |0〉 by the condition

a|0〉 = 0, (7.479)

and an excited state |1〉 as
|1〉 ≡ a†|0〉. (7.480)

These are the only states, and the Hamiltonian operator Ĥ = ωN̂ possesses the
eigenvalues 0 and ω on them. Let ψ(a) be wave functions in the representation
where the operator a is diagonal. The canonically conjugate operator p̂a = ih̄â† has
then the form

p̂a ≡ −ih̄∂a. (7.481)

7.11.3 Spin System with Grassmann Variables

For the purpose of constructing path integrals of relativistic electrons later in Chap-
ter 19 we discuss here another system with Grassmann variables.

Pauli Algebra

First we introduce three real Grassmann fields θi, i = 1, 2, 3, and consider the path
integral

3
∏

i=1

[∫

Dθi
]

exp

[

i

h̄

∫

dt
ih̄

2
θi(t)θ̇i(t)

]

. (7.482)

The equation of motion is
θ̇i(t) = 0, (7.483)

so that θi(t) are time independent variables. The three momentum operators lead
now to the three-dimensional version of the equal-time anticommutation relation
(7.451)

[θ̂i(t), θ̂j(t)]+ = 2δij , (7.484)

where the time arguments can be omitted due to (7.483). The algebra is solved with
the help of the Pauli spin matrices (1.448). The solution of (7.484) is obviously

〈B|θ̂i|A〉 = σiBA, A, B = 1, 2. (7.485)

Let us now add in the exponent of the trivial path integral a Hamiltonian

HB = −S ·B(t), (7.486)
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where

Si ≡ − i

4
ǫijkθjθk (7.487)

plays the role of a spin vector. This can be verified by calculating the canonical
commutation relations between the operators

[Ŝi, Ŝj] = iǫijkŜ
k, (7.488)

and
[Ŝi, θ̂j] = iǫijkθ̂

k. (7.489)

Thus, the operator Ĥ describes the coupling of a spin vector to a magnetic field B(t).
Using the commutation relation (7.488), we find the Heisenberg equation (1.283) for
the Grassmann variables:

�̇ = B× �, (7.490)

which goes over into a similar equation for the spin vector:

Ṡ = B× S. (7.491)

The important observation is now that the path integral (7.482) with the mag-
netic Hamiltonian (7.486) with fixed ends θib = θi(τb) and θ

i
a = θi(τa) written as

∫ θi
b
=θi(τb)

θia=θ
i(τa)

D3θ exp

[

i

h̄

∫

dt

(

ih̄

4
θiθ̇i +Bi i

4
ǫijkθjθk

)]

, (7.492)

represents the matrix

T̂ exp
(

− i

h̄

∫

dtB(t) · �
2

)

, (7.493)

where T̂ is the time-ordering operator defined in Eq. (1.241). This operator is
necessary for a time-dependent B(t) field since the matrices B(t)�/2 for different
times do not in general commute with each other.

The result may be expressed in a slightly different notation using the spin tensors

Sij ≡ ǫijkSk =
1

2i
θiθj , (7.494)

whose matrix elements satisfy the rotation algebra

[Ŝij, Ŝkl] = i
(

δikŜjl − δilŜjk + δjlŜik − δjkŜil
)

, (7.495)

and which have the matrix representation

〈B|Ŝij|A〉 = 1

2
σijBA ≡ 1

4i
[σi, σj]BA = ǫijk

σk

2
. (7.496)

Note the normalization
σ12 = σ3. (7.497)
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Introducing the analogous magnetic field tensor

Fij ≡ ǫijkBk, (7.498)

we can write the final result also in the tensorial form

T̂exp
(

− i

4h̄

∫

dt Fij(t)σ
ij
)

=
∫ θi

b
=θi(τb)

θia=θ
i(τa)

D3θ exp

[

i

h̄

∫

dt

(

ih̄

4
θiθ̇i +

i

4
Fijθ

iθj
)]

. (7.499)

The trace of the left-hand side is, of course, given by the path integral over all
antiperiodic Grassmann paths on the right-hand side.

Whenever we encounter time-ordered exponentials of integrals over matrices,
these can be transformed into a fluctuating path integral over Grassmann variables.
If we want to find individual matrix elements, we have to make use of suitably
extended recovery formulas (7.431) and (7.432).

For a constant B-field, the time ordering operator can be ignored and the expo-
nential (7.493) can immediately be written down explicitly [see Eq. (1A.2)].

In the applications to come, we need only the trace of the matrix (7.493). Ac-
cording to Eq. (7.440), this is found from the integral over (7.492) with θib = −θia,
which means performing the integral over all antiperiodic Grassmann paths θi(τ).
For a constant B-field, the trace of the operator (7.493) is immediately extracted
from Eq. (1A.2):

∮

D3θ exp

[

i

h̄

∫

dt

(

ih̄

4
θiθ̇i +Bi i

4
ǫijkθjθk

)]

= 2 cos[|B|(tb − ta)/2h̄]. (7.500)

This result can also be derived directly from the path integral over the Grassmann
variables θi, which yields the square root of the functional determinant

2Det1/2
[

δij i∂t +
i

h̄
Fij(x(t))

]

. (7.501)

Here the normalization factor 2 is determined by the path integral with Fij = 0,
which simply counts the two possible states of the matrix representation (7.496), as
in the trace of the left-hand side of (7.499) for Fij = 0. Thus

∫

D3θ exp

{

i

h̄

∫

dt

[

ih̄

4
θiθ̇i

]}

= 2. (7.502)

This normalization factor and agrees with Eqs. (7.415) and (7.418), where the path
integral of single complex fermion field gives the same factor 2 for ω = 0

For a constant B-field in the z-direction, and antiperiodic boundary conditions
in the time interval (tb, ta), the matrix in the brackets has the form







ωf
m iB 0

−iB ωf
m 0

0 0 ωf
m





 , ωf
m =

π(2m+ 1)

tb − ta
, (7.503)
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where ωf
m are the real-time versions of the odd Matsubara frequencies (7.415). The

functional determinant (7.501) is then obtained from the product [compare (7.416)]

Det1/2
[

δij i∂t +
i

h̄
Fij

]

=

[

∞
∏

m=−∞

|ωm|(ω2
m − B2/h̄2)

]1/2

= cos[B(tb − ta)/2h̄]. (7.504)

The determinant in the second expression is an ordinary determinant of the 4 × 4-
dimensional matrix in the argument of the cosine, to be calculated from its Taylor
expansion.

Dirac Algebra

There exists a similar path integral suitable for describing relativistic spin systems.
If we introduce four Grassmann variables θµ, µ = 0, 1, 2, 3, the path integral

3
∏

µ=0

[∫

Dθµ
]

exp

{

i

h̄

∫

dt

[

−ih̄
4
θµ(t)θ̇

µ(t)

]}

, (7.505)

leads to an equation of motion
θ̇µ(t) = 0, (7.506)

and an operator algebra at equal times

{θ̂µ(t), θ̂ν(t)} = 2gµν , (7.507)

where gµν is the metric in Minkowski space

gµν =











1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1











. (7.508)

The time argument in (7.507) can again be dropped due to (7.506). The algebra
(7.507) is solved by the matrix elements [recall (7.485)]

〈β|θ̂µ(t)|α〉 = (γµ)βα , β, α = 1, 2, 3, 4, (7.509)

where γµ, γ5 are composed of 2× 2-matrices 0, 1, and σi as follows:

γ0 ≡
(

0 1
− 1 0

)

, γi ≡
(

0 σi

− σi 0

)

, γ5 ≡ iγ0γ1γ2γ3 =

(

−1 0
0 1

)

≡ γ5.

(7.510)
One may also introduce an additional Grassmann variable θ5 such that the path
integral

3
∏

µ=0

[∫

Dθ5
]

exp

[

i

h̄

∫

dt
ih̄

4
θ5(t)θ̇5(t)

]

, (7.511)
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produces the matrix elements of γ5(t):

〈β|θ̂5(t)|α〉 = (γ5)βα , β, α = 1, 2, 3, 4. (7.512)

The Grassmann variables θµ and θ5 anticommute with each other, and so do the
matrices γ5γ

µ and γ5.
In terms of the Grassmann variables θµ it is possible to write down a four-

dimensional version of the time-ordered 2 × 2 matrix integral (7.499) as a path
integral without time ordering:

T̂ exp
(

− i

2h̄

∫

dt FµνΣ
µν
)

=
∫

D4θ exp

{

i

h̄

∫

dt

[

−ih̄
2
θµθ̇

µ +
i

4
Fµνθ

µθν
]}

, (7.513)

where Σµν is the Minkowski space generalization of the spin tensor matrix σij/2 in
(7.496):

Σµν ≡ i

4
[γµ, γν ] = −Σνµ. (7.514)

As a check we use (7.510) and find

Σ12 =
1

2

(

σ12 0
0 σ12

)

=
1

2

(

σ3 0
0 σ3

)

, (7.515)

in agreement with (7.497).
As remarked before, we shall need in the applications to come only the trace

of the matrix (7.493), which is found, according to Eq. (7.440), from the integral
over (7.492) with θib = −θia, i.e., by performing the integral over all antiperiodic
Grassmann paths θi(τ). If we want to find individual matrix elements, we have to
make use of suitably extended recovery formulas (7.431) and (7.432).

The path integral over all antiperiodic paths for Fµν = 0 fixes the normalization.
For zero fields, the trace of the left-hand side of (7.513) is equal to 4, so that we
have

∫

D4θ exp

{

i

h̄

∫

dt

[

−ih̄
4
θµθ̇

µ

]}

= 4. (7.516)

This normalization factor agrees with Eqs. (7.415) and (7.418), where we found the
path integral of single complex fermion field to carry a normalization factor 2. For
four real fields this corresponds to a factor 4.

In the presence of a nonzero field tensor, the result of the path integral (7.513)
is therefore

∫

D4θ e(i/4h̄)
∫

dt{[−ih̄θµθ̇µ+iFµνθµθν]} = 4Det1/2
[

−gµν i∂t +
i

h̄
Fµν(x(t))

]

. (7.517)

In the presence of a constant electic and a constant magnetic field in the z-
direction, then F03 = E, and

Fµν =











0 0 0 E
0 0 −B 0
0 B 0 0
E 0 0 0











. (7.518)
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Thus we find

eFµν t =











coshEt 0 0 sinhEt
0 cosBt − sinBt 0
0 sinBt cosBt 0

sinhEt 0 0 coshEt











, (7.519)

so that

Det
(

−gµν i∂t +
i

h̄
Fµν

)

=det cos
(

Fµν
tb−ta
2h̄

)

=cos2
(

B
tb−ta
2h̄

)

cosh2
(

E
tb−ta
2h̄

)

. (7.520)

Constant Electric and Magnetic Field in any Direction

If there are both constant electric and magnetic fields in any direction, the calcula-
tion can be reduced to the parallel case by a simple Lorentz transformation. It is
always possible to find a Lorentz frame in which the fields become parallel. This
special frame will be called center-of-fields frame, and the transformed fields in this
frame will be denoted by BCF and ECF. The transformation has the form

ECF = γ
(

E+
v

c
×B

)

− γ2

γ + 1

v

c

(

v

c
· E
)

, (7.521)

BCF = γ
(

B− v

c
×E

)

− γ2

γ + 1

v

c

(

v

c
·B
)

, (7.522)

with a velocity of the transformation determined by

v/c

1 + (|v|/c)2 =
E×B

|E|2 + |B|2 , (7.523)

and γ ≡ [1 − (|v|/c)2]−1/2. The fields |ECF| ≡ E and |BCF| ≡ B are, of course,
Lorentz-invariant quantities which can be expressed in terms of the two quadratic
Lorentz invariants of the electromagnetic field: the scalar S and the pseudoscalar P
defined by

S ≡ −1

4
FµνF

µν =
1

2

(

E2 −B2
)

=
1

2

(

E2 − B2
)

, P ≡ −1

4
FµνF̃

µν = EB = EB.
(7.524)

Solving these equation yields

{E
B
}

≡
√√

S2 + P 2 ± S =
1√
2

√

√

(E2 −B2)2 + 4(EB)2 ± (E2 −B2). (7.525)

After these transformations, the result (7.520) remains valid for any constant field
directions if we exchange E → E , B → B.
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Relation between Harmonic Oscillator, Pauli and Dirac Algebra

There exists a simple relation between the path integrals of the previous three para-
graphs. We simply observe that the combinations

â†=
1

2

(

σ1+ iσ2
)

=
1

2
σ+ =

(

0 0
1 0

)

, â=
1

2

(

σ1− iσ2
)

=
1

2
σ− =

(

0 1
0 0

)

, (7.526)

satisfy the anticommutation rules

[â, â†]+ = 1, [â†, â†]+ = 1, [â, â]+ = 0. (7.527)

The vacuum state annihilated by a is the spin-down spinor, and the one-particle
state is the spin-up spinor:

|0〉 =
(

0
1

)

, |1〉 =
(

1
0

)

. (7.528)

A similar construction can be found for the Dirac algebra. There are now two
types of creation and annihilation operators

â†=
1

2

(

γ1+ iγ2
)

=
1

2

(

0 σ+

−σ+ 0

)

, â=
1

2

(

−γ1+ iγ2
)

=
1

2

(

0 −σ−
σ− 0

)

, (7.529)

and

b̂†=
1

2

(

γ0+ γ3
)

=
1

2

(

0 iσ2σ+

−iσ2σ+ 0

)

, b̂=
1

2

(

γ1− γ3
)

=
1

2

(

0 iσ2σ−

−iσ2σ− 0

)

.

(7.530)

The states |na, ab〉 with na quanta a and nb quanta b are the following:

|0, 0〉 = 1√
2











0
1
0
1











, |1, 0〉 = a†|0, 0〉 = 1√
2











1
0

−1
0











, (7.531)

|0, 1〉 = b†|0, 0〉 = 1√
2











0
−1
0
1











, |1, 1〉 = a†b†|0, 0〉 = 1√
2











1
0
1
0











. (7.532)

From these relations we can easily deduce the proper recovery formulas general-
izing (7.431) and (7.432).
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7.12 External Sources in a
∗, a -Path Integral

In Chapter 3, the path integral of the harmonic oscillator was solved in the presence
of an arbitrary external current j(τ). This yielded the generating functional Z[j]
for the calculation of all correlation functions of x(τ). In the present context we are
interested in the generating functional of correlations of a(τ) and a∗(τ). Thus we
also need the path integrals quadratic in a(τ) and a∗(τ) coupled to external currents.
Consider the Euclidean action

A[a∗, a] +Asource = h̄
∫ h̄β

0
dτ [a∗(τ)∂τa(τ) + ωa∗a(τ)− (η∗(τ)a(τ) + c.c.)], (7.533)

with periodic boundary conditions for a(τ) and a∗(τ). For simplicity, we shall use the
continuum formulation of the partition function, so that our results will correspond
to the harmonic oscillator time slicing, with the energies En = (n + 1/2)h̄ω. There
is no problem in going over to the second-quantized formulation with the energies
En = nh̄ω. The partition function is given by the path integral

Zω[η
∗, η] =

∮ Da∗Da
π

exp
{

−1

h̄
(A[a∗, a] +Asource)

}

. (7.534)

As in Chapter 3, we define the functional matrix between a∗(τ), a(τ ′) as

Dω,e(τ, τ
′) ≡ (∂τ + ω)δ(τ − τ ′), τ, τ ′ ∈ (0, h̄β). (7.535)

The inverse is the Euclidean Green function

Gp
ω,e(τ, τ

′) = D−1ω,e(τ, τ
′), (7.536)

satisfying the periodic boundary condition. We now complete the square and rewrite
the action (7.533), using the shifted fields

a′(τ) = a(τ)−
∫ h̄β

0
dτ ′Gp

ω,e(τ, τ
′)η(τ ′) (7.537)

as

Ae = h̄
∫ h̄β

0
dτ
∫ h̄β

0
dτ ′[a′∗(τ)Dω,e(τ, τ

′)a′(τ ′)− η∗(τ)Gp
ω,e(τ, τ

′)η(τ ′)]. (7.538)

On an infinite β-interval the Green function can easily be written down in terms of
the Heaviside function (1.313):

Gω,e(τ, τ
′) = Gω,e(τ − τ ′) = e−ω(τ−τ

′)Θ(τ − τ ′). (7.539)

As we have learned in Section 3.3, the periodic Green function is obtained from this
by forming a periodic sum

Gp
ω,e(τ, τ

′) = Gp
ω,e(τ − τ ′) =

∞
∑

n=−∞

e−ω(τ−τ
′−nh̄β)Θ(τ − τ ′ − nh̄β), (7.540)
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which is equal to

Gp
ω,e(τ) =

e−ω(τ−h̄β/2)

2sinh(ωh̄β/2)
= (1 + nb

ω)e
−ωτ , (7.541)

where nω is the Bose-Einstein distribution function

nω =
1

eβh̄ω − 1
(7.542)

[compare (3.92) and (3.93)].
The same considerations hold for anticommuting variables with antiperiodic

boundary conditions, in which case we find once more the action (7.538) with the
antiperiodic Green function [compare (3.112)]ref(3.112)

lab(3.75)
est(3.74) Ga

ω,e(τ) =
e−ω(τ−h̄β/2)

2cosh(ωh̄β/2)
= (1− nf

ω)e
−ωτ , (7.543)

where nω is the Fermi-Dirac distribution function [see (3.111)]:ref(3.111)
lab(3.74)
est(3.73) nf

ω =
1

eβh̄ω + 1
. (7.544)

In either case, we may decompose the currents in (7.538) into real and imaginary
parts j and k via

η =
√

ω/2Mh̄(j − iωMk), (7.545)

η∗ =
√

ω/2Mh̄(j + iωMk),

and write the source part of the original action (7.533) in the form

Asource = h̄
∫ h̄β

0
dτ(a∗η + η∗a) =

∫ h̄β

0
dτ(jx+ kp). (7.546)

Hence, the real current η = η∗ =
√

ω/2Mh̄ j corresponds to the earlier source term

(3.2). Inserting this current into the action (7.538), it yields the quadratic sourceref(3.2)
lab(3.2)
est(3.2)

term

As
e = − 1

2Mω

∫ h̄β

0
dτ
∫ τ

0
dτ ′

e−ω(τ−τ
′)

1− e−βh̄ω
j(τ)j(τ ′). (7.547)

This can also be rewritten as

As
e = − 1

2Mω

∞
∑

n=0

∫ h̄ω

0
dτ
∫ τ

0
dτ ′e−ω(τ−τ

′+nh̄β)j(τ)j(τ ′), (7.548)

which becomes for a current periodic in h̄β:

As
e = − 1

2Mω

∫ h̄ω

0
dτ
∫ τ

−∞
dτ ′ e−ω(τ−τ

′)j(τ)j(τ ′). (7.549)

Interchanging τ and τ ′, this is also equal to

As
e = − 1

4Mω

∫ h̄ω

0
dτ
∫ ∞

−∞
dτ ′e−ω|τ−τ

′|j(τ)j(τ ′), (7.550)

in agreement with (3.279).
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7.13 Generalization to Pair Terms

There exists an important generalization of these considerations to the case of the
quadratic frequency term h̄

∫

dτ Ω2(τ)a∗(τ)a(τ) being extended to the more general
quadratic form

h̄
∫

dτ
[

Ω2(τ)a∗(τ)a(τ) +
1

2
∆∗(τ)a2(τ) +

1

2
∆(τ)a∗2(τ)

]

. (7.551)

The additional off-diagonal terms in a∗, a are called pair terms . They play an
important role in the theory of superconductivity. The basic physical mechanism
for this phenomenon will be explained in Section 17.10. Here we just mention that
the lattice vibrations give rise to the formation of bound states between pairs of
electrons, called Cooper pairs . By certain manipulations of the path integral of the
electron field in the second-quantized interpretation, it is possible to introduce a
complex pair field ∆x(t) at each space point which is coupled to the electron field
in an action of the type (7.551). The partition function to be studied is then of the
generic form

Z =
∮ Da∗Da

π
exp

[

−
∫ h̄β

0
dτ (a∗∂τa+ Ω2a∗a+ 1

2∆
∗a2 + 1

2∆ a∗2)

]

. (7.552)

It is easy to calculate this partition function on the basis of the previous formulas.
To this end we rewrite the action in the matrix form, using the field doublets

f(τ) ≡
(

a(τ)
a∗(τ)

)

, (7.553)

as

Ae =
h̄

2

∫ h̄β

0
dτ f ∗T (τ)

(

∂τ + Ω(τ) ∆(τ)
∆∗(τ) ∓(∂τ ± Ω(τ))

)

f(τ), (7.554)

where the derivative terms require a partial integration to obtain this form. The
partition function can be written as

Z =
∫ Df ∗Df

π
e−

1
2f

∗Mf , (7.555)

with the matrix

M =

(

∂τ + Ω(τ) ∆(τ)
∆∗(τ) ∓(∂τ ± Ω(τ))

)

. (7.556)

The fields f ∗ and f are not independent of each other, since

f ∗ =

(

0 1
1 0

)

f. (7.557)

Thus, there are only half as many independent integrations as for a usual complex
field. This has the consequence that the functional integration in (7.555) gives only
the square root of the determinant of M ,

Z = N b,fdet

(

∂τ + Ω(τ) ∆(τ)
∆∗(τ) ∓(∂τ + Ω(τ))

)∓1/2

, (7.558)
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with the normalization factors N b,f being fixed by comparison with (7.337) and
(7.419).

A fluctuation determinant of this type occurs in the theory of superconductivity
[32], with constant parameters ω, ∆. When applied to functions oscillating like
e−iω

f
mτ , the matrix M becomes

M =

(

−iωf
m + ω ∆
∆∗ ∓(−iωf

m ± ω)

)

. (7.559)

It is brought to diagonal form by what is called, in this context, a Bogoliubov trans-

formation [33]

M →Md =

(

−iωf
m + ω∆ 0
0 ∓(−iωf

m ± ω∆)

)

, (7.560)

where ω∆ is the frequency

ω∆ =
√
ω2 +∆2. (7.561)

In a superconductor, these frequencies correspond to the energies of the quasi-
particles associated with the electrons. They generalize the quasi-particles intro-
duced in Landau’s theory of Fermi liquids. The partition function (7.552) is then
given by

Zω,∆ = N b,fdet

(

∂τ + ω ∆
∆∗ ∓∂τ ± ω

)∓1/2

= N b,f
[

det (−∂2τ + ω2
∆)
]∓1/2

=

{

[2 sinh(h̄βω∆/2)]
−1 ,

2 cosh(h̄βω∆/2),
(7.562)

for bosons and fermions, respectively. This is equal to the partition function of a
symmetrized Hamilton operator

Ĥ =
ω∆

2
∆
(

â†â+ ââ†
)

= ω∆

(

â†â± 1

2

)

, (7.563)

with the eigenvalue spectrum ω∆

(

n± 1
2

)

, where n = 0, 1, 2, 3 . . . for bosons and
n = 0, 1 for fermions:

Zω,∆ =
∞,1
∑

n

e−h̄ω∆(n±1/2)β . (7.564)

In the second-quantized interpretation where zero-point energies are omitted, this
becomes

Zω,∆ =

{

(1− e−h̄βω∆)−1,
(1 + e−h̄βω∆).

(7.565)
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7.14 Spatial Degrees of Freedom

In the path integral treatment of the last sections, the particles have been restricted
to a particular momentum state p. In a three-dimensional volume, the fields a∗(τ),
∆(τ) and their frequency ω depend on p. With this trivial extension one obtains a
free quantum field theory .

7.14.1 Grand-Canonical Ensemble of Particle Orbits from

Free Fluctuating Field

The free particle action becomes a sum over momentum states

Ae[a
∗, a] = h̄

∫ h̄β

0
dτ

∑

p

[

a∗p∂τap + ω(p)a∗pap
]

. (7.566)

The time-sliced partition function is given by the product

Z =
∏

p

{

det [ǫ(1 − ǫω)∇+ ǫω(p)]
}∓1

(7.567)

=







exp
[

−∑p log
(

1− e−h̄βω̄e(p)
)]

for bosons,

exp
[

∑

p log
(

1 + e−h̄βω̄e(p)
)]

for fermions.

The free energy
F = −kBT log Z (7.568)

is for bosons
F = kBT

∑

p

log
(

1− e−h̄βω̄e(p)
)

, (7.569)

and for fermions
F = −kBT

∑

p

log
(

1 + e−h̄βω̄e(p)
)

. (7.570)

In a large volume, the momentum sum may be replaced by the integral

∑

p

→
∫ dDp V

(2πh̄)D
. (7.571)

For infinitely thin time slices, ǫ→ 0 and ω̄e(p) reduces to ω(p) and the expressions
(7.569), (7.570) turn into the usual free energies of bosons and fermions. They agree
completely with the expressions (7.46) and (7.220) derived from the sum over orbits.

Next we may introduce a fluctuating field in space and imaginary time

ψ(x, τ) =
1√
V

∑

p

eipxap(τ), (7.572)

and rewrite the action (7.566) in the local form

Ae[ψ
∗, ψ] =

∫ h̄β

0
dτ
∫

dDx

[

ψ∗(x, τ)h̄∂τψ(x, τ) +
h̄2

2M
∇ψ∗(x, τ)∇ψ(x, τ)

]

. (7.573)
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The partition function is given by the functional integral

Z =
∮

DψDψ∗e−Ae[ψ∗,ψ]/h̄. (7.574)

Thus we see that the functional integral over a fluctuating field yields precisely the
same partition function as the sum over a grand-canonical ensemble of fluctuating
orbits. Bose or Fermi statistics are naturally accounted for by using complex or
Grassmann field variables with periodic or antiperiodic boundary conditions, re-
spectively. The theory based on the action (7.573) is completely equivalent to the
second-quantized theory of field operators.

In order to distinguish the second-quantized or quantum field description of
many particle systems from the former path integral description of many particle
orbits, the former is referred to as the first-quantized approach, or also the world-line
approach.

The action (7.573) can be generalized further to include an external potential
V (x, τ), i.e., it may contain a general Schrödinger operator Ĥ(τ) = p̂2 + V (x, τ)
instead of the gradient term:

Ae[ψ
∗, ψ]=

∫ h̄β

0
dτ
∫

dDx
{

ψ∗(x, τ)h̄∂τψ(x, τ)+ψ
∗(x, τ)

[

Ĥ(τ)− µ
]

ψ(x, τ)
}

. (7.575)

For the sake of generality we have also added a chemical potential to enable the
study of grand-canonical ensembles. This action can be used for a second-quantized
description of the free Bose gas in an external magnetic trap potential V (x), which
would, of course, lead to the same results as the first-quantized approach in Sec-
tion 7.2.4. The free energy associated with this action

F =
1

β
Tr log[h̄∂τ + Ĥ(τ)− µ] (7.576)

was calculated in Eq. (3.139) as an expansion

F =
1

2h̄β
Tr

[

∫ h̄β

0
dτ Ĥ(τ)

]

− 1

β

∞
∑

n=1

1

n
Tr

{

T̂ e−n
∫ h̄β

0
dτ ′′ [Ĥ(τ ′′)−µ]/h̄

}

, (7.577)

The sum can be evaluated in the semiclassical expansion developed in Section 4.9.
For simplicity, we consider here only time-independent external potentials, where
we must calculate Tr [e−nβ (Ĥ−µ)]. Its semiclassical limit was given in Eq. (4.258)
continued to imaginary time. From this we obtain

F =
1

2
Tr Ĥ − 1

β

1
√

2πh̄2β/M
D

∞
∑

n=1

∫

dDx
[z(x)]n

nD/2+1
, (7.578)

where z(x) ≡ e−β[V (x)−µ] is the local fugacity (7.24). The sum agrees with the
previous first-quantized result in (7.132) and (7.133). The first term is due to the
symmetric treatment of the fields in the action (7.575) [recall the discussion after
Eq. (7.340)].

One may calculate quantum corrections to this expansion by including the higher
gradient terms of the semiclassical expansion (4.258). If the potential is time-
dependent, the expansion (4.258) must be generalized accordingly.
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7.14.2 First versus Second Quantization

There exists a simple set of formulas which illustrates nicely the difference between
first and second quantization, i.e., between path and field quantization. Both may
be though of as being based on two different representations of the Dirac δ-function.
The first-quantized representation is

δ(D)(xb − xa) =
∫ x(tb)=xb

x(ta)=xa

DDx
∮ DDp

(2πh̄)D
e
(i/h̄)

∫ tb

ta
dtpẋ

, (7.579)

the second-quantized representation

ih̄δ(D)(xb−xa)δ(tb− ta)=
∮

DψDψ∗ ψ(xb, tb)ψ∗(xa, ta)e(i/h̄)
∫

dDx
∫∞

−∞
dtψ∗(x,t)ψ(x,t)

.

(7.580)
The first representation is turned into a transition amplitude by acting upon it with
the time-evolution operator e−iĤ(tb−ta), which yields

(xbtb|xata) = eiĤ(tb−ta)δ(D)(xb − xa) =
∫

DDx
∮ DDp

(2πh̄)D
e
(i/h̄)

∫ tb

ta
dt(pẋ−H)

. (7.581)

By multiplying this with the Heaviside function Θ(tb − ta), we obtain the solution
of the inhomogeneous Schrödinger equation

(ih̄∂t − Ĥ)Θ(tb − ta)(xbtb|xata) = ih̄δ(D)(xb − xa)δ(tb − ta). (7.582)

This may be expressed as a path integral representation for the resolvent

〈

xbtb

∣

∣

∣

∣

∣

ih̄

ih̄∂t − Ĥ

∣

∣

∣

∣

∣

xata

〉

=Θ(tb − ta)
∫ x(tb)=xb

x(ta)=xa

DDx
∮ DDp

(2πh̄)D
e
(i/h̄)

∫ tb

ta
dt(pẋ−H)

. (7.583)

The same quantity is obtained from the second representation (7.580) by changing
the integrand in the exponent from ψ∗(x, t)ψ(x, t) to ψ∗(x, t)(ih̄∂t − Ĥ)ψ(x, t):

〈

xbtb

∣

∣

∣

∣

∣

ih̄

ih̄∂t − Ĥ

∣

∣

∣

∣

∣

xata

〉

=
∮

DψDψ∗ ψ(xb, tb)ψ∗(xa, ta)e(i/h̄)
∫

dDx
∫∞

−∞
dtψ∗(x,t)(ih̄∂t−Ĥ)ψ(x,t)

. (7.584)

This is the second-quantized functional integral representation of the resolvent.

7.14.3 Interacting Fields

The interaction between particle orbits in a grand-canonical ensemble can be ac-
counted for by anharmonic terms in the particle fields. A pair interaction between
orbits, for example, corresponds to a fourth-order self interaction. An example
is the interaction in the Bose-Einstein condensate corresponding to the energy in
Eq. (7.101). Expressed in terms of the fields it reads
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Aint
e [ψ∗, ψ]=−

∫ h̄β

0
dτ ∆E = −g

2

∫ h̄β

0
dτ
∫

d3xψ∗(x, τ + η)ψ∗(x, τ + η)ψ(x, τ)ψ(x, τ),

(7.585)
where η > 0 is an infinitesimal time shift. It is then possible to develop a perturba-
tion theory in terms of Feynman diagrams by complete analogy with the treatment
in Section 3.20 of the anharmonic oscillator with a fourth-order self interaction. The
free correlation function is the momentum sum of oscillator correlation functions:

〈ψ(x, τ)ψ∗(x′, τ ′)〉 =
∑

p,p′

〈ap(τ)a∗p′(τ ′)〉ei(px−p′x′) =
∑

p

〈ap(τ)a∗p(τ ′)〉eip(x−x
′). (7.586)

The small η > 0 in (7.585) is necessary to specify the side of the jump of the
correlation functions (recall Fig. 3.2). The expectation value of ∆E is given by
(7.101), with a prefactor g rather than g/2 due to the two possible Wick contractions.
Inserting the periodic correlation function (7.541), we obtain the Fourier integral

〈ψ(x, τ)ψ∗(x′, τ ′)〉 =
∑

p

(1 + nωp
)e−ωp(τ−τ ′)+ip(x−x′). (7.587)

Recalling the representation (3.287) of the periodic Green function in terms of a
sum over Matsubara frequencies, this can also be written as

〈ψ(x, τ)ψ∗(x′, τ ′)〉 = 1

h̄β

∑

ωm,p

−1

iωm − ωp

e−iωm(τ−τ ′)+ip(x−x′). (7.588)

The terms in the free energies (7.102) and (7.107) with the two parts (7.108) and
(7.109) can then be shown to arise from the Feynman diagrams in the first line of
Fig. 3.7.

In a grand-canonical ensemble, the energy h̄ωp in (7.588) is replaced by h̄ωp−µ.
The same replacement appears in ωp of Eq. (7.587) which brings the distribution
function nωp

to [recall (7.542)]

nωp−µ/h̄ =
1

z−1eβh̄ωp − 1
, (7.589)

where z is the fugacity z = eβµ. The expansion of the Feynman integrals in powers
of z yields directly the expressions (7.102) and (7.107).

7.14.4 Effective Classical Field Theory

For the purpose of studying phase transitions, a functional integral over fields ψ(x, τ)
with an interaction (7.585) must usually be performed at a finite temperature. Then
is often advisable to introduce a direct three-dimensional extension of the effective
classical potential V eff cl(x0) introduced in Section 3.25 and used efficiently in Chap-
ter 5. In a field theory we can set up, by analogy, an effective classical action

which is a functional of the three-dimensional field with zero Matsubara frequency
φ(x) ≡ ψ0(x). The advantages come from the reasons discussed in Section 3.25, that
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the zero-frequency fluctuations have a linearly diverging fluctuation width at high
temperature, following the Dulong-Petit law. Thus only the nonzero-modes can be
treated efficiently by the perturbative methods explained in Subsection 3.25.6.

By analogy with the splitting of the measure of path integration in Eq. (3.808),
we may factorize the functional integral (7.574) into zero- and nonzero-Matsubara
frequency parts as follows:

Z =
∮

DψDψ∗e−Ae[ψ∗,ψ] =
∮

Dψ0Dψ∗0
∮

D′ψD′ψ∗e−Ae[ψ∗,ψ], (7.590)

and introduce the Boltzmann factor [compare (3.813)] contain the effective classical
action

B[ψ∗0 , ψ0] ≡ e−A
eff cl[ψ∗

0 ,ψ0] ≡
∮

D′ψD′ψ∗ e−Ae[ψ∗,ψ], (7.591)

to express the partition function as a functional integral over time-independent fields
in three dimensions as:

Z =
∮

Dψ0Dψ∗0e−A
eff cl[ψ∗

0 ,ψ0]. (7.592)

In Subsection 3.25.1 we have seen that the full effective classical potential V eff cl(x0)
in Eq. (3.812) reduces in the high-temperature limit to the initial potential V (x0).
For the same reason, the full effective classical action in the functional integral
(7.590) can be approximated at high temperature by the bare effective classical

action, which is simply the zero-frequency part of the initial action:

Aeff cl
b [ψ∗0 , ψ0]=β

∫

d3x
{

ψ∗0(x)
(

− 1

2m
∇2 − µ

)

ψ0(x) +
2πa

m
[ψ∗0(x)ψ0(x)]

2
}

. (7.593)

This follows directly from the fact that, at high temperature, the fluctuations in the
functional integral (7.591) are strongly suppressed by the large Matsubara frequen-
cies in the kinetic terms.

Remarkably, the absence of a shift in the critical temperature in the first-order
energy (7.113) deduced from Eq. (7.116) implies that the chemical potential in the
effective classical action does not change at this order [34]. For this reason, the
lowest-order shift in the critical temperature of a weakly interacting Bose-Einstein
condensate can be calculated entirely from the three-dimensional effective classical
field theory (7.590) with the bare effective classical action (7.593) in the Boltzmann
factor.

The action (7.593) may be brought to a more conventional form by introducing
the differently normalized two-component fields φ = (φ1, φ2) related to the original
complex field ψ by ψ(x) =

√
MT [φ1(x) + iφ2(x)]. If we also define a square mass

m2 ≡ −2Mµ and a quartic coupling u = 48πaMT , the bare effective classical action
reads

Aeff cl
b [ψ∗0 , ψ0] = A[φ] =

∫

d3x
[

1

2
|∇φ|2 + 1

2
m2φ2 +

u

4!
(φ2)2

]

. (7.594)



690 7 Many Particle Orbits — Statistics and Second Quantization

In the field theory governed by the action (7.594), the relation (7.111) for the
shift of the critical temperature to lowest order in the coupling constant becomes

∆Tc

T
(0)
c

≈ −2

3

mT (0)
c

n

〈

∆φ2
〉

= −4π

3

(mT (0)
c )2

n
4!

〈

∆φ2

u

〉

a

= −4π

3

(2π)2

[ζ(3/2)]4/3
4!

〈

∆φ2

u

〉

an1/3, (7.595)

where 〈∆φ2〉 is the shift in the expectation value of φ2 caused by the interaction.
Since a repulsive interaction pushes particles apart, 〈∆φ2〉 is negative, thus explain-
ing the positive shift in the critical temperature. The evaluation of the expectation
value 〈∆φ2〉 from the path integral (7.590) with the bare three-dimensional effec-
tive classical action (7.594) in the exponent can now proceed within one of the
best-studied field theories in the literature [51]. The theoretical tools for calculat-
ing strong-coupling results in this theory are well developed, and this has made it
possible to drive the calculations of the shift to the five-loop order [21].

Some low-order corrections to the effective classical action (7.593) have been
calculated from the path integral (7.591) in Ref. [34].

7.15 Bosonization

The path integral formulation of quantum-mechanical systems is very flexible. Just
as integrals can be performed in different variables of integration, so can path in-
tegrals in different path variables. This has important applications in many-body
systems, which show a rich variety of so-called collective phenomena. Practically
all fermion systems show collective excitations such as sound, second sound, and
spin waves. These are described phenomenologically by bosonic fields. In addition,
there are phase transitions whose description requires a bosonic order parameter.
Superconductivity of electron systems is a famous example where a bosonic order
parameter appears in a fermion system—the energy gap. In all these cases it is
useful to transform the initial path variables to so-called collective path variables,
in higher dimensions these become collective fields [32].

Let us illustrate the technique with simple a model defined by the Lagrangian

L(t) = a∗(t)i∂ta(t)−
ε

2
[a∗(t)a(t)]2 , (7.596)

where a∗, a are commuting or anticommuting variables. All Green functions can be
calculated from the generating functional

Z[η∗, η] = N
∫

Da∗Da exp
[

i
∫

dt (L+ η∗a + a∗η)
]

, (7.597)

where we have omitted an irrelevant overall factor.
In operator language, the model is defined by the Hamiltonian operator

Ĥ = ε(â†â)2/2, (7.598)
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where â†, â are creation and annihilation operator of either a boson or a fermion at
a point. In the boson case, the eigenstates are

|n〉 = 1√
n!
(â†)n|0〉, n = 0, 1, 2, . . . , (7.599)

with an energy spectrum

En = ε
n2

2
. (7.600)

In the fermion case, there are only two solutions

|0〉 with E0 = 0, (7.601)

|1〉 = a†|0〉 with E1 =
ε

2
. (7.602)

Here the Green functions are obtained from the generating functional

Z[η†, η] = 〈0|T̂ exp
[

i
∫

dt(η∗â + â†η)
]

|0〉, (7.603)

where T̂ is the time ordering operator (1.241). The functional derivatives with
respect to the sources η∗, η generate all Green functions of the type (3.299) at T = 0.

7.15.1 Collective Field

At this point we introduce an additional collective field via the Hubbard-
Stratonovich transformation [52]

exp
{

−iε
2

∫

dt[a∗(t)a(t)]2
}

=N
∫

Dρ(t) exp
{

i
∫

dt

[

ρ2(t)

2ε
− ρ(t)a∗(t)a(t)

]}

, (7.604)

where N is some irrelevant factor. Equivalently we multiply the partition function
(7.597) with the trivial Gaussian path integral

1 = N
∫

Dρ(t) exp
{∫

dt
1

2ε

[

ρ(t)− εa†(t)a(t)
]2
}

, (7.605)

to obtain the generating functional

Z[η†, η] = N
∫

Da∗DaDρ

× exp

{

∫

dt

[

a∗(t)i∂ta(t)− ερ(t)a∗(t)a(t) +
ρ2(t)

2ε
+ η∗(t)a(t) + a∗(t)η(t)

]}

.(7.606)

From (7.604) we see that the collective field ρ(t) fluctuates harmonically around ε
times particle density. By extremizing the action in (7.606) with respect to ρ(t) we
obtain the classical equality:

ρ(t) = εa∗(t)a(t). (7.607)
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The virtue of the Hubbard-Stratonovich transformation is that the fundamental
variables a∗, a appear now quadratically in the action and can be integrated out to
yield a path integral involving only the collective variable ρ(t):

Z[η∗, η] = N
∫

Dρ exp
{

iA[ρ]−
∫

dtdt′η∗(t)Gρ(t, t
′)η(t′)

}

, (7.608)

with the collective action

A[ρ] = ±iTr log
(

iG−1ρ
)

+
∫

dt
ρ2(t)

2
, (7.609)

where Gρ denotes the Green function of the fundamental path variables in an ex-
ternal ρ(t) background potential, which satisfies [compare (3.75)]

[i∂t − ρ(t)]Gρ(t, t
′) = iδ(t− t′). (7.610)

The Green function was found in Eq. (3.124). Here we find the solution once more
in a different way which will be useful in the sequel. We introduce an auxiliary field

ϕ(t) =
∫ t

ρ(t′)dt′, (7.611)

in terms of which Gρ(t, t
′) is simply

Gρ(t, t
′) = e−iϕ(t)eiϕ(t

′)G0(t− t′), (7.612)

with G0 being the free-field propagator of the fundamental particles. At this point
one has to specify the boundary condition on G0(t− t′). They have to be adapted
to the physical situation of the system. Suppose the time interval is infinite. Then
G0 is given by Eq. (3.100), so that we obtain, as in (3.124),

Gρ(t, t
′) = e−iϕ(t)eiϕ(t

′)Θ̄(t− t′). (7.613)

The Heaviside function Θ̄ defined in Eq. (1.313) corresponds to ρ(t) coupling to the
symmetric operator combination (â†â+ââ†)/2. The products â†â in the Hamiltonian
(7.598), however, have the creation operators left of the annihilation operators. In
this case we must use the Heaviside function Θ(t− t′) of Eq. (1.304). If this function
is inserted into (7.613), the right-hand side of (7.613) vanishes at t = t′.

Using this property we see that the functional derivative of the tracelog in (7.609)
vanishes:

δ

δρ(t)

{

±iTr log(iG−1ρ )
}

=
δ

δρ(t)
{±iTr log [i∂t−ρ(t)]}=∓Gρ(t, t

′)|t′=t = 0. (7.614)

This makes the tracelog an irrelevant constant. The generating functional is then
simply

Z[η†, η] = N
∫

Dϕ(t) exp
{

i

2ε

∫

dt ϕ̇(t)2 −
∫

dtdt′η†(t)η(t′)e−iϕ(t)e−iϕ(t
′)Θ(t− t′)

}

,

(7.615)
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where we have used the Jacobian

Dρ = DϕDet(∂t) = Dϕ, (7.616)

since Det(∂t) = 1 according to (2.537). Observe that the transformation (7.611)
provides ϕ(t) with a standard kinetic term ϕ̇2(t).

The original theory has been transformed into a new theory involving the collec-
tive field ϕ. In a three-dimensional generalization of this theory to electron gases,
the field ϕ describes density waves [32].

7.15.2 Bosonized versus Original Theory

The first term in the bosonized action in (7.615) is due to a Lagrangian

L0(t) =
1

2ε
ϕ̇(t)2 (7.617)

describing free particles on the infinite ϕ-axis. Its correlation function is divergent
and needs a small frequency, say κ, to exist. Its small-κ expansion reads

〈ϕ(t)ϕ(t′)〉 = ε
∫

dω

2π

i

ω2 − κ2 + iǫ
e−iω(t−t

′)

=
ε

2κ
e−κ|t−t

′| =
ε

2κ
− ε

i

2
|t− t′|+O(κ). (7.618)

The first term plays an important role in calculating the bosonized correlation func-
tions generated by Z[η∗, η] in Eq. (7.615). Differentiating this n times with respect
to η and η∗ and setting them equal to zero we obtain

G(n)(tn, . . . , t1; t
′
n, . . . , t

′
1) = (−1)n〈e−iϕ(tn) · · · e−iϕ(t1) eiϕ(t′n) · · · eiϕ(t′1)〉

×
∑

p

ǫpΘ(tp1 − t1) · · ·Θ(tpn − t1), (7.619)

where the sum runs over all permutations p of the time labels of t1 . . . tn making
sure that these times are all later than the times t′1 . . . t

′
n. The factor ǫp reflects the

commutation properties of the sources η, η∗, being equal to 1 for all permutations
if η and η∗ commute. For Grassmann variables η, η∗, the factor ǫp is equal to −1 if
the permutation p is odd. The expectation value is defined by the path integral

〈 . . . 〉 ≡ 1

Z[0, 0]

∫

Dϕ(t) . . . e(i/2ε)
∫

dt ϕ̇(t)2 . (7.620)

Let us calculate the expectation value of the exponentials in (7.619), writing it as

〈

exp

[

i
2n
∑

i=1

qiϕ(ti)

]

〉

=
〈

exp

[

∑

i

∫

dt δ(t− ti)qiϕ(t)

]〉

, (7.621)
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where we have numbered the times as t1, t2, . . . t2n rather than t1, t
′
1, t2, t

′
2, . . . tn, t

′
n.

Half of the 2n “charges” qi are 1, the other half are −1. Using Wick’s theorem in
the form (3.310) we find

〈

ei
∑2n

i=1
qiϕ(ti)

〉

= exp



−1

2

∫

dtdt′
2n
∑

i=1

qiδ(t− ti)〈ϕ(t)ϕ(t′)〉(t′)
∑

j

qjδ(t− tj)





= exp



−1

2

2n
∑

i,j=1

qiqj〈ϕ(ti)ϕ(tj)〉


 . (7.622)

Inserting here the small-κ expansion (7.618), we see that the 1/κ-term gives a pre-
factor

exp
[

− ε

4κ

(

∑

i

qi

)2 ]

, (7.623)

which vanishes since the sum of all “charges” qi is zero. Hence we can go to the
limit κ→ 0 and obtain

〈

exp

[

i
2n
∑

i=1

qiϕ(ti)

]

〉

= exp



ε
i

2

∑

i>j

qiqj |ti − tj |


 . (7.624)

Note that the limit κ→ 0 makes all correlation functions vanish which do not contain
an equal number of a∗(t) and a(t) variables. It ensures “charge conservation”.

For one positive and one negative charge we obtain, after a multiplication by a
Heaviside function Θ(t1 − t′1), the two-point function

G(2)(t, t′) = e−iε(t−t
′)/2Θ(t− t′). (7.625)

This agrees with the operator result derived from the generating functional (7.603),
where

G(2)(t, t′) = 〈0|T̂ â(t)â†(t′)|0〉 = Θ(t− t′)〈0|â(t)â†(t′)|0〉e−iε(t−t′)/2Θ(t− t′). (7.626)

Inserting the Heisenberg equation [recall (1.277)]

a(t) = eitĤae−itĤ , a†(t′) = eit
′Ĥa†e−it

′Ĥ . (7.627)

we find

〈0|T̂ â(t)â†(t′)|0〉 = Θ(t− t′)〈0|eiε(â†â)2t/2ae− i
2
(â†â)2(t−t′)â†e−i(â

†â)2t′/2|0〉
= Θ(t− t′)〈1|e− i

2
(â†â)2(t−t′)|1〉 = Θ(t− t′)e−iε(t−t

′)/2. (7.628)

Let us compare the above calculations with an operator evaluation of the
bosonized theory. The Hamiltonian operator associated with the Lagrangian (7.617)
is Ĥ = εp̂2/2. The states in the Hilbert space are eigenstates of the momentum op-
erator p̂ = −i∂/∂ϕ:

{ϕ|p} =
1√
2π
eipϕ. (7.629)
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Here, curly brackets are a modified Dirac notation for states of the bosonized theory,
which distinguishes them from the states of the original theory created by products
of operators â†(t) acting on |0〉. In operator language, the generating functional of
the theory (7.615) reads

Z[η†, η] =
1

{0|0}{0|T̂ exp
[

−
∫

dtdt′η†(t)η(t′)e−iϕ̂(t)eiϕ̂(t
′)Θ(t− t′)

]

|0}, (7.630)

where ϕ̂(t) are free-particle operators.

We obtain all Green functions of the initial operators â(t), â†(t) by forming func-
tional derivatives of the generating functional Z[η†, η] with respect to η†, η. Take,
for instance, the two-point function

〈0|T̂ â(t)â†(t′)|0〉 = − δ(2)Z

δη†(t)δη(t′)

∣

∣

∣

∣

∣

η†,η=0

=
1

{0|0}{0|e
−iϕ̂(t)eiϕ̂(t

′)|0}Θ(t− t′). (7.631)

Inserting here the Heisenberg equation (1.277),

ϕ̂(t) = eiε
p̂2

2
t ϕ̂(0) e−iε

p̂2

2
t, (7.632)

we can evaluate the matrix element in (7.631) as follows:

{0|eiε p̂
2

2
t2e−iϕ̂(0)e−iε

p̂2

2
(t−t′)eiϕ̂(0)e−iε

p̂2

2
t′ |0} = {0|e−iϕ̂(0)e−iε p̂2

2
(t−t′)eiϕ̂(0)|0}. (7.633)

The state eiϕ̂(0)|0} is an eigenstate of p̂ with unit momentum |1} and the same norm
as |0}, so that (7.633) equals

1

{0|0} {1|1} e−iε(t−t′)/2 = e−iε(t−t
′)/2 (7.634)

and the Green function (7.631) becomes, as in (7.626) and (7.628):

〈0|T̂ â(t)â†(t′)|0〉 = e−iε(t−t
′)/2Θ(t− t′). (7.635)

Observe that the Fermi and Bose statistics of the original operators â, â† enters
to result only via the commutation properties of the sources.

There exists also the opposite phenomenon that a bosonic theory possesses so-
lutions which behave like fermions. This will be discussed in Section 8.12.

Appendix 7A Treatment of Singularities in Zeta-Function

Here we show how to evaluate the sums which determine the would-be critical temperatures of a
Bose gas in a box and in a harmonic trap.
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7A.1 Finite Box

According to Eqs. (7.83), (7.88), and (7.90), the relation between temperature T = h̄2π2/bML2kB
and the fugacity zD at a fixed particle number N in a finite D-dimensional box is determined by
the equation

N = Nn(T ) + Ncond(T ) = SD(zD) +
zD

1 − zD
, (7A.1)

where SD(zD) is the subtracted infinite sum

SD(zD) ≡
∞
∑

w=1

[ZD
1 (wb)ewDb/2 − 1]zwD, (7A.2)

containing the Dth power of one-particle partition function in the box Z1(b) =
∑∞

k=1 e
−bk2/2. The

would-be critical temperature is found by equating this sum at zD = 1 with the total particle
number N . We shall rewrite Z1(b) as

Z1(b) = e−b/2
[

1 + e−3b/2σ1(b)
]

, (7A.3)

where σ1(b) is related to the elliptic theta function (7.85) by

σ1(b) ≡
∞
∑

k=2

e−(k2−4)b/2 =
e2b

2

[

ϑ3(0, e
−b/2) − 1 − 2e−b/2

]

. (7A.4)

According to Eq. (7.87), this has the small-b behavior

σ1(b) =

√

π

2b
e2b − e3b/2 − 1

2
e2b + . . . . (7A.5)

The omitted terms are exponentially small as long as b < 1 [see the sum over m in Eq. (7.86)]. For
large b, these terms become important to ensure an exponentially fast falloff like e−3b/2. Inserting
(7A.3) into (7A.2), we find

SD(1) ≡ D

∞
∑

w=1

[

σ1(wb)e
−3wb/2 +

D−1

2
σ2
1(wb)e

−6wb/2 +
(D−1)(D−2)

6
σ3
1(wb)e

−9wb/2

]

.

(7A.6)

Inserting here the small-b expression (7A.5), we obtain

S2(1) ≡
∞
∑

w=1

(

π

2wb
ewb −

√

π

2wb
ewb +

1

4
ewb − 1

)

+ . . . , (7A.7)

S3(1) ≡
∞
∑

w=1

(

√

π

2wb

3

e3wb/2 − 3

2

π

2wb
e3wb/2 +

3

4

√

π

2wb
e3wb/2 − 1

8
e3wb/2 − 1

)

+ . . . , (7A.8)

the dots indicating again exponentially small terms. The sums are convergent only for negative b,
this being a consequence of the approximate nature of these expressions. If we evaluate them in
this regime, the sums produce Polylogarithmic functions (7.34), and we find, using also

∑∞
w=1 1 =

ζ(0) = −1/2 from (2.522),

S2(1) = ζ1(e
b) −

√

π

2b
ζ1/2(e

b) +
1

4
ζ0(e

b) − ζ(0) + . . . . (7A.9)

S3(1) =

√

π

2b

3

ζ3/2(e
3b/2) − 3

2

π

2b
ζ1(e

3b/2) +
3

4

√

π

2b
ζ1(e

3b/2) − 1

8
ζ0(e

3b/2) − ζ(0) + . . . . (7A.10)
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These expressions can now be expanded in powers of b with the help of the Robinson expansion
(2.581). Afterwards, b is continued analytically to positive values and we obtain

S2(1) = − π

2b
log(C2b) −

√

π

2b
ζ(1/2) +

1

8
(3 − 2π) + O(b1/2), (7A.11)

S3(1) =

√

π

2b

3

ζ(3/2) +
3π

4b
log(C3b) +

3

4

√

π

2b
ζ(1/2)(1 + π) +

9

16
(1 + π) + O(b1/2). (7A.12)

The constants C2,3, C
′
2,3 inside the logartithms turn out to be complex, implying that the limiting

expressions (7A.7) and (7A.8) cannot be used reliably. A proper way to proceed gors as follows.
We subtract from SD(1) terms which remove the small-b singularties by means of modifications of
(7A.7) and (7A.8) which have the same small-b expansion up to b0:

S̃2(1) ≡
∞
∑

w=1

(

π

2wb
−
√

π

2wb
+

4π − 3

4

)

e−wb + . . . , (7A.13)

S̃3(1) ≡
∞
∑

w=1

[

√

π

2wb

3

− 3

2

π

2wb
+

3

4
(1 + 2π)

√

π

2wb
− 9

8
(1 + 2π)

]

e−3wb/2 + . . . . (7A.14)

In these expressions, the sums over w can be performed for positive b yielding

S̃2(1)≡ π

2b
ζ1(e

−b) −
√

π

2b
ζ1/2(e

−b) +
4π − 3

4
ζ0(e

−b) + . . . , (7A.15)

S̃3(1)≡
√

π

2b

3

ζ3/2(e
−3b/2) − 3

2

π

2b
ζ1(e

−3b/2) +
3

4
(1+2π)

√

π

2b
ζ1/2(e

−3b/2)− 9

8
(1+2π)ζ0(e

−3b/2) + . . . .

(7A.16)

Inserting again the Robinson expansion (2.581), we obtain once more the above expansions (7A.11)
and (7A.12), but now with the well-determined real constants

C̃2 = e3/2π−2+
√
2 ≈ 0.8973, C̃3 =

3

2
e−2+1/

√
3−1/π ≈ 0.2630. (7A.17)

The subtracted expressions SD(1)− S̃D(1) are smooth near the origin, so that the leading small-b
behavior of the sums over these can simply be obtained from a numeric integral over w:

∫ ∞

0

dw[S2(1) − S̃2(1)] = −1.1050938

b
,

∫ ∞

0

dw[S3(1) − S̃3(1)] = 3.0441. (7A.18)

These modify the constants C̃2,3 to

C2 = 1.8134, C3 = 0.9574. (7A.19)

The corrections to the sums over SD(1)− S̃D(1) are of order b0 an higher and already included in
the expansions (7A.11) and (7A.12), which were only unreliable as far as C2,3 os concerned.

Let us calculate from (7A.12) the finite-size correction to the critical temperature by equat-

ing S3(1) with N . Expressing this in terms of b
(0)
c via (7.92), and introducing the ratio

b̂c ≡ bc/b
(0)
c which is close to unity, we obtain the expansion in powers of the small quantity

2b
(0)
c /π = [ζ(3/2)/N ]

2/3
:

b̂3/2c = 1 +

√

2b
(0)
c

π

3
√

b̂c
2ζ(3/2)

log(C3b
(0)
c b̂c) +

2b
(0)
c

π

3

4ζ(3/2)
ζ(1/2)(1 + π)b̂c + . . . . (7A.20)
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To lowest order, the solution is simply

b̂c = 1 +

√

2b
(0)
c

π

1

ζ(3/2)
log(C3b

(0)
c ) + . . . , (7A.21)

yielding the would-be critical temperature to first in 1/N1/3 as stated in (7.94). To next order,

we insert into the last term the zero-order solution b̂c ≈ 1, and in the second term the first-order
solution (7A.21) to find

b̂3/2c = 1 +
3

2

√

2b
(0)
c

π

1

ζ(3/2)
log(C3b

(0)
c )

+
2b

(0)
c

π

3

4ζ(3/2)

{

ζ(1/2)(1 + π) +
1

ζ(3/2)

[

2 log(C3b
(0)
c ) + log2(C3b

(0)
c )
]

}

+ . . . . (7A.22)

Replacing b
(0)
c by (2/π) [ζ(3/2)/N ]

2/3
, this gives us the ratio (T

(0)
c /Tc)

3/2 between finite- and

infinite size critical temperatures Tc and T
(0)
c . The first and second-order corrections are plotted

in Fig. 7.12, together with precise results from numeric solution of the equation N = S3(1).

0.05 0.1 0.15

1.1

1.2

1.3

1.4

1/N1/3

Tc/T
(0)
c

Figure 7.12 Finite-size corrections to the critical temperature for N = 300 to infinity

calculated once from the formula N = S3(1) (solid curve) and once from the expansion

(7A.22) (short-dashed up to order [b
(0)
c ]1/2 ∝ 1/N1/3, long-dashed up to the order b

(0)
c ∝

1/N2/3). The fat dots show the peaks in the second derivative d2Ncond(T )/dT 2. The small

dots show the corresponding values for canonical ensembles, for comparison.

7A.2 Harmonic Trap

The sum relevant for the would-be phase transition in a harmonic trap is (7.138),

SD(b, zD) =

∞
∑

w=1

[

1

(1−e−wb)
D

− 1

]

zwD, (7A.23)

which determines the number of normal particles in the harmonic trap via Eq. (7.139). We consider
only the point zD = 1 which determines the critical temperature by the condition Nn = N .
Restricting ourselves to the physical cases D = 1, 2, 3, we rewrite the sum as

SD(b, 1) =
∞
∑

w=1

D

[

e−wb − (D − 1)

2
e−2wb +

(D − 1)(D − 2)

6
e−3wb

]

1

(1 − e−wb)D
. (7A.24)
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According to the method developed in the evaluation of Eq. (2.581) we obtain such a sum in two
steps. First we go to small b where the sum reduces to an integral over w. After this we calculate
the difference between sum and integral by a naive power series expansion.

As it stands, the sum (7A.24) cannot be converted into an integral due to singularities at w = 0.
These have to be first removed by subtractions. Thus we decompose SD(b, 1) into a subtracted
sum plus a remainder as

SD(b, 1) = S̄D(b, 1) + ∆DSD(b, 1) + b
D

2
∆D−1SD(b, 1) + b2

D(3D − 1)

24
∆D−2SD(b, 1),(7A.25)

where

S̄D(b, 1) =
∞
∑

w=1

D

[

e−wb − D − 1

2
e−2wb +

(D − 1)(D − 2)

6
e−3wb

]

×
[

1

(1 − e−wb)D
− 1

wDbD
− D

2wD−1bD−1
− D(3D − 1)

24wD−2bD−2

]

(7A.26)

is the subtracted sum and

∆D′SD(b, 1) ≡ D

bD

[

ζD′(e−b) − D − 1

2
ζD′(e−2b) +

(D − 1)(D − 2)

6
ζD′(e−3b)

]

(7A.27)

collects the remainders. The subtracted sum can now be done in the limit of small b as an integral
over w, using the well-known integral formula for the Beta function:

∫ ∞

0

dx
e−ax

(1 − e−x)b
= B(a, 1 − b) =

Γ(a)Γ(1 − b)

Γ(1 + a− b)
. (7A.28)

This yields the small-b contributions to the subtracted sums

S̄1(b, 1) →
b→0

1

b

(

γ− 7

12

)

≡ s1,

S̄2(b, 1) →
b→0

1

b

(

γ+log 2− 9

8

)

≡ s2, (7A.29)

S̄3(b, 1) →
b→0

1

b

(

γ+log 3− 19

24

)

≡ s3,

where γ = 0.5772 . . . is the Euler-Mascheroni number (2.469). The remaining sum-minus-integral
is obtained by a series expansion of 1/(1 − e−wb)D in powers of b and performing the sums over
w using formula (2.584). However, due to the subtractions, the corrections are all small of order
(1/bD)O(b3), and will be ignored here. Thus we obtain

SD(b, 1) =
sD
bD

+ ∆SD(b, 1) +
1

bD
O(b3). (7A.30)

We now expand ∆D′SD(b, 1) using Robinson’s formula (2.583) up to b2/bD and find

∆D′S1(b, 1) =
1

b
ζD′(e−b),

∆D′S2(b, 1) =
1

b2
[

2ζD′(e−b) − ζD′(e−2b)
]

, (7A.31)

∆D′S3(b, 1) =
1

b3
[

3ζD′(e−b) − 3ζD′(e−2b) + ζD′(e−3b)
]

, (7A.32)

where

ζ1(e
−b) = − log

(

1 − e−b
)

= − log b +
b

2
− b2

24
+ . . . ,
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ζ2(e
−b) = ζ(2) + b(log b− 1) − b2

4
+ . . . , (7A.33)

ζ3(e
−b) = ζ(3) − b

6
ζ(2) − b2

2

(

log b− 3

2

)

+ . . . , (7A.34)

The results are

S1(b, 1) =
1

b

[

(− log b + γ) +
b

4
− b2

144
+ . . .

]

,

S2(b, 1) =
1

b2

[

ζ(2) − b

(

log b− γ +
1

2

)

+
7b2

24
+ . . .

]

, (7A.35)

S3(b, 1) =
1

b3

[

ζ(3) +
3b

2
ζ(2) − b2

(

log b− γ +
19

24

)

+ . . .

]

,

as stated in Eqs. (7.165)–(7.167).
Note that the calculation cannot be shortened by simply expanding the factor 1/(1 − e−wb)D

in the unsubtracted sum (7A.24) in powers of w, which would yield the result (7A.25) without the
first term S̄1(b, 1), and thus without the integrals (7A.29).

Appendix 7B Experimental versus Theoretical

Would-be Critical Temperature

In Fig. 7.12 we have seen that there is only a small difference between the theoretical would-
be critical temperature Tc of a finite system calculated from the equation N = S2(1) and and
the experimental T exp

c determined from the maximum of the second derivative of the condensate
fraction ρ ≡ Ncond/N . Let us extimate the difference. The temperature Tc is found by solving the
equation [recall (7.90)]

N = SD(1) ≡
∞
∑

w=1

[ZD
1 (wbc)e

wDb/2 − 1]. (7B.1)

To find the latter we must solve the full equation (7A.1) and search for the maximum of
d2Ncond(T )/dT 2. The last term in (7A.1) can be expressed in terms of the condensate fraction
ρ(T ) as Ncond(T ) = ρ(T )N . Near the critical point, we set δzD ≡ 1 − zD and see that it is equal
to δzD = 1/(1 + Nρ)

In the critical regime, ρ and 1/Nρ are both of the same order 1/
√
N . Thus we expand SD(zD)

to lowest order in δzD = 1/Nρ + . . . , and replace (7A.1) by

N ≈ [SD(1) + ∂bSD(1)δb− ∂zDSD(1) (1/Nρ− 1/N + . . .)] + ρN, (7B.2)

or
b∂bSD(1)

SD(1)

δb

b
≈ ∂zDSD(1)

SD(1)

1

Nρ
− ρ + . . . , (7B.3)

In this leading-order discussion we may ignore the finite-size correction to SD(1), i.e., the difference

between T
(0)
c and T

(1)
c , so that SD(1) = (π/2b

(0)
c )D/2, and we may approximate the left-hand side

of (7B.3) by (D/2)δT/T
(0)
c . Abbreviating ∂zDSD(1)/SD(1) by A which is of order unity, we must

find ρ(T ) from the the equation

D

2
t ≈ A

Nρ
− ρ− A

N
, (7B.4)

where t ≡ δT/T
(0)
c . This yields

ρ(t) =

√

A

N
− D

4
t +

D2

32

√

N

A
t2 − D4

2048

√

N

A

3

t4 + . . . . (7B.5)
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The maximum of d2ρ(t)/dt2 lies at t = 0, so that the experimental would-be critical coincides with

the theoretical T
(1)
c to this order.

If we carry the expansion of (7B.2) to the second order in ρ ≈ 1/Nρ ≈ 1/
√
N , we find a shift

of the order 1/N . As an example, take D = 3, assume A = 1, and use the full T -dependence rather
than the lowest-order expansion in Eq. (7B.4):

(

T

T
(0)
c

)3/2

= (1 + t)3/2 =
1

Nρ
− ρ. (7B.6)

For simplicity, we ignore the 1/N terms in (7B.3). The resulting ρ(t) and d2ρ/dt2 are plotted in
Fig. 7.13. The maximum of d2ρ/dt2 lies at t ≈ 8/9N , which can be ignored if we know Tc only up
to order O(N−1/3) or O(N−2/3), as in Eqs. (7.91) and (7A.22).
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ρ(T/T
(0)
c ) ρ(T/T

(0)
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Figure 7.13 Plots of condensate fraction and its second derivative for Bose Gas in a

finite box following Eq. (7B.6) for N = 100 and 1000.

Note that a convenient way to determine the would-be critical temperature from numerical
data is via the maximal curvature of the chemical potential µ(T ), i.e., from the maximum of
−d2µ(T )/dT 2. Since zD = eµ−Db/2 = 1− δzD ≈ 1+µ−Db/2, the second derivative of µ is related
to that of δzD by

−d2µ

dt2
≈ d2δzD

dt2
−Db(0)c . (7B.7)

The second term is of the order 1/N2/D and can be ignored as we shall see immediately. The
equation shows that the second derivative of −µ coincides with that of δzD, which is related to
d2ρ/dt2 by

d2δzD
dt2

≈ d2

dt2
1

Nρ
=

1

N

[

2

ρ3

(

dρ

dt

)2

− 1

ρ2
d2ρ

dt2

]

=
D2

16

√

N

A3

[

1 − 3D2

32

N

A
t2 + O(t4)

]

. (7B.8)

This is again maximal at t = 0, implying that the determination of T
(1)
c by this procedure coin-

cides with the previous one. The neglected term of order 1/N2/D has a relative suppression of
1/N2/D+1/2, which can be ignored for larger N .
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Every path hath a puddle
George Herbert, Outlandish Proverbs, 1640

8

Path Integrals in Polar and Spherical Coordinates

Many physical systems possess rotational symmetry. In operator quantum mechan-
ics, this property is of great help in finding wave functions and energies of a system.
If a rotationally symmetric Schrödinger equation is transformed to spherical coordi-
nates, it separates into a radial and several angular differential equations. The latter
are universal and have well-known solutions. Only the radial equation contains spe-
cific information on the dynamics of the system. Being an ordinary one-dimensional
Schrödinger equation, it can be solved with the usual techniques.

In the path integral approach, a similar coordinate transformation is possible,
although it makes things initially more complicated rather than simpler. First, the
use of non-Cartesian coordinates causes nontrivial problems of the kind observed
in Chapter 6, where the configuration space was topologically constrained. Such
problems can be solved as in Chapter 6 using the knowledge of the correct procedure
in Cartesian coordinates. A second complication is more severe: When studying a
system at a given angular momentum, the presence of a centrifugal barrier destroys
the possibility of setting up a time-sliced path integral of the Feynman type as in
Chapter 2. The recent solution of the latter problem has paved the way for two
major advances in path integration which will be presented in Chapters 10, 11,
and 12.

8.1 Angular Decomposition in Two Dimensions

Consider a two-dimensional quantum-mechanical system with rotational invariance.
In Schrödinger quantum mechanics, it is convenient to introduce polar coordinates

x = r(cosϕ, sinϕ), (8.1)

and to split the differential equation into a radial and an azimuthal one which are
solved separately. Let us try to follow the same approach in path integrals. To
avoid the complications associated with path integrals in the canonical formulation
[1],all calculations will be done in the Lagrange formulation. It will, moreover,
be advantageous to work with the imaginary-time amplitude (the thermal density
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matrix) to avoid carrying around factors of i. Thus we start out with the path
integral

(xbτb|xaτa) =
∫

D2x(τ)exp
{

−1

h̄

∫ τb

τa
dτ
[

M

2
ẋ2 + V (r)

]}

. (8.2)

It is time-sliced in the standard way into a product of integrals

(xbτb|xaτa) ≈
N
∏

n=1

[

∫

d2xn
2πh̄ǫ/M

]

exp

{

− ǫ

h̄

N+1
∑

n=1

[

M

2ǫ2
(xn − xn−1)

2 + V (rn)
]

}

. (8.3)

When going over to polar coordinates, the measure of integration changes to

N
∏

n=1

∫ ∞

0
drnrn

∫ 2π

0

dϕn

2πh̄ǫ/M

and the kinetic term becomes

exp
[

−1

h̄

M

2ǫ
(xn−xn−1)

2
]

= exp
{

−1

h̄

M

2ǫ

[

r2n + r2n−1−2rnrn−1cos(ϕn−ϕn−1)
]

}

. (8.4)

To do the ϕn-integrals, it is useful to expand (8.4) into a factorized series using the
formula

eacosϕ =
∞
∑

m=−∞

Im(a)e
imϕ, (8.5)

where Im(z) are the modified Bessel functions. Then (8.4) becomes

exp
[

−1

h̄

M

2ǫ
(xn − xn−1)

2
]

= exp
[

−1

h̄

M

2ǫ
(r2n + r2n−1)

] ∞
∑

m=−∞

Im

(

M

h̄ǫ
rnrn−1

)

eim(ϕn−ϕn−1). (8.6)

In the discretized path integral (8.3), there are N + 1 factors of this type. The N -
integrations over the ϕn-variables can now be performed and produce N Kronecker
δ’s:

N
∏

n=1

2πδmn,mn−1
. (8.7)

These can be used to eliminate all but one of the sums over m, so that we arrive at
the amplitude

(xbτb|xaτa) ≈
2π

2πh̄ǫ/M

N
∏

n=1

[

∫ ∞

0

drnrn2π

2πh̄ǫ/M

]

∞
∑

m=−∞

1

2π
eim(ϕb−ϕa)

×
N+1
∏

n=1

{

exp
[

−1

h̄

M

2ǫ
(r2n + r2n−1)

]

Im

(

M

h̄ǫ
rnrn−1

)}

exp

[

− ǫ

h̄

N+1
∑

n=1

V (rn)

]

. (8.8)
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We now define the radial time evolution amplitudes by the following expansion with
respect to the azimuthal quantum numbers m:

(xbτb|xaτa) =
∞
∑

m=−∞

1√
rbra

(rbτb|raτa)m
1

2π
eim(ϕb−ϕa). (8.9)

The amplitudes (rbτb|raτa)m are obviously given by the radial path integral

(rbτb|raτa)m ≈ 1
√

2πh̄ǫ/M

N
∏

n=1





∫ ∞

0

drn
√

2πh̄ǫ/M





×
N+1
∏

n=1

[

exp
{

− M

2ǫh̄
(rn − rn−1)

2
}

Ĩm

(

Mrnrn−1

h̄ǫ

)]

exp

{

− ǫ

h̄

N+1
∑

n=1

V (rn)

}

. (8.10)

Here we have introduced slightly different modified Bessel functions

Ĩm(z) ≡
√
2πze−zIm(z). (8.11)

They will also be called “Bessel functions”, for short. They have the asymptotic
behavior

Ĩm(z)
z→∞−−−→ 1− m2 − 1/4

2z
+ . . . = e−

m2
−1/4
2z + . . . , (8.12)

Ĩm(z)
z→0−−−→ 2

√
π(z/2)m+1/2 + . . . . (8.13)

In the case of a free particle with V (r) = 0, it is easy to perform all the inter-
mediate integrals over rn in (8.10). Two neighboring figures in the product require
the integral

∫ ∞

0
dr′ exp

(

−r
′′2

2ǫ2
− r2

2ǫ1

)

exp
[

−r′2
(

1

2ǫ2
+

1

2ǫ1

)]

√
r′′r′

ǫ2
Im

(

r′′r′

ǫ2

)
√
r′r

ǫ1
Im

(

r′r

ǫ1

)

= exp

[

− r′′2 + r2

2 (ǫ1 + ǫ2)

]
√
r′′r

ǫ1 + ǫ2
Im

(

r′′r

ǫ1 + ǫ2

)

. (8.14)

For simplicity, the units in this formula are M = 1, h̄ = 1. The right-hand side of
(8.14) follows directly from the formula

∫ ∞

0
drre−r2/ǫIν (βr) Iν (αr) =

ǫ

2
e(α

2+β2)ǫ/4Iν (ǫαβ/2) , (8.15)

after identifying ǫ, α, β as

ǫ = 2ǫ1ǫ2/ (ǫ1 + ǫ2) ,

α = r/ǫ1, (8.16)

β = r′′/ǫ2.
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Thus, the integrals in (8.10) with V (r) = 0 can successively be performed yielding
the thermal amplitude for τb > τa:

(rbτb|raτa)m =
M

h̄

√
rbra

τb − τa
exp

[

−M
2h̄

r2b + r2a
(τb − τa)

]

Im

(

M

h̄

rbra
τb − τa

)

. (8.17)

Note that the same result could have been obtained more directly from the
imaginary-time amplitude of a free particle in two dimensions,

(xbτb|xaτa) =
M

2πh̄(τb − τa)
exp

[

−M
2h̄

(xb − xa)
2

τb − τa

]

, (8.18)

by rewriting the right-hand side as

M

2πh̄ (τb − τa)
exp

(

−M
2h̄

r2b + r2a
τb − τa

)

exp
[

M

2h̄

rbra
τb − τa

cos (ϕb − ϕa)
]

,

and expanding the second exponential according to (8.5) into the series

∞
∑

m=−∞

Im

(

M

h̄

rbra
τb − τa

)

eim(ϕb−ϕa). (8.19)

A comparison of the coefficients with those in (8.9) gives the radial amplitudes
(8.17).

Due to (8.14), the radial amplitude satisfies a fundamental composition law
corresponding to (2.4), which reads for τb > τ > τa

∫ ∞

0
drr (rbτb|r τ)m (r τ |raτa)m = (rbτb|raτa)m . (8.20)

8.2 Trouble with Feynman’s Path Integral Formula in
Radial Coordinates

In the above calculation we have shown that the expression (8.10) is certainly the
correct radial path integral. It is, however, not of the Feynman type. In operator
quantum mechanics we learn that the action of a particle moving in a potential
V (r) at a fixed angular momentum L3 = mh̄ contains a centrifugal barrier h̄2(m2 −
1/4)/2Mr2 and reads

Am =
∫ τb

τa
dτ

(

M

2
ṙ2 +

h̄2

2M

m2 − 1/4

r2
+ V (r)

)

. (8.21)

This is shown by separating the Hamiltonian operator into radial and azimuthal
coordinates, over fixing the azimuthal angular momentum L3, and choosing for it the
quantum-mechanical value h̄m. According to Feynman’s rules, the radial amplitude
therefore should simply be given by the path integral

(rbτb|raτa)m =
∫ ∞

0
Dr exp

(

−1

h̄
Am

)

. (8.22)
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The reader may object to using the word “classical” in the presence of a term
proportional to h̄2 in the action. In this section, however, h̄m is merely meant
to be a parameter specifying the azimuthal momentum pϕ ≡ h̄m in the classical
centrifugal barrier p2ϕ/2Mr2. It is parametrized in terms of a dimensionless number
m which does not necessarily have the integer values required by the quantization
of the azimuthal motion.

By naively time-slicing (8.22) according to Feynman’s rules of Section 2.1 we
would have defined it by the finite-N expression

(rbτb|raτa)m ≈ 1
√

2πh̄ǫ/M

N
∏

n=1





∫ ∞

0

drn
√

2πh̄ǫ/M





× exp

{

−1

h̄

N+1
∑

n=1

[

M

2ǫ
(rn − rn−1)

2 + ǫ
h̄2

2M

m2 − 1/4

rnrn−1

+ ǫV (rn)

]}

. (8.23)

Actually, the denominators in the centrifugal barrier could have been chosen to be
r2n. This would make a negligible difference for small ǫ. Note that in contrast to a
standard Feynman path integral in one dimension, the integrations over r cover only
the semi-axis r ≥ 0 rather than the complete r-axis. This represents no problem
since we have learned in Chapter 6 how to treat such half-spaces.

The expression (8.23) is now a place for an unpleasant surprise: For m = 0, a
time-sliced Feynman path integral formula cannot possibly exist since the potential
has an abyss at small r. This leads to a phenomenon which will be referred to as the
path collapse, to be understood physically and resolved later in Chapter 12. At this
place we merely point out the mathematical origin of the problem, by comparing
the naively time-sliced expression (8.23) with the certainly correct one (8.10). The
singularity would be of no consequence if the two expressions were to converge
towards each other in the continuum limit ǫ → 0. At first sight, this seems to be
the case. After all, ǫ is assumed to be infinitesimally small so that we may replace
the “Bessel function” Ĩm (Mrnrn−1/h̄ǫ) by its asymptotic form (8.12),

Ĩm

(

Mrnrn−1

h̄ǫ

)

ǫ→0−−−→ exp

(

−ǫ h̄

2M

m2 − 1/4

rnrn−1

)

. (8.24)

For a fixed set of rn, i.e., for a given path, the continuum limit ǫ → 0 makes the
integrands (8.10) and (8.23) coincide, the difference being of the order ǫ2. Unfortu-
nately, the path integral requires the limit to be taken after the integrations over
the drn. The integrals, however, do not exist at m = 0. For paths moving very
close to the singularity at r = 0, the approximation (8.24) breaks down. In fact, the
large-z expansion

Ĩm(z) = 1− m2 − 1/4

2z
+

(m2 − 1/4)(m2 − 1/9)

2!(2z)2
− . . . (8.25)

with z =Mrnrn−1/h̄ǫ is never convergent even for a very small ǫ. The series shows
only an asymptotic convergence (more on this subject in Section 17.9). If we want
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to evaluate Ĩm(z) =
√
2πze−zIm(z) for all z we have to use the convergent power

series expansion of Im(z) around z = 0:

Im(z) =
(

z

2

)m
[

1

0!m!
+

1

1!(m+ 1)!

(

z

2

)2

+
1

2!(m+ 2)!

(

z

2

)4

+ . . .

]

.

It is known from the Schrödinger theory that the leading power zm determines
the threshold behavior of the quantum-mechanical particle distribution near the
origin. This is qualitatively different from the exponentially small distribution
exp [−ǫh̄(m2 − 1/4)/2Mr2] contained in each time slice of the Feynman formula
(8.23) for |m| > 1/2.

The root of these troubles is an anomalous behavior in the high-temperature limit
of the partition function. In this limit, the imaginary time difference τb−τa = h̄/kBT
is very small and it is usually sufficient to keep only a single slice in a time-sliced
path integral (see Sections 2.9, 2.13). If this were true also here, the formula (8.23)
would lead, in the absence of a potential V (r), to the classical particle distribution
[compare (2.349)]

(ra τa + ǫ|raτa) =
1

√

2πh̄ǫ/M
exp

(

−ǫ h̄

2M

m2 − 1/4

r2a

)

. (8.26)

If we subtract the barrier-free distribution, this amounts to the classical partition
function1

Zcl =
∫ ∞

0

dr√
2πa

[

exp

(

−am
2 − 1/4

2r2

)

− 1

]

= −1

2

√

m2 − 1

4
, (8.27)

where we have abbreviated the factor ǫh̄/M by a. The integral is temperature-
independent and converges only for |m| > 1/2.

Compare this result with the proper high-temperature limit of the exact partition
function calculated with the use of (8.17) and with the same subtraction as before.
It reads for all T

Z =
1

2

∫ ∞

0
dze−z [Im(z)− I1/2(z)]. (8.28)

As in the classical expression, there is no temperature dependence. The integral

∫ ∞

0
dze−αzIµ(z) = (α2 − 1)

−1/2
(α+

√
α2 − 1)

−µ
(8.29)

[see formula (2.475)] converges for arbitrary real ν and α > 1, and gives in the limit
α→ 1

Z = −1

2
(m− 1/2). (8.30)

1This follows by expanding the formula
∫∞

0 dxe−a/x2−bx2

=
√

π/4be−2
√
ab in powers of

√
b,

subtracting the a = 0 -term, and taking the limit b → 0.
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This is different from the classical result (8.27) and agrees with it only in the limit
of large m.2

Thus we conclude that a time-sliced path integral containing a centrifugal barrier
can only give the correct amplitude when using the Euclidean action

ÃN
m =

N+1
∑

n=1

[

M

2ǫ
(rn − rn−1)

2 − h̄logĨm

(

M

h̄ǫ
rnrn−1

)]

, (8.31)

in which the neighborhood of the singularity is treated quantum-mechanically. The
naively time-sliced classical action in (8.23) is of no use. The centrifugal barrier
renders therefore a counterexample to Feynman rules of path integration according
to which quantum-mechanical amplitudes should be obtainable from a sum over all
histories of exponentials which involve only the classical expression for the short-time
actions.

It is easy to see where the derivation of the time-sliced path integral in Section 2.1
breaks down. There, the basic ingredient was the Trotter product formula (2.26),
which for imaginary time reads

e−β(T̂+V̂ ) = lim
N→∞

(

e−ǫT̂e−ǫV̂
)N+1

, ǫ ≡ β/(N + 1). (8.32)

An exact identity is e−β(T̂+V̂ ) ≡
(

e−ǫT̂ e−ǫV̂ eiǫ
2X
)N+1

with X given in Eq. (2.10) con-

sisting of a sum of higher and higher commutators between V̂ and T̂ . The Trotter
formula neglects these commutators. In the presence of a centrifugal barrier, how-
ever, this is not permitted. Although the neglected commutators carry increasing
powers of the small quantity ǫ, they are more and more divergent at r = 0, like
ǫn/r2π. The same terms occur in the asymptotic expansion (8.25) of the “Bessel
function”. In the proper action (8.31), these terms are present.

It should be noted that for a Hamiltonian possessing a centrifugal barrier Vcb in
addition to an arbitrary smooth potential V , i.e., for a Hamiltonian operator of the
form Ĥ = T̂ + V̂cf + V̂ , the Trotter formula is applicable in the form

e−βH = lim
N→∞

(

e−ǫ(T̂+V̂cb)e−ǫV̂
)N+1

, ǫ ≡ β/(N + 1). (8.33)

It leads to a valid time-sliced path integral formula

(rbτb|raτa)m ≈
N
∏

n=1

[
∫ ∞

0
drn

] N+1
∏

n=1

[

∫

dpn
2πh̄

]

exp
{

−1

h̄
ÃN

m[p, r]
}

, (8.34)

with the sliced action

ÃN
m[p, r] =

N+1
∑

n=1

[

−ipn(rn − rn−1) + ǫ
p2n
2M

− h̄logĨm

(

M

h̄ǫ
rnrn−1

)

+ ǫV (rn)

]

. (8.35)

2If m were not merely a dimensionless number parametrizing an arbitrary centrifugal barrier
with fixed p2ϕ/2Mr2, as it is in this section, the classical limit at a fixed pϕ would eliminate the
problem since for h̄ → 0, the number m would become infinitely large, leading to the correct
high-temperature limit of the partition function. For a fixed finite m, however, the discrepancy is
unavoidable.
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After integrating out the momenta, this becomes

(rbτb|raτa)m ≈ 1
√

2πh̄ǫ/M

N
∏

n=1





∫ ∞

0

drn
√

2πh̄ǫ/M



 exp
{

−1

h̄
ÃN

m[r]
}

, (8.36)

with the action

ÃN
m[r, ṙ] =

N+1
∑

n=1

[

M

2ǫ
(rn − rn−1)

2 − h̄logĨm

(

Mrnrn−1

h̄ǫ

)

+ ǫV (rn)
]

. (8.37)

The path integral formula (8.36) can in principle be used to find the amplitude for
a fixed angular momentum of some solvable systems.

An example is the radial harmonic oscillator at an angular momentum m, al-
though it should be noted that this particularly simple example does not really
require calculating the integrals in (8.36). The result can be found much more sim-
ply from a direct angular momentum decomposition of the amplitude (2.177). After
a continuation to imaginary times t = −iτ and an expansion of part of the exponent
with the help of (8.5), it reads for D = 2

(xbτb|xaτa) =
1

2π

Mω

h̄ sinh[ω(τb − τa)]
e−

Mω
2h̄

coth[ω(τb−τa)](r2b+r2a)

×
∞
∑

m=−∞

Im

(

Mωrbra
h̄ sinh[ω(τb − τa)]

)

eim(ϕb−ϕa). (8.38)

By comparison with (8.9), we extract the radial amplitude

(rbτb|raτa)m =
M

h̄

ω
√
rbra

coth[ω(τb − τa)]
Im

(

Mωrbra
h̄ sinh[ω(τb − τa)]

)

. (8.39)

The limit ω → 0 gives the free-particle result

(rbτb|raτa)m =
M

h̄

√
rbra

τb − τa
Im

(

M

h̄

rbra
τb − τa

)

. (8.40)

8.3 Cautionary Remarks

It is important to emphasize that we obtained the correct amplitudes by performing
the time slicing in Cartesian coordinates followed by the transformation to the polar
coordinates in the time-sliced expression. Otherwise we would have easily missed
the factor −1/4 in the centrifugal barrier. To see what can go wrong let us proceed
illegally and do the change of variables in the initial continuous action. Thus we try
to calculate the path integral

(xbτb|xaτa) =
∑

l=−∞,∞

∫ ∞

0
Dr r

∫ ∞

−∞
Dϕ

× exp
{

1

h̄

∫ τb

τa
dτ
[

M

2
(ṙ2 + r2ϕ̇2) + V (r)

]}∣

∣

∣

∣

ϕ(τb)=ϕb+2πl

. (8.41)
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The summation over all periodic repetitions of the final azimuthal angle ϕ accounts
for its multivaluedness according to the rules of Section 6.1. If the expression (8.41)
is time-sliced straightforwardly it reads

∑

ϕN+1=ϕb+2πl,l=−∞,∞

1

2πh̄ǫ/M

N
∏

n=1





∫ ∞

0

drnrn
√

2πh̄ǫ/M

∫ ∞

−∞

dϕn
√

2πh̄ǫ/M





×exp

{

−1

h̄
ǫ
N+1
∑

n=1

[

M

2ǫ2
[(rn − rn−1)

2 + r2n(ϕn − ϕn−1)
2] + V (rn)

]

}

,

(8.42)

where rb = rN+1, ϕa = ϕ0, ra = r0. The integrals can be treated as follows. We
introduce the momentum integrals over (pϕ)n conjugate to ϕn, writing for each n
[with the short notation (pϕ)n ≡ pn]

rn
√

2πh̄ǫ/M
e−(M/2h̄ǫ)r2n(ϕn−ϕn−1)

2

=
∫ ∞

−∞

dpn
2πh̄

exp

{

−1

h̄

ǫ

2M

p2n
r2n

+
i

h̄
pn(ϕn − ϕn−1)

}

.

(8.43)

After this, the integrals over ϕn (n = 1 . . .N) in (8.42) enforce all pn to be equal
to each other, i.e., pn ≡ p for n = 1, . . . , N + 1, and we remain with

(xbτb|xaτa) ≈
1

2πh̄ǫ/M

1

rb

∞
∑

l−∞

∫ ∞

−∞

dp

2πh̄
e(i/h̄)p(ϕb−ϕa+2πl)

N
∏

n=1

[

∫ ∞

0

drn
2πh̄ǫ/M

]

× exp

{

− ǫ

h̄

N+1
∑

n=1

[

M

2

(rn − rn−1)
2

ǫ2
+

p2

2Mr2n
+ V (rn)

]}

. (8.44)

Performing the sum over l with the help of Poisson’s formula (6.9) changes the
integral over dp/2πh̄ into a sum over integers m and yields the angular momentum
decomposition (8.9) with the partial-wave amplitudes

(rbτb|raτa)m ≈ √
rbra

1

2πh̄ǫ/M

1

rb

N
∏

n=1

[

∫ ∞

0

drn
2πh̄ǫ/M

]

× exp

{

− ǫ

h̄

N+1
∑

n=1

[

M

2

(rn − rn−1)
2

ǫ2
+

h̄2

2M

m2

r2n
+ V (rn)

]}

. (8.45)

This wrong result differs from the correct one in Eq. (8.10) in three respect. First, it
does not possess the proper centrifugal term −h̄ log Ĩm(Mrbra/h̄ǫ). Second, there is

a spurious overall factor
√

ra/rb. Third, in comparison with the limiting expression

(8.24), the centrifugal barrier lacks the term 1/4.
It is possible to restore the term 1/4 by observing that in the time-sliced expres-

sion, the factor
√

rb/ra is equal to

N+1
∏

n=1

√

rb
ra

=
N+1
∏

n=1

(

1 +
rn−rn−1

rn−1

)−1/2

=
N+1
∏

n=1

(

1− 1

2

rn−rn−1√
rnrn−1

+
1

8

(rn−rn−1)
2

rnrn−1

− . . .

)
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= exp

(

−1

2

N+1
∑

n=1

rn − rn−1√
rnrn−1

+ . . .

)

. (8.46)

This, in turn, can be incorporated into the kinetic term of (8.45) via a quadratic
completion leading to

exp







− ǫ

h̄

N+1
∑

n=1





M

2

(

rn − rn−1

ǫ
+ i

h̄

2M
√
rnrn−1

)2

+
h̄2

2M

m2 − 1/4

r2n











. (8.47)

The centrifugal barrier is now correct, but the kinetic term is wrong. In fact, it
does not even correspond to a Hermitian Hamiltonian operator, as can be seen by
introducing momentum integrations and completing the square to

exp

{

−ipn(rn − rn−1) +
ǫ

h̄

[

p2n
2M

− ih̄
pn

2Mrn

]}

. (8.48)

The last term is an imaginary energy. Only by dropping it artificially would the
time-sliced action acquire the Feynman form (8.23), while still being beset with the
problem of nonexistence for m = 0 (path collapse) and the nonuniform convergence
of the path integrations to be solved in Chapter 12.

The lesson of this is the following: A naive time slicing cannot be performed in
curvilinear coordinates. It can safely be done in the Cartesian formulation.

Fortunately, a systematic modification of the naive slicing rules has recently been
found which makes them applicable to non-Cartesian systems. This will be shown
in Chapters 10 and 11.

In the sequel it is useful to maintain, as far as possible, the naive notation for
the radial path integral (8.23) and the continuum limit of the action (8.21). The
places where care has to be taken in the time-slicing process will be emphasized by
setting the centrifugal barrier in quotation marks and defining

“
ǫ
h̄2

2M

m2 − 1/4

rnrn−1

” ≡ −h̄ log Ĩm
(

Mrnrn−1

h̄ǫ

)

. (8.49)

Thus we shall write the properly sliced action (8.37) as

ÃN
m[r, ṙ] =

N+1
∑

n=1

[

M

2ǫ
(rn − rn−1)

2 +
“
ǫ
h̄2

2µ

m2 − 1/4

rnrn−1

”
+ ǫV (rn)

]

, (8.50)

and emphasize the need for the non-naive time slicing of the continuum action
correspondingly:

Am =
∫ τb

τa
dτ

[

M

2
ṙ2 +

“ h̄2

2M

m2 − 1/4

r2
”
+ V (r)

]

. (8.51)
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8.4 Time Slicing Corrections

It is interesting to find the origin of the above difficulties. For this purpose, we take
the Cartesian kinetic terms expressed in terms of polar coordinates

(xn − xn−1)
2 = (rn − rn−1)

2 + 2rnrn−1[1− cos(ϕn − ϕn−1)], (8.52)

and treat it perturbatively in the coordinate differences [2]. Expanding the cosine
into a power series we obtain the time-sliced action

AN =
M

2ǫ

N+1
∑

n=1

(xn − xn−1)
2 =

M

2ǫ

N+1
∑

n=1

{

(rn − rn−1)
2

+ 2rnrn−1

[

1

2!
(ϕn − ϕn−1)

2 − 1

4!
(ϕn − ϕn−1)

4 + . . .
] }

.(8.53)

In contrast to the naively time-sliced expression (8.42), we now keep the quartic
term (ϕn−ϕn−1)

4. To see how it contributes, consider a single intermediate integral

∫

dϕn−1
√

2πǫ/a
e−(a/2ǫ)[(ϕn−ϕn−1)2+a4(ϕn−ϕn−1)

4+...]. (8.54)

The first term in the exponent restricts the width of the fluctuations of the difference
ϕn − ϕn−1 to

〈(ϕn − ϕn−1)
2〉0 =

ǫ

a
. (8.55)

If we rescale the arguments, ϕn → √
ǫun, the integral takes the form

∫

dun−1
√

2π/a
e−(a/2)[(un−un−1)

2+ǫa4(un−un−1)
4+...]. (8.56)

This shows that each higher power in the difference un − un−1 is suppressed by an
additional factor

√
ǫ. We now expand the integrand in powers of

√
ǫ and use the

integrals

∫ du
√

2π/a
e−(a/2)u2























u2

u4

...
u2n























=























a−1

3a−2

...
(2n− 1)!!a−n























, (8.57)

with odd powers of u giving trivially 0, to find an expansion of the integral (8.56).
It begins as follows:

1− ǫ
a

2
a4 3a−2 +O(ǫ2). (8.58)

This can be thought of as coming from the equivalent integral

∫

dϕn−1
√

2πǫ/a
e−(a/2ǫ)(ϕn−ϕn−1)

2−3a4ǫ/2a+... . (8.59)
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The quartic term in (8.54),

∆A =
a

2ǫ
a4(ϕn − ϕn−1)

4, (8.60)

has generated an effective action-like term in the exponent:

Aeff = ǫ
3a4
2a

. (8.61)

This is obviously due to the expectation value 〈∆A〉0 of the quartic term and we
can record, for later use, the perturbative formula

Aeff = 〈∆A〉0. (8.62)

If u is a vector in D dimensions to be denoted by u, with the quadratic term
being (a/2ǫ)(un − un−1)

2, the integrals (8.57) are replaced by

∫

dDu
√

2π/a
D e

−(a/2)u2























uiuj
uiujukul

...
ui1 · . . . · ui2n























=























a−1δij
a−2(δijδkl + δikδjl + δilδjk)
...
a−nδi1...i2n























, (8.63)

where δi1...i2n will be referred to as contraction tensors , defined recursively by the
relation

δi1...i2n = δi1i2δi3i4...i2n + δi1i3δi2i4...i2n + . . .+ δi1i2nδi2i3...i2n−1
. (8.64)

A comparison with the Wick expansion (3.306) shows that this recursion relation
amounts to δi1...i2n possessing a Wick-like expansion into the sum of products of
Kronecker δ’s, each representing a pair contraction. Indeed, the integral formulas
(8.63) can be derived by adding a source term j ·u to the exponent in the integrand,
completing the square, and differentiating the resulting e(1/2a)j

2

with respect to the
“current” components ji. For vectors ϕi, a possible quartic term in the exponent of
(8.54) may have the form

∆A =
a

2ǫ
(a4)ijkl(ϕn − ϕn−1)i(ϕn − ϕn−1)j(ϕn − ϕn−1)k(ϕn − ϕn−1)l. (8.65)

Then the factor 3a4 in Aeff of Eq. (8.61) is replaced by the three contractions

(a4)ijkl(δijδkl + 2 more pair terms).

Applying the simple result (8.61) to the action (8.53), where a = (M/h̄)2rnrn−1

and a4 = −1/4!, we find that the naively time-sliced kinetic term of the ϕ field

M

2ǫ
rnrn−1(ϕn − ϕn−1)

2

is extended to
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M

2ǫ
rnrn−1(ϕn − ϕn−1)

2 − ǫh̄2
1/4

2Mrnrn−1

+ . . . .

Thus, the lowest perturbative correction due to the fourth-order expansion term of
cos(ϕn − ϕn−1) supplies precisely the 1/4-term in the centrifugal barrier which was
missing in (8.45). Proceeding in this fashion, the higher powers in the expansion of
cos(ϕn − ϕn−1) give higher and higher contributions (ǫ/rnrn−1)

n. Eventually, they
would of course produce the entire asymptotic expansion of the “Bessel function”
in the correct time-sliced action (8.37).

Note that the failure of this series to converge destroys the justification for trun-
cating the perturbation series after any finite number of terms. In particular, the
knowledge of the large-order behavior (the “tail end” of the series) [3] is needed to
recover the correct threshold behavior ∝ rm in the amplitudes observed in (8.26).

The reader may rightfully object that the integral (8.56) should really contain
an exponential factor exp [−(a/2)(un−1 − un−2)

2] from the adjacent time slice which
also contains the variable un−1 and which has been ignored in the integral (8.56) over
un−1. In fact, with the abbreviations ūn−1 ≡ (un + un−2)/2, δ ≡ un−1 − ūn−1, ∆ ≡
un − un−2, the complete integrand containing the variable un−1 can be written as

∫

dδ
√

2π/a
e−aδ2e−a∆2/4

{

1− a

2
ǫa4[(−δ +∆/2)4 + (δ +∆/2)4] + . . .

}

. (8.66)

When doing the integral over δ, each even power δ2n gives a factor (1/2a)(2n −
1)!! and we observe that the mean value of the fluctuating un−1 is different from
what it was above, when we singled out the expression (8.56) and ignored the un−1

dependence of the adjacent integral. Instead of un in (8.56), the mean value of
un−1 is now the average position of the neighbors, ūn−1 = (un + un−2)/2. Moreover,
instead of the width of the un−1 fluctuations being 〈(un − ūn−1)

2〉0 ∼ 1/a, as in
(8.55), it is now given by half this value:

〈(un−1 − ūn−1)
2〉0 =

1

2a
. (8.67)

At first, these observations seem to invalidate the above perturbative evaluation
of (8.56). Fortunately, this objection ignores an important fact which cancels the
apparent mistake, and the result (8.62) of the sloppy derivation is correct after all.
The argument goes as follows: The integrand of a single time slice is a sharply
peaked function of the coordinate difference whose width is of the order ǫ and goes
to zero in the continuum limit. If such a function is integrated together with some
smooth amplitude, it is sensitive only to a small neighborhood of a point in the am-
plitude. The sharply peaked function is a would-be δ-function that can be effectively
replaced by a δ-function plus correction terms which contain increasing derivatives
of δ-functions multiplied by corresponding powers of

√
ǫ. Indeed, let us take the

integrand of the model integral (8.54),

1
√

2πǫ/a
e−(a/2ǫ)[(ϕn−ϕn−1)2+a4(ϕn−ϕn−1)

4+...], (8.68)
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and integrate it over ϕn−1 together with a smooth amplitude ψ(ϕn−1) which plays
the same role of a test function in mathematics [recall Eq. (1.162)]:

∫ ∞

−∞

dϕn−1
√

2πǫ/a
e−(a/2ǫ)[(ϕn−ϕn−1)2+a4(ϕn−ϕn−1)

4+...]ψ(ϕn−1). (8.69)

For small ǫ, we expand ψ(ϕn−1) around ϕn,

ψ(ϕn−1) = ψ(ϕn)− (ϕn − ϕn−1)ψ
′(ϕn) +

1

2
(ϕn − ϕn−1)

2ψ′′(ϕn) + . . . ,

(8.70)

and (8.69) becomes

(1− Aeff)ψ(ϕn) +
ǫ

2a
ψ′′(ϕn) + . . . . (8.71)

This shows that the amplitude for a single time slice, when integrated together with
a smooth amplitude, can be expanded into a series consisting of a δ-function and its
derivatives:

1
√

2πǫ/a
e−(a/2ǫ)[(ϕn−ϕn−1)2+a4(ϕn−ϕn−1)

4+...]

= (1− Aeff)δ(ϕn − ϕn−1) +
ǫ

2a
δ′′(ϕn − ϕn−1) + . . . . (8.72)

The right-hand side may be viewed as the result of a simpler would-be δ-function

1
√

2πǫ/a
e−(a/2ǫ)(ϕn−ϕn−1)2e−Aeff , (8.73)

correct up to terms of order ǫ. This is precisely what we found in (8.59).
The problems observed above arise only if the would-be δ-function in (8.72) is

integrated together with another sharply peaked neighbor function which is itself
a would-be δ-function. Indeed, in the theory of distributions, it is strictly forbid-
den to form integrals over products of two proper distributions. For the would-be
distributions at hand the rule is not quite as strict and integrals over products can
be formed. The crucial expansion (8.72), however, is no longer applicable if the
accompanying function is a would-be δ-function, and a more careful treatment is
required.

The correctness of formula (8.62) derives from the fact that each time slice has,
for sufficiently small ǫ, a large number of neighbors at earlier and later times. If the
integrals are done for all these neighbors, they render a smooth amplitude before
and a smooth amplitude after the slice under consideration. Thus, each intermediate
integral in the time-sliced product contains a would-be δ-function multiplied on
the right- and left-hand side with a smooth amplitude. In each such integral, the
replacement (8.59) and thus formula (8.62) is correct. The only exceptions are time
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slices near the endpoints. Their integrals possess the above subtleties. The relative
number of these, however, goes to zero in the continuum limit ǫ → 0. Hence they
do not change the final result (8.62).

For completeness, let us state that the presence of a cubic term in the single-sliced
action (8.68) has the following δ-function expansion

1
√

2πǫ/a
e−(a/2ǫ)[(ϕn−ϕn−1)2+a3(ϕn−ϕn−1)

3+a4(ϕn−ϕn−1)
4+...] (8.74)

= (1− Aeff)δ(ϕn − ϕn−1) + 3a3
ǫ

2a
δ′(ϕn − ϕn−1) +

ǫ

2a
δ′′(ϕn − ϕn−1) + . . .

corresponding to an “effective action”

Aeff =
ǫ

2a

[

3a4 −
15

4
a23

]

. (8.75)

Using (8.75), the left-hand side of (8.74) can also be replaced by the would-be δ-
function

1
√

2πǫ/a
e−(a/2ǫ)(ϕn−ϕn−1)2e−Aeff [1− 3a3

2
(ϕn − ϕn−1) + . . .], (8.76)

which has the same leading terms in the δ-function expansion.
In D dimensions, the term 3a3(ϕn − ϕn−1) has the general form

[(a3)ijj + (a3)jij + (a3)jji](ϕn − ϕn−1)i,

and the term 15a23 in Aeff becomes

(a3)ijk(a3)i′j′k′(δii′δjj′δkk′ + 14 more pair terms).

8.5 Angular Decomposition in Three and More Dimensions

Let us now extend the two-dimensional development of Section 8.2 and study the
radial path integrals of particles moving in three and more dimensions. Consider
the amplitude for a rotationally invariant action in D dimensions

(xbτb|xaτa) =
∫

DDx(τ) exp
{

−1

h̄

∫ τb

τa

[

M

2
ẋ2 + V (r)

]}

. (8.77)

By time-slicing this in Cartesian coordinates, the kinetic term gives an integrand

exp

[

−1

h̄

M

2ǫ

N+1
∑

n=1

(r2n + r2n−1 − 2rnrn−1 cos∆ϑn)

]

, (8.78)

where ∆ϑn is the relative angle between the vectors xn and xn−1.
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8.5.1 Three Dimensions

In three dimensions, we go over to the spherical coordinates

x = r(cos θ cosϕ, cos θ sinϕ, sin θ) (8.79)

and write

cos∆ϑn = cos θn cos θn−1 + sin θn sin θn−1 cos(ϕn − ϕn−1). (8.80)

The integration measure in the time-sliced version of (8.77),

1
√

2πh̄ǫ/M
3

N
∏

n=1

∫

d3xn
√

2πh̄ǫ/M
3 , (8.81)

becomes
1

√

2πh̄ǫ/M
3

N
∏

n=1

∫

drnr
2
nd cos θndϕn

√

2πh̄ǫ/M
3 . (8.82)

To perform the integrals, we use the spherical analog of the expansion (8.5)

eh cos∆ϑn =

√

π

2h

∞
∑

l=0

Il+1/2(h)(2l + 1)Pl(cos∆ϑn), (8.83)

where Pl(z) are the Legendre polynomials. These, in turn, can be decomposed into
spherical harmonics

Ylm(θ, ϕ) = (−1)m
[

2l + 1

4π

(l −m)!

(l +m)!

]1/2

Pm
l (cos θ)eimϕ, (8.84)

with the help of the addition theorem

2l + 1

4π
Pl(cos∆ϑn) =

l
∑

m=−l

Ylm(θn, ϕn)Y
∗
lm(θn−1, ϕn−1), (8.85)

the sum running over all azimuthal (magnetic) quantum numbersm. The right-hand
side of Pm

l (z) contains the associated Legendre polynomials

Pm
l (z) =

(1− z2)m/2

2ll!

(l −m)!

(l +m)!

dl+m

dzl+m
(z2 − 1)l, (8.86)

which are solutions of the differential equation3

[

− 1

sin θ

d

dθ

(

sin θ
d

dθ

)

+
m2

sin2 θ

]

Pm
l (cos θ) = l(l + 1)Pm

l (cos θ). (8.87)

3Note that yml (cos θ) =
√

sin θPm
l (cos θ) satisfies

[

− d2

dθ2 − 1
4 + m2−1/4

sin2 θ

]

yml = l(l + 1)yml . This

differential equation will be used later in Eq. (8.197).
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Thus, the expansion (8.83) becomes

eh cos∆ϑn =

√

π

2h
4π

∞
∑

l=0

Il+1/2(h)
l
∑

m=−l

Ylm(θn, ϕn)Y
∗
lm(θn−1, ϕn−1). (8.88)

Inserted into (8.78), it leads to the time-sliced path integral

(xbτb|xaτa) ≈ 4π
√

2πh̄ǫ/M
3

N
∏

n=1







∫ ∞

0

drnr
2
nd cos θndϕn4π
√

2πh̄ǫ/M
3







×
N+1
∏

n=1

[(

h̄ǫπ

2Mrnrn−1

)1/2 ∞
∑

ln=0

ln
∑

mn=−ln

Iln+1/2

(

M

h̄ǫ
rnrn−1

)

× Ylnmn(θn, ϕn)Y
∗
lnmn

(θn−1, ϕn−1)

]

exp

{

− ǫ

h̄

N+1
∑

n=1

[

M

2

r2n + r2n−1

ǫ2
+V (rn)

]}

. (8.89)

The intermediate ϕn- and cos θn-integrals can now all be done using the orthogonal-
ity relation

∫ 1

−1
d cos θ

∫ π

−π
dϕ Y ∗

lm(θ, ϕ)Yl′m′(θ, ϕ) = δll′δmm′ . (8.90)

Each ϕn-integral yields a product of Kronecker symbols δlnln−1
δmnmn−1

. Only the
initial and the final spherical harmonics survive, YlN+1mN+1

and Y ∗
l0m0

, since they are
not subject to integration. Thus we arrive at the angular momentum decomposition

(xbτb|xaτa) =
∞
∑

l=0

l
∑

m=−l

1

rbra
(rbτb|raτa)lYlm(θb, ϕb)Y

∗
lm(θa, ϕa), (8.91)

with the radial amplitude

(rbτb|raτa)l ≈
4πrbra

√

2πh̄ǫ/M
3

N
∏

n=1







∫ drnr
2
n4π

√

2πh̄ǫ/M
3







N+1
∏

n=1

[

h̄ǫ

2Mrnrn−1

]

(8.92)

×
N+1
∏

n=1

[

Ĩl+1/2

(

M

h̄ǫ
rnrn−1

)]

exp

{

− ǫ

h̄

N+1
∑

n=1

[

M

2ǫ2
(rn − rn−1)

2 + V (rn)
]

}

.

The factors
∏N

a r
2
n/
∏N+1

a rnrn−1 pile up to 1/rbra and cancel the prefactor rbra.
Together with the remaining product, the integration measure takes the usual one-
dimensional form

1
√

2πh̄ǫ/M

N
∏

n=1





∫ ∞

0

drn
√

2πh̄ǫ/M



 . (8.93)

If we were to use here the large-argument limit (8.24) of the Bessel function, the
integrand would become exp(−AN

l /h̄), with the time-sliced radial action

AN
l = ǫ

N+1
∑

n=1

[

M

2ǫ2
(rn − rn−1)

2 +
h̄2

2M

l(l + 1)

rnrn−1

+ V (rn)

]

. (8.94)
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The associated radial path integral

(rbτb|raτa)l ≈
1

√

2πǫh̄/M

N
∏

n=1





∫ ∞

0

drn
√

2πh̄ǫ/M



 exp
(

−1

h̄
AN

l

)

(8.95)

agrees precisely with what would have been obtained by naively time-slicing the
continuum path integral

(rbτb|raτa)l =
∫ ∞

0
Dr(τ)e− 1

h̄
Al[r], (8.96)

with the radial action

Al[r] =
∫ τb

τa
dτ

[

M

2
ṙ2 +

h̄2

2M

l(l + 1)

r2
+ V (r)

]

. (8.97)

In particular, this would contain the correct centrifugal barrier

Vcf =
h̄2

2M

l(l + 1)

r2
. (8.98)

However, as we know from the discussion in Section 8.2, Eq. (8.95) is incorrect and
must be replaced by (8.92), due to the non uniformity of the continuum limit ǫ→ 0
in the integrand of (8.92).

8.5.2 D Dimensions

The generalization to D dimensions is straightforward. The main place where the
dimension enters is the expansion of

eh cos∆ϑn = e−
M
h̄ǫ

rnrn−1 cos∆ϑn, (8.99)

in which ∆ϑn is the relative angle between D-dimensional vectors xn and xn−1. The
expansion reads [compare with (8.5) and (8.83)]

eh cos∆ϑn =
∞
∑

l=0

al(h)
l +D/2− 1

D/2− 1

1

SD
C

(D/2−1)
l (cos∆ϑn), (8.100)

where SD is the surface of a unit sphere in D dimensions (1.558), and

al(h) ≡ (2π)D/2h1−D/2Il+D/2−1(h)

≡ ehãl(h) = eh
(

2π

h

)(D−1)/2

Ĩl+D/2−1(h). (8.101)

The functions C
(α)
l (cosϑ) are the ultra-spherical Gegenbauer polynomials, defined

by the expansion

1

(1− 2tα + α2)λ
=

∞
∑

n=0

C(λ)
n αn. (8.102)
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The expansion (8.100) follows from the completeness of the polynomials C
(ν)
l (cos ϑ)

at fixed ν, using the integration formulas4

∫ π

0
dϑ sinν ϑeh cos ϑC

(ν)
l (cosϑ) = π

21−νΓ(2ν + l)

l!Γ(ν)
h−νIν+l(h), (8.103)

∫ π

0
dϑ sinν ϑC

(ν)
l (cosϑ)C

(ν)
l′ (cosϑ) = π

21−2νΓ(2ν + l)

l!(l + ν)Γ(ν)2
δll′ . (8.104)

The Gegenbauer polynomials are related to Jacobi polynomials, which are defined
in terms of hypergeometric functions (1.453) by5

P
(α,β)
l (z) ≡ 1

l!

Γ(l + 1 + β)

Γ(1 + β)
F (−l, l + 1 + α + β; 1 + β; (1− z)/2). (8.105)

The relation is

C
(ν)
l (z) =

Γ(2ν + l)Γ(ν + 1/2)

Γ(2ν)Γ(ν + l + 1/2)
P

(ν−1/2,ν−1/2)
l (z). (8.106)

This follows from the relation6

C
(ν)
l (z) =

1

l!

Γ(l + 2ν)

Γ(2ν)
F (−l, l + 2ν; 1/2 + ν; (1− z)/2). (8.107)

For D = 2 and 3, one has7

lim
ν→0

1

ν
C

(ν)
l (cosϑ) =

1

2l
cos lϑ, (8.108)

C
(1/2)
l (cos ϑ) = P

(0,0)
l (cosϑ) = Pl(cosϑ), (8.109)

and the expansion (8.100) reduces to (8.5) and (8.7), respectively.
For D = 4

C
(1)
l (cos ϑ) =

sin(l + 1)β

sin β
. (8.110)

According to an addition theorem, the Gegenbauer polynomials can be decom-
posed into a sum of pairs of D-dimensional ultra-spherical harmonics Ylm(x̂).8

The label m stands collectively for the set of magnetic quantum numbers

4I. S. Gradshteyn and I. M. Ryzhik, op. cit., Formulas 7.321 and 7.313.
5M. Abramowitz and I. Stegun, op. cit., Formula 15.4.6.
6ibid., Formula 15.4.5.
7I.S. Gradshteyn and I.M. Ryzhik, op. cit.,ibid., Formula 8.934.4.
8See H. Bateman, Higher Transcendental Functions , McGraw-Hill, New York, 1953, Vol. II,

Ch. XI; N.H. Vilenkin, Special Functions and the Theory of Group Representations , Am. Math.
Soc., Providence, RI, 1968.
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m1, m2, m3, ..., mD−1 with 1 ≤ m1 ≤ m2 ≤ . . . ≤ |mD−2|. The direction x̂ of a
vector x is specified by D − 1 polar angles

x̂1 = sinϕD−1 · · · sinϕ1,

x̂2 = sinϕD−1 · · · cosϕ1,
...

x̂D = cosϕD−1, (8.111)

with the ranges

0 ≤ ϕ1 < 2π, (8.112)

0 ≤ ϕi < π, i 6= 1. (8.113)

The ultra-spherical harmonics Ylm(x̂) form an orthonormal and complete set of
functions on the D-dimensional unit sphere. For a fixed quantum number l of total
angular momentum, the label m can take

dl =
(2l +D − 2)(l +D − 3)!

l!(D − 2)!
(8.114)

different values. The functions are orthonormal,
∫

dx̂ Y ∗
lm(x̂)Yl′m′(x̂) = δll′δmm′ , (8.115)

with
∫

dx̂ denoting the integral over the surface of the unit sphere:
∫

dx̂ =
∫

dϕD−1 sin
D−2 ϕD−1

∫

dϕD−2 sin
D−3 ϕD−2 · · ·

∫

dϕ2 sinϕ2

∫

dϕ1 . (8.116)

By evaluating this integral over a unit integrand9 we find SD = 2πD/2/Γ(D/2) as
anticipated in Eq. (1.558). Since Y00(x̂) is independent of x̂, the integral (8.115)
implies that Y00(x̂) = 1/

√
SD.

Note that the integral over the unit sphere in D-dimensions can be decomposed
recursively into an angular integration with respect to any selected direction, say û,
in the space followed by an integral over a sphere of radius sinϕD−1 in the remaining
D− 1-dimensional space to û. If x̂⊥ denotes the unit vector covering the directions
in this remaining space, one decomposes x̂ = (cosϕDû+sinϕDx̂), and can factorize
the integral measure as

∫

dD−1 x̂ =
∫

dϕD−1 sin
D−2 ϕD−1

∫

dD−2 x̂⊥ . (8.117)

For clarity, the dimensionalities of initial and remaining surfaces are marked as
superscripts on the measure symbols dD−1x̂ and dD−1x̂⊥.

9With the help of the integral formula
∫ π

0
dϕ sink ϕ =

√
πΓ((k + 1)/2)/Γ((k + 2)/2) we find

SD =
∏D−1

k=0

∫ π

0 dϕk sink ϕk = 2πD/2
∏D−2

k=1 Γ((k + 1)/2)/
∏D−2

k=1 Γ((k + 2)/2) = 2πD/2/Γ(D/2).
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For the surface of the sphere, this corresponds to the recursion relation

SD =

√
πΓ((D − 1)/2)

Γ(D/2)
× SD−1, (8.118)

which is solved by SD = 2πD/2/Γ(D).
In four dimensions, the unit vectors x̂ have a parametrization in terms of polar

angles

x̂ = (cos θ, sin θ cosψ, sin θ sinψ cosϕ, sin θ sinψ sinϕ), (8.119)

with the integration measure

dx̂ = dθ sin2 θdψ sinψ dϕ. (8.120)

It is, however, more convenient to go over to another parametrization in terms of
the three Euler angles which are normally used in the kinematic description of the
spinning top. In terms of these, the unit vectors have the components

x̂1 = cos(θ/2) cos[(ϕ+ γ)/2],

x̂2 = − cos(θ/2) sin[(ϕ+ γ)/2],

x̂3 = sin(θ/2) cos[(ϕ− γ)/2],

x̂4 = sin(θ/2) sin[(ϕ− γ)/2], (8.121)

with the angles covering the intervals

θ ∈ [0, π), ϕ ∈ [0, 2π), γ ∈ [−2π, 2π). (8.122)

We have renamed the usual Euler angles α, β, γ introduced in Section 1.15 calling
them ϕ, θ, γ, since the formulas to be derived for them will be used in a later ap-
plication in Chapter 13 [see Eq. (13.102)]. There the first two Euler angles coincide
with the polar angles ϕ, θ of a position vector in a three-dimensional space. It is
important to note that for a description of the entire surface of the sphere, the range
of the angle γ must be twice as large as for the classical spinning top. The associated
group space belongs to the covering group, of the rotation group which is equivalent
to the group of unimodular matrices in two dimensions called SU(2). It is defined
by the matrices

g(ϕ, θ, γ) = exp(iϕσ3/2) exp(iθσ2/2) exp(iγσ3/2), (8.123)

where σi are the Pauli spin matrices (1.448). In this parametrization, the integration
measure reads

dx̂ =
1

8
dθ sin θ dϕ dγ. (8.124)

When integrated over the surface, the two measures give the same result S4 = 2π2.
The Euler parametrization has the advantage of allowing the spherical harmonics in
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four dimensions to be expressed in terms of the well-known representation functions
of the rotation group introduced in (1.445), (1.446):

Yl,m1,m2
(x̂) =

√

l + 1

2π2
Dl/2

m1m2
(ϕ, θ, γ) =

√

l + 1

2π2
dl/2m1m2

(θ)ei(m1ϕ+m2γ). (8.125)

For even and odd l, the numbersm1, m2 are both integer or half-integer, respectively.
In arbitrary dimensions D > 2, the ultra-spherical Gegenbauer polynomials sat-

isfy the following addition theorem

2l +D − 2

D − 2

1

SD

C
(D/2−1)
l (cos∆ϑn) =

∑

m

Ylm(x̂n)Y
∗
lm(x̂n−1). (8.126)

For D = 3, this reduces properly to the well-known addition theorem for the spher-
ical harmonics

1

4π
(2l + 1)Pl(cos∆ϑn) =

l
∑

m=−l

Ylm(x̂n)Y
∗
lm(x̂n−1). (8.127)

For D = 4, it becomes10

l + 1

2π2
C

(1)
l (cos∆ϑn) =

l + 1

2π2

l/2
∑

m1,m2=−l/2

Dl/2
m1m2

(ϕn, θn, γn)Dl/2 ∗
m1m2

(ϕn−1, θn−1, γn−1),

(8.128)

where the angle ∆ϑn is related to the Euler angles of the vectors xn, xn−1 by

cos∆ϑn = cos(θn/2) cos(θn−1/2) cos[(ϕn − ϕn−1 + γn − γn−1)/2]

+ sin(θn/2) sin(θn−1/2) cos[(ϕn − ϕn−1 − γn + γn−1)/2]. (8.129)

Using (8.126), we can rewrite the expansion (8.100) in the form

eh(cos∆ϑn−1) =
∞
∑

l=0

ãl(h)
∑

m

Ylm(x̂n)Y
∗
lm(x̂n−1). (8.130)

This is now valid for any dimension D, including the case D = 2 where the left-hand
side of (8.126) involves the limiting procedure (8.108). We shall see in Chapter 9
in connection with Eq. (9.61) that it also makes sense to apply this expansion to
the case D = 1 where the “partial-wave expansion” degenerates into a separation
of even and odd wave functions. In four dimensions, we shall mostly prefer the
expansion

eh(cos∆ϑn−1) =
∞
∑

l=0

ãl(h)
l + 1

2π2

l/2
∑

m1,m2=−l/2

Dl/2
m1m2

(ϕn, θn, γn)Dl/2 ∗
m1m2

(ϕn−1, θn−1, γn−1),

(8.131)

10Note that C
(1)
l (cos∆ϑn) coincides with the trace over the representation functions (1.446) of

the rotation group, i.e., it is equal to
∑l/2

m=−l/2 d
l/2
m,m(∆ϑn).
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where the sum over m1, m2 runs for even and odd l over integer and half-integer
numbers, respectively.

The reduction of the time evolution amplitude in D dimensions to a radial path
integral proceeds from here on in the same way as in two and three dimensions. The
generalization of (8.89) reads

(xbτb|xaτa) ≈
1

√

2πh̄ǫ/M
D

N
∏

n=1







∫ ∞

0

drnr
D−1
n dx̂n

√

2πh̄ǫ/M
D







×
N+1
∏

n=1





(

2πh̄ǫ

Mrnrn−1

)(D−1)/2 ∞
∑

ln=0

ĨD/2−1+ln

(

M

h̄ǫ
rnrn−1

)

(8.132)

×
∑

mn

Ylnmn(x̂n)Y
∗
lnmn

(x̂n−1)

]

exp

{

− ǫ

h̄

N+1
∑

n=1

[

M

2ǫ2
(rn − rn−1)

2 + V (rn)
]

}

.

By performing the angular integrals and using the orthogonality relations (8.115),
the product of sums over ln,mn reduces to a single sum over l,m, just as in the
three-dimensional amplitude (8.91). The result is the spherical decomposition

(xbτb|xaτa) =
1

(rbra)
(D−1)/2

∞
∑

l=0

(rbτb|raτa)l
∑

m

Ylm(x̂b)Y
∗
lm(x̂a), (8.133)

where (rbτb|raτa)l is the purely radial amplitude

(rbτb|raτa)l ≈
1

√

2πh̄ǫ/M

N
∏

n=1





∫ ∞

0

drn
√

2πh̄ǫ/M



 exp
{

−1

h̄
AN

l [r]
}

, (8.134)

with the time-sliced action

AN
l [r] = ǫ

N+1
∑

n=1

[

M

2ǫ2
(rn − rn−1)

2 − h̄
ǫ
logĨl+D/2−1

(

M

h̄ǫ
rnrn−1

)

+ V (rn)

]

. (8.135)

As before, the product
∏N+1

n=1 1/(rnrn−1)
(D−1)/2 has removed the product

∏N
n=1 r

D−1
n

in the measure as well as the factor (rbra)
(D−1)/2 in front of it, leaving only the

standard one-dimensional measure of integration.
In the continuum limit ǫ → 0, the asymptotic expression (8.24) for the Bessel

function brings the action to the form

AN
l [r, r̄] ≈ ǫ

N+1
∑

n=1

[

M

2ǫ2
(rn − rn−1)

2 +
h̄2

2M

(l +D/2− 1)2 − 1/4

rnrn−1
+ V (rn)

]

. (8.136)

This looks again like the time-sliced version of the radial path integral in D dimen-
sions

(rbτb|raτa)l =
∫

Dr(τ) exp
{

−1

h̄
Al[r]

}

, (8.137)
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with the continuum action

Al[r] =
∫ τb

τa
dτ

[

M

2
ṙ2 +

“ h̄2

2M

(l +D/2− 1)2 − 1/4

r2
”
+ V (r)

]

. (8.138)

As in Eq. (8.50), we have written the centrifugal barrier as

“ h̄2

2Mr2
[(l +D/2− 1)2 − 1/4]

”
, (8.139)

to emphasize the subtleties of the time-sliced radial path integral, with the under-
standing that the time-sliced barrier reads [as in (8.51)]

“ ǫh̄2

2Mrnrn−1
[(l +D/2− 1)2 − 1/4)]

” ≡ −h̄logĨl+D/2−1(
M

h̄ǫ
rnrn−1). (8.140)

8.6 Radial Path Integral for Harmonic Oscillator

and Free Particle in D Dimensions

For the harmonic oscillator and the free particle, there is no need to perform the
radial path integral (8.134) with the action (8.135). As in (8.38), we simply take the
known amplitude in D dimensions, (2.177), continue it to imaginary times t = −iτ ,
and expand it with the help of (8.130):

(xbτb|xaτa) =
1

√

2πh̄/M
D

√

ω

sinh[ω(τb − τa)]

D

(8.141)

× exp

{

−1

h̄

Mω

sinh[ω(τb − τa)]
(r2b + r2a) cosh[ω(τb − τa)]

}

×
∞
∑

l=0

al

(

Mωrbra
h̄ sinh[ω(τb − τa)]

)

∑

m

Ylm(x̂b)Y
∗
lm(x̂a).

Comparing this with Eq. (8.133) and remembering (8.101), we identify the radial
amplitude as

(rbτb|raτa)l =
M

h̄

ω
√
rbra

D−1

sinh[ω(τb − τa)]

× e−(Mω/2h̄) coth[ω(τb−τa)](r2b+r2a)Il+D/2−1

(

Mωrbra
h̄ sinh[ω(τb − τa)]

)

, (8.142)

generalizing (8.39). The limit ω → 0 yields the amplitude for a free particle

(rbτb|raτa)l =
M

h̄

√
rbra

D−1

(τb − τa)
e−M(r2

b
+r2a)/2h̄(τb−τa)Il+D/2−1

(

Mrbra
h̄(τb − τa)

)

. (8.143)

Comparing this with (8.40) on the one hand and Eqs. (8.140), (8.138) with (8.49),
(8.51) on the other hand, we conclude: An analytical continuation in D yields the
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path integral for a linear oscillator in the presence of an arbitrary 1/r2-potential as
follows:

(rbτb|raτa)l =
∫ ∞

0
Dr(τ) exp

[

−1

h̄

∫ τb

τa
dτ

(

M

2
ṙ2 +

“ h̄2

2M

µ2 − 1/4

r2
”
+
M

2
ω2r2

)]

=
M

h̄

ω
√
rbra

D−1

sinh[ω(τb − τa)]
e−(Mω/2h̄) coth[ω(τb−τa)](r

2
b+r2a)Iµ

(

Mωrbra
h̄ sinh[ω(τb − τa)]

)

.

(8.144)

Here µ is some strength parameter which initially takes the values µ = l +D/2− 1
with integer l and D. By analytic continuation, the range of validity is extended
to all real µ > 0. The justification for the continuation procedure follows from
the fact that the integral formula (8.14) holds for arbitrary m = µ ≥ 0. The
amplitude (8.144) satisfies therefore the fundamental composition law (8.20) for all
real m = µ ≥ 0. The harmonic oscillator with an arbitrary extra centrifugal barrier
potential

Vextra(r) = h̄2
l2extra
2Mr2

(8.145)

has therefore the radial amplitude (8.144) with

µ =
√

(l +D/2− 1)2 + l2extra . (8.146)

For a finite number N +1 of time slices, the radial amplitude is known from the
angular momentum expansion of the finite-N oscillator amplitude (2.199) in its obvi-
ous extension to D dimensions. It can also be calculated directly as in Appendix 2B
by a successive integration of (8.132), using formula (8.14). The iteration formulas
are the Euclidean analogs of those derived in Appendix 2B, with the prefactor of the
amplitude being 2πN 2

1N 2
N+1

√
rbra, with the exponent −aN+1(r

2
b + r2a)/h̄, and with

the argument of the Bessel function 2bN+1rbra/h̄. In this way we obtain precisely the
expression (8.144), except that sinh[ω(τb−τa)] is replaced by sinh[ω̃(N+1)ǫ]ǫ/ sinh ω̃ǫ
and cosh[ω(τb − τa)] by cosh[ω̃(N + 1)ǫ].

8.7 Particle near the Surface of a Sphere

in D Dimensions

With the insight gained in the previous sections, it is straightforward to calculate
exactly a certain class of auxiliary path integrals. They involve only angular variables
and will be called path integrals of a point particle moving near the surface of a
sphere in D dimensions. The resulting amplitudes lead eventually to the physically
more relevant amplitudes describing the behavior of a particle on the surface of a
sphere.

On the surface of a sphere of radius r, the position of the particle as a function
of time is specified by a unit vector u(t). The Euclidean action is

A =
M

2
r2
∫ τb

τa
dτ u̇2(τ). (8.147)
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The precise way of time-slicing this action is not known from previous discussions.
It cannot be deduced from the time-sliced action in Cartesian coordinates, nor from
its angular momentum decomposition. A new geometric feature makes the previous
procedures inapplicable: The surface of a sphere is a Riemannian space with nonzero
intrinsic curvature. Sections 1.13 to 1.15 have shown that the motion in a curved
space does not follow the canonical quantization rules of operator quantum mechan-
ics. The same problem is encountered here in another form: Right in the beginning,
we are not allowed to time-slice the action (8.147) in a straightforward way. The
correct slicing is found in two steps. First we use the experience gained with the
angular momentum decomposition of time-sliced amplitudes in a Euclidean space
to introduce and solve the earlier mentioned auxiliary time-sliced path integral near
the surface of the sphere. In a second step we shall implement certain corrections
to properly describe the action on the sphere. At the end, we have to construct the
correct measure of path integration which will not be what one naively expects. To
set up the auxiliary path integral near the surface of a sphere we observe that the
kinetic term of a time slice in D dimensions

M

2ǫ

N+1
∑

n=1

(r2n + r2n−1 − 2rnrn−1 cos∆ϑn) (8.148)

decomposes into radial and angular parts as

−M
2ǫ

N+1
∑

n=1

(r2n + r2n−1 − 2rnrn−1) +
M

2ǫ

N+1
∑

n=1

2rnrn−1(1− cos∆ϑn). (8.149)

The angular factor can be written as

−M
2ǫ

N+1
∑

n=1

rnrn−1(x̂n − x̂n−1)
2, (8.150)

where x̂n, x̂n−1 are the unit vectors pointing in the directions of xn, xn−1 [recall
(8.111)]. Restricting all radial variables rn to the surface of a sphere of a fixed radius
r and identifying x̂ with u leads us directly to the time-sliced path integral near the
surface of the sphere in D dimensions:

(ubτb|uaτa) ≈
1

√

2πh̄ǫ/Mr2
D−1

N
∏

n=1







∫

dun
√

2πh̄ǫ/Mr2
D−1





 exp
(

−1

h̄
AN

)

, (8.151)

with the sliced action

AN =
M

2ǫ
r2

N+1
∑

n=1

(un − un−1)
2. (8.152)

The measure dun denotes infinitesimal surface elements on the sphere in D dimen-
sions [recall (8.116)]. Note that although the endpoints un lie all on the sphere, the
paths remain only near the sphere since the path sections between the points leave
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the surface and traverse the embedding space along a straight line. This will be
studied further in Section 8.8.

As mentioned above, this amplitude can be solved exactly. In fact, for each time
interval ǫ, the exponential

exp

[

−Mr2

2h̄ǫ
(un − un−1)

2

]

= exp

[

−Mr2

h̄ǫ
(1− cos∆ϑn)

]

(8.153)

can be expanded into spherical harmonics according to formulas (8.100)–(8.101),

exp

[

−Mr2

2h̄ǫ
(un − un−1)

2

]

=
∞
∑

l=0

ãl(h)
l +D/2− 1

D/2− 1

1

SD
C

(D/2−1)
l (cos∆ϑn)

=
∞
∑

l=0

ãl(h)
∑

m

Ylm(un)Y
∗
lm(un−1), (8.154)

where

ãl(h) =
(

2π

h

)(D−1)/2

Ĩl+D/2−1(h), h =
Mr2

h̄ǫ
. (8.155)

For each adjacent pair (n+1, n), (n, n−1) of such factors in the sliced path integral,
the integration over the intermediate un variable can be done using the orthogonality
relation (8.115). In this way, (8.151) produces the time-sliced amplitude

(ubτb|uaτa) =

(

h

2π

)(N+1)(D−1)/2 ∞
∑

l=0

ãl(h)
N+1

∑

m

Ylm(ub)Y
∗
lm(ua). (8.156)

We now go to the continuum limit N → ∞, ǫ = (τb−τa)/(N+1) → 0, where [recall
(8.11)]

(

h

2π

)(N+1)(D−1)/2

ãl(h)
N+1 =

[

Ĩl+D/2−1

(

Mr

h̄ǫ

2
)]N+1

ǫ→0−−−→ exp

{

−(τb − τa)h̄
(l +D/2− 1)2 − 1/4

2Mr2

}

. (8.157)

Thus, the final time evolution amplitude for the motion near the surface of the
sphere is

(ubτb|uaτa) =
∞
∑

l=0

exp

[

− h̄L2

2Mr2
(τb − τa)

]

∑

m

Ylm(ub)Y
∗
lm(ua), (8.158)

with
L2 ≡ (l +D/2− 1)2 − 1/4. (8.159)

For D = 3, this amounts to an expansion in terms of associated Legendre polyno-
mials

(ubτb|uaτa) =
∞
∑

l=0

2l + 1

4π
exp

{

− h̄L2

2Mr2
(τb − τa)

}

×
l
∑

m=−l

(l −m)!

(l +m)!
Pm
l (cos θb)P

m
l (cos θa)e

im(ϕb−ϕa). (8.160)
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If the initial point lies at the north pole of the sphere, this simplifies to

(ubτb|ẑaτa) =
∞
∑

l=0

2l + 1

4π
exp

[

− h̄L2

2Mr2
(τb − τa)

]

Pl(cos θb)Pl(1), (8.161)

where Pl(1) = 1. By rotational invariance the same result holds for arbitrary direc-
tions of ua, if θb is replaced by the difference angle ϑ between ub and ua.
In four dimensions, the most convenient expansion uses again the representation
functions of the rotation group, so that (8.158) reads

(ubτb|uaτa) =
∞
∑

l=0

exp

[

− h̄L2

2Mr2
(τb − τa)

]

(8.162)

× l + 1

2π2

l/2
∑

m1,m2=−l/2

Dl/2
m1m2

(ϕb, θb, γb)Dl/2 ∗
m1m2

(ϕa, θa, γa).

These results will be needed in Sections 8.9 and 10.4 to calculate the amplitudes on
the surface of a sphere. First, however, we extract some more information from the
amplitudes near the surface of the sphere.

8.8 Angular Barriers near the Surface of a Sphere

In Section 8.5 we have projected the path integral of a free particle in three di-
mensions into a state of fixed angular momentum l finding a radial path integral
containing a singular potential, the centrifugal barrier. This could not be treated via
the standard time-slicing formalism. The projection of the path integral, however,
supplied us with a valid time-sliced action and yielded the correct amplitude. A
similar situation occurs if we project the path integral near the surface of a sphere
into a fixed azimuthal quantum number m. The physics very near the poles of a
sphere is almost the same as that on the tangential surfaces at the poles. Thus, at a
fixed two-dimensional angular momentum, the tangential surfaces contain centrifu-
gal barriers. We expect analogous centrifugal barriers at a fixed azimuthal quantum
number m near the poles of a sphere at a fixed azimuthal quantum numberm. These
will be called angular barriers .

8.8.1 Angular Barriers in Three Dimensions

Consider first the case D = 3 where the azimuthal decomposition is

(ubτb|uaτa) =
∑

m

(sin θbτb| sin θaτa)m
1

2π
eim(ϕb−ϕa). (8.163)

It is convenient to introduce also the differently normalized amplitude

(θbτb|θaτa)m ≡
√

sin θb sin θa(sin θbτb| sin θaτa)m, (8.164)
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in terms of which the expansion reads

(ubτb|uaτa) =
∑

m

1√
sin θb sin θa

(θbτb|θaτa)m
1

2π
eim(ϕb−ϕa). (8.165)

While the amplitude (sin θbτb| sin θaτa)m has the equal-time limit

(sin θbτ | sin θaτ)m =
1

sin θa
δ(θb − θa) (8.166)

corresponding to the invariant measure of the θ-integration on the surface of the
sphere

∫

dθ sin θ, the new amplitude (θbτb|θaτ)m has the limit

(θbτ |θaτ)m = δ(θb − θa) (8.167)

with a simple δ-function, just as for a particle moving on the coordinate interval
θ ∈ (0, 2π) with an integration measure

∫

dθ. The renormalization is analogous to
that of the radial amplitudes in (8.9).

The projected amplitude can immediately be read off from Eq. (8.158):

(θbτb|θaτa)m =
√

sin θb sin θa

×
∞
∑

l=m

exp

[

− h̄l(l + 1)

2Mr2
(τb − τa)

]

2πYlm(θb, 0)Y
∗
lm(θa, 0). (8.168)

In terms of associated Legendre polynomials [recall (8.84)], this reads

(θbτb|θaτa)m =
√

sin θb sin θa
∞
∑

l=m

exp

{

− h̄l(l + 1)

2Mr2
(τb − τa)

}

(8.169)

× (2l + 1)

2

(l −m)!

(l +m)!
Pm
l (cos θb)P

m
l (cos θa).

Let us look at the time-sliced path integral associated with this amplitude. We start
from Eq. (8.151) for D = 3,

(ubτb|uaτa) ≈
1

2πh̄ǫ/Mr2

N
∏

n=1

[

∫

d cos θndϕn

2πh̄ǫ/Mr2

]

exp
(

−1

h̄
AN

)

, (8.170)

and use the addition theorem

cos∆ϑn = cos θn cos θn−1 + sin θn sin θn−1 cos(ϕn − ϕn−1) (8.171)

to expand the exponent as

exp

[

−Mr2

2h̄ǫ
(un − un−1)

2

]

= exp

[

−Mr2

h̄ǫ
(1− cos∆ϑn)

]

= exp

[

−Mr2

h̄ǫ
(1− cos θn cos θn−1 − sin θn sin θn−1)

]

× 1√
2πhn

∞
∑

m=−∞

Ĩm(hn)e
im(ϕn−ϕn−1), (8.172)
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where hn is defined as

hn ≡ Mr2

h̄ǫ
sin θn sin θn−1. (8.173)

By doing successively the ϕn-integrations, we wind up with the path integral for the
projected amplitude

(θbτb|θaτa)m ≈ 1
√

2πǫh̄/Mr2

N
∏

n=1





∫ π

0

dθn
√

2πǫh̄/Mr2



 exp
(

−1

h̄
AN

m

)

, (8.174)

where AN
m is the sliced action

AN
m =

N+1
∑

n=1

{

Mr2

ǫ
[1− cos(θn − θn−1)]− h̄ log Ĩm(hn)

}

. (8.175)

For small ǫ, this can be approximated (setting ∆θn ≡ θn − θn−1) by

AN
m ≈ ǫ

N+1
∑

n=1

{

Mr2

2ǫ2

[

(∆θn)
2 − 1

12
(∆θn)

4 + . . .
]

+
h̄2

2Mr2
m2 − 1/4

sin θn sin θn−1

}

, (8.176)

with the continuum limit

Am =
∫ τb

τa
dτ

(

Mr2

2
θ̇2 − h̄2

8Mr2
+

h̄2

2Mr2
m2 − 1/4

sin2 θ

)

. (8.177)

This action has a 1/ sin2 θ -singularity at θ = 0 and θ = π, i.e., at the north and
south poles of the sphere, whose similarity with the 1/r2-singularity of the centrifugal
barrier justifies the name “angular barriers”.

By analogy with the problems discussed in Section 8.2, the amplitude (8.174)
with the naively time-sliced action (8.176) does not exist for m = 0, this being the
path collapse problem to be solved in Chapter 12. With the full time-sliced action
(8.175), however, the path integral is stable for all m. In this stable expression,
the successive integration of the intermediate variables using formula (8.14) gives
certainly the correct result (8.169).

To do such a calculation, we start out from the product of integrals (8.174) and
expand in each factor Im(hn) with the help of the addition theorem

√

2ζ

π
eζ cos θn cos θn−1Im(ζ sin θn sin θn−1)

=
∞
∑

l=m

Il+1/2(ζ)(2l + 1)
(l −m)!

(l +m)!
Pm
l (cos θn)P

m
l (cos θn−1), (8.178)

where ζ ≡ Mr2/h̄ǫ. This theorem follows immediately from a comparison of two
expansions

e−ζ(1−cos∆θn) = e−ζ[1−cos θn cos θn−1−sin θn sin θn−1 cos(ϕn−ϕn−1)] (8.179)

× 1√
2πζ sin θn sin θn−1

∞
∑

m=−∞

Ĩm(ζ sin θn sin θn−1)e
im(ϕn−ϕn−1),

e−ζ(1−cos∆θn) = e−ζ

√

π

2ζ

∞
∑

l=0

(2l + 1)Il+1/2(ζ)Pl(cos∆θn). (8.180)
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The former is obtained with the help (8.5), the second is taken from (8.83). After the
comparison, the Legendre polynomialis expanded via the addition theorem (8.85),
which we rewrite with (8.84) as

Pl(cos∆θn) =
l
∑

m=−l

(l −m)!

(l +m)!
Pm
l (θn)P

m
l (θn−1)e

im(ϕn−ϕn−1). (8.181)

We now recall the orthogonality relation (8.50), rewritten as

∫ 1

−1

d cos θ

sin2 θ
Pm
l (cos θ)Pm

l′ (cos θ) =
(l +m)!

(l −m)!

2

2l + 1
δll′. (8.182)

This allows us to do all angular integrations in (8.175). The result

(θbτb|θaτa)m =
√

sin θb sin θa
∞
∑

l=m

[Ĩm+l+1/2(ζ)]
N+1

×(2l + 1)

2

(l −m)!

(l +m)!
Pm
l (cos θb)P

m
l (cos θa) (8.183)

is the solution of the time-sliced path integral (8.174).
In the continuum limit, [Ĩm+l+1/2(ζ)]

N+1 is dominated by the leading asymptotic
term of (8.12) so that

[Ĩm+l+1/2(ζ)]
N+1 ≈ exp

[

− h̄

2Mr2
L2(τb − τa)

]

, (8.184)

leading to the previously found expression (8.169).
We have gone through this calculation in detail for the following purpose. Later

applications will require an analytic continuation of the path integral from integer
values of m to arbitrary real values µ ≥ 0. With the present calculation, such
a continuation is immediately possible by rewriting (8.183) with the help of the
relation

Pm
l (z) = (−)mP−m

l

(l +m)!

(l −m)!
(8.185)

as

(θbτb|θaτa)µ =
√

sin θb sin θa
∞
∑

n=0

[Ĩn+µ+1/2(ζ)]
N+1

× (2n+ 2µ+ 1)

2

(n+ 2µ)!

n!
P−µ
n+µ(cos θb)P

−µ
n+µ(cos θa). (8.186)

Here, µ can be an arbitrary real number if the factorials (n+2µ)! and n! are defined
as Γ(n + 2µ+ 1) and Γ(n + 1). In the continuum limit, (8.186) becomes

(θbτb|θaτa)µ =
√

sin θb sin θa
∞
∑

n=0

exp

[

− h̄(n+ µ)(n+ µ+ 1)

2Mr2
(τb − τa)

]

× (2n+ 2µ+ 1)

2

(n+ 2µ)!

n!
P−µ
n+µ(cos θb)P

−µ
n+µ(cos θa). (8.187)
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We prove this to solve the time-sliced path integral (8.174) for arbitrary real
values of m = µ [4] by using the addition theorem11

(sinα sin β)−µJµ(z sinα sin β)eiz cosα cos β =
22µ+1Γ2(µ+ 1/2)√

2πz

×
∞
∑

n=0

inn!(n+ µ+ 1/2)

Γ(n+ 2µ+ 1)
Jn+µ+1/2(z)C

(µ+1/2)
n (cosα)C(µ+1/2)

n (cos β). (8.188)

After substituting z by ζe−iπ/2 this turns into

(sinα sin β)−µIµ(ζ sinα sin β) exp(ζ cosα cos β) =
22µ+1Γ2(µ+ 1/2)√

2πζ

×
∞
∑

n=0

n!(n+ µ+ 1/2)

Γ(n + 2µ+ 1)
In+µ+1/2(ζ)C

(µ+1/2)
n (cosα)C(µ+1/2)

n (cos β). (8.189)

The Gegenbauer polynomials C(µ+1/2)
n (z) can be expressed, for arbitrary µ, by means

of Eq. (8.106) in terms of Jacobi polynomials P (µ,µ)
n , and these further in terms of

Legendre functions P−µ
n+µ, using the formula

P (µ,µ)
n (z) = (−2)µ

(n+ µ)!

n!
(1− z2)−µ/2P−µ

n+µ(z). (8.190)

Thus12

C(µ+1/2)
n (z) =

Γ(n+ 2µ+ 1)Γ(µ+ 1)

Γ(2µ+ 1)n!

[

1− z2

4

]−µ/2

P−µ
n+µ(z). (8.191)

We can now perform the integrations in the time-sliced path integral by means of
the known continuation of the orthogonality relation (8.182) to arbitrary real values
of µ:

∫ 1

−1

d cos θ

sin2 θ
P−µ
n+µ(cos θ)P

−µ
n′+µ(cos θ) =

n!

(n + 2µ)!

2

2n+ 1µ+ 1
δnn′ . (8.192)

Note that for noninteger µ, the Legendre functions P−m
n+m(cos θ) are no longer poly-

nomials as in (1.421). Instead, they are defined in terms of the hypergeometric
function as follows:

P µ
ν (z) =

1

Γ(1− µ)

(

1 + z

1− z

)µ/2

F (−ν, ν + 1; 1− µ; (1− z)/2). (8.193)

The integral formula (8.192) is a consequence of the orthogonality of the Gegenbauer
polynomials (8.104), which is applied here in the form

∫ 1

−1
dz (1− z2)µC(µ+1/2)

n (z)C
(µ+1/2)
n′ (z) = δnn′

π2−2µΓ(2µ+ 2 + n)

n!(n + µ)[Γ(µ+ 1/2)]2
. (8.194)

11G.N. Watson, Theory of Bessel Functions , Cambridge University Press, 1952, Ch. 11.6,
Eq. (11.9).

12I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 8.936.
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Using (8.189), (8.191) and (8.192), the integrals in the product (8.207) can all be
performed as before, resulting in the amplitude (8.186) with the continuum limit
(8.187), both valid for arbitrary real values of m = µ ≥ 0.

The continuation to arbitrary real values of µ has an important application:
The action (8.177) of the projected motion of a particle near the surface of the
sphere coincides with the action of a particle moving in the so-called Pöschl-Teller
potential [5]:

V (θ) =
h̄2

2Mr2
s(s+ 1)

sin2 θ
(8.195)

with the strength parameter s = m − 1/2. After the continuation of arbitrary real
m = µ ≥ 0, the amplitude (8.187) describes this system for any potential strength.
This fact will be discussed further in Chapter 14 where we develop a general method
for solving a variety of nontrivial path integrals.

Note that the amplitude (sin θbτb| sin θaτa)m satisfies the Schrödinger equation

[

h̄2

Mr2

(

−1

2

1

sin θ

d

dθ
sin θ

d

dθ
+

m2

2 sin2 θ

)

+ h̄∂τ

]

(sin θ τ | sin θaτa)m
= h̄δ(τ − τa)δ(cos θ − cos θa). (8.196)

This follows from the differential equation obeyed by the Legendre polynomials
Pm
l (cos θ) in (8.87). The new amplitude (θ τ |θaτa)m, on the other hand, satisfies the

equation [corresponding to that of
√
sin θPm

l (cos θ) in the footnote to Eq. (8.87)]

[

h̄2

Mr2

(

−1

2

d

dθ2
− 1

8
+
m2 − 1/4

2 sin2 θ

)

+ h̄∂τ

]

(θ τ |θaτa)m = h̄δ(τ − τa)δ(θ − θa). (8.197)

8.8.2 Angular Barriers in Four Dimensions

In four dimensions, the angular momentum decomposition reads in terms of Euler
angles [see (8.162)]

(ubτb|uaτa) =
∞
∑

l=0

exp

{

− h̄L2

2Mr2
(τb − τa)

}

× l + 1

2π2

l/2
∑

m1m2=−l/2

dl/2m1m2
(θb)d

l/2
m1m2

(θa)e
im1(ϕb−ϕa)+im2(γb−γa), (8.198)

with

L2 ≡ (l + 1)2 − 1/4 = 4(l/2)(l/2 + 1) + 3/4 (8.199)

and m1, m2 running over integers or half-integers depending on l/2. We now define
the projected amplitudes by the expansion

(ubτb|uaτa) = 8
∑

m1m2

(sin θbτb| sin θaτa)m1m2

1

2π
eim1(ϕb−ϕa)

1

4π
eim2(γb−γa). (8.200)
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As in (8.164), it is again convenient to introduce the differently normalized amplitude
(θbτb|θaτa)m defined by

(θbτb|θaτa)m1m2
≡
√

sin θb sin θa(sin θbτb| sin θaτa)m1m2
, (8.201)

in terms of which the expansion becomes [compare (8.163)]

(ubτb|uaτa) =
∑

m

8√
sin θb sin θa

(θbτb|θaτa)m1m2

1

2π
eim(ϕb−ϕa)

1

4π
eim(γb−γa). (8.202)

A comparison with (8.198) gives immediately the projected amplitude

(θbτb|θaτa)m1m2
=
√

sin θb sin θa (8.203)

×
∞
∑

l

exp

{

− h̄[(l + 1)2 − 1/4]

2Mr2
(τb − τa)

}

l + 1

2
dl/2m1m2

(θb)d
l/2
m1m2

(θa),

in which l is summed in even steps from the larger value of |2m1|, |2m2| to infinity.
Let us write down the time-sliced path integral leading to this amplitude. Ac-

cording to (8.151)–(8.153), it is given by

(ubτb|uaτa) ≈ 1
√

2πh̄ǫ/Mr2
3

N
∏

n=1







∫ π

0

∫ 2π

0

∫ 4π

0

dθn sin θndϕndγn

8
√

2πh̄ǫ/Mr2
3





 exp
(

−1

h̄
AN

)

.

(8.204)

In each time slice we make use of the addition theorem (8.129) and expand the
exponent with (8.6) as

exp

[

−Mr2

2h̄ǫ
(un − un−1)

2

]

= exp

[

−Mr2

h̄ǫ
(1− cos∆ϑn)

]

= exp

{

−Mr2

2h̄ǫ
[1− cos(θn/2) cos(θn−1/2)− sin(θn/2) sin(θn−1/2)]

}

× 1
√

2πhcn

1
√

4πhsn

∞
∑

m1,m2=−∞

Ĩ|m1+m2|(h
c
n)Ĩ|m1−m2|(h

s
n) (8.205)

× exp{im1(ϕn − ϕn−1) + im2(γn − γn−1)},

where hcn and hsn are given by

hcn =
Mr2

h̄ǫ
cos(θn/2) cos(θn−1/2), hsn =

Mr2

h̄ǫ
sin(θn/2) sin(θn−1/2). (8.206)

By doing successively the ϕn- and γn-integrations, we wind up with the path integral
for the projected amplitude

(θbτb|θaτa)m1m2
≈ 1
√

2πǫh̄/4Mr2

N
∏

n=1





∫ π

0

dθn
√

2πǫh̄/4Mr2



 exp
{

−1

h̄
AN

m1m2

}

, (8.207)
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where AN
m1m2

is the sliced action

AN
m1m2

=
N+1
∑

n=1

{

Mr2

ǫ
[1− cos[(θn − θn−1)/2]

− h̄ log Ĩ|m1+m2|(h
c
n)− h̄ log Ĩ|m1−m2|(h

s
n)

}

. (8.208)

For small ǫ, this can be approximated (setting ∆θn ≡ θn − θn−1) by

AN
m1m2

→ ǫ
N+1
∑

n=1

{

Mr2

2ǫ2
[(∆θn/2)

2 − 1

12
(∆θn/2)

4 + . . .]

+
h̄2

2Mr2
(m1 +m2)

2 − 1/4

cos(θn/2) cos(θn−1/2)
+

h̄2

2Mr2
(m1 −m2)

2 − 1/4

sin(θn/2) sin(θn−1/2)

}

, (8.209)

with the continuum limit

Am1m2
=
∫ τb

τa
dτ

(

Mr2

8
θ̇2 − h̄2

8Mr2
+

h̄2

2Mr2
|m1 +m2|2 − 1/4

cos2(θ/2)

+
h̄2

2Mr2
|m1 −m2|2 − 1/4

sin2(θ/2)

)

. (8.210)

After introducing the auxiliary mass

µ =M/4 (8.211)

and rearranging the potential terms, we can write the action equivalently as

Am1m2
=
∫ τb

τa
dτ

(

µr2

2
θ̇2 − h̄2

32µr2
+

h̄2

2µr2
m2

1 +m2
2 − 1/4− 2m1m2 cos θ

sin2 θ

)

. (8.212)

Just as in the previous system, this action contains an angular barrier 1/ sin2 θ at
θ = 0, and θ = π, so that the amplitude (8.207) with the naively time-sliced action
(8.176) does not exist for m1 = m2 or m1 = −m2, due to path collapse. Only with
the properly time-sliced action (8.208) is the path integral stable and solvable by
successive integrations with the result (8.203).

As before, the path integral (8.207) is initially only defined and solved by (8.203)
if both m1 and m2 have integer or half-integer values. The path integral and its
solution can, however, be continued to arbitrary real values of m1 = µ1 ≥ 0 and its
m2 = µ2 ≥ 0. For this we rewrite (8.203) in the form [4]

(θbτb|θaτa)µ1µ2
=
√

sin θb sin θa (8.213)

×
∞
∑

n=0

exp

{

−h̄[(n+ µ1 + 1)2 − 1/4]

2Mr2
(τb − τa)

}

n+ µ1 + 1

2
dn+µ1

µ1µ2
(θb)d

n+µ1

µ1µ2
(θa),
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assuming that µ1 ≥ µ2. The products of the rotation functions dλµ1µ2
(θ) have a

well-defined analytic continuation to arbitrary real values of the indices µ1, µ2, λ, as
can be seen by expressing them in terms of Jacobi polynomials via formula (1.446).

To perform the path integral in the analytically continued case, we use the ex-
pansion valid for all µ+, µ−,

13

z

2
Jµ+

(z cosα cos β)Jµ−
(z sinα sin β) = cosµ+ α cosµ+ β sinµ− α sinµ− β

×
∞
∑

n=0

(−1)n(µ+ + µ− + 2n+ 1)Jµ++µ−+2n+1(z)

× Γ(n+ µ+ + µ− + 1)Γ(n+ µ− + 1)

n!Γ(n+ µ+ + 1)[Γ(µ− + 1)]2

× F (−n, n + µ+ + µ− + 1;µ− + 1; sin2 α)

× F (−n, n + µ+ + µ− + 1;µ− + 1; sin2 β) (8.214)

with ζ ≡ Mr2/h̄ǫ. The hypergeometric functions appearing on the right-hand side
have a first argument with a negative integer value. They are therefore proportional
to the Jacobi polynomials P (µ−,µ+)

n :

P (µ−,µ+)
n (x) =

1

n!

Γ(n+ µ− + 1)

Γ(µ− + 1)
F (−n, n + µ+ + µ− + 1; 1 + µ−; (1− x)/2) (8.215)

[recall (1.446) and the identity P (µ−,µ+)
n (x) = (−)nP (µ−,µ+)

n (−x)]. Inserting z = iζ ,
α = θn/2, β = θn−1/2, and expressing the Jacobi polynomials in terms of rotation
functions continued to real-valued µ1, µ2, we obtain from (8.214) for µ1 ≥ µ2

Iµ+

(

ζ cos
θn
2
cos

θn−1

2

)

Iµ−

(

ζ sin
θn
2
sin

θn−1

2

)

=
4

ζ

∞
∑

n=0

I2n+µ++µ−+1(ζ)
(n+ µ1 + µ2)!(n+ µ1 − µ2)!

(n+ 2µ1)!n!
dn+µ1

µ1µ2
(θn)d

n+µ1

µ1µ2
(θn−1). (8.216)

Now we make use of the orthogonality relation [compare (1.455)]

∫ 1

−1
d cos θ dn+µ1

µ1µ2
(θ)dn

′+µ1
µ1µ2

(θ) = δnn′

2

2n+ 1
, (8.217)

which for real µ1, µ2 follows from the corresponding relation for Jacobi polynomials14

∫ 1

−1
dx (1− x)µ−(1 + x)µ+P (µ−,µ+)

n (x)P
(µ−,µ+)
n′ (x)

= δnn′

2µ++µ−+1Γ(µ+ + n + 1)Γ(µ− + n + 1)

n!(µ+ + µ− + 1 + 2n)Γ(µ+ + µ− + n+ 1)
, (8.218)

13G.N. Watson, op. cit., Chapter 11.6, Gl. (11.6), (1).
14I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 7.391.
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valid for Reµ+ > −1 , Reµ− > −1. Performing all θn-integrations in (8.207) yields
the time-sliced amplitude

(θb τb|θa τa)µ1µ2
=
√

sin θb sin θa
∞
∑

n=0

[

Ĩ2n+µ++µ−+1(ζ)
]N+1

dn+µ1

µ1µ2
(θb)d

n+µ1

µ1µ2
(θa), (8.219)

valid for all real µ1 ≥ µ2 ≥ 0. In the continuum limit, this becomes

(θb τb|θa τa)µ1µ2
=
√

sin θb sin θa
∞
∑

n=0

e−En(τb−τa)/h̄dn+µ1
µ1µ2

(θb)d
n+µ1
µ1µ2

(θa), (8.220)

with

En =
h̄

2Mr2
[(2n+ µ+ + µ− + 1)2 − 1/4], (8.221)

which proves (8.213).
Apart from the projected motion of a particle near the surface of the sphere,

the amplitude (8.213) describes also a particle moving in the general Pöschl-Teller
potential [5]

VPT ′(θ) =
h̄2

2Mr2

[

s1(s1 + 1)

sin2(θ/2)
+
s2(s2 + 1)

cos2(θ/2)

]

. (8.222)

Due to the analytic continuation to arbitrary real m1, m2 the parameters s1 and
s2 are arbitrary with the potential strength parameters s1 = m1 + m2 − 1/2 and
s2 = m1 −m2 − 1/2. This will be discussed further in Chapter 14.

Recalling the differential equation (1.454) satisfied by the rotation functions
dl/2m1m2

(θ), we see that the original projected amplitude (8.207) obeys the Schrödinger
equation

[

h̄2

2µr2

(

− 1

sin θ

d

dθ
sin θ

d

dθ
+

3

16
+
m2

1 +m2
2 − 2m1m2 cos θ

sin2 θ

)

+ h̄∂τ

]

× (sin θ τ | sin θaτa)m1m2
= h̄δ(τ − τa)δ(cos θ − cos θa). (8.223)

The extra term 3/16 is necessary to account for the energy difference between
the motion near the surface of a sphere in four dimensions, whose energy is
(h̄2/2µr2)[(l/2)(l/2 + 1) + 3/16] [see (8.158)], and that of a symmetric spinning
top with angular momentum L = l/2 in three dimensions, whose energy is
(h̄2/2µr2)(l/2)(l/2 + 1), as shown in the next section in detail.

The amplitude (θbτb|θaτa)m1m2
defined in (8.201) satisfies the differential equation

[

h̄2

2µr2

(

− d2

dθ2
− 1

16
+
m2

1 +m2
2 − 1/4− 2m1m2 cos θ

sin2 θ

)

+ h̄∂τ

]

× (θ τ |θaτa)m1m2
= h̄δ(τ − τa)δ(θ − θa). (8.224)

This is, of course, precisely the Schrödinger equation associated with the action
(8.212).
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8.9 Motion on a Sphere in D Dimensions

The wave functions in the time evolution amplitude near the surface of a sphere are
also correct for the motion on a sphere. This is not true for the energies, for which
the amplitude (8.158) gives

El =
h̄2

2Mr2
(L2

2)l, (8.225)

with
(L2

2)l = (l +D/2− 1)2 − 1/4, l = 0, 1, 2, . . . . (8.226)

As we know from Section 1.14, the energies should be equal to

El =
h̄2

2Mr2
(L̂2)l, (8.227)

where (L̂2)l denotes the eigenvalues of the square of the angular momentum operator.
In D dimensions, the eigenvalues are known from the Schrödinger theory to be

(L̂2)l = l(l +D − 2), l = 0, 1, 2, . . . . (8.228)

Apart from the trivial case D = 1, the two energies are equal only for D = 3, where
(L2

2)l ≡ (L̂2)l = l(l + 1). For all other dimensions, we shall have to remove the
difference

∆(L2
2)l ≡ L̂2 − L2

2 =
1

4
−
(

D

2
− 1

)2

= −(D − 1)(D − 3)

4
. (8.229)

The simplest nontrivial case where the difference appears is for D = 2 where the role
of l is played by the magnetic quantum number m and (L2

2)m = m2 − 1/4, whereas
the correct energies should be proportional to (L̂2)m = m2.

Two changes are necessary in the time-sliced path integral to find the correct en-
ergies. First, the time-sliced action (8.152) must be modified to measure the proper
distance on the surface rather than the Euclidean distance in the embedding space.
Second, we will have to correct the measure of path integration. The modification
of the action is simply

AN
on sphere =

M

ǫ
r2

N+1
∑

n=1

(∆ϑn)
2

2
, (8.230)

in addition to

AN =
M

ǫ
r2

N+1
∑

n=1

(1− cos∆ϑn). (8.231)

Since the time-sliced path integral was solved exactly with the latter action, it is
convenient to expand the true action around the solvable one as follows:

AN
on sphere =

M

ǫ
r2

N+1
∑

n=1

[

(1− cos∆ϑn) +
1

24
(∆ϑn)

4 − . . .
]

. (8.232)
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There is no need to go to higher than the fourth order in ∆ϑn , since these do not
contribute to the relevant order ǫ. ForD = 2, the correction of the action is sufficient
to transform the path integral near the surface of the sphere into one on the sphere,
which in this reduced dimension is merely a circle. On a circle, ∆ϑn = ϕn − ϕn−1

and the measure of path integration becomes

1
√

2πh̄ǫ/Mr2

N+1
∏

n=1

∫ π/2

−π/2

dϕn
√

2πh̄ǫ/Mr2
. (8.233)

The quartic term (∆ϑn)
4 = (ϕn − ϕn−1)

4 can be replaced according to the rules of
perturbation theory by its expectation [see (8.62)]

〈(∆ϑn)4〉0 = 3
ǫh̄

Mr2
. (8.234)

The correction term in the action

∆quAN =
M

ǫ
r2

N+1
∑

n=1

1

24
(∆ϑn)

4 (8.235)

has, therefore, the expectation

〈∆quAN〉0 = (N + 1)ǫ
h̄2/4

2Mr2
. (8.236)

This supplies precisely the missing term which raises the energy from the near -the-
surface value Em = h̄2(m2 − 1/4)/2Mr2 to the proper on-the-sphere value Em =
h̄2m2/2Mr2.

In higher dimensions, the path integral near the surface of a sphere requires a
second correction. The difference (8.229) between L̂2 and L2

2 is negative. Since the
expectation of the quartic correction term alone is always positive, it can certainly
not explain the difference.15 Let us calculate first its contribution at arbitrary D.
For very small ǫ, the fluctuations near the surface of the sphere lie close to the
D − 1 -dimensional tangent space. Let ∆xn be the coordinates in this space. Then
we can write the quartic correction term as

∆quAN ≈ M

ǫ

N+1
∑

n=1

1

24r2
(∆xn)

4, (8.237)

where the components (∆xn)i have the correlations

〈(∆xn)i(∆xn)j〉0 =
h̄ǫ

M
δij . (8.238)

15This was claimed by G. Junker and A. Inomata, in Path Integrals from meV to MeV, edited
by M.C. Gutzwiller, A. Inomata, J.R. Klauder, and L. Streit (World Scientific, Singapore, 1986),
p.333.
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Thus, according to the rule (8.62), ∆quAN has the expectation

〈∆AN〉0 = (N + 1)ǫ
h̄2

2Mr2
∆quL

2
2, (8.239)

where ∆quL
2
2 is the contribution of the quartic term to the value L2

2:

∆quL
2
2 =

D2 − 1

12
. (8.240)

This result is obtained using the contraction rules for the tensor

〈∆xi∆xj∆xk∆xl〉0 =
(

ǫh̄

M

)2

(δijδkl + δikδjl + δilδjk), (8.241)

which follow from the integrals (8.63).
Incidentally, the same result can also be derived in a more pedestrian way:

The term (∆xn)
4 can be decomposed into D − 1 quartic terms of the individ-

ual components ∆xni, and (D − 1)(D − 2) mixed quadratic terms (∆xni)
2(∆xnj)

2

with i 6= j. The former have an expectation (D − 1) · 3(ǫh̄/Mr)2, the latter
(D − 1)(D − 2) · (ǫh̄/Mr)2. When inserted into (8.237), they lead to (8.239).

Thus we remain with a final difference in D dimensions:

∆fL
2
2 = ∆L2

2 −∆quL
2
2 = −1

3
(D − 1)(D − 2). (8.242)

This difference can be removed only by the measure of the path integral. Near the
sphere we have used the measure

N
∏

n=1







∫ dD−1un
√

2πh̄ǫ/Mr2
D−1





 . (8.243)

In Chapter 10 we shall argue that this measure is incorrect. We shall find that the
measure (8.243) receives a correction factor

N
∏

n=1

[

1 +
D − 2

6
(∆ϑn)

2
]

(8.244)

[see the factor (1 + i∆Aǫ
J) of Eq. (10.151)]. Setting (∆ϑn)

2 = (∆xn/r)
2, the expec-

tation of this factor becomes

N
∏

n=1

[

1 +
(D − 2)(D − 1)

6r2
ǫh̄

M

]

(8.245)

corresponding to a correction term in the action

〈∆AN
f 〉0 = (N + 1)ǫ

h̄2

2Mr2
∆fL

2
2, (8.246)
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with ∆fL
2
2 given by (8.242). This explains the remaining difference between the

eigenvalues (L2)l and (L̂)2l .
In summary, the time evolution amplitude on the D-dimensional sphere reads

[6]

(ubτb|uaτa) =
∞
∑

l=0

exp

[

− h̄L̂2

2Mr2
(τb − τa)

]

∑

m

Ylm(ub)Y
∗
lm(ua), (8.247)

with
L̂2 = l(l +D − 2), (8.248)

which are precisely the eigenvalues of the squared angular momentum operator of
Schrödinger quantum mechanics. For D = 3 and D = 4, the amplitude (8.247)
coincides with the more specific representations (8.161) and (8.162), if L2

2 is replaced
by L̂2.

Finally, let us emphasize that in contrast to the amplitude (8.158) near the
surface of the sphere, the normalization of the amplitude (8.247) on the sphere is

∫

dD−1ub (ubτb|uaτa) = 1. (8.249)

This follows from the integral
∫

dD−1ub

∑

m

Ylm(ub)Y
∗
lm(ua) = δl0

∫

dD−1ub Y00(ub)Y
∗
00(ua)

= δl0

∫

dD−1ub 1/SD = δl0. (8.250)

This is in contrast to the amplitude near the surface which satisfies

∫

dD−1ub (ubτb|uaτa) = exp

[

−(D/2− 1)2 − 1/4

2µr2
(τb − τa)

]

. (8.251)

We end this section with the following observation. In the continuum, the Eu-
clidean path integral on the surface of a sphere can be rewritten as a path integral
in flat space with an auxiliary path integral over a Lagrange multiplier λ(τ) in the
form16

(xbτb|xaτa) =
∫ i∞

−i∞

∫

D2x(τ)
Dλ(τ)
2πih̄

exp

(

−1

h̄

∫ τb

τa
dτ

{

M

2
ẋ2 +

λ(τ)

2r
[x2(τ)− r2]

})

.

(8.252)

A naive time slicing of this expression would not yield the correct energy spectrum
on the sphere. The slicing would lead to the product of integrals

(ubtb|uata) ≈
N
∏

n=1

[
∫

dDxn

] N
∏

n=1

[

∫

dλn
2πih̄/ǫ

]

exp
(

i

h̄
AN

)

, (8.253)

16The field-theoretic generalization of this path integral, in which τ is replaced by a d-dimensional
spatial vector x, is known as the O(D)-symmetric nonlinear σ-model in d dimensions. In statistical
mechanics it corresponds to the well-studied classical O(D) Heisenberg model in d dimensions.
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with u ≡ x/|x| and the time-sliced action

AN =
N+1
∑

n=1

[

M

2ǫ
(xn − xn−1)

2 + ǫ
λn
2r

(x2
n − r2)

]

. (8.254)

Integrating out the λn’s would produce precisely the expression (8.151) with the
action (8.152) near the surface of the sphere. The δ-functions arising from the λn-
integrations would force only the intermediate positions xn to lie on the sphere; the
sliced kinetic terms, however, would not correspond to the geodesic distance. Also,
the measure of path integration would be wrong.

8.10 Path Integrals on Group Spaces

In Section 8.3, we have observed that the surface of a sphere in four dimensions
is equivalent to the covering group of rotations in three dimensions, i.e., with the
group SU(2). Since we have learned how to write down an exactly solvable time-
sliced path integral near and on the surface of the sphere, the equivalence opens up
the possibility of performing path integrals for the motion of a mechanical system
near and on the group space of SU(2). The most important system to which the
path integral on the group space of SU(2) can be applied is the spinning top, whose
Schrödinger quantum mechanics was discussed in Section 1.15. Exploiting the above
equivalence we are able to describe the same quantum mechanics in terms of path
integrals. The theory to be developed for this particular system will, after a suitable
generalization, be applicable to systems whose dynamics evolves on any group space.

First, we discuss the path integral near the group space using the exact result
of the path integral near the surface of the sphere in four dimensions. The crucial
observation is the following: The time-sliced action near the surface

AN =
M

2ǫ
r2

N+1
∑

n=1

(un − un−1)
2 =

Mr2

ǫ

N+1
∑

n=1

(1− cos∆ϑn) (8.255)

can be rewritten in terms of the group elements g(ϕ, θ, γ) defined in Eq. (8.123) as

AN =
M

ǫ
r2

N+1
∑

n=1

[

1− 1

2
tr(gng

−1
n−1)

]

, (8.256)

with the obvious notation
gn = g(ϕn, θn, γn). (8.257)

This follows after using the explicit matrix form for g, which reads

g(ϕ, θ, γ) = exp(iϕσ3/2) exp(iθσ2/2) exp(iγσ3/2) (8.258)

=

(

eiϕ/2 0
0 e−iϕ/2

)(

cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)(

eiγ/2 0
0 e−iγ/2

)

.
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After a little algebra we find

1

2
tr(gng

−1
n−1) = cos(θn/2) cos(θn−1/2) cos[(ϕn − ϕn−1 + γn − γn−1)/2]

+ sin(θn/2) sin(θn−1/2) cos[(ϕn − ϕn−1 − γn + γn−1)/2],

(8.259)

just as in (8.129). The invariant group integration measure is usually defined to be
normalized to unity, i.e.,

∫

dg ≡ 1

16π2

∫ π

0

∫ 2π

0

∫ 4π

0
dθ sin θdϕdγ =

1

2π2

∫

d3u = 1. (8.260)

We shall renormalize the time evolution amplitude (ubτb|uaτa) near the surface of
the four-dimensional sphere accordingly, making it a properly normalized amplitude
for the corresponding group elements (gbτb|gaτa). Thus we define

(ubτb|uaτa) ≡
1

2π2
(gbτb|gaτa). (8.261)

The path integral (8.151) then turns into the following path integral for the motion
near the group space [compare also (8.204)]:

(gbτb|gaτa) ≈
2π2

√

2πh̄ǫ/Mr2
3

N
∏

n=1







∫

2π2dgn
√

2πh̄ǫ/Mr2
3






exp

(

−1

h̄
AN

)

. (8.262)

Let us integrate this expression within the group space language. For this we expand
the exponential as in (8.131):

exp

{

−Mr2

h̄ǫ

[

1− 1

2
tr(gng

−1
n−1)

]

}

=
∞
∑

l=0

ãl(h)
l + 1

2π2
C

(1)
l (cos∆ϑn) (8.263)

=
∞
∑

l=0

ãl(h)
l + 1

2π2

l/2
∑

m1,m2=−l/2

Dl/2
m1m2

(ϕn, θn, γn)Dl/2 ∗
m1m2

(ϕn−1, θn−1, γn−1).

In general terms, the right-hand side corresponds to the well-known character ex-

pansion for the group SU(2):

exp

[

h

2
tr(gng

−1
n−1)

]

=
1

h

∞
∑

l=0

(l + 1)Il+1(h)χ
(l/2)(gng

−1
n−1). (8.264)

Here χl/2(g) are the so-called characters , the traces of the representation matrices
of the group element g, i.e.,

χ(l/2)(g) = Dl/2
mm(g). (8.265)
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The relation between the two expansions is obvious if we use the representation
properties of the Dl/2

m1m2
functions and their unitarity to write

χ(l/2)(gng
−1
n−1) = Dl/2

mm′(gn)Dl/2∗
mm′(gn−1). (8.266)

This leads directly to (8.263) [see also the footnote to (8.128)]. Having done the
character expansion in each time slice, the intermediate group integrations can all
be performed using the orthogonality relations of group characters

∫

dgχ(L)(g1g
−1)χ(L′)(gg−1

2 ) = δLL′

1

dL
χ(L)(g1g

−1
2 ). (8.267)

The result of the integrations is, of course, the same amplitude as before in (8.162):

(gbτb|gaτa) =
∞
∑

l=0

exp

[

− h̄L2

2Mr2
(τb − τa)

]

(8.268)

× (l + 1)
l/2
∑

m1,m2=−l/2

Dl/2
m1m2

(ϕn, θn, γn)Dl/2 ∗
m1m2

(ϕn−1, θn−1, γn−1).

Given this amplitude near the group space we can find the amplitude for the
motion on the group space, by adding to the energy near the sphere E = h̄2[(l/2 +
1)2−1/4]/2Mr2 the correction ∆E = h̄2∆L2

2/2Mr2 associated with Eq. (8.229). For
D = 4, L2

2 = (l/2)(l/2+1)+3/4 has to be replaced by L̂2 = L2
2+∆L2

2 = (l/2)(l/2+1),
and the energy changes by

∆E = −3h̄2

8M
. (8.269)

Otherwise the amplitude is the same as in (8.268) [6].
Character expansions of the exponential of the type (8.264) and the orthogonality

relation (8.267) are general properties of group representations. The above time-
sliced path integral can therefore serve as a prototype for the quantum mechanics
of other systems moving near or on more general group spaces than SU(2).

Note that there is no problem in proceeding similarly with noncompact groups
[7]. In this case we would start out with a treatment of the path integral near and on

the surface of a hyperboloid rather than a sphere in four dimensions. The solution
would correspond to the path integral near and on the group space of the covering
group SU(1,1) of the Lorentz group O(2,1). The main difference with respect to
the above treatment would be the appearance of hyperbolic functions of the second
Euler angle θ rather than trigonometric functions.

An important family of noncompact groups whose path integral can be obtained
in this way are the Euclidean groups [8] consisting of rotations and translations.
Their Lie algebra comprises the momentum operators p̂, whose representation on
the spatial wave functions has the Schrödinger form p̂ = −ih̄∇. Thus, the canonical
commutation rules in a Euclidean space form part of the representation algebra
of these groups. Within a Euclidean group, the separation of the path integral
into a radial and an azimuthal part is an important tool in obtaining all group
representations.
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8.11 Path Integral of Spinning Top

We are now also in a position to solve the time-sliced path integral of a spinning top
by reducing it to the previous case of a particle moving on the group space SU(2).
Only in one respect is the spinning top different: the equivalent “particle” does not
move on the covering space SU(2) of the rotation group, but on the rotation group
O(3) itself. The angular configurations with Euler angles γ and γ+2π are physically
indistinguishable. The physical states form a representation space of O(3) and the
time evolution amplitude must reflect this. The simplest possibility to incorporate
the O(3) topology is to add the two amplitudes leading from the initial configuration
ϕa, θa, γa to the two identical final ones ϕb, θb, γb and ϕb, θb, γb + 2π. This yields the
amplitude of the spinning top:

(ϕb, θb, γb τb|ϕb, θb, γb τa)top (8.270)

= (ϕb, θb, γb τb|ϕb, θb, γb τa) + (ϕb, θb, γb + 2π τb|ϕb, θb, γb τa).

The sum eliminates all half-integer representation functions D
l/2
mm′(θ) in the expan-

sion (8.268) of the amplitude.
Instead of the sum we could have also formed another representation of the

operation γ → γ + 2π, the antisymmetric combination

(ϕb, θb, γb τb|ϕb, θb, γb τa)fermionic (8.271)

= (ϕb, θb, γb τb|ϕb, θb, γb τa)− (ϕb, θb, γb + 2π τb|ϕb, θb, γb τa).

Here the expansion (8.268) retains only the half-integer angular momenta l/2. As
discussed in Chapter 7, half-integer angular momenta are associated with fermions
such as electrons, protons, muons, and neutrinos. This is indicated by the subscript
“fermionic”. In spite of this, the above amplitude cannot be used to describe a single
fermion since this has only one fixed spin l/2, while (8.271) contains all possible
fermionic spins at the same time.

In principle, there is no problem in also treating the non-spherical top. In the
formulation near the group space, the gradient term in the action,

1

ǫ2

[

1− 1

2
tr(gng

−1
n−1)

]

, (8.272)

has to be separated into time-sliced versions of the different angular velocities. In
the continuum these are defined by

ωa = −itr (σ̇ag−1), a = ξ, η, ζ. (8.273)

The gradient term (8.272) has the symmetric continuum limit ω̇2
a. With the different

moments of inertia Iξ, Iη, Iζ , the asymmetric sliced gradient term reads

1

ǫ2

{

Iξ

[

1− 1

2
tr(gnσξg

−1
n−1)

]

+ Iη

[

1− 1

2
tr(gnσηg

−1
n−1)

]

+ Iζ

[

1− 1

2
tr(gnσζg

−1
n−1)

]}

, (8.274)
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rather than (8.272). The amplitude near the top is an appropriate generalization of
(8.268). The calculation of the correction term ∆E, however, is more complicated
than before and remains to be done, following the rules explained above.

8.12 Path Integral of Spinning Particle

The path integral of a particle on the surface of a sphere contains states of all
integer angular momenta l = 1, 2, 3, . . . . The path integral on the group space
SU(2) contains also all half-integer spins s = 1

2 ,
3
2 ,

5
2 , . . . .

The question arises whether it is possible to set up a path integral which contains
only a single spinning particle, for instance of spin s = 1/2. Thus we need a path
integral which for each time slice spans precisely one irreducible representation space
of the rotation group, consisting of the 2s + 1 states |s s3〉 for s3 = −s, . . . , s. In
order to sum over paths, we must parametrize this space in terms of a continuous
variable. This is possible by selecting a particular spin state, for example the state
|ss〉 pointing in the z-direction, and rotating it into an arbitrary direction u =
(sin θ cosϕ, sin θ sinϕ, cos θ) with the help of some rotation, for instance

|θ ϕ〉 ≡ Rs(θ, ϕ)|ss〉 ≡ e−iS3ϕe−iS2θ|ss〉, (8.275)

where Si are matrix generators of the rotation group of spin s, which satisfy the
commutation rules of the generators L̂i in (1.414). The states (8.275) are nonabelian
versions of the coherent states (7.343). They can be expanded into the 2s + 1 spin
states |s s3〉 as follows:

|θ ϕ〉 =
s
∑

s3=−s

|s s3〉〈s s3|R̂(θ, ϕ)|ss〉 =
s
∑

s3=−s

|s s3〉e−is3ϕdss3 s(θ), (8.276)

where djmm′(θ) are the representation matrices of e−iS2θ with angular momentum j
given in Eq. (1.446). For s = 1/2, where the matrix djmm′ has the form (1.447), the
states (8.276) are

|θϕ〉 = eiϕ/2 cos θ/2| 12 1
2〉 − e−iϕ/2 sin θ/2| 12 − 1

2〉. (8.277)

At this point it is useful to introduce the so-called monopole spherical harmonics

defined by

Y j
mq(θ, ϕ) ≡

√

2j + 1

4π
eimϕdjm q(θ). (8.278)

Comparison with Eq. (8.125) shows that these are simply the ultra-spherical har-
monics Yj m q(x̂) with vanishing third Euler angle γ. They satisfy the orthogonality
relation

∫ 1

−1
d cos θ

∫ 2π

0
dϕ Y j ∗

mq(θ, ϕ)Y
j′

m′q(θ, ϕ) = δjj′δmm′ , (8.279)
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and the completeness relation

∑

j,m

Y j
mq(θ, ϕ)Y

j ∗
mq(θ

′, ϕ′) = δ(cos θ − cos θ′)δ(ϕ− ϕ′). (8.280)

We define now the covariant looking states

|u〉 ≡
√

2j + 1

4π
|θ ϕ〉 =

s
∑

s3=−s

|s s3〉 Y s ∗
s3 s

(θ, ϕ), (8.281)

and write the angular integral as an integral over the surface of the unit sphere:

∫ 1

−1
d cos θ

∫ 2π

0
dϕ =

∫

d3u δ(u2 − 1) ≡
∫

du. (8.282)

From (8.279) we deduce that the states |u〉 are complete in the space of spin-s states:

∫

du |u〉〈u| =
s
∑

s3=−s

s
∑

s′
3
=−s

|s s3〉
∫ 1

−1
d cos θ

∫ 2π

0
dϕY s ∗

s3 s
(θ, ϕ)Y s

s′3s
(θ, ϕ)〈ss′3|

=
s
∑

s3=−s

|s s3〉 〈s s3| = 1s. (8.283)

The states are not orthogonal, however. Writing Y s
s3 s(θ, ϕ) as Y

s
s3 s(u), we see that

〈u|u′〉=
s
∑

s3=−s

s
∑

s′3=−s

Y s
s3 s(u)〈s s3|ss′3〉Y s

s′
3
s(u

′) =
s
∑

s3=−s

Y s
s3 s(u)Y

s ∗
s3 s(u

′). (8.284)

The right-hand side can be calculated as follows:

2j + 1

4π
〈ss|eiθS2eiϕS3e−iϕ′S3e−iθ′S2 |ss〉 = 2j + 1

4π
〈ss|e−isAS3e−iβS2 |ss〉

=
2j + 1

4π
e−isAS3dsss(β) =

2j + 1

4π
e−isAS3

(

1 + u · u′

2

)s

, (8.285)

where β is the angle between u and u′, and A(u,u′, ẑ) is the area of the spherical
triangle on the unit sphere formed by the three points in the argument. For a radius
R, the area is equal to R2 time the angular excess E of the triangle, defined as the
amount by which the sum of the angles in the triangle is larger that π. An explicit
formula for E is the spherical generalization of Heron’s formula for the area A of a
triangle [9]:

A =
√

s(s− a)(s− b)(s− c), s = (a+ b+ c)/2 = semiperimeter. (8.286)

The angular excess on a sphere is

tan
E

4
=

√

tan
φs

2
tan

φs − φa

2
tan

φs − φb

2
tan

φs − φc

2
, (8.287)
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where φa, φb, φc are the angular lengths of the sides of the triangle and

φs = (φa + φb + φc)/2 (8.288)

is the angular semiperimeter on the sphere.
We can now set up a path integral for the scalar product (8.285):

〈ub|ua〉=
[

N
∏

n=1

∫

dun

]

〈ub|uN 〉〈uN |uN−1〉〈uN−1| · · · |u1〉〈u1|ua〉. (8.289)

For large N , the intermediate un-vectors will all lie close to their neighbors and we
can write approximately

〈un|un−1〉≈
2s+ 1

4π
ei∆An [1 + 1

2un(un − un−1)]
s≈ 2s+ 1

4π
ei∆An+

s
2un(un−un−1). (8.290)

Let us take this expression to the continuum limit. We introduce a time parameter
labeling the chain of un-vectors by tn = nǫ, and find the small-ǫ approximation

2s+ 1

4π
exp

[

iǫ s cos θ ϕ̇− s

4
ǫ2
(

θ̇2 + sin2 θ ϕ̇2
)

+ . . .
]

. (8.291)

The first term is obtained from the scalar product

〈θ ϕ|i∂t|θ ϕ〉 = 〈ss|eiS2θeiS3ϕi∂te
−iS3ϕe−iS2θ|ss〉

= 〈ss|eiS2θeiS3ϕ
(

ϕ̇S3e
−iS3ϕe−iS2θ + e−iS3ϕθ̇S2e

−iS2θ
)

|ss〉
= 〈ss| (cos θS3 − sin θS1) ϕ̇+ θ̇S2|ss〉 = s cos θ ϕ̇. (8.292)

This result is actually not completely correct. The reason is that the angular vari-
ables in the states (8.275) are cyclic variables. For integer spins, θ and ϕ are cyclic
in 2π, for half-integer spins in 4π. Thus there can be jumps by 2π or 4π in these
angles which do not change the states (8.275). In writing down the approximation
(8.291) we must assume that we are at a safe distances from such singularities. If
we get close to them, we must change the direction of the quantization axis.

Keeping this in mind we can express the scalar product in the limit ǫ → 0 by
the path integral

〈ub|ua〉=
∫

Du e
i
h̄

∫ tb
ta

dt h̄s cos θϕ̇
, (8.293)

where
∫ Du is defined by the limit N → ∞ of the product of integrals

∫

Du ≡ lim
N→∞

[

2s+ 1

4π

N
∏

n=1

∫

dun

]

. (8.294)

The path integral fixes the Hilbert space of the spin theory. It is the analog of the
zero-Hamiltonian path integral in Eqs. (2.17) and (2.18). Comparing (8.293) with
(2.18), we see that sh̄ cos θ plays the role of a canonically conjugate momentum of
the variable ϕ.
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For a specific spin dynamics we must add, as in (2.15), a HamiltonianH(cos θ, ϕ),
and arrive at the general path integral representation for the time evolution ampli-
tude of a spinning particle [10]

(ubtb|uata)=
∫

Du e
i
∫ tb
ta

dt [h̄s cos θϕ̇−H(θ,ϕ)]/h̄
. (8.295)

The above path integral has a remarkable property which is worth emphasizing.
For half-integer spins s = 1

2 ,
3
2 ,

5
2 , . . . it is able to describe the physics of a fermion in

terms of a field theory involving a unit vector field u which describes the direction
of the spin state:

〈u|Ŝ|u〉 = 〈ss|R̂−1(θ, ϕ)ŜR̂(θ, ϕ)|ss〉 = Ri j(θ, ϕ)〈ss|Sj|ss〉 = su. (8.296)

This follows from the vector property of the spin matrices Ŝ. The matrices Ri j(θ, ϕ)
are the defining 3× 3 matrices of the rotation group (the so-called adjoint represen-

tation). Thus we describe a fermion in terms of a Bose field.
The above path integral is only the simplest illustration for a more general phe-

nomenon. In 1961, Skyrme pointed out that a certain field configuration of pions is
capable of behaving in many respects like a nucleon [11], in particular its fermionic
properties.

In two dimensions, Bose field theories are even more powerful and can describe
particles with any commutation rule, called anyons in Section 7.5. This will be
shown in Chapter 16.

In Chapter 10 we shall see that the action in (8.293) can be interpreted as
the action of a particle of charge e on the surface of the unit sphere whose center
contains a fictitious magnetic monopole of charge g = −4πh̄cs/e. The associated
vector potential A(g)(u) will be given in Eq. (10A.59). Coupling this minimally to
a particle of charge e as in Eq. (2.635) on the surface of the sphere yields the action

A0 =
e

c

∫ tb

ta
A(g)(u) · u̇ = h̄ s

∫ tb

ta
dt cos θ ϕ̇ , (8.297)

where the magnetic flux is supplied to the monopole by two infinitesimally thin flux
tubes, the famous Dirac strings , one from below and one from above. The field
A(−s) in (8.297) is the average of the two expressions in (10A.61) for g = −4πh̄cs/e.
We can easily change the supply line to a single string from above, by choosing the
states

|θ ϕ〉′ ≡ R̂(θ, ϕ)|ss〉 = e−iS3ϕe−iS2θeiS3ϕ|ss〉 = |θ ϕ〉eisϕ, (8.298)

rather than |θ ϕ〉 of Eq. (8.275) for the construction of the path integral. The physics
is the same since the string is an artifact of the choice of the quantization axis.

In terms of Cartesian coordinates, the action (8.297) with a flux supplied from
the north pole can also be expressed in terms of the vector u(t) as [compare (10A.59)]

A0 = h̄s
∫

dt
ẑ× u(t)

1− uz(t)
· u̇(t). (8.299)
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This expression is singular on the north pole of the unit sphere. The singularity can
be rotated into an arbitrary direction n, leading to

A0 = h̄s
∫

dt
n× u(t)

1− n · u(t) · u̇(t). (8.300)

If u gets close to n we must change the direction of n. The action (8.300) is referred
to as Wess-Zumino action.

In Chapter 10 we shall also calculate the curl of the vector potential A(g) of a
monopole of magnetic charge g and find the radial magnetic field accompanied by a
singular string contribution along the direction n of flux supply [compare (10A.54)]:

B(g) = ∇×A(g) = g
u

|u| − 4πg
∫ ∞

0
ds n̂ δ(3)(u− s n̂), (8.301)

The singular contribution is an artifact of the description of the magnetic field. The
line from zero to infinity is called a Dirac string . Since the magnetic field has no
divergence, the magnetic flux emerging at the origin of the sphere must be imported
from somewhere at infinity. In the field (8.302) the field is imported along the
straight line in the direction u. Indeed, we can easily check that the divergence of
(8.302) is zero.

For a closed orbit, the interaction (8.297) can be rewritten by Stokes’ theorem
as

A0 =
e

c

∫

dtA(g)(t) · u(t) = e

c

∫

dS ·
[

∇×A(g)
]

=
e

c

∫

dS ·B(g), (8.302)

where
∫

dS runs over the surface enclosed by the orbit. This surface may or may
not contain the Dirac string of the monopole, in which case A0 differ by 4πge/c. A
path integral over closed orbits of the spinning particle

ZQM =
∮

du ei(A0+A)/h̄, (8.303)

is therefore invariant under changes of the position of the Dirac string if the monopole
charge g satisfies the Dirac charge quantization condition

ge

h̄c
= s, (8.304)

with s =half-integer or integer.
Dirac was the first to realize that as a consequence of quantum mechanics, an

electrically charged particle whose charge satisfies the quantization condition (8.304)
sees only the radial monopole field in (8.302), not the field in the string. The string
can run along any line L without being detectable. This led him to conjecture that
there could exist magnetic monopoles of a specific g, which would explain that all
charges in nature are integer multiples of the electron charge [16]. More on this
subject will be discussed in Section 16.2.

In Chapter 10 we shall learn how to define a monopole field A(g) which is free
of the artificial string singularity [see Eq. (10A.58)]. With the new definition, the
divergence of B is a δ-function at the origin:

∇×B(u) = 4πg δ(3)(u). (8.305)
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8.13 Berry Phase

This phenomenon has a simple physical basis which can be explained most clearly by
means of the following gedanken experiment. Consider a thin rod whose dynamics
is described by a unit vector field u(t) with an action

A =
M

2

∫

dt
[

u̇2(t)− V (u2(t))
]

, u2(t) ≡ 1, (8.306)

where u(t) is a unit vector along the rod. This is the same Lagrangian as for a
particle on a sphere as in (8.147) (recall p. 746).

Let us suppose that the thin rod is a solenoid carrying a strong magnetic field,
and containing at its center a particle of spin s = 1/2. Then (8.306) is extended by
the action [13]

A0 =
∫

dt ψ∗(t) [ih̄∂t + γu(t) · �]ψ(t), (8.307)

where σi are the Pauli spin matrices (1.448). For large coupling strength γ and
sufficiently slow rotations of the solenoid, the direction of the fermion spin will
always be in the ground state of the magnetic field, i.e., its direction will follow the
direction of the solenoid adiabatically, pointing always along u(t). If we parametrize
u(t) in terms of spherical angles θ(t), φ(t) as n = (sin θ cosφ, sin θ sin φ, cos θ), the
associated wave function satisfies u(t) · �ψ(u(t)) = (1/2)ψ(u(t)), and reads

ψ(u(t)) =

(

e−iφ(t)/2 cos θ(t)/2
eiφ(t)/2 sin θ(t)/2

)

. (8.308)

Inserting this into (8.307) we obtain [compare (8.292)]

A0 =
∫

dt ψ(u(t)) ih̄∂t ψ(u(t)) = h̄
1

2
cos θ(t) φ̇(t) ≡ h̄β(t). (8.309)

The action coincides with the previous expression (8.297). The angle β(t) is called
Berry phase [14].

In this simple model it is obvious why the bosonic theory of the solenoid behaves
like a spin-1/2 particle: It simply inherits the physical properties of the enslaved
spinor.

The reason why it is a monopole field that causes the spin-1/2 behavior will
become clear in another way in Section 14.6. There we shall solve the path integral
of a charged particle in a monopole field and show that it behaves like a fermion if
its charge e and the monopole charge g have half-integer products q ≡ eg/h̄c.

8.14 Spin Precession

The Wess-Zumino action A0 adds an interesting kinetic term to the equation of
motion of a solenoid. Extremizing A0 +A yields

M
(

ü+ u̇2 u
)

= −∂uV (u)− δ

δu(t)
A0. (8.310)
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The functional derivative of A0 is most easily calculated starting from the general
expression in (8.297)

δ

δui(t)
h̄
∫ tb

ta
dtA(g) · u̇ = h̄

(

∂ui
A

(g)
j u̇j − ∂tA

(g)
i

)

= h̄
[(

∂ui
A

(g)
j − ∂uj

A
(g)
i

)

u̇j
]

= h̄
[(

∇×A(g)
)

× u
]

i
. (8.311)

Inserting here the curl of Eq. (8.302), while staying safely away from the singularity,
the last term in (8.310) becomes h̄gu× u̇, and the equation of motion (8.310) turns
into

M
(

ü+ u̇2 u
)

= −∂uV (u)− h̄g u× u̇. (8.312)

Multiplying this vectorially by u(t) we find [15, 16]

Mu× ü = −u× ∂uV (u)− h̄g
[

u (u · u̇)− u̇ u2
]

. (8.313)

Since u2 = 1, this reduces to

Mu× ü− h̄gu̇ = −u× ∂uV (u(t)). (8.314)

If M is small we obtain for a particle of spin s, where g = −s, the so-called Landau-

Lifshitz equation [17, 18]
h̄s u̇ = −u× ∂uV (u). (8.315)

This is a useful equation for studying magnetization fields in ferromagnetic materials.
The interaction energy of a spinning particle with an external magnetic field has

the general form
Hint = −� ·B, � = −γS, (8.316)

where � is the magnetic moment, S the vector of spin matrices, and γ the gyromag-

netic ratio.
Since u is the direction vector of the spin, we may identify the magnetic moment

of the spin s as
� = γsh̄u, (8.317)

so that the interaction energy becomes

Hint = −γsh̄u ·B. (8.318)

Inserting this for V (u) in (8.315) yields the equation of motion

u̇ = −γB× u, (8.319)

showing a rate of precession 
 = −γB.
For comparison we recall the derivation of this result in the conventional way

from the Heisenberg equation of motion (1.272):

h̄ Ṡ = i[Ĥ,S]. (8.320)
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Inserting for Ĥ the interaction energy (8.316) and using the commutation relations
(1.414) of the rotation group for the spin matrices S, this yields the Heisenberg
equation for spin precession

Ṡ = −γB× S, (8.321)

in agreement with the Landau-Lifshitz equation (8.315). This shows that the Wess-
Zumino term in the action A0 + A has the ability to render quantum equations of
motion from a classical action. This allows us, in particular, to mimic systems of half-
integer spins, which are fermions, with a theory containing only a bosonic directional
vector field u(t). This has important applications in statistical mechanics where
models of interacting quantum spins for ferro- and antiferromagnets à la Heisenberg
can be studied by applying field theoretic methods to vector field theories.
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Tollimur in caelum curvato gurgite, et idem

subducta ad manes imos descendimus unda

We are carried up to the heaven by the circling wave,

and immediately the wave subsiding, we descend to the lowest depths
Virgil (70BC–19BC), Aeneid, 3, 564

9

Wave Functions

The fundamental quantity obtained by solving a path integral is the time evolution
amplitude or propagator of a system (xbtb|xata). In Schrödinger quantum mechanics,
on the other hand, one has direct access on the energy spectrum and the wave
functions of a system [see (1.94)]. This chapter will explain how to extract this
information from the time evolution amplitude (xbtb|xata). The crucial quantity
for this purpose the Fourier transform of (xbtb|xata), the fixed-energy amplitude
introduced in Eq. (1.317):

(xb|xa)E =
∫ ∞

ta
dtb exp {iE(tb − ta)/h̄} (xbtb|xbta), (9.1)

which contains as much information on the system as (xbtb|xata), and gives, in
particular, a direct access to the energy spectrum and the wave functions of the
system. This is done via the the spectral decomposition (1.325).

Alternatively, we can work with the causal propagator at imaginary time,

(xbτb|xaτa) =
∫

dDp

(2πh̄)D
exp

[

i

h̄
p(xb − xa)−

p2

2Mh̄
(τb − τa)

]

, (9.2)

and calculate the fixed-energy amplitude by the Laplace transformation

(xb|xa)E = −i
∫ ∞

τa
dτb exp {E(τb − τa)/h̄} (xbτb|xbτa). (9.3)

9.1 Free Particle in D Dimensions

For a free particle in D dimensions, the fixed-energy amplitude was calculated in
Eqs. (1.348) and (1.355). It will be instructive to rederive the same result once more
using the development in Section 8.5.1. Here we start directly from the spectral
representation (1.325), which for a free particle takes the explicit form Eq. (1.344):

(xb|xa)E =
∫

dDk

(2π)D
eik(xb−xa)

ih̄

E − h̄2k2/2M + iη
. (9.4)
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The momentum integral can now be done as follows. The exponential function
exp (ikR) is written as exp (ikR cosϑ), where R is the distance vector xb − xa and
ϑ the angle between k and R. Then we use formula (8.100) with the coefficients
(8.101) and the hyperspherical harmonics Ylm(x̂) of Eq. (8.126) and expand

eikR =
∑

l=0

al(ikR)
∑

m

Ylm(k̂)Y ∗
lm(R̂). (9.5)

The integral over k follows now directly from the decomposition into size and di-
rection dDk = dkdk̂, and the orthogonality property (8.115) of the hyperspherical
harmonics, according to which

∫

dk̂Ylm(k̂) = δl0δm0

√

SD, (9.6)

with SD of Eq. (1.558). Since Y00(x̂) = 1/
√
SD, we obtain

(xb|xa)E = − 2Mi

(2π)D

∫ ∞

0
dkkD−1 1

k2 + κ2
a0(ikR), (9.7)

where

κ ≡
√

−2ME/h̄2, (9.8)

as in (1.346). Inserting a0(ikR) from (8.101),

a0(ikR) = (2π)D/2JD/2−1(kR)/(kR)
D/2−1, (9.9)

we find

(xb|xa)E = − 2Mi

(2π)D/2
R1−D/2

∫ ∞

0
dkkD/2 1

k2 + κ2
JD/2−1(kR). (9.10)

The integral
∫ ∞

0
dk

kν+1

(k2 + a2)µ+1
Jν(kb) =

aν−µbµ

2µΓ(µ+ 1)
Kν−µ(ab) (9.11)

yields once more the fixed-energy amplitude (1.347).
In two dimensions, the amplitude (1.347) becomes [recall (1.350)]

(xb|xa)E = −iM
πh̄

K0(κ|xb − xa|). (9.12)

It can be decomposed into partial waves by inserting

|xb − xa| =
√

r2b + r2a − 2rarb cos(ϕb − ϕa). (9.13)

Then a well-known addition theorem for Bessel functions yields the expansion

K0(κ|xb − xa|) =
∞
∑

m=−∞

Im(κr<)Km(κr>)e
im(ϕb−ϕa), (9.14)
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where r< and r> are the smaller and larger values of ra and rb, respectively. Hence
the fixed-energy amplitude turns into

(xb|xa)E = −2iM

h̄

∑

m

Im(κr<)Km(κr>)
1

2π
eim(ϕb−ϕa). (9.15)

This is an analytic function in the complex E-plane. The parameter κ is real for
E < 0. For E > 0, the square root (9.8) allows for two imaginary solutions,
κ± ≡ e∓iπ/2k ≡ e∓iπ/2

√
2ME/h̄, so that the amplitude has a right-hand cut. Its

discontinuity specifies the continuum of free-particle states. On top of the cut, we
use the analytic continuation formulas (valid for −π/2 < arg z ≤ π)1

Iµ(e
−iπ/2z) = e−iπµ/2Jµ(z),

Kµ(e
−iπ/2z) = i

π

2
eiπµ/2H(1)

µ (z) , (9.16)

to find the fixed-energy amplitude above the cut

(xb|xa)E+iη =
πM

h̄

∑

m

Jm(kr<)H
(1)
m (kr>)

1

2π
eim(ϕb−ϕa). (9.17)

The reflection properties2

H(1)
µ (eiπz) = −H(2)

−µ(z) ≡ −e−iπµH(2)
µ (z),

Jµ(e
iπz) = eiπµJµ(z) (9.18)

yield the amplitude below the cut

(xb|xa)E−iη = −πM
h̄

∑

m

Jm(kr<)H
(2)
m (kr>)

1

2π
eim(ϕb−ϕa). (9.19)

The discontinuity across the cut follows from the relation

Jµ(z) =
1

2

[

H(1)
µ (z) +H(2)

µ (z)
]

(9.20)

and reads

disc (xb|xa)E =
2πM

h̄

∞
∑

m=−∞

Jm(krb)Jm(kra)
1

2π
eim(ϕb−ϕb). (9.21)

According to (1.330), the integral over the discontinuity yields the completeness
relation

∫ ∞

−∞

dE

2πh̄
disc (xb|xa)E

=
∫ ∞

−∞

dE

2πh̄

2πM

h̄

∞
∑

m=−∞

Jm(krb)Jm(kra)
1

2π
eim(ϕb−ϕb) = δ(xb − xa). (9.22)

1I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formulas 8.406.1 and 8.407.1.
2ibid., Formulas 8.476.1 and 8.476.8.
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After replacing the energy integral by a k-integral,
∫ ∞

−∞

dE

2πh̄

2πM

h̄
=
∫ ∞

0
dkk, (9.23)

we can also write
∫ ∞

−∞

dE

2πh̄
disc (xb|xa)E =

∫ d2k

(2π)2
eik(xb−xa) =

1

2π

∫ ∞

0
dkkJ0(k|xb − xa|)

=
∞
∑

m=−∞

∫ ∞

0
dkkJm(krb)Jm(kra)

1

2π
eim(ϕb−ϕa)

=
1√
rbra

δ(rb − ra)δ(ϕb − ϕa). (9.24)

The last two lines exhibit the well-known completeness relation of the radial wave
functions of a free particle.3

9.2 Harmonic Oscillator in D Dimensions

The wave functions of the one-dimensional harmonic oscillator have already been
derived in Section 2.6 from a spectral decomposition of the time evolution ampli-
tude. This was possible with the help of Mehler’s formula. In D dimensions, the
fixed-energy amplitude is the best starting point for determining the wave functions.
We take the radial propagator (8.142) obtained from the angular momentum decom-
position (8.141) or, for the sake of greater generality, the radial amplitude (8.144)
with an additional centrifugal barrier, continue it to imaginary time τ = it, and go
over to its Laplace transform

(rb|ra)E,l = −i
√

Mω/h̄
√

Mωrbra/h̄
∫ ∞

τa
dτb e

E(τb−τa)/h̄
1

sin[ω(τb − τa)]

×e− 1
h̄

Mω
2

coth[ω(τb−τa)](r2b+r2a)Iµ

(

Mωrbra
h̄ sinh[ω(τb − τa)]

)

. (9.25)

To evaluate the τ -integral we make use of a standard integral formula for Bessel
functions4
∫ ∞

0
dx [coth(x/2)]2ν e−β cosh xJµ(α sinh x)

=
Γ((1 + µ)/2− ν)

αΓ(µ+ 1)
Wν,µ/2

(

√

α2 + β2 + β
)

M−ν,µ/2

(

√

α2 + β2 − β
)

,(9.26)

where Wν,µ/2(z), M−ν,µ/2(z) are the Whittaker functions. The formula is valid for

Re β > |Reα|, Re (µ/2− ν) > −1

2
.

3Compare with Eqs. (3.112) and (3.139) in J.D. Jackson, Classical Electrodynamics , John Wiley
& Sons, New York, 1975.

4I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 6.669.1.
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By a change of variables
√

α2 + β2 ± β = tαb,a,

and

sinh x = (sinh y)−1, cosh x = coth y, coth(x/2) = ey, coth x = cosh y,

with
dx = dy/ sinh y,

Eq. (9.26) goes over into

∫ ∞

0

dy

sinh y
e2νy exp [− 1

2t(αb − αa) coth y]Jµ

(

t

√
αbαa

sinh y

)

=
Γ ((1 + µ)/2− ν)

t
√
αbαaΓ(µ+ 1)

Wν,µ/2(tαb)M−ν,µ/2(−tαa). (9.27)

Using the identity
M−ν,µ/2(z) ≡ e−i(µ+1)π/2Mν,µ/2(−z) (9.28)

and changing the sign of αa in (9.27), this can be turned into

∫ ∞

0

dy

sinh y
e2νy exp [− 1

2 t(αb + αa) coth y] Iµ

(

t
√
αbαa

sinh y

)

=
Γ ((1 + µ)/2− ν)

t
√
αbαaΓ(µ+ 1)

Wν,µ/2(tαb)Mν,µ/2(tαa), (9.29)

with the range of validity

αb > αa > 0, Re [(1 + µ)/2− ν] > 0,

Re t > 0, |arg t| < π. (9.30)

Setting

y = ω(tb − ta), αb =
M

h̄
ωr2b , αa =

Mω

h̄
r2a, ν = E/2ωh̄ (9.31)

in (9.29) brings the radial amplitude (9.25) to the form (valid for rb > ra)

(rb|ra)E,l = −i 1
ω

1√
rbra

Γ((1 + µ)/2− ν)

Γ(µ+ 1)
Wν,µ/2

(

Mω

h̄
r2b

)

Mν,µ/2

(

Mω

h̄
r2a

)

. (9.32)

The Gamma function has poles at

ν = νr ≡ (1 + µ)/2 + nr (9.33)

for integer values of the so-called radial quantum number of the system nr =
0, 1, 2, . . . . The poles have the form

Γ ((1 + µ)/2− ν)
ν∼νr∼ −(−1)nr

nr!

1

ν − νr
. (9.34)
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Inserting here the particular value of the parameter µ for the D-dimensional oscilla-
tor which is µ = D/2+ l− 1, and remembering that ν = E/2ωh̄, we find the energy
spectrum

E = h̄ω (2nr + l +D/2) . (9.35)

The principal quantum number is defined by

n ≡ 2nr + l (9.36)

and the energy depends on it as follows:

En = h̄ω(n+D/2). (9.37)

For a fixed principal quantum number n = 2nr + l, the angular momentum runs
through l = 0, 2, . . . , n for even, and l = 1, 3, . . . , n for odd n. There are dn = (n +
D−1)!/(D−1)!n! degenerate levels. From the residues 1/(ν − νr) ∼ 2h̄ω/(E−En),
we extract the product of radial wave functions at given nr, l:

Rnrl(rb)Rnrl(ra) =
1√
rbra

2(−1)nr

Γ(µ+ 1)nr!
(9.38)

×W(1+µ)/2+nr ,
µ

2
(Mωrb

2/h̄)M(1+µ)/2+nr ,
µ

2
(Mωra

2/h̄).

It is now convenient to express the Whittaker functions in terms of the confluent
hypergeometric or Kummer functions:5

W(1+µ)/2+nr ,
µ

2
(z) = e−z/2z(1+µ)/2U(−nr , 1 + µ, z), (9.39)

M(1+µ)/2+nr ,
µ

2
(z) = e−z/2z(1+µ)/2M(−nr , 1 + µ, z). (9.40)

The latter equation follows from the relation

M−(1+µ)/2−nr ,
µ

2
(z) = e−z/2z(1+µ)/2M(1 + µ+ nr, 1 + µ, z), (9.41)

after replacing nr → −nr − µ− 1.
For completeness, we also mention the identity

M(a, b, z) = ezM(b− a, b,−z), (9.42)

so that
M(1 + µ+ nr, 1 + µ, z) = ezM(−nr , 1 + µ,−z). (9.43)

This permits us to rewrite (9.41) as

M−(1+µ)/2−nr ,
µ

2
(z) = ez/2z(1+µ)/2M(−nr , 1 + µ,−z), (9.44)

which turns into (9.40) by using (9.28) and appropriately changing the indices.

5I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 9.220.2.
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The Kummer function M(a, b, z) has the power series

M(a, b, z) ≡ 1F1(a; b; z) = 1 +
a

b
z +

a(a + 1)

b(b+ 1)

z

z!
+ . . . , (9.45)

showing that M(1+µ)/2+nr ,
µ

2
(Mωra

2/2h̄) is an exponential e−Mωr2a/h̄ times a poly-
nomial in ra of order 2nr. A similar expression is obtained for the other factor
W(1+µ)/2+nr ,

µ

2
(Mωrb

2/h̄) of Eq. (9.39). Indeed, the Kummer function U(a, b, z) is

related to M(a, b, z) by6

U(a, b, z) =
π

sin πb

[

M(a, b, z)

Γ(1 + a− b)Γ(b)
− z1−bM(1 + a− b, 2− b, z)

Γ(a)Γ(2− b)

]

. (9.46)

Since a = −nr with integer nr and 1/Γ(a) = 0, we see that only the first term in
the brackets is present. Then the identity

Γ(−µ)Γ(1 + µ) = π/ sin[π(1 + µ)]

leads to the relation

U(−nr, 1 + µ, z) =
Γ(−µ)

Γ(−nr − µ)
M(−nr, 1 + µ, z), (9.47)

which is a polynomial in z of order nr. Thus we have the useful formula

W(1+µ)/2+nr ,
µ

2
(zb)M(1+µ)/2+nr ,

µ

2
(za) =

Γ(−µ)
Γ(−nr − µ)

e−(zb+za)/2

×(zbza)
(1+µ)/2M(−nr , 1 + µ, zb)M(−nr , 1 + µ, za). (9.48)

We can therefore re-express Eq. (9.38) as

Rnrl(rb)Rnrl(ra) =

√

Mω

h̄

2(−)nrΓ(−µ)
Γ(−nr − µ)Γ(1 + µ) nr!

×e−Mω(r2
b
+r2a)/2h̄ (Mωrbra/h̄)

1/2+µ (9.49)

×M(−nr , 1 + µ,Mωr2b/h̄)M(−nr, 1 + µ,Mωr2a/h̄).

We now insert
(−)nrΓ(−µ)
Γ(−nr − µ)

=
Γ(nr + 1 + µ)

Γ(1 + µ)
, (9.50)

setting µ = D/2 + l − 1, and identify the wave functions as

Rnrl(r) = Cnrl (Mω/h̄)1/4(Mωr2/h̄)l/2+(D−1)/4

×e−Mωr2/2h̄M(−nr , l +D/2,Mωr2/h̄), (9.51)

6M. Abramowitz and I. Stegun, Handbook of Mathematical Functions , Dover, New York, 1965,
Formula 13.1.3.
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with the normalization factor

Cnrl =

√
2

Γ(1 + µ)

√

(nr + µ)!

nr!
. (9.52)

By introducing the Laguerre polynomials 7

Lµ
n(z) ≡

(n + µ)!

n!µ!
M(−n, µ + 1, z), (9.53)

and using the integral formula8

∫ ∞

0
dze−zzµLµ

n(z)L
µ
n′(z) = δnn′

(n+ µ)!

n!
, (9.54)

we find that the radial wave functions satisfy the orthonormality relation
∫ ∞

0
drRnrl(r)Rn′

rl(r) = δnrn′
r
. (9.55)

The radial imaginary-time evolution amplitude has now the spectral representa-
tion

(rbτb|raτa)l =
∞
∑

nr=0

Rnrl(rb)Rnrl(ra)e
−En(τb−τa)/h̄, (9.56)

with the energies

En = h̄ω(n+D/2) = h̄ω (2nr + l +D/2) . (9.57)

The full causal propagator is given, as in (8.91), by

(xbτb|xaτa) =
1

(rbra)(D−1)/2

∞
∑

l=0

(rbτb|raτa)l
∑

m

Ylm(x̂b)Y
∗
lm(x̂a). (9.58)

From this, we extract the wave functions

ψnrlm(x) =
1

r(D−1)/2
Rnrl(r)Ylm(x̂). (9.59)

They have the threshold behavior rl near the origin.
The one-dimensional oscillator may be viewed as a special case of these formulas.

For D = 1, the partial wave expansion amounts to a separation into even and odd
wave functions. There are two “spherical harmonics”,

Ye,ø(x̂) =
1√
2
(Θ(x)±Θ(−x)), (9.60)

7I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 8.970 (our definition differs from that in
L.D. Landau and E.M. Lifshitz, Quantum Mechanics , Pergamon, London, 1965, Eq. (d.13). The
relation is Lµ

n
= (−)µ/(n + µ)!LL.L.

n+µ

µ).
8ibid., Formula 7.414.3.
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and the amplitude has the decomposition

(xbτb|xaτa) = (rbτb|raτa)eYe(x̂b)Ye(x̂a) + (rbτb|raτa)øYø(x̂b)Yø(x̂a), (9.61)

with the “radial” amplitudes

(rbτb|raτa)e,ø = (xbτb|xaτa)± (−xbτb|xaτa). (9.62)

These are known from Eq. (2.177) to be

(rbτb|raτa)e,ø =
1√
2π

√

√

√

√

Mω/h̄

sinh[ω(τb − τa)]
(9.63)

× exp
[

−Mω

2h̄
(r2b + r2a) cotω(τb − τa)

]

2

{

cosh
sinh

}

(Mωrbra/h̄) .

The two cases coincide with the integrand of (9.25) for l = 0 and 1, respectively,
since µ = l +D/2− 1 takes the values ±1/2 and

√
zI∓ 1

2
(z) =

2

2π

{

cosh z ,
sinh z .

(9.64)

The associated energy spectrum (9.35) is

E =

{

h̄ω(2nr +
1
2
) even,

h̄ω(2nr +
3
2
) odd,

(9.65)

with the radial quantum number nr = 0, 1, 2, . . . . The two cases follow the single
formula

E = h̄ω(n+ 1
2), (9.66)

where the principal quantum number n = 0, 1, 2, . . . is related to nr by n = 2nr and
n = 2nr + 1, respectively. The radial wave functions (9.51) become

Rnr,e(r) = (Mω/h̄)1/4

√

√

√

√

2Γ(nr +
1
2
)

πnr!
M(−nr, 1

2 ,Mωr2/h̄), (9.67)

Rnr,ø(r) = (Mω/h̄)1/4

√

√

√

√

2Γ(nr +
3
2
)

(π/4)nr!

√

Mωr2

h̄
M(−nr, 3

2 ,Mωr2/h̄). (9.68)

The special Kummer functions appearing here are Hermite polynomials

M(−n, 1
2 , x

2) =
n!

(2n)!
(−)nH2n(x), (9.69)

M(−n, 3
2 , x

2) =
n!

(2n+ 1)!
(−)nH2n+1(x)/2

√
x. (9.70)
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Using the identity
Γ(z)Γ(z + 1

2) = (2π)1/22−2z+1/2Γ(2z), (9.71)

we obtain in either case the radial wave functions [to be compared with the one-
dimensional wave functions (2.302)]

Rn(r) = Nn

√
2λ−1/2

ω e−r2/2λ2
ωHn(r/λω), n = 0, 1, 2, . . . (9.72)

with

λω ≡
√

h̄

Mω
, Nn =

1
√

2nn!
√
π
. (9.73)

This formula holds for both even and odd wave functions with nr = 2n and nr =
2n+ 1, respectively. It is easy to check that they possess the correct normalization
∫∞
0 drR2

n(r) = 1. Note that the “spherical harmonics” (9.60) remove a factor
√
2

in (9.72), but compensate for this by extending the x > 0 integration to the entire
x-axis by the “one-dimensional angular integration”.

9.3 Free Particle from ω → 0 -Limit of Oscillator

The results obtained for theD-dimensional harmonic oscillator in the last section can
be used to find the amplitude and wave functions of a free particle in D dimensions
in radial coordinates. This is done by taking the limit ω → 0 at fixed energy E.
In the amplitude (9.32) with Wν,µ/2(z),Mν,µ/2(z) substituted according to (9.39),
we rewrite nr as (E/ωh̄− l − 1) /2 and go to the limit ω → 0 at a fixed energy
E. Replacing Mωr2/h̄ by k2r2/2nr≡ z/nr (where z = k2r2/2, and using E =
p2/2M=h̄2k2/2M), we apply the limiting formulas9

lim
nr→∞

{Γ(1− nr − b)U (−a, b,∓z/nr)}

= z−
1
2
(b−1)

{

2Kb−1(2
√
z)

−iπeiπbH(1)
b−1(2

√
z) (Im z > 0),

(9.74)

lim
nr→∞

M (−a, b,∓z/nr) /Γ(b) = z−
1
2
(b−1)

{

Ib−1(2
√
z)

Jb−1(2
√
z),

(9.75)

and obtain the radial wave functions directly from (9.51) and (9.75):

Rnrl(r)
nr−−−→∞

−−−→ Cnrl(Mωr2/h̄)(µ/2+1/2)
(

k2r2/2
)−µ/2

Γ(1 + µ)Jµ(kr), (9.76)

where

Cnrl

nr−−−→∞

−−−→
√
2
(

E

2h̄ω

)µ/2 1

Γ(1 + µ)
. (9.77)

Hence
Rnrl(r)

nr−−−→∞

−−−→ r1/2
√

Mω/h̄
√
2Jµ(kr). (9.78)

9M. Abramowitz and I. Stegun, op. cit., Formulas 13.3.1–13.3.4.
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Inserting these wave functions into the radial time evolution amplitude

(rbτb|raτa)l =
∑

nr

Rnrl(rb)Rnrl(rb)e
−En(τb−τa)/h̄, (9.79)

and replacing the sum over nr by the integral
∫∞
0 dk h̄k/Mω [in accordance with

the nr → ∞ limit of Enr
= ωh̄(2nr + l +D/2) → h̄2k2/2M ], we obtain the spectral

representation of the free-particle propagator

(rbτb|raτa)µ =
√
rbra

∫ ∞

0
dk kJµ(krb)Jµ(kra)e

− h̄k2

2M
(τb−τa). (9.80)

For comparison, we derive the same results directly from the initial spectral
representation (9.2) in one dimension

(xbτb|xaτa) =
∫ ∞

−∞

dk

2π
exp

[

ik(xb − xa)−
h̄k2

2M
(τb − τa)

]

. (9.81)

Its “angular decomposition” is a decomposition with respect to even and odd wave
functions

(rbτb|raτa)e,ø =
∫ ∞

0

dk

π
[cos k(rb − ra)± cos k(rb + ra)]e

− h̄k2

2M
(τb−τa)

= 2
∫ ∞

0

dk

π

{

cos krb cos kra
sin krb sin kra

}

e−
h̄k2

2M
(τb−τa). (9.82)

In D dimensions we use the expansion (8.100) for eikx to calculate the amplitude in
the radial form

(xbτb|xaτa) =
∫

dDk

(2π)D
eik(xb−xa)e−

h̄k2

2M
(τb−τa)

=
1

(2π)D/2

∫ ∞

0
dkk2ν

1

(kR)ν
Jν(kR)e

− h̄k2

2M
(τb−τa), (9.83)

with ν ≡ D/2 − 1. With the help of the addition theorem for Bessel functions10

(8.188) we rewrite

1

(kR)ν
Jν(kR) =

2νΓ(ν)

(k2rbra)ν

∞
∑

l=0

(ν + l)Jν+l(krb)Jν+l(kra)C
(ν)
l (∆ϑ) (9.84)

and expand further according to

1

(kR)ν
Jν(kR) =

(2π)D/2

(k2rbra)ν

∞
∑

l=0

Jν+l(krb)Jν+l(kra)
∑

m

Ylm(x̂b)Y
∗
lm(x̂a), (9.85)

to obtain the radial amplitude

(rbτb|raτa)l =
√
rbra

∫ ∞

0
dkkJν+l(krb)Jν+l(kra)e

− h̄k2

2M
(τb−τa), (9.86)

10I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 8.532.
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just as in (9.80).
For D = 1, this reduces to (9.82) using the particular Bessel functions

√
zJ∓1/2(z) =

2√
2π

{

cos z
sin z

}

. (9.87)

9.4 Charged Particle in Uniform Magnetic Field

Let us also find the wave functions of a charged particle in a magnetic field. The
amplitude was calculated in Section 2.18. Again we work with the imaginary-time
version. Factorizing out the free motion along the direction of the magnetic field,
we write

(xbτb|xaτa) = (zbτb|zaτa)(x⊥
b τb|x⊥

a τa), (9.88)

with

(zbτb|zaτa) =
1

√

2πh̄(τb − τa)/M
exp

{

−M
2h̄

(zb − za)
2

τb − τa

}

, (9.89)

and have for the amplitude in the transverse direction

(x⊥
b τb|x⊥

a τa) =
M

2πh̄(τb − τa)

ω(τb − τa)/2

sinh [ω(τb − τa)/2]
exp

[

−A⊥
l /h̄

]

, (9.90)

with the classical transverse action

A⊥
l =

Mω

2

{

1
2 coth [ω(τb − τa)/2] (x

⊥
b − x⊥

a )
2 + x⊥

a × x⊥
b

}

. (9.91)

This result is valid if the vector potential is chosen as

A =
1

2
B× x. (9.92)

In the other gauge with
A = (0, Bx, 0), (9.93)

there is an extra surface term, and A⊥
cl is replaced by

Ã⊥
cl = A⊥

cl +
Mω

2
(xbyb − xaya). (9.94)

The calculation of the wave functions is quite different in these two gauges. In the
gauge (9.93) we merely recall the expressions (2.663) and (2.665) and write down
the integral representation

(x⊥
b τb|x⊥

a τa) =
∫

dpy
2πh̄

eipy(yb−ya)/h̄(xbτb|xaτa)x0=py/Mω, (9.95)

with the oscillator amplitude in the x-direction

(xbτb|xaτa)x0
=

√

Mω

2πh̄ sinh[ω(τb − τa)]
exp

(

−1

h̄
Aos

cl

)

, (9.96)
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and the classical oscillator action centered around x0

Aos
cl =

Mω

2 sinh[ω(τb − τa)]
{[(xb − x0)

2 + (xa − x0)
2] cosh[ω(τb − τb)]

− 2(xb − x0)(xa − x0)}. (9.97)

The spectral representation of the amplitude (9.96) is then

(xaτb|xaτa)x0
=

∞
∑

n=0

ψn(xb − x0)ψn(xa − x0)e
−(n+ 1

2)ω(τb−τa), (9.98)

where ψn(x) are the oscillator wave functions (2.302). This leads to the spectral
representation of the full amplitude (9.88)

(xbτb|xaτa) =
∫ dpz

2πh̄

∫ dpy
2πh̄

eipz(zb−za)/h̄ (9.99)

×
∞
∑

n=0

ψn(xb − py/Mω)ψn(xa − py/Mω)e−(n+ 1
2
)ω(τb−τa).

The combination of a sum and two integrals exhibits the complete set of wave
functions of a particle in a uniform magnetic field. Note that the energy

En = (n+ 1
2)h̄ω (9.100)

is highly degenerate; it does not depend on py.
In the gauge A = 1

2
B × x, the spectral decomposition looks quite different.

To derive it, the transverse Euclidean action is written down in radial coordinates
[compare Eq. (2.669)] as

A⊥
cl =

M

2

{

ω

2
coth [ω(τb − τa)/2]

[

rb
2 + ra

2 − 2rbra cos(ϕb − ϕa)
]

− iωrbra sin(ϕb − ϕa)
}

. (9.101)

This can be rearranged to

A⊥
cl =

M

2

ω

2
coth [ω(τb − τa)/2] (rb

2 + ra
2)

−M
2

ω

sinh [ω(τb − τa)/2]
cos [ϕb − ϕa − iω(τb − τa)/2] . (9.102)

We now expand e−A⊥

cl
/h̄ into a series of Bessel functions using (8.5)

e−A⊥

cl
/h̄ = exp

{

−M
2h̄

ω

2
coth [ω(τb − τa)/2] (rb

2 + ra
2)
}

(9.103)

×
∞
∑

m=−∞

Im

(

Mω

2h̄

rbra
sinh [ω(τb − τa)/2]

)

emω(τb−τa)/2eim(ϕb−ϕa).
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The fluctuation factor is the same as before. Hence we obtain the angular decom-
position of the transverse amplitude

(x⊥
b τb|x⊥

a τa) =
1√
rbra

∑

m

(rbτb|raτa)m
1

2π
eim(ϕb−ϕa), (9.104)

where

(rbτb|raτa)m =
√
rbra

Mω

2h̄η

η

sinh η
exp

[

−M
2h̄

ω

2
coth η(r2b + r2a)

]

Im

(

Mωrbra
2h̄ sinh η

)

emη,

(9.105)

with

η ≡ ω(τb − τa)/2. (9.106)

To find the spectral representation we go to the fixed-energy amplitude

(rb|ra)m,E = −i
∫ ∞

τa
dτbe

E(τb−τa)/h̄ (rbτb|raτa)m (9.107)

= −i√rbra
M

h̄

∫ ∞

0
dη e2νη

1

sinhη
e−(Mω/4h̄) coth η(r2

b
+r2a)Im

(

Mωrbra
2h̄sinhη

)

.

The integral is done with the help of formula (9.29) and yields

(rb|ra)m,E = −i√rbra
M

h̄

Γ
(

1
2
− ν + |m|

2

)

(Mω/2h̄)rbraΓ(|m|+ 1)

×Wν,|m|/2

(

Mω

2h̄
r2b

)

Mν,|m|/2

(

Mω

2h̄
r2a

)

, (9.108)

with

ν ≡ E

ωh̄
+
m

2
. (9.109)

The Gamma function Γ(1/2− ν − |m|/2) has poles at

ν = νr ≡ nr +
1

2
+

|m|
2

(9.110)

of the form

Γ(1/2− ν − |m|/2) ≈ − 1

nr!

(−1)nr

ν − νr
∼ −(−1)nr

nr!

ωh̄

E − Enrm
. (9.111)

The poles lie at the energies

Enrm = h̄ω

(

nr +
1

2
+

|m|
2

− m

2

)

. (9.112)
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These are the well-known Landau levels of a particle in a uniform magnetic field.
The Whittaker functions at the poles are (for m > 0)

M−ν,m/2(z) = ez/2z
1+m

2 M(−nr, 1 +m,−z), (9.113)

Wν,m/2(z) = e−z/2z
1+m

2 (−)nr
(nr +m)!

m!
M(−nr, 1 +m, z). (9.114)

The fixed-energy amplitude near the poles is therefore

(rb|ra)m,E ∼ ih̄

E −Enrm
Rnrm(rb)Rnrm(ra), (9.115)

with the radial wave functions11

Rnrm(r) =
√
r
(

Mω

h̄

)1/2
√

(nr + |m|)!
nr!

1

|m|! (9.116)

× exp
(

−Mω

4h̄
r2
)(

Mω

2h̄
r2
)|m|/2

M
(

−nr, 1 + |m|, Mω

2h̄
r2
)

.

Using Eq. (9.53), they can be expressed in terms of Laguerre polynomials Lα
n(z):

Rnrm =
√
r
(

Mω

h̄

)1/2
√

nr!

(nr + |m|)! exp
(

−Mω

4h̄
r2
)

×
(

Mω

2h̄
r2
)|m|/2

L|m|
nr

(

Mω

2h̄
r2
)

. (9.117)

The integral (9.54) ensures the orthonormality of the radial wave functions

∫ ∞

0
drRnrm(r)Rn′

rm(r) = δnrn′
r
. (9.118)

A Laplace transformation of the fixed-energy amplitude (9.108) gives, via the residue
theorem, the spectral representation of the radial time evolution amplitude

(rbτb|raτa) =
∑

nrm

Rnrm(rb)Rnrm(ra)e
−Enrm(τb−τa)/h̄, (9.119)

with the energies (9.112). The full wave functions in the transverse subspace are, of
course,

ψnrm(x) =
1√
r
Rnrm(r)

eimϕ

√
2π
. (9.120)

Comparing the energies (9.112) with (9.100), we identify the principal quantum
number n as

n ≡ nr +
|m|
2

− m

2
. (9.121)

11Compare with L.D. Landau and E.M. Lifshitz, Quantum Mechanics , Pergamon, London, 1965,
p. 427.
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Note that the infinite degeneracy of the energy levels observed in (9.100) with respect
to py is now present with respect tom. This energy does not depend onm form ≥ 0.
The somewhat awkward m-dependence of the energy can be avoided by introducing,
instead of m, another quantum number n′ related to n,m by

m = n′ − n. (9.122)

The states are then labeled by n, n′ with both n and n′ taking the values 0, 1, 2, 3, . . . .
For n′ < n, one has n′ = nr and m = n′ − n < 0, whereas for n′ ≥ n one has n = nr

and m = n′ − n ≥ 0. There exists a natural way of generating the wave functions
ψnrm(x) such that they appear immediately with the quantum numbers n, n′. For
this we introduce the Landau radius

a =

√

2h̄

Mω
=

√

2h̄c

eB
(9.123)

as a length parameter and define the dimensionless transverse coordinates

z = (x+ iy)/
√
2a, z∗ = (x− iy)/

√
2a. (9.124)

It is then possible to prove that the ψnrm’s coincide with the wave functions

ψn,n′(z, z∗) = Nn,n′ez
∗z

(

− 1√
2
∂z∗

)n (

− 1√
2
∂z

)n′

e−2z∗z. (9.125)

The normalization constants are obtained by observing that the differential opera-
tors

ez
∗z

(

− 1√
2
∂z∗

)

e−z∗z =
1√
2
(−∂z∗ + z),

ez
∗z

(

− 1√
2
∂z

)

e−z∗z =
1√
2
(−∂z + z∗) (9.126)

behave algebraically like two independent creation operators

â† =
1√
2
(−∂z∗ + z),

b̂† =
1√
2
(−∂z + z∗), (9.127)

whose conjugate annihilation operators are

â =
1√
2
(∂z + z∗),

b̂ =
1√
2
(∂z∗ + z). (9.128)
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The ground state wave function annihilated by these is

ψ0,0(z, z
∗) = 〈z, z∗|0〉 ∝ e−z∗z. (9.129)

We can therefore write the complete set of wave functions as

ψn,n′(z, z∗) = Nnn′ â†nb̂†n
′

ψ0,0(z, z
∗). (9.130)

Using the fact that â†∗ = b̂†, b̂†∗ = â†, and that partial integrations turn b̂†, â† into
â, b̂, respectively, the normalization integral can be rewritten as

∫

dx dy ψn1,n′
1
(z, z∗)ψn2,n′

2
(z, z∗)

= Nn1n′
1
Nn2n′

2

∫

dxdy
[

(a†)n1(b†)n
′
1e−z∗z

] [

(a†)n2(b†)n
′
2e−z∗z

]

= Nn1n′
1
Nn2n′

2

∫

dxdye−2z∗z
(

an1bn
′
1a†n2b†n

′
2

)

. (9.131)

Here the commutation relations between â†, b̂†, â, b̂ serve to reduce the parentheses
in the last line to

n1!n2! δn1n′
1
δn2n′

2
. (9.132)

The trivial integral
∫

dxdy e−2z∗z = π
∫

dr2 e−r2/a2 = πa2 (9.133)

shows that the normalization constants are

Nn,n′ =
1√

πa2n!n′!
. (9.134)

Let us prove the equality of ψnrm and ψn,n′ up to a possible overall phase. For this we
first observe that z, ∂z∗ and z∗, ∂z carry phase factors eiϕ and e−iϕ, respectively, so
that the two wave functions have obviously the azimuthal quantum number m = n−
n′. Second, we make sure that the energies coincide by considering the Schrödinger
equation corresponding to the action (2.643)

1

2M

(

−ih̄∇− e

c
A

)2

ψ = Eψ. (9.135)

In the gauge where
A = (0, Bx, 0),

it reads

− h̄2

2M

[

∂x
2 + (∂y − i

eB

c
x)2 + ∂z

2
]

ψ = Eψ, (9.136)

and the wave functions can be taken from Eq. (9.99). In the gauge where

A = (−By/2, Bx/2, 0) , (9.137)
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on the other hand, the Schrödinger equation becomes, in cylindrical coordinates,

[

− h̄2

2M

(

∂2r +
1

r
∂r +

1

r2
∂2ϕ + ∂2z

)

− ieh̄B

2Mc
∂ϕ +

e2B2

8Mc2
r2
]

ψ(r, z, ϕ)

= Eψ(r, z, ϕ). (9.138)

Employing a reduced radial coordinate ρ = r/a and factorizing out a plane wave in
the z-direction, eipzz/h̄, this takes the form

[

∂2ρ +
1

ρ
∂ρ +

a2

h̄2
(2ME − p2z)− ρ2 − 2i∂ϕ − 1

ρ2
∂2ϕ

]

ψ(r, ϕ) = 0. (9.139)

The solutions are

ψnrm(r, ϕ) ∝ eimϕe−ρ2/2ρ|m|/2M
(

−nr, |m|+ 1

2
, ρ
)

, (9.140)

where the confluent hypergeometric functions M
(

−nr, |m|+ 1
2
, ρ
)

are polynomials
for integer values of the radial quantum number

nr = n+
1

2
m− 1

2
|m| − 1

2
, (9.141)

as in (9.116). The energy is related to the principal quantum number by

n+
1

2
≡ a2

h̄2

(

2ME − p2z
)

. (9.142)

Since
2Ma2

h̄2
=

1

h̄ω
, (9.143)

the energy is

E =
(

n +
1

2

)

h̄ω +
p2z
2M

. (9.144)

We now observe that the Schrödinger equation (9.139) can be expressed in terms of
the creation and annihilation operators (9.127), (9.128) as

4

[

−(a†a + 1/2) +
1

h̄ω

(

E − p2z
2M

)]

ψ(z, z∗) = 0. (9.145)

This proves that the algebraically constructed wave functions ψn,n′ in (9.130) coin-
cide with the wave functions ψnrm of (9.116) and (9.140), up to an irrelevant phase.
Note that the energy depends only on the number of a-quanta; it is independent of
the number of b-quanta.
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9.5 Dirac δ -Function Potential

For a particle in a Dirac δ-function potential, the fixed-energy amplitudes (xb|xa)E
can be calculated by performing a perturbation expansion around a free-particle am-
plitude and summing it up exactly. For any time-independent potential V (x), in ad-
dition to a harmonic potential Mω2x2/2, the perturbation expansion in Eq. (3.478)
can be Laplace-transformed in the imaginary time via (9.3) to find

(xb|xa)E = (xb|xa)ω,E − i

h̄

∫

dDx1(xb|x1)ω,EV (x1)(x1|xa)ω,E

+ − 1

h̄2

∫

dDx2

∫

dDx1(xb|x2)ω,EV (x2)(x2|x1)ω,EV (x1)(x1|xa)ω,E

+ . . . . (9.146)

If the potential is a Dirac δ-function centered around X,

V (x) = g δ(D)(x−X), g ≡ h̄2

Ml2−D
, (9.147)

this series simplifies to

(xb|xa)E=(xb|xa)ω,E−
ig

h̄
g(xb|X)ω,E(X|xa)ω,E−

g2

h̄2
(xb|X)ω,E(X|X)ω,E(X|xa)ω,E+. . . ,

(9.148)

and can be summed up to

(xb|xa)E = (xb|xa)ω,E − i
g

h̄

(xb|X)ω,E(X|xa)ω,E

1 + i
g

h̄
(X|X)ω,E

. (9.149)

This is, incidentally, true if a δ-function potential is added to an arbitrary solvable
fixed-energy amplitude, not just the harmonic one.

If the δ-function is the only potential, we use formula (9.149) with ω = 0, so
that (xb|xa)0,E reduces to the fixed-energy amplitude (9.12) of a free particle, and
obtain directly

(xb|xa)E = −2i
M

h̄

κD−2

(2π)D/2

KD/2−1(κR)

(κR)D/2−1

− ig

h̄

i
2M

h̄

κD−2

(2π)D/2

KD/2−1(κRb)

(κRb)D/2−1
× i

2M

h̄

κD−2

(2π)D/2

KD/2−1(κRa)

(κRa)D/2−1

1− g

h̄

2M

h̄

κD−2

πD/2

KD/2−1(κδ)

(κδ)D/2−1

, (9.150)

where R ≡ |xb − xa| and Ra,b ≡ |xa,b − X|, and δ is an infinitesimal distance
regularizing a possible singularity at zero-distance. In D = 1 dimension, this reduces
to

(xb|xa)E = −iM
h̄

1

κ
e−κR + i

M

h̄κ
eκ(Rb+Ra)

1

lκ+ 1
, (9.151)
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For an attractive potential with l < 0, the second term can be written as

−i 1

κl2
h̄

E + h̄2/2Ml2
eκ(Rb+Ra), (9.152)

exhibiting a pole at the bound-state energy EB = −h̄/2Ml2. In its neighborhood,
the pole contribution reads

2

l
e−(Rb+Ra)/l

ih̄

E + h̄2/2Ml2
. (9.153)

This has precisely the spectral form (1.325) with the normalized bound-state wave
function

ψB(x) =

√

2

l
e−|x−X|/l. (9.154)

In D = 3 dimensions, the amplitude (9.150) becomes

(xb|xa)E = −iM
h̄

1

2πR
e−κR + i

M

h̄

eκRb

2πRb

eκRa

2πRa

1

1/l + e−κδ/2πδ
. (9.155)

In the limit δ → 0, the denominator requires renormalization. We introduce a
renormalized coupling length scale

1

lr
≡ 1 +

1

2πδ
, (9.156)

and rewrite the last factor in (9.155) as

1

1/lr − κ/2π
. (9.157)

For lr < 0, this has a pole at the bound-state energy EB = −4π2h̄2/2Ml2R of the
form

−lrEB
1

E −EB

. (9.158)

The total pole term in (9.155) can therefore be written as

ψB(xb)ψ
∗
B(xa)

ih̄

E − EB

, (9.159)

with κB =
√
2MEB/h̄ = 2π/lr and the normalized bound-state wave functions

ψB(x) =

(

κ2B
4π2

)1/4
e−κB|x−X|

r
. (9.160)
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In D = 2 dimensions, the situation is more subtle. It is useful to consider the
amplitude (9.150) in D = 2 + ǫ dimensions where one has

(xb|xa)E = −iM
h̄

1

π

Kǫ/2(κR)

(2πκR)ǫ/2

+ i
M2

h̄2π2

1

(2πκRb)ǫ/2
1

(2πκRa)ǫ/2
Kǫ/2(κRb)Kǫ/2(κRa)

h̄

g
+
M

h̄π

1

(2πκδ)ǫ/2
Kǫ/2(κǫ)

. (9.161)

Inserting here Kǫ/2(κδ) ≈ (1/2)Γ(ǫ/2)(κδ/2)−ǫ/2, the denominator becomes

h̄

g
+

M

2h̄π

Γ(ǫ/2)

(πκδ)ǫ/2
≈ h̄

g
+

M

2h̄π

2

ǫ

[

1− ǫ

2
log(πκδ)

]

. (9.162)

Here we introduce a renormalized coupling constant

1

gr
=

1

g
+
M

h̄2
1

ǫ
, (9.163)

and rewrite the right-hand side as

h̄

gr
− M

2h̄π
log πκδ. (9.164)

This has a pole at

κB =
1

πδ
e2h̄

2π/Mgr , (9.165)

indicating a bound-state pole of energy EB = −h̄2κ2B/2M .
We can now go to the limit of D = 2 dimensions and find that the pole term in

(9.161) has the form

ψB(xb)ψ
∗
B(xa)

ih̄

E −EB
, (9.166)

with the normalized bound-state wave function

ψB(x) =
κB√
π
K0(κB|x−X|). (9.167)

Notes and References

The wave functions derived in this chapter from the time evolution amplitude should be compared
with those given in standard textbooks on quantum mechanics, such as
L.D. Landau and E.M. Lifshitz, Quantum Mechanics , Pergamon, London, 1965. The charged
particle in a magnetic field is treated in §111.
The δ-function potential was studied via path integrals by
C. Grosche, Phys. Rev. Letters, 71, 1 (1993).
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Make not my paths o�ensive to the Gods

Aeshylos (524BC{455BC), Agamemnon

10

Spaes with Curvature and Torsion

The path integral of a free partile in spherial oordinates has taught us an im-

portant lesson: In a Eulidean spae, we were able to obtain the orret time-slied

amplitude in urvilinear oordinates by setting up the slied ation in Cartesian

oordinates x

i

and transforming them to the spherial oordinates q

�

= (r; �; �). It

was ruial to do the transformation at the level of the �nite oordinate di�erenes,

�x

i

! �q

�

. This produed higher-order terms in the di�erenes �q

�

whih had

to be inluded up to the order (�q)

4

=�. They all ontributed to the relevant order

�. It is obvious that as long as the spae is Eulidean, the same proedure an be

used to �nd the path integral in an arbitrary urvilinear oordinate system q

�

, if we

ignore subtleties arising near oordinate singularities whih are present in entrifu-

gal barriers, angular barriers, or Coulomb potentials. For these, a speial treatment

will be developed in Chapters 12{14.

We are now going to develop an entirely nontrivial but quite natural extension

of this proedure and de�ne a path integral in an arbitrary metri-aÆne spae with

urvature and torsion. It must be emphasized that the quantum theory in suh

spaes is not uniquely de�ned by the formalism developed so far. The reason is

that also the original Shr�odinger theory whih was used in Chapter 2 to justify the

introdution of path integrals is not uniquely de�ned in suh spaes. In lassial

physis, the equivalene priniple postulated by Einstein is a powerful tool for de-

duing equations of motion in urved spae from those in at spae. At the quantum

level, this priniple beomes insuÆient sine it does not forbid the appearane of ar-

bitrary oordinate-independent terms proportional to Plank's quantum �h

2

and the

salar urvature R to appear in the Sh�odinger equation. We shall set up a simple

extension of Einstein's equivalene priniple whih will allow us to arry quantum

theories from at to urved spaes whih are, moreover, permitted to arry ertain

lasses of torsion.

In suh spaes, not only the time-slied ation but also the measure of path

integration requires a speial treatment. To be valid in general it will be neessary

to �nd onstrution rules for the time evolution amplitude whih do not involve the

ruth of Cartesian oordinates. The �nal formula will be purely intrinsi to the

general metri-aÆne spae [1℄.

781
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A ruial test of the validity of the resulting path integral formula will ome

from appliations to systems whose orret operator quantum mehanis is known

on the basis of symmetries and group ommutation rules rather than anonial

ommutation rules. In ontrast to earlier approahes, our path integral formula will

always yield the same quantum mehanis as operator quantum mehanis quantized

via group ommutation rules.

Our formula an, of ourse, also be used for an alternative approah to the path

integrals solved before in Chapter 8, where a Eulidean spae was parametrized in

terms of urvilinear oordinates. There it gives rise to a more satisfatory treatment

than before, sine it involves only the intrinsi variables of the oordinate systems.

10.1 Einstein's Equivalene Priniple

To motivate the present study we invoke Einstein's equivalene priniple, aording

to whih gravitational fores upon a spinless mass point are indistinguishable from

those felt in an aelerating loal referene.

1

They are independent of the atomi

omposition of the partile and stritly proportional to the value of the mass, the

same mass that appears in the relation between fore and aeleration, in Newton's

seond law. The strit equality between the two masses, gravitational and inertial,

is fundamental to Einstein's equivalene priniple. Experimentally, the equality

holds to an extremely high degree of auray. Any possible small deviation an

presently be attributed to extra non-gravitational fores. Einstein realized that as

a onsequene of this equality, all spinless point partiles move in a gravitational

�eld along the same orbits whih are independent of their omposition and mass.

This universality of orbital motion permits the gravitational �eld to be attributed

to geometri properties of spaetime.

In Newton's theory of gravity, the gravitational fores between mass points are

inversely proportional to their distanes in a Eulidean spae. In Einstein's geomet-

ri theory the fores are explained entirely by a urvature of spaetime. In general

the spaetime of general relativity may also arry another geometri property, alled

torsion. Torsion is supposed to be generated by the spin densities of material bodies.

Quantitatively, this may have only extremely small e�ets, too small to be deteted

by present-day experiments. But this is only due to the small intrinsi spin of ordi-

nary gravitational matter. In exeptional states of matter suh as polarized neutron

stars or blak holes, torsion an beome relevant. It is now generally aepted that

spaetime should arry a nonvanishing torsion at least loally at those points whih

are oupied by spinning elementary partiles [55℄. This follows from rather general

symmetry onsiderations. The preise equations of motion for the torsion �eld, on

the other hand, are still a matter of speulation. Thus it is an open question whether

1

Quotation from his original paper

�

Uber das Relativit�atsprinzip und die aus demselben gezoge-

nen Folgerungen, Jahrbuh der Relativit�at und Elektonik 4 , 411 (1907): \Wir : : : wollen daher

im folgenden die v�ollige physikalishe Gleihwertigkeit von Gravitationsfeld und entsprehender

Beshleunigung des Bezugssystems annehmen".

H. Kleinert, PATH INTEGRALS



10.2 Classial Motion of Mass Point in General Metri-AÆne Spae 783

or not the torsion �eld is able to propagate into the empty spae away from spinning

matter.

Even though the e�ets of torsion are small we shall keep the disussion as

general as possible and study the motion of a partile in a metri-aÆne spae with

both urvature and torsion. To prepare the grounds let us �rst reapitulate a few

basi fats about lassial orbits of partiles in a gravitational �eld. For simpliity,

we assume here only the three-dimensional spae to have a nontrivial geometry.

2

Then there is a natural hoie of a time variable t whih is onveniently used to

parametrize the partile orbits.

Starting from the free-partile ation we shall then introdue a path integral

for the time evolution amplitude in any metri-aÆne spae whih determines the

quantum mehanis via the quantum utuations of the partile orbits.

10.2 Classial Motion of Mass Point in General

Metri-AÆne Spae

On the basis of the equivalene priniple, Einstein formulated the rules for �nding

the lassial laws of motion in a gravitational �eld as a onsequene of the geometry

of spaetime. Let us reapitulate his reasoning adapted to the present problem of a

nonrelativisti point partile in a non-Eulidean geometry.

10.2.1 Equations of Motion

Consider �rst the ation of the partile along the orbit x(t) in a at spae

parametrized with retilinear, Cartesian oordinates:

A =

Z

t

b

t

a

dt

M

2

( _x

i

)

2

; i = 1; 2; 3: (10.1)

It is transformed to urvilinear oordinates q

�

; � = 1; 2; 3, via some funtions

x

i

= x

i

(q); (10.2)

leading to

A =

Z

t

b

t

a

dt

M

2

g

��

(q) _q

�

_q

�

; (10.3)

where

g

��

(q) = �

�

x

i

(q)�

�

x

i

(q) (10.4)

is the indued metri for the urvilinear oordinates. Repeated indies are under-

stood to be summed over, as usual.

2

The generalization to non-Eulidean spaetime will be obvious after the development in Chap-

ter 19.
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The length of the orbit in the at spae is given by

l =

Z

t

b

t

a

dt

q

g

��

(q) _q

�

_q

�

: (10.5)

Both the ation (10.3) and the length (10.5) are invariant under arbitrary

reparametrizations of spae q

�

! q

0�

.

Einstein's equivalene priniple amounts to the postulate that the transformed

ation (10.3) desribes diretly the motion of the partile in the presene of a gravi-

tational �eld aused by other masses. The fores aused by the �eld are all a result

of the geometri properties of the metri tensor.

The equations of motion are obtained by extremizing the ation in Eq. (10.3)

with the result

�

t

(g

��

_q

�

)�

1

2

�

�

g

��

_q

�

_q

�

= g

��

�q

�

+

�

�

���

_q

�

_q

�

= 0: (10.6)

Here

�

�

���

�

1

2

(�

�

g

��

+ �

�

g

��

� �

�

g

��

) (10.7)

is the Riemann onnetion or Christo�el symbol of the �rst kind [reall (1.70)℄. With

the help of the Christo�el symbol of the seond kind [reall (1.71)℄

�

�

�

��

� g

��

�

�

���

; (10.8)

we an write

�q

�

+

�

�

�

��

_q

�

_q

�

= 0: (10.9)

The solutions of these equations are the lassial orbits. They oinide with the

extrema of the length of a line l in (10.5). Thus, in a urved spae, lassial orbits

are the shortest lines, the geodesis [reall (1.72)℄.

The same equations an also be obtained diretly by transforming the equation

of motion from

�x

i

= 0 (10.10)

to urvilinear oordinates q

�

, whih gives

�x

i

=

�x

i

�q

�

�q

�

+

�

2

x

i

�q

�

�q

�

_q

�

_q

�

= 0: (10.11)

At this plae it is again useful to employ the quantities de�ned in Eq. (1.361), the

basis triads and their reiproals

e

i

�

(q) �

�x

i

�q

�

; e

i

�

(q) �

�q

�

�x

i

; (10.12)
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whih satisfy the orthogonality and ompleteness relations (1.362):

e

i

�

e

i

�

= Æ

�

�

; e

i

�

e

j

�

= Æ

i

j

: (10.13)

The indued metri an then be written as

g

��

(q) = e

i

�

(q)e

i

�

(q): (10.14)

Labeling Cartesian oordinates, upper and lower indies i are the same. The indies

�; � of the urvilinear oordinates, on the other hand, an be lowered only by on-

tration with the metri g

��

or raised with the inverse metri g

��

� (g

��

)

�1

. Using

the basis triads, Eq. (10.11) an be rewritten as

d

dt

(e

i

�

_q

�

) = e

i

�

�q

�

+ �

�

e

i

�

_q

�

_q

�

= 0;

or as

�q

�

+ e

i

�

�

�

e

i

�

_q

�

_q

�

= 0: (10.15)

The quantity in front of _q

�

_q

�

is alled the aÆne onnetion:

�

��

�

= e

i

�

�

�

e

i

�

: (10.16)

Due to (10.13), it an also be written as [ompare (1.370)℄

�

��

�

= �e

i

�

�

�

e

i

�

: (10.17)

Thus we arrive at the transformed at-spae equation of motion

�q

�

+ �

��

�

_q

�

_q

�

= 0: (10.18)

The solutions of this equation are alled the straightest lines or autoparallels.

If the oordinate transformation funtions x

i

(q) are smooth and single-valued,

their derivatives ommute as required by Shwarz's integrability ondition

(�

�

�

�

� �

�

�

�

)x

i

(q) = 0: (10.19)

Then the triads satisfy the identity

�

�

e

i

�

� �

�

e

i

�

= 0; (10.20)

implying that the onnetion �

��

�

is symmetri in the lower indies. In fat, it

oinides with the Riemann onnetion, the Christo�el symbol

�

�

�

��

. This follows

immediately after inserting g

��

(q) = e

i

�

(q)e

i

�

(q) into (10.7) and working out all

derivatives using (10.20). Thus, for a spae with urvilinear oordinates q

�

whih

an be reahed by an integrable oordinate transformation from a at spae, the

autoparallels oinide with the geodesis.
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10.2.2 Nonholonomi Mapping to Spaes with Torsion

It is possible to map the x-spae loally into a q-spae with torsion via an in�nites-

imal transformation

dx

i

= e

i

�

(q)dq

�

: (10.21)

We merely have to assume that the oeÆient funtions e

i

�

(q) do not satisfy the

property (10.20) whih follows from the Shwarz integrability ondition (10.19):

�

�

e

i

�

(q)� �

�

e

i

�

(q) 6= 0; (10.22)

implying that seond derivatives in front of x

i

(q) do not ommute as in Eq. (10.19):

(�

�

�

�

� �

�

�

�

)x

i

(q) 6= 0: (10.23)

In this ase we shall all the di�erential mapping (10.21) nonholonomi, in analogy

with the nomenlature for nonintegrable onstraints in lassial mehanis. The

property (10.23) implies that x

i

(q) is a multivalued funtion x

i

(q), of whih we shall

give typial examples below in Eqs. (10.44) and (10.55).

Eduated readers in mathematis have been wondering whether suh nonholo-

nomi oordinate transformations make any sense. They will understand this on-

ept better if they ompare the situation with the quite similar but muh simpler

reation of magneti �eld in a �eld-free spae by nonholonomi gauge transforma-

tions. More details are explained in Appendix 10A.

From Eq. (10.22) we see that the image spae of a nonholonomi mapping arries

torsion. The onnetion �

��

�

= e

i

�

e

i

�;�

has a nonzero antisymmetri part, alled

the torsion tensor :

3

S

��

�

=

1

2

(�

��

�

� �

��

�

) =

1

2

e

i

�

�

�

�

e

i

�

� �

�

e

i

�

�

: (10.24)

In ontrast to �

��

�

, the antisymmetri part S

��

�

is a proper tensor under general

oordinate transformations. The ontrated tensor

S

�

� S

��

�

(10.25)

transforms like a vetor, whereas the ontrated onnetion �

�

� �

��

�

does not.

Even though �

��

�

is not a tensor, we shall freely lower and raise its indies using

ontrations with the metri or the inverse metri, respetively: �

�

�

�

� g

��

�

��

�

,

�

�

�

�

� g

��

�

��

�

, �

���

� g

��

�

��

�

. The same thing will be done with

�

�

��

�

.

In the presene of torsion, the aÆne onnetion (10.16) is no longer equal to the

Christo�el symbol. In fat, by rewriting �

���

= e

i�

�

�

e

i

�

trivially as

�

���

=

1

2

nh

e

i�

�

�

e

i

�

+ �

�

e

i�

e

i

�

i

+

h

e

i�

�

�

e

i

�

+ �

�

e

i�

e

i

�

i

�

h

e

i�

�

�

e

i

�

+ �

�

e

i�

e

i

�

io

+

1

2

nh

e

i�

�

�

e

i

�

� e

i�

�

�

e

i

�

i

�

h

e

i�

�

�

e

i

�

� e

i�

�

�

e

i

�

i

+

h

e

i�

�

�

e

i

�

� e

i�

�

�

e

i

�

io

(10.26)

3

Our notation for the geometri quantities in spaes with urvature and torsion is the same as

in J.A. Shouten, Rii Calulus , Springer, Berlin, 1954.
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and using e

i

�

(q)e

i

�

(q) = g

��

(q), we �nd the deomposition

�

��

�

=

�

�

�

��

+K

��

�

; (10.27)

where the ombination of torsion tensors

K

���

� S

���

� S

���

+ S

���

(10.28)

is alled the ontortion tensor . It is antisymmetri in the last two indies so that

�

��

�

=

�

�

��

�

: (10.29)

In the presene of torsion, the shortest and straightest lines are no longer equal.

Sine the two types of lines play geometrially an equally favored role, the question

arises as to whih of them desribes the orret lassial partile orbits. Intuitively,

we expet the straightest lines to be the orret trajetories sine massive partiles

possess inertia whih tend to minimize their deviations from a straight line in spae-

time. It is hard to oneive how a partile should know whih path to take at eah

instant in time in order to minimize the path length to a distant point. This would

ontradit the priniple of loality whih pervades all laws of physis. Only in a

spaetime without torsion is this possible, sine there the shortest lines happen to

oinide with straightest ones for purely mathematial reasons. In Subsetion 10.2.3,

the straightest lines will be derived from an ation priniple.

In Einstein's theory of gravitation, matter produes urvature in four-

dimensional Minkowski spaetime, thereby explaining the universal nature of grav-

itational fores. The at spaetime metri is

�

ab

=

0

B

B

B

�

1

�1

�1

�1

1

C

C

C

A

ab

; a; b = 0; 1; 2; 3: (10.30)

The Riemann-Cartan urvature tensor is de�ned as the ovariant url of the aÆne

onnetion:

R

���

�

= �

�

�

��

�

� �

�

�

��

�

� [�

�

;�

�

℄

�

�

; �; �; : : : = 0; 1; 2; 3: (10.31)

The last term is written in a matrix notation for the onnetion, in whih the tensor

omponents �

��

�

are viewed as matrix elements (�

�

)

�

�

. The matrix ommutator in

(10.31) is then equal to

[�

�

;�

�

℄

�

�

� (�

�

�

�

� �

�

�

�

)

�

�

= �

��

�

�

��

�

� �

��

�

�

��

�

: (10.32)

Expressing the aÆne onnetion (10.16) in (10.31) with the help of Eqs. (10.16)

in terms of the four-dimensional generalization of the triads (10.12) and their re-

iproals (10.12), the tetrads e

a

�

and their reiproals e

a

�

, we obtain the ompat

formula

R

���

�

= e

a

�

(�

�

�

�

� �

�

�

�

)e

a

�

: (10.33)
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For the mapping (10.21), this implies that not only the oordinate transformation

x

a

(q), but also its �rst derivatives fail to satisfy Shwarz's integrability ondition:

(�

�

�

�

� �

�

�

�

)�

�

x

a

(q) 6= 0: (10.34)

Suh general transformation matries e

a

�

(q) will be referred to as multivalued basis

tetrads.

A transformation for whih x

a

(q) have ommuting derivatives, while the �rst

derivatives �

�

x

a

(q) = e

i

�

(q) do not, arries a at-spae region into a purely urved

one.

Einstein's original theory of gravity assumes the absene of torsion. The spae

properties are ompletely spei�ed by the Riemann urvature tensor formed from

the Riemann onnetion (the Christo�el symbol)

�

R

�

���

= �

�

�

�

�

��

� �

�

�

�

�

��

� [

�

�

�

;

�

�

�

℄

�

�

: (10.35)

The relation between the two urvature tensors is

R

���

�

=

�

R

�

���

+

�

D

�

K

��

�

�

�

D

�

K

��

�

� [K

�

; K

�

℄

�

�

: (10.36)

In the last term, the K

��

�

's are viewed as matries (K

�

)

�

�

. The symbols

�

D

�

denote

the ovariant derivatives formed with the Christo�el symbol. Covariant derivatives

at like ordinary derivatives if they are applied to a salar �eld. When applied to a

vetor �eld, they at as follows:

�

D

�

v

�

� �

�

v

�

�

�

�

�

��

v

�

;

�

D

�

v

�

� �

�

v

�

+

�

�

�

��

v

�

: (10.37)

The e�et upon a tensor �eld is the generalization of this; every index reeives a

orresponding additive

�

� ontribution.

Note that the Laplae-Beltrami operator (1.371) applied to a salar �eld �(q)

an be written as

� � = g

��

�

D

�

�

D

�

�: (10.38)

In the presene of torsion, there exists another ovariant derivative formed with

the aÆne onnetion �

��

�

rather than the Christo�el symbol whih ats upon a

vetor �eld as

D

�

v

�

� �

�

v

�

� �

��

�

v

�

;

D

�

v

�

� �

�

v

�

+ �

��

�

v

�

: (10.39)

Note by de�nition of �

��

�

in (10.16) and (10.17), the ovariant derivatives of e

i

�

and e

i

�

vanish:

D

�

e

i

�

� �

�

e

i

�

� �

��

�

e

i

�

= 0; D

�

e

i

�

� �

�

e

i

�

+ �

��

�

e

i

�

= 0: (10.40)
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This will be of use later.

From either of the two urvature tensors, R

���

�

and

�

R

�

���

, one an form the

one-ontrated tensors of rank two, the Rii tensor

R

��

= R

���

�

; (10.41)

and the urvature salar

R = g

��

R

��

: (10.42)

The elebrated Einstein equation for the gravitational �eld postulates that the tensor

G

��

� R

��

�

1

2

g

��

R; (10.43)

the so-alled Einstein tensor , is proportional to the symmetri energy-momentum

tensor of all matter �elds. This postulate was made only for spaes with no torsion,

in whih ase R

��

=

�

R

��

and R

��

; G

��

are both symmetri. As mentioned before, it

is not yet lear how Einstein's �eld equations should be generalized in the presene

of torsion sine the experimental onsequenes are as yet too small to be observed.

In this text, we are not onerned with the generation of urvature and torsion but

only with their onsequenes upon the motion of point partiles.

It is useful to set up two simple examples for nonholonomi mappings whih

illustrate the way in whih these are apable of generating urvature and torsion

from a Eulidean spae. The reader not familiar with this subjet is advised to

onsult a textbook on the physis of defets [2℄. where suh mappings are standard

and of great pratial importane; every plasti deformation of a material an only

be desribed in terms of suh mappings.

As a �rst example onsider the transformation in two dimensions

dx

i

=

(

dq

1

for i = 1,

dq

2

+ ��

�

�(q)dq

�

for i = 2,

(10.44)

with an in�nitesimal parameter � and the multi-valued funtion

�(q) � artan(q

2

=q

1

): (10.45)

The triads redue to dyads, with the omponents

e

1

�

= Æ

1

�

;

e

2

�

= Æ

2

�

+ ��

�

�(q) ; (10.46)

and the torsion tensor has the omponents

e

1

�

S

��

�

= 0; e

2

�

S

��

�

=

�

2

(�

�

�

�

� �

�

�

�

)�: (10.47)
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Figure 10.1 Edge disloation in rystal assoiated with missing semi-in�nite plane

of atoms. The nonholonomi mapping from the ideal rystal to the rystal with the

disloation introdues a Æ-funtion type torsion in the image spae.

If we di�erentiate (10.45) formally, we �nd (�

�

�

�

� �

�

�

�

)� � 0. This, however, is

inorret at the origin. Using Stokes' theorem we see that

Z

d

2

q(�

1

�

2

� �

2

�

1

)� =

I

dq

�

�

�

� =

I

d� = 2� (10.48)

for any losed iruit around the origin, implying that there is a Æ-funtion singu-

larity at the origin with

e

2

�

S

12

�

=

�

2

2�Æ

(2)

(q): (10.49)

By a linear superposition of suh mappings we an generate an arbitrary torsion in

the q-spae. The mapping introdues no urvature.

In defet physis, the mapping (10.46) is assoiated with a disloation aused by

a missing or additional layer of atoms (see Fig. 10.1). When enirling a disloation

along a losed path C, its ounter image C

0

in the ideal rystal does not form a

losed path. The losure failure is alled the Burgers vetor

b

i

�

I

C

0

dx

i

=

I

C

dq

�

e

i

�

: (10.50)

It spei�es the diretion and thikness of the layer of additional atoms. With the

help of Stokes' theorem, it is seen to measure the torsion ontained in any surfae

S spanned by C:

b

i

=

I

S

d

2

s

��

�

�

e

i

�

=

I

S

d

2

s

��

e

i

�

S

��

�

; (10.51)

where d

2

s

��

= �d

2

s

��

is the projetion of an oriented in�nitesimal area element

onto the plane ��. The above example has the Burgers vetor

b

i

= (0; �): (10.52)

A orresponding losure failure appears when mapping a losed ontour C in the

ideal rystal into a rystal ontaining a disloation. This de�nes a Burgers vetor:

b

�

�

I

C

0

dq

�

=

I

C

dx

i

e

i

�

: (10.53)
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Figure 10.2 Edge dislination in rystal assoiated with missing semi-in�nite setion of

atoms of angle 
. The nonholonomi mapping from the ideal rystal to the rystal with

the dislination introdues a Æ-funtion type urvature in the image spae.

By Stokes' theorem, this beomes a surfae integral

b

�

=

I

S

d

2

s

ij

�

i

e

j

�

=

I

S

d

2

s

ij

e

i

�

�

�

e

j

�

= �

I

S

d

2

s

ij

e

i

�

e

j

�

S

��

�

; (10.54)

the last step following from (10.17).

As a seond example for a nonholonomi mapping, we generate urvature by the

transformation

x

i

= Æ

i

�

�

q

�

+




2�

�

�

�

q

�

�(q)

�

; (10.55)

with the multi-valued funtion (10.45). The symbol �

��

denotes the antisymmetri

Levi-Civita tensor. The transformed metri

g

��

= Æ

��

�




�

�

��

�

��

q

�

q

�

q

�

q

�

(10.56)

is single-valued and has ommuting derivatives. The torsion tensor vanishes sine

(�

1

�

2

��

2

�

1

)x

1;2

are both proportional to q

2;1

Æ

(2)

(q), a distribution idential to zero.

The loal rotation �eld !(q) �

1

2

(�

1

x

2

� �

2

x

1

), on the other hand, is equal to the

multi-valued funtion �
�(q)=2�, thus having the nonommuting derivatives:

(�

1

�

2

� �

2

�

1

)!(q) = �
Æ

(2)

(q): (10.57)

To lowest order in 
, this determines the urvature tensor, whih in two dimensions

possesses only one independent omponent, for instane R

1212

. Using the fat that

g

��

has ommuting derivatives, R

1212

an be written as

R

1212

= (�

1

�

2

� �

2

�

1

)!(q): (10.58)

In defet physis, the mapping (10.55) is assoiated with a dislination whih

orresponds to an entire setion of angle 
 missing in an ideal atomi array (see

Fig. 10.2).

It is important to emphasize that our multivalued basis tetrads e

a

�

(q) are not

related to the standard tetrads or vierbein �elds h

�

�

(q) used in the theory of gravi-

tation with spinning partiles. The di�erene is explained in Appendix 10B.
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10.2.3 New Equivalene Priniple

In lassial mehanis, many dynamial problems are solved with the help of non-

holonomi transformations. Equations of motion are di�erential equations whih

remain valid if transformed di�erentially to new oordinates, even if the transfor-

mation is not integrable in the Shwarz sense. Thus we postulate that the orret

equations of motion of point partiles in a spae with urvature and torsion are the

images of the equation of motion in a at spae. The equations (10.18) for the

autoparallels yield therefore the orret trajetories of spinless point partiles in a

spae with urvature and torsion.

This postulate is based on our knowledge of the motion of many physial systems.

Important examples are the Coulomb system whih will be disussed in detail in

Chapter 13, and the spinning top in the body-�xed referene system [3℄. Thus the

postulate has a good hane of being true, and will heneforth be referred to as a

new equivalene priniple.

10.2.4 Classial Ation Priniple for Spaes

with Curvature and Torsion

Before setting up a path integral for the time evolution amplitude we must �nd an

ation priniple for the lassial motion of a spinless point partile in a spae with

urvature and torsion, i.e., the movement along autoparallel trajetories. This is a

nontrivial task sine autoparallels must emerge as the extremals of an ation (10.3)

involving only the metri tensor g

��

. The ation is independent of the torsion and

arries only information on the Riemann part of the spae geometry. Torsion an

therefore enter the equations of motion only via some novel feature of the variation

proedure. Sine we know how to perform variations of an ation in the Eulidean

x-spae, we dedue the orret proedure in the general metri-aÆne spae by trans-

ferring the variations Æx

i

(t) under the nonholonomi mapping

_q

�

= e

i

�

(q) _x

i

(10.59)

into the q

�

-spae. Their images are quite di�erent from ordinary variations as il-

lustrated in Fig. 10.3(a). The variations of the Cartesian oordinates Æx

i

(t) are

done at �xed endpoints of the paths. Thus they form losed paths in the x-spae.

Their images, however, lie in a spae with defets and thus possess a losure fail-

ure indiating the amount of torsion introdued by the mapping. This property

will be emphasized by writing the images Æ

S

q

�

(t) and alling them nonholonomi

variations. The supersript indiates the speial feature aused by torsion.

Let us alulate them expliitly. The paths in the two spaes are related by the

integral equation

q

�

(t) = q

�

(t

a

) +

Z

t

t

a

dt

0

e

i

�

(q(t

0

)) _x

i

(t

0

): (10.60)
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For two neighboring paths in x-spae di�ering from eah other by a variation Æx

i

(t),

equation (10.60) determines the nonholonomi variation Æ

S

q

�

(t):

Æ

S

q

�

(t) =

Z

t

t

a

dt

0

Æ

S

[e

i

�

(q(t

0

)) _x

i

(t

0

)℄: (10.61)

A omparison with (10.59) shows that the variation Æ

S

and the time derivatives d=dt

of q

�

(t) ommute with eah other:

Æ

S

_q

�

(t) =

d

dt

Æ

S

q

�

(t); (10.62)

just as for ordinary variations Æx

i

:

Æ _x

i

(t) =

d

dt

Æx

i

(t): (10.63)

Let us also introdue auxiliary nonholonomi variations in q-spae:

�Æq

�

� e

i

�

(q)Æx

i

: (10.64)

In ontrast to Æ

S

q

�

(t), these vanish at the endpoints,

�Æq(t

a

) = �Æq(t

b

) = 0; (10.65)

just as the usual variations Æx

i

(t), i.e., they form losed paths with the unvaried

orbits.

Using (10.62), (10.63), and the fat that Æ

S

x

i

(t) � Æx

i

(t), by de�nition, we derive

from (10.61) the relation

d

dt

Æ

S

q

�

(t) = Æ

S

e

i

�

(q(t)) _x

i

(t) + e

i

�

(q(t))

d

dt

Æx

i

(t)

= Æ

S

e

i

�

(q(t)) _x

i

(t) + e

i

�

(q(t))

d

dt

[e

i

�

(t)�Æq

�

(t)℄: (10.66)

After inserting

Æ

S

e

i

�

(q) = ��

��

�

Æ

S

q

�

e

i

�

;

d

dt

e

i

�

(q) = �

��

�

_q

�

e

i

�

; (10.67)

this beomes

d

dt

Æ

S

q

�

(t) = ��

��

�

Æ

S

q

�

_q

�

+ �

��

�

_q

�

�Æq

�

+

d

dt

�Æq

�

: (10.68)

It is useful to introdue the di�erene between the nonholonomi variation Æ

S

q

�

and

an auxiliary losed nonholonomi variation Æq

�

:

Æ

S

b

�

� Æ

S

q

�

� �Æq

�

: (10.69)
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Then we an rewrite (10.68) as a �rst-order di�erential equation for Æ

S

b

�

:

d

dt

Æ

S

b

�

= ��

��

�

Æ

S

b

�

_q

�

+ 2S

��

�

_q

�

�Æq

�

: (10.70)

After introduing the matries

G

�

�

(t) � �

��

�

(q(t)) _q

�

(t) (10.71)

and

�

�

�

(t) � 2S

��

�

(q(t)) _q

�

(t); (10.72)

equation (10.70) an be written as a vetor di�erential equation:

d

dt

Æ

S

b = �GÆ

S

b + �(t) �Æq

�

(t): (10.73)

Although not neessary for the further development, we solve this equation by

Æ

S

b(t) =

Z

t

t

a

dt

0

U(t; t

0

) �(t

0

) �Æq(t

0

); (10.74)

with the matrix

U(t; t

0

) = T exp

�

�

Z

t

t

0

dt

00

G(t

00

)

�

: (10.75)

In the absene of torsion, �(t) vanishes identially and Æ

S

b(t) � 0, and the varia-

tions Æ

S

q

�

(t) oinide with the auxiliary losed nonholonomi variations Æq

�

(t) [see

Fig. 10.3(b)℄. In a spae with torsion, the variations Æ

S

q

�

(t) and �Æq

�

(t) are di�erent

from eah other [see Fig. 10.3()℄.

Under an arbitrary nonholonomi variation Æ

S

q

�

(t) = Æq

�

+ Æ

S

b

�

, the ation

(10.3) hanges by

Æ

S

A =M

Z

t

b

t

a

dt

�

g

��

_q

�

Æ

S

_q

�

+

1

2

�

�

g

��

Æ

S

q

�

_q

�

_q

�

�

: (10.76)

After a partial integration of the Æ _q-term we use (10.65), (10.62), and the identity

�

�

g

��

� �

���

+ �

���

, whih follows diretly form the de�nitions g

��

� e

i

�

e

i

�

and

�

��

�

� e

i

�

�

�

e

i

�

, and obtain

Æ

S

A =M

Z

t

b

t

a

dt

"

�g

��

�

�q

�

+

�

�

��

�

_q

�

_q

�

�

�Æq

�

+

 

g

��

_q

�

d

dt

Æ

S

b

�

+ �

���

Æ

S

b

�

_q

�

_q

�

!#

:

(10.77)

To derive the equation of motion we �rst vary the ation in a spae without

torsion. Then Æ

S

b

�

(t) � 0, and (10.77) beomes

Æ

S

A = �M

Z

t

b

t

a

dtg

��

(�q

�

+

�

�

��

�

_q

�

_q

�

)�Æq

�

: (10.78)
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Figure 10.3 Images under holonomi and nonholonomi mapping of fundamental Æ-

funtion path variation. In the holonomi ase, the paths x(t) and x(t)+ Æx(t) in (a) turn

into the paths q(t) and q(t) + �Æq(t) in (b). In the nonholonomi ase with S

�

��

6= 0, they

go over into q(t) and q(t) + Æ

S

q(t) shown in () with a losure failure b

�

at t

b

analogous

to the Burgers vetor b

�

in a solid with disloations.

Thus, the ation priniple Æ

S

A = 0 produes the equation for the geodesis (10.9),

whih are the orret partile trajetories in the absene of torsion.

In the presene of torsion, Æ

S

b

�

is nonzero, and the equation of motion reeives

a ontribution from the seond parentheses in (10.77). After inserting (10.70), the

nonloal terms proportional to Æ

S

b

�

anel and the total nonholonomi variation of

the ation beomes

Æ

S

A = �M

Z

t

b

t

a

dtg

��

h

�q

�

+

�

�

�

��

�

+ 2S

�

��

�

_q

�

_q

�

i

�Æq

�

= �M

Z

t

b

t

a

dtg

��

�

�q

�

+ �

��

�

_q

�

_q

�

�

�Æq

�

: (10.79)

The seond line follows from the �rst after using the identity �

��

�

=

�

�

f��g

�

+2S

�

f��g

.

The urly brakets indiate the symmetrization of the enlosed indies. Setting

Æ

S

A = 0 and inserting for �Æq(t) the image under (10.64) of an arbitrary Æ-funtion

variation Æx

i

(t) / �

i

Æ(t � t

0

) gives the autoparallel equations of motions (10.18),

whih is what we wanted to show.

The above variational treatment of the ation is still somewhat ompliated and

alls for a simpler proedure [4℄. The extra term arising from the seond parenthesis

in the variation (10.77) an be traed to a simple property of the auxiliary losed
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nonholonomi variations (10.64). To �nd this we form the time derivative d

t

� d=dt

of the de�ning equation (10.64) and �nd

d

t

�Æq

�

(t) = �

�

e

i

�

(q(t)) _q

�

(t)Æx

i

(t) + e

i

�

(q(t))d

t

Æx

i

(t): (10.80)

Let us now perform variation �Æ and t-derivative in the opposite order and alulate

d

t

�Æq

�

(t). From (10.59) and (10.13) we have the relation

d

t

q

�

(t) = e

�

i

(q(t)) d

t

x

i

(t) : (10.81)

Varying this gives

�Æd

t

q

�

(t) = �

�

e

i

�

(q(t)) �Æq

�

d

t

x

i

(t) + e

i

�

(q(t))�Æd

t

x

i

: (10.82)

Sine the variation in x

i

-spae ommute with the t-derivatives [reall (10.63)℄, we

obtain

�Æd

t

q

�

(t)� d

t

�Æq

�

(t) = �

�

e

i

�

(q(t)) �Æq

�

d

t

x

i

(t)� �

�

e

i

�

(q(t)) _q

�

(t)Æx

i

(t): (10.83)

After re-expressing Æx

i

(t) and d

t

x

i

(t) bak in terms of �Æq

�

(t) and d

t

q

�

(t) = _q

�

(t),

and using (10.17), (10.24), this beomes

�Æd

t

q

�

(t)� d

t

�Æq

�

(t) = 2S

��

�

_q

�

(t)�Æq

�

(t): (10.84)

Thus, due to the losure failure in spaes with torsion, the operations d

t

and �Æ do not

ommute in front of the path q

�

(t). In other words, in ontrast to the open variations

Æ

S

(and of ourse the usual ones Æ), the auxiliary losed nonholonomi variations �Æ

of veloities _q

�

(t) no longer oinide with the veloities of variations. This property

is responsible for shifting the trajetory from geodesis to autoparallels.

Indeed, let us vary an ation

A =

t

2

Z

t

1

dtL (q

�

(t); _q

�

(t)) (10.85)

diretly by �Æq

�

(t) and impose (10.84), we �nd

�ÆA =

t

2

Z

t

1

dt

(

�L

�q

�

�Æq

�

+

�L

� _q

�

d

dt

�Æq

�

+2S

�

��

�L

� _q

�

_q

�

�Æq

�

)

: (10.86)

After a partial integration of the seond term using the vanishing �Æq

�

(t) at the

endpoints, we obtain the Euler-Lagrange equation

�L

�q

�

�

d

dt

�L

� _q

�

= �2S

��

�

_q

�

�L

� _q

�

: (10.87)

This di�ers from the standard Euler-Lagrange equation by an additional ontribu-

tion due to the torsion tensor. For the ation (10.3), we thus obtain the equation of

motion

M

h

�q

�

+ g

��

�

�

�

g

��

�

1

2

�

�

g

��

�

� 2S

�

��

i

_q

�

_q

�

= 0; (10.88)

whih is one more Eq. (10.18) for autoparallels.
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10.3 Path Integral in Spaes with Curvature and Torsion

We now turn to the quantum mehanis of a point partile in a general metri-aÆne

spae. Proeeding in analogy with the earlier treatment in spherial oordinates, we

�rst onsider the path integral in a at spae with Cartesian oordinates

(x tjx

0

t

0

) =

1

q

2�i��h=M

D

N

Y

n=1

�

Z

1

�1

dx

n

�

N+1

Y

n=1

K

�

0

(�x

n

); (10.89)

where K

�

0

(�x

n

) is an abbreviation for the short-time amplitude

K

�

0

(�x

n

) � hx

n

j exp

�

�

i

�h

�

^

H

�

jx

n�1

i =

1

q

2�i��h=M

D

exp

"

i

�h

M

2

(�x

n

)

2

�

#

; (10.90)

with �x

n

� x

n

� x

n�1

; x � x

N+1

; x

0

� x

0

. A possible external potential has been

omitted sine this would ontribute in an additive way, uninuened by the spae

geometry.

Our basi postulate is that the path integral in a general metri-aÆne spae

should be obtained by an appropriate nonholonomi transformation of the amplitude

(10.89) to a spae with urvature and torsion.

10.3.1 Nonholonomi Transformation of Ation

The short-time ation ontains the square distane (�x

n

)

2

whih we have to trans-

form to q-spae. For an in�nitesimal oordinate di�erene �x

n

� dx

n

, the square

distane is obviously given by (dx)

2

= g

��

dq

�

dq

�

. For a �nite �x

n

, however,

we know from Chapter 8 that we must expand (�x

n

)

2

up to the fourth order in

�q

n

�

= q

n

�

� q

n�1

�

to �nd all terms ontributing to the relevant order �.

It is important to realize that with the mapping from dx

i

to dq

�

not being

holonomi, the �nite quantity �q

�

is not uniquely determined by �x

i

. A unique

relation an only be obtained by integrating the funtional relation (10.60) along a

spei� path. The preferred path is the lassial orbit, i.e., the autoparallel in the

q-spae. It is haraterized by being the image of a straight line in x-spae. There

the veloity _x

i

(t) is onstant, and the orbit has the linear time dependene

�x

i

(t) = _x

i

(t

0

)�t; (10.91)

where the time t

0

an lie anywhere on the t-axis. Let us hoose for t

0

the �nal time

in eah interval (t

n

; t

n�1

): At that time, _x

i

n

� _x

i

(t

n

) is related to _q

�

n

� _q

�

(t

n

) by

_x

i

n

= e

i

�

(q

n

) _q

�

n

: (10.92)

It is easy to express _q

�

n

in terms of �q

�

n

= q

�

n

� q

�

n�1

along the lassial orbit. First

we expand q

�

(t

n�1

) into a Taylor series around t

n

. Dropping the time arguments,

for brevity, we have

�q � q

�

� q

0�

= � _q

�

�

�

2

2!

�q

�

+

�

3

3!

_

�q

�

+ : : : ; (10.93)
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where � = t

n

� t

n�1

and _q

�

; �q

�

; : : : are the time derivatives at the �nal time t

n

. An

expansion of this type is referred to as a postpoint expansion. Due to the arbitrariness

of the hoie of the time t

0

in Eq. (10.92), the expansion an be performed around

any other point just as well, suh as t

n�1

and

�

t

n

= (t

n

+ t

n�1

)=2, giving rise to the

so-alled prepoint or midpoint expansions of �q.

Now, the term �q

�

in (10.93) is given by the equation of motion (10.18) for the

autoparallel

�q

�

= ��

��

�

_q

�

_q

�

: (10.94)

A further time derivative determines

_

�q

�

= �(�

�

�

��

�

� 2�

��

�

�

f��g

�

) _q

�

_q

�

_q

�

: (10.95)

Inserting these expressions into (10.93) and inverting the expansion, we obtain _q

�

at the �nal time t

n

expanded in powers of �q. Using (10.91) and (10.92) we arrive

at the mapping of the �nite oordinate di�erenes:

�x

i

= e

i

�

_q

�

�t (10.96)

= e

i

�

�

�q

�

�

1

2!

�

��

�

�q

�

�q

�

+

1

3!

�

�

�

�

��

�

+�

��

�

�

f��g

�

�

�q

�

�q

�

�q

�

+: : :

�

;

where e

i

�

and �

��

�

are evaluated at the postpoint.

It is useful to introdue

��

�

� e

i

�

�x

i

(10.97)

as autoparallel oordinates or normal oordinates to parametrize the neighborhood

of a point q. If the spae has no torsion, they are also alled Riemann normal

oordinates or geodesi oordinates.

The normal oordinates (10.97) are expanded in (10.150) in powers of �q

�

around

the postpoint. There exists also a prepoint version of �� in whih all signs of �q

are simply the opposite. The prepoint version, for instane, has the expansion:

��

�

= �q

�

+

1

2!

�

��

�

�q

�

�q

�

+

1

3!

�

�

�

�

��

�

+�

��

�

�

f��g

�

�

�q

�

�q

�

�q

�

+: : : : (10.98)

In ontrast to the �nite di�erenes �q

�

, the normal oordinates ��

�

in the

neighborhood of a point are vetors and thus allow for a ovariant Taylor expansion

of a funtion f(q

�

+ �q

�

). Its form is found by performing an ordinary Taylor

expansion of a funtion F (x) in Cartesian oordinates

F (x+�x) = F (x) + �

i

F (x)�x

i

+

1

2!

�

i

�

j

F (x)�x

i

�x

j

+ : : : ; (10.99)

and transforming this to oordinates q

�

. The funtion F (x) beomes f(q) =

F (x(q)), and the derivatives �

i

1

�

i

2

� � ��

i

n

f(x) go over into ovariant derivatives:
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e

i

1

�

e

i

2

�

� � � e

i

n

�

D

�

1

D

�

2

� � �D

�

n

f(q). For instane, �

i

F (x) = e

i

�

�

�

f(q) = e

i

�

D

�

f(q),

and

�

i

�

j

f(q)= e

i

�

�

�

e

j

�

�

�

f(q) = [e

i

�

e

j

�

�

�

�

�

+ e

i

�

(�

�

e

j

�

)�

�

℄ f(q)

= e

i

�

e

j

�

h

�

�

�

�

� �

��

�

�

�

i

f(q)=e

i

�

e

j

�

D

�

�

�

f(q)=e

i

�

e

j

�

D

�

D

�

f(q); (10.100)

where we have used (10.17) to express �

�

e

j

�

= ��

��

�

e

j

�

, and hanged dummy

indies. The di�erenes �x

i

in (10.99) are replaed by e

i

�

��

�

with the prepoint

expansion (10.98). In this way we arrive at the ovariant Taylor expansion

f(q +�q) = F (x) +D

�

f(q)��

i

+

1

2!

D

�

D

�

f(q)��

�

��

�

+ : : : : (10.101)

Indeed, re-expanding the right-hand side in powers of �q

�

via (10.98) we may verify

that the aÆne onnetions anel against those in the ovariant derivatives of f(q),

so that (10.101) redues to the ordinary Taylor expansion of f(q+�q) in powers of

�q.

Note that the expansion (10.96) di�ers only slightly from a naive Taylor expan-

sion of the di�erene around the postpoint:

�x

i

=x

i

(q)� x

i

(q ��q) = e

i

�

�q

�

�

1

2

e

i

�;�

�q

�

�q

�

+

1

3!

e

i

�;��

�q

�

�q

�

�q

�

+ : : : ;

(10.102)

where a subsript � separated by a omma denotes the partial derivative �

�

=

�=�q

�

, i.e., f

;�

� �

�

f . The right-hand side an be rewritten with the help of the

ompleteness relation (10.13) as

�x

i

= e

i

�

�

�q

�

�

1

2

e

j

�

e

j

�;�

�q

�

�q

�

+

1

3!

e

j

�

e

j

�;��

�q

�

�q

�

�q

�

+ : : :

�

: (10.103)

The expansion oeÆients an be expressed in terms of the aÆne onnetion (10.16),

using the derived relation

e

i

�

e

i

�;��

= �

�

(e

i

�

e

i

�;�

)� e

i�

e

i

�;�

e

j

�

e

j�

;�

= �

�

�

��

�

+ �

��

�

�

��

�

: (10.104)

Thus we obtain

�x

i

=e

i

�

�

�q

�

�

1

2!

�

��

�

�q

�

�q

�

+

1

3!

�

�

�

�

��

�

+�

��

�

�

��

�

�

�q

�

�q

�

�q

�

+: : :

�

:(10.105)

This di�ers from the true expansion (10.150) only by the absene of the symmetriza-

tion of the indies in the last aÆne onnetion.

Inserting (10.96) into the short-time amplitude (10.90), we obtain

K

�

0

(�x)=hxj

�

�

i

�h

�

^

H

�

jx��xi=

1

q

2�i��h=M

D

e

iA

�

>

(q;q��q)=�h

; (10.106)
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with the short-time postpoint ation

A

�

>

(q; q ��q) = (�x

i

)

2

= �

M

2

g

��

_q

�

_q

�

=

M

2�

�

g

��

�q

�

�q

�

� �

���

�q

�

�q

�

�q

�

(10.107)

+

�

1

3

g

��

�

�

�

�

��

�

+ �

��

Æ

�

f�Æg

�

�

+

1

4

�

��

�

�

���

�

�q

�

�q

�

�q

�

�q

�

+ : : :

�

:

Separating the aÆne onnetion into Christo�el symbol and torsion, this an also

be written as

A

�

>

(q; q ��q) =

M

2�

�

g

��

�q

�

�q

�

�

�

�

���

�q

�

�q

�

�q

�

(10.108)

+

�

1

3

g

��

�

�

�

�

�

��

�

+

�

�

��

Æ

�

�

Æ�

�

�

+

1

4

�

�

��

�

�

�

���

+

1

3

S

�

��

S

���

�

�q

�

�q

�

�q

�

�q

�

+ : : :

�

:

Note that in ontrast to the formulas for the short-time ation derived in Chap-

ter 8, the right-hand side ontains only intrinsi quantities of q-spae. For the

systems treated there (whih all lived in a Eulidean spae parametrized with urvi-

linear oordinates), the present intrinsi result redues to the previous one.

Take, for example, a two-dimensional Eulidean spae parametrized by radial

oordinates treated in Setion 8.1. The postpoint expansion (10.96) reads for the

omponents r; � of _q

�

_r =

�r

�

+

r(��)

2

2�

�

�r(��)

2

�

+ : : : ; (10.109)

_

� =

��

�

�

�r��

�r

�

(��)

3

6�

+ : : : : (10.110)

Inserting these into the short-time ation whih is here simply

A

�

=

M

2

�( _r

2

+ r

2

_

�

2

); (10.111)

we �nd the time-slied ation

A

�

=

M

2�

�

�r

2

+ r

2

(��)

2

� r�r(��)

2

�

1

12

r

2

(��)

4

+ : : :

�

: (10.112)

A symmetrization of the postpoint expressions using the fat that r

2

stands for

r

2

n

= r

n

(r

n�1

+�r

n

); (10.113)

leads to the short-time ation displaying the subsripts n

A

�

=

M

2�

�

�r

2

n

+ r

n

r

n�1

(��

n

)

2

�

1

12

r

n

r

n�1

(��

n

)

4

+ : : :

�

: (10.114)

This agrees with the previous expansion of the time-slied ation in Eq. (8.53).

While the previous result was obtained from a transformation of the time-slied
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Eulidean ation to radial oordinates, the short-time ation here is found from a

purely intrinsi formulation. The intrinsi method has the obvious advantage of not

being restrited to a Eulidean initial spae and therefore has the hane of being

true in an arbitrary metri-aÆne spae.

At this point we observe that the �nal short-time ation (10.107) ould also have

been introdued without any referene to the at referene oordinates x

i

. Indeed,

the same ation is obtained by evaluating the ontinuous ation (10.3) for the small

time interval �t = � along the lassial orbit between the points q

n�1

and q

n

. Due

to the equations of motion (10.18), the Lagrangian

L(q; _q) =

M

2

g

��

(q(t)) _q

�

(t) _q

�

(t) (10.115)

is independent of time (this is true for autoparallels as well as geodesis). The

short-time ation

A

�

(q; q

0

) =

M

2

Z

t

t��

dt g

��

(q(t)) _q

�

(t) _q

�

(t) (10.116)

an therefore be written in either of the three forms

A

�

=

M

2

�g

��

(q) _q

�

_q

�

=

M

2

�g

��

(q

0

) _q

0�

_q

0�

=

M

2

�g

��

(�q)

_

�q

�

_

�q

�

; (10.117)

where q

�

; q

0�

; �q

�

are the oordinates at the �nal time t

n

, the initial time t

n�1

, and

the average time (t

n

+ t

n�1

)=2, respetively. The �rst expression obviously oinides

with (10.107). The others an be used as a starting point for deriving equivalent

prepoint or midpoint ations. The prepoint ation A

�

<

arises from the postpoint one

A

�

>

by exhanging �q by ��q and the postpoint oeÆients by the prepoint ones.

The midpoint ation has the most simple-looking appearane:

�

A

�

(�q +

�q

2

; �q �

�q

2

) = (10.118)

M

2�

�

g

��

(�q)�q

�

�q

�

+

1

12

g

��

�

�

�

�

��

�

+�

��

Æ

�

f�Æg

�

�

�q

�

�q

�

�q

�

�q

�

+ : : :

�

;

where the aÆne onnetion an be evaluated at any point in the interval (t

n�1

; t

n

).

The preise position is irrelevant to the amplitude, produing hanges only in higher

than the relevant orders of �.

We have found the postpoint ation most useful sine it gives ready aess to

the time evolution of amplitudes, as will be seen below. The prepoint ation is

ompletely equivalent to it and useful if one wants to desribe the time evolution

bakwards. Some authors favor the midpoint ation beause of its symmetry and

the absene of ubi terms in �q

�

in the expression (10.118).

The di�erent ompletely equivalent \anypoint" formulations of the same short-

time ation, whih is universally de�ned by the nonholonomi mapping proedure,

must be distinguished from various so-alled time-sliing \presriptions" found in
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the literature when setting up a lattie approximation to the Lagrangian (10.115).

There, a midpoint presription is often favored, in whih one approximates L by

L(q; _q)! L

�

(q;�q=�) =

M

2�

2

g

��

(�q)�q

�

(t)�q

�

(t); (10.119)

and uses the assoiated short-time ation

�

A

�

mpp

= �L

�

(q;�q=�) (10.120)

in the exponent of the path integrand. The motivation for this presription lies

in the popularity of H. Weyl's ordering presription for produts of position and

momenta in operator quantum mehanis. From the disussion in Setion 1.13 we

know, however, that the Weyl presription for the operator order in the kineti

energy g

��

(q̂)p̂

�

p̂

�

=2M does not lead to the orret Laplae-Beltrami operator in

general oordinates. The disussion in this setion, on the other hand, will show

that the Weyl-ordered ation (10.120) di�ers from the midpoint form (10.118) of the

orret short-time ation by an additional forth-order term in �q

�

, implying that the

short-time ation

�

A

�

mpp

does not lead to the orret physis. Worse shortomings are

found when sliing the short-time ation following a pre- or postpoint presription.

There is, in fat, no freedom of hoie of di�erent sliing presriptions, in ontrast

to ubiquitous statements in the literature. The short-time ation is ompletely �xed

as being the unique nonholonomi image of the Eulidean time-slied ation. This

also solves uniquely the operator-ordering problem whih has plagued theorists for

many deades.

In the following, the ation A

�

without subsript will always denote the preferred

postpoint expression (10.107):

A

�

� A

�

>

(q; q ��q): (10.121)

10.3.2 Measure of Path Integration

We now turn to the integration measure in the Cartesian path integral (10.89)

1

q

2�i��h=M

D

N

Y

n=1

d

D

x

n

:

This has to be transformed to the general metri-aÆne spae. We imagine evaluating

the path integral starting out from the latest time and performing suessively the

integrations over x

N

; x

N�1

; : : : , i.e., in eah short-time amplitude we integrate over

the earlier position oordinate, the prepoint oordinate. For the purpose of this

disussion, we relabel the produt

Q

N

n=1

d

D

x

i

n

by

Q

N+1

n=2

dx

i

n�1

, so that the integration

in eah time slie (t

n

; t

n�1

) with n = N + 1; N; : : : runs over dx

i

n�1

.

In a at spae parametrized with urvilinear oordinates, the transformation of

the integrals over d

D

x

i

n�1

into those over d

D

q

�

n�1

is obvious:

N+1

Y

n=2

Z

d

D

x

i

n�1

=

N+1

Y

n=2

�

Z

d

D

q

�

n�1

det

h

e

i

�

(q

n�1

)

i

�

: (10.122)
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The determinant of e

i

�

is the square root of the determinant of the metri g

��

:

det (e

i

�

) =

q

det g

��

(q) �

q

g(q); (10.123)

and the measure may be rewritten as

N+1

Y

n=2

Z

d

D

x

i

n�1

=

N+1

Y

n=2

�

Z

d

D

q

�

n�1

q

g(q

n�1

)

�

: (10.124)

This expression is not diretly appliable. When trying to do the d

D

q

�

n�1

-integrations

suessively, starting from the �nal integration over dq

�

N

, the integration variable

q

n�1

appears for eah n in the argument of det

h

e

i

�

(q

n�1

)

i

or g

��

(q

n�1

). To make

this q

n�1

-dependene expliit, we expand in the measure (10.122) e

i

�

(q

n�1

) = e

i

�

(q

n

�

�q

n

) around the postpoint q

n

into powers of �q

n

. This gives

dx

i

= e

i

�

(q ��q)dq

�

= e

i

�

dq

�

� e

i

�;�

dq

�

�q

�

+

1

2

e

i

�;��

dq

�

�q

�

�q

�

+ : : : ;(10.125)

omitting, as before, the subsripts of q

n

and �q

n

. Thus the Jaobian of the oordi-

nate transformation from dx

i

to dq

�

is

J

0

= det (e

i

�

) det

�

Æ

�

�

� e

i

�

e

i

�;�

�q

�

+

1

2

e

i

�

e

i

�;��

�q

�

�q

�

�

; (10.126)

giving the relation between the in�nitesimal integration volumes d

D

x

i

and d

D

q

�

:

N+1

Y

n=2

Z

d

D

x

i

n�1

=

N+1

Y

n=2

�

Z

d

D

q

�

n�1

J

0n

�

: (10.127)

The well-known expansion formula

det (1 +B) = exp tr log(1 +B) = exp tr(B � B

2

=2 +B

3

=3� : : :) (10.128)

allows us now to rewrite J

0

as

J

0

= det (e

i

�

) exp

�

i

�h

A

�

J

0

�

; (10.129)

with the determinant det (e

i

�

) =

q

g(q) evaluated at the postpoint. This equation

de�nes an e�etive ation assoiated with the Jaobian, for whih we obtain the

expansion

i

�h

A

�

J

0

= �e

i

�

e

i

�;�

�q

�

+

1

2

h

e

i

�

e

i

�;��

� e

i

�

e

i

�;�

e

j

�

e

j

�;�

i

�q

�

�q

�

+ : : : : (10.130)

The expansion oeÆients are expressed in terms of the aÆne onnetion (10.16)

using the relations:

e

i�;�

e

i

�;�

= e

i

�

e

i

�;�

e

j�

e

j

�;�

= �

��

�

�

���

(10.131)

e

i�

e

i

�;��

= g

��

[�

�

(e

i

�

e

i

�;�

)� e

i�

e

i

�;�

e

j

�

e

j�

;�

℄

= g

��

(�

�

�

��

�

+ �

��

�

�

��

�

): (10.132)
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The Jaobian ation beomes therefore:

i

�h

A

�

J

0

= ��

��

�

�q

�

+

1

2

�

�

�

��

�

�q

�

�q

�

+ : : : : (10.133)

The same result would, inidentally, be obtained by writing the Jaobian in aor-

dane with (10.124) as

J

0

=

q

g(q ��q); (10.134)

whih leads to the alternative formula for the Jaobian ation

exp

�

i

�h

A

�

J

0

�

=

q

g(q ��q)

q

g(q)

: (10.135)

An expansion in powers of �q gives

exp

�

i

�h

A

�

�

J

0

�

=1�

1

q

g(q)

q

g(q)

;�

�q

�

+

1

2

q

g(q)

q

g(q)

;��

�q

�

�q

�

+: : : : (10.136)

Using the formula

1

p

g

�

�

p

g =

1

2

g

��

�

�

g

��

=

�

�

�

��

; (10.137)

this beomes

exp

�

i

�h

A

�

�

J

0

�

= 1�

�

�

��

�

�q

�

+

1

2

(�

�

�

�

��

�

+

�

�

��

�

�

�

��

�

)�q

�

�q

�

+ : : : ; (10.138)

so that

i

�h

A

�

�

J

0

= �

�

�

��

�

�q

�

+

1

2

�

�

�

�

��

�

�q

�

�q

�

+ : : : : (10.139)

In a spae without torsion where

�

�

�

��

� �

��

�

, the Jaobian ations (10.133) and

(10.139) are trivially equal to eah other. But the equality holds also in the presene

of torsion. Indeed, when inserting the deomposition (10.27), �

��

�

=

�

�

�

��

+K

��

�

;

into (10.133), the ontortion tensor drops out sine it is antisymmetri in the last

two indies and these are ontrated in both expressions.

In terms of A

�

J

0n

, we an rewrite the transformed measure (10.122) in the more

useful form

N+1

Y

n=2

Z

d

D

x

i

n�1

=

N+1

Y

n=2

�

Z

d

D

q

�

n�1

det

h

e

i

�

(q

n

)

i

exp

�

i

�h

A

�

J

0n

��

: (10.140)

In a at spae parametrized in terms of urvilinear oordinates, the right-hand

sides of (10.122) and (10.140) are related by an ordinary oordinate transformation,

and both give the orret measure for a time-slied path integral. In a general
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metri-aÆne spae, however, this is no longer true. Sine the mapping dx

i

!

dq

�

is nonholonomi, there are in priniple in�nitely many ways of transforming

the path integral measure from Cartesian oordinates to a non-Eulidean spae.

Among these, there exists a preferred mapping whih leads to the orret quantum-

mehanial amplitude in all known physial systems. This will serve to solve the

path integral of the Coulomb system in Chapter 13.

The lue for �nding the orret mapping is o�ered by an unaestheti feature of

Eq. (10.125): The expansion ontains both di�erentials dq

�

and di�erenes �q

�

.

This is somehow inonsistent. When time-sliing the path integral, the di�erentials

dq

�

in the ation are inreased to �nite di�erenes �q

�

. Consequently, the di�er-

entials in the measure should also beome di�erenes. A relation suh as (10.125)

ontaining simultaneously di�erenes and di�erentials should not our.

It is easy to ahieve this goal by hanging the starting point of the nonholonomi

mapping and rewriting the initial at spae path integral (10.89) as

(x tjx

0

t

0

) =

1

q

2�i��h=M

D

N

Y

n=1

�

Z

1

�1

d�x

n

�

N+1

Y

n=1

K

�

0

(�x

n

): (10.141)

Sine x

n

are Cartesian oordinates, the measures of integration in the time-slied

expressions (10.89) and (10.141) are ertainly idential:

N

Y

n=1

Z

d

D

x

n

�

N+1

Y

n=2

Z

d

D

�x

n

: (10.142)

Their images under a nonholonomi mapping, however, are di�erent so that the

initial form of the time-slied path integral is a matter of hoie. The initial form

(10.141) has the obvious advantage that the integration variables are preisely the

quantities �x

i

n

whih our in the short-time amplitude K

�

0

(�x

n

).

Under a nonholonomi transformation, the right-hand side of Eq. (10.142) leads

to the integral measure in a general metri-aÆne spae

N+1

Y

n=2

Z

d

D

�x

n

!

N+1

Y

n=2

�

Z

d

D

�q

n

J

n

�

; (10.143)

with the Jaobian following from (10.96) (omitting n)

J=

�(�x)

�(�q)

=det (e

i

�

) det

�

Æ

�

�

��

f��g

�

�q

�

+

1

2

�

�

f�

�

��g

�

+�

f��

�

�

f� j�gg

�

�

�q

�

�q

�

+: : :

�

:

(10.144)

In a spae with urvature and torsion, the measure on the right-hand side of (10.143)

replaes the at-spae measure on the right-hand side of (10.124). The urly double

brakets around the indies �; �; �; � indiate a symmetrization in � and � followed
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by a symmetrization in �; �, and �. With the help of formula (10.128) we now

alulate the Jaobian ation

i

�h

A

�

J

= ��

f��g

�

�q

�

+

1

2

h

�

f�

�

��g

�

+ �

f��

�

�

f�j�gg

�

� �

f��g

�

�

f��g

�

i

�q

�

�q

�

+ : : : :

(10.145)

This expression di�ers from the earlier Jaobian ation (10.133) by the symmetriza-

tion symbols. Dropping them, the two expressions oinide. This is allowed if q

�

are

urvilinear oordinates in a at spae. Sine then the transformation funtions x

i

(q)

and their �rst derivatives �

�

x

i

(q) are integrable and possess ommuting derivatives,

the two Jaobian ations (10.133) and (10.145) are idential.

There is a further good reason for hoosing (10.142) as a starting point for the

nonholonomi transformation of the measure. Aording to Huygens' priniple of

wave optis, eah point of a wave front is a enter of a new spherial wave propagating

from that point. Therefore, in a time-slied path integral, the di�erenes �x

i

n

play

a more fundamental role than the oordinates themselves. Intimately related to this

is the observation that in the anonial form, a short-time piee of the ation reads

Z

dp

n

2��h

exp

"

i

�h

p

n

(x

n

� x

n�1

)�

ip

2

n

2M�h

t

#

:

Eah momentum is assoiated with a oordinate di�erene �x

n

� x

n

� x

n�1

.

Thus, we should expet the spatial integrations onjugate to p

n

to run over the

oordinate di�erenes �x

n

= x

n

� x

n�1

rather than the oordinates x

n

themselves,

whih makes the important di�erene in the subsequent nonholonomi oordinate

transformation.

We are thus led to postulate the following time-slied path integral in q-spae:

hqje

�i(t�t

0

)

^

H=�h

jq

0

i=

1

q

2�i�h�=M

D

N+1

Y

n=2

2

6

4

Z

d

D

�q

n

q

g(q

n

)

q

2�i��h=M

D

3

7

5

e

i

P

N+1

n=1

(A

�

+A

�

J

)=�h

;

(10.146)

where the integrals over �q

n

may be performed suessively from n = N down to

n = 1.

Let us emphasize that this expression has not been derived from the at spae

path integral. It is the result of a spei� new quantum equivalene priniple whih

rules how a at spae path integral behaves under nonholonomi oordinate trans-

formations.

It is useful to re-express our result in a di�erent form whih lari�es best the

relation with the naively expeted measure of path integration (10.124), the produt

of integrals

N

Y

n=1

Z

d

D

x

n

=

N

Y

n=1

�

Z

d

D

q

n

q

g(q

n

)

�

: (10.147)
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The measure in (10.146) an be expressed in terms of (10.147) as

N+1

Y

n=2

�

Z

d

D

�q

n

q

g(q

n

)

�

=

N

Y

n=1

�

Z

d

D

q

n

q

g(q

n

)e

�iA

�

J

0

=�h

�

: (10.148)

The orresponding expression for the entire time-slied path integral (10.146) in the

metri-aÆne spae reads

hqje

�i(t�t

0

)

^

H=�h

jq

0

i =

1

q

2�i�h�=M

D

N

Y

n=1

2

6

4

Z

d

D

q

n

q

g(q

n

)

q

2�i�h�=M

D

3

7

5

e

i

P

N+1

n=1

(A

�

+�A

�

J

)=�h

;

(10.149)

where �A

�

J

is the di�erene between the orret and the wrong Jaobian ations in

Eqs. (10.133) and (10.145):

�A

�

J

� A

�

J

�A

�

J

0

: (10.150)

In the absene of torsion where �

f��g

�

=

�

�

��

�

, this simpli�es to

i

�h

�A

�

J

=

1

6

�

R

��

�q

�

�q

�

; (10.151)

where

�

R

��

is the Rii tensor assoiated with the Riemann urvature tensor, i.e., the

ontration (10.41) of the Riemann urvature tensor assoiated with the Christo�el

symbol

�

�

��

�

.

Being quadrati in �q, the e�et of the additional ation an easily be evalu-

ated perturbatively using the methods explained in Chapter 8, aording to whih

�q

�

�q

�

may be replaed by its lowest order expetation

h�q

�

�q

�

i

0

= i��hg

��

(q)=M:

Then �A

�

J

yields the additional e�etive potential

V

e�

(q) = �

�h

2

6M

�

R(q); (10.152)

where

�

R is the Riemann urvature salar. By inluding this potential in the ation,

the path integral in a urved spae an be written down in the naive form (10.147)

as follows:

hqje

�i(t�t

0

)

^

H=�h

jq

0

i=

1

q

2�i�h�=M

D

N

Y

n=1

2

6

4

Z

d

D

q

n

q

g(q

n

)

q

2�i��h=M

D

e

i�hR(q

n

)=6M

3

7

5

e

i

P

N+1

n=1

A

�

[q

n

℄=�h

:

(10.153)

This time-slied expression will from now on be the de�nition of a path integral in

urved spae written in the ontinuum notation as

hqje

�i(t�t

0

)

^

H=�h

jq

0

i =

Z

D

D

q

q

g(q) e

i

R

t

b

t

a

dtA[q℄=�h

: (10.154)
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The integrals over q

n

in (10.153) are onveniently performed suessively down-

wards over �q

n+1

= q

n+1

�q

n

at �xed q

n+1

. The weights

q

g(q

n

) =

q

g(q

n+1

��q

n+1

)

require a postpoint expansion leading to the naive Jaobian J

0

of (10.126) and the

Jaobian ation A

�

J

0

of Eq. (10.133).

It is important to observe that the above time-slied de�nition is automatially

invariant under oordinate transformations. This is an immediate onsequene of

the de�nition via the nonholonomi mapping from a at-spae path integral.

It goes without saying that the path integral (10.153) also has a phase spae

version. It is obtained by omitting all (M=2�)(�q

n

)

2

terms in the short-time ations

A

�

and extending the multiple integral by the produt of momentum integrals

N+1

Y

n=1

2

4

dp

n

2��h

q

g(q

n

)

3

5

e

(i=�h)

P

N+1

n=1

[

p

n�

�q

�

��

1

2M

g

��

(q

n

)p

n�

p

n�℄

: (10.155)

When using this expression, all problems whih were enountered in the literature

with anonial transformations of path integrals disappear.

An important property of the de�nition of the path integral in spaes with ur-

vature and torsion as a nonholonomi image of a Eulidean path integral is that this

image is automatially invariant under ordinary holonomi oordinate transforma-

tions.

10.4 Completing the Solution of Path Integral on Surfae

of Sphere in D Dimensions

The measure of path integration in Eq. (10.146) allows us to �nally omplete the

alulation, initiated in Setions 8.7{8.9, of the path integrals of a point partile on

the surfae of a sphere on group spaes in any number of dimensions. Indeed, using

the result (10.152) we are now able to solve the problems disussed in Setion 8.7

in onjuntion with the energy formula (8.225). Thus we are �nally in a position to

�nd the orret energies and amplitudes of these systems.

A sphere of radius r embedded in D dimensions has an intrinsi dimension D

0

�

D � 1 and a urvature salar

�

R =

(D

0

� 1)D

0

r

2

: (10.156)

This is most easily derived as follows. Consider a line element in D dimensions

(dx)

2

= (dx

1

)

2

+ (dx

2

)

2

+ : : :+ (dx

D

)

2

(10.157)

and restrit the motion to a spherial surfae

(x

1

)

2

+ (x

2

)

2

+ : : :+ (x

D

)

2

= r

2

; (10.158)

by eliminating x

D

. This brings (10.157) to the form

(dx)

2

= (dx

1

)

2

+ (dx

2

)

2

+ : : :+ (dx

D

0

)

2

+

(x

1

dx

1

+ dx

2

+ : : :+ x

D

0

dx

D

0

)

2

r

2

� r

02

; (10.159)
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where r

02

� (x

1

)

2

+ (x

2

)

2

+ : : : + (x

D

0

)

2

. The metri on the D

0

-dimensional surfae

is therefore

g

��

(x) = Æ

��

+

x

�

x

�

r

2

� r

02

: (10.160)

Sine

�

R will be onstant on the spherial surfae, we may evaluate it for small x

�

(� = 1; : : : ; D

0

) where g

��

(x) � Æ

��

+x

�

x

�

=r

2

and the Christo�el symbols (10.7) are

�

��

�

� �

���

� Æ

��

x

�

=r

2

. Inserting this into (10.35) we obtain the urvature tensor

for small x

�

:

�

R

����

�

1

r

2

(Æ

��

Æ

��

� Æ

��

Æ

��

) : (10.161)

This an be extended ovariantly to the full surfae of the sphere by replaing Æ

��

by the metri g

��

(x):

�

R

����

(x) =

1

r

2

[g

��

(x)g

��

(x)� g

��

(x)g

��

(x)℄ ; (10.162)

so that Rii tensor is [reall (10.41)℄

�

R

��

(x) =

�

R

���

�

(x) =

D

0

� 1

r

2

g

��

(x): (10.163)

Contrating this with g

��

[reall (10.42)℄ yields indeed the urvature salar (10.156).

The e�etive potential (10.152) is therefore

V

e�

= �

�h

2

6Mr

2

(D � 2)(D � 1): (10.164)

It supplies preisely the missing energy whih hanges the energy (8.225) near the

sphere, orreted by the expetation of the quarti term #

4

n

in the ation, to the

proper value

E

l

=

�h

2

2Mr

2

l(l +D � 2): (10.165)

Astonishingly, this elementary result of Shr�odinger quantum mehanis was found

only a deade ago by path integration [5℄. Other time-sliing proedures yield extra

terms proportional to the salar urvature

�

R, whih are absent in our theory. Here

the salar urvature is a trivial onstant, so it would remain undetetable in atomi

experiments whih measure only energy di�erenes. The same result will be derived

in general in Eqs. (11.25) and in Setion 11.3.

An important property of this spetrum is that the ground state energy vanished

for all dimensions D. This property would not have been found in the naive measure

of path integration on the right-hand side of Eq. (10.147) whih is used in most

works on this subjet. The orretion term (10.151) oming from the nonholonomi

mapping of the at-spae measure is essential for the orret result.
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More evidene for the orretness of the measure in (10.146) will be supplied in

Chapter 13 where we solve the path integrals of the most important atomi system,

the hydrogen atom.

We remark that for t ! t

0

, the amplitude (10.153) shows the states jqi to obey

the ovariant orthonormality relation

hqjq

0

i =

q

g(q)

�1

Æ

(D)

(q � q

0

): (10.166)

The ompleteness relation reads

Z

d

D

q

q

g(q)jqihqj = 1: (10.167)

10.5 External Potentials and Vetor Potentials

An important generalization of the above path integral formulas (10.146), (10.149),

(10.153) of a point partile in a spae with urvature and torsion inludes the pres-

ene of an external potential and a vetor potential. These allow us to desribe, for

instane, a partile in external eletri and magneti �elds. The lassial ation is

then

A

em

=

Z

t

b

t

a

dt

�

e



A

�

(q(t)) _q

�

� V (q(t))

�

: (10.168)

To �nd the time-slied ation we proeed as follows. First we set up the orret

time-slied expression in Eulidean spae and Cartesian oordinates. For a single

slie it reads, in the postpoint form,

A

�

=

M

2�

(�x

i

)

2

+

e



A

i

(x)�x

i

�

e

2

A

i;j

(x)�x

i

�x

j

� �V (x) + : : : : (10.169)

As usual, we have negleted terms whih do not ontribute in the ontinuum limit.

The derivation of this time-slied expression proeeds by alulating, as in (10.116),

the ation

A

�

=

Z

t

t��

dtL(t) (10.170)

along the lassial trajetory in Eulidean spae, where

L(t) =

M

2

_
x

2

(t) +

e



A(x(t))
_
x(t)� V (x(t)) (10.171)

is the lassial Lagrangian. In ontrast to (10.116), however, the Lagrangian has

now a nonzero time derivative (omitting the time arguments):

d

dt

L = M
_
x
�
x+

e



A(x)
�
x+

e



A

i;j

(x) _x

i

_x

j

� V

i

(x) _x

i

: (10.172)
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For this reason we annot simply write down an expression suh as (10.117) but we

have to expand the Lagrangian around the postpoint leading to the series

A

�

=

Z

t

t��

dtL(t) = �L(t)�

1

2

�

2

d

dt

L(t) + : : : : (10.173)

The evaluation makes use of the equation of motion

M �x

i

= �

e



(A

i;j

(x)� A

j;i

(x)) _x

j

� V

i

(x); (10.174)

from whih we derive the analog of Eq. (10.96): First we have the postpoint expan-

sion

�x

i

= �� _x

i

+

1

2

�

2

�x

i

+ : : :

= �� _x

i

�

e

2M

�

2

h

(A

i;j

� A

j;i

) _x

j

+ V

i

(x)

i

+ : : : : (10.175)

Inverting this gives

_x

i

= �

�x

i

�

�

e

2M

(A

i;j

� A

j;i

)�x

j

+ : : : : (10.176)

When inserted into (10.173), this yields indeed the time-slied short-time ation

(10.169).

The quadrati term �x

i

�x

j

in the ation (10.169) an be replaed by the per-

turbative expetation value

�x

i

�x

j

! h�x

i

�x

j

i = Æ

ij

i

�h�

M

; (10.177)

so that A

�

beomes

A

�

=

M

2�

(�x

i

)

2

+

e



A

i

(x)�x

i

� i�

�he

2M

A

i;i

(x)� �V (x) + : : : : (10.178)

Inidentally, the ation (10.169) ould also have been written as

A

�

=

M

2�

(�x

i

)

2

+

e



A

i

(
�
x)�x

i

� �V (x) + : : : ; (10.179)

where
�
x is the midpoint value of the slie oordinates

�
x = x�

1

2

�x; (10.180)

i.e., more expliitly,

�
x(t

n

) �

1

2

[x(t

n

) + x(t

n�1

)℄: (10.181)
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Thus, with an external vetor potential in Cartesian oordinates, a midpoint \pre-

sription" for A

�

happens to yield the orret expression (10.179).

Having found the time-slied ation in Cartesian oordinates, it is easy to go

over to spaes with urvature and torsion. We simply insert the nonholonomi

transformation (10.96) for the di�erentials �x

i

. This gives again the short-time

ation (10.107), extended by the interation due to the potentials

A

�

em

=

e



A

�

�q

�

�

e

2

�

�

A

�

�q

�

�q

�

� �V (q) + : : : : (10.182)

The seond term an be evaluated perturbatively leading to

A

�

em

=

e



A

�

�q

�

� i�

�he

2M

�

�

A

�

� �V (q) + : : : : (10.183)

The sum over all slies,

A

N

em

=

N+1

X

n=1

A

�

em

; (10.184)

has to be added to the ation in eah time-slied expression (10.146), (10.149), and

(10.153).

10.6 Perturbative Calulation of Path Integrals

in Curved Spae

In Setions 2.15 and 3.21 we have given a perturbative de�nition of path integrals

whih does not require the rather umbersome time sliing but deals diretly with a

ontinuous time. We shall now extend this de�nition to urved spae in suh a way

that it leads to the same result as the time-slied de�nition given in Setion 10.3. In

partiular, we want to ensure that this de�nition preserves the fundamental prop-

erty of oordinate independene ahieved in the time-slied de�nition via the non-

holonomi mapping priniple, as observed at the end of Subsetion 10.3.2. In a

perturbative alulation, this property will turn out to be highly nontrivial. In ad-

dition, we want to be sure that the ground state energy of a partile on a sphere is

zero in any number of dimensions, just as in the time-slied alulation leading to

Eq. (10.165). This implies that also in the perturbative de�nition of path integral,

the operator-ordering problem will be ompletely solved.

10.6.1 Free and Interating Parts of Ation

The partition funtion of a point partile in a urved spae with an intrinsi dimen-

sion D is given by the path integral over all periodi paths on the imaginary-time

axis � :

Z =

Z

D

D

q

p

g e

�A[q℄

; (10.185)
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where A[q℄ is the Eulidean ation

A[q℄ =

Z

�

0

d�

�

1

2

g

��

(q(�)) _q

�

(�) _q

�

(�) + V (q(�))

�

: (10.186)

We have set �h and the partile mass M equal to unity. For a spae with onstant

urvature, this is a generalization of the ation for a partile on a sphere (8.147),

also alled a nonlinear �-model (see p. 746). The perturbative de�nition of Setions

2.15 and 3.21 amounts to the following alulation rules. Expand the metri g

��

(q)

and the potential V (q) around some point q

�

a

in powers of Æq

�

� q

�

� q

�

a

. After this,

separate the ation A[q℄ into a harmonially utuating part

A

(0)

[q

a

; Æq℄ �

1

2

Z

�

0

d� g

��

(q

a

)

h

Æ _q

�

(�)Æ _q

�

(�) + !

2

Æq

�

(�)Æq

�

(�)

i

; (10.187)

and an interating part

A

int

[q

a

; Æq℄ � A[q℄�A

(0)

[q

a

; Æq℄: (10.188)

The seond term in (10.187) is alled frequeny term ormass term. It is not invariant

under oordinate transformations. The impliations of this will be seen later. When

studying the partition funtion in the limit of large �, the frequeny ! annot be

set equal to zero sine this would lead to in�nities in the perturbation expansion, as

we shall see below.

A deliate problem is posed by the square root of the determinant of the metri

in the funtional integration measure in (10.185). In a purely formal ontinuous

de�nition of the measure, we would write it as

Z

D

D

q

p

g �

Y

�

Z

d

D

q(�)

q

g(�)=

"

Y

�

Z

d

D

q(�)

q

g(q

a

)

#

exp

"

1

2

X

�

log

g(q(�))

g(q

a

)

#

:

(10.189)

The formal sum over all ontinuous times � in the exponent orresponds to an in-

tegral

R

d� divided by the spaing of the points, whih on a slied time axis would

be the sliing parameter �. Here it is d� . The ratio 1=d� may formally be identi�ed

with Æ(0), in aordane with the de�ning integral

R

d� Æ(�) = 1. The in�nity of

Æ(0) may be regularized in some way, for instane by a uto� in the Fourier repre-

sentation Æ(0) �

R

d!=(2�) at large frequenies !, a so-alled UV-uto� . Leaving

the regularization unspei�ed, we rewrite the measure (10.189) formally as

Z

D

D

q

p

g �

"

Y

�

Z

d

D

q(�)

q

g(q

a

)

#

exp

"

1

2

Æ(0)

Z

�

0

d� log

g(q(�))

g(q

a

)

#

; (10.190)

and further as

Z

D

D

q

q

g(q

a

) e

�A

g

[q℄

; (10.191)
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where we have introdued an e�etive ation assoiated with the measure:

A

g

[q℄ = �

1

2

Æ(0)

Z

�

0

d� log

g(q(�))

g(q

a

)

: (10.192)

For a perturbative treatment, this ation is expanded in powers of Æq(�) and is a

funtional of this variable:

A

g

[q

a

; Æq℄ = �

1

2

Æ(0)

Z

�

0

d� [log g(q

a

+ Æq(�))� log g(q

a

)℄: (10.193)

This is added to (10.188) to yield the total interation

A

int

tot

[q

a

; Æq℄ = A

int

[q

a

; Æq℄ +A

g

[q

a

; Æq℄: (10.194)

The path integral for the partition funtion is now written as

Z =

Z

D

D

q

q

g(q

a

) e

�A

(0)

[q℄

e

�A

int

tot

[q℄

: (10.195)

Aording to the rules of perturbation theory, we expand the fator e

�A

int

tot

in

powers of the total interation, and obtain the perturbation series

Z =

Z

D

D

q

q

g(q

a

)

�

1�A

int

tot

+

1

2

A

int 2

tot

� : : :

�

e

�A

(0)

[q℄

= Z

!

�

1�

D

A

int

tot

E

+

1

2!

D

A

int 2

tot

E

� : : :

�

; (10.196)

where

Z

!

� e

��F

!

=

Z

D

D

q

q

g(q

a

) e

�A

(0)

[q℄

(10.197)

is the path integral over the free part, and the symbol h : : : i denotes the expetation

values in this path integral

h : : : i = Z

�1

!

Z

Dq

q

g(q

a

) ( : : : ) e

�A

(0)

[q℄

: (10.198)

With the usual de�nition of the umulants

D

A

int

tot

E



=

D

A

int

tot

E

,

D

A

int 2

tot

E



=

D

A

int 2

tot

E

�

D

A

int

tot

E

2

; : : : [reall (3.485), (3.486)℄, this an be written as

Z � e

��F

= exp

�

��F

!

�

D

A

int

tot

E



+

1

2!

D

A

int 2

tot

E



� : : :

�

; (10.199)

where F

!

� ��

�1

logZ the free energy assoiated with Z

!

.

The umulants are now alulated aording to Wik's rule order by order in �h,

treating the Æ-funtion at the origin Æ(0) as if it were �nite. The perturbation series

will ontain fators of Æ(0) and its higher powers. Fortunately, these unpleasant

terms will turn out to anel eah other at eah order in a suitably de�ned expansion
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parameter. On aount of these anellations, we may ultimately disard all terms

ontaining Æ(0), or set Æ(0) equal to zero, in aordane with Veltman's rule (2.508).

The harmoni path integral (10.197) is performed using formulas (2.489) and

(2.505). Assuming for a moment what we shall prove below that we may hoose

oordinates in whih g

��

(q

a

) = Æ

��

, we obtain diretly in D dimensions

Z

!

=

Z

Dq e

�A

!

[q℄

= exp

�

�

D

2

Tr log(��

2

+ !

2

)

�

� e

��F

!

: (10.200)

The expression in brakets spei�es the free energy F

!

of the harmoni osillator at

the inverse temperature �.

10.6.2 Zero Temperature

For simpliity, we �st onsider the limit of zero temperature or � ! 1. Then F

!

beomes equal to the sum of D ground state energies !=2 of the osillator, one for

eah dimension:

F

!

=

1

�

D

2

Tr log(��

2

+ !

2

) !

�!1

D

2

Z

1

�1

dk

2�

log(k

2

+ !

2

) =

D

2

!: (10.201)

The Wik ontrations in the umulants

D

A

int 2

tot

E



of the expansion (10.198) on-

tain only onneted diagrams. They ontain temporal integrals whih, after suitable

partial integrations, beome produts of the following basi orrelation funtions

G

(2)

��

(�; �

0

) � hq

�

(�)q

�

(�

0

)i = ; (10.202)

�

�

G

(2)

��

(�; �

0

) � h _q

�

(�)q

�

(�

0

)i = ; (10.203)

�

�

0

G

(2)

��

(�; �

0

) � hq

�

(�) _q

�

(�

0

)i = ; (10.204)

�

�

�

�

0

G

(2)

��

(�; �

0

) � h _q

�

(�) _q

�

(�

0

)i = : (10.205)

The right-hand sides de�ne line symbols to be used for drawing Feynman diagrams

for the interation terms.

Under the assumption g

��

(q

a

) = Æ

��

, the orrelation funtion G

(2)

��

(�; �

0

) fator-

izes as

G

(2)

��

(�; �

0

) = Æ

��

�(� � �

0

); (10.206)

with �(� � �

0

) abbreviating the orrelation the zero-temperature Green funtion

G

p

!

2

;e

(�) of Eq. (3.249) (remember the present units with M = �h = 1):

�(� � �

0

) =

Z

1

�1

dk

2�

e

ik(���

0

)

k

2

+ !

2

=

1

2!

e

�!j���

0

j

: (10.207)

As a onsequene, the seond orrelation funtion (10.203) has a disontinuity

�

�

G

(2)

��

(�; �

0

) = Æ

��

i

Z

1

�1

dk

2�

e

ik(���

0

)

k

k

2

+ !

2

= Æ

��

_

�(� � �

0

) � �

1

2

Æ

��

�(� � �

0

)e

�!j���

0

j

;

(10.208)
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where �(� � �

0

) is the distribution de�ned in Eq. (1.315) whih has a jump at � = �

0

from �1 to 1. It an be written as an integral over a Æ-funtion:

�(� � �

0

) � �1 + 2

Z

�

�1

d�

00

Æ(�

00

� �

0

): (10.209)

The third orrelation funtion (10.204) is simply the negative of (10.203):

�

�

0

G

(2)

��

(�; �

0

) = ��

�

G

(2)

��

(�; �

0

) = �Æ

��

_

�(� � �

0

): (10.210)

At the point � = �

0

, the momentum integral (10.208) vanishes by antisymmetry:

�

�

G
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��

(�; �
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�=�
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=��
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0

G

(2)

��
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�(0) = 0: (10.211)

The fourth orrelation funtion (10.205) ontains a Æ-funtion:

�

�
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) (10.212)

= Æ

��

Z

1

�1

dk

2�

e

ik(���

0

)

 

1�

!

2

k

2

+ !

2

!

= Æ

��

Æ(� � �

0

)� !

2

G

(2)

��

(�; �

0

):

The Green funtions for � = � are plotted in Fig. 10.4.
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Figure 10.4 Green funtions for perturbation expansions in urvilinear oordinates in

natural units with ! = 1. The third ontains a Æ-funtion at the origin.

The last equation is atually the de�ning equation for the Green funtion, whih

is always the solution of the inhomogeneous equation of motion assoiated with the

harmoni ation (10.187), whih under the assumption g

��

(q

a

) = Æ

��

reads for eah

omponent:

��q(�) + !

2

q(�) = Æ(� � �

0

): (10.213)

The Green funtion �(� � �

0

) solves this equation, satisfying

�

�(�) = !

2

�(�)� Æ(�): (10.214)

When trying to evaluate the di�erent terms produed by the Wik ontra-

tions, we run into a serious problem. The di�erent terms ontaining produts of

time derivatives of Green funtions ontain e�etively produts of Æ-funtions and
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Heaviside funtions. In the mathematial theory of distributions, suh integrals are

unde�ned. We shall o�er two ways to resolve this problem. One is based on ex-

tending the integrals over the time axis to integrals over a d-dimensional time spae,

and ontinuing the results at the end bak to d = 1. The extension makes the path

integral a funtional integral of the type used in quantum �eld theories. It will turn

out that this proedure leads to well-de�ned �nite results, also for the initially di-

vergent terms oming from the e�etive ation of the measure (10.193). In addition,

and very importantly, it guarantees that the perturbatively de�ned path integral is

invariant under oordinate transformations.

For the time-slied de�nition in Setion 10.3, oordinate independene was an

automati onsequene of the nonholonomi mapping from a at-spae path integral.

In the perturbative de�nition, the oordinate independene has been an outstanding

problem for many years, and was only solved reently in Refs. [23℄{[25℄.

In d-dimensional quantum �eld theory, path integrals between two and four

spaetime dimensions have been de�ned by perturbation expansions for a long time.

Initial diÆulties in guaranteeing oordinate independene were solved by 't Hooft

and Veltman [29℄ using dimensional regularization with minimal subtrations. For a

detailed desription of this method see the textbook [30℄. Coordinate independene

emerges after alulating all Feynman integrals in an arbitrary number of dimen-

sions d, and ontinuing the results to the desired physial integer value. In�nities

ouring in the limit are absorbed into parameters of the ation. In ontrast, and

surprisingly, numerous attempts [31℄{[36℄ to de�ne the simpler quantum-mehanial

path integrals in urved spae by perturbation expansions enountered problems.

Although all �nal results are �nite and unique, the Feynman integrals in the ex-

pansions are highly singular and mathematially unde�ned. When evaluated in

momentum spae, they yield di�erent results depending on the order of integration.

Various de�nitions hosen by the earlier authors were not oordinate-independent,

and this ould only be ured by adding oordinate-dependent \orretion terms" to

the lassial ation | a highly unsatisfatory proedure violating the basi Feynman

postulate that physial amplitudes should onsist of a sum over all paths with phase

fators e

iA=�h

ontaining only the lassial ations along the paths.

The alulations in d spaetime dimensions and the ontinuation to d = 1 will

turn out to be somewhat tedious. We shall therefore �nd in Subsetion 10.11.4 a

method of doing the alulations diretly for d = 1.

10.7 Model Study of Coordinate Invariane

Let us onsider �rst a simple model whih exhibits typial singular Feynman integrals

enountered in urvilinear oordinates and see how these an be turned into a �nite

perturbation expansion whih is invariant under oordinate transformations. For

simpliity, we onsider an ordinary harmoni osillator in one dimension, with the

ation

A

!

=

1

2

Z

�

0

d�

h

_x

2

(�) + !

2

x

2

(�)

i

: (10.215)
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The partition funtion of this system is exatly given by (10.201):

Z

!

=

Z

Dx e

�A

!

[x℄

= exp

�

�

D

2

Tr log(��

2

+ !

2

)

�

� e

��F

!

: (10.216)

A nonlinear transformation of x(�) to some other oordinate q(�) turns (10.216)

into a path integral of the type (10.185) whih has a singular perturbation expansion.

For simpliity we assume a spei� simple oordinate transformation preserving the

reetion symmetry x ! �x of the initial osillator, whose power series expansion

starts out like

x(�) = f

�

(�q(�)) �

1

�

f(�q(�)) = q �

�

3

q

3

+ a

�

2

5

q

5

� � � � ; (10.217)

where � is an expansion parameter whih will play the role of a oupling onstant

ounting the orders of the perturbation expansion. An extra parameter a is in-

trodued for the sake of generality. We shall see that it does not inuene the

onlusions.

The transformation hanges the partition funtion (10.216) into

Z =

Z

Dq(�) e

�A

J

[q℄

e

�A[q℄

; (10.218)

where is A[q℄ is the transformed ation, whereas

A

J

[q℄ = �Æ(0)

Z

d� log

�f(q(�))

�q(�)

(10.219)

is an e�etive ation oming from the Jaobian of the oordinate transformation

J =

Y

�

v

u

u

t

�f(q(�))

�q(�)

: (10.220)

The Jaobian plays the role of the square root of the determinant of the metri in

(10.185), and A

J

[q℄ orresponds to the e�etive ation A

g

[Æq℄ in Eq. (10.193).

The transformed ation is deomposed into a free part

A

!

[q℄ =

1

2

Z

�

0

d� [ _q

2

(�) + !

2

q

2

(�)℄; (10.221)

and an interating part orresponding to (10.188), whih reads to seond order in �:

A

int

[q℄ =

Z

�
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d�

(

��

"

q

2

(�) _q

2

(�) +

!

2

3

q

4

(�)

#

+ �

2

��

1

2

+ a

�

q

4

(�) _q

2

(�) + !

2

�

1

18

+

2a

5

�

q

6

(�)

��

: (10.222)

This is found from (10.188) by inserting the one-dimensional metri

g

00

(q) = g(q) = [f

0

(�q)℄

2

= 1� 2�q

2

+ (1 + 2a)�

2

q

4

+ : : : : (10.223)
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To the same order in �, the Jaobian ation (10.219) is

A

J

[q℄ = �Æ(0)

Z

�

0

d�

�

��q

2

(�) + �

2

�

a�

1

2

�

q

4

(�)

�

; (10.224)

and the perturbation expansion (10.199) is to be performed with the total interation

A

int

tot

[q℄ = A

int

[q℄ +A

J

[q℄: (10.225)

For � = 0, the transformed partition funtion (10.218) oinides trivially with

(10.216). When expanding Z of Eq. (10.218) in powers of �, we obtain sums of

Feynman diagrams ontributing to eah order �

n

. This sum must vanish to ensure

oordinate independene of the path integral. From the onneted diagrams in the

umulants in (10.199) we obtain the free energy

�F = �F

!

+ �

X

n=1

�

n

F

n
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!

+

D

A

int

tot

E



�

1

2!

D

A

int 2

tot

E



+ : : : : (10.226)

The perturbative treatment is oordinate-independent if F does not depend on the

parameters � and a of the oordinate transformation (10.217). Hene all expansion

terms F

n

must vanish. This will indeed happen, albeit in a quite nontrivial way.

10.7.1 Diagrammati Expansion

The graphial expansion for the ground state energy will be arried here only up to

three loops. At any order �

n

, there exist di�erent types of Feynman diagrams with

L = n+1; n; and n� 1 number of loops oming from the interation terms (10.222)

and (10.224), respetively. The diagrams are omposed of the three types of lines in

(10.202){(10.205), and new interation verties for eah power of �. The diagrams

oming from the Jaobian ation (10.224) are easily reognized by an aompanying

power of Æ(0).

First we alulate the ontribution to the free energy of the �rst umulant

D

A

int

tot

E



in the expansion (10.226). The assoiated diagrams ontain only lines whose end

points have equal times. Suh diagrams will be alled loal .

To lowest order in �, the umulant ontains the terms

�F
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2
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+



:

There are two diagrams originating from the interation, one from the Jaobian

ation:

�F

1

= � � � � !

2

+ � Æ(0) : (10.227)



820 10 Spaes with Curvature and Torsion

The �rst umulant ontains also terms of order �

2

:

�

2

Z
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���
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q

4
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2

�

q

4

(�)

�



:

The interation gives rise to two three-loop diagrams, the Jaobian ation to a single

two-loop diagram:

�F

(1)

2
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"
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#

: (10.228)

We now ome to the ontribution of the seond umulant

D

A

int 2

tot

E



in the expan-

sion (10.226). Keeping only terms ontributing to order �

2

we have to alulate the

expetation value

�
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: (10.229)

Only the onneted diagrams ontribute to the umulant, and these are neessarily

nonloal. The simplest diagrams are those ontaining fators of Æ(0):

�F

(2)

2

= �

�

2

2!

n

2Æ

2

(0) � 4Æ(0)

h

+ + 2!

2

io

: (10.230)

The remaining diagrams have either the form of three bubble in a hain, or of a

watermelon, eah with all possible ombinations of the three line types (10.202){

(10.205). The sum of the three-bubbles diagrams is

�F

(3)

2

= �

�

2

2!

h

4 +2 + 2 +8!

2

+ 8!

2

+ 8!

4

i

;

(10.231)

while the watermelon-like diagrams ontribute

�F

(4)

2

= �

�

2

2!

4

�

2

3

!

4

+ + 4 + + 4!

2

�

: (10.232)

Sine the equal-time expetation value h _q(�) q(�)i vanishes aording to

Eq. (10.211), diagrams with a loal ontration of a mixed line (10.203) vanish

trivially, and have been omitted.

We now show that if we alulate all Feynman integrals in d = 1 � " time

dimensions and take the limit " ! 0 at the end, we obtain unique �nite results.

These have the desired property that the sum of all Feynman diagrams ontributing

to eah order �

n

vanishes, thus ensuring invariane of the perturbative expressions

(10.196) and (10.199) under oordinate transformations.
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10.7.2 Diagrammati Expansion in d Time Dimensions

As a �rst step, we extend the dimension of the � -axis to d, assuming � to be a vetor

� � (�

0

; : : : ; �

d

), in whih the zeroth omponent is the physial imaginary time, the

others are auxiliary oordinates to be eliminated at the end. Then we replae the

harmoni ation (10.215) by

A

!

=

1

2

Z

d

d

�

h

�

�

x(�)�

�

x(�) + !

2

x

2

(�)

i

; (10.233)

and the terms _q

2

in the transformed ation (10.222) aordingly by �

a

q(�)�

a

q(�).

The orrelation funtions (10.206), (10.208), and (10.212) are replaed by two-

point funtions
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; (10.234)

and its derivatives
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: (10.236)

The on�guration spae is still one-dimensional so that the indies �; � and the

orresponding tensors in Eqs. (10.206), (10.208), and (10.212) are absent.

The analyti ontinuation to d = 1� " time dimensions is most easily performed

if the Feynman diagrams are alulated in momentum spae. The three types of

lines represent the analyti expressions
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: (10.237)

Most diagrams in the last setion onverge in one-dimensional momentum spae,

thus requiring no regularization to make them �nite, as we would expet for a

quantum-mehanial system. Trouble arises, however, in some multiple momentum

integrals, whih yield di�erent results depending on the order of their evaluation.

As a typial example, take the Feynman integral

=�

Z

d

d

�

1

�(�

1

� �

2

)�

�

(�

1

� �

2

)�

�

(�

1

� �

2

)�

��

(�

1

� �

2

): (10.238)

For the ordinary one-dimensional Eulidean time, a Fourier transformation yields

the triple momentum spae integral

X =

Z

dk

2�

dp

1

2�

dp

2

2�

k

2

(p

1

p

2

)

(k

2

+ !

2

)(p

2

1

+ !

2

)(p

2

2

+ !

2

)[(k + p

1

+ p

2

)

2

+ !

2

℄

: (10.239)
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Integrating this �rst over k, then over p

1

and p

2

yields 1=32!. In the order �rst p

1

,

then p

2

and k, we �nd �3=32!, whereas the order �rst p

1

, then k and p

2

, gives again

1=32!. As we shall see below in Eq. (10.284), the orret result is 1=32!.

The unique orret evaluation will be possible by extending the momentum spae

to d dimensions and taking the limit d ! 1 at the end. The way in whih the

ambiguity will be resolved may be illustrated by a typial Feynman integral

Y

d

=

Z

d

d

k

(2�)

d

d

d

p

1

(2�)

d

d

d

p

2

(2�)

d

k

2

(p

1

p

2

)� (kp

1

)(kp

2

)

(k

2

+ !

2

)(p

2

1

+ !

2

)(p

2

2

+ !

2

)[(k + p

1

+ p

2

)

2

+ !

2

℄

;(10.240)

whose numerator vanished trivially in d = 1 dimensions. Due to the di�erent

ontrations in d dimensions, however, Y

0

will be seen to have the nonzero value

Y

0

= 1=32! � (�1=32!) in the limit d ! 1, the result being split aording to

the two terms in the numerator [to appear in the Feynman integrals (10.282) and

(10.284); see also Eq. (10.355)℄.

The diagrams whih need a areful treatment are easily reognized in on�gura-

tion spae, where the one-dimensional orrelation funtion (10.234) is the ontinuous

funtion (10.207). Its �rst derivative (10.208) whih has a jump at equal arguments

is a rather unproblemati distribution, as long as the remaining integrand does not

ontain Æ-funtions or their derivatives. These appear with seond derivatives of

�(�; �

0

), where the d-dimensional evaluation must be invoked to obtain a unique

result.

10.8 Calulating Loop Diagrams

The loop integrals enountered in d dimensions are based on the basi one-loop

integral

I �

Z

�d

d

k

k

2

+ !

2

=

!

d�2

(4�)

d=2

� (1� d=2) =

d=1

1

2!

; (10.241)

where we have abbreviated �d

d

k � d

d

k=(2�)

d

by analogy with �h � h=2�. The

integral exists only for ! 6= 0 sine it is otherwise divergent at small k. Suh a

divergene is alled infrared divergene (IR-divergene) and ! plays the role of an

infrared (IR) uto�.

By di�erentiation with respet to !

2

we an easily generalize (10.241) to

I

�

�

�

Z

�d

d

k (k

2

)

�

(k

2

+ !

2

)

�

=

!

d+2��2�

(4�)

d=2

� (d=2 + �) � (�� � � d=2)

� (d=2) �(�)

: (10.242)

Note that for onsisteny of dimensional regularization, all integrals over a pure

power of the momentum must vanish:

I

�

0

=

Z

�d

d

k (k

2

)

�

= 0: (10.243)

We reognize Veltman's rule of Eq. (2.508).
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With the help of Eqs. (10.241) and (10.242) we alulate immediately the loal

expetation values (10.234) and (10.236) and thus the loal diagrams in (10.227)

and (10.228):

=

D

q

2

E

=

Z

�d

d

k

k

2

+!

2

=

d=1

1

2!

; (10.244)
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d

k

k

2

+!

2
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2

=

d=1

1

4!

2

; (10.245)
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D
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2

E

3

=

 

Z

�d

d

k

k

2

+!

2

!

3

=

d=1

1

8!

3

; (10.246)

=

D

q

2

E

h�q �qi =
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d

k
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2

+!

2
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d

p p

2
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+!
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=
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�

1

4

; (10.247)

= hqqi

2

h�q�qi=
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2

!

2

Z

�d

d

p p

2
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2

+!
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=
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�

1

8!

: (10.248)

The two-bubble diagrams in Eq. (10.230) an also be easily omputed

=
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; (10.249)
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; (10.250)
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; (10.251)
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: (10.252)

For the three-bubble diagrams in Eq. (10.231) we �nd

=
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; (10.253)
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: (10.258)

In these diagrams, it does not make any di�erene if we replae �

2

��

by �

2

��

.

We now turn to the watermelon-like diagrams in Eq. (10.232) whih are more

tedious to alulate. They require a further basi integral [26℄:

J(p

2

) =
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�d

d

k
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2

)[(k + p)
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;

p

2
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2

+ 4!

2

!

; (10.259)

where F (a; b; ; z) is the hypergeometri funtion (1.453). For d = 1, the result is

simply

J(p

2

) =

1

!(p

2

+ 4!

2

)

: (10.260)

We also de�ne the more general integrals

J
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�
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and further

J

�
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n
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1

:::�
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�
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�
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2
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℄

: (10.262)

The latter are linear ombinations of momenta and the former, for instane

J

�;�

(p) = J

�

(p) p

�

+ J

��

(p): (10.263)

Using Veltman's rule (10.243), all integrals (10.262) an be redued to ombinations

of p; I; J(p

2

). Relevant examples for our disussion are

J

�

(p) =

Z

�d

d

k k

�

(k

2

+ !

2

)[(k + p)

2

+ !

2

℄

= �

1

2

p

�

J(p

2

); (10.264)
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and

J
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whose trae is

J
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+ !
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): (10.266)

Similarly we expand

J
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2
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)℄: (10.267)

The integrals appear in the following subdiagrams

= J(p

2

); = J

;�

(p); = J

;��

(p);

= J
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(p); = J

�;�

(p); = J

�;�

(p);

= J

��
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��;

(p); = J

��;Æ
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(10.268)

All two- and three-loop integrals needed for the alulation an be brought to the

generi form

K(a; b) =

Z

�d

d

p (p

2

)

a

J

b

(p

2

); a � 0; b � 1; a � b; (10.269)

and evaluated reursively as follows [27℄. From the Feynman parametrization of

the �rst line of Eq. (10.259) we observe that the two basi integrals (10.241) and

(10.259) satisfy the di�erential equation

J(p

2

) = �

�I

�!

2

+
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2

p

2

�J(p

2

)

�!

2

� 2p
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�J(p

2

)

�p

2

: (10.270)

Di�erentiating K(a + 1; b) from Eq. (10.269) with respet to !

2

, and using

Eq. (10.270), we �nd the reursion relation

K(a; b) =

2b(d=2� 1) I K(a� 1; b� 1)� 2!

2

(2a� 2� b+ d)K(a� 1; b)

(b+ 1)d=2� 2b+ a

; (10.271)

whih may be solved for inreasing a starting with

K(0; 0) = 0; K(0; 1) =

Z

�d

d

p J(p

2

) = I

2

;

K(0; 2) =

Z

�d

d

p J

2

(p

2

) = A; : : : ; (10.272)
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where A is the integral

A �
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℄

: (10.273)

This integral will be needed only in d = 1 dimensions where it an be alulated

diretly from the on�guration spae version of this integral. For this we observe

that the �rst watermelon-like diagram in (10.232) orresponds to an integral over

the produt of two diagrams J(p

2

) in (10.268):

=

Z

d

d

�

1

�(�

1

� �

2

)�(�

1

� �

2

)�(�

1

� �

2

)�(�

1

� �

2

) =

Z

�d

d

k J

2

(k) = A:(10.274)

Thus we �nd A in d = 1 dimensions from the simple � -integral

A =

Z
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: (10.275)

Sine this on�guration spae integral ontains no Æ-funtions, the alulation in

d = 1 dimension is without subtlety.

With the help of Eqs. (10.271), (10.272), and Veltman's rule (10.243), aording

to whih

K(a; 0) � 0; (10.276)

we �nd further the integrals
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We are thus prepared to alulate all remaining three-loop ontributions from

the watermelon-like diagrams in Eq. (10.232). The seond is an integral over the

produt of subdiagrams J

��

in (10.268) and yields
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(10.280)
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The third diagram ontains two mixed lines. It is an integral over a produt of the

diagrams J

�

(p) and J

�;��

in (10.268) and gives
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The fourth diagram ontains four mixed lines and is evaluated as follows:

= �

Z

d

d

�

1

�

�

(�

1

� �

2

)�

�

(�

1

� �

2

)�

�

(�

1

� �

2

)�

�

(�

1

� �

2

): (10.282)

Sine the integrand is regular and vanishes at in�nity, we an perform a partial

integration and rewrite the on�guration spae integral as

=

Z

d

d

�

1

�(�

1

� �

2

)�

��

(�

1

� �

2

)�

�
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1

� �

2

)�

�
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1

� �

2

)

+ 2

Z

d
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1

�(�

1

� �
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1

� �

2
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�

(�

1

� �

2

)�

��

(�

1

� �

2

): (10.283)

The seond integral has just been evaluated in (10.282). The �rst is preisely the

integral Eq. (10.239) disussed above. It is alulated as follows:

Z

d

d
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�(�

1

� �
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)�

��

(�

1

� �

2
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k �d

d

p
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2

℄

=
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d

p [p

�

J

�

(p)J

��

+ J

�

(p)J

���

(p)℄ =

!

2

4

Z

�d

d

p p

2

J

2

(p

2

)

= �

!

2

3

(I

3

� !

2

A) =

d=1

1

32!

: (10.284)

Hene we obtain

=

1

32!

: (10.285)

The �fth diagram in (10.232) is an integral of the produt of two subdiagrams J

�

(p)

in (10.268) and yields

=

Z

d

d

�

1

�(�

1

� �

2

)�

2

�

(�

1

� �

2

)�(�

1

� �

2

)
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= �
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=

Z
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d
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�

(k) =

1

4

Z
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d
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2

J
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=

1

4

4
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2
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1
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3

: (10.286)

We an now sum up all ontributions to the free energy in Eqs. (10.227){(10.232).

An immediate simpli�ation arises from the Veltman's rule (10.243). This implies

that all Æ-funtions at the origin are zero in dimensional regularization:

Æ

(d)

(0) =

Z

d

d

k

(2�)

d

= 0: (10.287)

The �rst-order ontribution (10.227) to the free energy is obviously zero by

Eqs. (10.245) and (10.247).

The �rst seond-order ontribution �F

(1)

2

beomes, from (10.246) and (10.248):

F

(1)

2

= �

2

�

3

�

1

2

+ a

��

�

1

8!

�

+ 15!

2

�

1

18

+

a

5

��

= �

�

2

12!

: (10.288)

The parameter a has disappeared from this equation.

The seond seond-order ontribution �F

(2)

2

vanishes trivially, by Veltman's rule

(10.287).

The third seond-order ontribution �F

(3)

2

in (10.231) vanishes nontrivially using

(10.253){(10.258):

F

(3)

2

= �

�

2

2!
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1

16!

�

+ 2

�
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+ 2
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1
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1

16!

3

�

+ 8!

2

�

1

16!

3

�

+ 8!

4

�

1

16!

5

��

= 0: (10.289)

The fourth seond-order ontribution, �nally, assoiated with the watermelon-

like diagrams in (10.232) yield via (10.281), (10.282), (10.285), (10.286), and

(10.274):

�F

(4)

2

= �

�

2

2!

�

�

3

32!

+ 4

�

�

1

32!

�

+

1

32!

+ 4!

2
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1

32!

3

�

+

2

3

!

4

�

1

32!

5

� �

=

�

2

12!

;

(10.290)

aneling (10.288), and thus the entire free energy. This proves the invariane of the

perturbatively de�ned path integral under oordinate transformations.
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10.8.1 Reformulation in Con�guration Spae

The Feynman integrals in momentum spae in the last setion orresponds in � -spae to integrals

over produts of distributions. For many appliations it is desirable to do the alulations diretly

in � -spae. This will lead to an extension of distribution theory whih allows us to do preisely

that.

In dimensional regularization, an important simpli�ation ame from Veltman's rule (10.287),

aording to whih the delta funtion at the origin vanishes. In the more general alulations to

ome, we shall enounter generalized Æ-funtions, whih are multiple derivatives of the ordinary

Æ-funtion:

Æ

(d)

�

1

:::�

n

(�) � �

�

1

:::�

n

Æ

(d)

(�) =

Z

�d

d

k(ik)

�

1

: : : (ik)

�

n

e

ikx

; (10.291)

with �

�

1

:::�

n

� �

�

1

: : : �

�

n

and �d

d

k � d

d

k

Æ

(2�)

d

. By Veltman's rule (10.243), all these vanish at

the origin:

Æ

(d)

�

1

:::�

n

(0) =

Z

�d

d

k(ik)

�

1

: : : (ik)

�

n

= 0: (10.292)

In the extended oordinate spae, the orrelation funtion �(�; �

0

) in (10.234), whih we shall

also write as �(� � �

0

), is at equal times given by the integral [ompare (10.241)℄

�(0) =

Z

�d

d

k

k

2

+ !

2

=

!

d�2

(4�)

d=2

�

�

1�

d

2

�

= I =

d=1

1

2!

: (10.293)

The extension (10.235) of the time derivative (10.208),

�

�

(�) =

Z

�d

d

k

ik

�

k

2

+ !

2

e

ik�

(10.294)

vanishes at equal times, just like (10.211):

�

�

(0) = 0: (10.295)

This follows diretly from a Taylor series expansion of 1=(k

2

+ !

2

) in powers of k

2

, after imposing

(10.292).

The seond derivative of �(�) has the Fourier representation (10.236). Contrating the indies

yields

�

��

(�) = �

Z

�d

d

k

k

2

k

2

+ !

2

e

ikx

= �Æ

(d)

(�) + !

2

�(�) : (10.296)

This equation is a diret onsequene of the de�nition of the orrelation funtion as a solution to

the inhomogeneous �eld equation

(��

2

�

+ !

2

)q(�) = Æ

(d)

(�): (10.297)

Inserting Veltman's rule (10.287) into (10.296), we obtain

�

��

(0) = !

2

�(0) =

d=1

!

2

: (10.298)

This ensures the vanishing of the �rst-order ontribution (10.227) to the free energy

F

1

= �g �

�

��

��

(0) + !

2

�(0)

�

�(0) = 0: (10.299)
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The same equation (10.296) allows us to alulate immediately the seond-order ontribution

(10.228) from the loal diagrams

F

(1)

2

= ��

2

3g

2

��

1

2

+ a
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��

(0)� 5
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!

2

�

3

(0) =

d=1

�

�

2

12!

: (10.300)

The other ontributions to the free energy in the expansion (10.226) require rules for alulating

produts of two and four distributions, whih we are now going to develop.

10.8.2 Integrals over Produts of Two Distributions

The simplest integrals are

Z

d

d

� �
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(�) =

Z

�d

d
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d

k

Æ

(d)
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�(0); (10.301)

and
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2
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2

�(0): (10.302)

To obtain the seond result we have performed a partial integration and used

(10.296).

In ontrast to (10.301) and (10.302), the integral

Z
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(�) (10.303)

diverges formally in d = 1 dimension. In dimensional regularization, however, we

may deompose (k

2

)

2

= (k
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�2!

2
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4

, and use (10.292) to evaluate
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(�): (10.304)

Together with (10.301), we obtain the relation between integrals of produts of two

distributions

Z

d

d

� �
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��

(�) =
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d

d

� �

2
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(�) = �2!

2

�(0) + !

4

Z

d
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2

�(0) : (10.305)
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An alternative way of deriving the equality (10.303) is to use partial integrations

and the identity

�

�

�

��

(�) = �

�

�

��

(�); (10.306)

whih follows diretly from the Fourier representation (10.294).

Finally, from Eqs. (10.301), (10.302), and (10.305), we observe the useful identity
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d

d
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�

2

��

(�) + 2!

2

�

2

�

(�) + !

4

�

2

(�)

i

= 0 ; (10.307)

whih together with the inhomogeneous �eld equation (10.296) redues the alula-

tion of the seond-order ontribution of all three-bubble diagrams (10.231) to zero:
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2

(0)
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d

d
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2

��
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(�)

i

= 0 : (10.308)

10.8.3 Integrals over Produts of Four Distributions

Consider now the more deliate integrals arising from watermelon-like diagrams in

(10.232) whih ontain produts of four distributions, a nontrivial tensorial stru-

ture, and overlapping divergenes. We start from the seond to fourth diagrams:

=

Z

d

d

� �

2

(�)�

2

��

(�); (10.309)

4 = 4
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(�); (10.310)

=
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d

d
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�

(�)�

�

(�)�

�

(�)�

�

(�): (10.311)

To isolate the subtleties with the tensorial struture exhibited in Eq. (10.240), we

introdue the integral

Y

d

=

Z

d

d

� �

2

(�)

h

�

2

��

(�)��

2

��

(�)

i

: (10.312)

In d = 1 dimension, the braket vanishes formally, but the limit d! 1 of the integral

is nevertheless �nite. We now deompose the Feynman diagram (10.309), into the

sum

Z

d

d
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2

(�)�

2

��

(�) =

Z

d

d

� �

2

(�)�

2

��
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d

: (10.313)

To obtain an analogous deomposition for the other two diagrams (10.310) and

(10.311), we derive a few useful relations using the inhomogeneous �eld equation

(10.296), partial integrations, and Veltman's rules (10.287) or (10.292). From the

inhomogeneous �eld equation, there is the relation

�

Z

d

d

� �

��

(�)�
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(�) = �

3

(0)� !

2
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(�): (10.314)
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By a partial integration, the left-hand side beomes
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leading to

Z

d

d

� �

2

�

(�)�

2

(�) =

1

3

�

3

(0)�

1

3

!

2

Z

d

d

� �

4

(�): (10.316)

Invoking one more the inhomogeneous �eld equation (10.296) and Veltman's rule

(10.287), we obtain the integrals
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and

Z

d

d

� �

��

(�)�

2

�

(�)�(�) = !

2

Z

d

d

� �

2

�

(�)�

2

(�): (10.318)

Using (10.316), the integral (10.318) takes the form
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(�): (10.319)

Partial integration, together with Eqs. (10.317) and (10.319), leads to
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4

(�): (10.320)

A further partial integration, and use of Eqs. (10.306), (10.318), and (10.320) pro-

dues the deompositions of the seond and third Feynman diagrams (10.310) and

(10.311):

4
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d

d
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; (10.321)

and
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2

�
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d

: (10.322)

We now make the important observation that the subtle integral Y

d

of Eq. (10.312)

appears in Eqs. (10.313), (10.321), and (10.322) in suh a way that it drops out from

the sum of the watermelon-like diagrams in (10.232):

+ 4 + =
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d

d

� �

2

(�)�

2

��

(�) + !

2

Z

d

d

� �

2

(�)�

2

�

(�): (10.323)

Using now the relations (10.316) and (10.317), the right-hand side beomes a sum

of ompletely regular integrals involving only produts of propagators �(�).
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We now add to this sum the �rst and last watermelon-like diagrams in

Eq. (10.232)
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4
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!

4
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(�); (10.324)

and
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(�); (10.325)

and obtain for the total ontribution of all watermelon-like diagrams in (10.232) the

simple expression for � = 1:
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: (10.326)

This anels the �nite ontribution (10.300), thus making also the seond-order

free energy in (10.222) vanish, and on�rming the invariane of the perturbatively

de�ned path integral under oordinate transformations up to this order.

Thus we have been able to relate all diagrams involving singular time derivatives

of orrelation funtions to integrals over produts of the regular orrelation funtion

(10.234), where they an be replaed diretly by their d = 1 -version (10.207). The

disappearane of the ambiguous integral Y

d

in the ombination of watermelon-like

diagrams (10.323) has the pleasant onsequene that ultimately all alulations an

be done in d = 1 dimensions after all. This leads us to expet that the dimensional

regularization may be made superuous by a more omfortable alulation proe-

dure. This is indeed so and the rules will be developed in Setion 10.11. Before we

ome to this it is useful, however, to point out a pure x-spae way of �nding the

previous results.

10.9 Distributions as Limits of Bessel Funtion

In dimensional regularization it is, of ourse, possible to perform the above on�guration spae

integrals over produts of distributions without any referene to momentum spae integrals. For

this we express all distributions expliitly in terms of modi�ed Bessel funtions K

�

(y).

10.9.1 Correlation Funtion and Derivatives

The basi orrelation funtion in d-dimension is obtained from the integral in Eq. (10.234), as

�(�) = 

d

y

1�d=2

K

1�d=2

(y); (10.327)

where y � m j� j is redued length of �

�

, with the usual Eulidean norm jxj =

p

�

2

1

+ : : :+ �

2

d

, and

K

1�d=2

(y) is the modi�ed Bessel funtion. The onstant fator in front is



d

=

!

d�2

(2�)

d=2

: (10.328)
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In one dimension, the orrelation funtion (10.327) redues to (10.202). The short-distane prop-

erties of the orrelation funtions is governed by the small-y behavior of Bessel funtion at origin

4

K

�

(y) �

y�0

1

2

�(�)(y=2)

��

; Re �

>

<

0: (10.329)

In the appliation to path integrals, we set the dimension equal to d = 1� " with a small positive

", whose limit "! 0 will yield the desired results in d = 1 dimension. In this regime, Eq. (10.329)

shows that the orrelation funtion (10.327) is regular at the origin, yielding one more (10.293).

For d = 1, the result is �(0) = 1=2!, as stated in Eq. (10.298).

The �rst derivative of the orrelation funtion (10.327), whih is the d-dimensional extension

of time derivative (10.203), reads

�

�

(�) = �

d

y

1�d=2

K

d=2

(y) �

�

y; (10.330)

where �

�

y = m�

�

=jxj. By Eq. (10.329), this is regular at the origin for " > 0, suh that the

antisymmetry �

�

(�x) = ��

�

(�) makes �

�

(0) = 0, as observed after Eq. (10.294).

Expliitly, the small-� behavior of the orrelation funtion and its derivative is

�(�) / onst:; �

�

(�) / j� j

"

�

�

j� j: (10.331)

In ontrast to these two orrelation funtions, the seond derivative

�

��

(�) = �(�) (�

�

y)(�

�

y) +



d

(d� 2)

y

d=2

K

d=2

(y) �

��

y

2�d

; (10.332)

is singular at short distane. The singularity omes from the seond term in (10.332):

�

��

y

2�d

= (2� d)

!

2�d

jyj

d

�

Æ

��

� d

y

�

y

�

y

2

�

; (10.333)

whih is a distribution that is ambiguous at origin, and de�ned up to the addition of a Æ

(d)

(�)-

funtion. It is regularized in the same way as the divergene in the Fourier representation (10.292).

Contrating the indies � and � in Eq. (10.333), we obtain

�

2

y

2�d

= (2� d)!

2�d

S

d

Æ

(d)

(�); (10.334)

where S

d

= 2�

d=2

=�(d=2) is the surfae of a unit sphere in d dimensions [reall Eq. (1.558)℄. As a

hek, we take the trae of �

��

(�) in Eq. (10.332), and reprodue the inhomogeneous �eld equation

(10.296):

�

��

(�) = !

2

�(�)�

d

m

2�d

S

d

1

2

� (d=2) 2

d=2

Æ

(d)

(�)

= !

2

�(�) � Æ

(d)

(�): (10.335)

Sine Æ

(d)

(�) vanishes at the origin by (10.292), we �nd one more Eq. (10.298).

A further relation between distributions is found from the derivative

�

�

�

��

(�) = �

�

h

�Æ

(d)

(�) + !

2

�(�)

i

+ !S

d

�

�(�)jyj

d�1

(�

�

y)

�

Æ

(d)

(�) = �

�

�

��

(�):

(10.336)

4
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10.9.2 Integrals over Produts of Two Distributions

Consider now the integrals over produts of suh distributions. If an integrand f(jxj) depends only

on jxj, we may perform the integrals over the diretions of the vetors

Z

d

d

� f(�) = S

d

Z

1

0

dr r

d�1

f(r); r � jxj: (10.337)

Using the integral formula

5

Z

1

0

dy yK

2

�

(y) =

1

2

��

sin��

=

1

2

�(1 + �)�(1� �); (10.338)

we an alulate diretly:

Z

d

d

� �

2

(�) = !

�d



2

d

S

d

Z

1

0

dy y K

2

1�d=2

(y)

= !

�d



2

d

S

d

1

2

(1�d=2) �(1�d=2) �(d=2) =

2� d

2!

2

�(0); (10.339)

and

Z

d

d

� �

2

�

(�) = !

2�d



2

d

S

d

Z

1

0

dy yK

2

d=2

(y)

= !

2�d



2

d

S

d

1

2

� (1 + d=2) � (1� d=2) =

d

2

�(0); (10.340)

in agreement with Eqs. (10.301) and (10.302). Inserting �(0) = 1=2! from (10.293), these integrals

give us one more the values of the Feynman diagrams (10.249), (10.252), (10.253), (10.256), and

(10.258).

Note that due to the relation

6

K

d=2

(y) = �y

d=2�1

d

dy

h

y

1�d=2

K

1�d=2

(y)

i

; (10.341)

the integral over y in Eq. (10.340) an also be performed by parts, yielding

Z

d

d

� �

2

�

(�) = �!

2�d



2

d

S

d

�

y

d=2

K

d=2

��

y

1�d=2

K

1�d=2

�

�

�

�

�

1

0

� !

2

Z

d

d

� �

2

(�)

= �(0)� !

2

Z

d

d

��

2

(�): (10.342)

The upper limit on the right-hand side gives zero beause of the exponentially fast derease of the

Bessel funtion at in�nity. This was obtained before in Eq. (10.302) from a partial integration and

the inhomogeneous �eld equation (10.296).

Using the expliit representations (10.327) and (10.332), we alulate similarly the integral

Z

d

d

� �

2

��

(�) =

Z

d

d

� �

2

��

(�) = !

4

Z

d

d

� �

2

(�) � !

4�d



2

d

� (d=2) � (1�d=2)S

d

= !

4

Z

d

d

� �

2

(�) � 2!

2

�(0) = � (1 + d=2)!

2

�(0): (10.343)

5
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The �rst equality follows from partial integrations. In the last equality we have used (10.339). We

have omitted the integral ontaining the modi�ed Bessel funtions

(d� 1)

�

Z

1

0

dzK

d=2

(z)K

1�d=2

(z) +

d

2

Z

1

0

dz z

�1

K

2

d=2

(z)

�

; (10.344)

sine this vanishes in one dimension as follows:

�

�

4

� (1� "=2) [� ("=2) + � (�"=2)℄ "

2

�(") =

"!0

0:

Inserting into (10.343) �(0) = 1=2! from (10.293), we �nd one more the value of the right-hand

Feynman integral (10.250) and the middle one in (10.253).

By ombining the result (10.303) with (10.339) and (10.340), we an derive by proper inte-

grations the fundamental rule in this generalized distribution alulus that the integral over the

square of the Æ-funtion vanishes. Indeed, solving the inhomogeneous �eld equation (10.296) for

Æ

(d)

(�), and squaring it, we obtain

Z

d

d

�

h

Æ

(d)

(�)

i

2

= !

4

Z

d

d

� �

2

(�) + 2!

2

Z

d

d

� �

2

�

(�) +

Z

d

d

� �

2

��

(�) = 0: (10.345)

Thus we may formally alulate

Z

d

d

� Æ

(d)

(�)Æ

(d)

(�) = Æ

(d)

(0) = 0; (10.346)

pretending that one of the two Æ-funtions is an admissible smooth test funtion f(�) of ordinary

distribution theory, where

Z

d

d

� Æ

(d)

(�)f(�) = f(0): (10.347)

10.9.3 Integrals over Produts of Four Distributions

The alulation of the on�guration spae integrals over produts of four distributions in d = 1

dimension is straightforward as long as they are unique. Only if they are ambiguous, they require

a alulation in d = 1� " dimension, with the limit "! 0 taken at the end.

A unique ase is

Z

d

d

� �

4

(�) = 

4

d

!

�d

S

d

Z

1

0

dy y

3�d

K

4

1�d=2

(y)

=

d=1



4

1

!

�1

S

1

�

2

2

4

�

4

�

3

2

�

d

2

�

�(d) =

1

32!

5

; (10.348)

where we have set

y � !�: (10.349)

Similarly, we derive by partial integration

Z

d

d

� �

2

(�)�

2

�

(�) = !

2�d
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d

Z

1

0
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K

2

d=2
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2
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(y)

=

1
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!

2�d
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d

S

d

�

2

�d�1

�(d=2) �

3

(1�d=2)

+

Z

1

0

dy

�

y

1�d=2

K

1�d=2

�

3

d

dy

�

y

d=2

K

d=2

�

�

=

1

3

�

�

3

(0)� !

2

Z

d

d

� �

4

(�)

�

=

d=1

1

32!

: (10.350)
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Using (10.327), (10.330), and (10.332), we �nd for the integral in d = 1� " dimensions

Z

d

d

� �(�)�

�

(�)�

�

(�)�

��

(�) = !

2

Z

d

d

� �

2

(�)�

2

�

(�) �

1

2

Y

d

; (10.351)

where Y

d

is the integral

Y

d

= �2(d� 1)!

4�d



4

d

S

d

Z

1

0

dyy

2�d

K

1�d=2

(y)K

3

d=2

(y): (10.352)

In spite of the prefator d � 1, this has a nontrivial limit for d ! 1, the zero being ompensated

by a pole from the small-y part of the integral at y = 0. In order to see this we use the integral

representation of the Bessel funtion [28℄:

K

�

(y) = �

�1=2

(y=2)

��

�

�

1

2

+ �

�

Z

1

0

dt(osh t)

�2�

os(y sinh t): (10.353)

In one dimension where � = 1=2, this beomes simply K

1=2

(y) =

p

�=2ye

�y

. For � = d=2 and

� = 1� d=2 written as � = (1� ")=2, it is approximately equal to

K

(1�")=2

(y) = �

�1=2

(y=2)

�(1�")=2

�

�

1�

"

2

�

�

�

�

2

e

�y

� "

Z

1

0

dt(osh t)

�1

ln(osh t) os(y sinh t)

�

; (10.354)

where the t-integral is regular at y = 0.

7

After substituting (10.354) into (10.352), we obtain the

�nite value

Y

d

�

"�0

2

�

!

4�d



4

d

S

d

�

"

�

2

4

� (1 + "=2) �

3

(1� "=2)� 2

�5"

�(2")

=

"!0

�

1

2!�

2

�

�

2

4

=

1

8!

: (10.355)

The prefator d� 1 = �" in (10.352) has been aneled by the pole in �(2").

This integral oinides with the integral (10.312) whose subtle nature was disussed in the

momentum spae formulation (10.240). Indeed, inserting the Bessel expressions (10.327) and

(10.332) into (10.312), we �nd

Z

d

d

� �

2

(�)

�

�

2

��

(�)��

2

��

(�)

�

= �(d� 1)!

4�d
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d
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d

Z

1

0
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h

y

1�d=2

K

1�d=2

(y)

i

2

d

dy

K

2

d=2

(y); (10.356)

and a partial integration

Z

1

0

dy

h

y

1�d=2

(y)K

1�d=2

(y)

i

2

d

dy

K

2

d=2

(y) = 2

Z

1

0

dy y

2�d

K

1�d=2

(y)K

3

d=2

(y) (10.357)

establishes ontat with the integral (10.352) for Y

d

. Thus Eq. (10.351) is the same as (10.321).

Knowing Y

d

, we also determine, after integrations by parts, the integral

Z

d

d

� �

2

�

(�)�

2

�

(�) = �3!

2

Z

d

d

� �

2

(�)�

2

�

(�) + Y

d

; (10.358)
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whih is the same as (10.322). It remains to alulate one more unproblemati integral over four

distributions:

Z

d

d

� �

2

(�)�

2

��

(�) =

�

�2!

2

�

3

(0) + !

4

Z

d

d

� �

4

(�)

�

d=1

= �

7

32!

: (10.359)

Combining this with (10.355) and (10.358) we �nd the Feynman diagram (10.281). The ombina-

tion of (10.351) and (10.358) with (10.355) and (10.350), �nally, yields the diagrams (10.325) and

(10.324), respetively.

Thus we see that there is no problem in alulating integrals over produts of distributions in

on�guration spae whih produe the same results as dimensional regularization in momentum

spae.

10.10 Simple Rules for Calulating Singular Integrals

The above methods of alulating the Feynman integrals in d time dimensions with a

subsequent limit d! 1 are obviously quite umbersome. It is preferable to develop a

simple proedure of �nding the same results diretly working with a one-dimensional

time. This is possible if we only keep trak of some basi aspets of the d-dimensional

formulation [37℄.

Consider one more the ambiguous integrals oming from the �rst two water-

melon diagrams in Eq. (10.232), whih in the one-dimensional formulation represent

the integrals

I

1

=

Z

1

�1

d�

�

�

2

(�)�

2

(�) ; (10.360)

I

2

=

Z

1

�1

d�

�

�(�)

_

�

2

(�)�(�); (10.361)

evaluated before in the d-dimensional equations (10.284) and (10.282). Consider

�rst the integral (10.360) whih ontains a square of a Æ-funtion. We separate this

out by writing

I

1

=

Z

1

�1

d�

�

�

2

(�)�

2

(�) = I

div

1

+ I

R

1

; (10.362)

with a divergent and a regular part

I

div

1

= �

2

(0)

Z

1

�1

d� Æ

2

(�) ; I

R

1

=

Z

1

�1

d� �

2

(�)

h

�

�

2

(�)� Æ

2

(�)

i

: (10.363)

All other watermelon diagrams (10.232) lead to the well-de�ned integrals

Z

1

�1

d� �

4

(�) =

1

4!

2

�

3

(0); (10.364)

Z

1

�1

d�

_

�

2

(�)�

2

(�) =

1

4

�

3

(0); (10.365)

Z

1

�1

d�

_

�

4

(�) =

1

4

!

2

�

3

(0); (10.366)
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whose D-dimensional versions are (10.274), (10.286), and (10.282). Substituting

these and (10.361), (10.362) into (10.232) yields the sum of all watermelon diagrams

�

4

2!

Z

1

�1

d�

�

�

2

(�)

�

�

2

(�) + 4�(�)

_

�
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�

�(�)+
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2
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2
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2
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2

(�)� 2

�

I

R

1

+ 4I

2

�

�

17

6

!

2

�

3

(0) : (10.367)

Adding these to (10.230), (10.231), we obtain the sum of all seond-order onneted

diagrams

�

(all) = 3

�

Æ(0)�

Z

1

�1

d� Æ

2

(�)

�

�

2

(0)� 2

�

I

R

1

+ 4I

2

�

�

7

2

!

2

�

3

(0) ; (10.368)

where the integrals I

R

1

and I

2

are unde�ned. The sum has to vanish to guarantee

oordinate independene. We therefore equate to zero both the singular and �nite

ontributions in Eq. (10.368). The �rst yields the rule for the produt of two Æ-

funtions: Æ

2

(�) = Æ(0) Æ(�) : This equality should of ourse be understood in the

distributional sense: it holds after multiplying it with an arbitrary test funtion and

integrating over � .

Z

d� Æ

2

(�)f(�) � Æ(0)f(0): (10.369)

The equation leads to a perfet anellation of all powers of Æ(0) arising from the

expansion of the Jaobian ation, whih is the fundamental reason why the heuristi

Veltman rule of setting Æ(0) = 0 is appliable everywhere without problems.

The vanishing of the regular parts of (10.368) requires the integrals (10.361) and

(10.362) to satisfy

I

R

1

+ 4I

2

= �

7

4

!

2

�

3

(0) = �

7

32!

: (10.370)

At this point we run into two diÆulties. First, this single equation (10.370) for

the two unde�ned integrals I

R

1

and I

2

is insuÆient to speify both integrals, so

that the requirement of reparametrization invariane alone is not enough to �x all

ambiguous temporal integrals over produts of distributions. Seond, and more

seriously, Eq. (10.370) leads to onits with standard integration rules based on

the use of partial integration and equation of motion, and the independene of the

order in whih these operations are performed. Indeed, let us apply these rules to

the alulation of the integrals I

R

1

and I

2

in di�erent orders. Inserting the equation

of motion (10.214) into the �nite part of the integral (10.362) and making use of the

regular integral (10.364), we �nd immediately

I

R

1

=

Z

1

�1
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32!

: (10.371)
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The same substitution of the equation of motion (10.214) into the other ambiguous

integral I

2

of (10.361) leads, after performing the regular integral (10.365), to

I

2

= �

Z

1

�1

d�

_

�

2

(�)�(�) Æ(�) + !

2
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(0) =

1

8!

�

�I

�

2

Æ

+

1

4

�

; (10.372)

where I

�

2

Æ

denotes the unde�ned integral over a produt of distributions

I

�

2

Æ

=

Z

1

�1

d� �

2

(�)Æ(�) : (10.373)

The integral I

2

an apparently be �xed by applying partial integration to the integral

(10.361) whih redues it to the ompletely regular form (10.366):
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3
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d
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!

2

�

3

(0)=�

1

96!

: (10.374)

There are no boundary terms due to the exponential vanishing at in�nity of all

funtions involved. From (10.372) and (10.374) we onlude that I

�

2

Æ

= 1=3. This,

however, annot be orret sine the results (10.374) and (10.371) do not obey

Eq. (10.370) whih is needed for oordinate independene of the path integral. This

was the reason why previous authors [32, 35℄ added a nonovariant orretion term

�V = �g

2

(q

2

=6) to the lassial ation (10.186), whih is proportional to �h and thus

violates Feynman's basi postulate that the phase fators e

iA=�h

in a path integral

should ontain only the lassial ation along the paths.

We shall see below that the orret value of the singular integral I in (10.373) is

I

�

2

Æ

=

Z

1

�1

d� �

2

(�)Æ(�) = 0: (10.375)

From the perspetive of the previous setions where all integrals were de�ned

in d = 1 � � dimensions and ontinued to � ! 0 at the end, the inonsisteny of

I

�

2

Æ

= 1=3 is obvious: Arbitrary appliation of partial integration and equation of

motion to one-dimensional integrals is forbidden, and this is the ase in the alu-

lation (10.374). Problems arise whenever several dots an orrespond to di�erent

ontrations of partial derivatives �

�

; �

�

; : : :, from whih they arise in the limit

d! 1. The di�erent ontrations may lead to di�erent integrals.

In the pure one-dimensional alulation of the integrals I

R

1

and I

2

, all ambiguities

an be aounted for by using partial integration and equation of motion (10.214)

only aording to the following integration rules:

Rule 1. We perform a partial integration whih allows us to apply subsequently

the equation of motion (10.214).

Rule 2. If the equation of motion (10.214) leads to integrals of the type (10.373),

they must be performed using naively the Dira rule for the Æ-funtion and the

H. Kleinert, PATH INTEGRALS
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property �(0) = 0. Examples are (10.375) and the trivially vanishing integrals for

all odd powers of �(�):

Z

d� �

2n+1

(�) Æ(�) = 0; n = integer; (10.376)

whih follow diretly from the antisymmetry of �

2n+1

(�) and the symmetry of Æ(�)

ontained in the regularized expressions (10.330) and (10.332).

Rule 3. The above proedure leaves in general singular integrals, whih must

be treated one more with the same rules.

Let us show that alulating the integrals I

R

1

and I

2

with these rules is onsistent

with the oordinate independene ondition (10.370). In the integral I

2

of (10.361)

we �rst apply partial integration to �nd

I

2

=

1

2

Z

1

�1

d� �(�)

_

�(�)

d

d�

h

_

�

2

(�)

i

= �

1

2

Z

1

�1

d�

_

�

4

(�)�

1

2

Z

1

�1

d� �(�)

_

�

2

(�)

�

�(�) ; (10.377)

with no ontributions from the boundary terms. Note that the partial integration

(10.374) is forbidden sine it does not allow for a subsequent appliation of the

equation of motion (10.214). On the right-hand side of (10.377) it an be applied.

This leads to a ombination of two regular integrals (10.365) and (10.366) and the

singular integral I, whih we evaluate with the naive Dira rule to I = 0, resulting

in

I

2

= �

1

2

Z

1

�1

d�

_

�

4

(�) +

1

2

Z

1

�1

d�

_

�

2

(�)�(�) Æ(�)�

1

2

!

2

Z

1

�1

d�

_

�

2

(�)�

2

(�)

=

1

16!

I �

1

4

!

2

�

3

(0) = �

1

32!

: (10.378)

If we alulate the �nite part I

R

1

of the integral (10.362) with the new rules we

obtain a result di�erent from (10.371). Integrating the �rst term in brakets by

parts and using the equation of motion (10.214), we obtain

I

R

1

=

Z

1

�1

d��

2

(�)

h

�

�

2

(�)� Æ

2

(�)

i

=

Z

1

�1

d�

h

�

__

�

_

(�)

_

�(�)�

2

(�)� 2

�

�(�)

_

�

2

(�)�(�)��

2

(�) Æ

2

(�)

i

=

Z

1

�1

d�

h

_

�(�)�

2

(�)

_

Æ(�)��

2

(�) Æ

2

(�)

i

�2I

2

�!

2

Z

1

�1

d�

_

�

2

(�)�

2

(�) :(10.379)

The last two terms are already known, while the remaining singular integral in

brakets must be subjeted one more to the same treatment. It is integrated by

parts so that the equation of motion (10.214) an be applied to obtain

Z

1

�1

d�

h

_

�(�)�

2

(�)

_

Æ(�)��

2

(�) Æ

2

(�)

i

=�

Z

1

�1

d�

h

�

�(�)�

2

(�) + 2

_

�

2

(�)�(�)

i

Æ(�)

�

Z

1

�1

d��

2

(�) Æ

2

(�) = �!

2

�

3

(0)�

1

4!

I : (10.380)
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Inserting this into Eq. (10.379) yields

I

R

1

=

Z

1

�1

d��

2

(�)

h

�

�

2

(�)� Æ

2

(�)

i

= �2I

2

�

5

4

!

2

�

3

(0)�

1

4!

I = �

3

32!

; (10.381)

the right-hand side following from I = 0, whih is a onsequene of Rule 3.

We see now that the integrals (10.378) and (10.381) alulated with the new rules

obey Eq. (10.370) whih guarantees oordinate independene of the path integral.

The appliability of Rules 1{3 follows immediately from the previously estab-

lished dimensional ontinuation [23, 24℄. It avoids ompletely the umbersome al-

ulations in 1 � "-dimension with the subsequent limit " ! 0. Only some inter-

mediate steps of the derivation require keeping trak of the d-dimensional origin of

the rules. For this, we ontinue the imaginary time oordinate � to a d-dimensional

spaetime vetor � ! �

�

= (�

0

; �

1

; : : : ; �

d�1

), and note that the equation of motion

(10.214) beomes a salar �eld equation of the Klein-Gordon type

�

��

2

�

+ !

2

�

�(�) = Æ

(d)

(�) : (10.382)

In d dimensions, the relevant seond-order diagrams are obtained by deomposing

the harmoni expetation value

Z

d

d

�

D

q

2

�

(�) q

2

(�) q

2

�

(0) q

2

(0)

E

(10.383)

into a sum of produts of four two-point orrelation funtions aording to the Wik

rule. The �elds q

�

(�) are the d-dimensional extensions q

�

(�) � �

�

q(�) of _q(�). Now

the d-dimensional integrals, orresponding to the integrals (10.360) and (10.361),

are de�ned uniquely by the ontrations

I

d

1

=

Z

d

d

�

*

q

�

(�)q

�

(�)q(�)q(�)q

�

(0)q

�

(0)q(0)q(0)

+

=

Z

d

d

� �

2

(�)�

2

��

(�) ; (10.384)

I

d

2

=

Z

d

d

�

*

q

�

(�)q

�

(�)q(�)q(�)q

�

(0)q

�

(0)q(0)q(0)

+

=

Z

d

d

� �(�)�

�

(�)�

�

(�)�

��

(�) : (10.385)

The di�erent derivatives �

�

�

�

ating on �(�) prevent us from applying the �eld

equation (10.382). This obstale was hidden in the one-dimensional formulation. It

an be overome by a partial integration. Starting with I

d

2

, we obtain

I

d

2

= �

1

2

Z

d

d

� �

2

�

(�)

h

�

2

�

(�) + �(�)�

��

(�)

i

: (10.386)

Treating I

d

1

likewise we �nd

I

d

1

= �2I

d

2

+

Z

d

d

� �

2

(�)�

2

��

(�) + 2

Z

d

d

� �(�)�

2

�

(�)�

��

(�) : (10.387)
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In the seond equation we have used the fat that �

�

�

��

= �

�

�

��

. The right-hand

sides of (10.386) and (10.387) ontain now the ontrated derivatives �

2

�

suh that

we an apply the �eld equation (10.382). This mehanism works to all orders in the

perturbation expansion whih is the reason for the appliability of Rules 1 and 2

whih led to the results (10.378) and (10.381) ensuring oordinate independene.

The value I

�

2

Æ

= 0 aording to the Rule 2 an be dedued from the regularized

equation (10.386) in d = 1 � " dimensions by using the �eld equation (10.335) to

rewrite I

d

2

as

I

d

2

= �

1

2

Z

d

d

� �

2

�

(�)

h

�

2

�

(�)+!

2

�

2

(�)��(�)Æ

(d)

(�)

i

�

d�1

�

1

32!

+

1

2

Z

d

d

� �

2

�

(�)�

2

�

(�)�(�)Æ

(d)

(�) :

Comparison with (10.372) yields the regularized expression for I

�

2

Æ

I

R

�

2

Æ

=

�

Z

1

�1

d� �

2

(�)Æ(�)

�

R

= 8!

Z

d

d

� �

2

�

(�)�(�)Æ

(d)

(�) = 0; (10.388)

the vanishing for all " > 0 being a onsequene of the small-� behavior �(�)�

2

�

(�) /

j� j

2"

, whih follows diretly from (10.331).

Let us briey disuss an alternative possibility of giving up partial integration

ompletely in ambiguous integrals ontaining �- and Æ-funtion, or their time deriva-

tives, whih makes unneessary to satisfy Eq. (10.374). This yields a freedom in the

de�nition of integral over produt of distribution (10.373) whih an be used to

�x I

�

2

Æ

= 1=4 from the requirement of oordinate independene [25℄. Indeed, this

value of I would make the integral (10.372) equal to I

2

= 0, suh that (10.370)

would be satis�ed and oordinate independene ensured. In ontrast, giving up par-

tial integration, the authors of Refs. [31, 33℄ have assumed the vanishing �

2

(�) at

� = 0 so that the integral I

�

2

Æ

should vanish as well: I

�

2

Æ

= 0. Then Eq. (10.372)

yields I

2

= 1=32! whih together with (10.371) does not obey the oordinate in-

dependene ondition (10.370), making yet an another nonovariant quantum or-

retion �V = g

2

(q

2

=2) neessary in the ation, whih we rejet sine it ontradits

Feynman's original rules of path integration. We do not onsider giving up par-

tial integration as an attrative option sine it is an important tool for alulating

higher-loop diagrams.

10.11 Perturbative Calulation on Finite Time Intervals

The above alulation rules an be extended with little e�ort to path integrals of time evolution

amplitudes on �nite time intervals. We shall use an imaginary time interval with �

a

= 0 and �

b

= �

to have the losest onnetion to statistial mehanis. The ends of the paths will be �xed at �

a

and �

b

to be able to extrat quantum-mehanial time evolution amplitudes by a mere replaement

� ! �it. The extension to a �nite time interval is nontrivial sine the Feynman integrals in

frequeny spae beome sums over disrete frequenies whose d-dimensional generalizations an

usually not be evaluated with standard formulas. The above ambiguities of the integrals, however,

will appear in the sums in preisely the same way as before. The reason is that they stem from
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ordering ambiguities between q and _q in the perturbation expansions. These are properties of small

time intervals and thus of high frequenies, where the sums an be approximated by integrals. In

fat, we have seen in the last setion, that all ambiguities an be resolved by a areful treatment

of the singularities of the orrelation funtions at small temporal spaings. For integrals on a time

axis it is thus ompletely irrelevant whether the total time interval is �nite or in�nite, and the

ambiguities an be resolved in the same way as before [38℄.

This an also be seen tehnially by alulating the frequeny sums in the Feynman integrals

of �nite-time path integrals with the help of the Euler-Malaurin formula (2.594) or the equivalent

�-funtion methods desribed in Subsetion 2.15.6. The lowest approximation involves the pure

frequeny integrals whose ambiguities have been resolved in the preeeding setions. The remaining

orretion terms in powers of the temperature T = 1=� are all unique and �nite [see Eq. (2.598)

or (2.558)℄.

The alulations of the Feynman integrals will most eÆiently proeed in on�guration spae as

desribed in Subsetion 10.8.1. Keeping trak of ertain minimal features of the unique de�nition

of all singular integrals in d dimensions, we shall develop redution rules based on the equation of

motion and partial integration. These will allow us to bring all singular Feynman integrals to a

regular form in whih the integrations an be done diretly in one dimension. The integration rules

will be in omplete agreement with muh more umbersome alulations in d dimensions with the

limit d! 1 taken at the end.

10.11.1 Diagrammati Elements

The perturbation expansion for an evolution amplitude over a �nite imaginary time proeeds as

desribed in Setion 10.6, exept that the free energy in Eq. (10.201) beomes [reall (2.526)℄

�F

!

=

D

2�

Tr log(��

2

+ !

2

) =

D

2�

X

n

log(!

2

n

+ !

2

)

=

D

�

log [2 sinh (�h�!=2)℄ : (10.389)

As before, the diagrams ontain four types of lines representing the orrelation funtions (10.202){

(10.191). Their expliit forms are, however, di�erent. It will be onvenient to let the frequeny ! in

the free part of the ation (10.187) go to zero. Then the free energy (10.389) diverges logarithmially

in !. This divergene is, however, trivial. As explained in Setion 2.9, the divergene is removed

by replaing ! by the length of the q-axis aording to the rule (2.361). For �nite time intervals,

the orrelation funtions are no longer given by (10.207) whih would not have a �nite limit for

! ! 0. Instead, they satisfy Dirihlet boundary onditions, where we an go to ! = 0 without

problem. The �niteness of the time interval removes a possible infrared divergene for ! ! 0.

The Dirihlet boundary onditions �x the paths at the ends of the time interval (0; �) making the

utuations vanish, and thus also their orrelation funtions:

G

(2)

��

(0; �

0

) = G

(2)

��

(�; �

0

) = 0; G

(2)

��

(�; 0) = G

(2)

��

(�; �) = 0: (10.390)

The �rst orrelation funtion orresponding to (10.206) is now

G

(2)

��

(�; �

0

) = Æ

��

�(�; �

0

) = ; (10.391)

where

�(�; �

0

) = �(�

0

; �) =

1

�

(� � �

>

) �

<

=

1

2

[��(���

0

)(���

0

) + � + �

0

℄�

��

0

�

; (10.392)

abbreviates the Eulidean version of G

0

(t; t

0

) in Eq. (3.39). Being a Green funtion of the free

equation of motion (10.213) for ! = 0, this satis�es the inhomogeneous di�erential equations

��(�; �

0

) = ��(�; �

0

) = �Æ(� � �

0

); (10.393)
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by analogy with Eq. (10.214) for ! = 0. In addition, there is now an independent equation in

whih the two derivatives at on the di�erent time arguments:

_�_(�; �

0

) = Æ(� � �

0

)� 1=�: (10.394)

For a �nite time interval, the orrelation funtions (10.203) (10.204) di�er by more than just a sign

[reall (10.210)℄. We therefore must distinguish the derivatives depending on whether the left or

the right argument are di�erentiated. In the following, we shall denote the derivatives with respet

to � or �

0

by a dot on the left or right, respetively, writing

_� (�; �

0

) �

d

d�

�(�; �

0

); �_(�; �

0

) �

d

d�

0

�(�; �

0

): (10.395)

Di�erentiating (10.392) we obtain expliitly

_� (�; �

0

) = �

1

2

�(� � �

0

) +

1

2

�

�

0

�

; �_(�; �

0

) =

1

2

�(� � �

0

) +

1

2

�

�

�

= _� (�

0

; �) : (10.396)

The disontinuity at � = �

0

whih does not depend on the boundary ondition is of ourse the same

as before, The two orrelation funtions (10.208) and (10.210) and their diagrammati symbols are

now

�

�

G

(2)

��

(�; �

0

) � h _q

�

(�)q

�

(�

0

)i = Æ

��

_� (�; �

0

) = ; (10.397)

�

�

0
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(2)

��

(�; �

0

) � hq

�

(�) _q

�

(�

0

)i = Æ

��

�_(�; �

0

) = : (10.398)

The fourth orrelation funtion (10.212) is now

�

�

�

�

0

G

(2)

��

(�; �

0

) = Æ

��

_�_(�; �

0

) = ; (10.399)

with _�_(�; �

0

) being given by (10.394). Note the lose similarity but also the di�erene of this with

respet to the equation of motion (10.393).

10.11.2 Cumulant Expansion of D-Dimensional Free-Partile

Amplitude in Curvilinear Coordinates

We shall now alulate the partition funtion of a point partile in urved spae for a �nite time

interval. Starting point is the integral over the diagonal amplitude of a free point partile of unit

mass (x

a

�jx

a

0) in at D-dimensional spae

Z =

Z

d

D

x

a

(x

a

�jx

a

0); (10.400)

with the path integral representation

(x

a

�jx

a

0)

0

=

Z

D

D

x e

�A

(0)

[x℄

; (10.401)

where A

(0)

[x℄ is the free-partile ation

A

(0)

[x℄ =

1

2

Z

�

0

d�
_
x

2

(�): (10.402)

Performing the Gaussian path integral leads to

(x

a

�jx

a

0)

0

= e

�(D=2)Tr log(��

2

)

= [2��℄

�D=2

; (10.403)
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where the trae of the logarithm is evaluated with Dirihlet boundary onditions. The result is of

ourse the D-dimensional imaginary-time version of the utuation fator (2.130) in natural units.

A oordinate transformation x

i

(�) = x

i

(q

�

(�)) mapping x

a

to q

�

a

brings the ation (10.402) to the

form (10.186) with V (q(�)) = 0:

A[q℄ =

1
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(q(�)) _q

�

(�) _q

�
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(q) �
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(q)
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�

�x
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(q)

�q

�

: (10.404)

In the formal notation (10.189), the measure transforms as follows:

Z

D

D

x(�) �

Y

�

Z

d

D

x(�) = J

Y

�

Z

d

D

q(�) � J

Z

D

D

q

p

g(q

a

) ; (10.405)

where g(q) � det g

��

(q) and J is the Jaobian of the oordinate transformation generalizing

(10.220) and (10.219)
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: (10.406)

Thus we may write the transformed path integral (10.401) in the form
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�jx

a

0)

0

� (q

a

�jq

a

0)

0

=
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D

D

q e
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[x℄

; (10.407)

with the total ation in the exponent

A

tot

[q℄ =
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: (10.408)

Following the rules desribed in Subsetion 10.6.1 we expand the ation in powers of Æq

�

(�) =

q

�

(�) � q

�

a

. The ation an then be deomposed into a free part
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�

(�) (10.409)

and an interating part written somewhat more expliitly than in (10.194) with (10.188) and

(10.193):
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: (10.410)

For simpliity, we assume the oordinates to be orthonormal at q

�

a

, i.e., g

��

(q

a

) = Æ

��

. The path

integral (10.407) is now formally de�ned by a perturbation expansion similar to (10.199):

(q

a

�jq

a

0) =

Z

D

D

q e

A

(0)

[q℄�A

int

tot

[q℄

=

Z

D

D

q e

�A

(0)

[q℄

�

1�A

int

tot

+

1

2

A

int 2

tot

� : : :

�

= (2��)

�D=2

�

1�




A

int

tot

�

+

1

2




A

int 2

tot

�

� : : :

�

;

= (2��)

�D=2

exp

�

�




A

int

tot

�



+

1

2




A

int 2

tot

�



� : : :

�

� e

��f(q)

; (10.411)

with the harmoni expetation values

h: : :i = (2��)

D=2

Z

D

D

q(�)(: : :)e

�A

(0)

[q℄

(10.412)
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and their umulants




A

int 2

tot

�



=




A

int 2

tot

�

�




A

int

tot

�

2

; : : : [reall (3.485), (3.486)℄, ontaining only

onneted diagrams. To emphasize the analogy with the umulant expansion of the free energy in

(10.199), we have de�ned the exponent in (10.411) as ��f(q). This q-dependent quantity f(q) is

losely related to the alternative e�etive lassial potential disussed in Subsetion 3.25.4, apart

from a normalization fator:

e

��f(q)

=

1

q

2��h

2

=Mk

B

T

e

��

~

V

eff l

!

(q)

: (10.413)

If our alulation proedure respets oordinate independene, all expansion terms of �f(q) must

vanish to yield the trivial exat results (10.401).

10.11.3 Propagator in 1 { " Time Dimensions

In the dimensional regularization of the Feynman integrals on an in�nite time interval in Sub-

setion 10.7.2 we have ontinued all Feynman diagrams in momentum spae to d = 1 � " time

dimensions. For the present Dirihlet boundary onditions, this standard ontinuation of quantum

�eld theory is not diretly appliable sine the integrals in momentum spae beome sums over

disrete frequenies �

n

= �n=� [ompare (3.64)℄. For suh sums one has to set up ompletely new

rules for a ontinuation, and there are many possibilities for doing this. Fortunately, it will not be

neessary to make a hoie sine we an use the method developed in Subsetion 10.10 to avoid

ontinuations altogether. and work in a single physial time dimension. For a better understanding

of the �nal proedure it is, however, useful to see how a dimensional ontinuation ould proeed.

We extend the imaginary time oordinate � to a d-dimensional spaetime vetor whose zeroth

omponent is � : z

�

= (�; z

1

; : : : ; z

d�1

). In d = 1� " dimensions, the extended orrelation funtion

reads

�(�; z; �

0

; z

0

) =

Z

d

"

k

(2�)

"

e

ik(z�z

0

)

�

!

(�; �

0

); where ! � jkj: (10.414)

Here the extra "-dimensional spae oordinates z are assumed to live on in�nite axes with trans-

lational invariane along all diretions. Only the original � -oordinate lies in a �nite interval

0 � � � �, with Dirihlet boundary onditions. The Fourier omponent in the integrand �

!

(�; �

0

)

is the usual one-dimensional orrelation funtion of a harmoni osillator with the k-dependent

frequeny ! = jkj. It is the Green funtion whih satis�es on the �nite � -interval the equation of

motion

���

!

(�; �

0

) + !

2

�

!

(�; �

0

) = Æ(� � �

0

); (10.415)

with Dirihlet boundary onditions

�

!

(0; �) = �

!

(�; �) = 0: (10.416)

The expliit form was given in Eq. (3.36) for real times. Its obvious ontinuation to imaginary-time

is

�

!

(�; �

0

) =

sinh!(� � �

>

) sinh!�

<

! sinh!�

; (10.417)

where �

>

and �

<

denote the larger and smaller of the imaginary times � and �

0

, respetively.

In d time dimensions, the equation of motion (10.393) beomes a salar �eld equation of the

Klein-Gordon type. Using Eq. (10.415) we obtain

��

�(�; z; �

0

; z

0

) = �

��

(�; z; �

0

; z

0

) = �� (�; z; �

0

; z

0

) +

zz

�(�; z; �

0

; z

0

)

=

Z

d

"

k

(2�)

"

e

ik(z�z

0

)

�

��

!

(�; �

0

)� !

2

�

!

(�; �

0

)

�

=

= � Æ(� � �

0

) Æ

(")

(z � z

0

) � � Æ

(d)

(z � z

0

): (10.418)
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The important observation is now that for d spaetime dimensions, perturbation expansion of

the path integral yields for the seond orrelation funtion _�_(�; �

0

) in Eqs. (10.515) and (10.516)

the extension

�

�

�

(z; z

0

). This funtion di�ers from the ontrated funtion

�

�

�

(z; z

0

), and from

��

�(z; z

0

) whih satis�es the �eld equation (10.418). In fat, all orrelation funtions _�_(�; �

0

)

enountered in the diagrammati expansion whih have di�erent time arguments always turn out

to have the d-dimensional extension

�

�

�

(z; z

0

). An important exeption is the orrelation funtion

at equal times _�_(�; �) whose d-dimensional extension is always

�

�

�

(z; z), whih satis�es the

right-hand equation (10.393) in the "! 0 -limit. Indeed, it follows from Eq. (10.414) that

�

�

�

(z; z) =

Z

d

"

k

(2�)

"

�

_�_

!

(�; �) + !

2

�

!

(�; �)

�

: (10.419)

With the help of Eq. (10.417), the integrand in Eq. (10.419) an be brought to

_�_

!

(�; �) + !

2

�

!

(�; �) = Æ(0)�

! osh!(2� � �)

sinh!�

: (10.420)

Substituting this into Eq. (10.419), we obtain

�

�

�

(z; z) = Æ

(d)

(z; z)� I

"

: (10.421)

The integral I

"

is alulated as follows

I

"

=

Z

d

"

k

(2�)

"

! osh!(2� � �)

sinh!�

=

1

�

S

"

(2��)

"

Z

1

0

dzz

"

osh z(1� 2�=�)

sinh z

(10.422)

=

1

�

S

"

(2��)

"

�("+ 1)

2

"+1

[� ("+ 1; 1� �=�) + � ("+ 1; �=�)℄ ;

where S

"

= 2�

"=2

=�("=2) is the surfae of a unit sphere in " dimension [reall Eq. (1.558)℄, and

�(z) and �(z; q) are gamma and zeta funtions, respetively. For small "! 0, they have the limits

�(" + 1; q) ! 1=" �  (q), and �("=2) ! 2=", so that I

"

! 1=�, proving that the d-dimensional

equation (10.421) at oiniding arguments redues indeed to the one-dimensional equation (10.393).

The expliit d-dimensional form will never be needed, sine we an always treat

�

�

�

(z; z) as one-

dimensional funtions _�_(�; �), whih an in turn be replaed everywhere by the right-hand side

Æ(0)� 1=� of (10.394).

10.11.4 Coordinate Independene for Dirihlet Boundary

Conditions

Before alulating the path integral (10.411) in urved spae with Dirihlet boundary onditions,

let us �rst verify its oordinate independene following the proedure in Setion 10.7. Thus we

onsider the perturbation expansion of the short-time amplitude of a free partile in one general

oordinate. The free ation is (10.221), and the interations (10.222) and (10.224), all with ! = 0.

Taking the parameter a = 1, the ations are

A

(0)

[q℄ =

1

2

Z

�

0

d� _q

2

(�); (10.423)

(10.424)

and

A

int

tot

=

Z

�

0

d�

��

��q

2

(�) +

3

2

�

2

q

4

(�)

�

_q

2

(�) � Æ(0)

�

��q

2

(�) +

1

2

�

2

q

4

(�)

��

: (10.425)

We alulate the umulants




A

int

tot

�



=




A

int

tot

�

,




A

int 2

tot

�



=




A

int 2

tot

�

�




A

int

tot

�

2

; : : : [reall

(3.485), (3.486)℄ ontributing to th quantity �f in Eq. (10.411) order by order in �. For a better
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omparison with the previous expansion in Subsetion 10.7.1 we shall denote the diagrammati

ontributions whih are analogous to the di�erent free energy terms �F

(m)

n

of order n by orre-

sponding symbols �f

(m)

n

. There are two main di�erenes with respet to Subsetion 10.7.1: All

diagrams with a prefator ! are absent, and there are new diagrams involving the orrelation fun-

tions at equal times h _q

�

(�)q

�

(�)i and hq

�

(�) _q

�

(�)i whih previously vanished beause of (10.211).

Here they have the nonzero value _� (�; �) = �_(�; �) = 1=2� �=� by Eq. (10.396). To �rst order

in �, the quantity f(q) in Eq. (10.411) reeives a ontribution from the �rst umulant of the linear

terms in � of the interation (10.425):

�f

1

=




A

int

tot

�



= �

Z

�

0

d�

D

� q

2

(�) _q

2

(�) + Æ(0)q

2

(�)

E

+O(�

2

): (10.426)

There exists only three diagrams, two originating from the kineti term and one from the Jaobian

ation:

�f

1

= � � � 2 � + � Æ(0) : (10.427)

Note the di�erene with respet to the diagrams (10.227) for in�nite time interval with !

2

-term

in the ation.

The omitted �

2

-terms in (10.426) yield the seond-order ontribution

�f

(1)

2

= �

2

Z

�

0

d�

�

3

2

q

4

(�) _q

2

(�) � Æ(0)

1

2

q

4

(�)

�



: (10.428)

The assoiated loal diagrams are [ompare (10.228)℄:

�f

(1)

2

= �

2

"

9

2

+ 18 �

3

2

Æ(0)

#

: (10.429)

The seond umulant to order �

2

reads

�

1

2!

�

2

Z

�

0

d�

Z

�

0

d�

0


�

�q

2

(�) _q

2

(�) + Æ(0)q

2

(�)

� �

�q

2

(�

0

) _q

2

(�

0

) + Æ(0)q

2

(�

0

)

��



;

leading to diagrams ontaining Æ(0):

�f

(2)

2

= �

�

2

2!

�

2 Æ

2

(0) � 4 Æ(0)

�

+ 4 +

�

�

: (10.430)

The remaining diagrams are either of the three-bubble type, or of the watermelon type, eah with

all possible ombinations of the four line types (10.391) and (10.397){(10.399). The three-bubbles

diagrams yield [ompare (10.231)℄

�f

(3)

2

= �

�

2

2!

h

4 +2 �8 +4 +4 +2 �8

i

:

(10.431)

The watermelon-type diagrams ontribute the same diagrams as in (10.232) for ! = 0:

�f

(4)

2

=�

�

2

2!

4

�

+ 4 +

�

: (10.432)

For oordinate independene, the sum of the �rst-order diagrams (10.427) has to vanish. An-

alytially, this amounts to the equation

�f

1

= ��

Z

�

0

d�

�

�(�; �)_�_(�; �) + 2_�

2

(�; �)� Æ(0)�(�; �)

�

= 0: (10.433)
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In the d-dimensional extension, the orrelation funtion _�_(�; �) at equal times is the limit d! 1

of the ontrated orrelation funtion

�

�

�

(x; x) whih satis�es the d-dimensional �eld equa-

tion (10.418). Thus we an use Eq. (10.394) to replae _�_(�; �) by Æ(0) � 1=�. This removes

the in�nite fator Æ(0) in Eq. (10.433) oming from the measure. The remainder is alulated

diretly:

Z

�

0

d�

�

�

1

�

�(�; �) + 2 _�

2

(�; �)

�

= 0: (10.434)

This result is obtained without subtleties, sine by Eqs. (10.392) and (10.396)

�(�; �) = � �

�

2

�

; _�

2

(�; �) =

1

4

�

�(�; �)

�

; (10.435)

whose integrals yield

1

2�

Z

�

0

d� �(�; �) =

Z

�

0

d� _�

2

(�; �) =

�

12

: (10.436)

Let us evaluate the seond-order diagrams in �f

(i)

2

; i = 1; 2; 3; 4. The sum of the loal diagrams

in (10.429) onsists of the integrals by

�f

(1)

2

=

3

2

�

2

Z

�

0

d�

�

3�

2

(�; �)_�_(�; �) + 12�(�; �)_�

2

(�; �) � Æ(0)�

2

(�; �)

�

: (10.437)

Replaing _�_(�; �) in Eq. (10.437) again by Æ(0) � 1=�, on aount of the equation of motion

(10.394), and taking into aount the right-hand equation (10.435),

�f

(1)

2

= �

2

"

3Æ(0)

Z

�

0

d��

2

(�; �)

#

= �

2

�

3

10

Æ(0): (10.438)

We now alulate the sum of bubble diagrams (10.430){(10.432), beginning with (10.430) whose

analyti form is

�f

(2)

2

= �

�

2

2

Z

�

0

Z

�

0

d� d�

0

�

2Æ

2

(0)�

2

(�; �

0

) (10.439)

�4 Æ(0)

�

�(�; �)_�

2

(�; �

0

) + 4_� (�; �)�(�; �

0

)_� (�; �

0

) + �

2

(�; �

0

)_�_(�; �)

�	

:

Inserting Eq. (10.394) into the last equal-time term, we obtain

�f

(2)

2

= �

�

2

2

Z

�

0

Z

�

0

d� d�

0

�

�2Æ

2

(0)�

2

(�; �

0

) (10.440)

�4Æ(0)

�

�(�; �)_�

2

(�; �

0

) + 4 _� (�; �)�(�; �

0

)_� (�; �

0

)��

2

(�; �

0

)=�

�	

:

As we shall see below, the expliit evaluation of the integrals in this sum is not neessary. Just for

ompleteness, we give the result:

�f

(2)

2

=

�

2

2

�

2Æ

2

(0)

�

4

90

+ 4Æ(0)

�

�

3

45

+ 4

�

3

180

�

�

3

90

��

= �

2

�

�

4

90

Æ

2

(0) +

�

3

15

Æ(0)

�

: (10.441)

We now turn to the three-bubbles diagrams (10.432). Only three of these ontain the orrela-

tion funtion

�

�

�

(x; x

0

) ! _�_(�; �

0

) for whih Eq. (10.394) is not appliable: the seond, fourth,
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and sixth diagram. The other three-bubble diagrams in (10.432) ontaining the generalization

�

�

�

(x; x) of the equal-time propagator _�_(�; �) an be alulated using Eq. (10.394).

Consider �rst a partial sum onsisting of the �rst three three-bubble diagrams in the sum

(10.432). This has the analyti form

�f

(3)

2

�

�

�

1;2;3

= �

�

2

2

Z

�

0

Z

�

0

d� d�

0

�

4�(�; �) _�

2

(�; �

0

) _�_(�

0

; �

0

) (10.442)

+ 2 _�_(�; �)�

2

(�; �

0

)_�_(�

0

; �

0

) + 16 _� (�; �)�(�; �

0

) _� (�; �

0

) _�_(�

0

; �

0

)

	

:

Replaing _�_(�; �) and _�_(�

0

; �

0

) by Æ(0)� 1=�, aording to of (10.394), we see that Eq. (10.442)

ontains, with opposite sign, preisely the previous sum (10.439) of all one-and two-bubble dia-

grams. Together they give

�f

(2)

2

+ �f

(3)

2

�

�

�

1;2;3

= �

�

2

2

Z

�

0

Z

�

0

d� d�

0

�

�

4

�

�(�; �)_�

2

(�; �

0

)

+

2

�

2

�

2

(�; �

0

)�

16

�

_� (�; �)�(�; �

0

) _� (�; �

0

)

�

; (10.443)

and an be evaluated diretly to

�f

(2)

2

+ �f

(3)

2

�

�

�

1;2;3

=

�

2

2

�

4

�

�

2

45

�

2

�

2

�

4

90

+

16

�

�

3

180

�

=

�

2

2

7

45

�

2

: (10.444)

By the same diret alulation, the Feynman integral in the �fth three-bubble diagram in (10.432)

yields

: I

5

=

Z

�

0

Z

�

0

d� d�

0

_� (�; �)_� (�; �

0

)�_(�; �

0

)�_(�

0

; �

0

) = �

�

2

720

: (10.445)

The expliit results (10.444) and (10.445) are again not needed, sine the last term in Eq. (10.443)

is equal, with opposite sign, to the partial sum of the fourth and �fth three-bubble diagrams in

Eq. (10.432). To see this, onsider the Feynman integral assoiated with the sixth three-bubble

diagram in Eq. (10.432):

: I

4

=

Z

�

0

Z

�

0

d� d�

0

_� (�; �)�(�; �

0

)_�_(�; �

0

)�_(�

0

; �

0

); (10.446)

whose d-dimensional extension is

I

d

4

=

Z

�

0

Z

�

0

d

d

� d

d

�

0

�

�(�; �)�(�; �

0

)

�

�

�

(�; �

0

)�

�

(�

0

; �

0

): (10.447)

Adding this to the �fth Feynman integral (10.445) and performing a partial integration, we �nd

in one dimension

�f

(3)

2

�

�

�

4;5

= �

�

2

2

16 (I

4

+ I

5

) = �

�

2

2

Z

�

0

Z

�

0

d� d�

0

16

�

_� (�; �)_� (�; �

0

)�(�; �

0

)

= ��

2

4

45

�

2

; (10.448)

where we have used d [_� (�; �)℄ =d� = �1=� obtained by di�erentiating (10.435). Comparing

(10.448) with (10.443), we �nd the sum of all bubbles diagrams, exept for the sixth and seventh

three-bubble diagrams in Eq. (10.432), to be given by

�f

(2)

2

+ �f

(3)

2

�

�

�

0

6;7

=

�

2

2

2

15

�

2

: (10.449)



852 10 Spaes with Curvature and Torsion

The prime on the sum denotes the exlusion of the diagrams indiated by subsripts. The or-

relation funtion _�_(�; �

0

) in the two remaining diagrams of Eq. (10.432), whose d-dimensional

extension is

�

�

�

(x; x

0

), annot be replaed via Eq. (10.394), and the expression an only be sim-

pli�ed by applying partial integration to the seventh diagram in Eq. (10.432), yielding

: I
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Z
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2
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�

2

90

: (10.450)

The sixth diagram in the sum (10.432) diverges linearly. As before, we add and subtrat the

divergene

: I
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�
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0

): (10.451)

In the �rst, �nite term we go to d dimensions and replae Æ(� � �

0

) ! Æ

(d)

(� � �

0

) = ��

��

(�; �

0

)

using the �eld equation (10.418). After this, we apply partial integration and �nd
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In going to the last line we have used d[�(�; �)℄=d� = 2 _� (�; �) following from (10.435). By

interhanging the order of integration � $ �

0

, the �rst term in Eq. (10.452) redues to the integral

(10.450). In the last term we replae ��(�; �

0

) using the �eld equation (10.393) and the trivial

equation (10.376). Thus we obtain

I

6

= I

R

6

+ I

div

6

(10.453)

with

I

R

6

= 2

�

�

�

2

90

�

�

2

120

�

=

1

2

�

�

7�

2

90

�

; (10.454)

I

div

6

=

Z

�

0

Z

�

0

d� d�

0

�

2

(�; �) Æ

2

(� � �

0

): (10.455)
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With the help of the identity for distributions (10.369), the divergent part is alulated to be

I

div

6

= Æ(0)

Z

�

0

d� �

2

(�; �) = Æ(0)

�

3

30

: (10.456)

Using Eqs. (10.450) and (10.453) yields the sum of the sixth and seventh three-bubble diagrams

in Eq. (10.432):

�f
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2

�

�

�

6;7

= �

�

2

2

(2I

6

+ 16I

7

) = �

�

2

2

�

2Æ(0)

�

3

30

+

�

2

10

�

: (10.457)

Adding this to (10.449), we obtain the sum of all bubble diagrams
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: (10.458)

The ontributions of the watermelon diagrams (10.432) orrespond to the Feynman integrals
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: (10.459)

The third integral is unique and an be alulated diretly:
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: (10.460)

The seond integral reads in d dimensions
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9

=

Z Z

d

d

� d

d

�

0

�(�; �

0

)

�

�(�; �

0

)�

�

(�; �

0

)

�

�

�

(�; �

0

): (10.461)

This is integrated partially to yield, in one dimension,
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): (10.462)

The integral on the right-hand side is the one-dimensional version of

I
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): (10.463)

Using the �eld equation (10.418), going bak to one dimension, and inserting �(�; �

0

); �_(�; �

0

),

and �� (�; �

0

) from (10.392), (10.396), and (10.393), we perform all unique integrals and obtain
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(�) Æ(�) +
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: (10.464)

Aording to Eq. (10.375), the integral over the produt of distributions vanishes. Inserting the

remainder and (10.460) into Eq. (10.462) gives:

I

9

= �

�

2

720

: (10.465)

We now evaluate the �rst integral in Eq. (10.459). Adding and subtrating the linear divergene

yields
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The �nite seond part of the integral (10.466) has the d-dimensional extension
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; (10.467)

whih after partial integration and going bak to one dimension redues to a ombination of

integrals Eqs. (10.465) and (10.464):
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: (10.468)

The divergent part of I

8

oinides with I

div

6

in Eq. (10.455):
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Inserting this together with (10.460) and (10.465) into Eq. (10.459), we obtain the sum of water-

melon diagrams
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: (10.470)

For a at spae in urvilinear oordinates, the sum of the �rst-order diagrams vanish. To

seond order, the requirement of oordinate independene implies a vanishing sum of all onneted

diagrams (10.429){(10.432). By adding the sum of terms in Eqs. (10.438), (10.458), and (10.470),

we �nd indeed zero, thus on�rming oordinate independene. It is not surprising that the integra-

tion rules for produts of distributions derived in an in�nite time interval � 2 [0;1) are appliable

for �nite time intervals. The singularities in the distributions ome in only at a single point of the

time axis, so that its total length is irrelevant.

The proedure an easily be ontinued to higher-loop diagrams to de�ne integrals over higher

singular produts of �- and Æ-funtions. At the one-loop level, the anellation of Æ(0)s requires

Z

d� �(�; �) Æ(0) = Æ(0)

Z

d� �(�; �): (10.471)

The seond-order gave, in addition, the rule
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To n-order we an derive the equation
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whih redues to

Z Z

d�

1

d�
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�

n
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; �
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) Æ
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1

� �

n

) = Æ(0)

Z

d� �

n

(�; �); (10.474)

whih is satis�ed due to the integration rule (10.369). See Appendix 10C for a general derivation

of (10.473).

10.11.5 Time Evolution Amplitude in Curved Spae

The same Feynman diagrams whih we alulated to verify oordinate independene appear also

in the perturbation expansion of the time evolution amplitude in urved spae if this is performed

in normal or geodesi oordinates.
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The path integral in urved spae is derived by making the mapping from x

i

to q

�

a

in Subse-

tion 10.11.2 nonholonomi, so that it an no longer be written as x

i

(�) = x

i

(q

�

(�)) but only as

dx

i

(�) = e

i

�

(q)dq

�

(�). Then the q-spae may ontain urvature and torsion, and the result of the

path integral will not longer be trivial one in Eq. (10.403) but depend on R

���

�

(q

a

) and S

��

�

(q

a

).

For simpliity, we shall ignore torsion.

Then the ation beomes (10.404) with the metri g

��

(q) = e

i

�

(q)e

i

�

(q). It was shown in

Subsetion 10.3.2 that under nonholonomi oordinate transformations, the measure of a time-

slied path integral transforms from the at-spae form

Q

n

d

D

x

n

to

Q

n

d

D

q

p

g

n

exp(�t

�

R

n

=6).

This had the onsequene, in Setion 10.4, that the time evolution amplitude for a partile on the

surfae of a sphere has an energy (10.165) orresponding to the Hamiltonian (1.418) whih governs

the Shr�odinger equation (1.424). It ontains a pure Laplae-Beltrami operator in the kineti part.

There is no extra R-term, whih would be allowed if only ovariane under ordinary oordinate

transformations is required. This issue will be disussed in more detail in Subsetion 11.1.1.

Below we shall see that for perturbatively de�ned path integrals, the nonholonomi transfor-

mation must arry the at-spae measure into urved spae as follows:
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x! D
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g exp
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R=8

!

: (10.475)

For a D-dimensional spae with a general metri g

��

(q) we an make use of the above proven

oordinate invariane to bring the metri to the most onvenient normal or geodesi oordinates

(10.98) around some point q

a

. The advantage of these oordinates is that the derivatives and thus

the aÆne onnetion vanish at this point. Its derivatives an diretly be expressed in terms of the

urvature tensor:
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Assuming q

a

to lie at the origin, we expand the metri and its determinant in powers of normal

oordinates ��

�

around the origin and �nd, dropping the smallness symbols � in front of q and �

in the transformation (10.98):

g

��

(�) = Æ

��

+ �

1

3

�

R

����

�

�

�

�

+ �

2

2

45

�

R

���

Æ

�

R

���Æ

�

�

�

�

�

�

�

�

+ : : : ; (10.477)
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These expansions have obviously the same power ontent in �

�

as the previous one-dimensional

expansions (10.223) had in q. The interation (10.410) beomes in normal oordinates, up to order

�

2

:
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This has again the same powers in �

�

as the one-dimensional interation (10.425), leading to

the same Feynman diagrams, di�ering only by the fators assoiated with the verties. In one

dimension, with the trivial verties of the interation (10.425), the sum of all diagrams vanishes.

In urved spae with the more ompliated verties proportional to

�

R

����

and

�

R

��

, the result

is nonzero but depends on ontrations of the urvature tensor

�

R

����

. The dependene is easily

identi�ed for eah diagram. All bubble diagrams in (10.430){(10.432) yield results proportional to

�

R

2

��

, while the watermelon-like diagrams (10.432) arry a fator

�

R

2

����

.
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When alulating the ontributions of the �rst expetation value
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to the time evolution

amplitude it is useful to redue theD-dimensional expetation values of (10.479) to one-dimensional

ones of (10.425) as follows using the ontration rules (8.63) and (8.64):
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Inserting these into the expetation value of (10.479) and performing the tensor ontrations, we

obtain
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Individually, the four tensors in the brakets of (10.483) ontribute the tensor ontrations, using

the antisymmetry of
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in �� and the ontration to the Rii tensor
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+

�

R

���Æ

+

�

R

���Æ

�

= �

�

�

R

2

��

+

�

R

����

�

R

����

+

�

R

����

�

R

����

�

�

R

���

Æ

�

R

���Æ

Æ

��

�

Æ

��

Æ

��

+ Æ

��

Æ

��

+ Æ

��

Æ

��

�

=

�

R

���

Æ

(R

���Æ

+R

���Æ

) = 0: (10.485)

We now use the fundamental identity of Riemannian spaes

�

R

����

+

�

R

����

+

�

R

����

= 0: (10.486)

By expressing the urvature tensor (10.31) in Riemannian spae in terms of the Christo�el symbol

(1.70) as

R

����

=

1

2

(�

�

�

�

g

��

� �

�

�

�

g

��

� �

�

�

�

g

��

+ �

�

�

�

g

��

)� [

�

�

�

;

�

�

�

℄

��

; (10.487)

we see that the identity (10.486) is a onsequene of the symmetry of the metri and the single-

valuedness of the metri expressed by the integrability ondition

8

(�

�

�

�

� �

�

�

�

)g

��

= 0. Indeed,

due to the symmetry of g

��

we �nd

�

R

����

+

�

R

����

+

�

R

����

=

1

2

[(�

�

�

�

��

�

�

�

) g

��

�(�

�

�

�

��

�

�

�

) g

��

�(�

�

�

�

��

�

�

�

) g

��

℄=0:

The integrability has also the onsequene that

R

����

= �R

����

; R

����

= R

����

: (10.488)

8

For the derivation see p. 1353 in the textbook [2℄.
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Using (10.486) and (10.488) we �nd that

�

R

����

�

R

����

=

1

2

�

R

����

�

R

����

; (10.489)

so that the ontrated urvature tensors in the parentheses of (10.484) an be replaed by

�

R

2

��

+

3

2

�

R

����

�

R

����

.

We now alulate expliitly the ontribution of the �rst-order diagrams in (10.484) [ompare

(10.427)℄:

�f

1

=

1

6

�

R

�

�� + � + � Æ(0)

�

: (10.490)

orresponding to the analyti expression [ompare (10.433)℄:

�f

1

= ��

1

6

�

R

Z

�

0

d�

�

�(�; �)_�_(�; �) � _�

2

(�; �)� Æ(0)�(�; �)

�

: (10.491)

Note that the ombination of propagators in the brakets is di�erent from the previous one in

(10.433). Using the integrals (10.436) we �nd, setting � = 1:

�f

1

= �

1

6

�

R

Z

�

0

d�

�

�

1

�

�(�; �) � _�

2

(�; �)

�

: (10.492)

Using Eq. (10.436), this beomes

�f

1

=

1

6

�

R

Z

�

0

d�

3

2�

�(�; �) =

�

24

�

R: (10.493)

Adding to this the similar ontribution oming from the nonholonomially transformed measure

(10.475), we obtain the �rst-order expansion of the imaginary-time evolution amplitude

(q

a

�jq

a

0) =

1

p

2��

D

exp

�

�

12

�

R(q

a

) + : : :

�

: (10.494)

We now turn to the seond-order ontributions in �. The sum of the loal diagrams (10.429)

reads now

�f

(1)

2

= �

2

1

45

�

�

R

��

�

R

��

+

3

2

�

R

����

�

R

����

�

"

� +

1

4

Æ(0)

#

: (10.495)

In terms of the Feynman integrals, the brakets are equal to [ompare (10.437)℄

Z

�

0

d�

�

�

2

(�; �)_�_(�; �) ��(�; �)_�

2

(�; �) +

1

4

Æ(0)�

2

(�; �)

�

: (10.496)

Inserting the equation of motion (10.394) and the right-hand equation (10.435), this beomes

Z

�

0

d�

�

�

5

4�

�

2

(�; �) +

5

4

Æ(0)�

2

(�; �)

�

=

5

4

1

30

[1� Æ(0)℄ : (10.497)

Thus we �nd

�f

(1)

2

= ��

2

�

2

1080

�

�

R

2

��

+

3

2

�

R

2

����

�

[1� Æ(0)℄ : (10.498)
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Next we alulate the nonloal ontributions of order �h

2

to �f oming from the umulant

�

1

2




A

int 2

tot

�



=�

�

2

2

1

36

Z

�

0

d�

Z

�

0

d�

0

*

h

Æ

2

(0)

�

R

��

�

R

�

0

�

0

�

�

(�)�

�

(�) �

�

0

(�

0

)�

�

0

(�

0

)

+ 2 Æ(0)

�

R

����

�

R

�

0

�

0

�

�

(�)�

�

(�)

_

�

�

(�)

_

�

�

(�) �

�

0

(�

0

)�

�

0

(�

0

) (10.499)

+

�

R

����

�

R

�

0

�

0

�

0

�

0

�

�

(�)�

�

(�)

_

�

�

(�)

_

�

�

(�) �

�

0

(�

0

)�

�

0

(�

0

)

_

�

�

0

(�

0

)

_

�

�

0

(�

0

)

i

+



:

The �rst two terms yield the onneted diagrams [ompare (10.430)℄

(10.500)

�f

(2)

2

= �

�

2

2

�

R

��

�

R

��

36

�

2 Æ

2

(0) � 4 Æ(0)

�

� 2 +

�

�

;

and the analyti expression diagrams [ompare (10.439)℄

�f

(2)

2

= �

�

2

2

�

R

��

�

R

��

36

Z

�

0

Z

�

0

d� d�

0

�

2Æ

2

(0)�

2

(�; �

0

) (10.501)

�4 Æ(0)

�

�(�; �)_�

2

(�; �

0

)� 2_� (�; �)�(�; �

0

)_� (�; �

0

) + �

2

(�; �

0

)_�_(�; �)

�	

:

The third term in (10.499) leads to the three-bubble diagrams [ompare (10.439)℄

�f

(3)

2

=�

�

2

2

�

R

��

�

R

��

36

h

4 +2 �8 +4 +4 +2 �8

i

:

(10.502)

The analyti expression for the diagrams 1,2,3 is [ompare (10.442)℄

�f

(3)

2

�

�

�

1;2;3

= �

�

2

2

�

R

��

�

R

��

36

Z

�

0

Z

�

0

d� d�

0

�

4�(�; �) _�

2

(�; �

0

) _�_(�

0

; �

0

) (10.503)

+ 2 _�_(�; �)�

2

(�; �

0

)_�_(�

0

; �

0

)� 8 _� (�; �)�(�; �

0

) _� (�; �

0

) _�_(�

0

; �

0

)

	

:

and for 4 and 5 [ompare (10.448)℄ :

�f

(3)

2

�

�

�

4;5

=�

�

2

2

�

R

��

�

R

��

36

(I

4

+I

5

) = �

�

2

2

�

R

��

�

R

��

36

Z

�

0

Z

�

0

d� d�

0

4

�

_� (�; �)_� (�; �

0

)�(�; �

0

)

= �

�

2

2

�

R

��

�

R

��

36

1

45

�

2

: (10.504)

For the diagrams 6 and 7, �nally, we obtain [ompare (10.458)℄

�f

(3)

2

�

�

�

6;7

= �

�

2

2

�

R

��

�

R

��

36

(2I

6

� 8I

7

) = �

�

2

2

�

R

��

�

R

��

36

�

2Æ(0)

�

3

30

�

�

2

6

�

: (10.505)

The sum of all bubbles diagrams (10.501) and (10.503) is therefore

�f

(2)

2

+ �f

(3)

2

= �

2

�

2

432

�

R

2

��

� �

2

Æ(0)

�

3

1080

�

R

2

��

: (10.506)

This ompensates exatly the Æ(0)-term proportional to

�

R

2

��

in Eq. (10.498), leaving only a �nite

seond-order term

�f

(2)

1

+ �f

(2)

2

+ �f

(3)

2

= �

2

�

2

720

�

�

R

2

��

�

�

R

2

����

�

+ �

2

Æ(0)

�

3

1080

�

R

2

����

: (10.507)
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Finally we alulate the seond-order watermelon diagrams (10.432) whih ontain the initially

ambiguous Feynman integrals we make the following observation. Their sum is [ompare (10.432)℄

�f

(4)

2

=�

�

2

2

2

1

36

�

�

R

����

�

R

����

+

�

R

����

�

R

����

�

�

� 2 +

�

; (10.508)

orresponding to the analyti expression

�f

(3)

2

= �

�

2

2

2

3

2

1

36

�

R

2

����

Z

�

0

Z

�

0

d�d�

0

�

�

2

(�; �

0

)_�_

2

(�; �

0

)

�2�(�; �

0

) _� (�; �

0

)�_(�; �

0

)_�_(�; �

0

) + _�

2

(�; �

0

)�_

2

(�; �

0

)

�

= �

�

2

24

�

R

2

����

(I

8

� 2I

9

+ I

10

) ; (10.509)

where the integrals I

8

; I

9

, and I

10

were evaluated before in Eqs. (10.469), (10.468), (10.465), and

(10.460). Substituting the results into Eq. (10.509) and using the rules (10.369) and (10.375), we

obtain

�f

(3)

2

= �

�

2

24

�

R

2

����

Z

�

0

Z

�

0

d� d�

0

�

2

(�; �)Æ

2

(� � �

0

) = ��

2

�

3

720

�

R

2

����

Æ(0): (10.510)

Thus the only role of the watermelon diagrams is to anel the remaining Æ(0)-term proportional

to

�

R

2

����

in Eq. (10.507). It gives no �nite ontribution.

The remaining total sum of all seond-order ontribution in Eq. (10.507). hanges the diagonal

time evolution amplitude (10.494) to

(q

a

�jq

a

0) =

1

p

2��

D

exp

�

�

12

�

R(q

a

) +

�

2

720

�

�

R

2

����

�

�

R

2

��

�

+ : : :

�

: (10.511)

In Chapter 11 we shall see that this expression agrees with what has been derived in Shr�odinger

quantum mehanis from a Hamiltonian operator

^

H = ��=2 whih ontains only is the Laplae-

Beltrami operator � = g

�1=2

�

�

g

1=2

g

��

(q)�

�

of Eq. (1.381) and no extra R-term:

(q

a

� j q

a

0) �

D

e

��=2

E

= (q

a

j e

��=2

j q

a

) (10.512)

=

1

p

2��

D

�

1+

�

12

�

R+

�

2

2

�

1

144

�

R

2

+

1

360

�

�

R

����

�

R

����

�

�

R

��

�

R

��

�

�

+: : :

�

:

This expansion due to DeWitt and Seeley will be derived in Setion 11.6, the relevant equation

being (11.110).

Summarizing the results we have found that for one-dimensional q-spae as well as for a D-

dimensional urved spae in normal oordinates, our alulation proedure on a one-dimensional

� -axis yields unique results. The proedure uses only the essene of the d-dimensional extension,

together with the rules (10.369) and (10.375). The results guarantee the oordinate independene

of path integrals. They also agree with the DeWitt-Seeley expansion of the short-time amplitude

to be derived in Eq. (11.110). The agreement is ensured by the initially ambiguous integrals I

8

and I

9

satisfying the equations

I

R

8

+ 4I

9

+ I

10

= �

�

2

120

; (10.513)

I

R

8

� 2I

9

+ I

10

= 0; (10.514)

as we an see from Eqs. (10.470) and (10.509). Sine the integral I

10

= �

2

=90 is unique, we must

have I

9

= ��

2

=720 and I

R

8

= ��

2

=72, and this is indeed what we found from our integration rules.

The main role of the d-dimensional extension of the � -axis is, in this ontext, to forbid the

appliation of the equation of motion (10.394) to orrelation funtions _�_(�; �

0

). This would
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�x immediately the �nite part of the integral I

8

to the wrong value I

R

8

= ��

2

=18, leaving the

integral I

9

whih �xes the integral over distributions (10.375). In this way, however, we ould only

satisfy one of the equations (10.513) and (10.514), the other would always be violated. Thus, any

regularization di�erent from ours will ruin immediately oordinate independene.

10.11.6 Covariant Results for Arbitrary Coordinates

It must be noted that if we were to use arbitrary rather than Riemann normal oordinates, we

would �nd ambiguous integrals already at the two-loop level:

: I

14

=

Z

�

0

Z

�

0

d� d�

0

_� (�; �

0

)�_(�; �

0

)_�_(�; �

0

); (10.515)

: I

15

=

Z

�

0

Z

�

0

d� d�

0

�(�; �

0

)_�_

2

(�; �

0

): (10.516)

Let us show that oordinate independene requires these integrals to have the values

I

14

= �=24; I

R

15

= ��=8; (10.517)

where the supersript R denotes the �nite part of an integral. We study �rst the ambiguities arising

in one dimension. Without dimensional extension, the values (10.517) would be inompatible with

partial integration and the equation of motion (10.393). In the integral (10.515), we use the

symmetry �� (�; �

0

) = ��(�; �

0

), apply partial integration twie taking are of nonzero boundary

terms, and obtain on the one hand

I
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=

1

2

Z

�

0

Z

�
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0
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3
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3

(�; �)

�

=

�

12

: (10.518)

On the other hand, we apply Eq. (10.394) and perform two regular integrals, reduing I

14

to a

form ontaining an unde�ned integral over a produt of distributions:

I
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0
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(�)Æ(�) +

1

6

�

: (10.519)

A third, mixed way of evaluating I

14

employs one partial integration as in the �rst line of

Eq. (10.518), then the equation of motion (10.393) to redue I

14

to yet another form

I
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1
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8
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1
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�

: (10.520)

We now see that if we set [ompare with the orret equation (10.375)℄

Z

d� [�(�)℄

2

Æ(�) �

1

3

; (false); (10.521)

H. Kleinert, PATH INTEGRALS



10.11 Perturbative Calulation on Finite Time Intervals 861

the last two results (10.520) and (10.519) oinide with the �rst in Eq. (10.518). The de�nition

(10.521) would obviously be onsistent with partial integration if we insert Æ(�) = _�(�)=2:

Z

d� [�(�)℄

2

Æ(�) =

1

2

Z

d� [�(�)℄

2

_�(�) =

1

6

Z

d�

d

d�

[�(�)℄

3

=

1

3

: (10.522)

In spite of this onsisteny with partial integration and the equation of motion, Eq. (10.521) is

inompatible with the requirement of oordinate independene. This an be seen from the disrep-

any between the resulting value I

14

= �=12 and the neessary (10.517). In earlier work on the sub-

jet by other authors [31℄{ [36℄, this disrepany was ompensated by adding the above-mentioned

(on p. 817) nonovariant term to the lassial ation, in violation of Feynman's onstrution rules

for path integrals.

A similar problem appears with the other Feynman integral (10.516). Applying �rst

Eq. (10.394) we obtain
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0

):

(10.523)

For the integral ontaining the square of the Æ-funtion we must postulate the integration rule

(10.369) to obtain a divergent term

I

div

15

= Æ(0)

Z

�

0

d� �(�; �) = Æ(0)

�

2

6

; (10.524)

whih is proportional to Æ(0), and ompensates a similar term from the measure. The remaining

integrals in (10.523) are �nite and yield the regular part I

R

15

= ��=4; whih we shall see to be

inonsistent with oordinate invariane. In another alulation of I

15

, we �rst add and subtrat

the UV-divergent term, writing

I

15

=

Z

�

0

Z

�

0

d� d�

0

�(�; �

0

)

�

_�_

2

(�; �

0

)� Æ

2

(� � �

0

)

�

+ Æ(0)

�

2

6

: (10.525)

Replaing Æ

2

(� � �

0

) by the square of the left-hand side of the equation of motion (10.393), and

integrating the terms in brakets by parts, we obtain

I

R

15

=

Z

�

0

Z

�

0

d� d�

0

�(�; �

0

)

�

_�_

2

(�; �

0

)� ��

2

(�; �

0

)

�

=

Z

�

0

Z

�

0

d� d�

0

[�_� (�; �

0

)�_(�; �

0

)_�_(�; �

0

)��(�; �

0

)�_(�; �

0

)�� d(�; �

0

)℄

�

Z

�

0

Z

�

0

d� d�

0

�

��_

2

(�; �

0

)��(�; �

0

)��(�; �

0

)�_(�; �

0

)��_(�; �

0

)

�

= �I

14

+

Z

�

0

Z

�

0

d� d�

0

�_

2

(�; �

0

)��(�; �

0

) = �I

14

� �=6: (10.526)

The value of the last integral follows from partial integration.

For a third evaluation of I

15

we insert the equation of motion (10.393) and bring the last

integral in the fourth line of (10.526) to

�

Z

�

0

Z

�

0

d� d�

0

�_

2

(�; �

0

)Æ(� � �

0

) = ��

�

1

4

Z

d� �

2

(�)Æ(�) +

1

12

�

: (10.527)

All three ways of alulation lead, with the assignment (10.521) to the singular integral, to the

same result I

R

15

= ��=4 using the rule (10.521). This, however, is again in disagreement with the
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oordinate-independent value in Eq. (10.517). Note that both integrals I

14

and I

R

15

are too large

by a fator 2 with respet to the neessary (10.517) for oordinate independene.

How an we save oordinate independene while maintaining the equation of motion and partial

integration? The diretion in whih the answer lies is suggested by the last line of Eq. (10.520):

we must �nd a onsistent way to have an integral

R

d� [�(�)℄

2

Æ(�) = 0; as in Eq. (10.375), instead

of the false value (10.521), whih means that we need a reason for forbidding the appliation of

partial integration to this singular integral. For the alulation at the in�nite time interval, this

problem was solved in Refs. [23℄{[25℄ with the help of dimensional regularization.

In dimensional regularization, we would write the Feynman integral (10.515) in d dimensions

as

I

d

14

=

Z Z

d

d

x d

d

x

0

�

�(x; x

0

)�

�

(x; x

0

)

�

�

�

(x; x

0

); (10.528)

and see that the di�erent derivatives on

�

�

�

(x; x

0

) prevent us from applying the �eld equation

(10.418), in ontrast to the one-dimensional alulation. We an, however, apply partial integration

as in the �rst line of Eq. (10.518), and arrive at

I

d

14

= �

1

2

Z Z

d

d

x d

d

x

0

�

2

�

(x; x

0

)�

��

(x; x

0

): (10.529)

In ontrast to the one-dimensional expression (10.518), a further partial integration is impossible.

Instead, we may apply the �eld equation (10.418), go bak to one dimension, and apply the

integration rule (10.375) as in Eq. (10.520) to obtain the orret result I

14

= �=24 guaranteeing

oordinate independene.

The Feynman integral (10.516) for I

15

is treated likewise. Its d-dimensional extension is

I

d

15

=

Z Z

d

d

x d

d

x

0

�(x; x

0

) [

�

�

�

(x; x

0

)℄

2

: (10.530)

The di�erent derivatives on

�

�

�

(x; x

0

) make it impossible to apply a dimensionally extended

version of equation (10.394) as in Eq. (10.523). We an, however, extrat the UV-divergene as in

Eq. (10.525), and perform a partial integration on the �nite part whih brings it to a dimensionally

extended version of Eq. (10.526):

I

R

15

= �I

14

+

Z

d

d

x d

d

x

0

�

2

�

(x; x

0

)�

��

(x; x

0

): (10.531)

On the right-hand side we use the �eld equation (10.418), as in Eq. (10.527), return to d = 1, and

use the rule (10.375) to obtain the result I

R

15

= �I

14

��=12 = ��=8, again guaranteeing oordinate

independene.

Thus, by keeping only trak of a few essential properties of the theory in d dimensions we

indeed obtain a simple onsistent proedure for alulating singular Feynman integrals. All results

obtained in this way ensure oordinate independene. They agree with what we would obtain using

the one-dimensional integration rule (10.375) for the produt of two �- and one Æ-distribution.

Our proedure gives us unique rules telling us where we are allowed to apply partial integration

and the equation of motion in one-dimensional expressions. Ultimately, all integrals are brought

to a regular form, whih an be ontinued bak to one time dimension for a diret evaluation. This

proedure is obviously muh simpler than the previous expliit alulations in d dimensions with

the limit d! 1 taken at the end.

The oordinate independene would require the equations (10.517). Thus, although the al-

ulation in normal oordinates are simpler and an be arried more easily to higher orders, the

perturbation in arbitrary oordinates help to �x more ambiguous integrals.

Let us see how the integrals I

14

and I

15

arise in the perturbation expansion of the time evolution

amplitude in arbitrary oordinates up to the order �, and that the values in (10.517) are neessary

H. Kleinert, PATH INTEGRALS
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to guarantee a ovariant result. We use arbitrary oordinates and expand the metri around the

origin. Dropping the inrement symbol Æ in front of Æq

�

, we write:

g

��

(q) = Æ

��

+

p

�(�

�

g

��

)q

�

+ �

1

2

(�

�

�

�

g

��

)q

�

q

�

; (10.532)

with the expansion parameter � keeping trak of the orders of the perturbation series. At the end

it will be set equal to unity. The determinant has the expansion to order �:

log g(q) =

p

� g

��

(�

�

g

��

)q

�

+ �

1

2

g

��

[(�

�

�

�

g

��

)� g

��

(�

�

g

��

)(�

�

g

��

)℄q

�

q

�

: (10.533)

The total interation (10.410) beomes

A

int

tot

[q℄ =

Z

�

0

d�

nh

1

2

p

� (�

�

g

��

)q

�

+

1

4

� (�

�

�

�

g

��

)q

�

q

�

i

_q

�

_q

�

(10.534)

�

1

2

p

� Æ(0)g

��

(�

�

g

��

)q

�

�

1

4

� Æ(0) g

��

h

(�

�

�

�

g

��

)�g

��

(�

�

g

��

)(�

�

g

��

)

i

q

�

q

�

o

:

Using the relations following diretly from the de�nition of the Christo�el symbols (1.70) and

(1.71),

�

�

g

��

= �g

��

g

��

�

�

g

��

= �

���

+ �

���

= 2�

�f��g

; g

��

(�

�

g

��

) = 2�

��

�

;

�

�

�

�

g

��

= �

�

�

���

+ �

�

�

���

= �

�

�

�f��g

;

g

��

(�

�

�

�

g

��

) = 2g

��

�

�

�

���

= 2�

�

(g

��

�

���

)� 2�

���

�

�

g

��

= 2 (�

�

�

��

�

+ g

��

�

���

�

��

�

+ �

��

�

�

��

�

) ; (10.535)

this beomes

A

int

tot

[q℄ =

Z

�

0

d�

��

p

� �

���

q

�

+

�

2

�

�

�

���

q

�

q

�

�

_q

�

_q

�

� Æ(0)

h

p

� �

��

�

q

�

+

�

2

�

�

�

��

�

q

�

q

�

i

�

: (10.536)

The derivative of the Christo�el symbol in the last term an also be written di�erently using the

identity �

�

g

��

= �g

��

g

��

�

�

g

��

as follows:

�

�

�

��

�

= �

�

g

��

�

���

= g

��

�

�

�

���

= g

��

�

�

�

���

� g

��

g

��

(�

�

g

��

) �

���

= �

�

�

���

� (�

���

+ �

���

) �

�

��

: (10.537)

To �rst order in �, we obtain from the �rst umulant




A

int

tot

[q℄

�



:

�f

(1)

1

= �

Z

�

0

d�

D

1

2

�

�

�

���

q

�

q

�

_q

�

_q

�

� Æ(0)

1

2

�

�

�

��

�

q

�

q

�

E



; (10.538)

the diagrams (10.490) orresponding to the analyti expression [ompare (10.491)℄

�f

(1)

1

=

�

2

�

�

�

�f��g

Z

�

0

d�

n

g

��

g

��

_�_(� ; �)�(� ; �)+2g
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2

(� ; �)�Æ(0)g
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�(� ; �)

o

�

�

2

g

��

(�

��

�

�

��

�

+ g

��

�

��

�

�

���

) Æ(0)

Z

�

0

d� �(�; �): (10.539)

Replaing _�_(�; �) by Æ(0)� 1=� aording to (10.394), and using the integrals (10.436), the Æ(0)-

terms in the �rst integral anel and we obtain

�f

(1)

1

=��

�

4

�

g

��

g

��

6

(�

�

�

���

��

�

�

���
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g

��

3

(�
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�

�

��

�

+ g

��

�

��

�

�

���

)Æ(0)

�

: (10.540)
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In addition, there are ontributions of order � from the seond umulant

�

�

2!
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Z

�
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d�
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���
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; (10.541)

These add to the free energy
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= �
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�
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�

2
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��
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�

�
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�
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��

�
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�

�

���

) : (10.542)

The Feynman integrals assoiated with the diagrams in the �rst and seond lines are

I

11

=

Z Z

d� d�

0

�

_�_(�; �)�(�; �

0

)_�_(�

0

; �

0

)�2Æ(0) _�_(�; �)�(�; �

0

)+Æ

2

(0)�(�; �

0

)

	

(10.543)

and

I

12

=

Z Z

d� d�

0

f_� (�; �)_� (�; �

0

)_�_(�

0

; �

0

)� Æ(0) _� (�; �)_� (�; �

0

)g ; (10.544)

respetively. Replaing in Eqs. (10.543) and (10.544) _�_(�; �) and _�_(�

0

; �

0

) by Æ(0) � 1=� leads

to anellation of the in�nite fators Æ(0) and Æ

2

(0) from the measure, suh that we are left with

I

11

=

1

�

2

Z

�

0

d�

Z

�

0

d�

0

�(�; �

0

) =

�
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(10.545)

and

I

12

= �

1

�

Z

�

0

d�

Z

�

0

d�

0

_� (�; �)_� (�; �

0

) = �

�

12

: (10.546)

The Feynman integral of the diagram in the third line of Eq. (10.542) has d-dimensional

extension

I

13

=

Z Z

d� d�

0

_� (�; �)�_(�

0

; �

0

)_�_(�; �

0

)

!
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d

d

x d

d

x

0

�

�(x; x)�

�

(x

0
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0

)

�

�

�

(x; x

0

): (10.547)

Integrating this partially yields

I
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=

1

�

Z Z

d� d�

0

�_(�; �

0

)_� (�

0

; �

0

) =

1

�

Z

�
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d�

Z

�

0

d�
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_� (�; �)_� (�; �

0

) =

�

12

;

(10.548)
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where we have interhanged the order of integration � $ �

0

in the seond line of Eq. (10.548)

and used d[_� (�; �)℄=d� = �1=�: Multiplying the integrals (10.545), (10.546), and (10.548) by

orresponding verties in Eq. (10.542) and adding them together, we obtain

�f

(2)

1

+ �f

(3)

1

+ �f

(4)

1

= �

��

24

g

��

g

��

�

��

�

�

���

: (10.549)

The ontributions of the last three diagrams in �f

(5)

1

and �f

(6)

1

of (10.542) are determined

by the initially ambiguous integrals (10.515) and (10.516) to be equal to I

14

= ��=24 and I

15

=

��=8 + Æ(0)�

2

=6, respetively. Moreover, the Æ(0)-part in the latter, when inserted into the last

line of Eq. (10.542) for f

(6)

1

, is aneled by the ontribution of the loal diagram with the fator

Æ(0) in f

(1)

1

of (10.540). We see here an example that with general oordinates, the divergenes

ontaining powers of Æ(0) no longer anel order by order in �h, but do so at the end.

Thus only the �nite part I

R

15

= ��=24 remains and we �nd

�f

(5)

1

+�f

(6)R

1

= �

�

2

n

g

��
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��

�

��
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���

�
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+I

R
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��

�
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��

�

�

3I

14

+I

R
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�

o

=

��

24

g

��

g

��

�

��

�

�

���

: (10.550)

By adding this to (10.549), we �nd the sum of all diagrams in (10.542) as follows

6

X

i=2

�f

(i)

1

= �

��

24

g

��

g

��

�

�

��

�

�

���

� �

��

�

�

jl; n

): (10.551)

Together with the regular part of (10.540) in the �rst line, this yields the sum of all �rst-order

diagrams

6

X

i=1

�f

(i)

1

= �

��

24

g

��

g

��

R

����

=

��

24

�

R: (10.552)

The result is ovariant and agrees, of ourse, with Eq. (10.492) derived with normal oordinate.

Note that to obtain this ovariant result, the initially ambiguous integrals (10.515) and (10.516)

over distributions appearing ni Eq. (10.550) mast satisfy

I

14

+ I

R

15

= �

�

12

;

3I

14

+ I

R

15

= 0 ; (10.553)

whih leaves only the values (10.517).

10.12 E�etive Classial Potential in Curved Spae

In Chapter 5 we have seen that the partition funtion of a quantum statistial

system in at spae an always be written as an integral over a lassial Boltz-

mann fator exp[��V

e� l

(x

0

)℄, where B(x

0

) = V

e� l

(x

0

) is the so-alled e�etive

lassial potential ontaining the e�ets of all quantum utuations. The variable of

integration is the temporal path average x

0

� �

�1

R

�

0

d� x(�). In this setion we gen-

eralize this onept to urved spae, and show how to alulate perturbatively the

high-temperature expansion of V

e� l

(q

0

). The requirement of independene under

oordinate transformations q

�

(�) ! q

0�

(�) introdues subtleties into the de�nition
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and treatment of the path average q

�

0

, and ovariane is ahieved only with the help

of a proedure invented by Faddeev and Popov [49℄ to deal with gauge freedoms in

quantum �eld theory.

In the literature, attempts to introdue an e�etive lassial potential in urved

spae around a �xed temporal average q

0

� �q(�) � �

�1

R

�

0

d�q(�) have so far failed

and produed a two-loop perturbative result for V

e� l

(q

0

) whih turned out to de-

viate from the ovariant one by a nonovariant total derivative [34℄, in ontrast

to the ovariant result (10.494) obtained with Dirihlet boundary onditions. For

this reason, perturbatively de�ned path integrals with periodi boundary onditions

in urved spae have been of limited use in the presently popular �rst-quantized

worldline approah to quantum �eld theory (also alled the string-inspired approah

reviewed in Ref. [50℄). In partiular, is has so far been impossible to alulate with

periodi boundary onditions interesting quantities suh as urved-spae e�etive

ations, gravitational anomalies, and index densities, all results having been repro-

dued with Dirihlet boundary onditions [46, 52℄.

The development in this hapter ures the problems by exhibiting a manifestly

ovariant integration proedure for periodi paths [51℄. It is an adaption of similar

proedures used before in the e�etive ation formalism of two-dimensional sigma-

models [46℄. Covariane is ahieved by expanding the utuations in the neigh-

borhood of any given point in powers of geodesi oordinates, and by a ovariant

de�nition of a path average di�erent from the naive temporal average. As a re-

sult, we shall �nd the same loally ovariant perturbation expansion of the e�etive

lassial potential as in Eq. (10.494) alulated with Dirihlet boundary onditions.

All problems enountered in the literature our in the �rst orretion terms

linear in � in the time evolution amplitude. It will therefore be suÆient to onsider

only to lowest-order perturbation expansion. For this reason we shall from now on

drop the parameter of smallness � used before.

10.12.1 Covariant Flutuation Expansion

We want to alulate the partition funtion from the funtional integral over all

periodi paths

Z =

I

D

D

q

q

g(q)e

�A[q℄

; (10.554)

where the symbol

H

indiates the periodiity of the paths. By analogy with (2.443),

we split the paths into a time-independent and a time-dependent part:

q

�

= q

�

0

+ �

�

(�); (10.555)

with the goal to express the partition funtion as in Eq. (3.811) by an ordinary

integral over an e�etive lassial partition funtion

Z =

Z

d

D

q

0

p

2��

D

q

g(q

0

) e

��V

e� l

(q

0

)

; (10.556)
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where V

e� l

(q

0

) is the urved-spae version of the e�etive lassial partition fun-

tion. For a ovariant treatment, we parametrize the small utuations �

�

(�) in terms

of the prepoint normal oordinates ��

�

(�) of the point q

�

0

introdued in Eq. (10.98),

whih are here geodesi due to the absene of torsion. Omitting the smallness sym-

bols �, there will be some nonlinear deomposition

q

�

(�) = q

�

0

+ �

�

(q

0

; �); (10.557)

where �

�

(q

0

; �) = 0 for �

�

= 0. Inverting the relation (10.98) we obtain

�

�

(q

0

; �) = �

�

�

1

2

�

�

��

�

(q

0

)�

�

�

�

�

1

6

�

�

���

�

(q

0

)�

�

�

�

�

�

� : : : ; (10.558)

where the oeÆients

�

�

��:::�

�

(q

0

) with more than two subsripts are de�ned simi-

larly to ovariant derivatives with respet to lower indies (they are not ovariant

quantities):

�

�

���

�

(q

0

) = r

�

�

�

��

�

= �

�

�

�

��

�

� 2

�

�

��

�

�

�

��

�

; : : : : (10.559)

If the initial oordinates q

�

are themselves geodesi at q

�

0

, all oeÆients

�

�

��:::�

�

(q

0

)

in Eq. (10.558) are zero, so that �

�

(�) = �

�

(�), and the deomposition (10.557) is

linear. In arbitrary oordinates, however, �

�

(�) does not transform like a vetor

under oordinate transformations, and we must use the nonlinear deomposition

(10.557).

We now transform the path integral (10.554) to the new oordinates �

�

(�) us-

ing Eqs. (10.557){(10.559). The perturbation expansion for the transformed path

integral over �

�

(�) is onstruted for any hosen q

�

0

by expanding the total ation

(10.408) inluding the measure fator (10.406) in powers of small linear utuations

�

�

(�). Being interested only in the lowest-order ontributions we shall from now on

drop the parameter of smallness � ounting the orders in the earlier perturbation

expansions. This is also useful sine the similar symbol �

�

(�) is used here to de-

sribe the path utuations. The ation relevant for the terms to be alulated here

onsists of a free ation, whih we write after a partial integration as

A

(0)

[q

0

; �℄ = g

��

(q

0

)

Z

�

0

d�

1

2

�

�

(�)(��

2

�

)�

�

(�); (10.560)

and an interation whih ontains only the leading terms in (10.479):

A

int

tot

[q

0

; �℄ =

Z

�

0

d�

�

1

6

�

R

����

�

�

�

�

_

�

�

_

�

�

+

1

6

Æ(0)

�

R

��

�

�

�

�

�

: (10.561)

The partition funtion (10.554) in terms of the oordinates �

�

(�) is obtained from

the perturbation expansion

Z =

I

D

D

�(�)

q

g(q

0

) e

�A

(0)

[q

0

;�℄�A

int

tot

[q

0

;�℄

: (10.562)
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The path integral (10.562) annot immediately be alulated perturbatively in

the standard way, sine the quadrati form of the free ation (10.560) is degenerate.

The spetrum of the operator ��

2

�

in the spae of periodi funtions �

�

(�) has a zero

mode. The zero mode is assoiated with the utuations of the temporal average of

�

�

(�):

�

�

0

=

�

�

�

� �

�1

Z

�

0

d� �

�

(�): (10.563)

Small utuations of �

�

0

have the e�et of moving the path as a whole in�nitesimally

through the manifold. The same movement an be ahieved by hanging q

�

0

in�nites-

imally. Thus we an replae the integral over the path average �

�

0

by an integral

over q

�

0

, provided that we properly aount for the hange of measure arising from

suh a variable transformation.

Antiipating suh a hange, the path average (10.563) an be set equal to zero

eliminating the zero mode in the utuation spetrum. The basi free orrelation

funtion h�

�

(�)�

�

(�

0

)i an then easily be found from its spetral representation as

shown in Eq. (3.254). The result is

h�

�

(�)�

�

(�

0

)i

q

0

= g

��

(q

0

)(��

2

�

)

�1

Æ(� � �

0

) = g

��

(q

0

)

�

�(�; �

0

); (10.564)

where

�

�(�; �

0

) is a short notation for the translationally invariant periodi Green

funtion G

p

0;e

0

(�) of the operator ��

2

�

without the zero mode in Eq. (3.254) (for a

plot see Fig. 3.4):

�

�(�; �

0

) =

�

�(� � �

0

) �

(� � �

0

)

2

2�

�

j� � �

0

j

2

+

�

12

; �; �

0

2 [0; �h�℄: (10.565)

This notation is useful sine we shall have to alulate Feynman integrals of preisely

the same form as previously with the Dirihlet-type orrelation funtion Eq. (10.392).

In ontrast to (10.393) and (10.394) for �(�; �

0

), the translational invariane of the

periodi orrelation funtion implies that

�

�(�; �

0

) =

�

�(� � �

0

), so that the �rst time

derivatives of

�

�(�; �

0

) have opposite signs:

_

�

�(�; �

0

) = �

�

�_(�; �

0

) �

� � �

0

�

�

�(� � �

0

)

2

; �; �

0

2 [0; �h�℄; (10.566)

and the three possible double time derivatives are equal, up tp a sign:

��

�

�(�; �

0

) = �

�

��(�; �

0

) = _

�

�_(�; �

0

) = Æ(� � �

0

)� 1=�: (10.567)

The right-hand side ontains an extra term on the right-hand side due to the missing

zero eigenmode in the spetral representation of the Æ-funtion:

1

�

X

m6=0

e

�i!

m

(���

0

)

= Æ(� � �

0

)�

1

�

: (10.568)

The third equation in (10.567) happens to oinide with the di�erential equation

(10.394) in the Dirihlet ase. All three equations have the same right-hand side

due to the translational invariane of

�

�(�; �

0

).
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10.12.2 Arbitrariness of q

�

0

We now take advantage of an important property of the perturbation expansion of

the partition funtion (10.562) around q

�

(�) = q

�

0

: the independene of the hoie

of q

�

0

. The separation (10.557) into a onstant q

�

0

and a time-dependent �

�

(�) paths

must lead to the same result for any nearby onstant q

0

0

�

on the manifold. The result

must therefore be invariant under an arbitrary in�nitesimal displaement

q

�

0

! q

�

0"

= q

�

0

+ "

�

; j"j � 1: (10.569)

In the path integral, this will be ompensated by some translation of utuation

oordinates �

�

(�), whih will have the general nonlinear form

�

�

! �

�

"

= �

�

� "

�

Q

�

�

(q

0

; �): (10.570)

The transformation matrix Q

�

�

(q

0

; �) satis�es the obvious initial ondition

Q

�

�

(q

0

; 0) = Æ

�

�

. The path q

�

(�) = q

�

(q

0

; �(�)) must remain invariant under si-

multaneous transformations (10.569) and (10.570), whih implies that

Æq

�

� q

�

"

� q

�

= "

�

D

�

q

�

(q

0

; �) = 0 ; (10.571)

where D

�

is the in�nitesimal transition operator

D

�

=

�

�q

�

0

�Q

�

�

(q

0

; �)

�

��

�

: (10.572)

Geometrially, the matrix Q

�

�

(q

0

; �) plays the role of a loally at nonlinear on-

netion [46℄. It an be alulated as follows. We express the vetor q

�

(q

0

; �) in

terms of the geodesi oordinates �

�

using Eqs. (10.557), (10.558), and (10.559),

and substitute this into Eq. (10.571). The oeÆients of "

�

yield the equations

Æ

�

�

+

��

�

(q

0

; �)

�q

�

0

�Q

�

�

(q

0

; �)

��

�

(q

0

; �)

��

�

= 0; (10.573)

where by Eq. (10.558):

��

�

(q

0

; �)

�q

�

0

= �

1

2

�

�

�

�

(��)

�

(q

0

)�

�

�

�

� : : : ; (10.574)

and

��

�

(q

0

; �)

��

�

= Æ

�

�

�

�

�

(��)

�

(q

0

)�

�

�

1

2

�

�

(���)

�

(q

0

)�

�

�

�

�: : :

= Æ

�

�

�

�

�

��

�

�

�

�

1

3

�

�

�

�

�

�

��

+

1

2

�

�

�

�

��

�

�2

�

�

��

�

�

�

��

�

�

�

�

��

�

�

�

��

�

�

�

�

�

�

�: : : : (10.575)

To �nd Q

�

�

(q

0

; �), we invert the expansion (10.575) to

2

4

 

��(q

0

; �)

��

!

�1

3

5

�

�

= Æ

�

�

+

�

�

�

��

�

�

+

1

3

�

�

�

�

�

�

��

+

1

2

�

�

�

�

�

��

+

�

�

�

��

�

�

�

��

�

�

�

�

��

�

�

�

��

�

�

�

�

�

+: : :(10.576)

=

 

��

�

(q

0

; �)

��

�

!

�=�(q

0

;�)

;
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the last equality indiating that the result (10.576) an also be obtained from the

original expansion (10.98) in the present notation [ompare (10.558)℄:

�

�

(q

0

; �) = �

�

+

1

2

~

�

��

�

(q

0

)�

�

�

�

+

1

6

~

�

���

�

(q

0

)�

�

�

�

�

�

+ : : : ; (10.577)

with oeÆients

~

�

��

�

(q

0

) =

�

�

��

�

;

~

�

���

�

(q

0

) =

�

�

���

�

+ 3

�

�

��

�

�

�

��

�

= �

�

�

�

��

�

+

�

�

��

�

�

�

��

�

;

.

.

. : (10.578)

Indeed, di�erentiating (10.577) with respet to �

�

, and re-expressing the result in

terms of �

�

via Eq. (10.558), we �nd one more (10.576).

Multiplying both sides of Eq. (10.573) by (10.576), we express the nonlinear

onnetion Q

�

�

(q

0

; �) by means of geodesi oordinates �

�

(�) as

Q

�

�

(q

0

; �) = Æ

�

�

+

�

�

��

�

(q

0

)�

�

+

1

3

�

R

���

�

(q

0

)�

�

�

�

+ : : : : (10.579)

The e�et of simultaneous transformations (10.569), (10.570) upon the utuation

funtion �

�

= �

�

(q

0

; �) in Eq. (10.558) is

�

�

! �

0�

= �

�

� "

�

�

Q

�

�

(q

0

; �);

�

Q

�

�

(q

0

; 0) = Æ

�

�

; (10.580)

where the matrix

�

Q

�

�

(q

0

; �) is related to Q

�

�

(q

0

; �) as follows

�

Q

�

�

(q

0

; �) =

"

Q

�

�

(q

0

; �)

��

�

(q

0

; �)

��

�

�

��

�

(q

0

; �)

�q

�

0

#

�=�(q

0

;�)

: (10.581)

Applying Eq. (10.573) to the right-hand side of Eq. (10.581) yields

�

Q

�

�

(q

0

; �) = Æ

�

�

,

as it should to ompensate the translation (10.569).

The above independene of q

�

0

will be essential for onstruting the orret per-

turbation expansion for the path integral (10.562). For some speial ases of the

Riemannian manifold, suh as a surfae of sphere in D + 1 dimensions whih forms

a homogeneous spae O(D)=O(D� 1), all points are equivalent, and the loal inde-

pendene beomes global. This will be disussed further in Setion 10.12.6.

10.12.3 Zero-Mode Properties

We are now prepared to eliminate the zero mode by the ondition of vanishing av-

erage

�

�

�

= 0. As mentioned before, the vanishing utuation �

�

(�) = 0 is obviously

a lassial saddle-point for the path integral (10.562). In addition, beause of the

symmetry (10.570) there exist other equivalent extrema �

�

"

(�) = �"

�

= onst. The

D omponents of "

�

orrespond to D zero modes whih we shall eliminate in favor of
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a hange of q

�

0

. The proper way of doing this is provided by the Faddeev-Popov pro-

edure. We insert into the path integral (10.562) the trivial unit integral, rewritten

with the help of (10.569):

1 =

Z

d

D

q

0

Æ

(D)

(q

0"

� q

0

) =

Z

d

D

q

0

Æ

(D)

("); (10.582)

and deompose the measure of path integration over all periodi paths �

�

(�) into a

produt of an ordinary integral over the temporal average �

�

0

=

�

�

�

, and a remainder

ontaining only nonzero Fourier omponents [reall (2.448)℄

I

D

D

� =

Z

d

D

�

0

p

2��

D

I

D

0D

� : (10.583)

Aording to Eq. (10.570), the path average

�

�

�

is translated under "

�

as follows

�

�

�

!

�

�

�

"

=

�

�

�

� "

�

1

�

Z

�

0

d� Q

�

�

(q

0

; �(�)): (10.584)

Thus we an replae

Z

d

D

�

0

p

2��

D

!

Z

d

D

"

p

2��

D

det

"

1

�

Z

�

0

d� Q

�

�

(q

0

; �(�))

#

: (10.585)

Performing this replaement in (10.583) and performing the integral over "

�

in the

inserted unity (10.582), we obtain the measure of path integration in terms of q

�

0

and geodesi oordinates of zero temporal average

I

D

D

� =

Z

d

D

q

0

I

d

D

�

0

p

2��

D

Æ

(D)

(")

I

D

0D

�

=

Z

d

D

q

0

p

2��

D

I

D

0D

� det

"

1

�

Z

�

0

d� Q

�

�

(q

0

; �(�))

#

: (10.586)

The fator on the right-hand side is the Faddeev-Popov determinant �[q

0

; �℄ for the

hange from �

�

0

to q

�

0

. We shall write it as an exponential:

�[q

0

; �℄ = det

"

1

�

Z

�

0

d� Q

�

�

(q

0

; �)

#

= e

�A

FP

[q

0

;�℄

; (10.587)

where A

FP

[q

0

; �℄ is an auxiliary ation aounting for the Faddeev-Popov determi-

nant

A

FP

[q

0

; �℄ � �tr log

"

1

�

Z

�

0

d� Q

�

�

(q

0

; �)

#

; (10.588)

whih must be inluded into the interation (10.561). Inserting (10.579) into

Eq. (10.588), we �nd explitly

A

FP

[q

0

; �℄ = �tr log

"

Æ

�

�

+ (3�)

�1

Z

�

0

d�

�

R

���

�

(q

0

)�

�

(�)�

�

(�) + : : :

#

=

1

3�

Z

�

0

d�

�

R

��

(q

0

)�

�

�

�

+ : : : : (10.589)
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The ontribution of this ation will ruial for obtaining the orret perturbation

expansion of the path integral (10.562).

With the new interation

A

int

tot;FP

[q

0

; �℄ = A

int

tot

[q

0

; �℄ +A

FP

[q

0

; �℄ (10.590)

the partition funtion (10.562) an be written as a lassial partition funtion

Z =

Z

d

D

q

0

p

2��

D

q

g(q

0

) e

��V

e� l

(q

0

)

; (10.591)

where V

e� l

(q

0

) is the urved-spae version of the e�etive lassial partition funtion

of Ref. [53℄. The e�etive lassial Boltzmann fator

B(q

0

) � e

��V

e� l

(q

0

)

(10.592)

is given by the path integral

B(q

0

) =

I

D

0D

�

q

g(q

0

)e

�A

(0)

[q

0

;�℄�A

int

tot;FP

[q

0

;�℄

: (10.593)

Sine the zero mode is absent in the utuations on the right-hand side, the pertur-

bation expansion is now straightforward. We expand the path integral (10.593) in

powers of the interation (10.590) around the free Boltzmann fator

B

0

(q

0

) =

I

D

0D

�

q

g(q

0

)e

�

R

�

0

d�

1

2

g

��

(q

0

)

_

�

�

_

�

�

(10.594)

as follows:

B(q

0

) = B

0

(q

0

)

�

1�

D

A

int

tot;FP

[q

0

; �℄

E

q

0

+

1

2

D

A

int

tot;FP

[q

0

; �℄

2

E

q

0

� : : :

�

; (10.595)

where the q

0

-dependent orrelation funtions are de�ned by the Gaussian path in-

tegrals

h: : :i

q

0

= B

�1

(q

0

)

I

D

0D

� [: : :℄

q

0

e

�A

(0)

[q

0

;�℄

: (10.596)

By taking the logarithm of (10.594), we obtain diretly a umulant expansion for

the e�etive lassial potential V

e� l

(q

0

).

For a proper normalization of the Gaussian path integral (10.594) we diagonalize

the free ation in the exponent by going bak to the orthonormal omponents �x

i

in

(10.97). Omitting again the smallness symbols �, the measure of the path integral

beomes simply:

I

D

0D

�

�

q

g(q

0

) =

I

D

0D

x

i

; (10.597)

and we �nd

B

0

(q

0

) =

I

D

0D

x

i

e

�

R

�

0

d�

1

2

_

�

2

: (10.598)
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If we expand the utuations x

i

(�) into the eigenfuntions e

�i!

m

�

of the operator

��

2

�

for periodi boundary onditions x

i

(0) = x

i

(�),

x

i

(�) =

X

m

x

i

m

u

m

(�) = x

i

0

+

X

m6=0

x

i

m

u

m

(�); x

i

�m

= x

i

m

�

; m > 0; (10.599)

and substitute this into the path integral (10.598), the exponent beomes

�

1

2

Z

�

0

d�

h

x

i

(�)

i

2

= �

�

2

X

m6=0

!

2

m

x

i

�m

x

i

m

= ��

X

m>0

!

2

m

x

i

m

�

x

i

m

: (10.600)

Remembering the expliit form of the measure (2.447) the Gaussian integrals in

(10.598) yield the free-partile Boltzmann fator

B

0

(q

0

) = 1; (10.601)

orresponding to a vanishing e�etive lassial potential in Eq. (10.592).

The perturbation expansion (10.595) beomes therefore simply

B(q

0

) = 1�

D

A

int

tot;FP

[q

0

; �℄

E

q

0

+

1

2

D

A

int

tot;FP

[q

0

; �℄

2

E

q

0

� : : : : (10.602)

The expetation values on the right-hand side are to be alulated with the help of

Wik ontrations involving the basi orrelation funtion of �

a

(�) assoiated with

the unperturbed ation in (10.598):

D

x

i

(�)x

j

(�

0

)

E

q

0

= Æ

ij

�

�(�; �

0

) ; (10.603)

whih is, of ourse, onsistent with (10.564) via Eq. (10.97).

10.12.4 Covariant Perturbation Expansion

We now perform all possible Wik ontrations of the utuations �

�

(�) in the

expetation values (10.602) using the orrelation funtion (10.564). We restrit our

attention to the lowest-order terms only, sine all problems of previous treatments

arise already there. Making use of Eqs. (10.565) and (10.567), we �nd for the

interation (10.561):

D

A

int

tot

[q

0

; �℄

E

q

0

=

Z

�

0

d�

1

6

h

�

R

����

(q

0

)

D

�

�

�

�

_

�

�

_

�

�

E

q

0

+ Æ(0)

�

R

��

(q

0

) h�

�

�

�

i

q

0

i

=

1

72

�

R(q

0

)�; (10.604)

and for (10.589):

D

A

FP

[q

0

; �℄

E

q

0

=

Z

�

0

d�

1

3�

�

R

��

(q

0

) h�

�

�

�

i

q

0

=

1

36

�

R(q

0

)�: (10.605)
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The sum of the two ontributions yields the manifestly ovariant high-temperature

expansion up to two loops:

B(q

0

) = 1�

D

A

int

tot;FP

[q

0

; �℄

E

q

0

+ : : : = 1�

1

24

�

R(q

0

)� + : : : (10.606)

in agreement with the partition funtion density (10.494) alulated from Dirihlet

boundary onditions. The assoiated partition funtion

Z

P

=

Z

d

D

q

0

p

2��

D

q

g(q

0

) B(q

0

) (10.607)

oinides with the partition funtion obtained by integrating over the partition fun-

tion density (10.494). Note the ruial role of the ation (10.589) oming from

the Faddeev-Popov determinant in obtaining the orret two-loop oeÆient in

Eq. (10.606) and the normalization in Eq. (10.607).

The intermediate transformation to the geodesi oordinates �

�

(�) has made

our alulations rather lengthy if the ation is given in arbitrary oordinates, but it

guarantees omplete independene of the oordinates in the result (10.606). The en-

tire derivation simpli�es, of ourse, drastially if we hoose from the outset geodesi

oordinates to parametrize the urved spae.

10.12.5 Covariant Result from Nonovariant Expansion

Having found the proper way of alulating the Boltzmann fator B(q

0

) we an easily set up a

proedure for alulating the same ovariant result without the use of the geodesi utuations

�

�

(�). Thus we would like to evaluate the path integral (10.594) by a diret expansion of the ation

in powers of the nonovariant utuations �

�

(�) in Eq. (10.557). In order to make q

�

0

equal to the

path average, �q(�), we now require �

�

(�) to have a vanishing temporal average �

�

0

= ��

�

= 0.

Instead of (10.560), the free ation reads now

A

(0)

[q

0

; �℄ = g

��

(q

0

)

Z

�

0

d�

1

2

�

�

(�)(��

2

�

)�

�

(�) ; (10.608)

and the small-� behavior of the path integral (10.607) is governed by the interation A

int

tot

[q℄ fo

Eq. (10.536) with unit smallness parameter �. In a notation as in (10.561), the interation (10.536)

reads

A

int

tot

[q

0

; �℄ =

Z

�

0

d�

��

�

���

�

�

+

1

2

�

�

�

���

�

�

�

�

�

_�

�

_�

�

� Æ(0)

�

�

��

�

�

�

+

1

2

�

�

�

��

�

�

�

�

�

��

: (10.609)

We must dedue the measure of funtional integration over �-utuations without zero mode

�

�

0

= ��

�

from the proper measure in (10.586) of �-utuations without zero mode:

I

D

0D

� J(q

0

; �)�

FP

[q

0

; �℄ �

I

D

D

�(�)J(q

0

; �)Æ

(D)

(�

0

)�

FP

[q

0

; �℄: (10.610)

This is transformed to oordinates �

�

(�) via Eqs. (10.577) and (10.578) yielding

I

D

0D

� J(q

0

; �)�

FP

[q

0

; �℄ =

I

D

0D

�

�

�

FP

[q

0

; �℄ ; (10.611)
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where

�

�

FP

[q

0

; �℄ is obtained from the Faddeev-Popov determinant �

FP

[q

0

; �℄ of (10.587) by ex-

pressed the oordinates �

�

(�) in terms of �

�

(�), and multiplying the result by a Jaobian aounting

for the hange of the Æ-funtion of �

0

to a Æ-funtion of �

0

via the transformation Eq. (10.577):

�

�

FP

[q

0

; �℄ = �

FP

[q

0

; �(q

0

; �)℄� det

�

���

�

(q

0

; �)

��

�

�

�=�(q

0

;�)

: (10.612)

The last determinant has the exponential form

det

�

���

�

(q

0

; �)

��

�

�

�=�(q

0

;�)

= exp

(

trlog

"

1

�

Z

�

0

d�

�

��

�

(q

0

; �)

��

�

�

�=�(q

0

;�)

#)

; (10.613)

where the matrix in the exponent has small-� expansion

�

��

�

(q

0

; �)

��

�

�

�=�(q

0

;�)

= Æ

�

�

�

�

�

��

�

�

�

�

1

3

�

�

�

�

�

��

�

+

1

2

�

�

�

�

��

�

�2

�

�

��

�

�

�

��

�

+

1

2

�

�

��

�

�

�

��

�

�

�

�

�

�

+ : : : : (10.614)

The fator (10.612) in (10.611) leads to a new ontribution to the interation (10.608), if we rewrite

it as

�

�

FP

[q

0

; �℄ = e

�

�

A

FP

[q

0

;�℄

: (10.615)

Combining Eqs. (10.587) and (10.613), we �nd a new Faddeev-Popov type ation for �

�

-utuations

at vanishing �

�

0

:

�

A

FP

[q

0

; �℄ = A

FP

[q

0

; �(q

0

; �)℄� trlog

"

1

�

Z

�

0

d�

�

��

�

(q

0

; �)

��

�

�

�=�(q

0

;�)

#

=

1

2�

Z

�

0

d� T

��

(q

0

)�

�

�

�

+ : : : ; (10.616)

where

T

��

(q

0

) =

�

�

�

�

�

��

�

� 2

�

�

��

�

�

�

��

�

+

�

�

��

�

�

�

��

�

�

: (10.617)

The unperturbed orrelation funtions assoiated with the ation (10.608) are:

h�

�

(�)�

�

(�

0

)i

q

0

= g

��

(q

0

)

�

�(�; �

0

) (10.618)

and the free Boltzmann fator is the same as in Eq. (10.601). The perturbation expansion of the

interating Boltzmann fator is to be alulated from an expansion like (10.602):

B(q

0

) = 1�




A

int

tot;FP

[q

0

; �℄

�

q

0

+

1

2

D

�

A

int

tot;FP

[q

0

; �℄

�

2

E

q

0

� : : : ; (10.619)

where the interation is now

A

int

tot;FP

[q

0

; �℄ = A

int

tot

[q

0

; �℄ +

�

A

FP

[q

0

; �℄ : (10.620)

As before in the Dirihlet ase, the divergenes ontaining powers of Æ(0) no longer anel order

by order, but do so at the end.

The alulations proeed as in the Dirihlet ase, exept that the orrelation funtions are now

given by (10.565) whih depend only on the di�erene of their arguments.
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The �rst expetation value ontributing to (10.619) is given again by f

(1)

1

of Eq. (10.539),

exept that the integrals have to be evaluated with the periodi orrelation funtion

�

�(�; �) of

Eq. (10.565), whih has the properties

�

�(�; �) =

1

12

; _

�

�(�; �) =

�

�_(�; �) = 0 : (10.621)

Using further the ommon property _

�

�_(�; �

0

) = Æ(� � �

0

) � 1=� of Eq. (10.567), we �nd diretly

from (10.539):

�

f

(1)

1

=




A

int

tot

[q

0

; �℄

�

q

0

=

�

24

g

��

�

�

�

�

�

��

�

+ g

��

�

�

���

�

�

��

�

+

�

�

��

�

�

�

��

�

�

�

�

2

24

Æ(0) g

��

�

g

��

�

�

���

�

�

��

�

+

�

�

��

�

�

�

��

�

�

: (10.622)

To this we must the expetation value of the Faddeev-Popov ation:




�

A

FP

[q

0

; �℄

�

q

0

= �

�

24

g

��

�

�

�

�

�

��

�

� 2

�

�

��

�

�

�

��

�

+

�

�

��

�

�

�

��

�

�

: (10.623)

The divergent term with the fator Æ(0) in (10.622) is aneled by the same expression in the

seond-order ontribution to (10.602) whih we alulate now, evaluating the seond umulant

(10.541) with the periodi orrelation funtion

�

�(�; �) of Eq. (10.565). The diagrams are the same

as in (10.543), but their evaluation is muh simpler. Due to the absene of the zero modes in �

�

(�),

all one-partile reduible diagrams vanish, so that the analogs of f

(2)

1

, f

(3)

1

, and f

(4)

1

in (10.542)

are all zero. Only those of f

(5)

1

and f

(6)

1

survive, whih involve now the Feynman integrals I

14

and

I

15

evaluated with

�

�(�; �) whih are

:

�

I

14

=

Z

�

0

Z

�

0

d� d�

0

_

�

� (�; �

0

)

�

�_(�; �

0

)_

�

�_(�; �

0

) = �

�

24

+ Æ(0)

�

2

12

; (10.624)

:

�

I

15

=

Z

�

0

Z

�

0

d� d�

0

�

�(�; �

0

)_

�

�_

2

(�; �

0

) = �

�

24

: (10.625)

This leads to the seond umulant

1

2

D

�

A

int

tot;FP

[q

0

; �℄

�

2

E

q

0



= �

�

24

g

��

�

g

��

�

�

���

�

�

��

�

+ 2

�

�

��

�

�

�

��

�

�

+

�

2

24

Æ(0) g

��

�

g

��

�

�

���

�

�

��

�

+

�

�

��

�

�

�

��

�

�

: (10.626)

The sum of Eqs. (10.623) and (10.626) is �nite and yields the same ovariant result �

�

R=24 as

in Eq. (10.552), so that we re-obtain the same ovariant perturbation expansion of the e�etive

lassial Boltzmann fator as before in Eq. (10.606). Note the importane of the ontribution

(10.623) from the Faddeev-Popov determinant in produing the urvature salar. Negleting this,

as done by other authors in Ref. [34℄, will produe in the e�etive lassial Boltzmann fator

(10.619) an additional nonovariant term g

��

T

��

(q

0

)=24. This may be rewritten as a ovariant

divergene of a nonvetorial quantity

g

��

T

��

= r

�

V

�

; V

�

(q

0

) = g

��

(q

0

)

�

�

�

��

(q

0

): (10.627)

As suh it does not ontribute to the integral over q

�

0

in Eq. (10.607), but it is nevertheless a wrong

nonovariant result for the Boltzmann fator (10.606).

The appearane of a nonovariant term in a treatment where q

�

0

is the path average of q

�

(�) is

not surprising. If the time dependene of a path shows an aeleration, the average of a path is not

an invariant onept even for an in�nitesimal time. One may ovariantly impose the ondition of

a vanishing temporal average only upon utuation oordinates whih have no aeleration. This

is the ase of geodesi oordinates �

a

(�) sine their equation of motion at q

�

0

is

�

�

a

(�) = 0.
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10.12.6 Partile on Unit Sphere

A speial treatment exists for partile in homogeneous spaes. As an example,

onsider a quantum partile moving on a unit sphere in D + 1 dimensions. The

partition funtion is de�ned by Eq. (10.554) with the Eulidean ation (10.408) and

the invariant measure (10.406), where the metri and its determinant are

g

��

(q) = Æ

��

+

q

�

q

�

1� q

2

; g(q) =

1

1� q

2

: (10.628)

It is, of ourse, possible to alulate the Boltzmann fator B(q

0

) with the proedure

of Setion 10.12.3. Instead of doing this we shall, however, exploit the homogeneity of

the sphere. The invariane under reparametrizations of general Riemannian spae

beomes here an isometry of the metri (10.628). Consequently, the Boltzmann

fator B(q

0

) in Eq. (10.607) beomes independent of the hoie of q

�

0

, and the integral

over q

�

0

in (10.591) yields simply the total surfae of the sphere times the Boltzmann

fator B(q

0

). The homogeneity of the spae allows us to treat paths q

�

(�) themselves

as small quantum utuations around the origin q

�

0

= 0, whih extremizes the path

integral (10.554). The possibility of this expansion is due to the fat that �

�

��

= q

�

g

��

vanishes at q

�

(�) = 0, so that the movement is at this point free of aeleration,

this being similar to the situation in geodesi oordinates. As before we now take

aount of the fat that there are other equivalent saddle-points due to isometries of

the metri (10.628) on the sphere (see, e.g., [54℄). The in�nitesimal transformations

of a small vetor q

�

:

q

�

"

= q

�

+ "

�

q

1� q

2

; "

�

= onst; � = 1; : : : ; D (10.629)

move the origin q

�

0

= 0 by a small amount on the surfae of the sphere. Due to the

rotational symmetry of the system in the D-dimensional spae, these utuations

have a vanishing ation. There are also D(D � 1)=2 more isometries onsisting of

the rotations around the origin q

�

(�) = 0 on the surfae of the sphere. These are,

however, irrelevant in the present ontext sine they leave the origin unhanged.

The transformations (10.629) of the origin may be eliminated from the path in-

tegral (10.554) by inluding a fator Æ

(D)

(�q) to enfore the vanishing of the temporal

path average �q = �

�1

R

�

0

d�q(�). The assoiated Faddeev-Popov determinant �

FP

[q℄

is determined by the integral

�

FP

[q℄

Z

d

D

" Æ

(D)

(�q

"

) = �

FP

[q℄

Z

d

D

" Æ

(D)

 

"

�

1

�

Z

�

0

d�

q

1� q

2

!

= 1 : (10.630)

The result has the exponential form

�

FP

[q℄ =

 

1

�

Z

�

0

d�

q

1� q

2

!

D

= e

�A

FP

[q℄

; (10.631)

where A

FP

[q℄ must be added to the ation (10.408):

A

FP

[q℄ = �D log

 

1

�

Z

�

0

d�

q

1� q

2

!

: (10.632)
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The Boltzmann fator B(q

0

) � B is then given by the path integral without zero

modes

B =

I

Y

�;�

�

dq

�

(�)

q

g(q(�))

�

Æ

(D)

(�q)�

FP

[q℄e

�A[q℄

=

I

D

0D

q

q

g(q(�))�

FP

[q℄e

�A[q℄

; (10.633)

where the measure D

0D

q is de�ned as in Eq. (2.447). This an also be written as

B =

I

D

0D

q e

�A[q℄�A

J

[q℄�A

FP

[q℄

; (10.634)

where A

J

[q℄ is a ontribution to the ation (10.408) oming from the produt

Y

�

q

g(q(�)) � e

�A

J

[q℄

: (10.635)

By inserting (10.628), this beomes

A

J

[q℄ = �

Z

�

0

d�

1

2

Æ(0) log g(q) =

Z

�

0

d�

1

2

Æ(0) log(1� q

2

) : (10.636)

The total partition funtion is, of ourse, obtained from B by multipliation with the

surfae of the unit sphere in D+ 1 dimensions 2�

(D+1)=2

=�(D+ 1)=2). To alulate

B from (10.634), we now expand A[q℄; A

J

[q℄ and A

FP

[q℄ in powers of q

�

(�). The

metri g

��

(q) and its determinant g(q) in Eq. (10.628) have the expansions

g

��

(q) = Æ

��

+ q

�

q

�

+ : : : ; g(q) = 1 + q

2

+ : : : ; (10.637)

and the unperturbed ation reads

A

(0)

[q℄ =

Z

�

0

d�

1

2

_q

2

(�): (10.638)

In the absene of the zero eigenmodes due to the Æ-funtion over �q in Eq. (10.633),

we �nd as in Eq. (10.601) the free Boltzmann fator

B

0

= 1: (10.639)

The free orrelation funtion looks similar to (10.603):

hq

�

(�)q

�

(�

0

)i = Æ

��

�

�(�; �

0

): (10.640)

The interations oming from the higher expansions terms in Eq. (10.637) begin

with

A

int

tot

[q℄ = A

int

[q℄ +A

J

[q℄ =

Z

�

0

d�

1

2

h

(q _q)

2

� Æ(0)q

2

i

: (10.641)
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To the same order, the Faddeev-Popov interation (10.632) ontributes

A

FP

[q℄ =

D

2�

Z

�

0

d� q

2

: (10.642)

This has an important e�et upon the two-loop perturbation expansion of the Boltz-

mann fator

B(q

0

) = 1�

D

A

int

tot

[q℄

E

q

0

�

D

A

FP

[q℄

E

q

0

+ : : : = B(0) � B: (10.643)

Performing the Wik ontrations with the orrelation funtion (10.640) with the

properties (10.565){(10.567), we �nd from Eqs. (10.641), (10.642)

D

A

int

tot

[q℄

E

q

0

=

1

2

Z

�

0

d�

n

D _

�

�_(�; �)

�

�(�; �) +D(D + 1) _

�

�

2

(�; �)�Æ(0)D

�

�(�; �)

o

=

1

2

Z

�

0

d�

(

�

D

�

�

�(�; �) +D(D + 1) _

�

�

2

(�; �)

)

= �

D

24

�; (10.644)

and

D

A

FP

[q℄

E

q

0

=

D

2�

Z

�

0

d� D

�

�(�; �) =

D

2

24

�: (10.645)

Their ombination in Eq. (10.643) yields the high-temperature expansion

B = 1�

D(D � 1)

24

� + : : : : (10.646)

This is in perfet agreement with Eqs. (10.494) and (10.606), sine the salar urva-

ture for a unit sphere in D+1 dimensions is

�

R = D(D�1). It is remarkable how the

ontribution (10.645) of the Faddeev-Popov determinant has made the nonovariant

result (10.644) ovariant.

10.13 Covariant E�etive Ation for Quantum Partile

with Coordinate-Dependent Mass

The lassial behavior of a system is ompletely determined by the extrema of the

lassial ation. The quantum-mehanial properties an be found from the ex-

trema of the e�etive ation (see Subsetion 3.22.5). This important quantity an

in general only be alulated perturbatively. This will be done here for a parti-

le with a oordinate-dependent mass. The alulation [44℄ will make use of the

bakground method of Subsetion 3.23.6 ombined with the tehniques developed

earlier in this hapter. From the one-partile-irreduible (1PI) Feynman diagrams

with no external lines we obtain an expansion in powers of the Plank onstant

�h. The result will be appliable to a large variety of interesting physial systems,

for instane ompound nulei, where the olletive Hamiltonian, ommonly derived

from a mirosopi desription via time-dependent Hartree-Fok theory [45℄, on-

tains oordinate-dependent mass parameters.
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10.13.1 Formulating the Problem

Consider a partile with oordinate-dependent mass m(q) moving as in the one-

dimensional potential V (q). We shall study the Eulidean version of the system

where the paths q(t) are ontinued to an imaginary times � = �it and the La-

grangian for q(�) has the form

L(q; _q) =

1

2

m(q) _q

2

+ V (q): (10.647)

The dot stands for the derivative with respet to the imaginary time. The q-

dependent mass may be written as mg(q) where g(q) plays the role of a one-

dimensional dynamial metri. It is the trivial 1 � 1 Hessian metri of the sys-

tem [reall the de�nition (1.12) and Eq. (1.388)℄. In D-dimensional on�guration

spae, the kineti term would read mg

��

(q) _q

�

_q

�

=2, having the same form as in the

urved-spae ation (10.186).

Under an arbitrary single-valued oordinate transformation q = q(

e

q), the po-

tential V (q) is assumed to transform like a salar whereas the metri m(q) is a

one-dimensional tensor of rank two:

V (q) = V (q(

e

q)) �

e

V (

e

q); m(q) =

f

m(

e

q) [d

e

q(q)=dq℄

2

: (10.648)

This oordinate transformation leaves the Lagrangian (10.647) and thus also the

lassial ation

A[q℄ =

Z

1

�1

d� L(q; _q) (10.649)

invariant. Quantum theory has to possess the same invariane, exhibited automati-

ally by Shr�odinger theory. It must be manifest in the e�etive ation. This will be

ahieved by ombining the bakground tehnique in Subsetion 3.23.6 with the teh-

niques of Setions 10.6{10.10. In the bakground �eld method [46℄ we split all paths

into q(�) = Q(�)+Æq(�), where Q(�) is the �nal extremal orbit and Æq desribes the

quantum utuations around it. At the one-loop level, the ovariant e�etive ation

�[Q℄ beomes a sum of the lassial Lagrangian L(Q;

_

Q) and a orretion term �L.

It is de�ned by the path integral [reall (3.776)℄

e

��[Q℄=�h

=

Z

D�(Æq)e

�(1=�h)

f

A[Q+Æq℄�

R

d� Æq Æ�[Q℄=ÆQ

g

; (10.650)

where the measure of funtional integration D�(Æq) is obtained from the initial

invariant measure D�(q) = Z

�1

Q

�

dq(�)

q

m(q) and reads

D�(Æq) = Z

�1

Y

�

dÆq(�)

q

m(Q) e

(1=2)Æ(0)

R

d� log[m(Q+Æq)=m(Q)℄

; (10.651)

with Z being some normalization fator. The generating funtional (10.650) pos-

sesses the same symmetry under reparametrizations of the on�guration spae as

the lassial ation (10.649).
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We now alulate �[Q℄ in Eq. (10.650) perturbatively as a power series in �h:

�[Q℄ = A[Q℄ + �h�

1

[Q℄ + �h

2

�

2

[Q℄ + : : : : (10.652)

The quantum orretions to the lassial ation (10.649) are obtained by expanding

A[Q+ Æq℄ and the measure (10.651) ovariantly in powers of Æq:

A[Q+ Æq℄ = A[Q℄ +

Z

d�

DA

ÆQ(�)

Æx(�) +

1

2

Z

d�

Z

d�

0

D

2

A

ÆQ(�)ÆQ(�

0

)

Æx(�) Æx(�

0

)

+

1

6

Z

d�

Z

d�

0

Z

d�

00

D

3

A

ÆQ(�)ÆQ(�

0

)ÆQ(�

00

)

Æx(�) Æx(�

0

) Æx(�

00

) + : : : : (10.653)

The expansion is of the type (10.101), i.e., the expressions Æx are ovariant utua-

tions related to the ordinary variations Æq in the same way as the normal oordinates

�x

�

are related to the di�erenes �q

�

in the expansion (10.98). The symbol D=ÆQ

denotes the ovariant funtional derivative in one dimension. To �rst order, this is

the ordinary funtional derivative

DA[Q℄

ÆQ(�)

=

ÆA[Q℄

ÆQ(�)

= V

0

(Q)�

1

2

m

0

(Q)

_

Q

2

(�)�m(Q)

�

Q(�): (10.654)

This vanishes for the lassial orbit Q(�). The seond ovariant derivative is [om-

pare (10.100)℄

D

2

A[Q℄

ÆQ(�)ÆQ(�

0

)

=

Æ

2

A[Q℄

ÆQ(�)ÆQ(�

0

)

� �(Q(�))

ÆA[Q℄

ÆQ(�

0

)

; (10.655)

where �(Q) = m

0

(Q)=2m(Q) is the one-dimensional version of the Christo�el sym-

bol for the metri g

��

= Æ

��

m(Q). More expliitly, the result is

Æ

2

A[Q℄

ÆQ(�)ÆQ(�

0

)

=�

�

m(Q)�

2

�

+m

0

(Q)

_

Q�

�

+m

0

(Q)

�

Q+

1

2

m

00

(Q)

_

Q

2

�V

00

(Q)

�

Æ(���

0

):

(10.656)

The validity of the expansion (10.653) follows from the fat that it is equivalent

by a oordinates transformation to an ordinary funtional expansion in Riemannian

oordinates where the Christo�el symbol vanishes for the partiular bakground

oordinates.

The inverse of the funtional matrix (10.655) supplies us with the free orrela-

tion funtion G(�; �

0

) of the utuations Æx(�). The higher derivatives de�ne the

interations. The expansion terms �

n

[Q℄ in (10.652) are found from all one-partile-

irreduible vauum diagrams (3.784) formed with the propagator G(�; �

0

) and the

interation verties. The one-loop orretion to the e�etive ation is given by the

simple harmoni path integral

e

��

1

[Q℄

=

Z

DÆx

q

m(Q) e

�A

(2)

[Q;Æx℄

; (10.657)
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with the quadrati part of the expansion (10.653):

A

(2)

[Q; Æx℄ =

1

2

Z

1

�1

d� d�

0

Æx(�)

D

2

A[Q℄

ÆQ(�)ÆQ(�

0

)

Æx(�

0

) : (10.658)

The presene of m(Q) in the free part of the ovariant kineti term (10.658) and

in the measure in Eq. (10.657) suggests exhanging the utuation Æx by the new

oordinates Æ~x = h(Q)Æx, where h(Q) �

q

m(Q) is the one-dimensional version of

the triad (10.12) e(Q) =

q

m(Q) assoiated with the metri m(Q). The utuations

Æ~x orrespond to the di�erenes �x

i

in (10.97). The ovariant derivative of e(Q)

vanishes D

Q

e(Q) = �

Q

e(Q)��(Q) e(Q) � 0 [reall (10.40)℄. Then (10.658) beomes

A

(2)

[Q; Æx℄ =

1

2

Z

1

�1

d� d�

0

Æ~x(�)

D

2

A[Q℄

Æ

~

Q(�)Æ

~

Q(�

0

)

Æ~x(�

0

) ; (10.659)

where

D

2

A[Q℄

Æ

~

Q(�)Æ

~

Q(�

0

)

= e

�1

(Q)

D

2

A[Q℄

ÆQ(�)ÆQ(�

0

)

e

�1

(Q) =

"

�

d

2

d�

2

+ !

2

(Q(�))

#

Æ(���

0

); (10.660)

and

!

2

(Q) = e

�1

(Q)D

2

V (Q) e

�1

(Q) = e

�1

(Q)DV

0

(Q) e

�1

(Q)

=

1

m(Q)

[V

00

(Q)� �(Q)V

0

(Q)℄ : (10.661)

Note that this is the one-dimensional version of the Laplae-Beltrami operator

(1.381) applied to V (Q):

!

2

(Q) = �V (Q) =

1

q

m(Q)

d

dQ

"

q

m(Q)

 

V

0

(Q)

m(Q)

!#

: (10.662)

Indeed, e

�2

D

2

is the one-dimensional version of g

��

D

�

D

�

[reall (10.38)℄ Sine V (Q)

is a salar, so is �V (Q).

Equation (10.660) shows that the utuations Æ~x behave like those of a harmoni

osillator with the time-dependent frequeny !

2

(Q). The funtional measure of

integration in Eq. (10.657) simpli�es in terms of Æ~x:

Y

�

dÆx(�)

q

m(Q) =

Y

�

dÆ~x(�) : (10.663)

This allows us to integrate the Gaussian path integral (10.657) trivially to obtain

the one-loop quantum orretion to the e�etive ation

�

1

[Q℄ =

1

2

Tr log

h

��

2

�

+ !

2

(Q(�))

i

: (10.664)

Due to the � -dependene of !

2

, this annot be evaluated expliitly. For suÆiently

slow motion of Q(�), however, we an resort to a gradient expansion whih yields

asymptotially a loal expression for the e�etive ation.
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10.13.2 Gradient Expansion

The gradient expansion of the one-loop e�etive ation (10.664) has the general form

�

1

[Q℄ =

Z

1

�1

d�

�

V

1

(Q) +

1

2

Z

1

(Q)

_

Q

2

+ � � �

�

: (10.665)

It is found expliitly by realling the gradient expansion of the trae of the logarithm

derived in Eq. (4.314):

Tr log

h

��

2

�

+ !

2

(�)

i

�

Z

1

�1

d�

(

!(�) +

[�

�

!

2

(�)℄

2

32!

5

(�)

+ : : :

)

: (10.666)

Inserting 
(�) = !(Q(�)), we identify

V

1

(Q) = �h!(Q)=2; Z

1

(Q) =

(D!

2

)

2

(Q)

32!

5

(Q)

; (10.667)

and obtain the e�etive ation to order �h for slow motion

�

e�

[Q℄ =

Z

1

�1

d�

�

1

2

m

e�

(Q)

_

Q

2

+ V

e�

(Q)

�

; (10.668)

where the bare metri m

e�

(Q) and the potential V

e�

(Q) are related to the initial

lassial expressions by

m

e�

(Q) = m(Q) + �h

(D!

2

)

2

(Q)

32!

5

(Q)

; (10.669)

V

e�

(Q) = V (Q) + �h

!(Q)

2

: (10.670)

For systems in whih only the mass is Q-independent, the result has also been

obtained by Ref. [48℄.

The range of validity of the expansion is determined by the harateristi time

sale 1=!. Within this time, the partile has to move only little.

Appendix 10A Nonholonomi Gauge Transformations in

Eletromagnetism

To introdue the subjet, let us �rst reall the standard treatment of magnetism. Sine there are

no magneti monopoles, a magneti �eld B(x) satis�es the identity r �B(x) = 0, implying that

only two of the three �eld omponents of B(x) are independent. To aount for this, one usually

expresses a magneti �eld B(x) in terms of a vetor potential A(x), setting B(x) = r� A(x).

Then Amp�ere's law, whih relates the magneti �eld to the eletri urrent density j(x) byr�B =

4�j(x), beomes a seond-order di�erential equation for the vetor potential A(x) in terms of an

eletri urrent

r� [r�A(x)℄ = j(x): (10A.1)

The vetor potential A(x) is a gauge �eld . Given A(x), any loally gauge-transformed �eld

A(x) ! A

0

(x) = A(x) +r�(x) (10A.2)
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yields the same magneti �eld B(x). This redues the number of physial degrees of freedom in

the gauge �eld A(x) to two, just as those in B(x). In order for this to hold, the transformation

funtion must be single-valued, i.e., it must have ommuting derivatives

(�

i

�

j

� �

j

�

i

)�(x) = 0: (10A.3)

The equation for absene of magneti monopoles r �B = 0 is ensured if the vetor potential has

ommuting derivatives

(�

i

�

j

� �

j

�

i

)A(x) = 0: (10A.4)

This integrability property makesr �B = 0 the Bianhi identity in this gauge �eld representation

of the magneti �eld.

In order to solve (10A.1), we remove the gauge ambiguity by hoosing a partiular gauge, for

instane the transverse gauge r�A(x) = 0 in whih r� [r�A(x)℄ = �r

2

A(x), and obtain

A(x) =

Z

d

3

x

0

j(x

0

)

jx� x

0

j

: (10A.5)

The assoiated magneti �eld is

B(x) =

Z

d

3

x

0

j(x

0

)�R

0

R

03

; R

0

� x

0

� x: (10A.6)

This standard representation of magneti �elds is not the only possible one. There exists

another one in terms of a salar potential �(x), whih must, however, be multivalued to aount

for the two physial degrees of freedom in the magneti �eld.

10A.1 Gradient Representation of Magneti Field of

Current Loops

Consider an in�nitesimally thin losed wire arrying an eletri urrent I along the line L. It

orresponds to a urrent density

j(x) = I Æ(x;L); (10A.7)

where Æ(x;L) is the Æ-funtion on the line L:

Æ(x;L) =

Z

L

dx

0

Æ

(3)

(x� x

0

): (10A.8)

For a losed line L, this funtion has zero divergene:

r� Æ(x;L) = 0: (10A.9)

This follows from the property of the Æ-funtion on an arbitrary line L onneting the points x

1

and x

2

:

r� Æ(x;L) = Æ(x

2

)� Æ(x

1

): (10A.10)

For losed loops, the right-hand side vanishes.

From Eq. (10A.5) we obtain the assoiated vetor potential

A(x) = I

Z

L

dx

0

1

jx� x

0

j

; (10A.11)

yielding the magneti �eld

B(x) = �I

Z

L

dx

0

�R

0

R

03

; R

0

� x

0

� x: (10A.12)
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B(x) =r
(x;L)

Figure 10.5 In�nitesimally thin losed urrent loop L. The magneti �eld B(x) at the point x

is proportional to the solid angle 
(x) under whih the loop is seen from x. In any single-valued

de�nition of 
(x), there is some surfae S aross whih 
(x) jumps by 4�. In the multivalued

de�nition, this surfae is absent.

Let us now derive the same result from a salar �eld. Let 
(x;S) be the solid angle under

whih the urrent loop L is seen from the point x (see Fig. 10.5). If S denotes an arbitrary smooth

surfae enlosed by the loop L, and dS

0

a surfae element, then 
(x;S) an be alulated from the

surfae integral


(x;S) =

Z

S

dS

0

�R

0

R

03

: (10A.13)

The argument S in 
(x;S) emphasizes that the de�nition depends on the hoie of the surfae S.

The range of 
(x;S) is from �2� to 2�, as an be most easily be seen if L lies in the xy-plane and

S is hosen to lie in the same plae. Then we �nd for 
(x;S) the value 2� for x just below S, and

�2� just above. Let us alulate from (10A.13) the vetor �eld

B(x;S) = Ir
(x;S): (10A.14)

For this we rewrite

r
(x;S) =

Z

S

dS

0

k

r

R

0

k

R

03

= �

Z

S

dS

0

k

r

0

R

0

k

R

03

; (10A.15)

whih an be rearranged to

r
(x;S) = �

�

Z

S

�

dS

0

k

�

0

i

R

0

k

R

03

� dS

0

i

�

0

k

R

0

k

R

03

�

+

Z

S

dS

0

i

�

0

k

R

0

k

R

03

�

: (10A.16)

With the help of Stokes' theorem

Z

S

(dS

k

�

i

� dS

i

�

k

)f(x) = �

kil

Z

L

dx

l

f(x); (10A.17)

and the relation �

0

k

(R

0

k

=R

03

) = 4�Æ

(3)

(x� x

0

), we obtain

r
(x;S) = �

�

Z

L

dx

0

�R

0

R

03

+ 4�

Z

S

dS

0

Æ

(3)

(x � x

0

)

�

: (10A.18)
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Multiplying the �rst term by I , we reobtain the magneti �eld (10A.12) of the urrent I . The

seond term yields the singular magneti �eld of an in�nitely thin magneti dipole layer lying on

the arbitrarily hosen surfae S enlosed by L.

The seond term is a onsequene of the fat that the solid angle 
(x;S) was de�ned by the

surfae integral (10A.13). If x rosses the surfae S, the solid angle jumps by 4�.

It is useful to re-express Eq. (10A.15) in a slightly di�erent way. By analogy with (10A.8) we

de�ne a Æ-funtion on a surfae as

Æ(x;S) =

Z

S

dS

0

Æ

(3)

(x� x

0

); (10A.19)

and observe that Stokes' theorem (10A.17) an be written as an identity for Æ-funtions:

r� Æ(x;S) = Æ(x;L); (10A.20)

where L is the boundary of the surfae S. This equation proves one more the zero divergene

(10A.9).

Using the Æ-funtion (10A.19) on the surfae S, Eq. (10A.15) an be rewritten as

r
(x;S) = �

Z

d

3

x

0

Æ

k

(x

0

;S)r

0

R

0

k

R

03

; (10A.21)

and if we used also Eq. (10A.20), we �nd from (10A.18) a magneti �eld

B

i

(x;S) = �I

�

Z

d

3

x

0

[r� Æ(x;S)℄�

R

0

R

03

+ 4�Æ(x

0

;S)

�

: (10A.22)

Stokes theorem written in the form (10A.20) displays an important property. If we move the

surfae S to S

0

with the same boundary, the Æ-funtion Æ(x;S) hanges by

Æ(x;S)! Æ(x;S

0

) = Æ(x;S) +rÆ(x;V ); (10A.23)

where

Æ(x;V ) �

Z

d

3

x

0

Æ

(3)

(x� x

0

); (10A.24)

and V is the volume over whih the surfae has swept. Under this transformation, the url on the

left-hand side of (10A.20) is invariant. Comparing (10A.23) with (10A.2) we identify (10A.23) as

a novel type of gauge transformation.

9

The magneti �eld in the �rst term of (10A.22) is invariant

under this, the seond is not. It is then obvious how to �nd a gauge-invariant magneti �eld: we

simply subtrat the singular S-dependent term and form

B(x) = I [r
(x;S) + 4�Æ(x;S)℄ : (10A.25)

This �eld is independent of the hoie of S and oinides with the magneti �eld (10A.12) derived

in the usual gauge theory. Hene the desription of the magneti �eld as a gradient of �eld 
(x;S)

is ompletely equivalent to the usual gauge �eld desription in terms of the vetor potential A(x).

Both are gauge theories, but of a ompletely di�erent type.

The gauge freedom (10A.23) an be used to move the surfae S into a standard on�guration.

One possibility is the make gauge �xing . hoose S so that the third omponent of Æ(x;S) vanishes.

This is alled the axial gauge. If Æ(x;S) does not have this property, we an always shift S by a

volume V determined by the equation

Æ(V ) = �

Z

z

�1

Æ

z

(x;S); (10A.26)

9

For a disussion of this gauge freedom, whih is independent of the eletromagneti one, see

Ref. [56℄.

H. Kleinert, PATH INTEGRALS



Appendix 10A Nonholonomi Gauge Transformations in Eletromagnetism 887

and the transformation (10A.23) will produe a Æ(x;S) in the axial gauge, to be denoted by

Æ

ax

(x;S)

Equation (10A.25) suggests de�ning a solid angle 
(x) whih is independent of S and depends

only on the boundary L of S:

r
(x;L) �r
(x;S) + 4�Æ(x;S): (10A.27)

This is is the analyti ontinuation of 
(x;S) through the surfae S whih removes the jump and

produes a multivalued funtion 
(x;L) ranging from �1 to 1. At eah point in spae, there

are in�nitely many Riemann sheets starting from a singularity at L. The values of 
(x;L) on

the sheets di�er by integer multiples of 4�. From this multivalued funtion, the magneti �eld

(10A.12) an be obtained as a simple gradient:

B(x) = Ir
(x;L): (10A.28)

Amp�ere's law (10A.1) implies that the multivalued solid angle 
(x;L) satis�es the equation

(�

i

�

j

� �

j

�

i

)
(x;L) = 4��

ijk

Æ

k

(x;L): (10A.29)

Thus, as a onsequene of its multivaluedness, 
(x;L) violates the Shwarz integrability ondition

as the oordinate transformations do in Eq. (10.19). This makes it an unusual mathematial objet

to deal with. It is, however, perfetly suited to desribe the physis.

To see expliitly how Eq. (10A.29) is ful�lled by 
(x;L), let us go to two dimensions where

the loop orresponds to two points (in whih the loop intersets a plane). For simpliity, we move

one of them to in�nity, and plae the other at the oordinate origin. The role of the solid angle


(x;L) is now played by the azimuthal angle '(x) of the point x:

'(x) = artan

x

2

x

1

: (10A.30)

The funtion artan(x

2

=x

1

) is usually made unique by utting the x-plane from the origin along

some line C to in�nity, preferably along a straight line to x = (�1; 0), and assuming '(x) to

jump from � to �� when rossing the ut. The ut orresponds to the magneti dipole surfae

S in the integral (10A.13). In ontrast to this, we shall take '(x) to be the multivalued analyti

ontinuation of this funtion. Then the derivative �

i

yields

�

i

'(x) = ��

ij

x

j

(x

1

)

2

+ (x

2

)

2

: (10A.31)

With the single-valued de�nition of �

i

'(x), there would have been a Æ-funtion �

ij

Æ

j

(C;x) aross

the ut C, orresponding to the seond term in (10A.18). When integrating the url of (10A.31)

aross the surfae s of a small irle  around the origin, we obtain by Stokes' theorem

Z

s

d

2

x(�

i

�

j

� �

j

�

i

)'(x) =

Z



dx

i

�

i

'(x); (10A.32)

whih is equal to 2� in the multivalued de�nition of '(x). This result implies the violation of the

integrability ondition as in (10A.41):

(�

1

�

2

� �

2

�

1

)'(x) = 2�Æ

(2)

(x); (10A.33)

whose three-dimensional generalization is (10A.29). In the single-valued de�nition with the jump

by 2� aross the ut, the right-hand side of (10A.32) would vanish, making '(x) satisfy the

integrability ondition (10A.29).

On the basis of Eq. (10A.33) we may onstrut a Green funtion for solving the orresponding

di�erential equation with an arbitrary soure, whih is a superposition of in�nitesimally thin line-

like urrents piering the two-dimensional spae at the points x

n

:

j(x) =

X

n

I

n

Æ

(2)

(x� x

n

); (10A.34)
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where I

n

are urrents. We may then easily solve the di�erential equation

(�

1

�

2

� �

2

�

1

)f(x) = j(x); (10A.35)

with the help of the Green funtion

G(x;x

0

) =

1

2�

'(x� x

0

) (10A.36)

whih satis�es

(�

1

�

2

� �

2

�

1

)G(x� x

0

) = Æ

(2)

(x� x

0

): (10A.37)

The solution of (10A.35) is obviously

f(x) =

Z

d

2

x

0

G(x;x

0

)j(x): (10A.38)

The gradient of f(x) yields the magneti �eld of an arbitrary set of line-like urrents vertial to

the plane under onsideration.

It is interesting to realize that the Green funtion (10A.36) is the imaginary part of the omplex

funtion (1=2�) log(z�z

0

) with z = x

1

+ix

2

, whose real part (1=2�) log jz�z

0

j is the Green funtion

G

�

(x� x

0

) of the two dimensional Poisson equation:

(�

2

1

+ �

2

2

)G

�

(x� x

0

) = Æ

(2)

(x� x

0

): (10A.39)

It is important to point out that the superposition of line-like urrents annot be smeared

out into a ontinuous distribution. The integral (10A.38) yields the superposition of multivalued

funtions

f(x) =

1

2�

X

n

I

n

artan

x

2

� x

2

n

x

1

� x

1

n

; (10A.40)

whih is properly de�ned only if one an learly ontinue it analytially into the all parts of the

Riemann sheets de�ned by the endpoints of the ut at the origin. If we were to replae the

sum by an integral, this possibility would be lost. Thus it is, stritly speaking, impossible to

represent arbitrary ontinuous magneti �elds as gradients of superpositions of salar potentials


(x;L). This, however, is not a severe disadvantage of this representation sine any urrent an

be approximated by a superposition of line-like urrents with any desired auray, and the same

will be true for the assoiated magneti �elds.

The arbitrariness of the shape of the jumping surfae is the origin of a further interesting gauge

struture whih has interesting physial onsequenes disussed in Subsetion 10A.5.

10A.2 Generating Magneti Fields by Multivalued Gauge

Transformations

After this �rst exerise in multivalued funtions, we now turn to another example in magnetism

whih will lead diretly to our intended geometri appliation. We observed before that the loal

gauge transformation (10A.2) produes the same magneti �eld B(x) =r�A(x) only, as long as

the funtion �(x) satis�es the Shwarz integrability riterion (10A.29)

(�

i

�

j

� �

j

�

i

)�(x) = 0: (10A.41)

Any funtion �(x) violating this ondition would hange the magneti �eld by

�B

k

(x) = �

kij

(�

i

�

j

� �

j

�

i

)�(x); (10A.42)
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thus being no proper gauge funtion. The gradient of �(x)

A(x) =r�(x) (10A.43)

would be a nontrivial vetor potential.

By analogy with the multivalued oordinate transformations violating the integrability ondi-

tions of Shwarz as in (10A.29), the funtion �(x) will be alled nonholonomi gauge funtion.

Having just learned how to deal with multivalued funtions we may hange our attitude towards

gauge transformations and deide to generate all magneti �elds approximately in a �eld-free spae

by suh improper gauge transformations �(x). By hoosing for instane

�(x) = �
(x;L); (10A.44)

we �nd from (10A.29) that this generates a �eld

B

k

(x) = �

kij

(�

i

�

j

� �

j

�

i

)�(x) = �Æ

k

(x;L): (10A.45)

This is a magneti �eld of total ux � inside an in�nitesimal tube. By a superposition of suh

in�nitesimally thin ux tubes analogous to (10A.38) we an obviously generate a disrete approx-

imation to any desired magneti �eld in a �eld-free spae.

10A.3 Magneti Monopoles

Multivalued �elds have also been used to desribe magneti monopoles [10, 13, 14℄. A monopole

harge density �

m

(x) is the soure of a magneti �eld B(x) as de�ned by the equation

r�B(x) = 4��

m

(x): (10A.46)

If B(x) is expressed in terms of a vetor potential A(x) as B(x) = r�A(x), equation (10A.46)

implies the nonommutativity of derivatives in front of the vetor potential A(x):

1

2

�

ijk

(�

i

�

j

� �

j

�

i

)A

k

(x) = 4��

m

(x): (10A.47)

ThusA(x) must be multivalued. Dira in his famous theory of monopoles [16℄ made the �eld single-

valued by attahing to the world line of the partile a jumping world surfae, whose intersetion

with a oordinate plane at a �xed time forms the Dira string , along whih the magneti �eld of

the monopole is imported from in�nity. This world surfae an be made physially irrelevant by

quantizing it appropriately with respet to the harge. Its shape in spae is just as irrelevant as that

of the jumping surfae S in Fig. 10.5. The invariane under shape deformations onstitute one

more a seond gauge struture of the type mentioned earlier and disussed in Refs. [2, 6, 7, 10, 12℄.

One we allow ourselves to work with multivalued �elds, we may easily go one step further

and express also A(x) as a gradient of a salar �eld as in (10A.43). Then the ondition beomes

�

ijk

�

i

�

j

�

k

�(x) = 4��

m

(x): (10A.48)

Let us onstrut the �eld of a magneti monopole of harge g at a point x

0

, whih satis�es

(10A.46) with �

m

(x) = g Æ

(3)

(x�x

0

). Physially, this an be done only by setting up an in�nitely

thin solenoid along an arbitrary line L

"

0

whose initial point lies at x

0

and the �nal anywhere at

in�nity. The supersript " indiates that the line has a strating point x

0

. Inside this solenoid, the

magneti �eld is in�nite, equal to

B

inside

(x;L) = 4�g Æ(x;L

"

0

); (10A.49)

where Æ(x;L

"

0

) is the open-ended version of (10A.8)

Æ(x;L

"

0

) =

Z

L

"

0

;x

0

d

3

x

0

Æ

(3)

(x� x

0

): (10A.50)



890 10 Spaes with Curvature and Torsion

The divergene of this funtion is onentrated at the starting point:

r� Æ(x;L

"

0

) = Æ

(3)

(x� x

0

): (10A.51)

This follows from (10A.10) by moving the end point to in�nity. By analogy with the url relation

(10A.20) we observe a further gauge invariane. If we deform the line L, at �xed initial point x,

the Æ-funtion (10A.50) hanges as follows:

Æ(x;L

"

0

)! Æ(x;L

0"

0

) = Æ(x;L

"

0

) +r� Æ(x;S); (10A.52)

where S is the surfae over whih L

"

has swept on its way to L

0"

. Under this gauge transformation,

the relation (10A.51) is obviously invariant. We shall all this monopole gauge invariane. The ux

(10A.49) inside the solenoid is therefore a monopole gauge �eld . It is straightforward to onstrut

from it the ordinary gauge �eld A(x) of the monopole. First we de�ne the L

"

0

-dependent �eld

A(x;L

"

0

) = �g

Z

d

3

x

0

r

0

� Æ(x

0

;L

"

0

)

R

0

= g

Z

d

3

x

0

Æ(x

0

;L

"

0

)�

R

0

R

03

: (10A.53)

The url of the �rst expression is

r�A(x;L

"

0

) = �g

Z

d

3

x

0

r

0

� [r

0

� Æ(x

0

;L

"

0

)℄

R

0

; (10A.54)

and onsists of two terms

�g

Z

d

3

x

0

r

0

[r

0

� Æ(x

0

;L

"

0

)℄

R

0

+ g

Z

d

3

x

0

r

0

2

Æ(x

0

;L

"

0

)

R

0

: (10A.55)

After an integration by parts, and using (10A.51), the �rst term is L

"

0

-independent and reads

g

Z

d

3

x

0

Æ

(3)

(x� x

0

)r

0

1

R

0

= g

x� x

0

jx� x

0

j

3

: (10A.56)

The seond term beomes, after two integration by parts,

�4�g Æ(x

0

;L

"

0

): (10A.57)

The �rst term is the desired magneti �eld of the monopole. Its divergene is Æ(x � x

0

), whih

we wanted to arhive. The seond term is the monopole gauge �eld, the magneti �eld inside the

solenoid. The total divergene of this �eld is, of ourse, zero.

By analogy with (10A.25) we now subtrat the latter term and �nd the magneti �eld of the

monopole

B(x) =r�A(x;L

"

0

) + 4�g Æ(x;L

"

0

): (10A.58)

This �eld is independent of the string L

"

0

. It depends only on the soure point x

0

and satis�es

r�B(x) = 4�g Æ

(3)

(x � x

0

).

Let us alulate the vetor potential for some simple hoies of x

0

and L

"

0

, for instane x

0

= 0

and L

"

0

along the positive z-axis, so that Æ(x;L

"

0

) beomes
^
z�(z)Æ(x)Æ(y), where

^
z is the unit

vetor in z-diretion. Inserting this into the seond expression in (10A.53) yields

A

(g)

(x;L

"

0

) =�g

Z

1

0

dz

0

^
z� x

p

x

2

+ y

2

+ (z

0

� z)

2

3=2

= �g

^
z� x

r(r � z)

= g

(y;�x; 0)

r(r � z)

: (10A.59)
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If L

"

0

runs to �1, so that Æ(x;L

"

0

) is equal to �
^
z�(�z)Æ(x)Æ(y), we obtain

A

(g)

(x;L

"

0

) = g

Z

0

�1

dz

0

^
z� x

p

x

2

+ y

2

+ (z

0

� z)

2

3=2

= g

^
z� x

r(r + z)

= �g

(y;�x; 0)

r(r + z)

: (10A.60)

The vetor potential has only azimuthal omponents. If we parametrize (x; y; z) in terms of spher-

ial angles �; ') as r(sin � os'; sin � sin'; os �), these are

A

(g)

'

(x;L

"

0

) =

g

r sin �

(1� os �) or A

(g)

'

(x;L

"

0

) = �

g

r sin �

(1 + os �); (10A.61)

respetively.

The shape of the line L

"

0

an be brought to a standard form, whih orresponds to �xing

a gauge of the �eld Æ(x;L

"

0

). For example, we may always hoose L

"

0

to run from x

0

into the

z-diretion.

Also here, there exists an equivalent formulation in terms of a multivaluedA-�eld with in�nitely

many Riemann sheets around the line L. For a detailed disussion of the physis of multivalued

�elds see Refs. [2, 6, 7, 10, 12℄.

An interesting observation is the following: If the gauge funtion �(x) is onsidered as a

nonholonomi displaement in some �titious rystal dimension, then the magneti �eld of a urrent

loop whih gives rise to nonommuting derivatives (�

i

�

j

��

j

�

i

)�(x) 6= 0 is the analog of a disloaton

[ompare (10.23)℄, and thus implies torsion in the rystal. A magneti monopole, on the other hand,

arises from nonommuting derivatives (�

i

�

j

� �

j

�

i

)�

k

�(x) 6= 0 in Eq. (10A.48). It orresponds

to a dislination [see (10.57)℄ and implies urvature. The defets in the multivalued desription

of magnetism are therefore similar to those in a rystal where disloations muh more abundantly

observed than dislinations. They are opposite to those in general relativity whih is governed by

urvature alone, with no evidene for torsion so far [11℄.

10A.4 Minimal Magneti Coupling of Partiles from

Multivalued Gauge Transformations

Multivalued gauge transformations are the perfet tool to minimally ouple eletromagnetism to

any type of matter. Consider for instane a free nonrelativisti point partile with a Lagrangian

L =

M

2

_
x

2

: (10A.62)

The equations of motion are invariant under a gauge transformation

L! L

0

= L+r�(x)
_
x; (10A.63)

sine this hanges the ation A =

R

t

b

t

a

dtL merely by a surfae term:

A

0

! A = A+�(x

b

)� �(x

a

): (10A.64)

The invariane is absent if we take �(x) to be a multivalued gauge funtion. In this ase, a

nontrivial vetor potential A(x) = r�(x) (working in natural units with e = 1) is reated in

the �eld-free spae, and the nonholonomially gauge-transformed Lagrangian orresponding to

(10A.63),

L

0

=

M

2

_
x

2

+A(x)
_
x; (10A.65)

desribes orretly the dynamis of a free partile in an external magneti �eld.
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The oupling derived by multivalued gauge transformations is automatially invariant under

additional ordinary single-valued gauge transformations of the vetor potential

A(x)! A

0

(x) = A(x) +r�(x); (10A.66)

sine these add to the Lagrangian (10A.65) one more the same pure derivative term whih hanges

the ation by an irrelevant surfae term as in (10A.64).

The same proedure leads in quantum mehanis to the minimal oupling of the Shr�odinger

�eld  (x). The ation is A =

R

dtd

3

xL with a Lagrange density (in natural units with �h = 1)

L =  

�

(x)

�

i�

t

+

1

2M

r

2

�

 (x): (10A.67)

The physis desribed by a Shr�odinger wave funtion  (x) is invariant under arbitrary loal phase

hanges

 (x; t)!  

0

(x) = e

i�(x)

 (x; t); (10A.68)

alled loal U(1) transformations. This implies that the Lagrange density (10A.67) may equally

well be replaed by the gauge-transformed one

L =  

�

(x; t)

�

i�

t

+

1

2M

D

2

�

 (x; t); (10A.69)

where �iD � �ir�r�(x) is the operator of physial momentum.

We may now go over to nonzero magneti �elds by admitting gauge transformations with

multivalued �(x) whose gradient is a nontrivial vetor potential A(x) as in (10A.43). Then �iD

turns into the ovariant momentum operator

^

P = �iD = �ir�A(x); (10A.70)

and the Lagrange density (10A.69) desribes orretly the magneti oupling in quantum mehan-

is.

As in the lassial ase, the oupling derived by multivalued gauge transformations is auto-

matially invariant under ordinary single-valued gauge transformations under whih the vetor

potential A(x) hanges as in (10A.66), whereas the Shr�odinger wave funtion undergoes a loal

U(1)-transformation (10A.68). This invariane is a diret onsequene of the simple transformation

behavior of D (x; t) under gauge transformations (10A.66) and (10A.68) whih is

D (x; t)! D 

0

(x; t) = e

i�(x)

D (x; t): (10A.71)

Thus D (x; t) transforms just like  (x; t) itself, and for this reason, D is alled gauge-ovariant

derivative. The generation of magneti �elds by a multivalued gauge transformation is the simplest

example for the power of the nonholonomi mapping priniple.

After this disussion it is quite suggestive to introdue the same mathematis into di�erential

geometry, where the role of gauge transformations is played by reparametrizations of the spae

oordinates. This is preisely what is done in Subsetion (10.2.2).

10A.5 Gauge Field Representation of Current Loops and

Monopoles

In the previous subsetions we have given examples for the use of multivalued �elds in desribing

magneti phenomena. The nonholonomi gauge transformations by whih we reated line-like

nonzero �eld on�gurations were shown to be the natural origin of the minimal ouplings to the

lassial ations as well as to the Shr�odinger equation. It is interesting to observe that there exists

a fully edged theory of magnetism (whih is easily generalized to eletromagnetism) with these
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multivalued �elds, if we properly handle the freedom in hoosing the jumping surfaes S whose

boundary represents the physial urrent loop in Eq. (10A.12).

To understand this we pose ourselves the problem of setting up an ation formalism for alu-

lating the magneti energy of a urrent loop in the gradient representation of the magneti �eld.

In this Eulidean �eld theory, the ation is the �eld energy:

E =

1

8�

Z

d

3

xB

2

(x): (10A.72)

Inserting the gradient representation (10A.28) of the magneti �eld, we an write

E =

I

2

8�

Z

d

3

x [r
(x)℄

2

: (10A.73)

This holds for the multivalued solid angle 
(x) whih is independent of S. In order to perform

�eld theoreti alulations, we must go over to the single-valued representation (10A.25), so that

E =

I

2

8�

Z

d

3

x [r
(x;S) + 4�Æ(x;S)℄

2

: (10A.74)

The Æ-funtion removes the unphysial �eld energy on the arti�ial magneti dipole layer on S.

Let us alulate the magneti �eld energy of the urrent loop from the ation (10A.74). For this

we rewrite the ation (10A.74) in terms of an auxiliary vetor �eld B(x) as

E =

Z

d

3

x

�

�

1

8�

B

2

(x)�

I

4�

B(x) � [r
(x;S) + 4�Æ(x;S)℄

�

: (10A.75)

A partial integration brings the seond term to

Z

d

3

x

I

4�

r�B(x) 
(x;S):

Extremizing this in 
(x) yields the equation

r�B(x) = 0; (10A.76)

implying that the �eld lines of B(x) form losed loops. This equation may be enfored identially

(as a Bianhi identity) by expressing B(x) as a url of an auxiliary vetor potential A(x), setting

B(x) �r�A(x): (10A.77)

With this ansatz, the equation whih brings the ation (10A.75) to the form

E =

Z

d

3

x

�

�

1

8�

[r�A(x)℄

2

� I [r�A(x)℄ � Æ(x;S)

�

: (10A.78)

A further partial integration leads to

E =

Z

d

3

x

�

�

1

8�

[r�A(x)℄

2

� IA(x) � [r� Æ(x;S)℄

�

; (10A.79)

and we identify in the linear term in A(x) the auxiliary urrent

j(x) � Ir� Æ(x;S) = I Æ(x;L); (10A.80)

due to Stoke's law (10A.20). Aording to Eq. (10A.9), this urrent is onserved for losed loops

L.
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By extremizing the ation (10A.78), we obtain Amp�ere's law (10A.1). Thus the auxiliary

quantities B(x), A(x), and j(x) oinide with the usual magneti quantities with the same name.

If we insert the expliit solution (10A.5) of Amp�ere's law into the energy, we obtain the Biot-Savart

energy for an arbitrary urrent distribution

E =

1

2

Z

d

3

x d

3

x

0

j(x)

1

jx� x

0

j

j(x

0

): (10A.81)

Note that the ation (10A.78) is invariant under two mutually dual gauge transformations, the

usual magneti one in (10A.2), by whih the vetor potential reeives a gradient of an arbitrary

salar �eld, and the gauge transformation (10A.23), by whih the irrelevant surfae S is moved to

another on�guration S

0

.

Thus we have proved the omplete equivalene of the gradient representation of the magneti

�eld to the usual gauge �eld representation. In the gradient representation, there exists a new

type of gauge invariane whih expresses the physial irrelevane of the jumping surfae appearing

when using single-valued solid angles.

The ation (10A.79) desribes magnetism in terms of a double gauge theory [8℄, in whih

both the gauge of A(x) and the shape of S an be hanged arbitrarily. By setting up a grand-

anonial partition funtion of many utuating surfaes it is possible to desribe a large family

of phase transitions mediated by the proliferation of line-like defets. Examples are vortex lines

in the superuid-normal transition in helium and disloation and dislination lines in the melting

transition of rystals [2, 6, 7, 10, 12℄.

Let us now go through the analogous alulation for a gas of monopoles at x

n

from the magneti

energy formed with the �eld (10A.58):

E =

1

8�

Z

d

3

x

"

r�A+ 4�g

X

n

Æ(x;L

"

n

)

#

2

: (10A.82)

As in (10A.75) we introdue an auxiliary magneti �eld and rewrite (10A.82) as

E=

Z

d

3

x

(

�

1

8�

B

2

(x) �

1

4�

B(x) �

"

r�A+ g

X

n

Æ(x;L

"

n

)

#)

: (10A.83)

Extremizing this in A yields r�B = 0, so that we may set B =r�, and obtain

E=

Z

d

3

x

(

�

1

8�

[r�(x)℄

2

+ g�(x)

X

n

r � Æ(x;L

"

n

)

)

: (10A.84)

Realling (10A.51), the extremal � �eld is

�(x) = �

4�g

r

2

X

n

Æ(x � x

n

) = g

X

n

1

jx� x

n

j

; (10A.85)

whih leads, after reinsertion into (10A.84), to the Coulomb interation energy

E =

g

2

2

X

n;n

0

1

jx

n

� x

n

0

j

: (10A.86)

Appendix 10B Comparison of Multivalued

Basis Tetrads and Vierbein Fields

The standard tetrads or vierbein �elds were introdued a long time ago in gravitational theories of

spinning partiles both in purely Riemann [16℄ as well as in Riemann-Cartan spaetimes [17, 18,
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19, 20, 2℄. Their mathematis is desribed in detail in the literature [21℄. Their purpose was to

de�ne at every point a loal Lorentz frame by means of another set of oordinate di�erentials

dx

�

= h

�

�

(q)dq

�

; � = 0; 1; 2; 3; (10B.1)

whih an be ontrated with Dira matries 

�

to form loally Lorentz invariant quantities. Loal

Lorentz frames are reahed by requiring the indued metri in these oordinates to be Minkowskian:

g

��

= h

�

�

(q)h

�

�

(q)g

��

(q) = �

��

; (10B.2)

where �

��

is the at Minkowski metri (10.30). Just like e

i

�

(q) in (10.12), these vierbeins possess

reiproals

h

�

�

(q) � �

��

g

��

(q)h

�

�

(q); (10B.3)

and satisfy orthonormality and ompleteness relations as in (10.13):

h

�

�

h

�

�

= Æ

�

�

; h

�

�

h

�

�

= Æ

�

�

: (10B.4)

They also an be multiplied with eah other as in (10.14) to yield the metri

g

��

(q) = h

�

�

(q)h

�

�

(q)�

��

: (10B.5)

Thus they onstitute another \square root" of the metri. The relation between these square roots

is some linear transformation

e

a

�

(q) = e

a

�

(q)h

�

�

(q); (10B.6)

whih must neessarily be a loal Lorentz transformation

�

a

�

(q) = e

a

�

(q); (10B.7)

sine this matrix onnets the two Minkowski metris (10.30) and (10B.2) with eah other:

�

ab

�

a

�

(q)�

b

�

(q) = �

��

: (10B.8)

The di�erent loal Lorentz transformations allow us to hoose di�erent loal Lorentz frames whih

distinguish �elds with de�nite spin by the irreduible representations of these transformations.

The physial onsequenes of the theory must be independent of this loal hoie, and this is the

reason why the presene of spinning �elds requires the existene of an additional gauge freedom

under loal Lorentz transformations, in addition to Einstein's invariane under general oordinate

transformations. Sine the latter may be viewed as loal translations, the theory with spinning

partiles are loally Poinar�e invariant.

The vierbein �elds h

�

�

(q) have in ommon with ours that both violate the integrability on-

dition as in (10.22), thus desribing nonholonomi oordinates dx

�

for whih there exists only a

di�erential relation (10B.1) to the physial oordinates q

�

. However, they di�er from our multi-

valued tetrads e

a

�(q) by being single-valued �elds satisfying the integrability ondition

(�

�

�

�

� �

�

�

�

)h

�

�

(q) = 0; (10B.9)

in ontrast to our multivalued tetrads e

i

�

(q) in Eq. (10.23).

In the loal oordinate system dx

�

, urvature arises from a violation of the integrability on-

dition of the loal Lorentz transformations (10B.7).

The simple equation (10.24) for the torsion tensor in terms of the multivalued tetrads e

i

�

(q)

must be ontrasted with a similar-looking, but geometrially quite di�erent, quantity formed from

the vierbein �elds h

�

�

(q) and their reiproals, the objets of anholonomy [21℄:






��

(q) =

1

2

h

�

�

(q)h

�

�

(q)

�

�

�

h



�

(q)� �

�

h



�

(q)

�

: (10B.10)
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Figure 10.6 Coordinate system q

�

and the two sets of loal nonholonomi oordinates

dx

�

and dx

a

. The intermediate oordinates dx

�

have a Minkowski metri only at the point

q, the oordinates dx

a

in an entire small neighborhood (at the ost of a losure failure).

A ombination of these similar to (10.28),

h

K



��

(q) = 




��

(q)� 




� �

(q) + 




��

(q); (10B.11)

appears in the so-alled spin onnetion

�

��



= h



�

h

�

�

h

�

�

(K

��

�

�

h

K

��

�

); (10B.12)

whih is needed to form a ovariant derivative of loal vetors

v

�

(q) = v

�

(q)h

�

�

(q); v

�

(q) = v

�

(q)h

�

�

(q): (10B.13)

These have the form

D

�

v

�

(q) = �

�

v

�

(q)� �



��

(q)v



(q); D

�

v

�

(q) = �

�

v

�

(q) + �

�

�

(q)v



(q): (10B.14)

For details see Ref. [2, 6℄. In spite of the similarity between the de�ning equations (10.24) and

(10B.10), the tensor 




��

(q) bears no relation to torsion, and

h

K

��



(q) is independent of the

ontortion K

��



. In fat, the objets of anholonomy 




��

(q) are in general nonzero in the absene

of torsion [22℄, and may even be nonzero in at spaetime, where the matries h

�

�

(q) degenerate

to loal Lorentz transformations. The quantities

h

K

��



(q), and thus the spin onnetion (10B.12),

haraterize the orientation of the loal Lorentz frames.

The nonholonomi oordinates dx

�

transform the metri g

��

(q) to a Minkowskian form �

ab

at any given point q

�

. They orrespond to a small \falling elevator" of Einstein in whih the

gravitational fores vanish preisely at the enter of mass, the neighborhood still being subjet

to tidal fores. In ontrast, the nonholonomi oordinates dx

a

atten the spaetime in an entire

neighborhood of the point. This is at the expense of produing defets in spaetime (like those

produed when attening an orange peel by stepping on it), as will be explained in Setion IV.

The aÆne onnetion �

ab



(q) in the latter oordinates dx

a

vanishes identially.

The di�erene between our multivalued tetrads and the usual vierbeins is illustrated in the

diagram of Fig. 10.6.

Appendix 10C Canellation of Powers of Æ(0)

There is a simple way of proving the anellation of all UV-divergenes Æ(0). Consider a free

partile whose mass depends on the time with an ation

A

tot

[q℄ =

Z

�

0

d�

�

1

2

Z(�) _q

2

(�) �

1

2

Æ(0) logZ(�)

�

; (10C.1)
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where Z(�) is some funtion of � but independent now of the path q(�). The last term is the

simplest nontrivial form of the Jaobian ation in (10.408). Sine it is independent of q, it is

onveniently taken out of the path integral as a fator

J = e

(1=2)Æ(0)

R

�

0

d� logZ(�)

: (10C.2)

We split the ation into a sum of a free and an interating part

A

(0)

=

Z

�

0

d�

1

2

_q

2

(�); A

int

=

Z

�

0

d�

1

2

[Z(�)� 1℄ _q

2

(�); (10C.3)

and alulate the transition amplitude (10.411) as a sum of all onneted diagrams in the umulant

expansion

(0�j0 0) = J

Z

Dq(�)e

�A

(0)

[q℄�A

int

[q℄

= J

Z

Dq(�)e

�A

(0)

[q℄

�

1�A

int

+

1

2

A

2

int

� : : :

�

= (2��)

�1=2

J

�

1� hA

int

i+

1

2




A

2

int

�

� : : :

�

= (2��)

�1=2

J e

�hA

int

i



+

1

2

h

A

2

int

i



�:::

: (10C.4)

We now show that the in�nite series of Æ(0)-powers appearing in a Taylor expansion of the expo-

nential (10C.2) is preisely ompensated by the sum of all terms in the perturbation expansion

(10C.4). Being interested only in these singular terms, we may extend the � -interval to the entire

time axis. Then Eq. (10.394) yields the propagator _�_(�; �

0

) = Æ(���

0

), and we �nd the �rst-order

expansion term

hA

int

i



=

Z

d�

1

2

[Z(�)� 1℄ _�_(�; �) = �

1

2

Æ(0)

Z

d� [1� Z(�)℄: (10C.5)

To seond order, divergent integrals appear involving produts of distributions, thus requiring an

intermediate extension to d dimensions as follows




A

2

int

�



=

Z Z

d�

1

d�

2

1

2

(Z � 1)

1

1

2

(Z � 1)

2

2 _�_(�

1

; �

2

) _�_(�

2

; �

1

)

!

Z Z

d

d

x

1

d

d

x

2

1

2

(Z � 1)

1

1

2

(Z � 1)

2

2

�

�

�

(x

1

; x

2

)

�

�

�

(x

2

; x

1

)

=

Z Z

d

d

x

1

d

d

x

2

1

2

(Z � 1)

1

1

2

(Z � 1)

2

2�

��

(x

2

; x

1

)�

��

(x

1

; x

2

) ; (10C.6)

the last line following from partial integrations. For brevity, we have abbreviated [Z(�

i

) � 1℄ by

(Z�1)

i

. Using the �eld equation (10.418) and going bak to one dimension yields, with the further

abbreviation (Z � 1)

i

! z

i

:




A

2

int

�



=

1

2

Z Z

d�

1

d�

2

z

1

z

2

Æ

2

(�

1

; �

2

): (10C.7)

To third order we alulate




A

3

int

�



=

Z Z Z

d�

1

d�

2

d�

3
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1
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z
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2

z

3
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d
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�
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�

�
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�

�

�
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d

d
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1

d

d

x

2

d

d

x
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1

2
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(x
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): (10C.8)
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Applying again the �eld equation (10.418) and going bak to one dimension, this redues to




A

3

int

�



=

Z Z Z

d�

1

d�

2

d�

3

z

1

z

2

z

3

Æ(�

1

; �

2

) Æ(�
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; �

3

) Æ(�

3

; �

1

): (10C.9)

Continuing to n-order and substituting Eqs. (10C.5), (10C.7), (10C.9), et. into (10C.4), we obtain

in the exponent of Eq. (10C.4) a sum

�hA

int

i



+

1

2




A

2

int

�



�

1

3!




A

3

int

�



+ : : : =

1

2

1

X

1

(�1)

n



n

n

; (10C.10)

with



n

=

Z

d�

1

: : : d�

n

C(�

1

; �

2

)C(�

2

; �

3

) : : : C(�

n

; �

1

) (10C.11)

where

C(�; �

0

) = [Z(�)� 1℄ Æ(�; �

0

): (10C.12)

Substituting this into Eq. (10C.11) and using the rule (10.369) yields



n

=

Z Z

d�

1

d�

n

[Z(�

1

)� 1℄

n

Æ

2

(�

1

� �

n

) = Æ(0)

Z

d� [Z(�) � 1℄

n

: (10C.13)

Inserting these numbers into the expansion (10C.10), we obtain

�hA

int

i



+

1

2




A

2

int

�



�

1

3!




A

3

int

�



+ : : : =

1

2

Æ(0)

Z

d�

1

X

1

(�1)

n

[Z(�)� 1℄

n

n

= �

1

2

Æ(0)

Z

d� logZ(�); (10C.14)

whih ompensates preisely the Jaobian fator J in (10C.4).
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Felix est quantulumunque temporis ontigit, bene olloatus est

Happy is he who has well employed the time,

however small the time slies may be

Senea (4BC{65)

11

Shr�odinger Equation in General

Metri-AÆne Spaes

We now use the path integral representation of the last hapter to �nd out whih

Shr�odinger equation is obeyed by the time evolution amplitude in a spae with

urvature and torsion. If there is only urvature, the result establishes the onnetion

with the operator quantum mehanis desribed in Chapter 1. In partiular, it will

properly reprodue the energy spetra of the systems in Setions 1.14 and 1.15 |

a partile on the surfae of a sphere and a spinning top | whih were quantized

there via group ommutation rules. If the spae arries torsion also, the Shr�odinger

operator emerging from our formulation will be a predition. Its orretness will be

veri�ed in Chapter 13 by an appliation to the path integral of the Coulomb system

whih an be transformed into a harmoni osillator by a nonholonomi mapping

involving urvature and torsion.

11.1 Integral Equation for Time Evolution Amplitude

Consider the time-slied path integral Eq. (10.146)

hqje

�i(t�t

0

)

^

H=�h

jq

0

i=

1

q

2�i�h�=M

D

N+1

Y

n=2

2

6

4

Z

d

D

�q

n

q

g(q

n

)

q

2�i��h=M

D

3

7

5

e

i

P

N+1

n=1

(A

�

+A

�

J

)=�h

;(11.1)

with the integrals over �q

n

to be performed suessively from n = N down to n = 1.

Let us study the e�et of the last �q

n

-integration upon the remaining produt

of integrals. We denote the entire produt briey by  (q

N+1

; t

N+1

) �  (q; t) and

the produt without the last fator by

 (q

N

; t

N

) =  (q

N+1

��q

N+1

; t

N+1

� �) �  (q ��q; t� �):

Sine the initial oordinate q

0

and time t

0

of the amplitude are kept �xed in the

sequel, they are not shown in the arguments. We assume N to be so large that the

902
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amplitude has had time to develop from the initial state loalized at q

0

to a smooth

funtion of  (q � �q; t � �), smooth ompared to the width of the last short-time

amplitude, whih is of the order

q

�h� tr (g

��

)=M .

From Eq. (11.1) we dedue the reursion relation

 (q; t) =

q

g(q)

Z

d

D

�q

q

2�i��h=M

D

exp

�

i

�h

(A

�

+A

�

J

)

�

 (q ��q; t� �): (11.2)

This is an integral equation

 (q; t) =

Z

d

D

�q K

�

(q;�q) (q ��q; t� �); (11.3)

with an integral kernel

K
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(q;�q) =
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g(q)

q

2�i��h=M

D

exp

�

i

�h

(A

�

+A

�

J

)

�

: (11.4)

The integral equation (11.3) will now be turned into a Shr�odinger equation. This

will be done in two ways, a short way whih gives diret insight into the relevane of

the di�erent terms in the mapping (10.96), and a histori more tedious way, whih

is useful for omparing our path integral with previous alternative proposals in the

literature (ited at the end).

11.1.1 From Reursion Relation to Shr�odinger Equation

The evaluation of (11.3) is muh easier if we take advantage of the simpliity of the

integral kernel K

�

(q;�q) and the measure when expressed in terms of the variables

�x

i

. Thus we introdue into (11.3) the integration variables ��

�

� �x

i

e

i

�

, with

e

i

�

evaluated at the postpoint q. The expliit relation between ��

�

and �q

�

follows

diretly from (10.96). In terms of ��

�

, we rewrite (11.3) as

 (q; t) =

Z

d

D

�� K

�

0

(q;��) (q ��q(��); t� �);

with the zeroth-order kernel

K
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g(q)
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(q)��
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(11.5)

of unit normalization

Z

d

D

�� K

�

0

(q;��) = 1: (11.6)

To perform the integrals in (11.2), we expand the wave funtion as

 (q ��q; t� �) =

�

1��q

�

�

�

+

1

2

�q

�

�q

�

�

�

�

�

+ : : :

�

 (q; t� �); (11.7)
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and the oordinate di�erenes �q

�

in powers of �� by inverting Eq. (10.96):

�q
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:(11.8)

All aÆne onnetions are evaluated at the postpoint q. Inluding in (11.2) only the

relevant expansion terms, we �nd the integral equation

 (q; t) =

Z

d

D

�� K

�

0

(q;��) (11.9)
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+ : : :
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 (q; t� �):

The evaluation requires only the normalization integral (11.6) and the two-point

orrelation funtion

h��
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The result is
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#

 (q; t� �): (11.11)

The di�erential operator in parentheses is proportional to the ovariant Laplaian

of the �eld  (q; t� �):
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) : (11.12)

In a spae with no torsion, this is equal to the Laplae-Beltrami operator applied to

the �eld  :

� =

1

p

g
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�

p

gg

��

�

�

 : (11.13)

In a more general spae, the relation between the two operators is obtained by

working out the derivatives

� = g

��

�

�

�

�

+

 

1

p

g

�

�

p

g

!

g

��

�

�

+ (�

�

g

��

)�

�

: (11.14)

Using
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;
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we see that
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; (11.16)

and hene
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Thus, the relation between the Laplaian and the Laplae-Beltrami operator is given

by
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where

�

D

�

denotes the ovariant derivative formed with the Riemannian aÆne on-

netion, the Christo�el symbol

�

�

��

�

, and S

�

is the ontrated torsion

S

�

� S

��

�

: (11.19)

As a result, the amplitude  (q; t) in (11.2) satis�es the equation

 (q; t) =
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): (11.20)

In the limit �! 0, this leads to the Shr�odinger equation

i�h�
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 (q; t) =

^
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 (q; t); (11.21)

where

^

H

0

is the free-partile Shr�odinger operator
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It is the naively expeted generalization of the at-spae operator
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; (11.23)

from whih (11.22) arises by transforming the derivatives with respet to Carte-

sian oordinates �

i

to the general oordinate derivatives �

�

via the nonholonomi

transformation
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= e
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: (11.24)

The result is
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; (11.25)

whih oinides with the Laplaian D

�

D

�

when applied to a salar �eld. Note that

the operator (11.22) ontains no extra term proportional to the salar urvature R

allowed by other theories.
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11.1.2 Alternative Evaluation

For ompleteness, we also present an alternative evaluation of the q-integrals in

Eq. (11.3) whih is more tedious but failitates omparison with previous work.

First, the postpoint ation A

�

is onveniently split into the leading term

A

�

0

=

M
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��

(q)�q

�

�q
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(11.26)

and a remainder
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: (11.27)

Correspondingly, we introdue as in (11.5) the zeroth-order kernel
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with the unit normalization

Z

d
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(q;�q) = 1; (11.29)

and expand K

�

(q;�q) around K

�

0

(q;�q) with a series of orretion terms of higher

order in �q:

K

�

(q;�q) = K

�

0

(q;�q)[1 + C(�q)℄ � K

�

0

(q;�q)

"

1 +

1

X

n=1



n

(�q)

n

#

: (11.30)

Under the smoothness assumptions above, the wave funtion  (q��q; t� �) an be

expanded into a Taylor series around the endpoint q, so that the integral equation

(11.2) reads

 (q; t) =

Z

d

D

�q K

�

0

(q;�q)

"

1 +

1

X

n=1



n

(�q)

n

#

(11.31)

�

�

1��q

�

�

�

+

1

2

�q

�

�q

�

�

�

�

�

+ : : :

�

 (q; t� �) :

Due to the normalization property (11.6), the leading term simply reprodues

 (q; t� �). To alulate the orretion terms 

n

(�q), we expand

C(�q) = exp

�

i
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�
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�

J

)

�

� 1 (11.32)

in powers of �q

�

. After inserting here �A

�

from (11.27) with A

�

0

from (11.26), we

expand A

�

as in (10.107) [realling (10.121)℄. By separating the expansion for C

into even and odd powers of �q,

C = C

e

+ C

�

; (11.33)
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we �nd for the odd terms

C

�

= ��

f��g

�

�q

�

�

i

�h

M

2�

�

���

�q

�

�q

�

�q

�

+ : : : ; (11.34)

and the even terms

C

e

=

4

X

a=1

C

e

a

+ : : : ; (11.35)

with

C

e

1

=

1

2

[�

f�

�

��g

�

+ �

f��

�

�

f�j�gg

�

+ �

f��g

�

�

f��g

�

� �

f��g

�

�

f��g

�

℄�q

�

�q

�

;

C

e

2

=

iM

2�h�

�

f��g

�

�

���

�q

�

�q

�

�q

�

�q

�

;

C

e

3

=

iM

2�h�

�

1

3

g

��

(�

�

�

��

�

+ �

��

�

�

f��g

�

) +

1

4

�

��

�

�

���

�

�q

�

�q

�

�q

�

�q

�

;

C

e

4

= �

1

2

M

2

4�h

2

e

2

�

���

�

���

�q

�

�q

�

�q

�

�q

�

�q

�

�q

�

: (11.36)

The dots denote terms of higher order in �q

�

whih do not ontribute to the limit

�! 0.

The evaluation now proeeds perturbatively and requires the harmoni expeta-

tion values

hO(�q)i

0

�

Z

d

D

�q K

�

0

(q;�q) O(�q): (11.37)

The relevant orrelation funtions are

h�q

�

�q

�

i

0

=

i�h�

M

g

��

; (11.38)

h�q

�

�q

�

�q

�

�q

�

i

0

=

 

i�h�

M

!

2

g

����

; (11.39)

h�q

�

�q

�

�q

�

�q

�

�q

�

�q

�

i

0

=

 

i�h�

M

!

3

g

������

: (11.40)

The tensor g

����

in the seond expetation (11.39) ollets three Wik ontrations

[reall (3.305)℄ and reads

g

����

� g

��

g

��

+ g

��

g

��

+ g

��

g

��

: (11.41)

The tensor g

������

in the third expetation (11.40) olleting 15 Wik ontrations

is obtained reursively following the rule (3.306) by expanding

g

������

= g

��

g

����

+ g

��

g

����

+ g

��

g

����

+ g

��

g

����

+ g

��

g

����

: (11.42)

A produt of 2n fators �q results in (2n� 1)!! pair ontrations.
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Let us ollet all ontributions in (11.31) relevant to order �. Obviously, the

highest derivative term of  (q; t� �) is

1

2

�q

�

�q

�

�

�

�

�

 (q; t� �). It reeives only a

leading ontribution from K

�

0

(q;�q),

i�

�h

2

2M

g

��

(q)�

�

�

�

 (q; t� �); (11.43)

with no more orretions from C(�q). The term with one derivative �

�

on  (q; t��)

in (11.31) beomes

A

�

�

�

 (q; t� �); (11.44)

where A

�

is the expetation involving the odd orretion terms

A

�

= �hC

�

�q

�

i

0

: (11.45)

Using the rules (11.38) and (11.39), we �nd

A

�

=

��

�

f��g

�

�q

�

+

iM

2�h�

�

���

�q

�

�q

�

�q

�

�

�q

�

+ : : :

�

0

= i�

�h

M

�

�

f��g

�

�

1

2

(�

��

�

+ �

��

�

+ �

�

��

)

�

+ : : :

= �i�

�h

2M

�

�

��

+ : : : : (11.46)

In ombination with (11.43), this produes the LaplaianD

�

D

�

of the �eld  (q; t��)

as in Eq. (11.11).

We now turn to the remaining ontributions in (11.31) whih ontain no more

derivatives of  (q; t� �). They are all due to the expetation value hC

e

i

0

of the even

orretion terms. Let us de�ne

V

e�

�

i�h

�

hCi

0

=

i�h

�

hC

e

i

0

; (11.47)

to be alled the e�etive potential aused by the orretion terms hCi

0

of (11.32).

Using the expetation values (11.38){(11.40) we �nd

V

e�

=

�h

2

M

v �

�h

2

M

X

A;B

v

A

B

; (11.48)

where the sum runs over the six terms

v

2

1

= �

1

2

(�

f��g

�

�

f��g

�

� �

f��g

�

�

f��g

�

)g

��

;

v

2

2

=

1

8

�

f��g

�

�

���

g

����

;

v

2

3

=

1

2

�

f��g

�

�

���

g

����

;

v

2

4

= �

1

8

�

���

�

���

g

������

;

v

3

1

= �

1

2

(�

f�

�

��g

�

+ �

f��

�

�

f�j�gg

�

)g

��

;

v

3

2

=

1

6

g

��

(�

�

�

��

�

+ �

��

�

�

f��g

�

)g

����

: (11.49)

H. Kleinert, PATH INTEGRALS



11.2 Equivalent Path Integral Representations 909

The subsripts 2 and 3 distinguish ontributions oming from the quadrati and the

ubi terms in the expansion (10.96) of �x

i

. By inserting on the right-hand sides

the expliit expansions (11.42) and (11.41), we �nd after some algebra that the sum

of all v

A

B

-terms is zero. In fat, the v

2

B

- and v

3

B

-terms disappear separately. A

simple strutural reason for this is given in Appendix 11A.

Expliitly, the anellation is rather obvious for v

3

B

after inserting (11.41). For

v

2

B

, the proof requires more work whih is relegated to Appendix 11A.

Note that in a spae without urvature and torsion, the above manipulations are

equivalent to a diret transformation of the at-spae integral equation

 (x; t) =

Z

d

D

�x

q

2�i��h=M

D

exp

�

i�

M

2

(�x

i

)

2

�

� (1��x

i

�

x

i
+

1

2

�x

i

�x

j

�

x

i
�

x

j
+ : : :) (x; t� �)

=

"

1 +

i��h

2M

�

2

i

+O(�

2

)

#

 (x; t� �); (11.50)

to the variable �q by a oordinate transformation. In a general metri-aÆne spae,

the wave funtion  (q; t) has no ounter image in x-spae so that (11.50) annot be

used as a starting point for a nonholonomi transformation.

11.2 Equivalent Path Integral Representations

From the derivation of the Shr�odinger equation in Subsetion 11.1.1 we learn an

important lesson. When deriving the transformation law (10.96) between the �nite

oordinate di�erenes �x

i

and �q

�

by evaluating the integral equation (10.60) along

the autoparallel, the ubi terms in �q, whih make the ation and measure lengthy,

an be dropped altogether. A ompletely equivalent path integral representation of

the time evolution amplitude is obtained by transforming the at-spae path integral

(10.89) into the general metri-aÆne one (10.146) with the help of the shortened

transformation

�x

i

= e

i

�

�

�q

�

�

1

2!

�

��

�

�q

�

�q

�

�

: (11.51)

This has the simple Jaobian

J =

�(�x)

�(�q)

= det (e

i

�

) det (Æ

�

�

� e

i

�

e

i

f�;�g

�q

�

); (11.52)

whose e�etive ation reads

i

�h

A

�

J

= �e

i

�

e

i

�;�

�q

�

�

1

2

e

i

�

e

i

f�;�g

e

j

�

e

j

f�;�g

�q

�

�q

�

+ : : : : (11.53)

With the help of (10.16), this is expressed in terms of the onnetion yielding

i

�h

A

�

J

= ��

f��g

�

�q

�

�

1

2

�

f��g

�

�

f�;�g

�

�q

�

�q

�

+ : : : : (11.54)
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The mapping (11.51) has, however, an unattrative feature: The short-time ation

following from (11.51)

A

�

=

M

2�

(�x

i

)

2

=

M

2�

�

g

��

�q

�

�q

�

��

���

�q

�

�q

�

�q

�

(11.55)

+

1

4

�

��

�

�

���

�q

�

�q

�

�q

�

�q

�

+ : : :

�

is no longer equal to the lassial ation (10.107) [reall the onvention (10.121)℄

evaluated along the autoparallel.

This was also a feature of another mapping whih is the most onvenient for

alulations. Instead of deriving the relation between �x

i

and �q

�

by evaluating

(10.60) along the autoparallel, one may assume, for the moment, the absene of

urvature and torsion and expand �x

i

= x

i

(q)� x

i

(q ��q) in powers of �q:

�x

i

= e

i

�

�q

�

�

1

2

e

i

�;�

�q

�

�q

�

+

1

3!

e

i

�;��

�q

�

�q

�

�q

�

+ : : : : (11.56)

After this, urvature and torsion are introdued by allowing the funtions x(q) and

�

�

x(q) to be nonintegrable in the sense of the Shwartz riterion, i.e., the seond

derivatives of x(q) and e

i

�

(q) need not ommute with eah other [implying that the

right-hand side of (11.56) an no longer be written as x

i

(q) � x

i

(q � �q)℄. The

expansion (11.56) is then a de�nition of the transformation from �x

i

to �q

�

. Using

the identities (10.16), (10.131), and (10.132), the transformation (11.56) turns into

�x

i

= e

i

�

�

�q

�

�

1

2!

�

��

�

�q

�

�q

�

(11.57)

+

1

3!

(�

�

�

��

�

+ �

��

�

�

��

�

)�q

�

�q

�

�q

�

+ : : :

�

:

This di�ers from the orret one (10.96) by the third-order term

�

0

x

i

=

1

3!

e

i

[�;�℄

e

k

�

e

k

�;�

�q

�

�q

�

�q

�

=

1

3!

e

i

�

S

��

�

�

��

�

�q

�

�q

�

�q

�

; (11.58)

whih vanishes if the q-spae has no torsion. The Jaobian assoiated with (11.56)

is

J =

�(�x)

�(�q)

= det (e

i

�

) det

�

Æ

�

�

� e

i

�

e

i

f�;�g

�q

�

+

1

2

e

�

i

e

i

f�;��g

�q

�

�q

�

+ : : :

�

; (11.59)

and orresponds to the e�etive ation

i

�h

A

�

J

= �e

i

�

e

i

�;�

�q

�

+

1

2

[e

i

�

e

i

f�;��g

�e

i

�

e

i

f�;�g

e

j

�

e

j

f�;�g

℄�q

�

�q

�

+ : : : : (11.60)

With (10.16), (10.131), and (10.132), this beomes

i

�h

A

�

J

= � �

f��g

�

�q

�

+

1

2

(�

f�

�

�;�g

�

+ �

f�;�

�

�

�g;�

�

� �

f��g

�

�

f�;�g

�

)�q

�

�q

�

+: : : ;

(11.61)
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whih di�ers from the proper Jaobian ation (10.145) only by one index sym-

metrization.

To �nd the short-time ation following from the mapping (11.56), we form

A

�

=

M

2�

(�x

i

)

2

=

M

2�

h

g

��

�q

�

�q

�

�e

i

�

e

i

�;�

�q

�

�q

�

�q

�

(11.62)

+

�

1

3

e

i

�

e

i

�;��

+

1

4

e

i

�;�

e

i

�;�

�

�q

�

�q

�

�q

�

�q

�

+: : :

i

;

and use the identities (10.16), (10.131), and (10.132) to obtain

A

�

=

M

2�

�

g

��

�q

�

�q

�

� �

���

�q

�

�q

�

�q

�

(11.63)

+

�

1

3

g

��

(�

�

�

��

�

+ �

��

Æ

�

�Æ

�

) +

1

4

�

��

�

�

���

�

�q

�

�q

�

�q

�

�q

�

+ : : :

�

:

This di�ers from the proper short-time ation (10.107) [reall the onvention

(10.107)℄ only by the absene of the symmetrization in the indies � and Æ in the

fourth term, the di�erene vanishing if the q-spae has no torsion.

The equivalent path integral representation in whih (11.2) ontains the short-

time ation (11.63) and the Jaobian ation (11.61) will be useful in Chapter 13

when solving the path integral of the Coulomb system.

The equivalene of di�erent time-slied path integral representations manifests

itself in ertain moment properties of the integral kernel (11.4). The derivations of

the Shr�odinger equation in Subsetions. 11.1.1 and 11.1.2 have made use only of

the following three moment properties of the kernel:

Z

d

D

�q K

�

(q;�q) = 1 + : : : ; (11.64)

Z

d

D

�q K

�

(q;�q)�q

�

= �i�

�h

2M

�

�

��

+ : : : ; (11.65)

Z

d

D

�q K

�

(q;�q)�q

�

�q

�

= i�

�h

M

g

��

+ : : : ; (11.66)

evaluated at �xed postpoint q. The omitted terms indiated by the dots and all

higher moments ontribute to higher orders in � whih are irrelevant for the deriva-

tion of the di�erential equation obeyed by the amplitude. Any kernel K

�

(q;�q)

with these properties leads to the same Shr�odinger equation. If a kernel is written

as

K

�

(q;�q) = K

�

0

(q;�q)[1 + C(�q)℄; (11.67)

where K

�

0

(q;�q) is the free-partile postpoint kernel

K

�

0

(q;�q) =

q

g(q)

q

2�i��h=M

D

exp

�

i

�h

g

��

(q)�q

�

�q

�

�

; (11.68)
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the moment properties (11.64){(11.66) are equivalent to

hCi

0

= 0 + : : : ; (11.69)

hC �q

�

i

0

= i�

�h

2M

�

�

��

+ : : : ; (11.70)

where the expetation values are taken with respet to the kernel K

�

0

(q;�q), the dots

on the right-hand side indiating terms of the order �

2

. Note that the third of the

three moment properties is trivially true sine it reeives only a ontribution from

the leading part of the kernel K

�

(q;�q), i.e., from K

�

0

(q;�q). The veri�ation of

the other two requires some work, in partiular the �rst, whih is the normalization

ondition.

Two kernels K

�

1

; K

�

2

are equivalent if their orretion terms C

1

; C

2

have expeta-

tions whih are small of the order �

2

:

hC

1

i

0

= hC

2

i

0

= O(�

2

); (11.71)

h(C

1

� C

2

)�q

�

i

0

= O(�

2

): (11.72)

These are neessary and suÆient onditions for the equivalene. Many possible

orretion terms C lead to the same moment integrals. All of them are physially

equivalent, being assoiated with the same Shr�odinger equation. The simplest

possibilities are

K

�

(q;�q) = K

�

0

(q;�q)

�

1 +

1

2

�

�

�

�

�q

�

�

; (11.73)

or

K

�

(q;�q) = K

�

0

(q;�q)

�

1�

i

D + 2

M

2�h�

�

�

�

�

�q

�

g

��

�q

�

�q

�

�

; (11.74)

where D is the spae dimension. The zero-order kernel satis�es automatially the

�rst and third moment ondition, (11.64) and (11.66), while the additional term

enfores preisely the seond ondition, (11.65), without hanging the others. The

equivalent kernels an also be onsidered as the result of working with Jaobian

ations

i

�h

A

�

J

=

1

2

�

�

�

�

�q

�

�

1

8

(�

�

�

�

�q

�

)

2

; (11.75)

i

�h

A

�

J

= �

i

D + 2

M

2�h�

�

�

�

�

�q

�

g

��

�q

�

�q

�

; (11.76)

instead of the original one (10.145). Indeed, the seond term in (11.75) an further

be redued by perturbation theory to

�

1

8

(�

�

�

�

�q

�

)

2

! �

1

8

�

�

�

�

�

�

�

�

h�q

�

�q

�

i

0

= �i�

�h

8M

(�

�

�

�

)

2

; (11.77)
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yielding an alternative and most useful form for the Jaobian ation

i

�h

A

�

J

=

1

2

�

�

�

�

�q

�

� i�

�h

8M

(�

�

�

�

)

2

: (11.78)

Remarkably, this expression involves only the onnetion ontrated in the �rst two

indies:

�

�

��

= g

��

�

��

�

: (11.79)

11.3 Potentials and Vetor Potentials

It is straightforward to �nd the e�et of external potentials and vetor potentials

upon the Shr�odinger equation. For this, we merely observe that the time-slied

potential term

A

�

pot

=

e



A

�

�q

�

�

e

2

�

�

A

�

�q

�

�q

�

� �V (q) + : : : (11.80)

derived in Eq. (10.182) appears in the kernel K

�

(q;�q) via a fator e

iA

�

pot

=�h

. This

fator an be ombined with the postpoint expansion of the wave funtion in the

integral equation (11.31), whih beomes

 (q; t) =

Z

d

D

�q K

�

0

(q;�q) [1 + C(�q)℄

�e

iA

�

pot

=�h

�

1��q

�

�

�

+

1

2

�q

�

�q

�

�

�

�

�

�

 (q; t� �) + : : :

=

Z

d

D

�q K

�

0

(q;�q) [1 + C(�q)℄

"

1��q

�

�

�

�

� i

e

�h

A

�

�

(11.81)

+

1

2

�q

�

�q

�

�

�

�

� i

e

�h

A

�

��

�

�

� i

e

�h

A

�

�

� i�V (q)

#

 (q; t� �) + : : : :

By going through the steps of Subsetion 11.1.1 or 11.1.2, we obtain the same

Shr�odinger equation as in (11.21),

i�h�

t

 (q; t) =

^

H (q; t): (11.82)

The Hamiltonian operator

^

H di�ers from the free operator

^

H

0

of (11.22),

^

H

0

= �

�h

2

2M

D

�

D

�

; (11.83)

in two ways. First, a potential energy V (q) is added. Seond, the ovariant deriva-

tives D

�

are replaed by

D

A

�

� D

�

� i

e

�h

A

�

: (11.84)

This is the Shr�odinger version of the minimal substitution in Eq. (2.644).
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The minimal substitution extends the ovariane ofD

�

with respet to oordinate

hanges to a ovariane with respet to gauge transformations of the vetor potential

A

�

. The subtration of iA

�

=�h on the right-hand side of (11.84) reets the fat that

P

�

= p

�

�A

�

rather than p

�

is the gauge-invariant physial momentum of a partile

in the presene of an eletromagneti �eld. Only the use of P

�

guarantees the gauge

invariane of the eletromagneti interation, just as in the at-spae ation (2.643).

Let us briey verify that the Shr�odinger equation (11.82) with the ovariant

derivative (11.84) is invariant under gauge transformations. If the amplitude is

multiplied by a spae-dependent phase

 (q)! e

�i(e=�h)�(q)

 (q); (11.85)

the ovariant derivative (11.84) is multiplied by preisely the same phase:

D

�

 (q)! e

�i(e=�h)�(q)

D

�

 (q); (11.86)

if the vetor potential is gauge tranformed as follows:

A

�

! A

�

+ �

�

�(q): (11.87)

Under these joint transformations, the Shr�odinger equation (11.82) is multiplied by

an overall phase fator e

�i�(q)

, and thus gauge invariant.

Adding a potential V (q), the Hamilton operator in the Shr�odinger equation

(11.82) is therefore

^

H = �

�h

2

2M

D

A

�

D

A�

+ V (q): (11.88)

Observe that the mixed terms ontaining derivative and vetor potential appears in

the symmetrized form

�

�h

2M

(p̂

�

A

�

+ A

�

p̂

�

) : (11.89)

This orresponds to a symmetri time sliing of the interation term _q

�

A

�

whih

was derived in Setion 10.5 by using the equation of motion in alulation of the

short-time ation. Here we see that this time sliing guarantees the gauge invariane

of the Shr�odinger equation.

Note further that there is no extra R-term in the Shr�odinger equation (11.88).

11.4 Unitarity Problem

The appearane of the Laplae operator D

�

D

�

in the free-partile Shr�odinger equa-

tion (11.82) is in onit with the traditional physial salar produt between two

wave funtions  

1

(q) and  

2

(q):

h 

2

j 

1

i �

Z

d

D

q

q

g(q) 

�

2

(q) 

1

(q): (11.90)
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In suh a salar produt, only the Laplae-Beltrami operator (11.13),

� =

1

p

g

�

�

p

gg

��

�

�

; (11.91)

is a Hermitian operator, not the Laplaian D

�

D

�

. The bothersome term is the

ontrated torsion term

(D

�

D

�

��) = �2S

�

�

�

 : (11.92)

This term ruins the Hermitiity and thus also the unitarit y of the time evolution

operator of a partile in a spae with urvature and torsion.

For presently known physial systems in spaes with urvature and torsion, the

unitarity problem is fortunately absent. Consider �rst �eld theories of gravity with

torsion. There, the torsion �eld S

��

�

is generated by the spin urrent density of

the fundamental matter �elds. The requirement of renormalizability restrits these

�elds to arry spin 1=2. However, the spin urrent density of spin-1=2 partiles

happens to be a ompletely antisymmetri tensor.

1

This property arries over to

the torsion tensor. Hene, the torsion �eld in the universe satis�es S

�

= 0. This

implies that for a partile in a universe with urvature and torsion, the Laplaian

always degenerates into the Laplae-Beltrami operator, assuring unitarity after all.

In Chapter 13 we shall witness another way of esaping the unitarity problem.

The path integral of the three-dimensional Coulomb system is solved by a multi-

valued transformation to a four-dimensional spae with torsion where the physial

salar produt is

h 

2

j 

1

i

phys

�

Z

d

D

q

p

g w(q) 

�

2

(q) 

1

(q); (11.93)

with some salar weight funtion w(q). This salar produt is di�erent from the

naive salar produt (11.90). It is, however, reparametrization-invariant, and w(q)

makes the Laplaian D

�

D

�

a Hermitian operator.

The harateristi property of torsion in the transformed Coulomb system is that

S

�

(q) = S

��

�

an be written as a gradient of a salar funtion: S

�

(q) = �

�

�(q) [see

Eq. (13.143)℄. Suh torsion �elds admit a Hermitian Laplae operator of a salar

�eld in a salar produt (11.93) with the weight

w(q) = e

�2�(q)

: (11.94)

Thus, the physial salar produt an be expressed in terms of the naive one as

follows:

h 

2

j 

1

i

phys

�

Z

d

D

q

q

g(q)e

�2�(q)

 

�

2

(q) 

1

(q): (11.95)

To prove the Hermitiity, we observe that within the naive salar produt (11.93),

a partial integration hanges the ovariant derivative �D

�

into

D

�

�

� (D

�

+ 2S

�

): (11.96)

1

See the standard textbooks on quantum �eld theory, for example, Ref. [1, 2℄.
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Consider, for example, the salar produt

Z

d

D

q

p

g U

��

1

:::�

n

D

�

V

�

1

:::�

n

: (11.97)

A partial integration of the derivative term �

�

in D

�

gives

surfae term �

Z

d

D

dq[(�

�

p

g U

��

1

:::�

n

)V

�

1

:::�

n

�

X

i

p

gU

��

1

:::�

i

:::�

n

�

��

i

�

i

V

�

1

:::�

i

:::�

n

℄: (11.98)

Now we use

�

�

p

g =

p

g

�

�

��

�

=

p

g(2S

�

+ �

��

�

); (11.99)

to rewrite (11.98) as

surfae term �

Z

d

D

q

p

g [(�

�

U

��

1

:::�

n

)V

�

1

:::�

n

�

X

i

�

��

i

�

i

U

��

1

:::�

i

:::�

n

V

�

1

:::�

i

:::�

n

�2S

�

U

��

1

:::�

n

V

�

1

:::�

n

℄ ; (11.100)

whih is equal to

surfae term �

Z

d

D

q

p

g(D

�

�

U

��

1

:::�

n

)V

�

1

:::�

n

: (11.101)

In the physial salar produt (11.95), the orresponding operation is

Z

d

D

q

p

ge

�2�(q)

U

��

1

:::�

n

D

�

V

�

1

:::�

n

=

= surfae term�

Z

d

D

q

p

g(D

�

�

e

�2�(q)

U

��

1

:::�

n

)V

�

1

:::�

n

= surfae term�

Z

d

D

q

p

ge

�2�(q)

(D

�

p

gU

��

1

:::�

n

)V

�

1

:::�

n

: (11.102)

Hene, iD

�

is a Hermitian operator, and so is the Laplaian D

�

D

�

.

For spaes with an arbitrary torsion, the orret salar produt has yet to be

found. Thus the quantum equivalene priniple is so far only appliable to spaes

with arbitrary urvature and gradient torsion.

11.5 Alternative Attempts

Our proedure has to be ontrasted with earlier proposals for onstruting path

integrals in spaes with urvature, in whih torsion was always assumed to be absent.

In the notable work of DeWitt,

2

the measure is taken to be proportional to

N

Y

n=1

Z

dq

n

q

g(q

n�1

) =

N

Y

n=1

Z

dq

n

q

g(q

n

��q) (11.103)

2

See Setion 11.5.
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so that the expansion in powers �q gives a Jaobian ation A

�

�

J

0

of Eq. (10.133).

If one uses this ation instead of the orret expression A

�

J

of Eq. (10.145), the

amplitude obeys a Shr�odinger equation

i�h�

t

 (q; t) = (

^

H

0

+ V

e�

) (q; t); (11.104)

where

^

H

0

= �

�h

2

2M

� (11.105)

ontains the Laplae-Beltrami operator �, and V

e�

is an additional e�etive potential

V

e�

=

�h

2

6M

�

R: (11.106)

The Shr�odinger equation (11.104) di�ers from ours in Eq. (11.21) derived by the

nonholonomi mapping proedure by the extra R-term. The derivation is reviewed

in Appendix 11A. Note that our sign onvention for

�

R is suh that the surfae of a

sphere of radius R has

�

R= 2=R

2

.

In the amplitude proposed by DeWitt, the short-time amplitude arries an ex-

tra semilassial prefator, a urved-spae version of the Van Vlek-Pauli-Morette

determinant in Eq. (4.125). It ontributes another term proportional to

�

R whih

redues (11.106) to (�h

2

=12M)

�

R (see Appendix 11B). Other path integral presrip-

tions lead even to additional nonovariant terms [3℄. All suh nonlassial terms

proportional to �h

2

have to be subtrated from the lassial ation to arrive at the

orret amplitude whih satis�es the Shr�odinger equation (11.104) without an extra

V

e�

.

There are two ompelling arguments in favor of our onstrution priniple: On

the one hand, if the spae has only urvature and no torsion, our path integral

gives the orret time evolution amplitude of a partile on the surfae of a sphere

in D dimensions and on group spaes, as we have seen in Setions 8.7{8.9 and 10.4.

In ontrast to other proposals, only the lassial ation appears in the short-time

amplitude. In spaes with onstant urvature, just as in at spae, our amplitude

agrees with the one obtained from operator quantum mehanis by quantizing the

theory via the ommutation rules of the generators of the group of motion.

In the presene of torsion the result is new. It will be tested by the integration of

the path integral of the Coulomb system in Chapter 13. This requires a multivalued

oordinate transformation to an auxiliary spae with urvature and torsion, whih

redues the system to a harmoni osillator (see Setion 13.5). The multivaleud

mapping priniple leads to the orret result.

The solution is so far the only indiret evidene for the question �rst raised by

Brye DeWitt in his fundamental 1957 paper [4℄, whether the Hamiltonian oper-

ator for a partile in urved spae ontains merely the Laplae-Beltrami operator

� in the kineti energy, or whether there exists an additional term proportional
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to �h

2

R. Reall the various older path integral literature on the subjet ited in

Chapter 10. From the measure generated by the nonholonomi mapping priniple

in Subsetion 10.3.2 it follows that there is no extra �h

2

R-term. See the disussion in

Setion 11.5. It would, of ourse, be more satisfatory to have a diret experimental

evidene, but so far all experimentally aessible systems in urved spae have either

a very small R aused by gravitation, whose detetion is presently impossible, or a

onstant R whih does not hange level spaings, an example for the latter being the

spinning symmetri and asymmetri top disussed in the ontext of Eq. (1.471).

11.6 DeWitt-Seeley Expansion of Time Evolution

Amplitude

An important tool for omparing the results of path integrals in urved spae with

operator results of Shr�odinger theory is the short-time expansion of the imaginary-

time evolution amplitude (q; � j q

0

; 0). In Shr�odinger theory, the amplitude is given

by the matrix elements of the evolution operator e

��

^

H

= e

��=2

, with � being the

Laplae-Beltrami operator (11.13). This expansion has �rst been given by DeWitt

[6℄ and by Seeley [7℄ and reads

3

(q � j q

0

0) = (q j e

��=2

j q

0

) =

1

p

2��

D

e

�g

��

(q)�q

�

�q

�

=2�

1

X

k=0

�

k

a

k

(q; q

0

) ; (11.107)

The assoiated DeWitt-Seeley expansion oeÆients a

k

(q; q

0

) are, up to fourth order

in �q

�

,

a

0

(q; q

0

) �1+

1

12

�

R

��

�q

�

�q

�

+

�

1

360

�

R

�

�

�

�

�

R

����

+

1

288

�

R

��

�

R

��

�

�q

�

�q

�

�q

�

�q

�

;

a

1

(q; q

0

) �

1

12

�

R+

�

1

144

�

R

�

R

��

+

1

360

�

R

��

�

R

����

+

1

360

�

R

���

�

�

R

����

�

1

180

�

R

�

�

�

R

��

�

�q

�

�q

�

;

a

2

(q; q

0

) �

1

288

�

R

2

+

1

720

�

R

����

�

R

����

�

1

720

�

R

��

�

R

��

; (11.108)

where �q

�

� (q � q

0

)

�

. The metri at q is assumed to be Minkowskian, and all

urvature tensors are evaluated at q. For �q

�

= 0 this simpli�es to

(q � j q 0)=

1

p

2��

D

(

1 +

�

12

�

R +

�

2

2

�

1

144

�

R

2

+

1

360

�

�

R

����

�

R

����

�

�

R

��

�

R

��

�

�

+ : : :

)

:

(11.109)

This an also be written in the umulant form as

(q � j q 0)=

1

p

2��

D

exp

"

�

12

�

R +

�

2

720

�

�

R

����

�

R

����

�

�

R

��

�

R

��

�

+ : : :

#

: (11.110)

3

In the mathematial nomenlature of Footnote 16 in Chapter 2, this is a so-alled heat kernel

expansion or a Hadamard expansion [8℄, and the DeWitt-Seeley oeÆients a

k

(q; q

0

) are also alled

Hadamard oeÆients .

H. Kleinert, PATH INTEGRALS



11.6 DeWitt-Seeley Expansion of Time Evolution Amplitude 919

The derivation goes as follows. In a neighborhood of some arbitrary point q

�

0

we

expand the Laplae-Beltrami operator in normal oordinates where the metri and

its determinant have the expansions (10.477) and (10.478) as

� = �

2

�

1

3

�

R

ik

1

jk

2

(q

0

)(q � q

0

)

k

1

(q � q

0

)

k

2

�

�

�

�

�

2

3

�

R

��

(q

0

)(q � q

0

)

�

�

�

: (11.111)

The time evolution operator

^

H = ��=2 in the exponent of Eq. (11.107) is now

separated into a free part

^

H

0

and an interation part

^

H

int

as follows

^

H

0

= �

1

2

�

2

; (11.112)

^

H

int

=

1

6

�

R

ik

1

jk

2

(q � q

0

)

k

1

(q � q

0

)

k

2

�

�

�

�

+

1

3

�

R

��

(q � q

0

)

�

�

�

: (11.113)

We now reall Eq. (1.294) and see that the transition amplitude (11.107) satis�es

the integral equation

(q � j q

0

0) = hq j e

��(

^

H

0

+

^

H

int

)

j q

0

i = hq j e

��

^

H

0

"

1�

Z

�

0

d�e

�

^

H

0

^

H

int

e

��

^

H

#

j q

0

i

= (q � j q

0

0)

0

�

Z

�

0

d�

Z

d

D

�q (q � � � j �q 0)

0

^

H

int

(�q) (�q � j q 0); (11.114)

where

(q � j q

0

0)

0

= hq j e

��

^

H

0

j q

0

i =

1

p

2��

n

e

�(�q)

2

=2�

: (11.115)

To �rst order in

^

H

int

we an replae

^

H in the last exponential of Eq. (11.114) by

^

H

0

and obtain

(q � j q

0

0) � (q � j q

0

0)

0

�

Z

�

0

d�

Z

d

D

�q (q � � � j �q 0)

0

^

H

int

(�q) (�q � j q 0)

0

:

(11.116)

Inserting (11.113) and hoosing q

0

= q

0

, we �nd

(q � j q

0

0) = (q � j q

0

0)

0

(

1 +

Z

�

0

d�

Z

d

D

(��q)

p

2�a

D

e

�[��q�(�=�) �q℄

2

=2a

(11.117)

�

"

�

1

6

�

R

����

��q

�

��q

�

 

�

Æ

��

�

+

��q

�

��q

�

�

2

!

+

1

3

�

R

��

��q

�

��q

�

�

#)

;

where we have replaed the integrating variable �q by ��q = �q � q

0

and introdued

the variable a � (� � �)�=�. There is initially also a term of fourth order in ��q

whih vanishes, however, beause of the antisymmetry of

�

R

����

in �� and ��. The

remaining Gaussian integrals are performed after shifting ��q ! ��q + ��q=�, and

we obtain

(q � j q

0

0) = (q � j q

0

0)

0

(

1 +

1

6

Z

�

0

d�

"

�

�

2

�

R

��

(q

0

)�q

�

�q

�

+

a

�

�

R(q

0

)

#)

= (q � j q

0

0)

0

"

1 +

1

12

�

R

��

(q

0

)�q

�

�q

�

+

�

12

�

R(q

0

)

#

: (11.118)
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Note that all geometrial quantities are evaluated at the initial point q

0

. They an

be re-expressed in power series around the �nal position q using the fat that in

normal oordinates

g

��

(q

0

) = g

��

(q) +

1

3

�

R

ik

1

jk

2

(q)�q

k

1

�q

k

2

+ : : : ; (11.119)

g

��

(q

0

)�q

�

�q

�

= g

��

(q)�q

�

�q

�

; (11.120)

the latter equation being true to all orders in �q due to the antisymmetry of the

tensors

�

R

����

in all terms of the expansion (11.119), whih is just another form of

writing the expansion (10.477) up to the seond order in �q

�

.

Going bak to the general oordinates, we obtain all oeÆients of the expansion

(11.107) linear in the urvature tensor

(q � j q

0

0) '

1

p

2��

D

e

�g

��

(q)�q

�

�q

�

=2�

"

1 +

1

12

�

R

��

(q)�q

�

�q

�

+

�

12

�

R(q)

#

: (11.121)

The higher-order terms in the Seeley-DeWitt expansion (10.512) an be derived

similarly, although with muh more e�ort [9℄.

A simple ross hek of the expansion (10.512) to high orders is possible if we

restrit the spae to the surfae of a sphere of radius r in D dimensions whih has

D � 1 dimensions. Then

�

R

����

=

1

r

2

(g

��

g

��

� g

��

g

��

) ; �; � = 1; 2; : : : ; D � 1: (11.122)

Contrations yield Rii tensor and salar urvature

�

R

��

=

�

R

���

�

=

D � 2

r

2

g

��

;

�

R =

�

R

�

�

=

(D � 1)(D � 2)

r

2

(11.123)

and further:

�

R

2

����

=

2(D � 1)(D � 2)

r

4

;

�

R

2

��

=

(D � 1)(D � 2)

2

r

4

: (11.124)

Inserting these into (11.108), we obtain the DeWitt-Seeley short-time expansion of

the diagonal amplitude for any q, up to order �

2

:

(q � j q 0) =

1

p

2��

D�1

"

1 + (D�1)(D�2)

�

12r

2

+(D�1)(D�2)(5D

2

� 17D + 18)

�

2

1440r

4

+ : : :

#

:(11.125)

This expansion may easily be reprodued by a simple diret alulation of the

partition funtion for a partile on the surfae of a sphere [10℄

Z(�) =

1

X

l=0

d

l

exp[�l(l +D�2)�=2r

2

℄ ; (11.126)
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where �l(l+D�2) are the eigenvalues of the Laplae-Beltrami operator on a sphere

[reall (10.165)℄ and d

l

= (2l+D�2)(l+D�3)!=l!(D�2)! their degeneraies [reall

(8.114)℄. Sine the spae is homogeneous, the amplitude (q � j q 0) is obtained from

this by dividing out the onstant surfae of a sphere:

(q � j q 0) =

�(D=2)

2�

D=2

r

D�1

Z(�): (11.127)

For any given D, the sum in (11.126) easily be expanded in powers of �. As an

example, take D = 3 where

Z(�) =

1

X

l=0

(2l + 1) exp[�l(l + 1)�=2r

2

℄ : (11.128)

In the small-� limit, the sum (11.128) is evaluated as follows

Z(�)=

Z

1

0

d [l(l + 1)℄ exp[�l(l + 1)�=2r

2

℄ +

1

X

l=0

(2l+1)

h

1� l(l+1)�=2r

2

+ : : :

i

:

(11.129)

The integral is immediately done and yields

Z

1

0

dz exp(�z�=2r

2

) =

2r

2

�

: (11.130)

The sums are divergent but an be evaluated by analyti ontinuation from negative

powers of l to positive ones with the help of Riemann zeta funtions �(z) =

P

1

n=1

n

�z

,

whih vanishes for all even negative arguments. Thus we �nd

1

X

l=0

(2l + 1) = 1 +

1

X

l=1

(2l + 1) = 1 + 2�(�1)�

1

2

=

1

3

; (11.131)

�

�

2r

2

1

X

l=0

(2l + 1)l(l + 1) = �

�

2r

2

1

X

l=1

(2l

3

+ l) = �

�

2r

2

[2�(�3) + �(�1)℄ =

�

30r

2

:

(11.132)

Substituting these into (11.129) yields

Z(�) =

2r

2

�

 

1 +

�

6r

2

+

�

2

60r

4

+ : : :

!

: (11.133)

Dividing out the onstant surfae of a sphere 4�r

2

as required by Eq. (11.127), we

obtain indeed the expansion (11.125) for the surfae of a sphere in three dimensions.

11.7 Reursive Calulation

If one wants to proeed to higher orders, an eÆient reursive sheme was devised

by DeWitt [6℄. He onsiders the real-time version of the amplitude (10.512)

(q t j q

0

0) = (q j e

it�=2

j q

0

); (11.134)
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whih satis�es the Shr�odinger equation in urved spae

i�

t

(q t j q

0

0) = �

�

2

(q � j q

0

0); (11.135)

with the initial ondition

(q 0 j q

0

0) = Æ

(D)

(q � q

0

): (11.136)

To solve (11.135) he �rst sets up a semilassial time evolution amplitude in urved

spaetime whih is a diret analog the amplitude (4.125). He onsiders the ation

(10.2) of a point partile in urved spae with a metri

A =

1

2

Z

t

0

dt

0

g

��

(q(t

0

)) _q

�

(t

0

)q

�

(t

0

) (11.137)

along the geodeti trajetory (10.9) between the initial and �nal points q

0

and q,

denoting it by A(q; q

0

; t), as in Eq. (4.87). Assoiated with this he de�nes the geodeti

distane

�(q; q

0

) � tA(q; q

0

; t) = �(q

0

; q): (11.138)

This is a biloal funtion alled the geodeti interval . The lassial momentum of

the partile along the orbit is given by the derivative [reall Eq. (4.88)℄

p

�

= �

�

A(q; q

0

; t) = �

�

�(q; q

0

)=t: (11.139)

The lassial path follows the Hamilton-Jaobi equation (1.65), whih reads for

an ation satisfying (11.138):

�

t

�(q; q

0

) =

1

2

�

�

�(q; q

0

)�

�

�(q; q

0

): (11.140)

The derivative �

�

�(q; q

0

) points in the diretion of the tangent vetor of the geodeti

trajetory. The Hamilton-Jaobi equation states that its square length is equal to

twie the geodeti interval.

Then he writes the semilassial amplitude in urved spaetime as an obvious

extension of the at-spae expression (4.125) [11℄:

(q t j q

0

0) = (q j e

it�=2

j q

0

) =

1

p

2�it

D

D

1=2

(q; q

0

)e

i�(q;q

0

)=2t

; (11.141)

where D denotes the determinant

D � det

D

[��

�

�

0

�

A(q; q

0

; t)℄ =

det

D

[��

�

�

�

�(q; q

0

)℄

t

D

: (11.142)

The exat amplitude has a short-time expansion

(q t j q

0

0) = (q j e

it�=2

j q

0

) =

1

p

2�it

D

D

1=2

(q; q

0

)e

i�(q;q

0

)=2t

1

X

n=0

t

n

a

n

(q; q

0

; t); (11.143)
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where for q = q

0

. a

0

(q; q

0

) = 1, and all other oeÆients vanish. Applying the

Shr�odinger equation (11.135) to (11.143), he derives the reursion relation

�

�

��

�

a

0

= 0; (11.144)

�

�

��

�

a

n+1

+ (n+ 1)a

n+1

=

~

D

�1=2

�

D

�

�

�

(

~

D

1=2

a

n

); n = 0; 1; 2; : : : : (11.145)

where

~

D(q; q

0

) � g

�1=2

(q)Dg

1=2

(q

0

) and

�

D

�

is the ovariant derivative of the deriva-

tive �

�

� de�ned as in Eq. (10.37). He solves the lowest oeÆient by the biloal

funtion I(q; q

0

) with the properties

�

�

��

�

I(q; q

0

) = 0; �

�

0

��

�

0

I(q; q

0

) = 0; I(q; q) = 1: (11.146)

From this he �nds the solution of (11.145) as

a

n+1

(q; q

0

) =

1

t

n+1

Z

t

0

dt

00

t

00n

~

D

�1=2

�

D

�

�

�

[

~

D

1=2

a

n

(q(�

00

); q

0

)℄: (11.147)

Appendix 11A Canellations in E�etive Potential

Here we demonstrate the anellation of the terms v

2

B

and v

3

B

in formula (11.48) for the e�etive

potential. First we give a simple reason why the anellation ours separately for the ontributions

stemming from the seond and third terms in the expansion (10.96) of �x

i

. Consider the model

integral

Z

d�x

p

2��

exp

�

�

(�x)

2

2�

�

; (11A.1)

and assume that �x has an expansion of the type (10.96):

�x = �q[1 + a

2

�q + a

3

(�q)

2

+ : : :℄: (11A.2)

The integral transforms into

Z

d�q

p

2��

[1 + 2a

2

�q + 3a

3

(�q)

2

+ : : :℄ exp

�

�

(�q)

2

2�

[1 + 2a

2

�q + 2a

3

(�q)

2

+ a

2

2

(�q)

2

+ : : :℄

�

;

(11A.3)

and is evaluated perturbatively via the expansion

Z

d�q

p

2��

exp

�

�

(�q)

2

2�

� �

1� a

2

(�q)

3

�

� a

3

(�q)

4

�

� a

2

2

(�q)

4

2�

+ a

2

2

(�q)

6

2�

� 2a

2

2

(�q)

4

�

+ 3a

3

(�q)

2

+ : : :

�

: (11A.4)

If hOi

0

denotes the harmoni expetation value

hOi

0

�

Z

d�q

p

2�i�

O exp[�(�q)

2

=2�℄; (11A.5)

one has

h(�q)

2

i

0

= �; h(�q)

4

i

0

= 3!�

2

; h(�q)

6

i

0

= 5!�

3

; : : : : (11A.6)
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Using these values we �nd that the a

2

- and a

3

-terms anel separately. Preisely this anellation

mehanism is ative in the separate anellation of the more ompliated expressions v

1

B

; v

2

B

in

Eq. (11.49).

To demonstrate the anellations expliitly, onsider �rst the derivative terms in v

3

B

. They

are

v

3

��

= �

1

2

g

��

�

f�

�

��g

�

+

1

6

g

��

�

�

�

��

�

(g

��

g

��

+ g

��

g

��

+ g

��

g

��

): (11A.7)

Due to the symmetrization of the �rst term in ���, this gives zero. The anellation of the

remaining terms in v

3

B

whih are quadrati in � is most easily shown by writing all indies as

subsripts, inserting g

����

from (11.41), and working out the ontrations.

To alulate the v

2

B

-terms, it is useful to introdue the notation �

1�

� �

��

�

; �

2�

�

�

��

�

; �

3�

� �

�

�

�

and similarly the matries

~

�

1�

=̂(�

�

)

��

;

~

�

T

1�

=̂(�

�

)

��

;

~

�

2�

=̂�

���

;

~

�

T

2�

=̂�

���

;

~

�

3�

=̂�

���

;

~

�

T

3�

=̂�

���

. For ontrations suh as �

1�

�

1�

we write �

1

�

1

, and for �

���

�

���

we write

~

�

1

~

�

1

=

~

�

2

~

�

2

=

~

�

3

~

�

3

, whihever is most onvenient. Similarly, �

���

�

���

=

~

�

1

~

�

2

T

=

~

�

2

~

�

3

T

=

~

�

3

~

�

1

. Then we work out

v

2

1

= �

1

8

[(�

1

+ �

2

)

2

�

~

�

3

(

~

�

1

+

~

�

T

1

+

~

�

2

+

~

�

T

2

)℄; (11A.8)

v

2

2

=

1

8

[�

3

�

3

+

~

�

3

(

~

�

3

+

~

�

T

3

)℄;

v

2

3

=

1

4

[(�

1

+ �

2

)

2

+ �

3

(�

1

+ �

2

)℄;

v

2

4

= �

1

8

[�

1

2

+ �

2

2

+ �

3

2

+ 2(�

1

�

2

+ �

2

�

3

+ �

3

�

1

)

+

~

�

3

(

~

�

1

+

~

�

T

1

+

~

�

2

+

~

�

T

2

+ �

3

+

~

�

T

3

)℄:

It is easy to hek that the sum of these v

2

B

-terms vanishes.

Inidentally, if the symmetrizations in (11.49) following from our Jaobian ation had been

absent, we would �nd the additional terms

�v

3

��

=

1

6

�

R�

2

3

�

�

S

�

+

1

6

(

~

�

3

~

�

T

2

� �

3

�

2

); (11A.9)

�v

3

�

2

= �

1

2

~

�

3

~

�

2

+

1

6

(

~

�

3

~

�

2

+

~

�

3

~

�

T

2

+ �

3

�

2

); (11A.10)

whose sum yields the additional ontribution to the v

3

B

-terms

�v

3

=

1

6

�

R �

2

3

�

�

S

�

+

2

3

~

�

3

~

S

1

; (11A.11)

after having used the identity

~

S

3

~

�

2

= �

~

�

3

~

S

1

: (11A.12)

The �rst term in (11A.11) is the R-term derived by K.S. Cheng

4

as an e�etive potential in the

Shr�odinger equation.

For v

2

B

, we would �nd the extra terms

�v

2

1

= �

1

2

(�

1

�

1

�

~

�

3

~

�

2

) +

1

8

[(�

1

+ �

2

)

2

�

~

�

3

(

~

�

1

+

~

�

T

1

+

~

�

2

+

~

�

T

2

)℄; (11A.13)

�v

2

3

=

1

4

(�

1

� �

2

)(�

1

+ �

2

+ �

3

); (11A.14)

4

K.S. Cheng, J. Math. Phys. 13 , 1723 (1972).
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whih add up to

�v

2

= �

1

2

S

1

S

1

+

1

2

�

3

S

1

�

1

3

~

�

3

~

S

1

+

1

2

~

S

1

~

S

3

; (11A.15)

where we have written S

1

for S

�

and used some trivial identities suh as

~

�

3

~

�

2

T

=

~

�

3

~

�

1

: (11A.16)

Thus we would obtain an additional e�etive potential V

e�

= (�h

2

=M)v with

v =

1

6

R�

2

3

g

��

�

�

S

�

�

1

2

(S

2

1

� �

3

S

1

) +

1

2

~

S

1

~

S

3

�

1

3

~

�

3

~

S

1

: (11A.17)

The seond and the fourth term an be ombined to

�

2

3

D

�

S

�

�

1

6

�

3

S

1

: (11A.18)

Due to the presene of �'s in v, this is a nonovariant expression whih annot possibly be physially

orret. In the absene of torsion, however, v happens to be reparametrization-invariant, and this

is the reason why the resulting e�etive potential V

e�

= �h

2

�

R=6M appeared aeptable in earlier

works. A proedure whih has no reparametrization-invariant extension to spaes with torsion

annot be orret.

Appendix 11B DeWitt's Amplitude

Brye DeWitt, in his frequently quoted paper,

5

attempted to quantize the motion of a partile

in a urved spae using the naive measure of path integration as in Eq. (10.153), but with the

short-time amplitude (11.141) with q � q

n

; q

0

� q

n�1

. However, after taking the Jaobian ation

A

�

J

0

into aount, this leads to an integral kernel K

�

(q;�q) whih di�ers from our orret one in

Eq. (11.4) by an extra fator

D

1=2

(q; q

0

)e

�iA

�

J

=�h

=

p

g(q): (11B.1)

This has the postpoint expansion 1 +

1

12

�

R

��

(q)�q

�

�q

�

+ : : : : When treated perturbatively, the

extra term is equivalent to ��h

�

R=12M , Thus, in order to obtain the orret amplitude without an

extra

�

R-term, DeWitt had to subtrat the nonlassial potential �h

2

�

R=12M from the Hamiltonian.

Suh a orretion proedure must be rejeted on the grounds that it runs ontrary to the very

essene of the path integral approah, in whih the ontribution of eah path is ontrolled entirely

by the phase e

iA=�h

with the lassial ation in the exponent.

The short-time kernel proposed �fteen years later by Cheng requires the arti�ial subtration

of the full e�etive potential (11.106) to obtain the orret amplitude (11.4).

Notes and Referenes

The �rst path integral in a urved spae was written down by

B.S. DeWitt, Rev. Mod. Phys. 29, 377 (1957),

making use of previous work by C. DeWitt-Morette [11℄.

A modi�ed proposal s due to

K.S. Cheng, J. Math. Phys. 13, 1723 (1972).

For reent disussions with results di�erent from ours see

H. Kamo and T. Kawai, Prog. Theor. Phys. 50, 680, (1973);

T. Kawai, Found. Phys. 5, 143 (1975);

5

B.S. DeWitt, Rev. Mod. Phys. 29 , 377 (1957).



926 11 Shr�odinger Equation in General Metri-AÆne Spaes

H. Dekker, Physia A 103, 586 (1980);

G.M. Gavazzi, Nuovo Cimento 101A, 241 (1981).

A good survey of most attempts is given by

M.S. Marinov, Phys. Rep. 60, 1 (1980).

In a spae without torsion, C. DeWitt-Morette, working with stohasti di�erential equations,

postulates a Hamiltonian operator without an extra

�

R-term. See her letures presented at the

1989 Erie Summer Shool on Quantum Mehanis in Curved Spaetime, ed. by V. de Sabbata,

Plenum Press, 1990, and referenes quoted therein, in partiular

C. DeWitt-Morette, K.D. Elworthy, B.L. Nelson, and G.S. Sammelman, Ann. Inst. H. Poinar�e A

32, 327 (1980).

A path measure in a phase spae path integral whih does not produe any

�

R-term was pro-

posed by

K. Kuhar, J. Math. Phys. 24, 2122 (1983).

The short derivation of the Shr�odinger equation in Subsetion 11.1.1 is due to

P. Fiziev and H. Kleinert, J. Phys. A 29, 7619 (1996) (hep-th/9604172).

The individual itations refer to

[1℄ C. Itzykson and J.-B. Zuber, Quantum Field Theory, MGraw-Hill (1985).

[2℄ H. Kleinert, Multivalued Fields in Condensed Matter, Eletromagnetism, and Gravita-

tion, World Sienti�, Singapore 2009, pp. 1{497 (http://users.physik.fu-berlin.de/~

kleinert/b11).

[3℄ M.S. Marinov, Physis Reports 60, 1 (1980).

[4℄ B.S. DeWitt, Rev. Mod. Phys. 29, 377 (1957).

[5℄ H. Kleinert, Phys. Lett A 252, 277 (1999) (quant-ph/9807073).

[6℄ B.S. DeWitt, Dynamial Theory of Groups and Fields , Gordon and Breah, New-York, 1965;

Phys. Rev. 62, 1239 (1987).

See his Setion 7.

[7℄ R.T. Seeley, Pro. Symp. Pure Math. 10 1967 589. See also H.P. MKean and I.M. Singer.

J. Di�. Geom. 1 , 43 (1967).

[8℄ J. Hadamard, Letures on Cauhy's Problem, Yale University Press, New Haven, 1932.

See also

M. Riesz, Ata Math. 81, 1 (1949).

[9℄ Y.V. Gusev, Nul. Phys. B 807, 566 (hep-th/0811.1063).

[10℄ This is a slight modi�ation of the alulation in

H. Kleinert, Phys. Lett. A 116, 57 (1986) (http://www.physik.fu-berlin.de/~kleinert/

129). See Eq. (27).

[11℄ C. DeWitt-Morette, Phys. Rev. 81, 848 (1951).

H. Kleinert, PATH INTEGRALS



H. Kleinert, PATH INTEGRALS
August 20, 2013 (/home/kleinert/kleinert/books/pathis/pthic12.tex)

To reach a depth profounder still, and still

Profounder, in the fathomless abyss
William Cowper (1731-1800), The Winter Morning Walk

12
New Path Integral Formula for
Singular Potentials

In Chapter 8 we have seen that for systems with a centrifugal barrier, the Euclidean
form of Feynman’s original time-sliced path integral formula diverges for certain
attractive barriers. This happens even if the quantum statistics of the systems
is well defined. The same problem arises for a particle in an attractive Coulomb
potential, and thus in any atomic system.

In this chapter we set up a new and more flexible path integral formula which
is free of this problem for any singular potential. This has recently turned out to
be the key for a simple solution of many other path integrals which were earlier
considered intractable.

12.1 Path Collapse in Feynman’s formula
for the Coulomb System

The attractive Coulomb potential V (r) = −e2/r has a singularity at the coordinate
origin r = 0. This singularity is weaker than that of the centrifugal barrier, but
strong enough to cause a catastrophe in the Euclidean path integral. Recall that
an attractive centrifugal barrier does not even possess a classical partition function.
The same thing is true for the attractive Coulomb potential where formula (2.352)
reads

Zcl =
∫

d3x
√

2πh̄2β/M
3 exp

(

β
e2

r

)

.

The integral diverges near the origin. In addition, there is a divergence at large
r. The leading part of the latter can be removed by subtracting the free-particle
partition function and forming

Z ′

cl ≡ Zcl − Zcl|e=0 =
∫ d3x
√

2πh̄2β/M
3

[

exp

(

β
e2

r

)

− 1

]

, (12.1)
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leaving only a quadratic divergence. In a realistic many-body system with an equal
number of oppositely charged particles, this disappears by screening effects. Thus we
shall not worry about it any further and concentrate only on the remaining small-r
divergence. In a real atom, this singularity is not present since the nucleus is not a
point particle but occupies a finite volume. However, this “physical regularization”
of the singularity is not required for quantum-mechanical stability. The Schrödinger
equation is perfectly solvable for the singular pure −e2/r potential. We should
therefore be able to recover the existing Schrödinger results from the path integral
formalism without any short-distance regularization.

On the basis of Feynman’s original time-sliced formula, this is impossible. If a
path consists of a finite number of straight pieces, its Euclidean action

A =
∫ τb

τa
dτ

[

M

2
x′2(τ)−

e2

r(τ)

]

(12.2)

can be lowered indefinitely by a path with an almost stretched configuration which
corresponds to a slowly moving particle sliding down into the −e2/r abyss. We
call this phenomenon a path collapse. In nature, this catastrophe is prevented by
quantum fluctuations. In order to understand how this happens, it is useful to
reinterpret the paths in the Euclidean path integral as random lines parametrized
by τ ∈ (τa, τb). Their distribution is governed by the “Boltzmann factor” e−A/h̄,
whose effective “quantum” temperature is Teff ≡ h̄/kB(τb − τa).

1 The logarithm of
the Euclidean amplitude (xbτb|xaτa) multiplied by −Teff defines a free energy

F = E − kBTS

of the random line with fixed endpoints. The quantum fluctuations equip the path
with a configurational entropy S. This must be sufficiently singular to produce a
regular free energy bounded from below. Obviously, such a mechanism can only
work if the exact path integral contains an infinite number of infinitesimally small
sections. Only these can contain enough configurational entropy near the singularity
to halt the collapse.

The variational approach in Section 5.10 has shown an important effect of the
configurational entropy of quantum fluctuations. It smoothes the singular Coulomb
potential producing an effective classical potential that is finite at the origin. A
path collapse was avoided by defining the path integral as an infinite product of in-
tegrals over all Fourier coefficients. The infinitely high-frequency components were
integrated out and this produced the desired stability. These high-frequency com-
ponents are absent in a finitely time-sliced path with a finite number of pieces,
where frequencies Ωm are bounded by twice the inverse slice thickness 1/ǫ [recall
Eqs. (2.111), (2.112)].ref(2.111)

lab(2.70)
est(2.80)
ref(2.112)
lab(2.71)
est(2.81)

Unfortunately, the path measure used in the variational approach is unsuitable
for exact calculations of nontrivial path integrals. Except for the free particle and

1This amounts to viewing the path as a polymer with configurational fluctuations in space, a
possibility which is a major topic in Chapters 15 and 16.
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12.1 Path Collapse in Feynman’s formula for the Coulomb System 929

the harmonic oscillator, these are all based on solving a finite number of ordinary
integrals in a time-sliced formula. We therefore need a more powerful time-sliced
path integral formula which avoids a collapse in singular potentials.

For the Coulomb system, such a formula has been found in 1979 by Duru and
Kleinert.2 It has become the basis for solving the path integral of many other
nontrivial systems. Here we describe the most general extension of this formula
which will later be applied to a number of systems. For the attractive Coulomb
potential and other singular potentials, such as attractive centrifugal barriers, it
will not only halt the collapse, but also be the key to an analytic solution.

The derived stabilization is achieved by introducing a path-independent width
of the time slices. If the path approaches an abyss, the widths decrease and the
number of slices increases. This enables the configurational entropy of Eq. (12.3) to
grow large enough to cancel the singularity in the energy. To see the cancellation
mechanism, consider a random line with n links which has, on a simple cubic lattice
in D dimensions, (2D)n configurations with an entropy

S = n log(2D). (12.3)

If the number of time slices n increases near the −e2/r singularity like const/r,
then the entropy is proportional to 1/r. A path section which slides down into the
abyss must stretch itself to make the kinetic energy small. But then it gives up a
certain entropy S, and this raises the free energy by kBTeffS according to (12.3).
This compensates for the singularity in the potential and halts the collapse. The
purpose of this chapter is to set up a path integral formula in which this stabilizing
mechanism is at work.

It should be pointed out that no instability problem would certainly arise if we
were to define the imaginary-time path integral for the time evolution amplitude in
the continuum

(xbτb|xaτa) ≡
∫

DDx(τ)
∫

DDp(τ)

(2πh̄)D
exp

{

1

h̄

∫ τb

τa
dτ [ipẋ−H(p,x)]

}

(12.4)

without any time slicing as the solution of the Schrödinger differential equation

(h̄∂τ + Ĥ)(x τ |xaτa) = h̄δ(τ − τa)δ
(D)(x− xa) (12.5)

[compare Eq. (1.308)]. After solving the Schrödinger equation Ĥψn(x) = Enψn(x),
the spectral representation (1.323) renders directly the amplitude (12.4).

All subtleties described above are due to the finite number of time slices in the
path integral. As explained at the end of Section 2.1, the explicit sum over all
paths is an essential ingredient of Feynman’s global approach to the phenomena of

2I.H. Duru and H. Kleinert, Phys. Lett. B 84, 30 (1979) (http://www.physik.fu-ber-
lin.de/~kleinert/65); Fortschr. Phys. 30 , 401 (1982) (ibid.http/83). See also the historical
remarks in the preface.
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quantum fluctuations. Within this approach, the finite time slicing is essential for
being able to perform this sum in any nontrivial system.

We now present a general solution to the stability problem of time-sliced
quantum-statistical path integrals.

12.2 Stable Path Integral with Singular Potentials

Consider the fixed-energy amplitude (9.1) which is the local matrix element

(xb|xa)E = 〈xb|R̂|xa〉 (12.6)

of the resolvent operator (1.319):
ref(1.319)
lab(9.8)
est(9.15)

R̂ =
ih̄

E − Ĥ + iη
. (12.7)

Recall that the iη-prescription ensures the causality of the Fourier transform of
(12.6), making it vanish for tb < ta [see the discussion after Eq. (1.327)].

The fixed-energy amplitude has poles of the form

(xb|xa)E =
∑

n

ih̄

E − En + iη
ψn(xb)ψ

∗

n(xa) + . . .

at the bound-state energies, and a cut along the continuum part of the energy
spectrum. The energy integral over the discontinuity across the singularities yields
the completeness relation (1.330).

The new path integral formula is based on the following observation. If the
system possesses a Feynman path integral for the time evolution amplitude, it does
so also for the fixed-energy amplitude. This is seen after rewriting the latter as an
integral

(xb|xa)E =
∫

∞

ta
dtb〈xb|ÛE(tb − ta)|xa〉 (12.8)

involving the modified time evolution operator

ÛE(t) ≡ e−it(Ĥ−E)/h̄, (12.9)

that is associated with the modified Hamiltonian

ĤE ≡ Ĥ − E. (12.10)

Obviously, as long as the matrix elements of the ordinary time evolution operator
Û(t) = e−itĤ/h̄ can be represented by a time-sliced Feynman path integral, the

same is true for the matrix elements of the modified operator ÛE(t) = e−itĤE/h̄. Its
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explicit form is obtained, as in Section 2.1, by slicing the t-variable into N+1 pieces,
factorizing exp(−itĤE/h̄) into the product of N + 1 factors,

e−itĤE/h̄ = e−iǫĤE/h̄ · · · e−iǫĤE/h̄, (12.11)

and inserting a sequence of N completeness relations

N
∏

n=1

∫

dDxn|xn〉〈xn| = 1 (12.12)

(omitting the continuum part of the spectrum). In this way, we have arrived at the
path integral for the time-sliced amplitude with tb − ta = ǫ(N + 1)

〈xb|Û
N
E (tb − ta)|xa〉 =

N
∏

n=1

[
∫

dDxn

]N+1
∏

n=1

[

∫

dDpn
(2πh̄)D

]

exp
(

i

h̄
AN

E

)

, (12.13)

where AN
E is the sliced action

AN
E =

N+1
∑

n=1

{pn(xn − xn−1)− ǫ[H(pn,xn)− E]} . (12.14)

In the limit of large N at fixed tb − ta = ǫ(N + 1), this defines the path integral

〈xb|ÛE(t)|xa〉=
∫

DDx(t′)
∫

DDp(t′)

(2πh̄)D
exp

{

i

h̄

∫ t

0
dt′[pẋ(t′)−HE(p(t

′),x(t′))]
}

.

(12.15)
It is easy to derive a finite-N approximation also for the fixed-energy amplitude
(xb|xa)E of Eq. (12.8). The additional integral over tb > ta can be approximated at
the level of a finite N by an integral over the slice thickness ǫ:

∫

∞

ta
dtb = (N + 1)

∫

∞

0
dǫ. (12.16)

The resulting finite-N approximation to the fixed-energy amplitude,

(xb|xa)
N
E ≡ (N + 1)

∫

∞

0
dǫ〈xb|Û

N
E (ǫ(N + 1))|xa〉 =

∫

∞

ta
dtb〈xb|Û

N
E (tb − ta)|xa〉,

(12.17)
converges against the correct limit (xb|xa)E. As an example, take the free-particle
case where

(xb|xa)
N
E = (N + 1)

∫

∞

0
dǫ

1
√

2πi(N + 1)ǫh̄/M
D

× exp

[

i
M

2(N + 1)ǫ
(xb − xa)

2 + iE(N + 1)ǫ

]

. (12.18)

After a trivial change of the integration variable, this is the same integral as in
(1.343) whose result was given in (1.348) and (1.355), depending on the sign of
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the energy E. The N -dependence happens to disappear completely as observed in
Section 2.2.5. In the general case of an arbitrary smooth potential, the convergence
is still assured by the dominance of the kinetic term in the integral measure.

The time-sliced path integral formula for the fixed-energy amplitude (xb|xa)E
given by (12.17), (12.13), (12.14) has apparently the same range of validity as the
original Feynman path integral for the time evolution amplitude (xbtb|xata). Thus,
so far nothing has been gained. However, the new formula has an important ad-
vantage over Feynman’s. Due to the additional time integration it possesses a new
functional degree of freedom. This can be exploited to find a path-integral formula
without collapse at imaginary times. The starting point is the observation that the
resolvent operator R̂ in Eq. (12.7) may be rewritten in the following three ways:

R̂ =
ih̄

f̂l(E − Ĥ + iη)
f̂l, (12.19)

or

R̂ = f̂r
ih̄

(E − Ĥ + iη)f̂r
, (12.20)

or, more generally,

R̂ = f̂r
ih̄

f̂l(E − Ĥ + iη)f̂r
f̂l, (12.21)

where f̂l, f̂r are arbitrary operators which may depend on p̂ and x̂. They are called
regulating functions . In the subsequent discussion, we shall avoid operator-ordering
subtleties by assuming f̂l, f̂r to depend only on x̂, although the general case can
also be treated along similar lines. Moreover, in the specific application to follow
in Chapters 13 and 14, the operators f̂l, f̂r to be assumed consist of two different
powers of one and the same operator f̂ , i.e.,

f̂l = f̂ 1−λ, f̂r = f̂λ, (12.22)

whose product is

f̂lf̂r = f̂ . (12.23)

Taking the local matrix elements of (12.21) renders the alternative representations
for the fixed-energy amplitude

〈xb|R̂|xa〉 = (xb|xa)E =
∫

∞

sa
dsb〈xb|ÛE(sb − sa)|xa〉, (12.24)

where ÛE(s) is the generalization of the modified time evolution operator (12.9), to
be called the pseudotime evolution operator ,

ÛE(s) ≡ fr(x)e
−isfl(x)(Ĥ−E)fr(x)fl(x). (12.25)
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The operator in the exponent,

ĤE ≡ fl(x)(Ĥ −E)fr(x), (12.26)

may be considered as an auxiliary Hamiltonian which drives the state vectors |x〉

of the system along a pseudotime s-axis, with the operator e−isĤE(p,x)/h̄. Note that
ĤE is in general not Hermitian, in which case ÛE(s) is not unitary.

As usual, we convert the expression (12.24) into a path integral by slicing the
pseudotime interval (0, s) into N+1 pieces, factorizing exp(−isĤE/h̄) into a product
of N + 1 factors, and inserting a sequence of N completeness relations. The result
is the approximate integral representation for the fixed-energy amplitude,

(xb|xa)E ≈ (N + 1)
∫

∞

0
dǫs〈xb|Û

N
E (ǫs(N + 1)) |xa〉, (12.27)

with the path integral for the pseudotime-sliced amplitude

〈xb|Û
N
E (ǫs(N + 1)) |xa〉 = fr(xb)fl(xa)

N
∏

n=1

[
∫

dDxn

] N+1
∏

n=1

[

∫

dDpn
(2πh̄)D

]

eiA
N

E
/h̄, (12.28)

whose time-sliced action reads

AN
E =

N+1
∑

n=1

{pn(xn − xn−1)− ǫsfl(xn)[H(pn,xn)− E]fr(xn)} . (12.29)

These equations constitute the desired generalization of the formulas (12.13)–
(12.17). In the limit of large N , we can write the fixed-energy amplitude as an
integral

(xb|xa)E =
∫

∞

0
dS〈xb|ÛE(S)|xa〉 (12.30)

over the amplitude

〈xb|ÛE(S)|xa〉=fr(xb)fl(xa)
∫

Dx(s)
∫

Dp(s)

2πh̄
exp

{

i

h̄

∫ S

0
ds[px′−HE(p,x)]

}

. (12.31)

The prime on x(s) denotes the derivative with respect to the pseudotime s.

For a standard Hamiltonian of the form

H = T (p) + V (x), (12.32)

with the kinetic energy

T (p) =
p2

2M
, (12.33)
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the momenta pn in (12.28) can be integrated out and we obtain the configuration
space path integral

〈xb|Û
N
E (ǫs(N + 1)) |xa〉 =

fr(xb)fl(xa)
√

2πiǫsfl(xb)fr(xa)h̄/M
D (12.34)

×
N
∏

n=1







∫

dDxn
√

2πiǫsf(xn)h̄/M
D






eiA

N

E
/h̄,

with the sliced action

AN
E =

N+1
∑

n=1

{

M

2ǫsfl(xn)fr(xn−1)
(xn− xn−1)

2− ǫsfl(xn)[V (xn)− E]fr(xn−1)

}

. (12.35)

In the limit of large N , this may be written as a path integral

〈xb|ÛE(S)|xa〉= fr(xb)fl(xa)
∫

Dx(s)exp

{

i

h̄

∫ S

0
ds

[

M

2flfr
x′2− fl(V −E)fr

]}

,(12.36)

with the slicing specification (12.35).
The path integral formula for the fixed-energy amplitude based on Eqs. (12.30)

and (12.36) is independent of the particular choice of the functions fl(x), fr(x),
just like the most general operator expression for the resolvent (12.21). Feynman’s
original time-sliced formula is, of course, recovered with the special choice fl(x) ≡
fr(x) ≡ 1.

When comparing (12.25) with (12.9), we see that for each infinitesimal pseudo-
time slice, the thickness of the true time slices has the space-dependent value

dt = dsfl(xn)fr(xn−1). (12.37)

The freedom in choosing f(x) amounts to an invariance under path-dependent time

reparametrizations of the fixed-energy amplitude (12.30). Note that the invariance is
exact in the general operator formula (12.21) for the resolvent and in the continuum
path integral formula based on (12.30) and (12.36). However, the finite pseudotime
slicing in (12.34), (12.35) used to define the path integral, destroys this invariance.
At a finite value of N , different choices of f(x) produce different approximations to

the matrix element of the operator ÛE(s) = fr(x̂)e
−isĤE(p̂,x̂)/h̄fl(x̂). Their quality

can vary greatly. In fact, if the potential is singular and the regulating functions
fr(x), fl(x) are not suitably chosen, the Euclidean pseudotime-sliced expression may
not exist at all. This is what happens in the Coulomb system if the functions fl(x)
and fr(x) are both chosen to be unity as in Feynman’s path integral formula.

The new reparametrization freedom gained by the functions fl(x), fr(x) is there-
fore not just a luxury. It is essential for stabilizing the Euclidean time-sliced orbital
fluctuations in singular potentials.

In the case of the Coulomb system, any choice of the regulating functions
fl(x), fr(x) with f(x) = r leads to a regular auxiliary Hamiltonian HE , and the
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path integral expressions (12.27)–(12.36) are all well defined. This was the impor-
tant discovery of Duru and Kleinert in 1979, to be described in detail in Chap-
ter 13, which has made a large class of previously non-existing Feynman path in-
tegrals solvable. By a similar Duru-Kleinert transformation with fl(x), fr(x) with

f(x) =
√

fl(x)fr(x) = r2, the earlier difficulties with the centrifugal barrier are
resolved, as will be seen in Chapter 14.

12.3 Time-Dependent Regularization

Before treating specific cases, let us note that there exists a further generalization
of the above path integral formula which is useful in systems with a time-dependent
Hamiltonian H(p,x, t). There we introduce an auxiliary Hamiltonian

Ĥ = fl(x, t)[H(p̂,x, t)− Ê]fr(x, t), (12.38)

where Ê is the differential operator for the energy which is canonically conjugate to
the time t:

Ê ≡ ih̄∂t. (12.39)

The auxiliary Hamiltonian acts on an extended Hilbert space, in which the states
are localized in space and time. These states will be denoted by |x, t}. They satisfy
the orthogonality and completeness relations

{x t|x′ t′} = δ(D)(x− x′)δ(t− t′), (12.40)

and
∫

dDx
∫

dt|x t}{x t| = 1, (12.41)

respectively. By construction, the Hamiltonian H does not depend explicitly on the
pseudotime s. The pseudotime evolution operator is therefore obtained by a simple
exponentiation, as in (12.25),

Û(s) ≡ fr(x, t)e
−isfl(x,t)(Ĥ−Ê)fr(x,t)fl(x, t). (12.42)

The derivation of the path integral is then completely analogous to the time-
independent case. The operator (12.42) is sliced into N + 1 pieces, and N com-
pleteness relations (12.41) are inserted to obtain the path integral

{xbtb|Û
N(s)|xata} = fr(xb, tb)fl(xa, ta)

×
N
∏

n=1

[
∫

dDxndtn

] N+1
∏

n=1

[

∫

dDpn
(2πh̄)D

dEn

2πh̄

]

eiA
N/h̄, (12.43)

with the pseudotime-sliced action

AN =
N+1
∑

n=1

{pn(xn − xn−1)− En(tn − tn−1)

− fl(xn, tn) [H(pn,xn, tn)− En] fr(xn−1, tn−1)}, (12.44)
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where xb = xN+1, tb = tN+1; xa = x0, ta = t0. This describes orbital fluctuations
in the phase space of spacetime which contains fluctuating worldlines x(s), t(s) and
their canonically conjugate spacetime p(s), E(s). In the limit N → ∞ we write this
as

{xbtb|Û(S)|xata} = fr(pb,xb, tb)fl(pa,xa, ta)

×
∫

DDx(s)Dt(s)
∫

DDp(s)

(2πh̄)D
DE(s)

2πh̄
eiA/h̄, (12.45)

with the continuous action

A[p,x, E, t] =
∫ S

0
ds{p(s)x′(s)−E(s)t′(s)

−fl(p(s),x(s), t(s)) [H(p(s),x(s), t(s))− E(s)] fr(p(s),x(s), t(s))}. (12.46)

In the pseudotime-sliced formula (12.43), we can integrate out all intermediate en-
ergy variables En and obtain

{xbtb|Û(S)|xata} =
N
∏

n=1

[
∫

dDxn

]N+1
∏

n=1

[

∫

dDpn
(2πh̄)D

]

(12.47)

× δ

(

tb − ta − ǫs
N+1
∑

n=1

fl(pn,xn, tn)fr(pn−1,xn−1, tn−1)

)

eiÃ
N/h̄

with the action

ÃN =
N+1
∑

n=1

[pn(xn − xn−1)− ǫsfl(pnxn, tn)H(pn,xn, tn)fr(pn−1,xn−1, tn−1)].

(12.48)
This looks just like an ordinary time-sliced action with a time-dependent Hamilto-
nian. The constant width of the time slices ǫ = (tb − ta)/(N +1), however, has now
become variable and depends on phase space and time:

ǫ→ ǫsfl(pnxn, tn)fr(pn−1,xn−1, tn−1). (12.49)

The δ-function in (12.47) ensures the correct relation between the pseudotime s and
the physical time t. In the continuum limit we may write (12.47) as

{xbtb|Û(S)|xata} =
∫

DDx(s)
∫

DDp(s)

(2πh̄)D
δ(tb − ta −

∫ S

0
ds f(x, t))eiÃ/h̄, (12.50)

with the pseudotime action

Ã[p,x, t] =
∫ S

0
ds [px′ − fl(x, t)H(p,x, t)fr(x, t)] , (12.51)

which is a functional of the s-dependent paths x(s),p(s), t(s). Note that in the
continuum formula, the splitting of the regulating function f(x, t) into fl(x, t) and
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fr(x, t) according to the parameter λ in Eq. (12.22) cannot be expressed properly
since fl, H , and fr are commuting c-number functions. We have written them in a
way indicating their order in the time-sliced expressions (12.47), (12.48).

The integral over S yields the original time evolution amplitude

(xbta|xata) =
∫

∞

0
dS{xbtb|Û(S)|xata} =

{

xbtb

∣

∣

∣

∣

∣

ih̄

Ĥ − Ê

∣

∣

∣

∣

∣

xata

}

. (12.52)

Indeed, by Fourier decomposing the scalar products {xbtb|xata},

{xbtb|xata} =
∫ dDp

(2πh̄)D

∫ dE

2πh̄
eip(xb−xa)/h̄−iE(tb−ta)/h̄, (12.53)

we see that the right-hand side satisfies the same Schrödinger equation as the left-
hand side:

[H(−ih̄∂x,x, t)− ih̄∂t] (x t|xata) = −ih̄δ(D)(x− xa)δ(t− ta) (12.54)

[recall (1.308) and (12.5)]. If the δ-function in (12.47) is written as a Fourier integral, ref(1.308)
lab(x1.327)
est(1.327)

we obtain a kind of spectral decomposition of the amplitude (12.52),

(xbta|xata) =
∫

∞

−∞

dEe−iE(tb−ta)/h̄
∫

∞

0
dS{xbtb|ÛE(S)|xata}, (12.55)

with the pseudotime evolution amplitude:

ÛE(s) ≡ fr(p̂,x, t)e
−isfl(p̂,x,t)(Ĥ−E)fr(p̂,x,t)fl(p̂,x, t). (12.56)

12.4 Relation to Schrödinger Theory. Wave Functions

For completeness, consider also the ordinary Schrödinger quantum mechanics de-
scribed by the pseudo-Hamiltonian Ĥ. This operator is the generator of transla-
tions of the system along the pseudotime axis s. Let φ(x, t, s) be a solution of the
pseudotime Schrödinger equation

H(p̂,x, Ê, t)φ(x, t, s) = ih̄∂sφ(x, t, s), (12.57)

written more explicitly as

fl(x, t) [H(p̂,x, t)− ih̄∂t] fr(x, t)φ(x, t, s) = ih̄∂sφ(x, t, s). (12.58)

Since the left-hand side is independent of s, the s-dependence of φ(x, t, s) can be
factored out:

φ(x, t, s) = φE(x, t)e
−iEs/h̄. (12.59)

IfH is independent of the time t, it is always possible to stabilize the path integral by
a time-independent reparametrization function f(x). Then we remove an oscillating
factor e−iEt/h̄ from φE(x, t) and factorize

φE(x, t) = φE,E(x)e
−iEt/h̄. (12.60)
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This leaves us with the time- and pseudotime-independent equation

H(p̂,x, E)φE,E(x) = fl(x) [H(p̂,x)− E] fr(x)φE,E(x)

= EφE,E(x). (12.61)

For each value of E, there will be a different spectrum of eigenvalues En. This
is indicated by writing the eigenvalues En as En(E) and the associated eigenstates
φEn,E(x) as φEn(E).

Suppose that we possess a complete set of such eigenstates at a fixed energy
E labeled by a quantum number n (which is here assumed to take discrete values
although it may include continuous values, as usual). We can then write down a
spectral representation for the local matrix elements of the pseudotime evolution
amplitude (12.25):

〈xb|ÛE(S)|xa〉 = fr(xb)fl(xa)
∑

n

φEn(E)(xb)φ
∗

En(E)(xa)e
−iSEn(E)/h̄. (12.62)

From this we find the expansion for the fixed-energy amplitude (12.24):

(xb|xa)E = fr(xb)fl(xa)
∑

n

φEn(E)(xb)φ
∗

En(E)(xa)
ih̄

En(E)
.

The time evolution amplitude is given by the Fourier transform

(xbtb|xata) = fr(xb)fl(xa)
∫

∞

−∞

dE

2πh̄
eiE(tb−ta)/h̄

∑

n

φEn(E)(xb)φ
∗

En(E)(xa)
ih̄

En(E)
. (12.63)

This is to be compared with the usual spectral representation of this amplitude for
the time-independent Hamiltonian Ĥ

(xbtb|xata) =
∑

n

ψn(xb)ψ
∗

n(xa)e
−iEn(tb−ta)/h̄, (12.64)

where ψn(x) are the solutions of the ordinary time-independent Schrödinger equa-
tion:

H(p̂,x)ψn(x) = Enψn(x). (12.65)

The relation between the two representations (12.63) and (12.64) is found by ob-
serving that for the energy E coinciding with the energy En, the eigenvalue En(E)
vanishes, i.e., ih̄/En(E) has poles at E = En of the form

ih̄

En(E)
≈

1

E ′
n(En)

ih̄

E − En + iη
. (12.66)

These contribute to the energy integral in (12.63) with a sum

(xbtb|xata) ∼ fr(xb)fl(xa)
∑

n

φEn(En)(xb)φ
∗

En(En)(xa)e
−iEn(tb−ta)/h̄. (12.67)

A comparison with (12.64) shows the relation between the bound-state wave func-
tions of the ordinary and the pseudotime Schrödinger equation. In general, the
function ih̄/En(E) also has cuts whose discontinuities contain the continuum wave
functions of the Schrödinger equation (12.65).

These observations will become more transparent in Section 13.8 when treating
in detail the bound and continuum wave functions of the Coulomb system.
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Et modo quae fuerat semita, facta via est

What was only a path is now made a high road
Martial (40–103), Epig., Book 7, 60

13

Path Integral of Coulomb System

One of the most important successes of Schrödinger quantum mechanics is the expla-
nation of the energy levels and transition amplitudes of the hydrogen atom. Within
the path integral formulation of quantum mechanics, this fundamental system has
resisted for many years all attempts at a solution. An essential advance was made
in 1979 when Duru and Kleinert [1] recognized the need to work with a generalized
pseudotime-sliced path integral of the type described in Chapter 12. After an appro-
priate coordinate transformation the path integral became harmonic and solvable.
A generalization of this two-step transformation has meanwhile led to the solution
of many other path integrals to be presented in Chapter 14. The final solution of
the problem turned out to be quite subtle due to the nonholonomic nature of the
subsequent coordinate transformation which required the development of a correct
path integral in spaces with curvature and torsion [2], as done in Chapter 10. Only
this made it possible to avoid unwanted fluctuation corrections in the Duru-Kleinert
transformation of the Coulomb system, a problem in all earlier attempts.

The first consistent solution was presented in the first edition of this book in
1990.

13.1 Pseudotime Evolution Amplitude

Consider the path integral for the time evolution amplitude of an electron-proton
system with a Coulomb interaction. If me and mp denote the masses of the two
particles whose reduced mass is M = memp/(me + mp), and if e is the electron
charge, the system is governed by the Hamiltonian

H =
p2

2M
− e2

r
. (13.1)

The formal continuum path integral for the time evolution amplitude reads

(xbtb|xata) =
∫

D3x(t) exp
[

i

h̄

∫ ta

tb
dt(pẋ−H)

]

. (13.2)

940
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As observed in the last chapter, its Euclidean version cannot be time-sliced into a
finite number of integrals since the paths would collapse. The paths would stretch
out into a straight line with ẋ ≈ 0 and slide down into the 1/r-abyss. A path
integral whose Euclidean version is stable can be written down using the pseudotime
evolution amplitude (12.28). A convenient family of regulating functions is

fl(x) = f(x)1−λ, fr(x) = f(x)λ, (13.3)

whose product satisfies fl(x)fr(x) = f(x) = r. Since the path integral represents the
general resolvent operator (12.21), all results must be independent of the splitting
parameter λ after going to the continuum limit. This independence is useful in
checking the calculations.

Thus we consider the fixed-energy amplitude

(xb|xa)E =
∫ ∞

0
dS〈xb|ÛE(S)|xa〉, (13.4)

with the pseudotime-evolution amplitude

〈xb|ÛE(S)|xa〉= rλb r
1−λ
a

∫

DDx(s)
∫ DDp(s)

(2πh̄)D
exp

{

i

h̄

∫ S

0
ds[px′ − r1−λ(H −E)rλ]

}

,

(13.5)

where the prime denotes the derivative with respect to the pseudotime argument
s. For the sake of generality, we have allowed for a general dimension D of orbital
motion. After time slicing and with the notation ∆xn ≡ xn−xn−1, ǫs ≡ S/(N +1),
the amplitude (13.5) reads

〈xb|ÛE(S)|xa〉 ≈ rλb r
1−λ
a

N+1
∏

n=2

[∫ ∞

−∞
dD∆xn

] N+1
∏

n=1

[

∫ ∞

−∞

dD pn
(2πh̄)D

]

eiA
N
E
/h̄, (13.6)

where the action is

AN
E [p,x] =

N+1
∑

n=1

[

pn ∆xn − ǫs r
1−λ
n rλn−1

(

pn
2

2M
−E

)

+ ǫs e
2

]

. (13.7)

The term ǫs e
2 carries initially a factor (rn−1/rn)

λ which is dropped, since it is equal
to unity in the continuum limit. When integrating out the momentum variables,
N + 1 factors 1/(r1−λ

n rλn−1)
D/2 appear. After rearranging these, the configuration

space path integral becomes

〈xb|ÛE(S)|xa〉≈
rλb r

1−λ
a

√

2π iǫsh̄ r
1−λ
b rλa/M

D

N+1
∏

n=2







∫

dD∆xn
√

2πiǫsh̄rn−1/M
D





 eiA
N
E
[x,x′]/h̄, (13.8)

with the pseudotime-sliced action

AN
E [x,x

′] = (N + 1)ǫse
2 +

N+1
∑

n=1

[

M

2

(∆xn)
2

ǫsr1−λ
n rλn−1

+ ǫs rnE

]

. (13.9)



942 13 Path Integral of Coulomb System

In the last term, we have replaced r1−λ
n rλn−1 by rn without changing the continuum

limit. The limiting action can formally be written as

AE[x,x
′] = e2 S +

∫ S

0
ds
(

M

2r
x′2 + Er

)

. (13.10)

We now solve the Coulomb path integral first in two dimensions, assuming that the
movement of the electron is restricted to a plane while the electric field extends
into the third dimension. Afterwards we proceed to the physical three-dimensional
system. The case of an arbitrary dimension D will be solved in Chapter 14. The one-
dimensional case will not be treated here. The exact energy levels were found before
at the and of Section 4.1 from a semiclassical expansion. For a long time, the one-
dimensional Coulomb system was only of mathematical interest. Recently, however,
it has received increased attention due to the possibility of forming hydrogen-like
bound states in quantum wires [3].

13.2 Solution for the Two-Dimensional Coulomb System

First we observe that the kinetic pseudoenergy has a scale dimension [rp2] ∼ [r−1]
which is precisely opposite to that of the potential term [r+1]. The dimensional
situation is similar to that of the harmonic oscillator, where the dimensions are
[p2] = [r−2] and [r+2], respectively. It is possible make the correspondence perfect
by describing the Coulomb system in terms of “square root coordinates”, i.e., by
transforming r → u2. In two dimensions, the appropriate square root is given by
the Levi-Civita transformation

x1 = (u1)2 − (u2)2,

x2 = 2u1 u2. (13.11)

If we imagine the vectors x and u to move in the complex planes parametrized by
x = x1 + ix2 and u = u1 + iu2, the transformed variable u corresponds to the
complex square root:

u =
√
x. (13.12)

Let us also introduce the matrix

A(u) =

(

u1 −u2
u2 u1

)

, (13.13)

and write (13.11) as a matrix equation:

x = A(u)u. (13.14)

The Levi-Civita transformation is an integrable coordinate transformation which
carries the flat xi-space into a flat uµ-space. We mention this fact since in the later
treatment of the three-dimensional hydrogen atom, the transition to the “square root

H. Kleinert, PATH INTEGRALS
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coordinates” will require a nonintegrable (nonholonomic) coordinate transformation
defined only differentially. As explained in Chapter 10, such mappings change, in
general, a flat Euclidean space into a space with curvature and torsion. The gener-
ation of torsion is precisely the reason why the three-dimensional system remained
unsolved until 1990. In two dimensions, this phenomenon happens to be absent.

If we write the transformation (13.11) in terms of a basis dyad eiµ(u) as dxi =
eiµ(u) du

µ, this is given by

eiµ(u) =
∂xi

∂uµ
(u) = 2Ai

µ(u), (13.15)

with the reciprocal dyad

ei
µ(u) =

1

2
(A−1)T i

µ(u) =
1

2u2
Ai

µ(u). (13.16)

The associated affine connection

Γµν
λ = ei

λ ∂µ e
i
ν =

1

u2
[(∂µA)

TA]νλ (13.17)

has the matrix elements (Γµ)ν
λ = Γµν

λ:

(Γ1)µ
ν =

1

u2

(

u1 −u2
u2 u1

)

µ

ν

=
1

2u2
A(u)µν ,

(Γ2)µ
ν =

1

u2

(

u2 u1

−u1 u2

)

µ

ν

. (13.18)

The affine connection satisfies the important identity

Γµ
µλ ≡ 0, (13.19)

which follows from the defining relation

Γµ
µλ ≡ gµνei

λ ∂µ e
i
ν , (13.20)

by inserting the obvious special property of eiµ

∂µe
i
µ = ∂2

u
xi(u) = 0, (13.21)

using the diagonality of gµν = δµν/4r.
The identity (13.19) will be shown in Section 13.6 to be the essential geometric

reason for the absence of the time slicing corrections.
The torsion and the Riemann-Cartan curvature tensor vanish identically, the

former because of the specific form of the matrix elements (13.18), the latter due to
the linearity of the basis dyads eiµ(u) in u which guarantees trivially the integrability
conditions, i.e.,

ei
λ (∂µ e

i
ν − ∂ν e

i
µ) ≡ 0, (13.22)

ei
κ(∂µ ∂ν − ∂ν ∂µ) e

i
λ ≡ 0, (13.23)
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and thus Sµν
λ ≡ 0, Rµνλ

κ ≡ 0.
In the continuum limit, the Levi-Civita transformation converts the action

(13.10) into that of a harmonic oscillator. With

x′2 = 4u2 u′2 = 4r u′2 (13.24)

we find

A[x] = e2S +
∫ S

0
ds
(

4M

2
u′2 + Eu2

)

. (13.25)

Apart from the trivial term e2S, this is the action of a harmonic oscillator

Aos[u] =
∫ S

0
ds
µ

2
(u′2 − ω2u2), (13.26)

which oscillates in the pseudotime s with an effective mass

µ = 4M, (13.27)

and a pseudofrequency

ω =
√

−E/2M. (13.28)

Note that ω has the dimension 1/s corresponding to [ω] = [r/t] (in contrast to a
usual frequency whose dimension is [1/t]).

The path integral is well defined only as long as the energy E of the Coulomb
system is negative, i.e., in the bound-state regime. The amplitude in the continuum
regime with positive E will be obtained by analytic continuation.

In the regularized form, the pseudotime-sliced amplitude is calculated as fol-
lows. Choosing a splitting parameter λ = 1/2 and ignoring for the moment all
complications due to the finite time slicing, we deduce from (13.14) that

dx = 2A(u)du, (13.29)

and hence

d2xn = 4un
2d2un. (13.30)

Since the x- and the u-space are both Euclidean, the integrals over ∆xn in (13.8)
can be rewritten as integrals over xn, and transformed directly to un variables. The
result is

〈xb|ÛE(S)|xa〉 =
1

4
eie

2S/h̄[(ubS|ua0) + (−ubS|ua0)], (13.31)

where (ubS|ua0) denotes the time-sliced oscillator amplitude

(ubS|ua0) ≈ 1

2πih̄ǫs/µ

N
∏

n=1

[

∫

d2un
2πih̄ǫs/µ

]

(13.32)

× exp

{

i

h̄

N
∑

n=1

µ

2

(

1

ǫs
∆un

2 − ǫsω
2un

2
)

}

.
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Figure 13.1 Illustration of associated final points in u-space, to be summed in the

oscillator amplitude. In x-space, the paths run from xa to xb once directly and once after

crossing the cut into the second sheet of the complex function u =
√
x.

The evaluation of the Gaussian integrals yields, in the continuum limit [recall
(2.177)]:

(ubS|ua0) =
µω

2πih̄ sinωS
exp

{

i

2h̄

µω

sinωS
[(ub

2 + ua
2) cosωS − 2ubua]

}

. (13.33)

The symmetrization in ub in Eq. (13.31) is necessary since for each path from xa to
xb, there are two paths in the square root space, one from ua to ub and one from ua

to −ub (see Fig. 13.1).
The fixed-energy amplitude is obtained by the integral (13.4) over the pseudo-

time evolution amplitude (12.18):

(xb|xa)E =
∫ ∞

0
dS eie

2S/h̄ 1

4
[(ubS|ua0) + (−ubS|ua0)]. (13.34)

By inserting (13.33), this becomes

(xb|xa)E =
1

2

∫ ∞

0
dS exp(ie2S/h̄)F 2(S)

× exp
[

−πF 2(S)(u2
b + u2

a) cosωS
]

cosh
[

2πF 2(S)ubua

]

, (13.35)

with the abbreviation

F (S) =
√

µω/2πih̄ sinωS, (13.36)

for the one-dimensional fluctuation factor [recall (2.171)]. The coordinates ub and
ua on the right-hand side are related to xbxa on the left-hand side by

u2
a,b = ra,b, ubua =

√

(rbra + xbxa)/2. (13.37)

When performing the integral over S, we have to pass around the singularities in
F (S) in accordance with the iη-prescription, replacing ω → ω− iη. Equivalently, we
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can rotate the contour of S-integration to make it run along the negative imaginary
semi-axis,

S = −iσ, σ ∈ (0,∞).

This amounts to going over to the Euclidean amplitude of the harmonic oscillator
in which the singularities are completely avoided. The amplitude is rewritten in a
more compact form by introducing the variables

̺ ≡ e−2iωS = e−2ωσ, (13.38)

κ ≡ µω

2h̄
=

2Mω

h̄
=
√

−2ME/h̄2, (13.39)

ν ≡ e2

2ωh̄
=

√

e4M

−2h̄2E
. (13.40)

Then

πF 2(S) = κ
2
√
̺

1− ̺
, (13.41)

eie
2s/h̄F 2(S) =

2

π
κ
̺1/2−ν

1− ̺
, (13.42)

and the fixed-energy amplitude of the two-dimensional Coulomb system takes the
form

(xb|xa)E = −iM
πh̄

∫ 1

0
d̺

̺−1/2−ν

1− ̺
cos

[

2κ
2
√
̺

1− ̺

√

(rbra + xbxa)/2

]

× exp

[

−κ1 + ̺

1− ̺
(rb + ra)

]

. (13.43)

Note that the integral converges only for ν < 1/2. Expanding the integrand in
powers of ρ the integral can be done and yields a sum over terms 1/(ν−1/2), 1/(ν−
3/2), . . . . The residues can be factorized into a sum eimφbe−imφa + e−imφbeimφa ,
where φ are the azimuthal angle of the two-dimensional vectors x. Thus we obtain
a spectral decomposition of the amplitude:

(xb|xa)E =
∞
∑

n=1

ih̄

E −En

n−1
∑

m=0

[

ψnr ,m(xb)ψ
∗
nr ,m(xb) + ψnr ,−m(xb)ψ

∗
nr ,−m(xb)

]

, (13.44)

where

ψnr ,m(x) =
1√
r
Rnr ,|m|(r)

1√
2π
eimφ, r ≡ (13.45)

are the wave functions and

En = −Me4

h̄4
1

(n− 1
2
)2

(13.46)
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the energy eigenvalues. The principal quantum number n is related to the radial
quantum number nr = 0, 1, 2, 3, . . . and the azimuthal quantum number m by
n = nr + |m| + 1. The radial eigenfunctions are expressed in terms of confluent
hypergeometric functions (9.45) as

1√
r
Rnr ,|m|(r) = Nnr ,|m|

(

2r

rn

)|m|

e−r/rn
1F1(−n + |m|+ 1, 2|m|+ 1, 2r/rn), (13.47)

where rn ≡ (n− 1
2)rH = (n− 1/2)Me2/h̄2, and [5]

Nnr,|m| ≡
2

rn

1

2|m|!

√

√

√

√

(n+ |m| − 1)!

(2n− 1)(n− |m| − 1)!
. (13.48)

It is possible to write down another integral representation converging for all
ν 6= 1/2, 3/2, 5/2, . . . . To do this we change the variable of integrations to

ζ ≡ 1 + ̺

1− ̺
, (13.49)

so that

d̺

(1− ̺)2
=

1

2
dζ, ̺ =

ζ − 1

ζ + 1
. (13.50)

This leads to

(xb|xa)E = −iM
πh̄

1

2

∫ ∞

1
dζ(ζ − 1)−ν−1/2(ζ + 1)ν−1/2

× cos
{

2κ
√

ζ2 − 1
√

(rbra + xbxa)/2
}

e−κζ(rb+ra). (13.51)

The integrand has a cut in the complex ζ-plane extending from z = −1 to −∞
and from ζ = 1 to ∞. The integral runs along the right-hand cut. The integral is
transformed into an integral along a contour C which encircles the right-hand cut
in the clockwise sense. Since the cut is of the type (ζ − 1)−ν−1/2, we may replace

∫ ∞

1
dζ(ζ − 1)−ν−1/2 . . .→ πeiπ(ν+1/2)

sin[π(ν + 1/2)]

1

2πi

∫

C
dζ(ζ − 1)−ν−1/2 . . . , (13.52)

and the fixed-energy amplitude reads

(xb|xa)E = −iM
πh̄

1

2

πeiπ(ν+1/2)

sin[π(ν + 1/2)]

∫

C

dζ

2πi
(ζ − 1)−ν−1/2(ζ + 1)ν−1/2

× cos
[

2κ
√

ζ2 − 1
√

(rbra + xbxa)/2
]

e−κζ(rb+ra). (13.53)
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13.3 Absence of Time Slicing Corrections for D = 2

We now convince ourselves that the finite thickness of the pseudotime slices in the intermediate
formulas does not change the time evolution amplitude obtained in the last section [6]. The reader
who is unaware of the historic difficulties which had to be overcome may not be interested in the
upcoming technical discussion. He may skip this section and be satisfied with a brief argument
given in Section 13.6.

The potential term in the action (13.9) can be ignored since it is of order ǫs and the time
slicing can only produce higher than linear correction terms in ǫs which do not contribute in the
continuum limit ǫs → 0. The crucial point where corrections might enter is in the transformation
of the measure and the pseudotime-sliced kinetic terms in (13.8), (13.9). In vector notation, the
coordinate transformation reads, at every time slice n,

xn = A(un)un. (13.54)

Among the equivalent possibilities offered in Section 11.2 to transform a time-sliced path
integral we choose the Taylor expansion (11.56) to map ∆x into ∆u. After inserting (13.15) into
(11.56) we find

∆xi = 2Ai
µ(u)∆uµ − ∂νA

i
µ(u)∆uµ∆uν . (13.55)

Since the mapping x(u) is quadratic in u, there are no higher-order expansion terms. Note that due
to the absence of curvature and torsion in the u-space, the coordinate transformation is holonomic
and ∆x can also be calculated directly from x(u)−x(u−∆u). Indeed, using the linearity of A(u)
in u, we find from (13.54)

∆xn = A(un)un −A(un−1)un−1 = 2A(un − 1
2
∆un)∆un = 2A(ūn)∆un, (13.56)

where ūn is average across the slice. The Taylor expansion of A(un − 1
2
∆un) has only two terms

and leads to (13.55).
Using (13.56) we can write

(∆xn)2 = 4ū2
n(∆un)2, (13.57)

ūn ≡ (un + un−1)/2. (13.58)

The kinetic term of the short-time action in the nth time slice of Eq. (13.9) therefore becomes

Aǫ =
M

2ǫs

(∆xn)2

r1−λ
n rλn−1

=
M

2ǫs

4ū2
n

(u2
n)1−λ(u2

n−1)
λ
(∆un)2. (13.59)

This is expanded around the postpoint and yields

ūn = un − 1

2
∆un, (13.60)

un−1 = un − ∆un, (13.61)

ū2
n

(u2
n)1−λ(u2

n−1)
λ

= 1 + (2λ− 1)
un∆un

u2
n

+

(

1

4
− λ

)

∆un
2

u2
n

+ 2λ2
(

un∆un

u2
n

)2

. (13.62)

It is useful to separate the short-time action into a leading term

Aǫ
0(∆un) = 4M

(∆un)2

2ǫs
, (13.63)
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plus correction terms

∆Aǫ = 4M
(∆un)2

2ǫs
(13.64)

×
[

(2λ− 1)
un∆un

u2
n

+

(

1

4
− λ

)

∆un
2

u2
n

+ 2λ2
(

un∆un

u2
n

)2
]

,

which will be treated perturbatively.
In order to perform the transformation of the measure of integration in (13.8), we expand ∆x

accordingly:

∆xi = 2Ai
µ(u− 1

2
∆u)∆uµ

= 2Ai
µ(u)∆uµ − ∂νA

i
µ(u)∆uµ∆uν . (13.65)

The indices n have been suppressed, for brevity. This expression has, of course, the general form
(10.96), after inserting there

eiµ(u) = 2Ai
µ(u). (13.66)

Since the transformation matrix Ai
µ(u) in (13.15) is linear in u, the matrix eiµ(u) has no second

derivatives, and the Jacobian action (11.60) and (10.145) reduce to

i

h̄
Aǫ

J = −eiµei{µ,ν}∆uν −
1

2
ei

µei{κ,ν}ej
κejµ,λ∆uν∆uλ

= −Γ{νµ}
µ∆uν − 1

2
Γ{νκ}

µΓ{µλ}
κ∆uν∆uλ. (13.67)

The expansion coefficients are easily calculated using the reciprocal basis dyad

ei
κ =

1

2u2
eiκ, (13.68)

as

Γνµ
µ = ei

µ∂νe
i
µ =

2uν

u2
,

Γµν
µ = −eiν∂µeiµ =

2uν

u2
, (13.69)

Γνκ
µΓλµ

κ = −∂λeiκ∂νeiκ = − 2

u4
(δνλu2 − 2uνuλ).

The second equation is found directly from

−∂µeiµ = −∂µ(2u2)−1eiµ = ei
µ 2uµu−2, (13.70)

which, in turn, follows from the obvious identity ∂µe
i
µ = 0. Note that the third expression in

(13.69) is automatically equal to Γ{νκ}
σΓ{λσ}

κ, i.e., of the form required in (13.67), since the uµ-
space has no torsion and Γνκ

σ = Γκν
σ. After inserting Eqs. (13.69) into the right-hand side of

(13.67), we find the postpoint expansion

i

h̄
Aǫ

J = −
[

2
un∆un

u2
n

− ∆un
2

u2
n

+ 2

(

u∆un

u2
n

)2

+ . . .

]

. (13.71)

The measure of integration in (13.8) contains additional factors rb, rn, ra which require a further
treatment. First we rewrite it as

(rb/ra)
2λ−1

2πiǫsh̄

N
∏

n=1

[∫

d2∆xn
2πiǫsrn−1/M

]

≈ 1

2πiǫsh̄

N
∏

n=1

[∫

d2∆xn
2πiǫsh̄rn/M

]N+1
∏

n=1

(

rn
rn−1

)2λ

=
1

2πiǫsh̄

N+1
∏

n=2

[∫

d2∆xn
2πiǫsh̄rn/M

]

eiA
N
f /h̄. (13.72)
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On the left-hand side, we have shifted the labels n by one unit making use of the fact that with
∆xn = xn − xn−1 we can certainly write

∏N+1
n=2

∫

d2∆xn =
∏N

n=1

∫

d2∆xn. In the first expression
on the right-hand side we have further shifted the subscripts of the factors 1/rn−1 in the integral

measure from n− 1 to n and compensated for this by an overall factor
∏N+1

n=1 (rn/rn−1). Together

with the prefactor (rb/ra)
2λ−1, this can be expressed as a product

∏N+1
n=1 (rn/rn−1)

2λ. There is
only a negligible error of order ǫ2s at the upper end [this being the reason for writing the symbol ≈
rather than = in (13.72)]. In the last part of the equation we have introduced an effective action

AN
f ≡

N+1
∑

n=1

Aǫ
f (13.73)

due to the (rn/rn−1)
2λ factors, with

i

h̄
Aǫ

f = 2λ log
r2n
r2n−1

= 2λ log
u2
n

u2
n−1

. (13.74)

The subscript f indicates that the general origin of this term lies in the rescaling factors
fl(xb), fr(xa).

We now go over from ∆xn- to ∆un-integrations using the relation

d2∆x = 4u2d2∆u exp

(

i

h̄
Aǫ

J

)

. (13.75)

The measure becomes

1

2
× 4

2 · 2πiǫsh̄

N
∏

n=1

[∫

4d2∆un
2 · 2πiǫsh̄/M

]

exp

[

i

h̄
(AN

J + AN
f )

]

, (13.76)

where AN
J is the sum over all time-sliced Jacobian action terms Aǫ

J of (13.71):

AN
J ≡

N+1
∑

n=1

Aǫ
J . (13.77)

The extra factors 2 in the measure denominators of (13.76) are introduced to let the un-integrations
run over the entire u-space, in which case the x-space is traversed twice.

The time-sliced expression (13.76) has an important feature which was absent in the continuous
formulation. It receives dominant contributions not only from the region neighborhood un ∼ un−1,
in which case (∆un)2 is of order ǫs, but also from un ∼ −un−1 where (ūn)2 is of order ǫs. This
is understandable since both configurations correspond to xn being close to xn−1 and must be
included. Fortunately, for symmetry reasons, they give identical contributions so that we need to
discuss only the case un ∼ un−1, the contribution from the second case being simply included by
dropping the factors 2 in the measure denominators.

To process the measure further, we expand the action Aǫ
f (13.76) around the postpoint and

find

i

h̄
Aǫ

f = 2λ log

(

u2
n

u2
n−1

)

= 2λ

[

2
un∆un

u2
n

− ∆un
2

u2
n

+ 2

(

u∆un

u2
n

)2

+ . . .

]

. (13.78)

A comparison with (13.71) shows that adding (i/h̄)Aǫ
f and (i/h̄)Aǫ

J merely changes 2λ in Aǫ
f into

2λ− 1.
Thus, altogether, the time-slicing produces the short-time action

Aǫ = Aǫ
0 + ∆corrAǫ, (13.79)
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with the leading free-particle action

Aǫ
0(∆un) = 4M

(∆un)2

2ǫs
, (13.80)

and the total correction term

i

h̄
∆corrAǫ ≡ i

h̄
(∆Aǫ + Aǫ

J + Aǫ
f )

=
i

h̄
4M

∆un
2

2ǫs

[

(2λ− 1)
un∆un

u2
n

+

(

1

4
− λ

)

∆un
2

u2
n

+ 2λ2
(

un∆un

u2
n

)2
]

+ (2λ− 1)

[

2
un∆un

u2
n

− ∆un
2

u2
n

+ 2

(

un∆un

u2
n

)2
]

+ . . . . (13.81)

We now show that the action ∆corrAǫ is equivalent to zero by proving that the kernel associated
with the short-time action

Kǫ(∆u) =
4

2 · 2πiǫsh̄/M
exp

[

i

h̄
(Aǫ

0 + ∆corrAǫ)

]

(13.82)

is equivalent to the zeroth-order free-particle kernel

Kǫ
0(∆u) =

4

2 · 2πiǫsh̄/M
exp

[

i

h̄
Aǫ

0

]

. (13.83)

The equivalence is established by checking the equivalence relations (11.71) and (11.72). For the
kernel (13.82), the correction (11.71) is

C1 = C ≡ exp

(

i

h̄
∆corrAǫ

)

− 1. (13.84)

It has to be compared with the trivial factor of the kernel (13.83):

C2 = 0. (13.85)

Thus, the equivalence requires showing that

〈C〉0 = 0,

〈C (p∆u)〉0 = 0. (13.86)

The basic correlation functions due to Kǫ
0(∆u) are

〈∆uµ∆uν〉0 ≡ ih̄ǫs
4M

δµν , (13.87)

〈∆uµ1 · · ·∆uµ2n〉0 =

(

ih̄ǫs
4M

)n

δµ1...µ2n , n > 1, (13.88)

where the contraction tensors δµ1...µ2n of Eq. (8.64), determined recursively from

δµ1...µ2n ≡ δµ1µ2δµ3µ4...µ2n + δµ1µ3δµ2µ4...µ2n + . . .+ δµ1µ2nδµ2µ3...µ2n−1 . (13.89)

They consist of (2n− 1)!! products of pair contractions δµiµj . More specifically, we encounter, in
calculating (13.86), expectations of the type

〈(∆u)2k(u∆u)2l〉0 =

(

ih̄ǫs
4M

)k+l
[D + 2(k + l − 1)]!!

(D + 2l− 2)!!
(2l − 1)!!(u2)l, (13.90)
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and

〈(∆u)2k(u∆u)2l(u∆u)(p∆u)〉0 =

(

ih̄ǫs
4M

)k+l+1
[D + 2(k + l)]!!

(D + 2l)!!
(2l− 1)!!(up), (13.91)

where we have allowed for a general u-space dimension D. Expanding (13.86) we now check that,
up to first order in ǫs, the expectations 〈C〉0 and 〈C (p∆u)〉0 vanish:

〈C〉0 =
i

h̄
〈∆corrAǫ〉0 +

1

2!

(

i

h̄

)2

〈(∆corrAǫ)2〉0 = 0, (13.92)

〈C (p∆u)〉0 =
i

h̄
〈∆corrAǫ (p∆u)〉0 = 0. (13.93)

Indeed, the first term in (13.92) becomes

i

h̄
〈∆corrAǫ〉0 = 2i

h̄ǫs
M

[

−
(

1

4
− λ

)

(D + 2)D

16
− 2λ2

D + 2

16

]

, (13.94)

and reduces for D = 2 to

i

h̄
〈∆corrAǫ〉0 = −i h̄ǫs

M

(

λ− 1

2

)2

. (13.95)

This is canceled identically in λ by the second term in (13.92), which is equal to

1

2!

(

i

h̄

)2

〈(∆corrAǫ)2〉0 =
i

2

h̄ǫs
M

[

4(2λ− 1)2
(D + 4)(D + 2)

64
+ 4(2λ− 1)2

1

4
− 8(2λ− 1)2

D + 2

16

]

,

(13.96)
and reduces for D = 2 to

1

2!

(

i

h̄

)2

〈(∆corrAǫ)2〉0 = i
h̄ǫs
M

(

λ− 1

2

)2

. (13.97)

Similarly, the expectation (13.93),

〈∆corrAǫ (p∆u)〉0 = − h̄
2ǫs

4M
[(2λ− 1)(D + 2)/4 − (2λ− 1)], (13.98)

is seen to vanish identically in λ for D = 2.
Thus there is no finite time slicing correction to the naive transformation formula (13.34) for

the Coulomb path integral in two dimensions.

13.4 Solution for the Three-Dimensional Coulomb System

We now turn to the physically relevant Coulomb system in three dimensions. The
first problem is to find again some kind of “square root” coordinates to convert
the potential −Er in the pseudotime Hamiltonian in the exponent of Eq. (13.5)
into a harmonic potential. In two dimensions, the answer was a complex square
root. Here, it is a “quaternionic square root” known as the Kustaanheimo-Stiefel

transformation, which was used extensively in celestial mechanics [7]. To apply this
transformation, the three-vectors x must first be mapped into a four-dimensional
uµ-space (µ = 1, 2, 3, 4) via the equations

xi = z̄σiz, r = z̄z. (13.99)
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Here σi are the Pauli matrices (1.448), and z, z̄ the two-component objects

z =

(

z1
z2

)

, z̄ = (z∗1 , z
∗
2), (13.100)

called “spinors”. Their components are related to the four-vectors uµ by

z1 = (u1 + iu2), z2 = (u3 + iu4). (13.101)

The coordinates uµ can be parametrized in terms of the spherical angles of the
three-vector x and an additional arbitrary angle γ as follows:

z1 =
√
r cos(θ/2)e−i[(ϕ+γ)/2],

z2 =
√
r sin(θ/2)ei[(ϕ−γ)/2].

In Eqs. (13.99), the angle γ obviously cancels. Each point in x-space corresponds to
an entire curve in uµ-space along which the angle γ runs through the interval [0, 4π].

We can write (13.99) also in a matrix form







x1

x2

x3





 = A(~u)











u1

u2

u3

u4











, (13.102)

with the 3× 4 matrix

A(~u) =







u3 u4 u1 u2

u4 −u3 −u2 u1

u1 u2 −u3 −u4





 . (13.103)

Since

r = (u1)2 + (u2)2 + (u3)2 + (u4)2 ≡ (~u)2, (13.104)

this transformation certainly makes the potential −Er in the pseudotime Hamilto-
nian harmonic in ~u. The arrow on top indicates the four-vector nature of uµ.

Consider now the kinetic term
∫

ds(M/2r)(dx/ds)2 in the action (13.10). Each
path x(s) is associated with an infinite set of paths ~u(s) in ~u-space, depending on
the choice of a dummy path γ(s) in parameter space. The mapping of the tangent
vectors duµ into dxi is given by







dx1

dx2

dx3





 = 2







u3 u4 u1 u2

u4 −u3 −u2 u1

u1 u2 −u3 −u4

















du1

du2

du3

du4











. (13.105)

To make the mapping unique we must prescribe at least some differential equation
for the dummy angle dγ. This is done most simply by replacing dγ by a parameter
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which is more naturally related to the components dxi on the left-hand side. We
embed the tangent vector (dx1, dx2, dx3) into a fictitious four-dimensional space and
define a new, fourth component dx4 by an additional fourth row in the matrix A(~u),
thereby extending (13.29) to the four-vector equation

d~x = 2A(~u)d~u. (13.106)

The arrow on top of x indicates that x has become a four-vector. For symmetry
reasons, we choose the 4× 4 matrix A(~u) as

A(~u) =











u3 u4 u1 u2

u4 −u3 −u2 u1

u1 u2 −u3 −u4
u2 −u1 u4 −u3











. (13.107)

The fourth row implies the following relation between dx4 and dγ:

dx4 = 2(u2du1 − u1du2 + u4du3 − u3du4)

= r(cos θ dϕ+ dγ). (13.108)

Now we make the important observation that this relation is not integrable since
∂x4/∂u1 = 2u2, ∂x4/∂u2 = −2u1, and hence

(∂u1∂u2 − ∂u2∂u1)x4(uµ) = −4, (∂u3∂u4 − ∂u4∂u3)x4(uµ) = −4, (13.109)

implying that x4(uµ) does not satisfy the integrability criterion of Schwarz [recall
(10.19)]. The mapping is nonholonomic and changes the Euclidean geometry of the
four-dimensional ~x-space into a non-Euclidean ~u-space with curvature and torsion.
This will be discussed in detail in the next section. The impossibility of finding a
unique mapping between the points of ~x- and ~u-space has the consequence that the
mapping between paths is multivalued with respect to the initial point. After having
chosen a specific image for the initial point, the mapping (13.107) determines the
image path uniquely.

We now incorporate the dummy fourth dimension into the action by replacing x

in the kinetic term by the four-vector ~x and extending the kinetic action to

AN
kin ≡

N+1
∑

n=1

M

2

(~xn − ~xn−1)
2

ǫsr1−λ
n rλn−1

. (13.110)

The additional contribution of the fourth components x4n − x4n−1 can be eliminated
trivially from the final pseudotime evolution amplitude by integrating each time
slice over dx4n−1 with the measure

N+1
∏

n=1

∫ ∞

−∞

d(∆x4)n
√

2πiǫsh̄r1−λ
n rλn−1/M

. (13.111)
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Note that in these integrals, the radial coordinates rn are fixed numbers. In contrast
to the spatial integrals d3xn−1, the fourth coordinate must be integrated also over
the initial auxiliary coordinate x40 = x4a. Thus we use the trivial identity

N+1
∏

n=1





∫ ∞

−∞

d(∆x4)n
√

2πiǫsh̄r1−λ
n rλn−1/M



 exp

[

i

h̄

N+1
∑

n=1

M

2

(∆x4n)
2

ǫsr1−λ
n rλn−1

]

= 1. (13.112)

Hence the pseudotime evolution amplitude of the Coulomb system in three dimen-
sions can be rewritten as the four-dimensional path integral

〈xb|ÛE(S)|xa〉 =
∫

dx4a
rλb r

1−λ
a

(2πiǫsh̄r
1−λ
b rλa/M)2

×
N+1
∏

n=2

[

∫ ∞

−∞

d4∆xn
(2πiǫsh̄rn−1/M)2

]

exp
(

i

h̄
AN

E

)

, (13.113)

where AN
E is the action (13.9) in which the three-vectors xn are replaced by the four-

vectors ~xn, although r is still the length of the spatial part of ~x. By distributing
the factors rb, rn, ra evenly over the intervals, shifting the subscripts n of the factors
1/rn in the measure to n + 1, and using the same procedure as in Eq. (13.72), we
arrive at the pseudotime evolution amplitude

〈xb|ÛE(S)|xa〉 =
1

(2π iǫsh̄/M)2

∫ ∞

−∞

dx4a
ra

×
N+1
∏

n=2

[

∫

d4∆~xn
(2πiǫsh̄rn/M)2

]

exp
[

i

h̄
(AN

E +AN
f )
]

, (13.114)

with the sliced action

AN
E [~x, ~x

′] = (N + 1)ǫse
2 +

N+1
∑

n=1

[

M

2

(∆~xn)
2

ǫsr1−λ
n rλn−1

+ ǫs r
1−λ
n rλn−1E

]

. (13.115)

The action AN
f accounts for all remaining factors in the integral measure. The

prefactor is now (rb/ra)
3λ−2 and can be written as a product

∏N+1
1 (rn/rn−1)

3λ−2.
The index shift in the factor 1/r changes the power 3λ− 2 to 3λ

i

h̄
AN

f = 3λ
N+1
∑

n=1

log

(

~u2n
~u2n−1

)

(13.116)

[compare (13.73)]. As in the two-dimensional case we shall at first ignore the sub-
tleties due to the time slicing. Thus we set λ = 0 and apply the transformation
formally to the continuum limit of the action AN

E , which has the form (13.10), ex-
cept that x is replaced by ~x. Using the properties of the matrix (13.107)

AT = ~u2A−1,

detA =
√

det (AAT ) = r2, (13.117)
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we see that

~x′2 = 4~u2~u′2 = 4r~u′2, (13.118)

d4x = 16r2d4u. (13.119)

In this way, we find the formal relation

〈xb|ÛE(S)|xa〉 = eie
2S/h̄ 1

16

∫

dx4a
ra

(~ubS|~ua0) (13.120)

to the time evolution amplitude of the four-dimensional harmonic oscillator

(~ubS|~ua0) =
∫

D4u(s) exp
(

i

h̄
Aos

)

, (13.121)

with the action

Aos =
∫ S

0
ds
µ

2
(~u′2 − ω2~u2). (13.122)

The parameters are, as in (13.27) and (13.28),

µ = 4M, ω =
√

−E/2M. (13.123)

The relation (13.120) is the analog of (13.31). Instead of a sum over the two images
of each point x in u-space, there is now an integral

∫

dx4a/ra over the infinitely many
images in the four-dimensional ~u-space. This integral can be rewritten as an integral
over the third Euler angle γ using the relation (13.108). Since x and thus the polar
angles θ, ϕ remain fixed during the integration, we have directly

∫

dx4a/ra =
∫

dγa.
As far as the range of integration is concerned, we observe that it may be restricted
to a single period γa ∈ [0, 4π]. The other periods can be included in the oscillator
amplitude. By specifying a four-vector ~ub, all paths are summed which run either to
the final Euler angle γb or to all its periodic repetitions [which by (13.102) have the
same ~ub]. This was the lesson learned in Section 6.1. Equation (13.120) contains,
instead, a sum over all initial periods which is completely equivalent to this. Thus
the relation (13.120) reads, more specifically,

〈xb|ÛE(S)|xa〉 = eie
2S/h̄ 1

16

∫ 4π

0
dγa(~ubS|~ua0). (13.124)

The reason why the other periods in (13.120) must be omitted can best be under-
stood by comparison with the two-dimensional case. There we observed a two-fold
degeneracy of contributions to the time-sliced path integral which cancel all factors 2
in the measure (13.76). Here the same thing happens except with an infinite degen-
eracy: When integrating over all images d4un of d4xn in the oscillator path integral
we cover the original x-space once for γn ∈ [0, 4π] and repeat doing so for all periods
γn ∈ [4πl, 4π(l+ 1)]. This suggests that each volume element d4un must be divided
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by an infinite factor to remove this degeneracy. However, this is not necessary since
the gradient term produces precisely the same infinite factor. Indeed,

(~un + ~un−1)
2(~un − ~un−1)

2 (13.125)

is small for ~xn ≈ ~xn−1 at infinitely many places of γn − γn−1, once for each periodic
repetition of the interval [0, 4π]. The infinite degeneracy cancels the infinite factor
in the denominator of the measure. The only place where this cancellation does not
occur is in the integral

∫

dx4a/ra. Here the infinite factor in the denominator is still
present, but it can be removed by restricting the integration over γa in (13.124) to
a single period [8].

Note that a shift of γa by a half-period 2π changes ~u to −~u and thus corresponds
to the two-fold degeneracy in the previous two-dimensional system.

The time-sliced path integral for the harmonic oscillator can, of course, be done
immediately, the amplitude being the four-dimensional version of (13.33) [recall
(2.177)]:

(~ubS|~ua0) =
1

(2πih̄ǫs/µ)2

N
∏

n=1

[

∫

d4∆un
2πih̄ǫs/µ

]

exp

[

i

h̄

N
∑

n=1

µ

2

(

1

ǫs
∆~un

2 − ǫsω
2~u2n

)

]

=
ω2

(2πih̄ sinωS /µ)2
exp

{

i

2h̄

µω

sinωS
[(~ub

2+~u2a) cosωS−2~ub~ua]
}

. (13.126)

To find the fixed-energy amplitude we have to integrate this over S:

(xb|xa)E =
∫ ∞

0
dSeie

2S/h̄ 1

16

∫ 4π

0
dγa(~ubS|~ua0). (13.127)

Just like (13.35), the integral is written most conveniently in terms of the vari-
ables (13.38), (13.40), so that we obtain the fixed-energy amplitude of the three-
dimensional Coulomb system

(xb|xa)E =
1

16

∫ ∞

0
dSeie

2S/h̄
∫ 4π

0
dγa(~ubs|~ua 0)

= −i ωM
2

2π2h̄2

∫ ∞

−∞

dx4a
ra

∫ 1

0
d̺

̺−ν

(1− ̺)2
exp

(

2κ
2
√
̺

1− ̺
~ub~ua

)

exp

[

−κ1 + ̺

1− ̺
(rb + ra)

]

.

In order to perform the integral over dx4b , we now express ~ub~ua in terms of the polar
angles

~ub~ua =
√
rbra {cos(θb/2) cos(θa/2) cos[(ϕb − ϕa + γb − γa)/2]

+ sin(θb/2) sin(θa/2) cos[(ϕb − ϕa − γb + γa)/2]} . (13.128)

A trigonometric rearrangement brings this to the form

~ub~ua =
√
rbra {cos[(θb − θa)/2] cos[(ϕb − ϕa)/2] cos[(γb − γa)/2]

− cos[(θb + θa)/2] sin[(ϕb − ϕa)/2] sin[(γb − γa)/2]} , (13.129)
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and further to

~ub~ua =
√

(rbra + xbxa)/2 cos[(γb − γa + β)/2], (13.130)

where β is defined by

tan
β

2
=

cos[(θb + θa)/2] sin[(ϕb − ϕa)/2]

cos[(θb − θa)/2] cos[(ϕb − ϕa)/2]
, (13.131)

or

cos
β

2
= cos

θb − θa
2

cos
ϕb − ϕa

2

√

rbra
(rbra + xbxa)/2

. (13.132)

The integral
∫ 4π
0 dγa can now be done at each fixed x. This gives the fixed-energy

amplitude of the Coulomb system [1, 9, 11, 10].

(xb|xa)E = −i Mκ

πh̄

∫ 1

0
d̺

̺−ν

(1− ̺)2
I0

(

2κ
2
√
̺

1− ̺

√

(rbra + xbxa)/2

)

× exp

[

−κ1 + ̺

1− ̺
(rb + ra)

]

, (13.133)

where κ and ν are the same parameters as in Eqs. (13.40).
The integral converges only for ν < 1, as in the two-dimensional case. It is

again possible to write down another integral representation which converges for
all ν 6= 1, 2, 3, . . . by changing the variables of integration to ζ ≡ (1 + ̺)/(1− ̺)
and transforming the integral over ζ into a contour integral encircling the cut from
ζ = 1 to ∞ in the clockwise sense. Since the cut is now of the type (ζ − 1)−ν , the
replacement rule is

∫ ∞

1
dζ(ζ − 1)−ν . . .→ πeiπν

sin πν

∫

C

dζ

2πi
(ζ − 1)−ν . . . . (13.134)

This leads to the representation

(xb|xa)E = −iM
πh̄

κ

2

πeiπν

sin πν

∫

C

dζ

2πi
(ζ − 1)−ν(ζ + 1)ν

× I0(2κ
√

ζ2 − 1
√

(rbra + xbxa)/2)e
−κζ(rb+ra). (13.135)

13.5 Absence of Time Slicing Corrections for D = 3

Let us now prove that for the three-dimensional Coulomb system also, the finite time-slicing
procedure does not change the formal result of the last section. The reader not interested in the
details is again referred to the brief argument in Section 13.6. The action AN

E in the time-sliced
path integral has to be supplemented, in each slice, by the Jacobian action [as in (13.67)]

i

h̄
Aǫ

J = −eµei{µ,ν}∆uν − ei
µei{κ,ν}ej

κei{µ,λ}∆u
ν∆uλ

= −Γ{νµ}
µ∆uν − 1

2
Γ{νκ}

σΓ{λσ}
κ∆uν∆uλ. (13.136)
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The basis tetrad

eiµ = ∂xi/∂uµ = 2Ai
µ(~u), i = 1, 2, 3, 4, (13.137)

is now given by the 4 × 4 matrix (13.107), with the reciprocal tetrad

ei
µ =

1

2~u2
eiµ. (13.138)

From this we find the matrix components of the connection [compare (13.18)]

(Γ1)µ
ν =

1

~u2









u1 u2 −u3 −u4
−u2 u1 −u4 u3

u3 u4 u1 u2

u4 −u3 −u2 u1









µ

ν

,

(Γ2)µ
ν =

1

~u2









u2 −u1 u4 −u3
u1 u2 −u3 −u4

−u4 u3 u2 −u1
u3 u4 u1 u2









µ

ν

, (13.139)

(Γ3)µ
ν =

1

~u2









u3 u4 u1 u2

−u4 u3 u2 −u1
−u1 −u2 u3 u4

−u2 u1 −u4 u3









µ

ν

,

(Γ4)µ
ν =

1

~u2









u4 −u3 −u2 u1

u3 u4 u1 u2

u2 −u1 u4 −u3
−u1 −u2 u3 u4









µ

ν

.

As in the two-dimensional case [see Eq. (13.19)], the connection satisfies the important identity

Γµ
µν ≡ 0, (13.140)

which is again a consequence of the relation [compare (13.21)]

∂µe
i
µ = 0. (13.141)

In Section 13.6, this will be shown to be the essential reason for the absence of the time slicing
corrections being proved in this section.

However, there is now an important difference with respect to the two-dimensional case. The
present mapping dxi = eiµ(u)duµ is not integrable. Taking the antisymmetric part of Γµν

λ we
find the uµ-space to carry a torsion Sµν

λ whose only nonzero components are

S12
λ = S34

λ =
1

~u2
(−u2, u1,−u4, u3)λ. (13.142)

The once-contracted torsion is

Sµ = Sµν
ν =

uµ

~u2
. (13.143)

For this reason, the contracted connections

Γνµ
µ = ei

µ∂νe
i
µ =

4uν

~u2
, (13.144)

Γµν
µ = −eiν∂µeiµ =

2uν

~u2
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are no longer equal, as they were in (13.69). Symmetrization in the lower indices gives

Γ{νµ}
µ =

3uν

~u2
. (13.145)

Due to this, the ∆uν∆uλ-terms in (13.136) are, in contrast to the two-dimensional case, not given
directly by

Γνκ
σΓλσ

κ = − 4

~u4
(δνλ~u2 − 2uνuλ). (13.146)

The symmetrization in the lower indices is necessary and yields

Γ{νκ}
σΓ{λσ}

κ = Γνκ
σΓλσ

κ − 2Γνκ
σSλσ

κ + Sνκ
σSλσ

κ (13.147)

= Γνκ
σΓλσ

κ − 2(−δνλ~u2 + 2uνuλ)/~u4 + uνuλ/~u
4.

Collecting all terms, the Jacobian action (13.136) becomes

i

h̄
Aǫ

J = −
[

3
~un∆~un
~u2n

− ∆~un
2

~u2n
+

5

2

(

~un∆~un
~u2n

)2

+ . . .

]

. (13.148)

In contrast to the two-dimensional equation (13.71), this cannot be incorporated into Aǫ
f . Although

the two expressions contain the same terms, their coefficients are different [see (13.116)]:

i

h̄
Aǫ

f = 3λ log

(

~u2n
~u2n−1

)

(13.149)

= 3λ

[

2
~un∆~un
~u2n

− ∆~un
2

~u2n
+ 2

(

~u∆~un
~u2n

)2

+ . . .

]

.

It is then convenient to rewrite (omitting the subscripts n)

i

h̄
Aǫ

J = −2 log

[

~u2

(~u− ∆~u)2

]

+
~u∆~u

~u2
(13.150)

−∆~u2

~u2
+

3

2

(

~u∆~u

~u2

)2

+ . . . ,

and absorb the first term into Aǫ
f , which changes 3λ to (3λ − 2). Thus, we obtain altogether the

additional action [to be compared with (13.81)]

i

h̄
∆corrAǫ =

i

h̄
4M

∆~u2

2ǫ

[

(2λ− 1)
~u∆~u

~u2
+ (

1

4
− λ)

∆~u2

~u2
+ 2λ2

(

~u∆~u

~u2

)2
]

+(3λ− 2)

[

2
~u∆~u

~u2
− ∆~u2

~u2
+ 2

(

~u∆~u

~u2

)2
]

+
~u∆~u

~u2
− (∆~u)2

~u2
+

3

2

(

~u∆~u

~u2

)2

+ . . . . (13.151)

Using this we now show that the expansion of the correction term

C = exp

(

i

h̄
∆corrAǫ

)

− 1 (13.152)

has the vanishing expectations

〈C〉0 = 0,

〈C (~p∆~u)〉0 = 0, (13.153)
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i.e.,

i

h̄
〈∆corrAǫ〉0 +

1

2

(

i

h̄

)2

〈(∆corrAǫ)2〉0 = 0, (13.154)

i

h̄
〈∆corrA (~p∆~u)〉0 = 0, (13.155)

as in (13.92), (13.93). In fact, using formula (13.91) the expectation (13.155) is immediately found
to be proportional to

i

[

−2(2λ− 1)
D + 2

16
+ 2(3λ− 2)

1

4
+

1

4

]

, (13.156)

which vanishes identically in λ for D = 4. Similarly, using formula (13.90), the first term in
(13.154) has an expectation proportional to

i

[

−2

(

1

4
− λ

)

(D + 2)D

16
− 4λ2

D + 2

16
− (3λ− 2)

(

D

4
− 2

4

)

−
(

D

4
− 3

8

)]

, (13.157)

i.e., for D = 4,

−i3
8
(2λ− 1)2, (13.158)

to which the second term adds

i
1

2

[

4(2λ− 1)2
(D + 4)(D + 2)

64
+ 9(2λ− 1)2

1

4
− 12(2λ− 1)2

D + 2

16

]

, (13.159)

which cancels (13.159) for D = 4. Thus the sum of all time slicing corrections vanishes also in the
three-dimensional case.

13.6 Geometric Argument for Absence of Time Slicing

Corrections

As mentioned before, the basic reason for the absence of the time slicing corrections can be shown
to be the property of the connection

Γµ
µλ = gµνei

λ∂µe
i
ν = 0, (13.160)

which, in turn, follows from the basic identity ∂µe
i
µ = 0 satisfied by the basis tetrad, and from the

diagonality of the metric gµν ∝ δµν . Indeed, it is possible to apply the techniques of Sections 10.1,
10.2 to the general pseudotime evolution amplitude (12.28) with the regulating functions

fl = f(x), fr ≡ 1. (13.161)

Since this regularization affects only the postpoints at each time slice, it is straightforward to
repeat the derivation of an equivalent short-time amplitude given in Section 11.3. The result can
be expressed in the form (dropping subscripts n)

Kǫ(∆q) =

√

g(q)
√

2πiǫh̄f/M
D

exp

[

i

h̄
(Aǫ + Aǫ

J)

]

, (13.162)

where f abbreviates the postpoint value f(xn) and Aǫ is the short-time action

Aǫ =
M

2ǫf
gµν(q)∆q

µ∆qν . (13.163)
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There exists now a simple expression for the Jacobian action. Using formula (11.75), it becomes
simply

i

h̄
Aǫ

J =
1

2
Γµ

µ
ν∆qν − iǫ

h̄f

8M
(Γµ

µ
ν)

2. (13.164)

In the postpoint formulation, the measure needs no further transformation. This can be seen
directly from the time-sliced expression (13.8) for λ = 0 or, more explicitly, from the vanishing of
the extra action Aǫ

f in (13.74) for D = 2 and in (13.149) for D = 3. As a result, the vanishing
contracted connection appearing in (13.164) makes all time-slicing corrections vanish. Only the
basic short-time action (13.163) survives:

∆Aǫ = 4M
(∆u)2

2ǫs
. (13.165)

Thanks to this fortunate circumstance, the formal solution found in 1979 by Duru and Kleinert
happens to be correct.

13.7 Comparison with Schrödinger Theory

For completeness, let us also show the significance of the geometric property Γµ
µλ =

0 within the Schrödinger theory. Consider the Schrödinger equation of the Coulomb
system

(

− 1

2M
h̄2∇2 − E

)

ψ(x) =
e2

r
ψ(x), (13.166)

to be transformed to that of a harmonic oscillator. The postpoint regularization
of the path integral with the functions (13.161) corresponds to multiplying the
Schrödinger equation with fl = r from the left. This gives

(

− 1

2M
h̄2r∇2 − Er

)

ψ(x) = e2ψ(x). (13.167)

We now go over to the square root coordinates uµ transforming −Er into the har-
monic potential −E(uµ)2 and the Laplacian ∇

2 into gµν∂µ∂ν − Γµ
µλ∂λ. The geo-

metric property Γµ
µλ = 0 ensures now the absence of the second term and the result

is simply gµν∂µ∂ν . Since g
µν = δµν/4r, the Schrödinger equation (13.167) takes the

simple form

[

− 1

8M
h̄2∂2µ − E(uµ)2

]

ψ(uµ) = e2ψ(uµ). (13.168)

Due to the factor (uµ)2 accompanying the energy E, the physical scalar product in
which the states of different energies are orthogonal to each other is given by

〈ψ′|ψ〉 =
∫

d4uψ′(uµ)(uµ)2ψ(u). (13.169)

This corresponds precisely to the scalar product given in Eq. (11.95) with the pur-
pose of making the Laplace operator (here ∆ = (1/4u2)∂2

u
) hermitian in the uµ-space
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with torsion. Indeed, the once-contracted torsion tensor Sµ = Sµν
ν can be written

as a gradient of a scalar function:

Sµ = ∂µσ(~u), σ(~u) =
1

2
log ~u2. (13.170)

Quite generally, we have shown in Eq. (11.104) that if Sµ(q) is a partial derivative
of a scalar field σ(q), the physical scalar product is given by (11.95):

〈ψ2|ψ1〉phys ≡
∫

dDq
√

g(q)e−2σ(q)ψ∗
2(q)ψ1(q). (13.171)

From (13.137), we have

√
g = 16~u4, (13.172)

so that the physical scalar product is

〈ψ2|ψ1〉phys =
∫

d4u
√
ge−2σψ∗

2(~u)ψ1(~u) =
∫

d4u 16~u2ψ∗
2(~u)ψ1(~u). (13.173)

The Laplace operator obtained from ∂2~x by the nonholonomic Kustaanheimo-
Stiefel transformation is ∆ = (1/4~u2)∂2µ. This is Hermitian in the physical scalar
product (13.173), but not in the naive one (11.90) with the integral measure
∫

d4u 16~u4.
In two dimensions, the torsion vanishes and the physical scalar product reduces

to the naive one:

〈ψ2|ψ1〉phys =
∫

d2u
√
gψ∗

2(u)ψ1(u) =
∫

d2u 4u2ψ∗
2(u)ψ1(u). (13.174)

With µ = 4M and −E = µω2/2, Eq. (13.168) is the Schrödinger equation of a
harmonic oscillator:

[

− 1

2µ
h̄2∂2µ +

µ

2
ω2(uµ)2

]

ψ(uµ) = Eψ(uµ). (13.175)

The eigenvalues of the pseudoenergy E are

EN = h̄ω(N +Du/2), (13.176)

where Du = 4 is the dimension of uµ-space,

N =
Du
∑

i=1

ni (13.177)

sums up the integer principal quantum numbers of the factorized wave functions in
each direction of the uµ-space. The multivaluedness of the mapping from x to uµ

allows only symmetric wave functions to be associated with Coulomb states. Hence
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N must be even and can be written as N = 2(n− 1). The pseudoenergy spectrum
is therefore

En = h̄ω 2(n+Du/4− 1), n = 1, 2, 3, . . . . (13.178)

According to (13.175), the Coulomb wave functions must all have a pseudoenergy

En = e2. (13.179)

The two equations are fulfilled if the oscillator frequency has the discrete values

ω = ωn ≡ e2

2(n+Du/4− 1)
, n = 1, 2, 3 . . . . (13.180)

With ω2 = −E/2M and Du = 4, this yields the Coulomb,energies

En = −2Mω2
n = −Me4

h̄2
1

2n2
= −Mc2

α2

2n2
, (13.181)

showing that the number N/2 = n− 1 corresponds to the usual principal quantum
number of the Coulomb wave functions.

Let us now focus our attention upon the three-dimensional Coulomb system
where Du = 4. In this case, not all even oscillator wave functions correspond to
Coulomb bound-state wave functions. This follows from the fact that the Coulomb
wave functions do not depend on the dummy fourth coordinate x4 (or the dummy
angle γ). Thus they satisfy the constraint ∂x4ψ = 0, implying in uµ-space [recall
(13.137)]

−ir∂x4ψ(x) = −ire4µ∂µψ(uµ) = −i1
2

[

(u2∂1 − u1∂2) + (u4∂3 − u3∂4)
]

ψ(uµ)

= −i∂γψ(uµ) = 0. (13.182)

The explicit construction of the oscillator and Coulomb bound-state wave func-
tions is most conveniently done in terms of the complex coordinates (13.101). In
terms of these, the constraint (13.182) reads

1

2
[z̄∂z̄ − z∂z ]ψ(z, z

∗) = 0. (13.183)

This will be used below to select the Coulomb states.

To solve the Schrödinger equation (13.175) we simplify the notation by going
over to atomic natural units , where h̄ = 1,M = 1, e2 = 1, µ = 4M = 4. All
lengths are measured in units of the Bohr radius (4.376), whose numerical value
is aH = h̄2/Me2 = 5.2917 × 10−9 cm, all energies in units of EH ≡ e2/aH =
Me4/h̄2 = 4.359 × 10−11 erg = 27.210 eV, and all frequencies ω in units of ωH ≡
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Me4/h̄3 = 4.133 × 1016/sec(= 4π× Rydberg frequency νR). Then (13.175) reads
(after multiplication by 4M/h̄2)

ĥψ(uµ) ≡ 1

2

[

−∂2µ + 16ω2(uµ)2
]

ψ(uµ) = 4ψ(uµ). (13.184)

The spectrum of the operator ĥ is obviously 4ω(N + 2) = 8ωn. To satisfy the
equation, the frequency ω has to be equal to ωn = 1/2n.

We now observe that the operator ĥ can be brought to the standard form

ĥs =
1

2

[

−∂2µ + 4(uµ)2
]

, (13.185)

with the help of the ω-dependent transformation

ĥ = 4ωeiϑD̂ĥse−iϑD̂, (13.186)

in which the operator D̂ is an infinitesimal dilation operator which in this context
is called tilt operator [12, 13]:

D̂ ≡ −1

2
iuµ∂µ, (13.187)

and ϑ is the tilt angle

ϑ = log(2ω). (13.188)

The Coulomb wave functions are therefore given by the rescaled solutions of the
standardized Schrödinger equation (13.185):

ψ(uµ) = eiϑD̂ψs(uµ) = ψs(
√
2ωuµ). (13.189)

Note that for a solution with a principal quantum number n the scale parameter√
2ω depends on n:

ψn(u
µ) = ψs

n(u
µ/
√
n). (13.190)

The standardized wave functions ψs
n(u

µ) are constructed most conveniently
by means of four sets of creation and annihilation operators â†1, â

†
2, b̂

†
1, b̂

†
2, and

â1, â2, b̂1, b̂2. They are combinations of z1, z2, their complex-conjugates, and the
associated differential operators ∂z1 , ∂z2 , ∂z∗1 , ∂z∗2 . The combinations are the same as
in (9.127), (9.128), written down once for z1 and once for z2. In addition, we choose
the indices so that ai and bi transform by the same spinor representation of the
rotation group. If cij is the 2× 2 matrix

c = iσ2 =

(

0 1
− 1 0

)

, (13.191)
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then cijzj transforms like z∗i . We therefore define the creation operators

â†1 ≡ − 1√
2
(−∂z∗

2
+ z2), b̂†1 ≡

1√
2
(−∂z1 + z∗1),

â†2 ≡
1√
2
(−∂z∗

1
+ z1), b̂†2 ≡

1√
2
(−∂z2 + z∗2), (13.192)

and the annihilation operators

â1 ≡ − 1√
2
(∂z2 + z∗2), b̂1 ≡

1√
2
(∂z∗1 + z1),

â2 ≡
1√
2
(∂z1 + z∗1), b̂2 ≡

1√
2
(∂z∗2 + z2). (13.193)

Note that ∂†z = −∂z∗ . The standardized oscillator Hamiltonian is then

ĥs = 2(â†â + b̂†b̂+ 2), (13.194)

where we have used the same spinor notation as in (13.99). The ground state of the
four-dimensional oscillator is annihilated by â1, â2 and b̂1, b̂2. It has therefore the
wave function

〈z, z∗|0〉 = ψs,0000(z, z
∗) =

1√
π
e−z1z∗1−z2z∗2 =

1√
π
e−(uµ)2 . (13.195)

The complete set of oscillator wave functions is obtained, as usual, by applying the
creation operators to the ground state,

|na
1, n

a
2, n

b
1, n

b
2〉 = Nna

1 ,n
a
2 ,n

b
1,n

b
2
â
†na

1
1 â

†na
2

2 b̂
†nb

1
1 b̂

†nb
2

2 |0〉, (13.196)

with the normalization factor

Nna
1
,na

2
,nb

1
,nb

2
=

1
√

na
1!n

a
2!n

b
1!n

b
2!
. (13.197)

The eigenvalues of ĥs are obtained from the sum of the number of a- and b-quanta
as

2(na
1 + na

2 + nb
1 + nb

2 + 2) = 2(N + 2) = 4n. (13.198)

The Coulomb bound-state wave functions are in one-to-one correspondence with
those oscillator wave functions which satisfy the constraint (13.183), which may
now be written as

L̂05 = −1

2
(â†â− b̂†b̂)ψs = 0. (13.199)

These states carry an equal number of a- and b-quanta. They diagonalize the (mu-
tually commuting) a- and b-spins

L̂a
i ≡

1

2
â†σiâ, L̂a

i ≡
1

2
b̂†σib̂, (13.200)
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with the quantum numbers

la = (na
1 + na

2)/2, ma = (na
1 − na

2)/2,

lb = (nb
1 + nb

2)/2, mb = (nb
1 − nb

2)/2, (13.201)

where l, m are the eigenvalues of L̂2, L̂3. By defining

na
1 ≡ n1 +m, na

2 ≡ n2, nb
1 = n2 +m, nb

2 = n1, for m ≥ 0,

na
1 ≡ n1, na

2 ≡ n2 −m, nb
1 = n2, nb

2 = n1 −m, for m ≤ 0, (13.202)

we establish contact with the eigenstates |n1, n2, m〉 which arise naturally when diag-
onalizing the Coulomb Hamiltonian in parabolic coordinates. The relation between
these states and the usual Coulomb wave function of a given angular momentum
|nlm〉 is obvious since the angular momentum operator L̂i is equal to the sum of a-
and b-spins. The rediagonalization is achieved by the usual vector coupling coeffi-
cients (see the last equation in Appendix 13A).

Note that after the tilt transformation (13.189), the exponential behavior of
the oscillator wave functions ψs

n(u
µ) ∝ polynomial(uµ) × e−(uµ)2 goes correctly

over into the exponential r-dependence of the Coulomb wave functions ψ(x) ∝
polynomial(x)× e−r/n.

It is important to realize that although the dilation operator D̂ is Hermitian
and the operator eiϑD̂ at a fixed angle ϑ is unitary, the Coulomb bound states ψn,
arising from the complete set of oscillator states ψs

n by applying eiϑD̂ , do not span
the Hilbert space. Due to the n-dependence of the tilt angle ϑn = log(1/n), a
section of the Hilbert space is not reached. The continuum states of the Coulomb
system, which are obtained by tilting another complete set of states, precisely fill
this section. Intuitively we can understand this incompleteness simply as follows.
The wave functions ψs

n(u
µ) have for increasing n spatial oscillations with shorter and

shorter wavelength. These allow the completeness sum
∑

n ψ
s
n(u

µ)ψs∗
n (uµ) to build

up a δ-function which is necessary to span the Hilbert space. In contrast, when
forming the sum of the dilated wave functions

∑

n

ψs
n(u

µ/
√
n)ψs∗

n (uµ/
√
n),

the terms of larger n have increasingly stretched spatial oscillations which are not

sufficient to build up an infinitely narrow distribution.
A few more algebraic properties of the creation and annihilation operator repre-

sentation of the Coulomb wave functions are collected in Appendix 13A and 13.10.

13.8 Angular Decomposition of Amplitude,

and Radial Wave Functions

Let us also give an angular decomposition of the fixed-energy amplitude. This
serves as a convenient starting point for extracting the radial wave functions of the
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Coulomb system which will, in Chapter 14, enable us to find the Coulomb amplitude
to D dimensions. We begin with the expression (13.133),

(xb|xa)E = −iMκ

πh̄

∫ 1

0
d̺

̺−ν

(1− ̺)2
I0

(

2κ
2
√
̺

1− ̺

√

(rbra + xbxa)/2

)

× exp

{

−κ1 + ̺

1 − ̺
(rb + ra)

}

, (13.203)

and rewrite the Bessel function as I0(z cos(θ/2)), where θ is the relative angle be-
tween xa and xb, and

z ≡ 2κ
√
rbra

2
√
̺

1− ̺
. (13.204)

Now we make use of the expansion1

(

1

2
kz
)µ−ν

Iν(kz) = kµ
∞
∑

l=0

1

l!

Γ(l + µ)

Γ(1 + ν)
(2l + µ)F (−l, l + µ; 1 + ν; k2)(−)lI2l+µ(z).

(13.205)

Setting k = cos(θ/2), ν = 2q > 0, µ = 1 + 2q, and using formulas (1.445), (1.446)
for the rotation functions, this becomes

I2q(z cos(θ/2)) =
2

z

∞
∑

l=|q|

(2l + 1)dlqq(θ)I2l+1(z), (13.206)

reducing for q = 0 to

I0(z cos(θ/2)) =
2

z

∞
∑

l=0

(2l + 1)Pl(cos θ)I2l+1(z). (13.207)

After inserting this into (13.133) and substituting y = − 1
2 log ̺, so that

̺ = e−2y, z = 2κ
√
rbra

1

sinh y
, (13.208)

we expand the fixed-energy amplitude into spherical harmonics

(xb|xa)E =
1

rbra

∞
∑

l=0

(rb|ra)E,l
2l + 1

4π
Pl(cos θ)

=
1

rbra

∞
∑

l=0

(rb|ra)E,l

l
∑

m=−l

Ylm(x̂b)Y
∗
lm(x̂a), (13.209)

1G.N. Watson, Theory of Bessel Functions , Cambridge University Press, London, 1966, 2nd
ed., p.140, formula (3).
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with the radial amplitude

(rb|ra)E,l = −i√rbra
2M

h̄

∫ ∞

0
dy

1

sinh y
e2νy (13.210)

× exp [−κ coth y(rb + ra)] I2l+1

(

2κ
√
rbra

1

sinh y

)

.

Now we apply the integral formula (9.29) and find

(rb|ra)E,l = −iM
h̄κ

Γ(−ν + l + 1)

(2l + 1)!
Wν,l+1/2 (2κrb)Mν,l+1/2 (2κra) . (13.211)

On the right-hand side the energy E is contained in the parameters κ =
√

−2ME/h̄2

and ν =e2/2ωh̄=
√

−e4M/2h̄2E. The Gamma function has poles at ν = n with
n = l + 1, l + 2, l + 3, . . . . These correspond to the bound states of the Coulomb
system at the energy eigenvalues

En = −Me4

h̄2
1

2n2
= −Mc2

α2

2n2
. (13.212)

Writing

κ =
1

aH

1

ν
, (13.213)

with the Bohr radius

aH ≡ h̄2

Me2
(13.214)

(for the electron, aH ≈ 0.529× 10−8cm), we have the approximations near the poles
at ν ≈ n,

Γ(−ν + l + 1) ≈ −(−)nr

nr!

1

ν − n
,

1

ν − n
≈ 2

n

h̄2κ2

2M

1

E −En
,

κ ≈ 1

aH

1

n
, (13.215)

where nr = n− l − 1. Hence

−iΓ(−ν + l + 1)
M

h̄κ
≈ (−)nr

n2nr!

1

aH

ih̄

E − En
. (13.216)

Let us expand the pole parts of the spectral representation of the radial fixed-energy
amplitude in the form

(rb|ra)E,l =
∞
∑

n=l+1

ih̄

E − En
Rnl(rb)Rnl(ra) + . . . . (13.217)
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The radial wave functions defined by this expansion correspond to the normalized
bound-state wave functions

ψnlm(x) =
1

r
Rn,l(r)Ylm(x̂). (13.218)

By comparing the pole terms of (13.211) and (13.217) [using (13.216) and formula
(9.48) for the Whittaker functions, together with (9.50)], we identify the radial wave
functions as

Rnl(r) =
1

a
1/2
H n

1

(2l + 1)!

√

√

√

√

(n+ l)!

(n− l − 1)!

× (2r/naH)
l+1e−r/naHM(−n + l + 1, 2l + 2, 2r/naH)

=
1

a
1/2
H n

√

√

√

√

(n− l − 1)!

(n+ l)!
e−r/naH (2r/naH)

l+1L2l+1
n−l−1(2r/naH). (13.219)

To obtain the last expression we have used formula (9.53).2 It must be noted that
the normalization integrals of the wave functions Rnl(r) differ by a factor z/2n =
(2r/naH)/2n from those of the harmonic oscillator (9.54), which are contained in
integral tables. However, due to the recursion relation for the Laguerre polynomials

zLµ
n(z) = (2n+ µ+ 1)Lµ

n(z)− (n + µ)Lµ
n−1(z)− (n + 1)Lµ

n+1(z), (13.220)

the factor z/2n leaves the values of the normalization integrals unchanged. The
orthogonality of the wave functions with different n is much harder to verify since
the two Laguerre polynomials in the integrals have different arguments. Here the
group-theoretic treatment of Appendix 13A provides the simplest solution. The
orthogonality is shown in Eq. (13A.28).

We now turn to the continuous wave functions. The fixed-energy amplitude has
a cut in the energy plane for positive energy where κ = −ik and ν = i/aHk are
imaginary. In this case we write ν = iν ′. From the discontinuity we can extract the
scattering wave functions. The discontinuity is given by

disc (rb|ra)E,l = (rb|ra)E+iη,l − (rb|ra)E−iη,l

=
M

h̄k

[

Γ(−iν ′ + l + 1)

(2l + 1)!
Wiν′,l+1/2 (−2ikrb)Miν′,l+1/2 (−2ikra) + (ν ′→ −ν ′)

]

.(13.221)

In the second term, we replace

Miν′,l+1/2(−2ikr) = e−iπ(l+1)M−iν′,l+1/2(2ikr), (13.222)

and use the relation, valid for arg z ∈ (−π/2, 3π/2), 2µ 6= −1,−2,−3, . . . ,

Mλ,µ(z) =
Γ(2µ+ 1)

Γ(µ+ λ+ 1/2)
eiπλe−iπ(µ+1/2)Wλ,µ(z) +

Γ(2µ+ 1)

Γ(µ− λ+ 1/2)
eiπλW−λ,µ(e

iπz),

(13.223)

2Compare L.D. Landau and E.M. Lifshitz, Quantum Mechanics , Pergamon, London, 1965,
p. 119. Note the different definition of our Laguerre polynomials Lµ

n =[(−)µ/(n+ µ)!]Ln+µ
µ|L.L..
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to find

disc (rb|ra)E,l =
M

h̄k

|Γ(−iν ′ + l + 1)|2
(2l + 1)!2

eπν
′

Miν′,l+1/2 (−2ikrb)M−iν′,l+1/2 (2ikra) .

(13.224)
The continuum states enter the completeness relation as

∫ ∞

0

dE

2πh̄
disc (rb|ra)E,l +

∞
∑

n=l+1

Rnl(rb)R
∗
nl(ra) = δ(rb − ra) (13.225)

[compare (1.330)]. Inserting (13.221) and replacing the continuum integral
∫∞
0 dE/2πh̄ by the momentum integral

∫∞
−∞ dkkh̄/2πM , the continuum part of the

completeness relation becomes
∫ ∞

−∞
dkRkl(rb)R

∗
kl(ra), (13.226)

with the radial wave functions

Rkl(r) =

√

1

2π

|Γ(−iν ′ + l + 1)|
(2l + 1)!

eπν
′/2Miν′,l+1/2(−2ikr). (13.227)

By expressing the Whittaker function Mλ,µ(z) in terms of the confluent hypergeo-
metric functions, the Kummer functions M(a, b, z), as

Mλ,µ(z) = zµ+1/2e−z/2M(µ − λ+ 1/2, 2µ+ 1, z), (13.228)

we recover the well-known result of Schrödinger quantum mechanics:3

Rkl(r) =

√

1

2π

|Γ(−iν ′ + l + 1)|
(2l + 1)!

eπν
′/2eikr(−2ikr)l+1M(−iν ′ + l + 1, 2l + 2,−2ikr).

(13.229)

13.9 Remarks on Geometry of Four-Dimensional uµ-Space

A few remarks are in order on the Riemann geometry of the ~u-space in four dimen-
sions with the metric gµν = 4~u2δµν . As in two dimensions, the Cartan curvature
tensor Rµνλ

κ vanishes trivially since eiµ(~u) is linear in ~u:

(∂µ∂ν − ∂ν∂µ)e
i
λ(~u) = 0. (13.230)

In contrast to two dimensions, however, the Riemann curvature tensor R̄µνλ
κ is

nonzero. The associated Ricci tensor [see (10.41)], has the matrix elements

R̄νλ = R̄µνλ
µ

= − 3

2~u 6
(δνλ~u

2 − ~uν~uλ), (13.231)

3L.D. Landau and E.M. Lifshitz, op. cit., p. 120.
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yielding the scalar curvature

R̄ = gνλR̄νλ = − 9

2~u4
. (13.232)

In general, a diagonal metric of the form

gµν(q) = Ω2(q)δµν (13.233)

is called conformally flat since it can be obtained from a flat space with a unit metric
gµν = δµν by a conformal transformation a la Weyl

gµν(q) → Ω2(q)gµν(q). (13.234)

Under such a transformation, the Christoffel symbol changes as follows:

Γ̄µν
λ → Γ̄ λ

µν + Ω,µδν
λ + Ω,νδµ

λ − gµνg
λκΩ,κ, (13.235)

the subscript separated by a comma indicating a differentiation, i.e., Ω,µ ≡ ∂µΩ.
In D dimensions, the Ricci tensor changes according to

R̄µν → Ω−2R̄µν − (D − 2)(Ω−3Ω;µν − 2Ω−4Ω,µΩ,ν)

−gµνgλκ
[

(D − 3)Ω−4Ω,λΩ,κ + Ω−3Ω;λκ

]

= Ω−2R̄µν + (D − 2)Ω−1(Ω−1);µν − gµν(D − 2)−1Ω−D(ΩD−2);λκg
λκ. (13.236)

A subscript separated by a semicolon denotes the covariant derivative formed with
Riemann connection, i.e.,

Ω;µν = DνΩ,µ = Ωµν − Γ̄µν
λΩ,λ. (13.237)

The curvature scalar goes over into

R̄ → R̄Ω = Ω−2
[

R̄ − 2(D − 1)Ω−1Ω;µνg
µν− (D − 1)(D − 4)Ω−2Ω,µΩ,νg

µν
]

.(13.238)

The metric gµν = 4~u2δµν in the ~u-space description of the hydrogen atom is
conformally flat, so that we can use the above relations to obtain all geometric
quantities from the initially trivial metric gµν = δµν with R̄µν = 0 by inserting
Ω = 2|~u|, so that

Ω,µ = 2
uµ

|~u| , Ω,µν =
2

|~u|3 (δ
µν~u2 − uµuν). (13.239)

From the right-hand sides of (13.236) and (13.238) we obtain

R̄µν = −3(D − 2)
1

4~u 6
(δµν~u

2 − ~uµ~uν),

R̄ = −3(D − 1)(D − 2)
1

4~u4
. (13.240)
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For D = 4, these agree with (13.231) and (13.232). For D = 2, they vanish.
In the Coulomb system, the conformally flat metric (13.234) arose from the non-

holonomic coordinate transformation (13.106) with the basis tetrads (13.137) and
their inverses (13.138), which produced the torsion tensor (13.142). In the notation
(13.234), the torsion tensor has a contraction

Sµ(q) ≡ Sµνλ(q) =
1

2Ω2(q)
∂µΩ

2(q). (13.241)

Note that although Sµ(q) is the gradient of a scalar field, the torsion tensor (13.142)
is not a so-called gradient torsion, which is defined by the general form

Sµν
λ(q) =

1

2

[

δµ
λ∂νs(q)− δν

λ∂µs(q)
]

. (13.242)

For a gradient torsion, Sµ(q) is also a gradient: Sµ(q) = ∂µσ(q) where σ(q) =
(D−1)s(q)/2. But it is, of course, not the only tensor, for which Sµ(q) is a gradient.

Note that under a conformal transformation a la Weyl, a massless scalar field
φ(q) is transformed as

φ(q) → Ω1−D/2(q)φ(q). (13.243)

The Laplace-Beltrami differential operator ∆ = D̄2 applied to φ(q) goes over into
Ω1−D/2(q)∆Ωφ(q) where

∆Ω = Ω−2
[

∆− 1

2
(D − 2)Ω−1Ω;µνg

µν − 1

4
(D − 2)(D − 4)Ω−2Ω,µΩ,νg

µν
]

. (13.244)

Comparison with (13.240) shows that there exists a combination of ∆ = D̄2 and the
Riemann curvature scalar R̄ which may be called Weyl-covariant Laplacian. This
combination is

∆− 1

4

D − 2

D − 1
R̄. (13.245)

When applied to the scalar field it transforms as
(

∆− 1

4

D − 2

D − 1
R̄
)

φ(q)−−−→ Ω−1−D/2
(

∆− 1

4

D − 2

D − 1
R̄
)

φ(q). (13.246)

Thus we can define a massless scalar field in a conformally invariant way by requiring
the vanishing of (13.246) as a wave equation. This symmetry property has made
the combination (13.245) a favorite Laplacian operator in curved spaces [14].

13.10 Runge-Lenz-Pauli Group of Degeneracy

A well-known symmetry of the Kepler problem was used by Pauli to find the spec-
trum of the Coulomb problem by purely algebraic manipulations. There exists a
vector operator M̂ constructed from the Hamilton operator Ĥ of (13.1), the mo-
mentum operator p, the angular momentum operator L̂ ≡ x× p̂, and the operator

p̂E ≡
√

−2MĤ . This is the Runge-Lenz-Pauli vector :

M̂ =
M

p̂E

[

1

2M
(p̂× L̂− L̂× p̂)− e2

r

r

]

, (13.247)
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which commutes with Ĥ and is therefore a conserved quantity. Together with L̂ it
forms the algebra of rotations O(4) in a four-dimensional space

[L̂i, L̂j] = iǫijkL̂k, [L̂i, M̂j] = iǫijkM̂k, [M̂i, M̂j] = iǫijkM̂k. (13.248)

The vector M̂ is orthogonal to L̂,

M̂ · L̂ = L̂ · M̂ = 0, (13.249)

and satisfies

L̂2 + M̂2 + h̄2 = −e4 M
2Ĥ

= e4
M2

p̂2E
. (13.250)

The combinations

Ĵ(1,2) ≡ 1

2
(L̂± M̂) (13.251)

generate commuting Lie algebras of three-dimensional rotations O(3), so that the

squares
(

Ĵ(1,2)
)2

have the eigenvalues j(1,2)(j(1,2)+1). The condition (13.249) implies

that j(1) = j(2) = j. Hence (13.250) becomes

L̂2 + M̂2 + h̄2= 4(L̂± M̂)2 + h̄2 = [4j(j+1)+1]h̄2 = e4
M2

p̂2E
= −h̄2α2Mc2

2Ĥ
.(13.252)

From this follows that p̂E has the eigenvalues (2j + 1)αMc, and Ĥ the eigenvalues
Ej = −Mc2α2/(2j + 1)2. Thus we identify the principal quantum number as n =

2j+1 = 0, 1, 2, . . . . For each n, the magnetic quantum numbers m1 and m2 of Ĵ
(1)

and Ĵ(2) can run from −j to j, so that each level is (2j+1)2 = n2-times degenerate.
The wave functions of the hydrogen atom of principal quantum number n are

direct products of eigenstates of Ĵ(1) and Ĵ(2):

|nm1m2〉 = |jm1〉(1) ⊗ |jm2〉(2). (13.253)

In atomic physics, one prefers combinations of these which diagonalize the orbital an-
gular momentum L̂ = Ĵ(1)+ Ĵ(2). This done with the help of the Clebsch-Gordan co-
efficients (j,m1; j,m2|l, m) [18] which couple spin j with spin j to spin l = 0, 1, . . . 2j:

|n lm〉 =
∑

m1,m2=−j,...,j

|jm1〉(1) ⊗ |jm2〉(2) (j,m1; j,m2|l, m). (13.254)

13.11 Solution in Momentum Space

The path integral for a point particle in a Coulomb potential can also be solved in
momentum space.
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13.11.1 Pseudotime Path Integral

As in the coordinate space treatment in Section 13.1, we shall calculate the matrix
elements of the pseudotime displacement amplitude associated with the the resolvent
operator R̂ ≡ i/(E − Ĥ). As in Eq. (12.19), we shall rewrite it in the form

R̂ =
i

f̂(E − Ĥ)
f̂ (13.255)

where f is an arbitrary function of space, momentum. Rewriting the the path
integral (12.31) in the momentum space representation (2.34), we shall evaluate the
canonical path integral for the pseudotime displacement amplitude with M = 1:

〈pb|ÛE(S)|pa〉 =
∫

D3x(s)
∫ D3p(s)

2πh̄

× exp

{

i
∫ S

0
ds

[

−p′ · x− f

(

p2

2
− E

)

+ f
α

r

]}

fa. (13.256)

From this we find the fixed-energy amplitude via the integral [compare (13.4)]

(pb|pa)
f
E =

∫ ∞

0
dS 〈pb|ÛE(S)|pa〉. (13.257)

The left-hand side carries a superscript f to remind us of the presence of f on the
right-hand side, although the amplitude does not really depend on f . This freedom
of choice may be viewed as a gauge invariance [17] of (13.257) under f → f ′. Such
an invariance permits us to subject (13.257) to an additional path integration over
f , as long as a gauge-fixing functional Φ[f ] ensures that only a specific “gauge”
contributes. Thus we shall calculate the amplitude (13.257) as a path integral

(pb|pa)E =
∫

Df Φ[f ] (pb|pa)
f
E. (13.258)

The only condition on Φ[f ] is that it must be normalized to have a unit integral:
∫ Df Φ[f ] = 1. The choice which leads to the desired solution of the path integral is

Φ[f ] =
∏

s

1

r
exp







− i

2r2

[

f − r2
(

p2

2
− E

)]2






. (13.259)

With this, the total action in the path integral (13.258) becomes

A[p,x, f ] =
∫ S

0
ds



−p′ · x− r2

2

(

p2

2
− E

)2

− 1

2r2
f 2 +

f

r
α



 . (13.260)

The path integrals over f and x in (13.258) are Gaussian and can be done, in this
order, yielding a new action

A[p] =
1

2

∫ S

0
ds

[

4p′2

(p2 + p2E)
2 + α2

]

, (13.261)
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where we have introduced pE ≡
√
−2E, assuming E to be negative. The positive

regime can later be obtained by analytic continuation.
At this point we go to a more symmetric coordinate system in momentum space

by projecting the three-vectors p stereographically to the four-dimensional unit vec-
tors ~π ≡ (�, π4):

� ≡ 2pEp

p2 + p2E
, π4 ≡

p2 − p2E
p2 + p2E

. (13.262)

This brings (13.261) to the form

A[~π] =
1

2

∫ S

0
ds

(

1

p2E
~π′2 + α2

)

. (13.263)

The vector ~π describes a point particle with pseudomass µ = 1/p2E moving on a
four-dimensional unit sphere. The pseudotime evolution amplitude of this system is

(~πbS|~πa0) =
∫ D~π

(2π)3/2p3E
eiA[~π]. (13.264)

Let us see how the measure arises. When integrating out the spatial fluctua-
tions in going from (13.260) to (13.261), the canonical measure in each time slice
[d3pn/(2π)

3]d3xn becomes [d3pn/(2π)
3][(2π)1/2/(p2

n + p2E)]
3. From the stereographic

projection (13.262) we see that this is equal to d~πn/(2π)
3/2p3E , where d~πn denotes

the product of integrals over the solid angle on the surface of the unit sphere in four
dimensions. The integral

∫

d~π yields the total surface 2π2. Alternatively we may
rewrite as in Eq. (1.560),

∫

d~πn =
∫

d4πnδ(|~πn| − 1) = 2
∫

d4πnδ(~π
2
n − 1), or use an

explicit angular form of the type (8.120) or (8.124).
The expression (13.264) was obtained by purely formal manipulations on the con-

tinuum pseudotime axis and needs, therefore, pseudotime-slicing corrections similar
to Section 13.5. For the motion on a spherical surface these have to be evaluated by
the methods of Chapter 10. There we learned that the proper sliced path integral
we know that in a curved space, the time-sliced measure of path integration is given

by the product of invariant integrals
∫

dqn
√

g(qn) at each time slice, multiplied by an

effective action contribution exp(iAǫ
eff(qn)) = exp(iǫR̄(qn)/6µ), where R̄ is the scalar

curvature. For a sphere of radius r inD dimensions, R̄ = (D−1)(D−2)/r2, implying
here for D = 4 that exp(iAǫ

eff) = exp(iǫ/µ) = exp(iǫ p2E). Thus, when transforming
the time-sliced measure in the path integral (13.256) to the time-sliced measure on
the sphere in (13.264), a factor eiS p2

E is by definition contained in the measure of
the path integral (13.264) [compare (10.153), (10.154)]. This has to be compensated
by a prefactor e−iS p2

E . A careful calculation of the time slicing corrections gives an
additional factor eiS p2

E
/2. The correct version of (13.264) is therefore

(~πbS|~πa0) = e−iS p2
E
/2
∫ D~π

(2π)3/2p3E
eiA[~π], (13.265)
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with the integral measure defined as in Eqs. (10.153) and (10.154).
The path integral for the motion near the surface of a sphere in four dimensions

was solved Subsection 8.7. The energies were brought on the sphere in Section 8.9.
The spectral representation was given explicitly in Eq. (8.162) in terms of rota-
tion matrices. Here we shall use the ultra-pherical harmonics Ylm1m2

(~π) defined in
Eq. (8.125). From these we construct combinations appropriate for the hydrogen
atom to be denoted by Yn,l,m(~π), where n, l,m are the quantum numbers of the
hydrogen atom with the well-known ranges (n = 1, 2, 3, . . . , l = 0, . . . , n− 1, m =
−l, . . . , l). Explictly, these combinations are formed with the help of Clebsch-
Gordan coefficients (j,m1; j,m2|l, m) [18] which couple spin j with spin j to spin
l = 0, 1, . . . 2j, where j is related to the principal quantum number by n = 2j + 1
[compare (13.254)]:

Ynlm(~π) =
∑

m1,m2=−j,...,j

Y2j,m1,m2
(~π) (j,m1; j,m2|l, m) . (13.266)

The orthonormality and completeness relations are

∫

d~π Y ∗
n′l′m′(~π)Ynlm(~π) = δnn′δll′δmm′ ,

∑

n,l,m

Ynlm(~π
′)Ynlm(~π) = δ(4)(~π′ − ~π), (13.267)

where the δ-function satisfies
∫

d~π δ(4)(~π′ − ~π) = 1. When restricting the complete
sum to l and m only we obtain the four-dimensional analog of the Legendre poly-
nomial:

∑

l,m

Ynlm(~π
′)Ynlm(~π) =

n2

2π2
Pn(cosϑ), Pn(cosϑ) =

sinnϑ

n sinϑ
, (13.268)

where ϑ is the angle between the four-vectors ~πb and ~πa:

cosϑ = ~πb~πa =
(p2

b − p2E)(p
2
a − p2E) + 4p2Epb · pa

(p2
b + p2E)(p

2
a + p2E)

. (13.269)

Adapting the solution of the path integral for a particle on the surface of a
sphere in Eqs. (8.162) with the energy correction of Section 10.4 to the present case
we obtain for the path integral in Eq. (13.265) the spectral representation

(~πbS|~πa0) = (2π)3/2p3E

∞
∑

n=1

n2

2π2
Pn(cosϑ) exp

{

[

−i(p2En2 − α2)
] S

2

}

. (13.270)

For the path integral in (13.265) itself, the exponential contains the eigenvalues of
the squared angular-momentum operator L̂2/2µ which in D dimensions are l(l +
D − 2)/2µ, l = 0, 1, 2, . . . . For the particle on a sphere in four dimensions and
with the identification l = 2j = n−1, the eigenvalues of L̂2 are n2−1, leading to an
exponential e−i[p2

E
(n2−1)−α2]S/2. Together with the exponential prefactor in (13.265),

we obtain the exponential in (13.270).
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Inserting the spectral representation (13.270) into (13.257), we can immediately
perform the integral over S, and arrive at the amplitude at zero fixed pseudoenergy

(~πb|~πa)0 = (2π)3/2p3E

∞
∑

n=1

n2

2π2
Pn(cosϑ)

2i

2En2 + α2
. (13.271)

This has poles displaying the hydrogen spectrum at energies:

En = − α2

2n2
, n = 1, 2, 3, . . . . (13.272)

More details on the wave functions are listed in Appendix 13B.
The solution in momentum space was first given by Schwinger [?, 20, 21].

13.11.2 Another Form of Action

Consider the following generalization of the action (13.261) containing an arbitrary
function h depending on p and s:

A[p] =
1

2

∫ S

0
ds

[

1

h

4p′2

(p2 + p2E)
2 + α2h

]

. (13.273)

This action is invariant under reparametrizations s → s′ if one transforms simulta-
neously h → hds/ds′. The path integral with the action (13.261) in the exponent
may thus be viewed as a path integral with the gauge-invariant action (13.273) and
an additional path integral

∫

df Φ[f ] with an arbitrary gauge-fixing functional Φ[h].
The parameter s may be chosen to be the physical time t. By going to the extremum
in h, the action reduces to

A[p] = 2α
∫ τb

τa
dτ

√

√

√

√

ṗ2

(p2 + p2E)
2 . (13.274)

This is the manifestly reparametrization invariant form of an action in a curved
space with a metric gµν = δµν/ (p2 + p2E)

2
. In fact, this action coincides with the

classical eikonal in momentum space:

S(pb,pa;E) = −
∫

pb

pa

dτ ṗ · x. (13.275)

The eikonal (13.275), and thus the action (13.274), determines the classical orbits
via the first extremal principle of theoretical mechanics found in 1744 by Maupertius
(see p. 380 and [22]).

Appendix 13A Dynamical Group of Coulomb States

The subspace of oscillator wave functions ψs(uµ/
√
n) in the standardized form (13.189), which do

not depend on x4 (i.e., on γ), is obtained by applying an equal number of creation operators a†
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and b† to the ground state wave function (13.195). They are equal to the scalar products between
the localized bra states 〈z, z∗| and the ket states |na

1 , n
a
2 , n

b
1, n

b
2〉 of (13.196).

These ket states form an irreducible representation of the dynamical group O(4,2), the or-
thogonal group of six-dimensional flat space whose metric gAB has four positive and two negative
entries (1, 1, 1, 1,−1,−1).

The 15 generators L̂AB ≡ −L̂BA, A,B = 1, . . . 6, of this group are constructed from the
spinors

â ≡
(

â1
â2

)

, b̂ ≡
(

b̂1
b̂2

)

, (13A.1)

and their Hermitian-adjoints, using the Pauli σ-matrices and c ≡ iσ2, as follows (since Lij carry
subscripts, we define σi ≡ σi):

L̂ij = 1
2

(

â†σk â+ b̂†σk b̂
)

i, j, k = 1, 2, 3 cyclic,

L̂i4 = 1
2

(

â†σiâ− b̂†σib̂
)

,

L̂i5 = 1
2

(

â†σicb̂
† − âcσib̂

)

,

L̂i6 = i
2

(

â†σicb̂
† + âcσib̂

)

,

L̂45 = 1
2i

(

â†cb̂† − âcb̂
)

,

L̂46 = 1
2

(

â†cb̂† + âcb̂
)

,

L̂56 = 1
2

(

â†â+ b̂†b̂+ 2
)

. (13A.2)

The eigenvalues of L̂56 on the states with an equal number of a- and b-quanta are obviously

1

2

(

na
1 + na

2 + nb
1 + nb

2 + 2
)

= n. (13A.3)

The commutation rules between these operators are

[L̂AB, L̂AC ] = igAAL̂BC , (13A.4)

where n is the principal quantum number [see (13.198)]. It can be verified that the following
combinations of position and momentum operators in a three-dimensional Euclidean space are
elements of the Lie algebra of O(4,2):

r = L̂56 − L̂46,

xi = L̂i5 − L̂i4,

−i(x∂x + 1) = L̂45,

−ir∂xi = L̂i6. (13A.5)

The last equation follows from the transformation formula [recall (13.138)]

∂xi =
1

2~u2
eiµ∂µ (13A.6)

together with

u1 = 1
2
(z1 + z∗1), u2 = 1

2i
(z1 − z∗1),

u3 = 1
2 (z2 + z∗2), u4 = 1

2i (z2 − z∗2), (13A.7)
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and

∂1 = (∂z1 + ∂z∗

1
), ∂2 = i(∂z1 − ∂z∗

1
),

∂3 = (∂z2 + ∂z∗

2
), ∂4 = i(∂z2 − ∂z∗

2
). (13A.8)

Hence

−ir∂xi = − i
2 (z̄σi∂z̄ + ∂zσiz). (13A.9)

By analogy with (13A.2), the generators L̂AB can be expressed in terms of the z, z∗-variables as
follows:

L̂ij = 1
2
(z̄σk∂z̄ − ∂zσkz),

L̂i4 = − 1
2
(z̄σiz − ∂zσi∂z̄),

L̂i5 = 1
2
(z̄σiz + ∂zσi∂z̄),

L̂i6 = − i
2
(z̄σi∂z̄ + ∂zσiz),

L̂45 = − i
2
(z̄∂z̄ + ∂zz),

L̂46 = − 1
2
(z̄z + ∂z∂z̄),

L̂56 = 1
2
(z̄z − ∂z∂z̄). (13A.10)

Going over to the operators xi, ∂xi , they become

L̂ij = −i(xi∂xj − xj∂xi),

L̂i4 = 1
2

(

−xi∂2x − xi + 2∂xix∂x
)

,

L̂i5 = 1
2

(

−xi∂2x + xi + 2∂xix∂x
)

,

L̂i6 = −ir∂xi ,

L̂45 = −i(xi∂xi + 1),

L̂46 = 1
2(−r∂2x − r),

L̂56 = 1
2
(−r∂2x + r), (13A.11)

where the purely spatial operators ∂2x and x∂x are equal to ∂2xµ and xµ∂xµ because of the constraint
(13.182).

The Lie algebra of the differential operators (13A.11) is isomorphic to the Lie algebra of the
conformal group in four spacetime dimensions, which is an extension of the inhomogeneous Lorentz

group or Poincaré group, defined by the commutators in Minkowski space (µ, ν = 0, 1, 2, 3), whose
metric has the diagonal elements (+1,−1,−1,−1),

[Pµ, Pν ] = 0, (13A.12)

[Lµν , Pλ] = −i(gµλPν − gνλPµ), (13A.13)

[Lµν , Lλκ] = −i(gµλLνκ − gνλLµκ − gµκLνλ − gνκLµλ). (13A.14)

The extension involves the generators D of dilatations xµ → ρxµ and Kµ of special conformal

transformations4

xµ → xµ − cµx2

1 − 2cx+ c2x2
, (13A.15)

4Note the difference with respect to the conformal transformations à la Weyl in Eq. (13.234).
They correspond to local dilatations.
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with the additional commutation rules

[D,Pµ] = −iPµ, [D,Kµ] = iKµ, [D,Lµν ] = 0, (13A.16)

[Kµ,Kν] = 0, [Kµ, Pν ]=−2i(gµνD+Lµν), [Kµ, Lνλ]= i(gµνKλ − gµλKν). (13A.17)

The commutation rules can be represented by the differential operators

P̂µ = i∂µ, M̂µν = i(xµ∂ν − xν∂µ), D̂ = ixµ∂µ, (13A.18)

K̂µ = i(2xµx
ν∂ν − x2∂µ). (13A.19)

Their combinations

Jµν ≡ Lµν , Jµ5 ≡ 1
2(Pµ −Kµ), Jµ6 ≡ 1

2(Pµ +Kµ), J56 ≡ D, (13A.20)

satisfy the commutation relation of O(4,2):

[JAB, JCD] = −i(ḡACJBD − ḡBCJAD + ḡBDJAC − ḡBCJAD), (13A.21)

where the metric ḡAB has the diagonal values (+1,−1,−1,−1,−1,+1).
When working with oscillator wave functions which are factorized in the four uµ-coordinates,

the most convenient form of the generators is

L̂12 = i(u1∂2 − u2∂1 − u3∂4 + u4∂3)/2,

L̂13 = i(u1∂3 + u2∂4 − u3∂1 − u4∂2)/2,

L̂14 = −(u1u3 + u2u4) + (∂1∂3 + ∂2∂4)/4,

L̂15 = (u1u3 + u2u4) + (∂1∂3 + ∂2∂4)/4,

L̂16 = −i(u1∂3 + u2∂4 + u3∂1 + u4∂2)/2,

L̂23 = i(u1∂4 − u2∂3 + u3∂2 − u4∂1)/2,

L̂24 = −(u1u4 − u2u3) + (∂1∂4 − ∂2∂3)/4,

L̂25 = (u1u4 + u2u3) + (∂1∂4 − ∂2∂3)/4,

L̂26 = −i(u1∂4 − u2∂3 − u3∂2 + u4∂1)/2,

L̂34 = [(u1)2 + (u2)2 − (u3)2 − (u4)2]/2 + (∂21 + ∂22 − ∂23 − ∂24)/8,

L̂35 = −[(u1)2 + (u2)2 − (u3)2 − (u4)2]/2 + (∂21 + ∂22 − ∂23 − ∂24)/8,

L̂36 = −i(u1∂1 + u2∂2 − u3∂3 − u4∂4)/2,

L̂45 = −i(u1∂1 + u2∂2 + u3∂3 + u4∂4 + 2)/2,

L̂46 = −(uµ)2/2 − ∂2µ/8,

L̂56 = (uµ)2/2 − ∂2µ/8. (13A.22)

The commutation rules (13A.4) between these generators make the solution of the Schrödinger
equation very simple. Rewriting (13.167) as

(

−aH
2
r∇2 − E

EH

r

aH
− 1

)

ψ(x) = 0, (13A.23)

and going to atomic natural units with aH = 1, EH = 1, we express r∂2x and r in terms of L̂46, L̂56

via (13A.11). This gives
[

1

2
(L̂56 + L̂46) − E(L̂56 − L̂46) − 1

]

ψ = 0. (13A.24)

With the help of Lie’s expansion formula

eiÂB̂e−iÂ = 1 + i[Â, B̂] +
i2

2!
[Â, [Â, B̂]] + . . .
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for Â = L̂45 and B̂ = L̂56 and the commutators [L̂45, L̂56] = iL45 and [L̂45, L̂46] = iL̂56, this can
be rewritten as

[

eiϑL̂45L̂56e
−iϑL̂45 − 1

]

ψ = 0, (13A.25)

with

ϑ =
1

2
log(−2E). (13A.26)

If ψn denotes the eigenstates of L̂56 with an eigenvalue n, the solutions of (13A.25) are obviously
given by the tilted eigenstates eiϑL45ψn of the generator L̂56 whose eigenvalues are n = 1, 2, 3, . . .
[as follows directly from the representation (13A.2)]. For these states, the parameter ϑ takes the
values

ϑ = ϑn = − logn, (13A.27)

with the energies En = −1/2n2.
Since the energy E in the Schrödinger equation (13A.24) is accompanied by a factor L̂46− L̂56,

the physical scalar product between Coulomb states is

〈ψ′H
n′ |ψH

n 〉phys ≡ 〈ψ′s
n′ |(L̂56 − L̂46)|ψs

n〉 = δn′n. (13A.28)

Within this scalar product, the Coulomb wave functions

ψH
n (x) =

1√
n
eiϑnD̂ψs

n(uµ) =
1√
n
ψs
n(uµ/

√
n) (13A.29)

are orthonormal.
The physical scalar product (13A.28) agrees of course with the scalar product (13.169) and

with the scalar product (11.95) derived for a space with torsion in Section 11.4, apart from a trivial
constant factor.

It is now easy to calculate the physical matrix elements of the dipole operator xi and the
momentum operator −i∂xi using the representations (13A.5). Only operations within the Lie
algebra of the group O(4,2) have to be performed. This is why O(4,2) is called the dynamical

group of the Coulomb system [13].
For completeness, let us state the relation between the states in the oscillator basis |n1n2m〉

and the eigenstates of a fixed angular momentum |nlm〉 of (13.219), which is analogous to the
combination (13.254)

|nlm〉 =
∑

n1+n2+m=(n−1)/2

× |n1n2m〉〈 1
2
(n− 1), 1

2
(n2 − n1 +m); 1

2
(n− 1), 1

2
(n1 − n2 +m)|l,m〉. (13A.30)

Appendix 13B Wave Functions in Three-Dimensional

Momentum Space

Let us introduce the Bohr momentum pH ≡ h̄/aH = Me2/h̄ and go to units where pH = 1. Then
the radial wave functions Fnl(p) with unit normalization

∫∞

0
dp p2F 2

nlm(p) = 1 are given by []

Fnl(p) =

√

2

π

√

(n− l − 1)!

(n− l)!
n222(l+1)l!

nlpl

(n2p2 + 1)l+2
C

(l+1)
n−l−1

(

n2p2 − 1

n2p2 + 1

)

, (13B.31)

where C
(λ)
n (z) are the Gegenbauer polynomials defined in (8.102), for example

C
(λ)
0 (z) = 1, C

(λ)
1 (z) = 2λz, C

(λ)
2 (z) = 2λ(λ+ 1)z2 − λ, . . . . (13B.32)
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The lowest wave functions are

F10 = 4

√

2

π

1

(p2 + 1)2
, F20 =

32√
π

4p2 − 1

(4p2 + 1)3
, F21 =

128√
3π

p

(4p2 + 1)3
. (13B.33)

In two dimensions, the momentum space wave functions were listed in Ref. [21].
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Acribus, ut ferme talia, initiis, incurioso fine

As is usual in such matters, keen in commencing, negligent at the end
Tacitus (58-120), Annales, Book 6, 17

14
Solution of Further Path Integrals
by Duru-Kleinert Method

The combination of a path-dependent time reparametrization and a compensating
coordinate transformation, used by Duru and Kleinert to transform the Coulomb
path integral into a harmonic-oscillator path integral, can be generalized to relate a
variety of path integrals to each other. In this way, many unknown path integrals
can be solved by their relation to known path integrals. In this chapter, the method
is explained for a typical sample of one-dimensional path integrals as well as for a
more involved three-dimensional system. The latter describes a generalization of the
Coulomb system consisting of two particles which carry both electric and magnetic
charges. It is commonly referred to as the dionium atom (by analogy with the
positronium atom, the bound state between electron and positron). We also discuss
further possible generalizations of the solution method.

14.1 One-Dimensional Systems

In one space dimension, the general relation to be established is the following: Let
Ĥ be a Hamiltonian operator

Ĥ = T̂ + V̂ , (14.1)

with the kinetic term T̂ = p̂2/2M , and define the auxiliary Hamiltonian operator

ĤE = Ĥ − E, (14.2)

with the associated time evolution amplitude

〈xb|ÛE(t)|xa〉 ≡ 〈xb|e−itĤE/h̄|xa〉. (14.3)

An integration of this amplitude over all t > 0 yields the fixed-energy amplitude

(xb|xa)E =
∫ ∞

ta
dtb〈xb|ÛE(tb − ta)|xa〉 (14.4)

985
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[recall (12.8)]. This can formally be written as a path integral

(xb|xa)E =
∫ ∞

ta
dtb

∫

Dx(t)eiAE [x]/h̄, (14.5)

with an action

AE[x] =
∫ tb

ta
dt
[

M

2
ẋ2(t)− V (x(t)) + E

]

. (14.6)

As in the Coulomb system, another path integral representation is found for the
amplitude (14.5) by making use of the more general representation (12.21) of the
resolvent operator. By choosing two arbitrary regulating functions fl(x), fr(x) whose
product is f(x), we introduce the modified auxiliary Hamiltonian operator

ĤE = fl(x)(Ĥ −E)fr(x). (14.7)

The associated pseudotime evolution amplitude

〈xb|ÛE(S)|xa〉 ≡ fr(xb)fl(xa)〈xb|e−iSĤE/h̄|xa〉 (14.8)

yields upon integration over all S > 0 the same fixed-energy amplitude as (14.4):

(xb|xa)E =
∫ ∞

0
dS〈xb|ÛE(S)|xa〉 (14.9)

[recall (12.30)]. The amplitude can therefore be calculated from the path integral

(xb|xa)E =
∫ ∞

0
dS

[

fr(xb)fl(xa)
∫

Dx(s)eiAf

E
[x]/h̄

]

, (14.10)

with the modified action

Af
E[x] =

∫ S

0
ds

{

M

2f(x(s))
x′2(s)− f(x(s))[V (x(s))− E]

}

. (14.11)

As observed in (12.37), this action is obtained from (14.6) by a path-dependent time
reparametrization satisfying

dt = ds f(x(s)). (14.12)

The introduction of f(x) has brought the kinetic term to an inconvenient form
containing a space-dependent mass M/f(x). This space dependence is removed by
a coordinate transformation

x = h(q). (14.13)

Since the coordinate differentials are related by

dx = h′(q)dq, (14.14)

H. Kleinert, PATH INTEGRALS
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we require the function h(q) to satisfy

h′2(q) = f(h(q)). (14.15)

Then the action (14.11) reads, in terms of the new coordinate q,

Af,q
E =

∫ S

0
ds
{

M

2
q′2(s)− f(q(s))[V (q(s))−E]

}

, (14.16)

with the obvious notation

f(q) ≡ f(h(q)), V (q) ≡ V (h(q)). (14.17)

In the transformed action (14.16), the kinetic term has the usual form.
The important fact to be proved and exploited in the sequel is the following:

The initial fixed-energy amplitude (14.5) can be related to the fixed-pseudoenergy
amplitude associated with the transformed action (14.16), if this action is extended
by an effective potential

Veff(q) = − h̄2

4M





h′′′

h′
− 3

2

(

h′′

h′

)2


 . (14.18)

The quantity in brackets is known as the Schwartz derivative {h, q} of Eq. (4.19)
encountered in the semiclassical expansion coefficient q2(x). The effective potential
is caused by time slicing effects and will be derived in the next section. Thus, instead
of the naively transformed action (14.16), the fixed-pseudoenergy amplitude (qb|qa)E
is obtained from the extended action

ADK
E,E [q] =

∫ S

0
ds
{

M

2
q′2(s)− f(q(s))[V (q(s))− E]− Veff(q(s)) + E

}

, (14.19)

by calculating the path integral

(qb|qa)E =
∫

∞

0
dS

∫

Dq(s)eiADK
E,E

[q]. (14.20)

The relation to be derived which leads to a solution of many nontrivial path integrals
is

(xb|xa)E = [f(xb)f(xa)]
1/4(qb|qa)E=0. (14.21)

The procedure is an obvious generalization of the Duru-Kleinert transformation
of the Coulomb path integral in Section 13.1, as indicated by the superscript DK
on the transformed actions. Correspondingly, the actions AE[x] and ADK

E,E[q], whose
path integrals (14.5) and (14.20) producing the same fixed-energy amplitude (xb|xa)E
via the relation (14.21), are called DK-equivalent .

The prefactor on the right-hand side has its origin in the normalization properties
of the states. With dx = dq h′(q) = dq f(h(q))1/2, the completeness relation

∫

dx|x〉〈x| = 1 (14.22)
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goes over into

∫

dq
√

f(q)|h(q)〉〈h(q)| = 1. (14.23)

We want the transformed states |q〉 to satisfy the completeness relation

∫

dq|q〉〈q| ≡ 1. (14.24)

This implies the relation between new and old states:

|x〉 = f(q)−1/4|q〉. (14.25)

At first sight it appears as though the normalization factor in (14.21) should have
the opposite power −1/4, but the sign is correct as it is. The reason lies, roughly
speaking, in a factor [f(xb)f(xa)]

1/2 by which the pseudotimes dt and ds in the
integrals (14.4) and (14.20) differ from each other. This causes the fixed-energy
amplitude to be no longer proportional to the dimensions of the states, in which
case Eq. (14.21) would have indeed carried a factor [f(xb)f(xa)]

−1/4. The extra
factor [f(xb)f(xa)]

1/2 arising from the pseudotime integration inverts the naively
expected prefactor.

In applications, the situation is usually as follows: There exists a solved path
integral for a system with a singular potential. The time-sliced action is not the
naively sliced classical action, but a more complicated regularized one which is free
of path collapse problems. The most important example is the radial path integral
(8.36) which involves a logarithm of a Bessel function rather than a centrifugal
barrier. Further examples are the path integrals (8.174) and (8.207) of a particle
near the surface of a sphere in D = 3 and D = 4 dimensions, where angular barriers
are regulated by Bessel functions. In these examples, the explicit form of the time-
sliced path integral without collapse as well as its solution are obtained from an
angular momentum projection of a simple Euclidean path integral. In the first
step of the solution procedure, the introduction of a path-dependent new time s
via dt = ds f(x(s)) removes the dangerous singularities by an appropriate choice
of the regulating function f(x). The transformed system has a regular potential
and possesses a time-sliced path integral, but it has an unconventional kinetic term.
In the second step, the coordinate transformation brings the kinetic term to the
conventional form. The final fixed-pseudoenergy amplitude (qb|qa)E evaluated at
E = 0 coincides with the known amplitude of the initial system, apart from the
above-discussed factor which is inversely related to the normalization of the states.
Note that with (14.15), the relation (14.21) can also be written as

(xb|xa)E = [h′(qb)h
′(qa)]

1/2(qb|qa)E=0. (14.26)

This transformation formula will be used to find a number of path integrals. First,
however, we shall derive the effective potential (14.18) as promised.
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14.2 Derivation of the Effective Potential

In order to derive the effective potential (14.18), we consider the pseudotime-sliced
path integral associated with the regularized pseudotime evolution operator (14.8):

〈xb|ÛE(S)|xa〉

≈ fr(xb)fl(xa)
√

2πiǫsh̄fl(xb)fr(xa)/M

N
∏

n=1





∫

dxn
√

2πiǫsh̄fn/M



 exp
(

i

h̄
AN

)

, (14.27)

where

AN =
N+1
∑

n=1

{

M

2ǫs

(∆xn)
2

fl(xn)fr(xn−1)
+ ǫs[E − V (xn)]fl(xn)fr(xn−1)

}

. (14.28)

In the measure, we have used the abbreviation fn ≡ f(xn) = fl(xn)fr(xn). From now
on, the potential V (x) is omitted as being inessential to the discussion. By shifting
the product index and the subscripts of fn by one unit, and by compensating for
this with a prefactor, the integration measure in (14.27) acquires the postpoint form

[f(xb)f(xa)]
1/4

√

2πiǫsh̄/M

[

fr(xa)

fr(xb)

]−5/4 [
fl(xa)

fl(xb)

]1/4 N+1
∏

n=2

∫

d∆xn
√

2πiǫsh̄fn/M
, (14.29)

where the integrals over ∆xn = xn − xn−1 are done successively from high to low n,
each at a fixed postpoint position xn.

We now go over to the new coordinate q with a transformation function x = h(q)
satisfying (14.15) which makes the leading kinetic term simple:

AN
0 =

N+1
∑

n=1

M

2ǫs
(∆qn)

2. (14.30)

The postpoint expansion of ∆xn reads at each n (omitting the subscripts)

∆x = x(q)− x(q −∆q) = e1 ∆q − 1

2
e2 (∆q)2 +

1

6
e3 (∆q)3 + . . . , (14.31)

with the expansion coefficients

e1 ≡ h′ = f 1/2, e2 ≡ h′′, e3 ≡ h′′′, . . . (14.32)

evaluated at the postpoint qn. The expansion (14.31) is the one-dimensional analog
of the expansion (11.56), the coefficients corresponding to the basis triads eiµ in
Eq. (10.12) and their derivatives (e1=̂e

i
µ, e2=̂e

i
µ,ν , . . .). Let us also introduce the

analog of the reciprocal triad ei
µ defined in (10.12):

ē ≡ 1/e1 = 1/h′ = 1/f 1/2. (14.33)
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With it, we expand the kinetic term in (14.28) as

(∆xn)
2

2ǫsfl(xn)fr(xn−1)
=

(∆q)2

2ǫs

{

1− ēe2∆q +
[

1

3
ēe3 +

1

4
(ēe2)

2
]

(∆q)2 + . . .
}

×






1 +
f ′
r

fr
∆q +





(

f ′
r

fr

)2

− 1

2

f ′′
r

fr



 (∆q)2 + . . .







, (14.34)

where f ′
r ≡ dfr/dq. From Eq. (14.31) we see that the transformation of the measure

has the Jacobian

J =
∂∆x

∂∆q
= f 1/2

[

1− ēe2∆q +
1

2
ēe3(∆q)

2 + . . .
]

(14.35)

[this being a special case of (11.59)]. Since the subsequent algebra is tedious, we
restrict the regulating functions fl(x) and fr(x) somewhat as in Eq. (13.3) by as-
suming them to be different powers fl(x) = f(x)1−λ and fr(x) = f(x)λ of a single
function f(x), where λ is an arbitrary splitting parameter. Then the measure (14.29)
becomes

f
3λ/2
b f (1−3λ)/2

a
√

2πiǫsh̄/M

N+1
∏

n=2

∫

d∆xn
√

2πiǫsh̄fn/M
, (14.36)

with the obvious notation fb ≡ f(xb), fa ≡ f(xa). We now distribute the prefactor

f
3λ/2
b f (1−3λ)/2

a evenly over the time interval by writing

f
3λ/2
b f (1−3λ)/2

a = f
1/4
b f 1/4

a

N+1
∏

n=1

(

fn−1

fn

)1/4−3λ/2

. (14.37)

Then the path integral (14.27) becomes

〈xb|ÛE(s)|xa〉 ≈
f
1/4
b f 1/4

a
√

2πiǫsh̄/M

N
∏

n=1





∫

d∆qn
√

2πiǫsh̄/M



 (14.38)

× exp

{

i

h̄

[

N+1
∑

n=1

M

2ǫs
(∆qn)

2 + ǫsf(qn)[E − V (qn)] + . . .

]}

[1 + C(qn,∆qn)],

where 1 + C is a correction factor arising from the three-step transformation

1 + C ≡ (1 + Cmeas)(1 + Cf)(1 + Cact). (14.39)

Dropping irrelevant higher orders in ∆q, the three contributions on the right-hand
side have the following origins:

The transformation of the measure (14.35) gives rise to the time slicing correction

Cmeas = −ēe2 ∆q +
1

2
ēe3 (∆q)2 + . . . . (14.40)
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The rearrangement of the f -factors in (14.37) produces

Cf =

(

1

4
− 3λ

2

) [

−f
′

f
∆q +

1

2

f ′′

f
(∆q)2

]

−1

2

(

3

4
+

3λ

2

)(

1

4
− 3λ

2

)(

f ′

f

)2

(∆q)2 + . . . . (14.41)

The transformation of the pseudotime-sliced kinetic term (14.34) yields

Cact =
i

h̄
M

(∆q)2

2ǫs

{

−
(

ēe2 − λ
f ′

f

)

∆q

+





1

3
ēe3 +

1

4
(ēe2)

2 +
1

2



−λf
′′

f
+ λ(λ+ 1)

(

f ′

f

)2


− λēe2
f ′

f



 (∆q)2







− M2

2h̄2
(∆q)4

4ǫ2s

(

ēe2 − λ
f ′

f

)2

(∆q)2 + . . . . (14.42)

We now calculate an equivalent kernel according to Section 11.2. The correction
terms are evaluated perturbatively using the expectation values

〈(∆q)2n〉0 =
(

ih̄

M

)n

(2n− 1)!!. (14.43)

First we find the expectation value (11.70). Listing only the relevant terms of order
ǫs, we obtain

〈C∆q〉0 = ih̄ǫs

[

−ēe2 −
(

1

4
− 3λ

2

)

f ′

f
+

3

2

(

ēe2 − λ
f ′

f

)]

. (14.44)

The λ-terms cancel each other identically. The remainder vanishes upon using the
relation (14.15), which reads in the present notation

e21 = f, (14.45)

implying that

2e1e2 = f ′, 2ēe2 = f ′/f, (14.46)

and yielding indeed 〈C∆q〉0 ≡ 0.
We now turn to the expectation 〈C〉0 which determines the effective potential

via Eq. (11.47). By differentiating the second equation in (14.46), we see that

f ′′/f = 2
[

(ēe2)
2 + ēe3

]

. (14.47)

By expressing f and f ′′ in Eqs. (14.41) and (14.42) in terms of the e-functions, we
obtain

Cf =

(

1

4
− 3λ

2

)

{

−2ēe2 ∆q + [(ēe2)
2 + ēe3] (∆q)

2
}

− 2

(

3

4
+

3λ

2

)(

1

4
− 3λ

2

)

(ēe2)
2(∆q)2 + . . . , (14.48)
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Cact = i
M

h̄

(∆q)2

2ǫs

{

− (1− 2λ)ēe2∆q

+
[

1

3
ēe3 +

1

4
(ēe2)

2 − λ(ēe2 + ēe3) + 2λ(λ+ 1)(ēe2)
2 − 2λ(ēe2)

2
]

(∆q)2
}

− M2

2h̄2
(∆q)4

4ǫ2s
(1− 2λ)2(ēe2)

2(∆q)2 + . . . . (14.49)

After forming the product (14.39), the total correction reads

C = ēe2

(

1

2
− λ

)

∆q
[

−iM
h̄ǫs

(∆q)2 − 3
]

+(ēe2)
2
[

9

2

(

λ− 1

6

)(

λ− 1

2

)

(∆q)2 + i
(

4λ2 − 7

2
λ +

7

8

)

M

h̄ǫs
(∆q)4

− 1

2

(

λ− 1

2

)2 M2

h̄2ǫ2s
(∆q)6

]

+ēe3

[

−3

2

(

λ− 1

2

)

(∆q)2 − 1

2

(

λ− 1

3

)

i
M

h̄ǫs
(∆q)4

]

+ . . . . (14.50)

Using (14.43), we find the expectation to the relevant order ǫs:

〈C〉0 = −ǫsh̄
M

[

1

4
ēe3 −

3

8
(ēe2)

2
]

. (14.51)

It amounts to an effective potential

Veff = −ih̄
2

M

[

1

4
ēe3 −

3

8
(ēe2)

2
]

. (14.52)

By inserting (14.32) and (14.33), this turns into the expression (14.18) which we
wanted to derive.

In summary we have shown that the kernel in (14.38)

Kǫs(∆q) =
1

√

2πiǫsh̄/M
exp

{

i

h̄

N+1
∑

n=1

[

M

2ǫs
(∆qn)

2 + ǫsEf(qn)
]

}

[1 + C] (14.53)

can be replaced by the simpler equivalent kernel

Kǫs(∆q) =
1

√

2πiǫsh̄/M
exp

{

i

h̄

N+1
∑

n=1

[

M

2ǫs
(∆qn)

2 + ǫsEf(qn)− ǫsVeff

]

}

, (14.54)

in which the correction factor 1+C is accounted for by the effective potential Veff of
Eq. (14.18). This result is independent of the splitting parameter λ [1]. The same
result emerges, after a lengthier algebra, for a completely general splitting of the
regulating function f(x) into a product fl(x)fr(x).
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14.3 Comparison with Schrödinger
Quantum Mechanics

The DK transformation of the action (14.11) into the action (14.19) has of course
a correspondence in Schrödinger quantum mechanics. In analogy with the intro-
duction of the pseudotime evolution amplitude (14.8), we multiply the Schrödinger
equation

[

− h̄2

2M
∂2x −E

]

ψ(x, t) = ih̄∂tψ(x, t) (14.55)

from the left by an arbitrary regulating function fl(x), and obtain

[

− h̄2

2M
fl(x)∂

2
xfr(x)−Ef(x)

]

ψf (x, t) = f(x)ih̄∂tψf (x, t), (14.56)

with the transformed wave function ψf (x, t) ≡ fr(x)
−1ψ(x, t). After the coordinate

transformation (14.14), we arrive at



− h̄

2M
fl(q)

(

1

h′(q)
∂q

)2

fr(q)− Ef(q)



ψf(q, t) = f(q)ih̄∂tψf (x, t), (14.57)

having used the notation f(q) ≡ f(h(q)) as in (14.17). Inserting h′2(q) = f(h(q)) =
fl(h(q))fr(h(q)) from (14.15), the Schrödinger equation becomes

[

− h̄2

2M
f−1
r (q)

(

∂2q −
h′′

h′
∂q

)

fr(q)−Ef(q)

]

ψf (q, t) = f(q)ih̄∂tψf(q, t). (14.58)

After going from ψf (q, t) to a new wave function

φ(q, t) = f 3/4
r (q)f

−1/4
l (q)ψf(q, t)

related to the initial one by ψ(x, t) ≡fr(q)ψf(q, t)= f 1/4(q)φ(q, t), the Schrödinger
equation takes the form

[

− h̄2

2M
h′(q)−1/2

(

∂2q −
h′′

h′
∂q

)

h′(q)1/2 −Ef(q)

]

φ(q, t)

=
[

− 1

2M
∂2q + Veff − Ef(q)

]

φ(q, t) = f(q)ih̄∂tφ(q, t), (14.59)

where Veff is precisely the effective potential (14.18).
For the special coordinate transformation r = h(q) = eq, we obtain

Veff = − h̄2

4M





h′′′

h′
− 3

2

(

h′′

h′

)2


 =
h̄2

2M

1

4
, (14.60)
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as first pointed out by Langer [2] when improving the WKB approximation of
Schrödinger equations with a centrifugal barrier h̄2l(l+1)/2Mr2. This is too singu-
lar to allow for a semiclassical treatment. The transformation r = h(q) = eq leads
to a smooth potential problem on the entire q-axis, in which the centrifugal barrier
is replaced by h̄2[l(l + 1) + 1

4 ]/2M . Langer concluded from this that the original
Schrödinger equation in r can be treated semiclassically if l(l + 1) is replaced by
l(l + 1) + 1

4 . The additional 1
4 is known as the Langer correction.

The operator f(q)∂t on the right-hand side of (14.59) plays the role of pseudotime
derivative ∂s.

14.4 Applications

We now present some typical solutions of path integrals via the DK method. The
initial fixed-energy amplitudes will all have the generic action

AE =
∫

dt
[

M

2
ẋ2(t)− V (x) + E

]

, (14.61)

with different potentials V (x) which usually do not allow for a naive time slicing.
The associated path integrals are known from certain projections of Euclidean path
integrals. In the sequel, we omit the subscript E for brevity (since we want to use
its place for another subscript referring to the potential under consideration). The
solution follows the general two-step procedure described in Section 14.4.

14.4.1 Radial Harmonic Oscillator and Morse System

Consider the action of a harmonic oscillator in D dimensions with an angular mo-
mentum lO at a fixed energy EO:

AO =
∫

dt

[

M

2
ṙ2 − h̄2

µ2
O − 1/4

2Mr2
− M

2
ω2r2 + EO

]

. (14.62)

Here µO is an abbreviation for

µO = DO/2− 1 + lO (14.63)

[recall (8.138)], DO denotes the dimension, and lO the orbital angular momentum
of the system. The subscript O indicates that we are dealing with the harmonic
oscillator. A free particle is described by the ω → 0 -limit of this action.

Due to the centrifugal barrier, the time evolution amplitude possesses only a
complicated time-sliced path integral involving Bessel functions. According to the
rule (8.140), the centrifugal barrier requires the regularization

ǫ h̄2
µ2
O − 1/4

2Mr2n
−−−→ ih̄ log ĨµO

(

M

ih̄ǫ
rnrn−1

)

. (14.64)
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This smoothens the small-r fluctuations and prevents a path collapse in the Eu-
clidean path integral with µO = 0. The time-sliced path integral can then be solved
using the formula (8.14). The final amplitude is obtained most simply, however, by
solving the harmonic oscillator in DO Cartesian coordinates, and by projecting the
result into a state of fixed angular momentum lO. The result was given in Eq. (9.32),
and reads for rb > ra

(rb|ra)EO,lO=−i 1
ω

1√
rbra

Γ((1 + µ)/2−ν)
Γ(µ+ 1)

Wν,µ/2

(

Mω

h̄
r2b

)

Mν,µ/2

(

Mω

h̄
r2a

)

, (14.65)

where the parameters on the right-hand side are

ν = νO ≡ EO

2ωh̄
, µ = µO. (14.66)

The poles determining the energy eigenvalues lie at ν = n/2+D/4 = nr+ l/2+D/4,
where n = 0, 1, 2, 3, . . . .

A stable pseudotime evolution amplitude exists after a path-dependent time
transformation with the regulating function

f(r) = r2. (14.67)

The time-transformed Hamiltonian

HO = r2
p2

M
+ h̄2

µ2
O − 1/4

2M
+
M

2
ω2r4 −EOr

2 (14.68)

is free of the barrier singularity. Thus, when time-slicing the action

Af=r2

O =
∫ S

0
ds

(

M

2

r′2

r2
− µ2

O − 1/4

2M
− M

2
ω2r4 + EOr

2

)

(14.69)

associated with HO, no Bessel functions are needed.
Note that the factor 1/r2 accompanying r′2 = [dr(s)/ds]2 does not produce

additional problems. It merely diminishes the fluctuations at small r. However, the
r-dependence of the kinetic term is undesirable for an evaluation of the time-sliced
path integral. We therefore go over to a new coordinate x via the transformation

r = h(x) ≡ ex, (14.70)

the transformation function h(x) being related to the regulating function f(x) by
(14.15):

h′2 = e2x = f(r) = r2. (14.71)

The resulting effective potential (14.18) happens to be a constant:

Veff = − h̄
2

M





1

4

h′′′

h′
− 3

8

(

h′′

h′

)2


 =
h̄2

8M
. (14.72)
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Together with this constant, the DK-transformed radial oscillator action becomes

ADK
O =

∫ S

0
ds

[

M

2
x′2 − µ2

O

2M
− Mω2

2
e4x + EOe

2x

]

. (14.73)

The effective potential (14.72) has changed the initial centrifugal barrier term from
(µ2

O − 1/4)/2M to µ2
O/2M . We have omitted the pseudoenergy E since it is set

equal to zero in the final DK relation (14.26). With the identifications

A =
M

2
ω2, (14.74)

B = EO, (14.75)

C =
h̄2µ2

O

2M
+ EM, (14.76)

the action (14.73) goes over into

AM =
∫ S

0
ds
[

M

2
x′2 − (VM −EM)

]

, (14.77)

with the Morse potential

VM(x) = Ae4x − Be2x + C. (14.78)

Its fixed-energy amplitude

(xb|xa)EM
=
∫ ∞

0
dS

∫

Dx(s)eiAM/h̄ (14.79)

is therefore equivalent to the radial amplitude of the oscillator (14.65) via the DK
relation (14.26), which now reads

(rb|ra)EO,l = e(xb+xa)/2(xb|xa)EM
, (14.80)

where r = ex.
Let us use the relations (14.74)–(14.76) to extract the bound-state energy eigen-

values of the Morse potential. For this we use the relation (9.33) to rewrite B
as

B = h̄ω(µO + nr + 1/2), nr = 0, 1, 2, 3, . . . , (14.81)

which becomes with (14.74)

B = h̄
√

2A/M(µO + nr + 1/2). (14.82)

This is solved by µO = B/h̄
√

2A/M − (nr + 1/2), and inserted into (14.76) to find

EM = C− B2

4A



1− h̄

B

√

2A

M
(nr + 1/2)





2

, (0 ≤ nr ≤
√

MB2/2Ah̄2−1/2. (14.83)

For studies of molecular vibrations one typically chooses the Morse potential VM =
V0[e

−4x − 2e−2x], in which case the energy spectrum becomes

EM = −V0


1− h̄
√

MV0/2
(nr + 1/2)





2

, (0 ≤ nr ≤
√

MV0/2h̄
2 − 1/2. (14.84)
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14.4.2 Radial Coulomb System and Morse System

By a similar argument, the completely different path integral of the radial Coulomb
system can be shown to be DK-equivalent to the path integral of the Morse potential.
The action is

AC =
∫

dt

[

M

2
ṙ2 − h̄2

µ2
C − 1/4

2Mr2
+
e2

r
+ EC

]

, (14.85)

where

µC = DC/2− 1 + lC. (14.86)

For e2 = 0, the action describes a free particle moving in a centrifugal barrier
potential. As in the previous example, the action (14.85) does not lead to a time-
sliced amplitude of the Feynman type, but involves Bessel functions. We must again
remove the barrier via a path-dependent time transformation with

f(r) = r2 (14.87)

by introducing the pseudotime s satisfying dt = ds r2(s). This leads to the time-
transformed action

Af=r2

C =
∫ S

0
ds

[

M

2

r′2

r2
− h̄2

µ2
C − 1/4

2M
+ e2r + ECr

2

]

. (14.88)

To bring the kinetic term to the standard form, we change the variable r to x via

r = ex. (14.89)

This introduces the same effective potential as in (14.72),

Veff =
h̄2

2M

1

4
, (14.90)

canceling the 1/4-term in the former centrifugal barrier [2]. Thus we arrive at the
DK transform of the radial Coulomb action

ADK
C =

∫ S

0
ds

[

M

2
x′2 − h̄2

µ2
C

2M
+ e2ex + ECe

2x

]

. (14.91)

A trivial change of variables

x = 2x̄, (14.92)

M = M̄/4,

µC = 2µ̄,

brings this to the form
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ADK
C =

∫ S

0
ds

[

M̄

2
x̄′2 − h̄2

µ̄2

2M̄
+ e2e2x̄ + ECe

4x̄

]

, (14.93)

and establishes contact with the Morse action (14.77). Upon replacing x̄ by x we
see that

(rb|ra)EC,lC =
1

2
e(xb+xa)(xb|xa)EM

, (14.94)

with r = e2x. The factor 1/2 accounts for the fact that the normalized states are
related by |x〉 = |x̄〉/2. The identification of the parameters is now

A = −EC , (14.95)

B = e2, (14.96)

C = h̄2
µ2
C

2M
+ EM. (14.97)

This can easily be checked inserting for EM the previous result (14.84), with A and
B expressed by (14.74) and (14.75). This yields

EC = −Me4

h̄2
1

2(µC + nr +
1
2
)2

= −Mc2
α2

2n2
, (14.98)

with n = nr + lC + (DC − 1)/2, nr = 0, 1, 2, . . . . For DC = 3, this agrees with
(13.212).

14.4.3 Equivalence of Radial Coulomb System

and Radial Oscillator

Since the radial oscillator and the radial Coulomb system are both DK-equivalent
to a Morse system, they are DK-equivalent to each other. The relation between the
parameters is

MO = 4MC,

µO = 2µC,

EO = e2, (14.99)

−MO

2
ω2 = EC,

rO =
√
rC.

We have added subscripts O, C also to the masses M to emphasize the systems to
which they belong. The relation µO = 2µC implies

DO/2− 1 + lO = 2(DC/2− 1 + lC) (14.100)
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for all dimensions and angular momenta of the two systems. Due to the square root
relation rO =

√
rC, the orbital angular momenta satisfy

lO = 2lC. (14.101)

For the dimensions, this implies

DO = 2DC − 2. (14.102)

In the cases DC = 2 and 3, there is complete agreement with Chapter 13 where the
dimensions of the DK-equivalent oscillators were 2 and 4, respectively.

To relate the amplitudes with each other we find it useful to keep the notation
as close as possible to that of Chapter 13 and denote the radial coordinate of the
radial oscillator by u. Then the DK relation for the pseudotime evolution amplitudes
states that

(rb|ra)EC ,µC
=

1

2

√
ubua(ub|ua)EO,µO

, (14.103)

with the right-hand side given by (14.65) (after replacing r by u, MO by 4MC, and
MOωu

2/h̄ by 2κr).
Note once more that the prefactor on the right-hand side has a dimension oppo-

site to what one might have expected from the quantum-mechanical completeness
relation

∫ ∞

0
dr|r〉〈r| = 1, (14.104)

whose u-space version reads
∫

∞

0
du 2u|r〉〈r| =

∫

du|u〉〈u| = 1. (14.105)

As explained in Section 14.1, the reason lies in the different dimensions (by a factor
r) of the pseudotimes over which the evolution amplitudes are integrated when going
to the fixed-energy amplitudes. A further factor 1/4 contained in (14.103) is due to
the mass relation MO = 4MC.

Let us check the relation (14.103) for DC = 3. The fixed-energy amplitude of the
Coulomb system has the partial-wave expansion

(xb|xa)EC
=

∞
∑

lC=0

lC
∑

m=−lC

1

rbra
(rb|ra)EC ,lC

YlCm(θb, ϕb)Y
∗

lCm
(θa, ϕa). (14.106)

The four-dimensional oscillator, on the other hand, has

(~ub|~ua)EO
=

∞
∑

lO=0

(ub|ua)EO,lO (14.107)

× lO + 1

2π2

lO/2
∑

m1,m2=−lO/2

DlO/2
m1m2

(ϕn, θn, γn)DlO/2 ∗
m1m2

(ϕn−1, θn−1, γn−1).
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We now take Eq. (13.127),

(xb|xa)EC
=
∫ ∞

0
dSeie

2S/h̄ 1

16

∫ 4π

0
dγa(~ubS|~ua0), (14.108)

and observe that the integral
∫ 4π
0 dγa over the sum of angular wave functions

lO + 1

2π2

lO/2
∑

m1,m2=−lO/2

dlO/2
m1m2

(θb)d
lO/2
m1m2

(θa)e
im1(ϕb−ϕa)+im2(γb−γa) (14.109)

produces a sum

8
lO/2
∑

m

YlO/2,m,0(θb, φb)Y
∗

lO/2,m,0(θa, φa), (14.110)

with the spherical harmonics

YlO/2,m(θ, φ) =

√

lO + 1

4π
eimφd

lO/2
m,0 (θ). (14.111)

Only even lO-values survive the integration, and we identify lC = lO/2
Recalling the radial amplitude of the harmonic oscillator (9.32), we find from

(14.103) the radial amplitude of the Coulomb system in any dimension DC for rb >
ra:

(rb|ra)EC ,lC =−i MC

h̄κ

Γ(−ν + lC + (DC − 1)/2)

(2lC +DC − 2)!
Wν,lC+DC/2−1(2κrb)Mν,lC+DC/2−1(2κra),

(14.112)

where κ =
√

−2ME/h̄2 and ν =
√

−e4MC/2h̄
2EC as in (13.39) and (13.40). For

DC = 3, this agrees with (13.211).
The full DC-dimensional amplitude is given by the sum over partial waves

(xb|xa)EC,lC =
1

(rbra)
(DC−1)/2

∞
∑

l=0

(rb|ra)EC ,lC

∑

m

Ylm(x̂b)Y
∗

lm(x̂a),

which becomes with (8.126)

(xb|xa)EC ,lC =
1

(rbra)
(DC−1)/2

∞
∑

lC=0

(rb|ra)EC ,lC

2lC +DC − 2

DC − 2

1

SDC

C
(DC/2−1)
lC

(cos∆ϑn).

(14.113)

It is easy to perform the sum if we make use of an integral representation of the
radial amplitude obtained by DK-transforming the integral representation (9.25) of
the radial oscillator amplitude. Replacing the imaginary time by the new variable
of integration ̺ = e−2ω(τb−τa), the radial variables r by u, and the oscillator mass M
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by MO to match the notation of Chapter 13, the amplitude (9.25) can be rewritten
as

(ub|ua)EO,lO=−i MO

h̄

√
ubua

∫ 1

0

d̺

2̺
̺−νe−κ(u2

b
+u2

a)
1+̺

1−̺ IlO+DO/2−1

(

2κubua
2
√
̺

1−̺

)

,(14.114)

with

κ ≡ MOω

2h̄
, ν ≡ EO/2h̄ω. (14.115)

Recalling (9.35), the poles of this amplitude lie at ν = n/2 +DO/4 = nr + lO/2 +
DO/4, where n = 0, 1, 2, 3, . . . , so that the energy eigenvalues are

EO n = 2h̄ω
(

n

2
+
DO

4

)

= h̄ω
(

2nr + l +
DO

2

)

. (14.116)

From the DK relation (14.103) we obtain (rb|ra)lC ,EC
and insert it into (14.113).

Then we recall the summation formula

(

1

2
kz
)DC/2−1/2

IDC/2−3/2(kz) = kDC−2
∞
∑

l=0

1

l!

Γ(l +DC − 2)

Γ(DC/2− 1/2)
(2l +DC − 2)

×F (−l, l +DC − 2;DC/2− 1/2; (1 + k2)/2)(−)lI2l+DC−2(z), (14.117)

which follows from Eq. (13.205) for ν = DC/2−3/2 and µ = DC−2. After expressing

the right-hand side in terms of the Gegenbauer polynomial C
DC/2−1
l with the help

of (8.106), this becomes

1

2

1

(2π)DC/2−1/2

(

z

2

)DC−2

IDC/2−3/2(kz)/(kz)
DC/2−3/2

=
∞
∑

lC=0

2lC +DC − 2

DC − 2

1

SDC

C
(DC/2−1)
lC

((1 + k2)/2)I2lC+DC−2(z). (14.118)

Setting

z ≡ 2κubua
2
√
̺

1− ̺
, k ≡ cos(ϑ/2), (14.119)

the sum over the partial waves in (14.113) is easily performed, and we obtain for the
fixed-energy amplitude of the Coulomb system in DC dimensions the generalization
of the integral representations (13.43) and (13.133) in two and three dimensions: ref(13.43)

lab(13.30)
est(13.41)

(xb|xa)E = − i
M

h̄

κDC−2

(2π)(DC−1)/2

∫ 1

0

d̺

(1− ̺)2
̺−ν

×
(

2
√
̺

1− ̺

)(DC−3)/2

e−κ 1+̺

1−̺
(rb+ra)IDC/2−3/2 (kz) /(kz)

DC/2−3/2, (14.120)
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where

kz = 2κ
2
√
̺

1− ̺

√

(rbra + xbxa)/2, (14.121)

and κ, ν are the Coulomb parameters (13.40).
By changing the integration variable to ζ = (1 + ̺)/(1 − ρ) as in (13.49), the

integral in (14.120) is transformed into a contour integral encircling the cut from
ζ = 1 to ∞ in the clockwise sense. Then the amplitude reads [3]

(xb|xa)E = −iM
2h̄

κDC−2

(2π)(DC−1)/2

πeiπ(ν−DC/2+3/2)

sin[π(ν −DC/2 + 3/2)]
(14.122)

×
∫

C

dζ

2πi
(ζ − 1)−ν+DC/2−3/2(ζ + 1)ν+DC/2−3/2e−κζ(rb+ra)IDC/2−3/2 (z) /z

DC/2−3/2.

This expression generalizes the integral representations (13.53) and (13.135) for
DC = 2 and DC = 3, respectively. The poles of this amplitude lie at all integer
ν = nr + lC + (DC − 1)/2, corresponding to the energies

EC = −Me4

h̄2
1

2n2
, with n = nr + lC + (DC − 1)/2, nr = 0, 1, 2, . . . ,(14.123)

in agreement with (14.98) and, for DC = 3, with (13.212).
As a final remark let us emphasize that at the time-sliced level there is no way of

going directly from the radial Coulomb problem to the radial oscillator via the DK
relation, due to the catastrophic centrifugal barriers. This has been attempted in
the literature [4]. An intermediate Morse potential is necessary to do this properly.
See Appendix 14A.

14.4.4 Angular Barrier near Sphere, and Rosen-Morse Potential

For another application of the solution method, consider the path integral for a
mass point near the surface of a sphere in three dimensions, projected into a state of
fixed azimuthal angular momentum m = 0,±1,±2, . . . . The projection generates
an angular barrier ∝ (m2−1/4)/ sin2 θ which is a potential of the Pöschl-Teller type.
With µ =Mr2, the real-time action is

APT =
∫

dt

[

µ

2
θ̇2 +

h̄2

8µ
− h̄2

2µ

“m2 − 1/4

sin2 θ

”
+ EPT

]

. (14.124)

The quotation marks are defined in analogy with those of the centrifugal barrier in
Eq. (8.140). The precise meaning is given by the proper time-sliced expression in
Eq. (8.175) whose limiting form for narrow time slices is (8.177). After an analytic
continuation of the parameterm to arbitrary real numbers µ, the resulting amplitude
was given in (8.187). In the sequel we refrain from using the symbol µ for the
noninteger m-values to avoid confusion with the mass parameter µ.

H. Kleinert, PATH INTEGRALS



14.4 Applications 1003

The spectral representation of the associated fixed-energy amplitude is easily
written down; it arises by simply integrating (8.187) over −idτb and reads

(θb|θa)m,EPT
=
√

sin θb sin θa
∞
∑

n=0

ih̄

EPT − h̄2L2/2µ
(14.125)

× 2n+ 2m+ 1

2

(n+ 2m)!

n!
P−m
n+m(cos θb)P

−m
n+m(cos θa),

where L2 = l(l + 1) with l = n + m [recall (8.225) for D = 3]. The sum over n
can be done using the so-called Sommerfeld-Watson transformation [5]. The sum is
re-expressed as a contour integral in the complex n-plane and deformed in such a
way that only the Regge poles at

n+m = l = l(EPT ) ≡ −1

2
+

√

1

4
+

2µEPT

h̄2
(14.126)

contribute, with both signs of the square root. The result for θb > θa is [6]

(θb|θa)m,EPT
=
√

sin θb sin θa
−iµ
h̄

Γ(m− l(EPT ))Γ(l(EPT ) +m+ 1)

× P−m
l(EPT )(−cos θb)P

−m
l(EPT )(cos θa). (14.127)

Here we shall consider m as a free parameter characterizing the interaction strength
of the Pöschl-Teller potential [7]

VPT (θ) =
h̄2

2µ

m2

sin2 θ
. (14.128)

The regulating function removing the angular barrier is

f(θ) = sin2 θ, (14.129)

and the time-transformed action reads with dt = ds sin2 θ(s)

Af=sin2 θ
PT =

∫ S

0
ds

[

µ

2 sin2 θ
θ′2 +

h̄2

8µ
sin2 θ − h̄2

2µ
(m2 − 1/4) + EPT sin2 θ

]

. (14.130)

We now bring the kinetic term to the conventional form by the variable change

sin θ =
1

cosh x
, cos θ = − tanh x, (14.131)

which maps the interval θ ∈ (0, π) into x ∈ (−∞,∞). Then we have

h′(x) = sin θ =
1

cosh x
. (14.132)

Forming the higher derivatives

h′′(x) = −tanh x

cosh x
, h′′′(x) = − 1

cosh x

(

1− 2 tanh2 x
)

, (14.133)



1004 14 Solution of Further Path Integrals by Duru-Kleinert Method

the effective potential is found to be

Veff =
h̄2

8µ

(

1 +
1

cosh2 x

)

. (14.134)

The DK-transformed action is therefore

ADK
PT =

∫ S

0
ds

[

µ

2
x′2 − h̄2m2

2µ
+ EPT

1

cosh2 x

]

. (14.135)

It describes the motion of a mass point in a smooth potential well known as the
Rosen-Morse potential (also called the modified Pöschl-Teller potential) [8]. The
standard parametrization is1

VRM(x) = − h̄2

2µ

s(s+ 1)

cosh2 x
, (14.136)

This corresponds to l(EPT ) in (14.126) having the value s. The energy of the Rosen-
Morse potential determines the parameter m in the action (14.135), and we identify

m = m(ERM) =
√

−2µERM/h̄2. (14.137)

It is obvious that the time-sliced amplitude of the Rosen-Morse potential has no
path collapse problems. Its fixed-energy amplitude is thus DK-equivalent to the
Pöschl-Teller amplitude (14.127), with the precise relation being

(θb|θa)m,EPT
=
√

sin θb sin θa(xb|xa)m,ERM
, (14.138)

where tanh x = − cos θ, θ ∈ (0, π), x ∈ (−∞,∞). Inserting (14.127), the amplitude
of the Rosen-Morse system reads explicitly

(xb|xa)m(ERM) =
−iµ
h̄

Γ(m(ERM)− s)Γ(s+m(ERM) + 1)

× P−m(ERM)
s (tanh xb)P

−m(ERM)
s (− tanh xa). (14.139)

The bound states lie at the poles of the first Gamma function where

m(ERM) = s− n, n = 0, 1, 2, . . . , [s], (14.140)

with [s] denoting the largest integer number ≤ s. From the residues we extract the
normalized wave functions [6]

ψn(x) =
√

Γ(2s− n+ 1)(s− n)/nP n−s
s (tanh x). (14.141)

For noninteger values of s, these are not polynomials. However, the identity between
hypergeometric functions (1.453)

F (a, b; c; z) = (1− z)c−a−bF (c− a, c− b; c; z) (14.142)

1There is no danger of confusing this parameter s with the pseudotime s.
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permits relating them to polynomials:

P n−s
s (tanhx)=

2n−s

Γ(s− n + 1)

1

coshs−n x
F (−n,1 + 2s− n;s− n + 1;(1−tanhx)/2) .

(14.143)

The continuum wave functions are obtained from (14.141) by an appropriate analytic
continuation of m to −ik. This amounts to replacing n by s+ ik.

14.4.5 Angular Barrier near Four-Dimensional
Sphere and General Rosen-Morse Potential

Let us extend the previous path integral of a mass point moving near the surface of
a sphere from D = 3 to D = 4 dimensions. By projecting the amplitude into a state
of fixed azimuthal angular momenta m1 and m2, an angular barrier is generated in
the Euler angle θ proportional to (m2

1 + m2
2 − 1/4 − 2m1m2 cos θ)/ sin

2 θ. This is
again a potential of the Pöschl-Teller type, although of a more general form to be
denoted by PT ′. The action (8.212) is, with µ =Mr2/4, ref(8.212)

lab(8.177b)
est(8.213)

APT ′ =
∫

dt

[

µ

2
θ̇2 +

h̄2

32µ
− h̄2

2µ

“m2
1 +m2

2 − 2m1m2 cos θ − 1/4

sin2 θ

”
+ EPT ′

]

, (14.144)

where the quotation marks indicate the need to regularize the angular barrier via
Bessel functions as specified in (8.208). The projected amplitude was given in
Eq. (8.203) and continued to arbitrary real values of m1 = µ1, m2 = µ2 with
µ1 ≥ µ2 ≥ 0 in (8.213). As in subsection 14.4.4, we shall also use the parameters ref(8.213)

lab(8.152f)
est(8.214)

m1, m2 when they have noninteger values.
The most general Pöschl-Teller potential

VPT ′(θ) =
h̄2

2µ

[

s1(s1 + 1)

sin2(θ/2)
+
s2(s2 + 1)

cos2(θ/2)

]

(14.145)

can easily be mapped onto the above angular barrier, where s1(s1 + 1) =
(m1+m2)2

4
− 1

16
, s2(s2 + 1) = (m1−m2)2

4
− 1

16
or s1 = −1

2

(

1−
√

3
4
+ (m1 +m2)2

)

, s2 =

−1
2

(

1−
√

3
4
+ (m1 −m2)2

)

.

The fixed-energy amplitude is obtained directly from Eq. (8.213) by an integra-
tion over −idτb. It reads for m1 ≥ m2

(θb|θa)m1,m2,EPT ′
=
√

sin θb sin θa

×
∞
∑

n=0

ih̄

EPT ′ − h̄2L2/8µ

2n+ 2m1 + 1

2
dn+m1

m1,m2
(θb)d

n+m1

m1,m2
(θa), (14.146)

where L2 is given by L2 = (l + 1)2 − 1/4 with l = 2n + 2m1 [recall (8.220) with
(8.225)]. ref(8.225)

lab(x8.226)
est(8.226)
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As in Eq. (14.125), the sum over n can be performed with the help of a
Sommerfeld-Watson transformation by rewriting the sum as a contour integral in
the complex n-plane. After deforming the contour in such a way that only the Regge
poles at

2n + 2m1 = l = l(EPT ′) ≡ −1 + 2

√

1

16
+

2µEPT ′

h̄2
(14.147)

contribute, with both signs of the square root, we find for θb > θa:

(θb|θa)m1,m2,EPT ′
=
√

sin θb sin θa
−2iµ

h̄
(14.148)

× Γ(m1−l(EPT ′)/2)Γ(l(EPT ′)/2−m1+1)
1

2
d
l(EPT ′)/2
m1,−m2

(θb − π)dl(EPT ′)/2
m1,m2

(θa),

with arbitrary real parameters m1, m2 characterizing the interaction strength. The
eigenvalues of the discrete energies are given by the poles of the first Gamma func-
tion:

EPT ′ =
h̄2

2µ

[

(m1 + n+ 1
2)

2 − 1
16

]

, n = 0, 1, 2, . . . . (14.149)

The regulating function which removes the angular barrier is

f(θ) = sin2 θ, (14.150)

and the time-transformed action reads, with dt = ds sin2 θ(s),

Af=sin2 θ
PT ′ =

∫ S

0
ds

[

µ

2 sin2 θ
θ′2 +

h̄2

32µ
sin2 θ

− h̄2

2µ
(m2

1 +m2
2 − 1/4− 2m1m2 cos θ) + EPT ′ sin2 θ

]

. (14.151)

We now bring the kinetic term to the conventional form by the variable change

sin θ = ± 1

cosh x
, cos θ = − tanh x. (14.152)

As in the previous case, this leads to the effective potential

Veff =
h̄2

8µ

(

1 +
1

cosh2 x

)

. (14.153)

The DK-transformed action is then

ADK
PT ′ =

∫ S

0
ds

[

µ

2
x′2 − h̄2

2µ
(m2

1 +m2
2 + 2m1m2 tanhx) +

(

EPT ′ − 3h̄2

32µ

)

1

cosh2 x

]

.

(14.154)
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It contains a smooth potential well near the origin known as the general Rosen-Morse

potential [8]:

VRM′(x) = −
(

EPT ′ − 3h̄2

32µ

)

1

cosh2 x
+
h̄2

2µ
2m1m2 tanh x. (14.155)

The standard parametrization for this is2

VRM′(x) =
h̄2

2µ

[

−s(s+ 1)

cosh2 x
+ 2c tanh x

]

, (14.156)

which amounts to choosing

EPT ′ =
h̄2

2µ

[

s(s+ 1) +
3

16

]

, m1m2 = c, (14.157)

in (14.154). Inserting this into (14.147) makes l(EPT ′)/2 equal to s.
The energy of the general Rosen-Morse potential is defined by the action in the

fixed-energy path integral [compare (14.77)]

ARM′ =
∫ S

0
ds
[

µ

2
x′2 − (VRM′ − ERM′)

]

. (14.158)

Comparison with (14.154) shows that the bound-state energies have the eigenvalues

ERM′ = − h̄2

2µ
(m2

1 +m2
2) = − h̄2

2µ
(m2

1 + c2/m2
1). (14.159)

The solution of this equation will be a function m1(ERM′). Correspondingly, we
may define m2(ERM′) ≡ c/m1(ERM′).

Feynman’s time-sliced amplitude certainly exists for this potential, and the fixed-
energy amplitude is determined in terms of the angular-projected amplitude (14.148)
of a mass point near the surface of a sphere which describes the motion in a general
Pöschl-Teller potential. The relation is [9]

(θb|θa)m1,m2,EPT ′
=
√

sin θb sin θa(xb|xa)m1,m2,ERM′
, (14.160)

with tanh x = − cos θ, θ ∈ (0, π), x ∈ (−∞,∞). Explicitly we have

(xb|xa)m1,m2,ERM′
=

−2iµ

h̄
Γ(m1(ERM′)− s)Γ(s−m1(ERM′) + 1) (14.161)

× 1

2
dsm1(ERM′ ),−m2(ERM′)(θb(xb)− π)dsm1(ERM′),m2(ERM′ )(θa(xa)).

Since s − m1 ≥ 0, the bound states lie at the poles of the first Gamma function.
With the energy-dependent function m1(ERM′) defined by (14.159), they are given
by the solutions of the equation

m1(ERM′) = s− n, n = 0, 1, . . . , [s] . (14.162)

2There is no danger of confusing this parameter s with the pseudotime s.
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The residues in (14.161) render the normalized wave functions

Ψn(x) =

√

√

√

√

m2
1 −m2

2

m1

Γ(s+ 1−m1)n!

Γ(s+ 1−m2)Γ(s+ 1 +m2)
(14.163)

× [ 12(1 + tanh x)](m1−m2)/2 [ 12(1− tanh x)](m1+m2)/2 P (m1−m2,m1+m2)
n (− tanhx),

or, expressed in terms of hypergeometric functions,

Ψn(x) =

√

√

√

√

m2
1 −m2

2

m1

Γ(s+ 1 +m1)Γ(s+ 1−m2)

n!Γ(1 +m1 −m2)2Γ(s+ 1 +m2)

× [ 12(1 + tanhx)](m1−m2)/2 [ 12(1− tanh x)](m1+m2)/2

× F (2s− n+ 1,−n; 1 +m1 −m2; 1
2(1 + tanhx)) , (14.164)

with m1 = s− n and m2 = c/m1 [10]. The continuum wave functions are obtained
from these by an appropriate analytic continuation of m1 to complex values −ik
satisfying the relation k2 = (m2

1 + c2/m2
1) [compare (14.159)].

When inserting (14.161) into (14.160), we have to make sure to use for s the
EPT ′-dependent exression s(EPT ′) obtained from solving (14.157).

14.4.6 Hulthén Potential and General Rosen-Morse Potential

For a further application of the solution method, consider the path integral of a
particle moving along the positive r-axis with the singular Hulthén potential

VH(r) = g
1

er/a − 1
, (14.165)

where g and a are energy and length parameters. Note that this potential contains
the Coulomb system in the limit a→ ∞ at ag = e2 = fixed.

The fixed-energy amplitude is controlled by the action

AH =
∫

dt
[

M

2
ṙ2 − VH(r) + EH

]

. (14.166)

The potential is singular at r = 0, and for g < 0, the Euclidean time-sliced amplitude
does not exist due to path collapse. A regulating function which stabilizes the
fluctuations is

f(r) = 4(1− e−r/a)2. (14.167)

The time-transformed action is therefore

Af
H =

∫ ∞

0
ds

[

M

2

r′2

4(1−e−r/a)2
− g 4e−r/a(1− e−r/a)+ EH 4(1− e−r/a)2

]

. (14.168)
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The coordinate transformation leading to a conventional kinetic energy in terms of
the new variable x is found by solving the differential equation

dr

dx
= h′(x), (14.169)

with

h′ =
√

f = 2(1− e−r/a). (14.170)

The solution is

r

a
= x+ a log[2 cosh(x/a)] = log(e2x/a + 1), (14.171)

so that

h′(x) = 2
e2x/a

e2x/a + 1
=

ex/a

cosh(x/a)
. (14.172)

The semi-axis r ∈ (0,∞) is mapped into the entire x-axis.
To find the effective potential we calculate the derivatives

h′′(x) =
1

a

1

cosh2(x/a)
=

1

a

ex/a

cosh(x/a)
[1− tanh(x/a)],

h′′′(x) = − 2

a2
sinh x

cosh3 x
= − 2

a2
ex/a

cosh(x/a)
[tanh(x/a)− tan2(x/a)], (14.173)

and obtain

h′′

h′
=

1

a

e−x/a

cosh(x/a)
=

1

a
[1− tanh(x/a)], (14.174)

h′′′

h′
= − 2

a2
e−x/a sinh(x/a)

cosh2(x/a)
= − 2

a2
tanh(x/a)[1 − tanh(x/a)],

so that the effective potential becomes

Veff =
h̄2

8Ma2

[

2− 2 tanh(x/a)− 4

cosh2(x/a)

]

. (14.175)

After adding this to the time-transformed potential, the DK-transformed action is
found to be

ADK
H =

∫ S

0
ds

{

M

2
x′2 −

(

g + EH − h̄2

2Ma2

)

1

cosh2(x/a)

+

(

2EH +
h̄2

4Ma2

)

tanh(x/a) +

(

2EH − h̄2

4Ma2

)}

. (14.176)
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This is the action governing the fixed-energy amplitude of the general Rosen-Morse
potential (14.156)

VRM′(x/a) =
h̄2

2Ma2

[

− s(s+ 1)

cosh2(x/a)
+ c tanh(x/a)

]

. (14.177)

Since this potential is smooth, there exists a time-sliced path integral of the Feynman
type. The relation between the fixed-energy amplitudes is

(rb|ra)EH
= e(xb+xa)/2a [cosh(xb/a) cosh(xa/a)]

−1/2 (xb|xa)ERM′
, (14.178)

with r/a = log(e2x/a+1) ∈ (0,∞), x ∈ (−∞,∞). The amplitude on the right-hand
side is known from the last section; it is related to the amplitude for the motion of
a mass point on the surface of a sphere in four dimensions, projected into a state of
fixed azimuthal angular momenta m1 and m2. Only a simple rescaling of x/a to x
is necessary to make the relation explicit.

From the energy spectrum (14.159), with (14.162), of the generalized Rosen-
Morse potential and the above DK we derive the discrete spectrum of the Hulthén
potential for g < 0 [7]:

EHn = g

(

n2
g − n2

2ngn

)2

= − h̄2

2Ma2
1

4n2

(

n2
g − n2

)2
, 1 ≤ n < ng, (14.179)

where n2
g = −2Mga2/h̄2.

In the literature, a solution of the time-sliced path integral with the action
(14.166) has been attempted using a regulating function [11]

f = a2(er/a − 1). (14.180)

This implies going to the new variables

r

a
= −2 log cos(θ/2), (14.181)

so that

f = a2 tan2(θ/2) = a2
[

1

cos2(θ/2)
− 1

]

. (14.182)

Note that this does not lead to a solution of the time-sliced path integral, since
the transformed potential is still singular. Indeed, with h′ = a tan(θ/2), h′′ =
a/2 cos2(θ/2), h′′′ = a sin(θ/2)/2 cos3(θ/2), we would find the effective potential

Veff(θ) =
h̄2

8Ma2
1

sin2 θ
(1 + 2 cos θ) =

h̄2

32Ma2

[

3

sin2(θ/2)
− 1

cos2(θ/2)

]

, (14.183)

and a transformed action

ÃDK
H =

∫ S

0
(ds/a2)

{

Ma4

2
θ′

2 − g + EH

[

1

cos2(θ/2)
− 1

]

+ Veff(θ)

}

, (14.184)
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which is of the general Pöschl-Teller type (14.145). Due to the presence of the
1/ cos2(θ/2)-term, the Euclidean time evolution amplitude cannot be time-sliced.
Only by starting from the particle near the surface of a sphere with the particular
Bessel function regularization of (8.208), can a well-defined time-sliced amplitude beref(8.208)

lab(8.175)
est(8.209)

written down whose action looks like (14.184) in the continuum limit. It would be
impossible, however, to invent this regularization when starting from the continuum
action (14.184).

14.4.7 Extended Hulthén Potential
and General Rosen-Morse Potential

The alert reader will have noticed that the regulating function (14.165) overkills
the ga/r singularity of the Hulthén potential (14.165). In fact, we may add to the
potential a term

∆VH =
g′

(er/a − 1)2
(14.185)

without loosing the stability of the path integral. In the limit a→ ∞, the extended
potential contains the radial Coulomb system plus a centrifugal barrier, if we set
ga = −e2 = const and g′a2 = h̄2l(l + 1)/2M . The potential (14.185) adds to the
time-transformed action (14.168) a term

∆Af
H = −

∫ S

0
ds g′4e−2r/a, (14.186)

which winds up in the final DK-transformed action as

∆ADK
H = −

∫ S

0
ds g′

[

2− 2 tanh(x/a)− 1

cosh2(x/a)

]

. (14.187)

Therefore, the extended Hulthén potential is again DK-equivalent to the general
Rosen-Morse potential with the same relation (14.178) between the amplitudes, but
with different relations between the constants.

The discrete energy spectrum of the extended Hulthén potential is

EH′ n = − h̄2

2Ma2

[

n(n− 1) + n2
g

2(n− s2)
− n +

1

2

]2

, 1 ≤ n < n̄, (14.188)

where n2
g′ ≡ 2Mg′a2/h̄2, and s2 ≡ −1

2

(

1−
√

1 + 4n2
g′

)

solves s2(s2 + 1) = n2
g′ . For

g′ = 0, this reduces to (14.179).

14.5 D-Dimensional Systems

Let us now perform the path-dependent time transformation in D dimensions. The
fixed-energy amplitude is given by the integral

(xb|xa)E =
∫ ∞

0
dS〈xb|ÛE(S)|xa〉, (14.189)
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with the pseudotime evolution amplitude

〈xb|ÛE(S)|xa〉 = fr(xb)fl(xa)〈xb| exp
[

− i

h̄
Sfl(x)(Ĥ −E)fr(x)

]

|xa〉. (14.190)

It has the time-sliced path integral

〈xb|ÛE(S)|xa〉 ≈ (14.191)

fr(xb)fl(xa)
√

2πiǫsh̄fl(xb)fr(xa)/M
D

N
∏

n=1





∫ dxn
√

2πiǫsh̄fn/M



 exp
{

i

h̄
AN

}

,

with the action

AN =
N+1
∑

n=1

{

M

2ǫs

(∆xn)
2

fl(xn)fr(xn−1)
+ ǫs[E − V (xn)]fl(xn)fr(xn−1)

}

, (14.192)

where the integration measure contains the abbreviation fn ≡ f(rn) = fl(xn)fr(xn).
The time-transformed measure of path integration reads

fr(xb)fl(xa)
√

2πiǫsh̄fl(xb)fr(xa)/M
D

N
∏

n=1

∫

dDxn
√

2πiǫsh̄fn/M
D . (14.193)

By shifting the product index and the subscripts of fn by one unit, and by com-
pensating for this with a prefactor, the integration measure in (14.27) acquires the
postpoint form

fr(xb)fl(xa)
√

2πiǫsh̄fl(xb)fr(xa)/M
D

√

√

√

√

f(xb)

f(xa)

D
N+1
∏

n=2

∫

dD∆xn
√

2πiǫsh̄fn/M
D . (14.194)

The integrals over each coordinate difference ∆xn = xn − xn−1 are done at fixed
postpoint positions xn.

To simplify the subsequent discussion, it is preferable to work only with the
postpoint regularization in which fl(x) = f(x) and fr(x) ≡ 1. Then the measure
becomes simply

f(xa)
√

2πiǫsf(xa)h̄/M
D

N+1
∏

n=2

∫

dD∆xn
√

2πiǫsh̄fn/M
D . (14.195)

We now introduce the coordinate transformation. In D dimensions it is given by

xi = hi(q). (14.196)

The differential mapping may be written as in Chapter 10 as

dxi = ∂µh
i(q) = eiµ(q)dq

µ. (14.197)
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The transformation of a single time slice in the path integral can be done following
the discussion in Sections 10.3 and 10.4. This leads to the path integral

(xb|xa)E≈ f(qa)
√

2πiǫsf(qa)h̄/M
D

∫

∞

0
dS

N+1
∏

n=2







∫

dD∆qng
1/2(qn)

√

2πiǫsh̄fn/M
D





 eiAtot/h̄, (14.198)

with the total time-sliced action

Atot =
N+1
∑

n=1

Aǫ
tot. (14.199)

Each slice contains three terms

Aǫ
tot = Aǫ +Aǫ

J +Aǫ
pot. (14.200)

In the postpoint form, the first two terms were given in (13.163) and (13.164). They
are equal to

Aǫ +Aǫ
J =

M

2ǫf
gµν(q)∆q

µ∆qν − i
h̄

2
Γµ

µ
ν∆q

ν − ǫsf
h̄2

8M
(Γµ

µ
ν)

2. (14.201)

The third term contains the effect of a potential and a vector potential as derived
in (10.183). After the DK transformation, it reads

Aǫ
pot = Aµ∆q

µ − iǫsf
h̄

2M
(AνΓµ

µν +DµA
µ)− ǫsfV (q). (14.202)

14.6 Path Integral of the Dionium Atom

We now apply the generalized D-dimensional Duru-Kleinert transformation to the
path integral of a dionium atom in three dimensions. This is a system of two particles
with both electric and magnetic charges (e1, g1) and (e2, g2) [12]. Its Lagrangian for
the relative motion reads

L =
M

2
ẋ2 +A(x)ẋ− V (x), (14.203)

where x is the distance vector pointing from the first to the second article, M the
reduced mass, V (x) a Coulomb potential

V (x) = −e
2

r
, (14.204)

and A(x) the vector potential

A(x) = h̄q
ẑ× x

r

(

1

r − z
− 1

r + z

)

= h̄q
(xŷ − yx̂)z

r(x2 + y2)
. (14.205)



1014 14 Solution of Further Path Integrals by Duru-Kleinert Method

The coupling constants are q ≡ −(e1g2 − e2g1)/h̄c and e2 ≡ −(e1e2 + g1g2). The
vector potential (14.205) is a generalization of the magnetic monopole interaction
(8.300) with an electric charge. If we take the coupling as and e2 ≡ −e1e2 − g1g2 in
(14.205) we allow for the two particles to carry both electric and magnetic charges
of the two particles, if we take for V (x) the potential

V (x) = −e
2

r
. (14.206)

The hydrogen atom is a special case of the dionium atom with e1 = −e2 = e and
q = 0, l0 = 0. An electron around a pure magnetic monopole has e1 = e, g2 = g,
e2 = g1 = 0.

In the vector potential (14.205) we have made use of the gauge freedom A →
A(x) + ∇Λ(x) to enforce the transverse gauge ∇A(x) = 0. In addition, we have
taken advantage of the extra monopole gauge invariance which allows us to choose
the shape of the Dirac string that imports the magnetic flux to the monopoles. The
field A(x) in (14.205) has two strings of equal strength importing the flux, one along
the positive x3-axis from minus infinity to the origin, the other along the negative
x3-axis from plus infinity to the origin. It is the average of the vector potentials
(10A.59) and (10A.60).

For the sake of generality, we shall assume the potential V (x) to contain an extra
1/r2-potential:

V (x) = −e
2

r
+

h̄2l20
2Mr2

. (14.207)

The extra potential is parametrized as a centrifugal barrier with an effective angular
momentum h̄l0.

At the formal level, i.e., without worrying about path collapse and time slicing
corrections, the amplitude has been derived in Ref. [13]. Here we reproduce the
derivation and demonstrate, in addition, that the time slicing produces no correc-
tions.

14.6.1 Formal Solution

We extend the action of the type (14.11) by a dummy fourth coordinate as in the
Coulomb system and go over to ~u-coordinates depending on the radial coordinate
u =

√
r and the Euler angles θ, ϕ, γ as given in Eq. (13.102). Then the action reads

A=
∫

dt

{

M

2
4u2u̇2+

M

2
u4
[

θ̇2 + ϕ̇2+γ̇2+2

(

γ̇+
h̄q

Mu4

)

ϕ̇ cos θ

]

− e2

u2
− h̄2l20
2Mu4

+E

}

.

(14.208)

H. Kleinert, PATH INTEGRALS



14.6 Path Integral of the Dionium Atom 1015

By performing the Duru-Kleinert time reparametrization dt = ds r(s) and changing
the mass to µ = 4M , the action takes the form

ADK=
∫ S

0
ds
µ

2

{

u′2 +
u2

4

[

θ′2 + ϕ′2 + γ′2+2

(

γ′+
4h̄q

µu2

)

ϕ′ cos θ

]

− 4h̄2l20
2µu2

+ Eu2
}

.

(14.209)

This can be rewritten in a canonical form

A =
∫ S

0
ds(puu

′ + pθθ + pϕϕ
′ + pγγ

′ −H), (14.210)

with the Hamiltonian

H =
1

2µ

{

p2u +
4

u2

[

p2θ +
1

sin2 θ

(

p2ϕ + (pγ + h̄q)2 − 2(pγ + h̄q)pϕ cos θ
)

]}

+
4

2µu2

[

−2h̄qpγ + h̄2(l20 − q2)
]

. (14.211)

In the canonical path integral, the momenta are dummy integration variables so
that we can replace pγ + h̄q by pγ. Then the action becomes

A =
∫ S

0
ds[puu

′ + pθθ + pϕϕ
′ + (pγ − h̄q)γ′ − H̄ ], (14.212)

with the Hamiltonian

H̄ =
1

2µ

{

p2u +
4

u2

[

p2θ +
1

sin2 θ

(

p2ϕ + p2γ − 2pγpϕ cos θ
)

]}

+
4

2µu2

[

−2h̄q(pγ − h̄q) + h̄2(l20 − q2)
]

. (14.213)

This differs from the pure Coulomb case in three ways:
First, the Hamiltonian has an extra centrifugal barrier proportional to the charge

parameter 4q:

V (r) =
−8h̄q(pγ − h̄q)

2µu2
. (14.214)

Second, there is an extra centrifugal barrier

V (r) =
h̄2l2extra
2µu2

, (14.215)

whose effective quantum number of angular momentum is given by

l2extra ≡ 4(l20 − q2). (14.216)
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Third, the action (14.212) contains an additional term

∆A = −h̄q
∫ S

0
dsγ′. (14.217)

Fortunately, this is a pure surface term

∆A = −h̄q(γb − γa). (14.218)

In the case q2 = l20, the extra centrifugal barrier vanishes, making it straightfor-
ward to write down the fixed-energy amplitude (xb|xa)E of the system. It is given
by a simple modification of the relation (13.127) that expresses the fixed-energy
amplitude of the Coulomb system (xb|xa)E in terms of the four-dimensional har-
monic oscillator amplitude (~ubS|~ua0). Due to (14.217), the modification consists of
a simple extra phase factor e−iq(γb−γa) in the integral over γa so that

(xb|xa)E =
∫ ∞

0
dSeie

2S/h̄ 1

16

∫ 4π

0
dγae

−iq(γa−γb)(~ubS|~ua0). (14.219)

The integral over γa forces the momentum pγ in the canonical action (14.212) to
take the value h̄q. This eliminates the term proportional to pγ − h̄ in (14.213).

In the general case l0 6= q, the amplitude becomes

(xb|xa)E =
∫ ∞

0
dSeie

2S/h̄ 1

16

∫ 4π

0
dγae

−iq(γa−γb)(~ubS|~ua0)lextra , (14.220)

where the subscript lextra indicates the presence of the extra centrifugal barrier po-
tential in the harmonic oscillator amplitude. This amplitude was given for any
dimension D in Eqs. (8.133) with (8.144). In the present case of D = 4, it has the
partial-wave expansion [compare (8.162)]

(~ubS|~ua0)lextra =
1

(ubua)3/2

∞
∑

lO=0

(ubS|ua0)l̃O
lO + 1

2π2
(14.221)

×
lO/2
∑

m1,m2=−lO/2

dlO/2
m1m2

(θb)d
lO/2
m1m2

(θa)e
im1(ϕb−ϕa)+im2(γb−γa),

with the radial amplitude

(ubS|ua0)l̃O =
MO

ih̄

ω
√
ubua

sinωS
ei(MOω/2h̄)(u2

b
+u2

a) cotωSIl̃O+1

(

MOωubua
ih̄ sinωS

)

. (14.222)

This differs from the pure oscillator amplitude [compare (8.142) forD = 4] by having
the index lO + 1 of the Bessel function replaced by the square root of the “shifted
square” as in (8.146):ref(8.146)

lab(x8.146)
est(8.146) l̃O + 1 ≡

√

(lO + 1)2 + l2extra =
√

(lO + 1)2 + 4(l20 − q2) = 2
√

(jD + 1/2)2 + l20 − q2.

(14.223)
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The expansion (14.221) is inserted into (14.220) with the variables ub, ua replaced
by

√
rb,

√
ra. Just as in the Coulomb case in (14.110) and (14.111), the integral

∫ 4π
0 dγae

−iq(γb−γa) over the sum of angular wave functions

lO + 1

2π2

lO/2
∑

m1,m2=−l/2

dlO/2
m1m2

(θb)d
lO/2
m1m2

(θa)e
im1(ϕb−ϕa)+im2(γb−γa) (14.224)

can immediately be done, resulting in

8
lO/2
∑

m

Y lO/2
m,q (θb, ϕb)Y

lO/2
m,q

∗(θa, ϕa), (14.225)

where Y lO/2
m,q (θ, ϕ) are the monopole spherical harmonics (8.278). They coincide

with the wave functions of a spinning symmetric top which possesses a spin q along
the body axis. Physically, this spin is caused by the field’s momentum density
� = (E × B)/4πc encircling the radial distance vector x. The Poynting vector
yielding the energy density is S = E×B/4π. If a magnetically charged particle lies
at the origin and electrically charged particle orbits around it at x, the total angular
momentum carried by the fields is [14]

J =
∫

d3x′ x′ × �(x′) =
1

4πc

∫

d3x′ x′ ×
[

g x′

|x′|3 × e(x′ − x)

|x′ − x|3
]

=
eg

c
x̂. (14.226)

The quantization of the angular momentum

eg

c
= n

h̄

2
, n = integer (14.227)

is Dirac’s famous charge quantization condition [16] [see also Eq. (8.304)].
Thus we arrive at the fixed-energy amplitude of the dionium atom, labeled by

the subscript D,

(xb|xa)ED
=

1

rbra

∑

jD

(rb|ra)ED,jD

jD
∑

m=−jD

Y jD
m,q(θb, ϕb)Y

jD
m,q

∗(θa, ϕa), (14.228)

where the sum over jD = lO/2 runs over integer or half-integer values depending
on q, and with the radial amplitude given by the pseudotime integral over the

radial oscillator amplitude of mass MO = 4M and frequency ω =
√

−E/2MC [recall

(13.123)]:

(rb|ra)ED ,jD =
1

2

∫ ∞

0
dSeie

2S/h̄MO ω
√
rbra

ih̄ sinωS
Il̃O+1

(

MO ω
√
rbra

ih̄ sinωS

)

× exp
[

iMO ω

2h̄
(rb + ra) cotωS

]

, (14.229)

where κ =
√

−2MED/h̄
2 and ν =

√

−e4M/2h̄2ED as in (13.39) and (13.40). Note
that the dionium atom can be a fermion, even if the constituent particles are both
bosons (or both fermions).
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After the variable changes e2/h̄ = 2ων, ωS = −iy, we do the S-integral as in
(9.29) and find for rb > ra the radial amplitude of the dionium atom

(rb|ra)ED,jD = −iM
h̄κ

Γ(−ν + j̃D + 1)

(2j̃D + 1)!
Wν, j̃D+1/2(2κrb)Mν, j̃D+1/2(2κra), (14.230)

where j̃D = l̃O/2 =
√

(jD + 1
2)

2 + l20 − q2 − 1
2 . For q = 0 and l0 = 0, this reduces

properly to the DC-dimensional Coulomb amplitude (14.112).
The energy eigenvalues are obtained from the poles of the Gamma function at

ν = νnr
≡ j̃D + nr + 1, nr = 0, 1, 2, 3, . . . , (14.231)

which yield

En = −Mh̄2e4
1

2
[

nr + 1
2 +

√

(jD + 1
2)

2 + l20 − q2
]2 . (14.232)

From the residues at the poles and the discontinuity across the cut at ED > 0
in (14.230), we can extract the bound and continuum radial wave functions by the
same method as in Section 13.8 from Eqs. (13.217)–(13.229).

14.6.2 Absence of Time Slicing Corrections

Let us now show that the above formal manipulations receive no correction in a proper time-sliced
treatment [15]. Due to the presence of centrifugal and angular barriers, a path collapse can be
avoided only after an appropriate regularization of both singularities. This is achieved by the
path-dependent time transformation dt = ds f(x(s)) with the postpoint regulating functions

fl(x) = f(x) = r2 sin2 θ, fr(x) ≡ 1. (14.233)

After the extension of the path integral by an extra dummy dimension x4, the time-sliced time-
transformed fixed-energy amplitude to be studied is [see (14.189)–(14.195)]

(xb|xa)E ≈
∫

dx4
a

1

r2a sin2 θa

∫ ∞

0

dS
1

(2πih̄ǫs/M)2

×
N+1
∏

n=2

[∫

d4∆xn

(2πih̄ǫs/M)2r4n sin4 θn

]

eiA
N/h̄, (14.234)

with the sliced postpoint action

AN =

N+1
∑

n=1

{

M

2ǫs

(∆xi
n)2

r2n sin2 θn
− ǫsr

2
n sin2 θn [V (xn) − E] +Ai(xn)∆xi − ǫs

h̄

2M
Ai,i(xn)

}

.

(14.235)

On this action, we now perform the coordinate transformation in two steps. First we go through
the nonholonomic Kustaanheimo-Stiefel transformation as in Section 13.4 and express the four-
dimensional ~u-space in terms of r = |x| and the Euler angles θ, ϕ, γ. Explicitly,

x1 = r sin θ cosϕ,

x2 = r sin θ sinϕ,

x3 = r cos θ,

dx4 = r cos θdϕ + rdγ. (14.236)
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Only the last equation is nonholonomic. If qµ = 1, 2, 3, 4 denotes the components r, β, ϕ, γ, the
transformation matrix reads

eiµ =
∂xi

∂qµ
=









sin θ cosϕ r cos θ cosϕ −r sin θ sinϕ 0
sin θ sinϕ r cos θ sinϕ r sin θ cosϕ 0
cos θ −r sin θ 0 0
0 0 r cos θ r









.

It has the metric

gµν = eiµeiν =









1 0 0 0
0 r2 0 0
0 0 r2 r2 cos θ
0 0 r2 cos θ r2









, (14.237)

with an inverse

gµν =









1 0 0 0
0 1/r2 0 0
0 0 1/r2 sin2 θ − cos θ/r2 sin2 θ
0 0 − cos θ/r2 sin2 θ 1/r2 sin2 θ









. (14.238)

The regulating function f(x) = r2 sin2 θ removes the singularities in gµν and thus in the free part
of the Hamiltonian (1/2M)gµνpµpν ; there is no more danger of path collapse in the Euclidean
amplitude.

In a second step we go to new coordinates

r = eξ, sin θ = 1/ coshβ, cos θ = − tanhβ, (14.239)

as in the treatment of the angular barriers for D = 3 and D = 4 in Section 14.4. With qµ = 1, 2, 3, 4
denoting the coordinates ξ, β, ϕ, γ, respectively, the combined transformation matrix reads

eiµ =











eξ cosh−1 β cosϕ −eξ sinhβ
cosh2 β

cosϕ −eξ cosh−1 β sinϕ 0

eξ cosh−1 β sinϕ −eξ sinhβ
cosh2 β

sinϕ eξ cosh−1 β cosϕ 0

−eξ tanhβ −eξ cosh−2 β 0 0
0 0 −eξ tanhβ eξ











, (14.240)

with the metric

gµν =









e2ξ 0 0 0

0 e2ξ cosh−2 β 0 0
0 0 e2ξ −e2ξ tanhβ
0 0 −e2ξ tanhβ e2ξ









, (14.241)

and the determinant

g = e8ξ/ cosh4 β. (14.242)

The inverse metric is completely regular:

gµν =









e−2ξ 0 0 0

0 e−2ξ cosh2 β 0 0

0 0 e−2ξ cosh2 β e−2ξ sinhβ coshβ

0 0 e−2ξ sinhβ coshβ e−2ξ cosh2 β









. (14.243)

We now calculate the transformed actions (14.201) and (14.202). The relevant quantities which
could contain time slicing corrections are DµA

µ and Γµ
µν . The former quantity, being equal to
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∂iAi, vanishes in the transverse gauge under consideration. The calculation of Γµ
µν is somewhat

tedious (see Appendix 14B) but yields a surprisingly simple result:

Γ µ
µ ν = (−1, 0, 0, 0). (14.244)

Because of this simplicity, the transformed sliced action is easily written down. It is split into two
parts,

Aǫ
tot = Aǫ

ϕβ + Aǫ
ϕγ , (14.245)

one containing only the coordinates ξ, β,

Aǫ
ξβ =

M

2ǫs
[(∆ξ)2n cosh2 βn + (∆βn)2] +

ih̄

2
∆ξn (14.246)

− ǫs

[

− e2eξn

cosh2 βn

+
h̄2(l2extra + 1/4)

2M cosh2 βn

− Ee2ξn

cosh2 βn

]

,

the other dealing predominantly with ϕ, γ,

Aǫ
ϕγ =

M cosh2 βn

2ǫs
[(∆ϕn)2 + (∆γn)2 − 2∆γn∆ϕn tanhβn]

+ h̄q tanhβn∆ϕn − ǫs
h̄2q2

2M cosh2 βn

. (14.247)

Hence the fixed-energy amplitude becomes

(xb|xa)E ≈
∫ ∞

0

dS

∫ 4π

0

dγa
1

2πih̄ǫsr2a/M coshβa

N
∏

n=1

[∫

drndβn

2πih̄ǫs/M cosh2 βn+1

]

× exp

(

i

h̄

N+1
∑

n=1

Aǫ
ξβ

)

(ϕb γb S|ϕa γa 0)[β]. (14.248)

The last factor is a pseudotime evolution amplitude in the angles ϕ, γ which is still a functional of
β(t), as indicated by the subscript [β],

(ϕb γb S|ϕa γa 0)[β] ≈
∑

ϕN+1=ϕb+2πlϕ
b

∑

γN+1=γb+4πlγ
b

(14.249)

× 1

2πih̄ǫs/M coshβb

N
∏

n=1

[∫

dϕndγn
2πih̄ǫs/M coshβn

]

exp

(

i

h̄

N+1
∑

n=1

Aǫ
ϕγ

)

.

The sums over lϕb , l
γ
b account for the cyclic properties of the angles ϕ and γ with the periods 2π

and 4π, respectively, at a fixed coordinate xb (as in the examples in Section 6.1).
We now introduce auxiliary momentum variables pϕn , p

γ
n and go over to the canonical form of

the amplitude (14.249):

(ϕbγb S|ϕaγa 0)[β] ≈
N
∏

n=1

[∫

dϕn

]N+1
∏

n=1

[∫

dpϕn
2πh̄

] N
∏

n=1

[∫

dγn

]N+1
∏

n=1

[∫

dpγn
2πh̄

]

× exp

[

i

h̄

N+1
∑

n=1

(

pϕn∆ϕn + pγn∆γn (14.250)

− ǫs
2M

[(pϕn)2 + (pγn + h̄q)2 + 2pϕn(pγn + h̄q) tanhβn] + ǫs
pγnh̄q

M cosh2 βn

)]

.
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The momenta pγn are dummy integration variables and can be replaced by pγn − h̄q. The dϕn, dγn-
integrals run over the full extended zone schemes ϕn, γn∈ (−∞,∞) and enforce the equality of all
pγn. At the end, only the integrals over a common single momentum pϕ, pγ remain and we arrive
at

(ϕbγb S|ϕaγa 0)[β] (14.251)

≈ e−iq(γb−γa)
∞
∑

lϕ
b
=−∞

∞
∑

lγ
b
=−∞

∫

dpϕ
2πh̄

∫

dpγ
2πh̄

eipϕ(ϕb+2πlϕ
b
−ϕa)/h̄eipγ(γb+4πlγ

b
−γa)/h̄

× exp

{

− i

h̄

N+1
∑

n=1

[

1

2Mǫs
(p2ϕ + p2γ + 2pϕpγ tanhβn) − ǫs

(pγ − h̄q)h̄q

M cosh2 βn

]

}

.

We can now do the sums over lϕb , l
γ
b which force the momenta pϕ to integer values and pγ to

half-integer values by Poisson’s formula, so that

(ϕbγb S|ϕaγa 0)[β] = e−iq(γb−γa)
∑

m1,m2

1

2π
eim1(ϕb−ϕa) 1

4π
eim2(γb−γa) (14.252)

× exp

{

− i

h̄

N+1
∑

n=1

[

h̄2

2Mǫs
(m2

1 + m2
2 + 2m1m2 tanhβn) − ǫsh̄

2(m2 − q)q

M cosh2 βn

]

}

.

With this, the expression for the fixed-energy amplitude (14.248) of the dionium atom contains
the magnetic charge only at three places: the extra centrifugal barrier in Aǫ

ξβ , the phase factor
of the remaining integral over γa, and the last term in (14.252). This last term, however, can be
dropped since the integral over γa forces the half-integer number m2 to become equal to h̄q. The
γb-integral over the remaining functional of β(t) gives, incidentally,

∫ 4π

0

dγa(ϕbγb S|ϕaγa 0)[β] =
∑

m1

1

2π
eim1(ϕb−ϕa)

× exp

{

− i

h̄

N+1
∑

n=1

[

h̄2

2Mǫs
[m2

1 + q2 + 2m1q tanhβn

]

}

. (14.253)

The time-sliced expression has the parameter q at precisely the same places as the previous formal
one. This proves that formula (14.220) with (14.221) is unchanged by time slicing corrections, thus
completing the solution of the path integral of the dionium atom.

Note that after inserting (14.253), the time-sliced path integral (14.248) is a combination of a
general Rosen-Morse system in β and a Morse system in ξ.

Let us end this discussion by the remark that like the Coulomb system, the dionium atom
can be treated in a purely group-theoretic way, using only operations within the dynamical group
O(4,2). This is explained in Appendix 14C.

14.7 Time-Dependent Duru-Kleinert Transformation

By generalizing the above transformation method to time-dependent regulating
functions, we can derive further relations between amplitudes of different physical
systems. In the path-dependent time transformation dt = ds fl(x)fr(x) regularizing
the path integrals, we may allow for functions fl(p,x, t) and fr(p,x, t) depending
on positions, momenta, and time. Such functions complicate the subsequent trans-
formation to new coordinates q, in which the kinetic term of the amplitude (12.47)
with respect to the pseudotime s has the standard form (M/2)q′2(s). In particular,
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a momentum dependence of fl and fr leads to involved formulas, which is the reason
why this case has not yet been investigated (just like the even more general case
where the right-hand side of the transformation dt = ds f contains terms propor-
tional to dx). If one restricts the transformation to depend only on time and uses
the special splitting with the regulating functions fl = f and fr = 1, or fl = 1
and fr = f , the result in one spatial dimension is relatively simple. On the ba-
sis of Section 12.3, the following relation is found [instead of (14.26)] between the
time evolution amplitude of an initial system and a fixed-energy amplitude of the
transformed systems at E = 0:

(xbtb|xata) = g(qb, tb)g(qa, ta){qbtb|qata}E=0, (14.254)

where {qbtb|qata}E=0 denotes the spacetime extension of the fixed-pseudoenergy am-
plitude. It is calculated by time-slicing the expression

∫ ∞

0
dS{xbtb|ÛE(S)|xata} (14.255)

on the right-hand side of (12.55), transforming the coordinates x to q, and adapting
the normalization to the completeness relation of the states

∫

dx
∫

dt|q t}{q t| = 1. (14.256)

This leads to the path integral representation

{qbtb|qata}E =
∫ ∞

0
dS

∫

dEe−iE(tb−ta)/h̄
∫

Dq(s)eiADK
E,E

/h̄, (14.257)

with the DK-transformed action

ADK
E,E =

∫ S

0
ds
{M

2
q′2(s)− f(q(s), t(s))[V (q(s), t)−E] + E

−Veff(q(s), t(s))−∆Veff(q(s), t(s))
}

. (14.258)

Note that the initial potential may depend explicitly on time. The function t(s) is
now given by the time-dependent differential equation

dt

ds
= f(x, t). (14.259)

The coordinate transformation also depends on time,

x = h(q, t), (14.260)

and satisfies the equation

h′2(q, t) = f(h(q, t), t), (14.261)

where h′(q, t) ≡ ∂qh(q, t) [compare (14.15)]. The function f(q(s), t(s)) used in
(14.258) is an abbreviation for f(h(q, t), t) evaluated at the time t = t(s).
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In addition to the effective potential Veff determined by Eq. (14.18), there is now
a further contribution which is due to the time dependence of h(q, t) [17]:

∆Veff =Mh′2
∫

dq h′ḧ∓ ih̄ḣ′h′. (14.262)

The upper sign must be used if the relation between t and s is calculated from the
time-sliced postpoint recursion relation

tn+1 − tn = ǫsf(qn+1, tn+1). (14.263)

The lower sign holds when solving the prepoint relation

tn+1 − tn = ǫsf(qn, tn). (14.264)

Note that the first term of ∆Veff contributes even at the classical level. If a function
h(q, t) is found satisfying Newton’s equation of motion

Mḧ = −∂V (h, t)

∂h
, (14.265)

with V (h) ≡ V (x)|x=h, then the first term eliminates the potential in the action
(14.258), and the transformed system is classically free. This happens if the new
coordinate q(t) associated with x, t is identified with the initial value, at some time t0,
of the classical orbit running through x, t. These are trivially time-independent and
therefore behave like the coordinates of a free particle (see the subsequent example).

The normalization factor g(q, t) is determined by the differential equation

g′

g
=

1

2

h′′

h′
+ i

M

h̄
h′ḣ. (14.266)

The solution reads

g(q, t) = eiΛ(q,t)
√

h′(q, t), (14.267)

with

Λ(q, t) = ±M
h̄

∫ q

dq h′ḣ. (14.268)

Thus, in addition to the normalization factor in (14.26), the time-dependent DK
relation (14.254) also contains a phase factor.

As an example [18], we transform the amplitude of a harmonic oscillator to that
of a free particle. The classical orbits are given by x(t) = x0 cosωt, so that the
transformation x(t) = h(q, t) = q cosωt leads to a coordinate q(t) which moves
without acceleration. For brevity, we write cosωt as c(t). Obviously, f(q, t) = c2(t)
is a pure function of the time [19], and the differential relation between the time t
and the pseudotime s is integrated to

S =
1

ω

sinω(tb − ta)

c(tb)c(ta)
. (14.269)
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This equation can be solved for ta(S) at fixed tb, or for tb(S) at fixed ta. The
solution ta(S) is obtained from the time-sliced postpoint recursion relation (14.263),
while tb(S) arises from the prepoint recursion (14.264). The DK action (14.258) is
simplified in these two cases to

ADK
E,E =

M

2

(qb − qa)
2

S
± ih̄ log

c(tb)

c(ta)
+ E

{

[tb − ta(S)]

[tb(S)− ta]

}

+ ES. (14.270)

The E-integration in (14.257) yields in the first case

{qbtb|qata}E =
∫ ∞

0
dS δ(tb − ta(S))

c(ta)

c(tb)

e(i/h̄)M(qb−qa)2/2S

√

2πh̄iS/M
, (14.271)

and the integration over S using −dta(S)/dS = c2(ta) results in

{qbtb|qata}E =
1

c(tb)c(ta)

e(i/h̄)M(qb−qa)2/2S

√

2πh̄iS/M
. (14.272)

The same amplitude is obtained for the lower sign in (14.270) with dtb(S)/dS =
c2(tb). After inserting this together with (18.671) and (14.268) into (14.254) [the
integration there gives Λ(q, t) = (M/h̄)q2c(t)ċ(t)/2], we obtain

(xbtb|xata) = e(i/h̄)M [q2
b
c(tb)ċ(tb)−q2ac(ta)ċ(ta)]/2

1
√

c(tb)c(ta)

e(i/h̄)M(qb−qa)2/2S

√

2πh̄iS/M
. (14.273)

Since qb and qa are equal to xb/c(tb) and xa/c(ta), respectively, a few trigonometric
identities lead to the well-known expression (2.175) for the amplitude of the harmonic
oscillator.

It is obvious that a combination of this transformation with a time-independent
Duru-Kleinert transformation makes it possible to reduce also the path integral of
the Coulomb system to that of a free particle.

It will be interesting to find out which hitherto unsolved path integrals can
be integrated by means of such generalized DK transformations. Applications to
statistical problems have been given in Ref. [21].

Appendix 14A Remarks on the DK Transformation

of Time-Sliced Radial Coulomb Problem

Here we show that due to the catastrophic centrifugal barriers in the multiple integrals of a time-
sliced formulation, the DK relation has to be used twice to transform the radial amplitude of the
Coulomb problem to the radial harmonic oscillator. An intermediate Morse potential is needed
to have no divergent integrals. The use of the DK transformation with the regulating function
f(r) = r and a pseudotime s satisfying dt = ds r(s) (which were successful in two and three
dimensions), removes the Coulomb singularity, but it weakens the centrifugal barrier insufficiently
to a still catastrophic 1/r-singularity.
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Let us exhibit the failure of this direct transformation. The starting point is the pseudotime-
sliced amplitude (13.8),

〈xb|ÛE(s)|xa〉 ≈
rλb r

1−λ
a

√

2πǫsh̄r1−λrλ/M
DC/2

N
∏

n=1

[

∫

dDC∆xn
√

2πǫsh̄rn/M
DC

]

e−AN
E /h̄, (14A.1)

with the action

AN
E = −(N + 1)ǫse

2 +
N+1
∑

n=1

[

M

2ǫs

(xn − xn−1)
2

r1−λ
n rλn−1

+ ǫsEr1−λ
n rλn−1

]

. (14A.2)

In contrast to Chapter 13, we work here conveniently with an imaginary-time. In any dimension
DC , the amplitude has the angular decomposition

〈xb|ÛE(s)|xa〉 =
1

(rbra)DC−1/2

∑

〈rb|ÛE(s)|ra〉lYlm(x̂b)Y
∗
lm(x̂a). (14A.3)

The action for the radial amplitude is obtained by decomposing

AN
E =−(N + 1)ǫse

2+

N+1
∑

n=1

[

M

2ǫsr
1−λ
n rλn−1

(r2n+r2n−1−2rnrn−1 cosϑn) + ǫsErn

]

, (14A.4)

where ϑn is the angle between xn and xn−1. We have replaced Er1−λ
n rλn−1 by Ern since the

difference is of order ǫ2s and thus negligible.
We now go through the same steps as in Section 8.5. For an individual time slice, the ϑn-part

of the exponential is expanded as

exp

(

M

ǫs
r λ
n r 1−λ

n−1 cosϑn

)

= eh
∞
∑

lC=0

ãlC(h)
∑

m

YlC m(x̂b)Y
∗
lC m(x̂a), (14A.5)

with

alC(h) =

(

2π

h

)(DC−1)/2

ĨDC/2−1+lC(h), h =
M

h̄ǫs
r λ
n r 1−λ

n−1 (14A.6)

[recall (8.130) and (8.101)]: The radial part of the propagator is then

〈rb|ÛE(s)|ra〉lC ≈ r λ
b r 1−λ

a
√

2πh̄ǫsr
1−λ

b r λ
a /M

N+1
∏

n=2

[

∫

d∆rn r
−1/2

n−1
√

2πh̄ǫs/M

]

e−AN
E /h̄, (14A.7)

with the radial action

AN
E =−(N+1)ǫse

2+

N+1
∑

n=1

[

M

2ǫs

(rn−rn−1)
2

r 1−λ
n r λ

n−1

− h̄ log ĨDC/2−1+lC

(

M

h̄ǫs
r λ
n r 1−λ

n−1

)

−ǫsErn

]

.

(14A.8)

At this place we simplify the calculation by choosing the symmetric splitting parameter λ = 1/2.
Going over to square root coordinates

un =
√
rn, (14A.9)

we calculate

∆rn = (un + un−1)∆un,

= 2un(1 − ∆un/2un)∆un,

∂∆rn
∂∆un

= 2un(1 − ∆un/un),

r
−1/2

n−1 = u−1
n (1 − ∆un/un)−1, (14A.10)
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transforming the measure of integration into

√
ubua

√

2πh̄ǫs/M

N
∏

n=1

∫

d∆un
√

2πh̄ǫs/M
. (14A.11)

Note that there are no higher ∆un correction terms. The kinetic energy is

4ū 2
n (∆un)2

2ǫsunun−1
=

4

2ǫs

[

(∆un)2 +
1

4

(∆un)4

u 2
n

+ . . .

]

. (14A.12)

The (∆un)4-term can be replaced right away by its expectation value and renders an effective
potential

Veff(u 2
n ) = ǫsh̄

2 1

2 · 4M
3

4u 2
n

. (14A.13)

The radial amplitude becomes simply

〈rb|ÛE(s)|ra〉lC ≈
√
ubua

√

2πh̄ǫs/M

N+1
∏

n=2

[

∫ ∞

0

2dun
√

2πh̄ǫs/M

]

e−AN
E /h̄, (14A.14)

with

AN
E = −(N + 1)ǫs +

N+1
∑

n=1

[

4M

2

(∆un)2

2ǫs
+ Veff(u 2

n ) − h̄ log ĨDC/2−1+lC

(

M

h̄ǫs
unun−1

)]

.

(14A.15)

Due to the 1/u 2
n -singularity in Veff(u 2

n ), the time-sliced path integral does not exist. Apart from
the ǫs/u

2
n -term, there should be infinitely many terms of increasing order of the type (ǫs/u

2
n )2 , . . . ,

whose resummation is needed to obtain the correct threshold small-un behavior of the amplitude as
discussed in Section 8.2. To have the usual kinetic term of the harmonic oscillator MO(∆un)2/2ǫs,
we must identify 4M with the oscillator mass MO [called µ in (13.27); see also (14.99) withref(13.27)

lab(13.16)
est(13.26)

MC ≡ M ],

MO = 4M. (14A.16)

The centrifugal barrier in (14A.15) resides in

−h̄ log ĨDC/2−1+lC

(

MO/4

h̄ǫs
unun−1

)

+ ǫsh̄
2 3

8MOu2
n

+ . . . , (14A.17)

and is given by

ǫs
h̄2

2MO

4

unun−1

[

(

DC

2
− 1 + lC

)2

− 1

4

]

+ ǫsh̄
2 3

8MOu2
n

+ . . . . (14A.18)

This can be rewritten more explicitly as

ǫs
h̄

2MO

1

unun−1

[

(DC − 2 + 2lC)
2 − 1

4

]

. (14A.19)

The expression in parentheses is identified with the parameter µO of the harmonic oscillator, which
appears in the subscript of the Bessel function in (8.140). This implies

µO = 2µC , (14A.20)
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in agreement with the relation (14.100). Indeed, the higher terms in the expansion (14A.18) must
all conspire to sum up to the Bessel-regulated centrifugal barrier in the time-sliced radial amplitude
of the harmonic oscillator

−h̄ log ĨDC−2+2lC

(

MO

h̄ǫs
unun−1

)

. (14A.21)

This is quite hard to verify term by term, although it must happen.
These difficulties are avoided by using the stronger regulating function f = r2, which transform

the radial Coulomb problem to the Morse problem. Instead of the pseudotime evolution amplitude
(14A.1), we have

〈xE |Ûe(s)|xa〉≈
r 2
b r 2−2λ

a
√

2πǫsh̄r
2−2λ

b r 2λ
a /M

DC/2

N
∏

n=1

[

∫

dDC∆xn
√

2πǫsh̄r2n/M
DC

]

e−A
f N

E
/h̄, (14A.22)

with the time-sliced transformed action

Af N
E = −(N + 1)ǫse

2 +

N+1
∑

n=1

[

M

2ǫsr
2−2λ

n r 2λ
n−1

(r2n + r2n−1 − 2rnrn−1 cosϑn) − ǫsEr2n

]

.

(14A.23)

For λ = 1/2, the cos∆ϑn-term is now free of the radial variables rn, rn−1, rn, rn−1, and the angular
decomposition of the amplitude as in (14A.3)–(14A.8) gives the radial amplitude with a time-sliced
action

AfN
E =−(N+1)ǫse

2+

N+1
∑

n=1

[

M

2ǫs

(rn−rn−1)
2

rnrn−1
−h̄ log ĨDC/2−1+lC

(

M

h̄ǫs

)

−ǫsEr 2
n

]

. (14A.24)

Since rn, rn−1 are absent in the Bessel function, the limit of small ǫs is now uniform in the inte-
gration variables rn and the logarithmic term in the energy can directly be replaced by

ǫs
h̄

2MC

[

(DC/2 − 1 + lC)
2 − 1/4

]

, (14A.25)

where we have added the subscripts C, for clarity. To perform the integration over the rn variables,
one goes over to new coordinates x with

r = h(x) = ex. (14A.26)

The measure of integration is

√
rbra

√

2πh̄ǫs/M
N+1

N+1
∏

n=2

∫

d∆rn
rn−1

. (14A.27)

Expanding 1/rn−1 around the postpoint rn gives

1

rn−1
=

1

rn

(

rn
rn−1

)

=
e∆xn

exn
. (14A.28)

We now write (dropping subscripts n)

∆r = ex − ex−∆x = ex(1 − e−∆x), (14A.29)

and find the Jacobian

∂∆r

∂∆x
= exe−∆x. (14A.30)
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In the x-coordinates, the measure becomes simply

e(xb+xa)/2

√

2πh̄ǫs/M
N+1

N+1
∏

n=2

∫

d∆xn. (14A.31)

The kinetic term in the action turns into

AN
E =

N+1
∑

n=1

M

ǫs
(1 − cos∆xn), (14A.32)

and has the expansions

AN
E =

N+1
∑

n=1

M

2ǫs

[

(∆x)2 − 1

12
(∆xn)4 + . . .

]

. (14A.33)

The higher-order terms contribute with higher powers of ǫs uniformly in x. They can be treated
as usual. This is why the path-dependent time transformation of the radial Coulomb system to a
radial oscillator with the regulating function f = r2 is free of problems.

Appendix 14B Affine Connection of Dionium Atom

From the transformation matrices (14.240), we calculate the derivatives [setting qµ = (ξ, β, ϕ, γ)
and using the abbreviation f,ξ ≡ ∂ξf ]

eiµ,ξ = eiµ, (14B.1)

eiµ,β =











−eξ sinh β
cosh2 β

cosφ −eξ 1−sinh2 β
cosh3 β

cosφ eξ sinhβ
cosh2 β

sinφ 0

−eξ sinh β
cosh2 β

sinφ −eξ 1−sinh2 β
cosh3 β

sinφ −eξ sinhβ
cosh2 β

cosφ 0

−eξ cosh−2 β 2eξ sinh β
cosh3 β

0 0

0 0 −eξ cosh−2 β 0











, (14B.2)

eiµ,φ =









−eξ cosh−1 β sinφ eξ sinh β
cosh2 β

sinφ −eξ cosh−1 β cosφ 0

eξ cosh−1 β cosφ −eξ sinh β
cosh2 β

cosφ −eξ cosh−1 β sinφ 0

0 0 0 0
0 0 0 0









, (14B.3)

eiµ,α = 0. (14B.4)

From these we find Γµνλ = eiλe
i
ν,µ by contraction with eiλ:

Γξµν = gµν , (14B.5)

Γβµν =









0 e2ξ cosh−2 β 0 0

−e2ξ cosh−2 −e2ξ sinh β
cosh3 β

0 0

0 0 0 −e2ξ cosh−2 β
0 0 0 0









, (14B.6)

Γφµν =











0 0 e2ξ cosh−2 β 0

0 0 −e2ξ sinh β
cosh3 β

0

−e2ξ cosh−2 e2ξ sinhβ
cosh3 β

0 0

0 0 0 0











, (14B.7)

Γαµν = 0. (14B.8)

A contraction with the inverse metric gµν yields Γµ
µ
ν = (−1, 0, 0, 0), as stated in Eq. (14.244).
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Appendix 14C Algebraic Aspects of Dionium States

In Appendix 13A we have shown that certain combinations of xµ and ∂µ operators satisfy the
commutation rules of the Lie algebra of the group O(4,2) [see Eqs. (13A.11)]. This permits solving
all dynamical problems via group operations. In the case l0 = q (i.e., lextra = 0), the group-
theoretic approach can be extended to include the dionium atom. In fact, it is easy to see [20] that
the Lie algebra of O(4,2) remains the same if the generators LAB (A,B = 1, . . . , 6) of Eq. (13A.11)
are extended to (xi ≡ xi)

L̂ij = − i

2
(xi∂xj − xj∂xi) + q

r

x2
⊥

xk
⊥,

L̂i4 =
1

2

[

−xi∂2
x − xi + 2∂xix∂x + 2iq

r

x2
⊥

(x⊥ ×∇)i − (−)δi3q2
xi

x2
⊥

]

,

L̂i5 =
1

2

[

−xi∂2
x + xi + 2∂xix∂x + 2iq

r

x2
⊥

(x⊥ ×∇)i − (−)δi3q2
xi

x2
⊥

]

,

L̂i6 = −ir∂xi − q

x2
⊥

(x× x⊥)i,

L̂45 = −i(x∂x + 1),

L̂46 =
1

2

[

−r∂2
x − r + 2iq

z

x2
⊥

(x×∇)3 + q2
r

x2
⊥

]

,

L̂56 =
1

2

[

−r∂2
x + r + 2iq

z

x2
⊥

(x×∇)3 + q2
r

x2
⊥

]

. (14C.1)

The representation space is now characterized by the eigenvalue of the operator L̂05 = −ir∂x4 =
−i∂γ = − 1

2 (â†â− b̂†b̂) being equal to q. The wave functions are generalizations of the q = 0 -wave
functions of the Coulomb system.

Notes and References

[1] The special case λ = 1/2 has also been treated by
N.K. Pak and I. Sokmen, Phys. Rev. A 30, 1692 (1984).

[2] R.E. Langer, Phys. Rev. 51, 669 (1937);
W.H. Furry, Phys. Rev. 71, 360 (1947);
P.M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, 1953, pp. 1092ff.

[3] L.C. Hostler, J. Math. Phys. 11, 2966 (1970).

[4] F. Steiner, Phys. Lett. A 106, 256, 363 (1984).

[5] A. Sommerfeld, Partial Differential Equations in Physics, Lectures in Theoretical Physics ,
Vol. 6, Academic, New York, 1949;
T. Regge, Nuovo Cimento 14, 951 (1959);
F. Calogero, Nuovo Cimento 28, 761 (1963);
A.O. Barut, The Theory of the Scattering Matrix , MacMillan, New York, 1967, p. 140;
P.D.B. Collins and E.J. Squires, Regge Poles in Particle Physics , Springer Tracts in Modern
Physics, Vol. 49, Springer, Berlin 1968.

[6] H. Kleinert and I. Mustapic, J. Math. Phys. 33, 643 (1992) (http://www.physik.fu-
berlin.de/~kleinert/207).
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Thou com’st in such a questionable shape,

That I will speak to thee.
William Shakespeare (1564–1616), Hamlet

15

Path Integrals in Polymer Physics

The use of path integrals is not confined to the quantum-mechanical description
point particles in spacetime. An important field of applications lies in polymer
physics where they are an ideal tool for studying the statistical fluctuations of line-
like physical objects.

15.1 Polymers and Ideal Random Chains

A polymer is a long chain of many identical molecules connected with each other
at joints which allow for spatial rotations. A large class of polymers behaves ap-
proximately like an idealized random chain. This is defined as a chain of N links
of a fixed length a, whose rotational angles occur all with equal probability (see
Fig. 15.1). The probability distribution of the end-to-end distance vector xb−xa of
such an object is given by

PN(xb − xa) =
N
∏

n=1

[∫

d3∆xn
1

4πa2
δ(|∆xn| − a)

]

δ(3)(xb − xa −
N
∑

n=1

∆xn). (15.1)

The last δ-function makes sure that the vectors ∆xn of the chain elements add up
correctly to the distance vector xb − xa. The δ-functions under the product enforce
the fixed length of the chain elements. The length a is also called the bond length

of the random chain.
The angular probabilities of the links are spherically symmetric. The factors

1/4πa2 ensure the proper normalization of the individual one-link probabilities

P1(∆x) =
1

4πa2
δ(|∆x| − a) (15.2)

in the integral
∫

d3xb P1(xb − xa) = 1. (15.3)

The same normalization holds for each N :
∫

d3xb PN(xb − xa) = 1. (15.4)

923
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Figure 15.1 Random chain consisting of N links ∆xn of length a connecting xa = x0

and xb = xN .

If the second δ-function in (15.1) is Fourier-decomposed as

δ(3)
(

xb − xa −
N
∑

n=1

∆xn

)

=
∫

d3k

(2π)3
eik(xb−xa)−ik

∑N

n=1
∆xn , (15.5)

we see that PN (xb − xa) has the Fourier representation

PN(xb − xa) =
∫

d3k

(2π)3
eik(xb−xa)P̃N(k), (15.6)

with

P̃N(k) =
N
∏

n=1

[∫

d3∆xn
1

4πa2
δ(|∆xn| − a)e−ik∆xn

]

. (15.7)

Thus, the Fourier transform P̃N(k) factorizes into a product of N Fourier-
transformed one-link probabilities:

P̃N(k) =
[

P̃1(k)
]N
. (15.8)

These are easily calculated:

P̃1(k) =
∫

d3∆x
1

4πa2
δ(|∆x| − a)e−ik∆x =

sin ka

ka
. (15.9)

The desired end-to-end probability distribution is then given by the integral

PN(R) =
∫

d3k

(2π)3
[P̃1(k)]

NeikR

=
1

2π2R

∫ ∞

0
dkk sin kR

[

sin ka

ka

]N

, (15.10)
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where we have introduced the end-to-end distance vector

R ≡ xb − xa. (15.11)

The generalization of the one-link distribution to D dimensions is

P1(∆x) =
1

SDaD−1
δ(|∆x| − a), (15.12)

with SD being the surface of a unit sphere in D dimensions [see Eq. (1.558)].
To calculate

P̃1(k) =
∫

dD∆x
1

SDaD−1
δ(|∆x| − a)e−ik∆x, (15.13)

we insert for e−ik∆x = e−ik|∆x| cos∆ϑ the expansion (8.130) with (8.101), and use
Y0,0(x̂) = 1/

√
SD to perform the integral as in (8.250). Using the relation between

modified and ordinary Bessel functions Jν(z)
1

Iν(e
−iπ/2z) = e−iπ/2Jν(z), (15.14)

this gives

P̃1(k) =
Γ(D/2)

(ka/2)D/2−1
JD/2−1(ka), (15.15)

where Jµ(z) is the Bessel function.

15.2 Moments of End-to-End Distribution

The end-to-end distribution of a random chain is, of course, invariant under rotations
so that the Fourier-transformed probability can only have even Taylor expansion
coefficients:

P̃N(k) = [P̃1(k)]
N =

∞
∑

l=0

PN,2l
(ka)2l

(2l)!
. (15.16)

The expansion coefficients provide us with a direct measure for the even moments
of the end-to-end distribution. These are defined by

〈R2l〉 ≡
∫

dDRR2lPN(R). (15.17)

The relation between 〈R2l〉 and PN,2l is found by expanding the exponential under
the inverse of the Fourier integral (15.6):

P̃N (k) =
∫

dDRe−ikRPN(R) =
∞
∑

n=0

∫

dDR
(−ikR)n

n!
PN(R), (15.18)

1I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 8.406.1.
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and observing that the angular average of (kR)n is related to the average of Rn in
D dimensions by

〈(kR)n〉 = kn〈Rn〉











0 , n = odd,
(n− 1)!!(D − 2)!!

(D + n− 2)!!
, n = even.

(15.19)

The three-dimensional result 1/(n+1) follows immediately from the angular average
(1/2)

∫ 1
−1 d cos θ cosn θ being 1/(n+1) for even n. In D dimensions, it is most easily

derived by assuming, for a moment, that the vectors R have a Gaussian distribution
P

(0)
N (R) = (D/2πNa2)3/2e−R2D/2Na2 . Then the expectation values of all products of
Ri can be expressed in terms of the pair expectation value

〈RiRj〉(0) =
1

D
δij a

2N (15.20)

via Wick’s rule (3.305). The result is

〈Ri1Ri2 · · ·Rin〉(0) =
1

Dn/2
δi1i2i3...in a

nNn/2, (15.21)

with the contraction tensor δi1i2i3...in of Eqs. (8.64) and (13.89), which has the re-
cursive definition

δi1i2i3...in = δi1i2δi3i4...in + δi1i3δi2i4...in + . . . δi1inδi2i3...in−1 . (15.22)

A full contraction of the indices gives, for even n, the Gaussian expectation values:

〈Rn〉(0) = (D + n− 2)!!

(D − 2)!!Dn/2
anNn/2 =

Γ(D/2 + n/2)

Γ(D/2)

2n/2

Dn/2
anNn/2, (15.23)

for instance

〈

R4
〉(0)

=
(D + 2)

D
a4N2,

〈

R6
〉(0)

=
(D + 2) (D + 4)

D2
a6N3. (15.24)

By contracting (15.21) with ki1ki2 · · · kin we find

〈(kR)n〉(0) = (n− 1)!!
1

Dn/2
(ka)nNn/2 = kn 〈(R)n〉(0) dn, (15.25)

with

dn =
(n− 1)!!(D − 2)!!

(D + n− 2)!!
. (15.26)

Relation (15.25) holds for any rotation-invariant size distribution of R, in particu-
lar for PN(R), thus proving Eq. (15.17) for random chains. Hence, the expansion
coefficients PN,2l are related to the moments 〈R2l〉N by

PN,2l = (−1)ld2l〈R2l〉, (15.27)
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and the moment expansion (15.16) becomes

P̃N(k) =
∞
∑

l=0

(−1)l(k)2l

(2l)!
d2l 〈R2l〉. (15.28)

Let us calculate the even moments 〈R2l〉 of the polymer distribution PN(R)
explicitly for D = 3. We expand the logarithm of the Fourier transform P̃N(k) as
follows:

log P̃N(k) = N log P̃1(k) = N log

(

sin ka

ka

)

= N
∞
∑

l=1

22l(−1)lB2l

(2l)!2l
(ka)2l, (15.29)

where Bl are the Bernoulli numbers B2 = 1/6, B4 = −1/30, . . . . Then we note that
for a Taylor series of an arbitrary function y(x)

y(x) =
∞
∑

n=1

an
n!
xn, (15.30)

the exponential function ey(x) has the expansion

ey(x) =
∞
∑

n=1

bn
n!
xn, (15.31)

with the coefficients

bn
n!

=
∑

{mi}

n
∏

i=0

1

mi!

(

ai
i!

)mi

. (15.32)

The sum over the powers mi = 0, 1, 2, . . . obeys the constraint

n =
n
∑

i=1

i ·mi. (15.33)

Note that the expansion coefficients an of y(x) are the cumulants of the expansion
coefficients bn of ey(x) as defined in Section 3.17. For the coefficients an of the
expansion (15.29),

an =

{

−N22l(−1)lB2l/2l for n = 2l,
0 for n = 2l + 1,

(15.34)

we find, via the relation (15.27), the moments

〈R2l〉 = a2l(−1)l(2l + 1)!
∑

{mi}

l
∏

i=1

1

mi!

[

N22i(−1)iB2i

(2i)!2i

]mi

, (15.35)

with the sum over mi = 0, 1, 2, . . . constrained by
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l =
l
∑

i=1

i ·mi. (15.36)

For l = 1 and 2 we obtain the moments

〈R2〉 = a2N, 〈R4〉 = 5

3
a4N2

(

1− 2

5N

)

. (15.37)

In the limit of large N , the leading behavior of the moments is the same as in (15.20)
and (15.24). The linear growth of 〈R2〉 with the number of links N is characteristic
for a random chain. In the presence of interactions, there will be a different power
behavior expressed as a so-called scaling law

〈R2〉 ∝ a2N2ν . (15.38)

The number ν is called the critical exponent of this scaling law. It is intuitively
obvious that ν must be a number between ν = 1/2 for a random chain as in (15.37),
and ν = 1 for a completely stiff chain.

Note that the knowledge of all moments of the end-to-end distribution determines
completely the shape of the distribution by an expansion

PL(R) =
1

SDRD−1

∞
∑

n=0

〈Rn〉 (−1)n

n!
∂nRδ(R). (15.39)

This can easily be verified by calculating the integrals (15.17) using the integrals
formula

∫

dz zn∂nz δ(z) = (−1)nn! . (15.40)

15.3 Exact End-to-End Distribution in Three Dimensions

Consider the Fourier representation (15.10), rewritten as

PN(R) =
i

4π2a2R

∫ ∞

−∞
dη η e−iηR/a

(

sin η

η

)N

, (15.41)

with the dimensionless integration variable η ≡ ka. By expanding

sinN η =
1

(2i)N

N
∑

n=0

(−1)n
(

N

n

)

exp [i(N − 2n)η] , (15.42)

we find the finite series

PN(R) =
1

2N+2iN−1π2a2R

N
∑

n=0

(−1)n
(

N

n

)

IN(N − 2n− R/a), (15.43)
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where IN(x) are the integrals

IN(x) ≡
∫ ∞

−∞
dη

eiηx

ηN−1
. (15.44)

For N ≥ 2, these integrals are all singular. The singularity can be avoided by noting
that the initial integral (15.41) is perfectly regular at η = 0. We therefore replace the
expression (sin η/η)N in the integrand by [sin(η − iǫ)/(η − iǫ)]N . This regularizes
each term in the expansion (15.43) and leads to well-defined integrals:

IN(x) =
∫ ∞

−∞
dη

eix(η−iǫ)

(η − iǫ)N−1
. (15.45)

For x < 0, the contour of integration can be closed by a large semicircle in the lower
half-plane. Since the lower half-plane contains no singularity, the residue theorem
shows that

IN(x) = 0, x < 0. (15.46)

For x > 0, on the other hand, an expansion of the exponential function in powers
of η−iǫ produces a pole, and the residue theorem yields

IN(x) =
2πiN−1

(N − 2)!
xN−2, x > 0. (15.47)

Hence we arrive at the finite series

PN(R) =
1

2N+1(N − 2)!πa2R

∑

0≤n≤(N−R/a)/2

(−1)n
(

N

n

)

(N − 2n− R/a)N−2. (15.48)

The distribution is displayed for various values of N in Fig. 15.2, where we have
plotted 2πR2

√
NPN(R) against the rescaled distance variable ρ = R/

√
Na. With

this N -dependent rescaling all curves have the same unit area. Note that they
converge rapidly towards a universal zero-order distribution

P
(0)
N (R) =

√

3

2πNa2

3

exp

{

− 3R2

2Na2

}

→ P
(0)
L (R) =

√

D

2πaL

D

e−DR
2/2aL. (15.49)

In the limit of large N , the length L will be used as a subscript rather than the
diverging N . The proof of the limit is most easily given in Fourier space. For
large N at finite k2a2N , the Nth power of the quantity P̃1(k) in Eq. (15.15) can be
approximated by

[P̃1(k)]
N ∼ e−Nk

2a2/2D. (15.50)

Then the Fourier transform (15.10) is performed with the zero-order result (15.49).
In Fig. 15.2 we see that this large-N limit is approached uniformly in ρ = R/

√
Na.

The approach to this limit is studied analytically in the following two sections.
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Figure 15.2 End-to-end distribution PN (R) of random chain with N links. The func-

tions 2πR2
√
NPN (R) are plotted against R/

√
N a which gives all curves the same unit

area. Note the fast convergence for growing N . The dashed curve is the continuum distri-

bution P
(0)
L (R) of Eq. (15.49). The circles on the abscissa mark the maximal end-to-end

distance.

15.4 Short-Distance Expansion for Long Polymer

At finite N , we expect corrections which are expandable in the form

PN(R) = P
(0)
N (k)

[

1 +
∞
∑

n=1

1

Nn
Cn(R

2/Na2)

]

, (15.51)

where the functions Cn(x) are power series in x starting with x0.
Let us derive this expansion. In three dimensions, we start from (15.29) and

separate the right-hand side into the leading k2-term and a remainder

C̃(k) ≡ exp

[

N
∞
∑

l=2

22l(−1)lB2l

(2l)!2l
(k2a2)l

]

. (15.52)

Exponentiating both sides of (15.29), the end-to-end probability factorizes as

P̃N(k) = e−Na
2k2/6C̃(k). (15.53)

The function C̃(k) is now expanded in a power series

C̃(k) = 1 +
∑

n=1,2,...
l=2n,2n+1,...

C̃n,lN
n(a2k2)l, (15.54)
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with the lowest coefficients

C̃1,2 = − 1

180
, C̃1,3 = − 1

2835
,

C̃1,4 = − 1

37800
, C̃2,4 =

1

64800
, . . . . (15.55)

For any dimension D, we factorize

P̃N(k) = e−Na
2k2/2DC̃(k) (15.56)

and find C̃(k) by expanding (15.15) in powers of k and proceeding as before. This
gives the coefficients

C̃1,2 = −1/4D2(D + 2),

C̃1,3 = −1/3D3(D + 2)(D + 4),

C̃1,4 = −(5D + 12)/8D4(D + 2)2(D + 4)(D + 6),

C̃2,4 = 1/32D4(D + 2)2. (15.57)

We now Fourier-transform (15.56). The leading term in C̃(k) yields the zero-order
distribution (15.49) in D dimensions,

P
(0)
N (R) =

√

D

2πNa2

D

e−DR
2/2Na2 , (15.58)

or, written in terms of the reduced distance variable ρ = R/Na,

P
(0)
N (R) =

√

D

2πNa2

D

e−DNρ
2/2. (15.59)

To account for the corrections in C̃(k) we take the expansion (15.54), emphasize the
dependence on k2a2 by writing

C̃(k) = C̄(k2a2),

and observe that in the Fourier transform

PN(R) =
∫ d3k

(2π)3
eikRPN(k) =

∫ d3k

(2π)3
eikRe−Nk

2a2/2DC̄(k2a2), (15.60)

the series can be pulled out of the integral by replacing each power (k2a2)p by
(−2D∂N )

p. The result has the form

PN(R) = C̄(−2D∂N)
∫

d3k

(2π)3
eikRe−Nk

2a2/2D = C̄(−2D∂N)P
(0)
N (R). (15.61)

Going back to coordinate space, we obtain an expansion

PN(R) =
(

D

2πNa2

)D/2

e−DNρ
2/2C(R). (15.62)
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For D = 3, the function C(R) is given by the series

C(R) = 1 +
∞
∑

n=1
l=0,...,2n

Cn,lN
−n(Nρ2)l, (15.63)

with the coefficients

C1,l =
(

−3

4
,
3

2
,− 9

20

)

, C2,l =
(

29

160
,−69

40
,
981

400
,−1341

1400
,
81

800

)

. (15.64)

For any D, we find the coefficients

C1,l =

(

−D
4
,
D

2
,− D2

4(D + 2)

)

,

C2,l =

(

(3D2 − 2D + 8)D

96(D + 2)
,−(D2 + 2D + 8)D

8(D + 2)
,
(3D2 + 14D + 40)D2

16(D + 2)2
,

− (3D2 + 22D + 56)D3

24(D + 2)2(D + 4)
,

D4

32(D + 2)2

)

. (15.65)

15.5 Saddle Point Approximation to Three-Dimensional

End-to-End Distribution

Another study of the approach to the limiting distribution (15.49) proceeds via the
saddle point approximation. For this, the integral in (15.41) is rewritten as

∫ ∞

−∞
dη η e−Nf(η), (15.66)

with

f(η) = i
R

Na
η − log

(

sin η

η

)

. (15.67)

The extremum of f lies at η = η̄, where η̄ solves the equation

coth(iη̄)− 1

iη̄
=

R

Na
. (15.68)

The function on the left-hand side is known as the Langevin function:

L(x) ≡ coth x− 1

x
. (15.69)

The extremum lies at the imaginary position η̄ ≡ −ix̄ with x̄ being determined by
the equation

L(x̄) =
R

Na
. (15.70)
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The extremum is a minimum of f(η) since

f ′′(η̄) = L′(x̄) = − 1

sinh2 x̄
+

1

x̄2
> 0. (15.71)

By shifting the integration contour vertically into the complex η plane to make it
run through the minimum at −ix̄, we obtain

PN(R) ≈ − 1

4iπ2a2R
e−Nf(η̄)

∫ ∞

−∞
dη (−ix̄+ η) exp

{

−N
2
f ′′(η̄)η2

}

=
η̄

4π2a2R

√

2π

Nf ′′(x̄)
e−Nf(η̄). (15.72)

When expressed in terms of the reduced distance ρ ≡ R/Na ∈ [0, 1], this reads

PN(R) ≈ 1

(2πNa2)3/2
Li(ρ)2

ρ {1− [Li(ρ)/ sinhLi(ρ)]2}1/2
{

sinhLi(ρ)

Li(ρ) exp[ρLi(ρ)]

}N

. (15.73)

Here we have introduced the inverse Langevin function Li(ρ) since it allows us to
express x̄ as

x̄ = Li(ρ) (15.74)

[inverting Eq. (15.70)]. The result (15.73) is valid in the entire interval ρ ∈ [0, 1]
corresponding to R ∈ [0, Na]; it ignores corrections of the order 1/N . By expanding
the right-hand side in a power series in ρ, we find

PN(R) = N
(

3

2πNa2

)3/2

exp

(

− 3R2

2Na2

)(

1 +
3R2

2N2a2
− 9R4

20N3a4
+ . . .

)

, (15.75)

with some normalization constant N . At each order of truncation, N is determined
in such a way that

∫

d3R PN(R)= 1. As a check we take the limit ρ2 ≪ 1/N and
find powers in ρ which agree with those in (15.62), for D = 3, with the expansion
(15.63) of the correction factor.

15.6 Path Integral for Continuous Gaussian Distribution

The limiting end-to-end distribution (15.49) is equal to the imaginary-time ampli-
tude of a free particle in natural units with h̄ = 1:

(xbτb|xaτa) =
1

√

2π(τb − τa)/M
D exp

[

−M
2

(xb − xa)
2

τb − τa

]

. (15.76)

We merely have to identify

xb − xa ≡ R, (15.77)
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and replace

τb − τa → Na, (15.78)

M → D/a. (15.79)

Thus we can describe a polymer with R2 ≪ Na2 by the path integral

PL(R) =
∫

DDx exp

{

−D

2a

∫ L

0
ds [x′(s)]2

}

=

√

D

2πa
e−DR

2/2La. (15.80)

The number of time slices is here N [in contrast to (2.66) where it was N + 1), and
the total length of the polymer is L = Na.

Let us calculate the Fourier transformation of the distribution (15.80):

P̃L(q) =
∫

dDRe−iq·RPL(R). (15.81)

After a quadratic completion the integral yields

P̃L(q) = e−Laq
2/2D, (15.82)

with the power series expansion

P̃L(q) =
∞
∑

l=0

(−1)l
q2l

l!

(

La

2D

)l

. (15.83)

Comparison with the moments (15.23) shows that we can rewrite this as

P̃L(q) =
∞
∑

l=0

(−1)l
q2l

l!

Γ(D/2)

22lΓ(D/2 + l)

〈

R2l
〉

. (15.84)

This is a completely general relation: the expansion coefficients of the Fourier trans-
form yield directly the moments of a function, up to trivial numerical factors specified
by (15.84).

The end-to-end distribution determines rather directly the structure factor of a
dilute solution of polymers which is observable in static neutron and light scattering
experiments:

S(q)=
1

L2

∫ L

0
ds
∫ L

0
ds′

〈

eiq·[x(s)−x(s′)]
〉

. (15.85)

The average over all polymers running from x(0) to x(L) can be written, more
explicitly, as

〈

eiq·[x(s)−x(s
′)]
〉

=
∫

dDx(L)
∫

dD(x(s′)−x(s))
∫

dDx(0) (15.86)

×PL−s′(x(L)−x(s′))e−iq·x(s
′)Ps′−s(x(s

′)−x(s))eiq·x(s)Ps−0(x(s)−x(0)).

H. Kleinert, PATH INTEGRALS



15.6 Path Integral for Continuous Gaussian Distribution 935

The integrals over initial and final positions give unity due to the normalization
(15.4), so that we remain with

〈

eiq·[x(s)−x(s
′)]
〉

=
∫

dDRe−iq·RPs′−s(R). (15.87)

Since this depends only on L′ ≡ |s′ − s| and not on s+ s′, we decompose the double
integral in over s and s′ in (15.85) into 2

∫ L
0 dL

′(L− L′) and obtain

S(q)=
2

L2

∫ L

0
dL′(L− L′)

∫

dDReiq·R(L′)PL′(R), (15.88)

or, recalling (15.81),

S(q) =
2

L2

∫ L

0
dL′(L− L′)P̃L′(q). (15.89)

Inserting (15.82) we obtain the Debye structure factor of Gaussian random paths:

SGauss(q) =
2

x2

(

x− 1 + e−x
)

, x ≡ q2aL

2D
. (15.90)

This function starts out like 1 − x/3 + x2/12 + . . . for small q and falls of like q−2

for q2 ≫ 2D/aL. The Taylor coefficients are determined by the moments of the
end-to-end distribution. By inserting (15.84) into (15.89) we obtain:

S(q) =
∞
∑

l=0

(−1)lq2l
Γ(D/2)

22ll!Γ(l +D/2)

2

L2

∫ L

0
dL′(L− L′)

〈

R2l
〉

. (15.91)

Although the end-to-end distribution (15.80) agrees with the true polymer dis-
tribution (15.1) for R ≪

√
Na, it is important to realize that the nature of the

fluctuations in the two expressions is quite different. In the polymer expression, the
length of each link ∆xn is fixed. In the sliced action of the path integral Eq. (15.80),

AN = a
N
∑

n=1

M

2

(∆xn)
2

a2
, (15.92)

on the other hand, each small section fluctuates around zero with a mean square

〈(∆xn)
2〉0 =

a

M
=
a2

D
. (15.93)

Yet, if the end-to-end distance of the polymer is small compared to the completely
stretched configuration, the distributions are practically the same. There exists a
qualitative difference only if the polymer is almost completely stretched. While the
polymer distribution vanishes for R > Na, the path integral (15.80) gives a nonzero
value for arbitrarily large R. Quantitatively, however, the difference is insignificant
since it is exponentially small (see Fig. 15.2).
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15.7 Stiff Polymers

The end-to-end distribution of real polymers found in nature is never the same as
that of a random chain. Usually, the joints do not allow for an equal probability
of all spherical angles. The forward angles are often preferred and the polymer is
stiff at shorter distances. Fortunately, if averaged over many links, the effects of the
stiffness becomes less and less relevant. For a very long random chain with a finite
stiffness one finds the same linear dependence of the square end-to-end distance on
the length L = Na as for ideal random chains which has, according to Eq. (15.23),
the Gaussian expectations:

〈R2〉 = aL, 〈R2l〉 = (D + 2l − 2)!!

(D − 2)!!Dl
(aL)l. (15.94)

For a stiff chain, the expectation value 〈R2〉 will increase aL to aeffL, where aeff is
the effective bond length In the limit of a very large stiffness, called the rod limit,
the law (15.94) turns into

〈R2〉 ≡ L2, 〈R2l〉 ≡ L2l, (15.95)

i.e., the effective bond length length aeff increases to L. This intuitively obvious
statement can easily be found from the normalized end-to-end distribution, which
coincides in the rod limit with the one-link expression (15.12):

P rod
L (R) =

1

SDRD−1
δ(R− L), (15.96)

and yields [recall (15.17)]

〈Rn〉 =
∫

dDRRnP rod
L (R) =

∫ ∞

0
dRRn δ(R− L) = Ln. (15.97)

By expanding P rod
L (R) in powers of L, we obtain the series

P rod
L (R) =

1

SDRD−1

∞
∑

n=0

Ln 〈Rn〉 (−1)n

n!
∂nRδ(R). (15.98)

An expansion of this form holds for any stiffness: the moments of the distribution
are the Taylor coefficients of the expansion of PL(R) into a series of derivatives of
δ(R)-functions.

Let us also calculate the Fourier transformation (15.81) of this distribution. Re-
calling (15.15), we find

P̃ rod
L (q) = P̃ rod(qL) ≡ Γ(D/2)

(qL/2)D/2−1
JD/2−1(qL). (15.99)

For an arbitrary rotationally symmetric PL(R) = PL(R), we simply have to super-
impose these distributions for all R:

P̃L(q) = SD

∫ ∞

0
dRRD−1P̃ rod(qL)PL(R). (15.100)
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This is simply proved by decomposing and performing the Fourier transformation
(15.81) on PL(R) =

∫∞
0 dR′ δ(R−R′)P rod

R′ (R)=SD
∫∞
0 dR′R′D−1P rod

R′ (R)PL(R
′), and

performing the Fourier transformation (15.81) on P rod
R′ (R). In D = 3 dimensions,

(15.100) takes the simple form:

P̃L(q) = 4π
∫ ∞

0
dRR2 sin qR

qR
PL(R). (15.101)

Inserting the power series expansion for the Bessel function2

Jν(z) =
(

z

2

)ν ∞
∑

l=0

(−1)k(z/2)2l

l!Γ(ν + l + 1)
(15.102)

into (15.99), and this into (15.100), we obtain

P̃L(q) =
∞
∑

l=0

(−1)l
(

q

2

)2l Γ(D/2)

l!Γ(D/2 + l)
SD

∫ ∞

0
dRRD−1R2lPL(R), (15.103)

in agreement with the general expansion (15.84). The same result is ob-
tained by inserting into (15.103) the expansion (15.98) and using the integrals
∫∞
0 dRRm∂nRδ(R) = δmn(−1)nn!, which are proved by n partial integrations.

The structure factor of a completely stiff polymer (rod limit) is obtained by
inserting (15.99) into (15.89). The resulting Srod(q) depends only on qL:

Srod(qL)=
4−2D

q2L2
+

(

2

qL

)D/2

Γ(D/2)JD/2−2(qL)+2F (1/2; 3/2, D/2;−q2L2/4),(15.104)

where F (a; b, c; z) is the hypergeometric function (1.453). For D = 3, the integral
(15.89) reduces to (2/L2)

∫ L
0 dL

′ (L − L′)(sin qL′)/qL′, as in the similar equation
(15.9), and the result is simply

Srod(z) =
2

z2
[cos z − 1 + z Si(z)] , Si(z) ≡

∫ z

0

dt

t
sin t. (15.105)

This starts out like 1 − z2/36 + z4/1800 + . . . . For large z we use the limit of the
sine integral3 Si(z) → π/2 to find Srod(q) → π/qL.

For of an arbitrary rotationally symmetric end-to-end distribution PL(R), the
structure factor can be expressed, by analogy with (15.100), as a superposition of
rod limits:

SL(q) = SD

∫ ∞

0
dRRD−1Srod(qR)PL(R). (15.106)

When passing from long to short polymers at a given stiffness, there is a crossover
between the moments (15.94) and (15.95) and the behaviors of the structure func-
tion. Let us study this in detail.

2I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 8.440.
3ibid., Formulas 8.230 and 8.232.
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15.7.1 Sliced Path Integral

The stiffness of a polymer pictured in Fig. 15.1 may be parameterized by the bending
energy

EN
bend =

κ

2a

N
∑

n=1

(un − un−1)
2, (15.107)

where un are the unit vectors specifying the directions of the links. The initial and
final link directions of the polymer have a distribution

(ubL|ua0) =
1

A

N−1
∏

n=1

[

∫

dun
A

]

exp

[

− κ

2akBT

N
∑

n=1

(un − un−1)
2

]

, (15.108)

where A is some normalization constant, which we shall choose such that the measure
of integration coincides with that of a time-sliced path integral near a unit sphere in
Eq. (8.151). Comparison if the bending energy (15.107) with the Euclidean action
(8.152) we identify

Mr2

h̄ǫ
=

κ

akBT
, (15.109)

and see that we must replace N → N − 1 and set

A =
√

2πakBT/κ
D−1

. (15.110)

The result of the integrations in (15.108) is then known from Eq. (8.156):

(ubL|ua0) =
∞
∑

l=0

[

Ĩl+D/2−1 (h)
]N ∑

m

Ylm(ub)Y
∗
lm(ua), h ≡ κ

akBT
, (15.111)

with the modified Bessel function Ĩl+D/2−1(z) of Eq. (8.11).
The partition function of the polymer is obtained by integrating over all final

and averaging over all initial link directions [1]:

ZN =
∫

dua
SD

N
∏

n=1

[

∫

dun
A

]

exp

[

− κ

2akBT

N
∑

n=1

(un − un−1)
2

]

=
∫

dub

∫

dua
SD

(ubL|ua0). (15.112)

Inserting here the spectral representation (15.111) we find

ZN =
[

ĨD/2−1

(

κ

akBT

)]N

=

[
√

2πκ

akBT
e−κ/akBT ID/2−1

(

κ

akBT

)

]N

. (15.113)

Knowing this we may define the normalized distribution function

PN(ub,ua) =
1

ZN
(ubL|ua0), (15.114)

whose integral over ua as well as over ua is unity:
∫

dub PN(ub,ua) =
∫

dua PN(ub,ua) = 1. (15.115)
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15.7.2 Relation to Classical Heisenberg Model

The above partition function is closely related to the partition function of the one-
dimensional classical Heisenberg model of ferromagnetism which is defined by

ZHeis
N ≡

∫

dua
SD

N
∏

n=1

[∫

dun

]

exp

[

J

kBT

N
∑

n=1

un · un−1

]

, (15.116)

where J are interaction energies due to exchange integrals of electrons in a ferro-
magnet. This differs from (15.112) by a trivial normalization factor, being equal
to

ZHeis
N =





√

2πJ

kBT

2−D

ID/2−1

(

J

kBT

)





N

. (15.117)

Identifying J ≡ κ/a we may use the Heisenberg partition functions for all cal-
culations of stiff polymers. As an example take the correlation function between
neighboring tangent vectors 〈un · un−1〉. In order to calculate this we observe that
the partition function (15.116) can just as well be calculated exactly with a slight
modification that the interaction strength J of the Heisenberg model depends on
the link n. The result is the corresponding generalization of (15.117):

ZHeis
N (J1, . . . , JN) =

N
∏

n=1





√

2πJn
kBT

2−D

ID/2−1

(

Jn
kBT

)



 . (15.118)

This expression may be used as a generating function for expectation values
〈un · un−1〉 which measure the degree of alignment of neighboring spin directions.
Indeed, we find directly

〈un · un−1〉 = (kBT )
dZHeis

N (J1, . . . , JN)

dJn

∣

∣

∣

∣

∣

Jn≡J

=
ID/2(J/kBT )

ID/2−1(J/kBT )
. (15.119)

This expectation value measures directly the internal energy per link of te chain.
Indeed, since the free energy is FN = −kBT logZHeis

N , we obtain [recall (1.548)]

EN = N 〈un · un−1〉 = N
ID/2(J/kBT )

ID/2−1(J/kBT )
. (15.120)

Let us also calculate the expectation value of the angle between next-to-nearest
neighbors 〈un+1 · un−1〉. We do this by considering the expectation value

〈(un+1 · un)(un · un−1)〉 = (kBT )
2 d2ZHeis

N (J1, . . . , JN)

dJn+1dJn

∣

∣

∣

∣

∣

Jn≡J

=

[

ID/2(J/kBT )

ID/2−1(J/kBT )

]2

.

(15.121)

Then we prove that the left-hand side is in fact equal to the desired expectation
value 〈un+1 · un−1〉. For this we decompose the last vector un+1 into a component
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θn+1,n−1

θn+1,n

un−1

un
un+1

θn,n−1

Figure 15.3 Neighboring links for the calculation of expectation values.

parallel to un and a component perpendicular to it: un+1 = (un+1·un)un+u⊥
n+1. The

corresponding decomposition of the expectation value 〈un+1 ·un−1〉 is 〈un+1 ·un−1〉 =
〈(un+1·un)(un·un−1)〉+〈u⊥

n+1·un〉. Now, the energy in the Boltzmann factor depends
only on (un+1 · un) + (un · un−1) = cos θn+1,n + cos θn,n−1, so that the integral over
u⊥
n+1 runs over a surface of a sphere of radius sin θn+1,n in D − 1 dimensions [recall

(8.117)] and the Boltzmann factor does not depend on the angles. The integral
receives therefore equal contributions from u⊥

n+1 and −u⊥
n+1, and vanishes. This

proves that

〈un+1 · un−1〉 = 〈un+1 · un〉 〈un · un−1〉 =
[

ID/2(J/kBT )

ID/2−1(J/kBT )

]2

, (15.122)

and further, by induction, that

〈ul · uk〉 =
[

ID/2(J/kBT )

ID/2−1(J/kBT )

]|l−k|

. (15.123)

For the polymer, this implies an exponential falloff

〈ul · uk〉 = e−|l−k|a/ξ, (15.124)

where ξ is the persistence length

ξ = −a/ log
[

ID/2(κ/akBT )

ID/2−1(κ/akBT )

]

. (15.125)

For D = 3, this is equal to

ξ = − a

log [coth(κ/akBT )− akBT/κ]
. (15.126)

Knowing the correlation functions it is easy to calculate the magnetic suscepti-
bility. The total magnetic moment is

M = a
N
∑

n=0

un, (15.127)

so that we find the total expectation value

〈

M2
〉

= a2(N + 1)
1 + e−a/ξ

1− e−a/ξ
− 2a2e−a/ξ

1− e−(N+1)a/ξ

(1− e−a/ξ)2
. (15.128)

The susceptibility is directly proportional to this. For more details see [2].
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15.7.3 End-to-End Distribution

A modification of the path integral (15.108) yields the distribution of the end-to-end
distance at given initial and final directions of the polymer links:

R = xb − xa = a
N
∑

n=1

un (15.129)

of the stiff polymer:

PN(ub,ua;R) =
1

ZN

1

A

N−1
∏

n=2

[

∫

dun
A

]

δ(D)(R− a
N
∑

n=1

un)

× exp

[

− κ

2akBT

N−1
∑

n=1

(un+1 − un)
2

]

, (15.130)

whose integral over R leads back to the distribution PN(ub,ua):

∫

dDRPN(ub,ua;R) = PN(ub,ua). (15.131)

If we integrate in (15.130) over all final directions and average over the initial
ones, we obtain the physically more accessible end-to-end distribution

PN(R) =
∫

dub

∫

dua
SD

PN(ub,ua;R). (15.132)

The sliced path integral, as it stands, does not yet give quite the desired prob-
ability. Two small corrections are necessary, the same that brought the integral
near the surface of a sphere to the path integral on the sphere in Section 8.9. After
including these, we obtain a proper overall normalization of PN(ub,ua;R).

15.7.4 Moments of End-to-End Distribution

Since the δ(D)-function in (15.130) contains vectors un of unit length, the calculation
of the complete distribution is not straightforward. Moments of the distribution,
however, which are defined by the integrals

〈R2l〉 =
∫

dDRR2l PN(R), (15.133)

are relatively easy to find from the multiple integrals

〈R2l〉 =
1

ZN

∫

dDR
1

A

∫

dub
N−1
∏

n=2

[

∫

dun
A

] [

∫

dua
SD

]

δ(D)(R−
N
∑

n=1

aun)

× R2l exp

[

− κ

2akBT

N−1
∑

n=1

(un+1 − un)
2

]

. (15.134)



942 15 Path Integrals in Polymer Physics

Performing the integral over R gives

〈R2l〉 = 1

ZN

1

A

∫

dub
N−1
∏

n=2

[

∫

dun
A

] [

∫

dua
SD

](

a
N
∑

n=1

un

)2l

× exp

[

− κ

2akBT

N−1
∑

n=1

(un+1 − un)
2

]

. (15.135)

Due to the normalization property (15.115), the trivial moment is equal to unity:

〈1〉 =
∫

dDRPN(R) =
∫

dub

∫

dua
SD

PN(ub,ua|L) = 1. (15.136)

15.8 Continuum Formulation

Some properties of stiff polymers are conveniently studied in the continuum limit of
the sliced path integral (15.108), in which the bond length a goes to zero and the
link number to infinity so that L = Na stays constant. In this limit, the bending
energy (15.107) becomes

Ebend =
κ

2

∫ L

0
ds (∂su)

2 , (15.137)

where

u(s) =
d

ds
x(s), (15.138)

is the unit tangent vector of the space curve along which the polymer runs. The
parameter s is the arc length of the line elements, i.e., ds =

√
dx2.

15.8.1 Path Integral

If the continuum limit is taken purely formally on the product of integrals (15.108),
we obtain a path integral

(ubL|ua0) =
∫

Du e−(κ/2kBT )
∫ L

0
ds [u′(s)]2, (15.139)

This coincides with the Euclidean version of a path integral for a particle on the
surface of a sphere. It is a nonlinear σ-model (recall p. 637).

The result of the integration has been given in Section 8.9 where we found that
it does not quite agree with what we would obtain from the continuum limit of the
discrete solution (15.111) using the limiting formula (8.157), which is

P (ub,ua|L) =
∞
∑

l=0

exp

(

−LkBT
2κ

L2

)

∑

m

Ylm(ub)Y
∗
lm(ua), (15.140)
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with

L2 = (D/2− 1 + l)2 − 1/4. (15.141)

For a particle on a sphere, the discrete expression (15.130) requires a correction
since it does not contain the proper time-sliced action and measure. According
the Section 8.9 the correction replaces L2 by the eigenvalues of the square angular
momentum operator in D dimensions, L̂2,

L2 → L̂2 = l(l +D − 2). (15.142)

After this replacement the expectation of the trivial moment 〈1〉 in (15.136) is equal
to unity since it gives the distribution (15.140) the proper normalization:

∫

dub P (ub,ua|L) = 1. (15.143)

This follows from the integral
∫

dub
∑

m

Y ∗
lm(ub)Ylm(ua) = δl0 , (15.144)

which was derived in (8.250). Thus, with L̂2 in (15.140) instead of L2, no extra
normalization factor is required. The sum over Ylm(u2)Y

∗
lm(u1) may furthermore be

rewritten in terms of Gegenbauer polynomials using the addition theorem (8.126),
so that we obtain

P (ub,ua|L) =
∞
∑

l=0

exp

(

−LkBT
2κ

L̂2

)

1

SD

2l +D − 2

D − 2
C

(D/2−1)
l (u2u1). (15.145)

15.8.2 Correlation Functions and Moments

We are now ready to evaluate the expectation values of R2l. In the continuum
approximation we write

R2l =

[

∫ L

0
dsu(s)

]2l

. (15.146)

The expectation value of the lowest moment 〈R2〉 is given by the double-integral
over the correlation function 〈u(s2)u(s1)〉:

〈R2〉 =
∫ L

0
ds2

∫ L

0
ds1〈u(s2)u(s1)〉 = 2

∫ L

0
ds2

∫ s2

0
ds1〈u(s2)u(s1)〉. (15.147)

The correlation function is calculated from the path integral via the composition
law as in Eq. (3.301), which yields here

〈u(s2)u(s1)〉 =
∫

dub

∫

dua
SD

∫

du2

∫

du1

× P (ub,u2|L− s2) u2 P (u2,u1|s2 − s1) u1 P (u1,ua|s1).(15.148)
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The integrals over ua and ub remove the initial and final distributions via the nor-
malization integral (15.143), leaving

〈u(s2)u(s1)〉 =
∫

du2

∫

du1

SD
u2u1P (u2,u1|s2 − s1). (15.149)

Due to the manifest rotational invariance, the normalized integral over u1 can be
omitted. By inserting the spectral representation (15.145) with the eigenvalues
(15.142) we obtain

〈u(s2)u(s1)〉 =
∫

du2 u2u1P (u2,u1|s2 − s1)

=
∑

l

e−(s2−s1)kBT L̂
2/2κ

[

∫

du2 u2u1
1

SD

2l +D − 2

D − 2
C

(D/2−1)
l (u2u1)

]

. (15.150)

We now calculate the integral in the brackets with the help of the recursion relation
(15.152) for the Gegenbauer functions4

zC
(ν)
l (z) =

1

2(ν + l)

[

(2ν + l − 1)C
(ν)
l−1(z) + (l + 1)Cν

l+1(z)
]

. (15.151)

Obviously, the integral over u2 lets only the term l = 1 survive. This, in turn,
involves the integral

∫

du2 C
(D/2−1)
0 (cos θ) = SD. (15.152)

The l = 1 -factor D/(D − 2) in (15.150) is canceled by the first l = 1 -factor in the
recursion (15.151) and we obtain the correlation function

〈u(s2)u(s1)〉 = exp

[

−(s2 − s1)
kBT

2κ
(D − 1)

]

, (15.153)

where D − 1 in the exponent is the eigenvalue of L̂2 = l(l + D − 2) at l = 1. The
correlation function (15.153) agrees with the sliced result (15.124) if we identify the
continuous version of the persistence length (15.126) with

ξ ≡ 2κ/kBT (D − 1). (15.154)

Indeed, taking the limit a→ 0 in (15.125), we find with the help of the asymptotic
behavior (8.12) precisely the relation (15.154).

After performing the double-integral in (15.147) we arrive at the desired result
for the first moment:

〈R2〉 = 2
{

ξL− ξ2
[

1− e−L/ξ
]}

. (15.155)

4I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 8.933.1.
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This is valid for all D. The result may be compared with the expectation value
of the squared magnetic moment of the Heisenberg chain in Eq. (15.128), which
reduces to this in the limit a→ 0 at fixed L = (N + 1)a.

For small L/ξ, the second moment (15.155) has the large-stiffness expansion

〈R2〉 = L2



1− 1

3

L

ξ
+

1

12

(

L

ξ

)2

− 1

60

(

L

ξ

)3

+ . . .



 , (15.156)

the first term being characteristic for a completely stiff chain [see Eq. (15.95)]. For
large L/ξ, on the other hand, we find the small-stiffness expansion

〈R2〉 ≈ 2ξL

(

1− ξ

L

)

+ . . . , (15.157)

where the dots denote exponentially small terms. The first term agrees with relation
(15.94) for a random chain with an effective bond length

aeff = 2ξ =
4

D − 1

κ

kBT
. (15.158)

The calculation of higher expectations 〈R2l〉 becomes rapidly complicated. Take,
for instance, the moment 〈R4〉, which is given by the quadruple integral over the
four-point correlation function

〈R4〉 = 8
∫ L

0
ds4

∫ s4

0
ds3

∫ s3

0
ds2

∫ s2

0
ds1 δi4i3i2i1〈ui4(s4)ui3(s3)ui2(s2)ui1(s1)〉, (15.159)

with the symmetric pair contraction tensor of Eq. (15.22):

δi4i3i2i1 ≡ (δi4i3δi2i1 + δi4i2δi3i1 + δi4i1δi3i2) . (15.160)

The factor 8 and the symmetrization of the indices arise when bringing the integral

R4 =
∫ L

0
ds4

∫ L

0
ds3

∫ L

0
ds2

∫ L

0
ds1 (u(s4)u(s3))(u(s2)u(s1)) (15.161)

to the s-ordered form in (15.159). This form is needed for the s-ordered evaluation
of the u-integrals which proceeds by a direct extension of the previous procedure for
〈R2〉. We write down the extension of expression (15.148) and perform the integrals
over ua and ub which remove the initial and final distributions via the normalization
integral (15.143), leaving δi4i3i2i1 times an integral [the extension of (15.149)]:

〈ui4(s4)ui3(s3)ui2(s2)ui1(s1)〉 =
∫

du4

∫

du3

∫

du2

∫

du1

SD
(15.162)

× ui4ui3ui2ui1P (u4,u3|s4 − s3)P (u3,u2|s3 − s2)P (u2,u1|s2 − s1) .
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The normalized integral over u1 can again be omitted. Still, the expression is com-
plicated. A somewhat tedious calculation yields

〈R4〉 = 4(D + 2)

D
L2ξ2 − 8Lξ3

(

D2 + 6D − 1

D2
− D − 7

D + 1
e−L/ξ

)

(15.163)

+ 4ξ4
[

D3 + 23D2 − 7D + 1

D3
− 2

(D + 5)2

(D + 1)2
e−L/ξ +

(D − 1)5

D3(D + 1)2
e−2DL/(D−1)ξ

]

.

For small values of L/ξ , we find the large-stiffness expansion

〈R4〉 = L4



1− 2

3

L

ξ
+

25D − 17

90(D − 1)

(

L

ξ

)2

− 4
7D2 − 8D + 3

315(D − 1)2

(

L

ξ

)3

+ . . .



 ,(15.164)

the leading term being equal to (15.95) for a completely stiff chain.
In the opposite limit of large L/ξ, the small-stiffness expansion is

〈R4〉 = 4
D + 2

D
L2ξ2



1− 2
D2 + 6D − 1

D(D + 2)

ξ

L
+
D3 + 23D2 − 7D + 1

D2(D + 2)

(

ξ

L

)2


+ . . . ,

(15.165)
where the dots denote exponentially small terms. The leading term agrees again
with the expectation 〈R4〉 of Eq. (15.94) for a random chain whose distribution is
(15.49) with an effective link length aeff = 2ξ of Eq. (15.158). The remaining terms
are corrections caused by the stiffness of the chain.

It is possible to find a correction factor to the Gaussian distribution which main-
tains the unit normalization and ensures that the moment 〈R2〉 has the small-ξ exact
expansion (15.157) whereas 〈R2〉 is equal to (15.165) up to the first correction term
in ξ/L. This has the form

PL(R) =

√

D

4πLξ

D

e−DR
2/4Lξ

{

1−2D−1

4

ξ

L
+
3D−1

4

R2

L2
−D(4D−1)

16(D+2)

R4

ξL3

}

. (15.166)

In three dimensions, this was first written down by Daniels [3]. It is easy to match
also the moment 〈R4〉 by adding in the curly brackets the following terms

1−7D+23D2+D3

D + 1

[

D + 2

8D

ξ2

L2

(

1 +
R2

ξL

)

+
1

32

R4

L4

]

. (15.167)

These terms do not, however, improve the fits to Monte Carlo data for ξ > 1/10L,
since the expansion is strongly divergent.

From the approximation (15.166) with the additional term (15.167) we calculate
the small-stiffness expansion of all even and odd moments as follows:

〈Rn〉 = 2nΓ(D/2 + n/2)

Dn/2Γ(D/2)
Lnξn



1 + A1
ξ

L
+ A2

(

ξ

L

)2

+ . . .



 , (15.168)

where

A1 = n
n− 2− 2d2 − 4d (n− 1)

4d (2 + d)
, A2 = n(n− 2)

1− 7d+ 23d2 + d3

8d2 (1 + d)
. (15.169)
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15.9 Schrödinger Equation and Recursive Solution for

End-to-End Distribution Moments

The most efficient way of calculating the moments of the end-to-end distribution
proceeds by setting up a Schrödinger equation satisfied by (15.112) and solving it
recursively with similar methods as developed in 3.19 and Appendix 3C.

15.9.1 Setting up the Schrödinger Equation

In the continuum limit, we write (15.112) as a path integral [compare (15.139)]

PL(R)∝
∫

dub

∫

dua

∫

DD−1u δ(D)

(

R−
∫ L

0
dsu(s)

)

e−(κ̄/2)
∫ L

0
ds [u′(s)]2, (15.170)

where we have introduced the reduced stiffness

κ̄ =
κ

kBT
= (D − 1)

ξ

2
, (15.171)

for brevity. After a Fourier representation of the δ-function, this becomes

PL(R) ∝
∫ i∞

−i∞

dDλ

2πi
eκ̄�·R/2

∫

dub

∫

dua(ubL|ua 0)�, (15.172)

where

(ub L|ua 0)� ≡
∫ u(L)=ub

u(0)=ua

DD−1u e−(κ̄/2)
∫ L

0
ds{[u′(s)]2+�·u(s)} (15.173)

describes a point particle of massM = κ̄ moving on a unit sphere. In contrast to the
discussion in Section 8.7 there is now an additional external field � which prevents us
from finding an exact solution. However, all even moments 〈Ri1Ri2 · · ·Ri2l〉 of the
end-to-end distribution (15.172) can be extracted from the expansion coefficients
in powers of λi of the integral

∫

dub
∫

dua over (15.173). The presence of these
directional integrals permits us to assume the external electric field � to point in
the z-direction, or the Dth direction in D-dimensions. Then � = λẑ, and the
moments

〈

R2l
〉

are proportional to the derivatives (2/κ̄)2l∂2lλ
∫

dub
∫

dua(ubL|ua 0)�.
The proportionality factors have been calculated in Eq. (15.84). It is unnecessary to
know these since we can always use the rod limit (15.95) to normalize the moments.

To find these derivatives, we perform a perturbation expansion of the path inte-
gral (15.173) around the solvable case λ = 0.

In natural units with κ̄ = 1, the path integral (15.173) solves obviously the
imaginary-time Schrödinger equation

(

−1

2
∆u +

1

2
� · u+

d

dτ

)

(u τ |ua 0)� = 0, (15.174)
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where ∆u is the Laplacian on a unit sphere. In the probability distribution (15.211),
only the integrated expression

ψ(z, τ ;λ) ≡
∫

dua(u τ |ua 0)� (15.175)

appears, which is a function of z = cos θ only, where θ is the angle between u and
the electric field �. For ψ(z, τ ;λ), the Schrödinger equation reads

Ĥ ψ(z, τ ;λ) = − d

dτ
ψ(z, τ ;λ), (15.176)

with the simpler Hamiltonian operator

Ĥ ≡ Ĥ0 + λ ĤI = −1

2
∆ + λ z

= −1

2

[

(1− z2)
d2

dz2
− (D − 1)z

d

dz

]

+
1

2
λ z . (15.177)

Now the desired moments (15.135) can be obtained from the coefficient of λ2l/(2l)! of
the power series expansion of the z-integral over (15.175) at imaginary time τ = L:

f(L;λ) ≡
∫ 1

−1
dz ψ(z, L;λ). (15.178)

15.9.2 Recursive Solution of Schrödinger Equation.

The function f(L;λ) has a spectral representation

f(L;λ) =
∞
∑

l=0

∫ 1
−1 dz ϕ

(l)†(z) exp
(

−E(l)L
)

∫ 1
−1 dza ϕ

(l)(za)
∫ 1
−1 dz ϕ

(l)†(z) ϕ(l)(z)
, (15.179)

where ϕ(l)(z) are the solutions of the time-independent Schrödinger equation
Ĥϕ(l)(z) = E(l)ϕ(l)(z). Applying perturbation theory to this problem, we start
from the eigenstates of the unperturbed Hamiltonian Ĥ0 = −∆/2, which are given

by the Gegenbauer polynomials C
D/2−1
l (z) with the eigenvalues E

(l)
0 = l(l+D−2)/2.

Following the methods explained in 3.19 and Appendix 3C we now set up a recur-
sion scheme for the perturbation expansion of the eigenvalues and eigenfunctions
[4].Starting point is the expansion of energy eigenvalues and wave-functions in pow-
ers of the coupling constant λ:

E(l) =
∞
∑

j=0

ǫ
(l)
j λj, |ϕ(l)〉 =

∞
∑

l′,i=0

γ
(l)
l′,i λ

i αl′ |l′〉 . (15.180)

The wave functions ϕ(l)(z) are the scalar products 〈z|ϕ(l)(λ)〉. We have inserted
extra normalization constants αl′ for convenience which will be fixed soon. The
unperturbed state vectors |l〉 are normalized to unity, but the state vectors |ϕ(l)〉 of
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the interacting system will be normalized in such a way, that 〈ϕ(l)|l〉 = 1 holds to
all orders, implying that

γ
(l)
l,i = δi,0 γ

(l)
k,0 = δl,k . (15.181)

Inserting the above expansions into the Schrödinger equation, projecting the re-
sult onto the base vector 〈k|αk, and extracting the coefficient of λj, we obtain the
equation

γ
(l)
k,iǫ

(k)
0 +

∞
∑

j=0

αj
αk
Vk,j γ

(l)
j,i−1 =

i
∑

j=0

ǫ
(l)
j γ

(l)
k,i−j , (15.182)

where Vk,j = λ〈k|z|j〉 are the matrix elements of the interaction between unper-
turbed states. For i = 0, Eq. (15.182) is satisfied identically. For i > 0, it leads to
the following two recursion relations, one for k = l:

ǫ
(l)
i =

∑

n=±1

γ
(l)
l+n,i−1W

(l)
n , (15.183)

the other one for k 6= l:

γ
(l)
k,i =

i−1
∑

j=1

ǫ
(l)
j γ

(l)
k,i−j −

∑

n=±1

γ
(l)
k+n,i−1W

(l)
n

ǫ
(k)
0 − ǫ

(l)
0

, (15.184)

where only n = −1 and n = 1 contribute to the sums over n since

W (l)
n ≡ αl+n

αl
〈l| z |l + n〉 = 0, for n 6= ±1. (15.185)

The vanishing of W (l)
n for n 6= ±1 is due to the band-diagonal form of the matrix of

the interaction z in the unperturbed basis |n〉. It is this property which makes the
sums in (15.183) and (15.184) finite and leads to recursion relations with a finite

number of terms for all ǫ
(l)
i and γ

(l)
k,i. To calculate W (l)

n , it is convenient to express
〈l| z |l + n〉 as matrix elements between unnormalized noninteracting states |n} as

〈l| z |l + n〉 = {l|z|l + n}
√

{l|l}{l + n|l + n}
, (15.186)

where expectation values are defined by the integrals

{k|F (z)|l}≡
∫ 1

−1
C
D/2−1
k (z)F (z)C

D/2−1
l (z)(1− z2)(D−3)/2 dz, (15.187)

from which we find5

{l|l} =
24−D Γ(l +D − 2) π

l! (2l +D − 2) Γ(D/2− 1)2
. (15.188)

5I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formulas 7.313.1 and 7.313.2.
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Expanding the numerator of (15.186) with the help of the recursion relation (15.151)
for the Gegenbauer polynomials written now in the form

(l + 1)|l + 1} = (2l +D − 2) z |l} − (l +D − 3)|l− 1}, (15.189)

we find the only non-vanishing matrix elements to be

{l + 1|z|l} =
l + 1

2l +D − 2
{l + 1|l + 1}, (15.190)

{l − 1|z|l} =
l +D − 3

2l +D − 2
{l − 1|l − 1} . (15.191)

Inserting these together with (15.188) into (15.186) gives

〈l|z|l − 1〉 =
√

√

√

√

l(l +D − 3)

(2l +D − 2)(2l +D − 4)
, (15.192)

and a corresponding result for 〈l|z|l + 1〉. We now fix the normalization constants
αl′ by setting

W
(l)
1 =

αl+1

αl
〈l| z |l + 1〉 = 1 (15.193)

for all l, which determines the ratios

αl
αl+1

= 〈l| z |l + 1〉 =
√

√

√

√

(l + 1) (l +D − 2)

(2l +D) (2l +D − 2)
. (15.194)

Setting further α1 = 1, we obtain

αl =





l
∏

j=1

(2l +D − 2)(2l +D − 4)

l(l +D − 3)





1/2

. (15.195)

Using this we find from (15.185) the remaining nonzero W (l)
n for n = −1:

W
(l)
−1 =

l(l +D − 3)

(2l +D − 2)(2l +D − 4)
. (15.196)

We are now ready to solve the recursion relations of (15.183) and (15.184) γ
(l)
k,i and

ǫ
(l)
i order by order in i. For the initial order i = 0, the values of the γ

(l)
k,i are

given by Eq. (15.181). The coefficients ǫ
(l)
i are equal to the unperturbed energies

ǫ
(l)
0 = E

(l)
0 = l(l +D − 2)/2. For each i = 1, 2, 3, . . . , there is only a finite number

of non-vanishing γ
(l)
k,j and ǫ

(l)
j with j < i on the right-hand sides of (15.183) and

(15.184) which allows us to calculate γ
(l)
k,i and ǫ

(l)
i on the left-hand sides. In this way

it is easy to find the perturbation expansions for the energy and the wave functions
to high orders.
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Inserting the resulting expansions (15.180) into Eq. (15.179), only the totally
symmetric parts in ϕ(l)(z) will survive the integration in the numerators, i.e., we
may insert only

ϕ(l)
symm(z) = 〈z|ϕ(l)

symm〉 =
∞
∑

i=0

γ
(l)
0,i λ

i 〈z|0〉 . (15.197)

The denominators of (15.179) become explicitly
∑

l′,i |γ(l)l′,i αl′ |2 λ2i, where the sum
over i is limited by power of λ2 up to which we want to carry the perturbation
series; also l′ is restricted to a finite number of terms only, because of the band-
diagonal structure of the γ

(l)
l′,i.

Extracting the coefficients of the power expansion in λ from (15.179) we obtain
all desired moments of the end-to-end distribution, in particular the second and
fourth moments (15.155) and (15.164). Higher even moments are easily found with
the help of aMathematica program, which is available for download in notebook form
[5]. The expressions are too lengthy to be written down here. We may, however,
expand the even moments 〈Rn〉 in powers of L/ξ to find a general large-stiffness
expansion valid for all even and odd n:

〈Rn〉
Ln

= 1− n

6

L

ξ
+
n (−13− n + 5D (1 + n))

360 (D − 1)

L2

ξ2
− a3

L3

ξ3
+ a4

L4

ξ4
+. . . , (15.198)

where

a3 = n
444−63n+15n2+7D2 (4+15n+5n2)+2D (−124−141n+7n2)

45360(D − 1)2
,

a4 =
n

5443200(d− 1)3

(

D0 +D1d+D2d
2 +D3d

3
)

, (15.199)

with

D0=3
(

−5610+2921n−822n2+67n3
)

, D1 = 8490+12103n−3426n2+461n3,

D2=45
(

−2−187n−46n2+7n3
)

, D4 = 35
(

−6+31n+30n2+5n3
)

. (15.200)

The lowest odd moments are, up to order l4,

〈R 〉
L

= 1 − l

6
+

5D−7

180(D−1)
l2 − 33 − 43D + 14D2

3780(D − 1)
2 l3 − 861 − 1469D + 855D2 − 175D3

453600 (D − 1)
3 l4 . . . ,

〈

R3
〉

L3
= 1 − l

2
+

5D−4

30 (D−1)
l2 − 195−484D+329D2

7560 (−1 + d)
2 l3 − 609−2201D+2955D2−1435D3

151200 (D−1)
3 l4 . . . .

15.9.3 From Moments to End-to-End Distribution for D=3

We now use the recursively calculated moments to calculate the end-to-end distri-
bution itself. It can be parameterized by an analytic function of r = R/L [4]:

PL(R) ∝ rk(1− rβ)m, (15.201)
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whose moments are exactly calculable:

〈

r2l
〉

=

Γ

(

3 + k + 2 l

β

)

Γ

(

3 + k

β
+ m + 1

)

Γ
(

3+k
β

)

Γ

(

3 + k + 2 l

β
+ m + 1

) . (15.202)

We now adjust the three parameters k, β, and m to fit the three most important
moments of this distribution to the exact values, ignoring all others. If the dis-
tances were distributed uniformly over the interval r ∈ [0, 1], the moments would

be 〈r2l〉unif = 1/(2l + 2). Comparing our exact moments
〈

r2l
〉

(ξ) with those of

the uniform distribution we find that 〈r2l〉(ξ)/〈r2l〉unif has a maximum for n close to
nmax(ξ) ≡ 4ξ/L. We identify the most important moments as those with n = nmax(ξ)
and n = nmax(ξ)± 1. If nmax(ξ) ≤ 1, we choose the lowest even moments 〈r2〉, 〈r4〉,
and 〈r6〉. In particular, we have fitted 〈r2〉, 〈r4〉 and 〈r6〉 for small persistence length
ξ < L/2. For ξ = L/2, we have started with 〈r4〉, for ξ = L with 〈r8〉 and for ξ = 2L
with 〈r16〉, including always the following two higher even moments. After these ad-
justments, whose results are shown in Fig. 15.4, we obtain the distributions shown in
Fig.15.6 for various persistence lengths ξ. They are in excellent agreement with the
Monte Carlo data (symbols) and better than the one-loop perturbative results (thin
curves) of Ref. [6], which are good only for very stiff polymers. The Mathematica

program to do these fits are available from the internet address given in Footnote 5.
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Figure 15.4 Paramters k, β, and m for a best fit of end-to-end distribution (15.201).

For small persistence lengths ξ/L = 1/400, 1/100, 1/30, the curves are well ap-
proximated by Gaussian random chain distributions on a lattice with lattice constant
aeff = 2ξ, i.e., PL(R) → e−3R2/4Lξ [recall (15.75)]. This ensures that the lowest mo-
ment 〈R2〉 = aeffL is properly fitted. In fact, we can easily check that our fitting
program yields for the parameters k, β,m in the end-to-end distribution (15.201)
the ξ → 0 behavior: k → −ξ, β → 2 + 2ξ, m→ 3/4ξ, so that (15.201) tends to the
correct Gaussian behavior.

In the opposite limit of large ξ, we find that k → 10ξ−7/2, β → 40ξ+5, m→ 10,
which has no obvious analytic approach to the exact limiting behavior PL(R) → (1−
r)−5/2e−1/4ξ(1−r), although the distribution at ξ = 2 is fitted numerically extremely
well.
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The distribution functions can be inserted into Eq. (15.89) to calculate the struc-
ture factors shown in Fig. 15.5. They interpolate smoothly between the Debye limit
(15.90) and the stiff limit (15.105).

5 10 15 20 25 30
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0.8

1

S(q)

ξ/L = 2

��✠ ξ/L = 1

��✠ ξ/L = 1/2

��✠ ξ/L = 1/5, . . . , 1/400
��✠

q
√
ξ

Figure 15.5 Structure functions for different persistence lengths ξ/L = 1/400, 1/100,

1/30, 1/10, 1/5, 1/2, 1, 2, (from bottom to top) following from the end-to-end distribu-

tions in Fig. 15.6. The curves with low ξ almost coincide in this plot over the ξ-dependent

absissa. The very stiff curves fall off like 1/q, the soft ones like 1/q2 [see Eqs. (15.105) and

(15.90)].

15.9.4 Large-Stiffness Approximation to End-to-End

Distribution

The full end-to-end distribution (15.132) cannot be calculated exactly. It is, however,
quite easy to find a satisfactory approximation for large stiffness [6].

We start with the expression (15.170) for the end-to-end distribution PL(R). In
Eq. (3.233) we have shown that a harmonic path integral including the integrals
over the end points can be found, up to a trivial factor, by summing over all paths
with Neumann boundary conditions. These are satisfied if we expand the fields u(s)
into a Fourier series of the form (2.452):

u(s) = u0 + �(s) = u0 +
∞
∑

n=1

un cos νns, νn = nπ/L. (15.203)

Let us parametrize the unit vectors u in D dimensions in terms of the first D − 1
-dimensional coordinates uµ ≡ qµ with µ = 1, . . . , D − 1. The Dth component is
then given by a power series

σ ≡
√

1− q2 ≈ 1− q2/2− (q2)2/8 + . . . . (15.204)

The we approximate the action harmonically as follows:

A = A(0) +Aint =
κ̄

2

∫ L

0
ds [u′(s)]2 +

1

2
δ(0) log(1− q2)

≈ κ̄

2

∫ L

0
ds [q′(s)]2 − 1

2
δ(0)

∫ L

0
ds q2. (15.205)
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The last term comes from the invariant measure of integration dD−1q/
√
1− q2 [recall

(10.636) and (10.641)].
Assuming, as before, that R points into the z, or Dth, direction we factorize

δ(D)

(

R−
∫ L

0
dsu(s)

)

= δ

(

R− L+
∫ L

0
ds
{

1

2
q2(s) +

1

8
[q2(s)]2 + . . .

}

)

× δ(D−1)

(

∫ L

0
ds q(s)

)

, (15.206)

where R ≡ |R|. The second δ-function on the right-hand side enforces

q̄ = L−1
∫ L

0
ds qµ(s) = 0 , µ = 1, . . . , d− 1 , (15.207)

and thus the vanishing of the zero-frequency parts qµ0 in the first D− 1 components
of the Fourier decomposition (15.203).

It was shown in Eqs. (10.632) and (10.642) that the last δ-function has a dis-
torting effect upon the measure of path integration which must be compensated by
a Faddeev-Popov action

AFP
e =

D − 1

2L

∫ L

0
ds q2, (15.208)

where the number D of dimensions of qµ-space (10.642) has been replaced by the
present number D − 1.

In the large-stiffness limit we have to take only the first harmonic term in the
action (15.205) into account, so that the path integral (15.170) becomes simply

PL(R) ∝
∫

NBC
D ′D−1q δ

(

R− L+
∫ L

0
ds

1

2
q2(s)

)

e−(κ̄/2)
∫ L

0
ds [q′(s)]2. (15.209)

The subscript of the integral emphasizes the Neumann boundary conditions. The
prime on the measure of the path integral indicates the absence of the zero-frequency
component of qµ(s) in the Fourier decomposition due to (15.207). Representing the
remaining δ-function in (15.209) by a Fourier integral, we obtain

PL(R) ∝ κ̄
∫ i∞

−i∞

dω2

2πi
eκ̄ω

2(L−R)
∫

NBC
D ′D−1q exp

[

− κ̄
2

∫ L

0
ds
(

q′2 + ω2q2
)

]

. (15.210)

The integral over all paths with Neumann boundary conditions is known from
Eq. (2.456). At zero average path, the result is

∫

NBC
D ′D−1q exp

[

− κ̄
2

∫ L

0
ds
(

q′2 + ω2q2
)

]

∝
(

ωL

sinhωL

)(D−1)/2

, (15.211)

so that

PL(R) ∝ κ̄
∫ i∞

−i∞

dω2

2πi
eκ̄ω

2(L−R)
(

ωL

sinhωL

)(D−1)/2

. (15.212)
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The integral can easily be done in D = 3 dimensions using the original product
representation (2.455) of ωL/ sinhωL, where

PL(R) ∝ κ̄
∫ i∞

−i∞

dω2

2πi
eκ̄ω

2(L−R)
∞
∏

n=1

(

1 +
ω2

ν2n

)−1

. (15.213)

If we shift the contour of integration to the left we run through poles at ω2 = −ν2k
with residues

∞
∑

k=1

ν2k

∞
∏

n(6=k)=1

(

1− k2

n2

)−1

. (15.214)

The product is evaluated by the limit procedure for small ǫ:






∞
∏

n=1

[

1− (k + ǫ)2

n2

]−1






[

1− (k + ǫ)2

k2

]

→ (k + ǫ)π

sin(k + ǫ)π

−2ǫ

k
→ −2ǫπ

sin(k + ǫ)π

→ − 2ǫπ

cos kπ sin ǫπ
→ 2(−1)k+1. (15.215)

Hence we obtain [6]

PL(R) ∝
∞
∑

k=1

2(−1)k+1κ̄ ν2k e
−κ̄ν2k(L−R). (15.216)

It is now convenient to introduce the reduced end-to-end distance r ≡ R/L and the
flexibility of the polymer l ≡ L/ξ, and replace κ̄ ν2k (L− R) → k2π2(1− r)/l so that
(15.216) becomes

PL(R) = NL(R) = N
∞
∑

k=1

(−1)k+1k2π2e−k
2π2(1−r)/l, (15.217)

where N is a normalization factor determined to satisfy
∫

d3RPL(R) = 4πL3
∫ ∞

0
dr r2 PL(R) = 1. (15.218)

The sum must be evaluated numerically, and leads to the distributions shown in
Fig. 15.6.

The above method is inconvenient if D 6= 3, since the simple pole structure of
(15.213) is no longer there. For general D, we expand

(

ωL

sinhωL

)(D−1)/2

= (ωL)(D−1)/2
∞
∑

k=0

(−1)k
(

−(D − 1)/2

k

)

e−(2k+(D−1)/2)ωL, (15.219)

and obtain from (15.212):

PL(R) ∝
∞
∑

k=0

(−1)k
(

−(D − 1)/2

k

)

Ik(R/L), (15.220)
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ξ/L=

4πr2PL(R)

Figure 15.6 Normalized end-to-end distribution of stiff polymer accord-

ing to our analytic formula (15.201) plotted for persistence lengths ξ/L =

1/400, 1/100, 1/30, 1/10, 1/5, 1/2, 1, 2 (fat curves). They are compared with the Monte

Carlo calculations (symbols) and with the large-stiffness approximation (15.217) (thin

curves) of Ref. [6] which fits well for ξ/L = 2 and 1 but becomes bad small ξ/L < 1.

For very small values such as ξ/L = 1/400, 1/100, 1/30, our theoretical curves are well

approximated by Gaussian random chain distributions on a lattice with lattice constant

aeff = 2ξ of Eq. (15.158) which ensures that the lowest moments 〈R2〉 = aeffL are properly

fitted. The Daniels approximation (15.166) fits our theoretical curves well up to larger

ξ/L ≈ 1/10.

with the integrals

Ik(r) ≡
∫ i∞

−i∞

dω̄

2πi
ω̄(D+1)/2e−[2k+(D−1)/2]ω̄+(D−1)ω̄2(1−r)/2l , (15.221)

where ω̄ is the dimensionless variable ωL. The integrals are evaluated with the help
of the formula6

∫ i∞

−i∞

dx

2πi
xνeβx

2/2−qx =
1√

2πβ(ν+1)/2
e−q

2/4βDν

(

q/
√

β
)

, (15.222)

where Dν(z) is the parabolic cylinder functions which for integer ν are proportional
to Hermite polynomials:7

Dn(z) =
1√
2
n e

−z2/4Hn(z/
√
2). (15.223)

Thus we find

6I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formulas 3.462.3 and 3.462.4.
7ibid., Formula 9.253.
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Ik(r)=
1√
2π

[

l

(D−1)(1−r)

](D+3)/4

e
−

[2k+(D−1)/2]2

4(D−1)(1−r)/lD(D+1)/2





2k+(D−1)/2
√

(D−1)(1−r)/l



 ,

(15.224)
which becomes for D = 3

Ik(r)=
1

2
√
2π

1
√

2(1−r)/l
3 e

−
(2k+1)2

4(1−r)/lH2





2k+1

2
√

(1−r)/l



 . (15.225)

If the sum (15.220) is performed numerically for D = 3, and the integral over
PL(R) is normalized to satisfy (15.218), the resulting curves fall on top of those
in Fig. 15.6 which were calculated from (15.217). In contrast to (15.217), which
converges rapidly for small r, the sum (15.220) convergent rapidly for r close to
unity.

Let us compare the low moments of the above distribution with the exact mo-
ments in Eqs. (15.156) and (15.164). in the large-stiffness expansion. We set ω̄ ≡ ωL
and expand

f(ω̄2)≡
√

ω̄

sinh ω̄

D−1

(15.226)

in a power series

f(ω̄2)=1−D − 1

22 ·3 ω̄2+
(D−1)(5D−1)

25 ·32 ·5 ω̄4− (D−1)(15+14D+35D2)

27 ·34 ·5·7 ω̄6+. . . .(15.227)

Under the integral (15.212), each power of ω̄2 may be replaced by a differential
operator

ω̄2 → ˆ̄ω
2 ≡ −L

κ̄

d

dr
= − 2l

D − 1

d

dr
. (15.228)

The expansion f(ˆ̄ω
2
) can then be pulled out of the integral, which by itself yields a

δ-function, so that we obtain PL(R) in the form f
(

ˆ̄ω
2
)

δ(r− 1), which is a series of
derivatives of δ-functions of r − 1 staring with

PL(R) ∝
[

1+
l

6

d

dr
+

(−1+5D) l2

360 (D−1)

d2

dr2
+

(15+14D+35D2) l3

45360 (D−1)2
d3

dr3
+ . . .

]

δ(r − 1).

(15.229)

From this we find easily the moments

〈Rm〉 =
∫

dDRRm PL(R) ∝
∫ ∞

0
dr rD−1 rmPL(R). (15.230)

Let us introduce auxiliary expectation values with respect to the simple integrals
〈f(r)〉1 ∝

∫

dr f(r)PL, rather than to D-dimensional volume integrals. The unnor-
malized moments 〈rm〉 are then given by 〈rD−1+m〉1. Within these one-dimensional
expectations, the moments of z = r − 1 are

〈(r − 1)n〉1 ∝
∫ ∞

0
dr (r − 1)nPL(R). (15.231)
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The moments 〈rm〉 〈[1+(r−1)]m〉 = 〈[1+(r−1)]D−1+m〉1 are obtained by expanding
the binomial in powers of r−1 and using the integrals

∫

dz zmδ(n)(z) = (−1)mm! δmn
to find, up to the third power in L/ξ = l,

〈

R0
〉

=N
[

1 − D−1

6
l +

(5D−1)(D−2)

360
l2 − (35D3+14D+15)(D−2)(D−3)

45360(D− 1)
l3
]

,

〈

R2
〉

=NL2

[

1 − D + 1

6
l +

(5D−1)D(D+1)

360(D− 1)
l2 − (35D2+14D+ 15)D(D+1)

45360(D− 1)
l3
]

,

〈

R4
〉

=NL4

[

1 − D + 3

6
l +

(5D−1)(D+2)(D+3)

360(D− 1)
l2

− (35D2+14D+15)(D+1)(D+2)(D+3)

45360(D− 1)2
l3
]

.

The zeroth moment determines the normalization factor N to ensure that 〈R0〉 = 1.
Dividing this out of the other moments yields

〈

R2
〉

= L2

[

1− 1

3
l +

13D−9

180(D−1)
l2− 8

945
l3+ . . .

]

, (15.232)

〈

R4
〉

= L4

[

1− 2

3
l +

23D−11

90(D−1)
l2− 123D2−98D+39

1890(D−1)2
l3+ . . .

]

. (15.233)

These agree up to the l-terms with the exact expansions (15.156) and (15.164) [or
with the general formula (15.198)]. For D = 3, these expansions become

〈

R2
〉

= L2
[

1− 1

3
l +

1

12
l2 − 8

945
l3 + . . .

]

, (15.234)

〈

R4
〉

= L4
[

1− 2

3
l +

29

90
l2 − 71

630
l3 + . . .

]

. (15.235)

Remarkably, these happen to agree in one more term with the exact expansions
(15.156) and (15.164) than expected, as will be understood after Eq. (15.295).

15.9.5 Higher Loop Corrections

Let us calculate perturbative corrections to the large-stiffness limit. For this we replace the har-
monic path integral (15.210) by the full expression

P (r;L)=S−1
D

∫

NBC

D ′D−1q(s)δ

(

r − L−1

∫ L

0

ds
√

1 − q2(s)

)

e−Atot[q]−Acor[qb,qa], (15.236)

where

Atot[q]=
1

2ε

∫ L

0

ds [ gµν(q) q̇
µ(s)q̇ν(s)−εδ(s, s) log g(q(s))] + AFP− εL

R

8
. (15.237)

For convenience, we have introduced here the parameter ε = kBT/κ = 1/κ̄, the reduced inverse

stiffness, related to the flexibility l ≡ L/ξ by l = εL(d− 1)/2. We also have added the correction
term εLR/8 to have a unit normalization of the partition function

Z = SD

∫ ∞

0

dr rD−1 P (r;L) = 1. (15.238)
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The Faddeev-Popov action, whose harmonic approximation was used in (15.208), is now

AFP[q] = −(D − 1) log

(

L−1

∫ L

0

ds
√

1 − q2(s)

)

, (15.239)

To perform higher-order calculations we have added an extra action which corrects for the
omission of fluctuations of the velocities at the endpoints when restricting the paths to Neumann
boundary conditions with zero end-point velocities. The extra action contains, of course, only at
the endpoints and reads [7]

Acor[qb, qa] = − log J [qb, qa] = −[q2(0) + q2(L)]/4. (15.240)

Thus we represent the partition function (15.238) by the path integral with Neumann boundary
conditions

Z =

∫

NBC

D ′D−1q(s) exp
{

−Atot[q] −Acor[qb, qa] −AFP[q]
}

. (15.241)

A similar path integral can be set up for the moments of the distribution. We express the
square distance R2 in coordinates (15.207) as

R2 =

∫ L

0

ds

∫ L

0

ds′ u(s) · u(s′) =

(

∫ L

0

ds
√

1 − q2(s)

)2

= R2 , (15.242)

we find immediately the following representation for all, even and odd, moments [compare (15.147)]

〈 (R2)n 〉 =

〈[

∫ L

0

∫ L

0

ds ds′ u(s) · u(s′)

]n〉

(15.243)

in the form

〈Rn 〉 =

∫

NBC

D ′D−1q(s) exp
{

−Atot[q] −Acor[qb, qa] −AFP
n [q]

}

. (15.244)

This differs from Eq. (15.241) only by in the Faddeev-Popov action for these moments, which is

AFP
n [q] = −(n + D − 1) log

(

L−1

∫ L

0

ds
√

1 − q2(s)

)

, (15.245)

rather than (15.239).

There is no need to divide the path integral (15.244) by Z since this has unit normalization, as
will be verified order by order in the perturbation expansion. The Green function of the operator
d2/ds2 with these boundary conditions has the form

∆′
N(s, s′) =

L

3
− | s− s′ |

2
− (s + s′)

2
+

(s2 + s′2)

2L
. (15.246)

The zero temporal average (15.207) manifests itself in the property

∫ L

0

ds∆′
N(s, s′) = 0 . (15.247)

In the following we shall simply write ∆(s, s′) for ∆′
N(s, s′), for brevity.
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Partition Function and Moments Up to Four Loops

We are now prepared to perform the explicit perturbative calculation of the partition function and
all even moments in powers of the inverse stiffness ε up to order ε2 ∝ l2. This requires evaluating
Feynman diagrams up to four loops. The associated integrals will contain products of distributions,
which will be calculated unambiguously with the help of our simple formulas in Chapter 10.

For a systematic treatment of the expansion parameter ε, we rescale the coordinates qµ → εqµ,
and rewrite the path integral (15.244) as

〈Rn 〉 =

∫

NBC

D ′D−1q(s) exp {−Atot,n[q; ε].} , (15.248)

with the total action

Atot,n[q; ε] =

∫ L

0

ds

[

1

2

(

q̇2 + ε
(qq̇)2

1 − εq2

)

+
1

2
δ(0) log(1 − εq2)

]

− σn log

[

1

L

∫ L

0

ds
√

1 − εq2

]

− ε

4

[

q2(0) + q2(L)
]

− εL
R

8
. (15.249)

The constant σn is an abbreviation for

σn ≡ n + (d− 1). (15.250)

For n = 0, the path integral (15.248) must yield the normalized partition function Z = 1.
For the perturbation expansion we separate

Atot,n[q; ε] = A(0)[q] + Aint
n [q; ε], (15.251)

with a free action

A(0)[q] =
1

2

∫ L

0

ds q̇2(s), (15.252)

and a large-stiffness expansion of the interaction

Aint
n [q; ε] = εAint1

n [q] + ε2Aint2
n [q] + . . . . (15.253)

The free part of the path integral (15.248) is normalized to unity:

Z(0) ≡
∫

NBC

D ′D−1q(s) e−A(0)[q] =

∫

NBC

D ′D−1q(s) e
−(1/2)

∫

L

0
ds q̇2(s)

= 1. (15.254)

The first expansion term of the interaction (15.253) is

Aint1
n [q] =

1

2

∫ L

0

ds
{

[q(s)q̇(s)]2 − ρn(s) q2(s)
}

− L
R

8
, (15.255)

where

ρn(s) ≡ δn + [δ(s) + δ(s− L)] /2, δn ≡ δ(0) − σn/L. (15.256)

The second term in ρn(s) represents the end point terms in the action (15.249) and is important
for canceling singularities in the expansion.

The next expansion term in (15.253) reads

Aint2
n [q] =

1

2

∫ L

0

ds

{

[q(s)q̇(s)]2 − 1

2

[

δ(0) − σn

2L

]

q2(s)

}

q2(s)

+
σn

8L2

∫ L

0

ds

∫ L

0

ds′ q2(s)q2(s′). (15.257)
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The perturbation expansion of the partition function in powers of ε consists of expectation
values of the interaction and its powers to be calculated with the free partition function (15.254).
For an arbitrary functional of q(s), these expectation values will be denoted by

〈F [q] 〉0 ≡
∫

NBC

D ′D−1q(s)F [q] e
−(1/2)

∫

L

0
ds q̇2(s)

. (15.258)

With this notation, the perturbative expansion of the path integral (15.248) reads

〈Rn 〉/Ln = 1 − 〈Aint
n [q; ε]〉0 +

1

2
〈Aint

n [q; ε]2〉0 − . . .

= 1 − ε 〈Aint1
n [q]〉0 + ε2

(

−〈Aint2
n [q]〉0 +

1

2
〈Aint1

n [q]2〉0
)

− . . . . (15.259)

For the evaluation of the expectation values we must perform all possible Wick contractions with
the basic propagator

〈 qµ(s)qν(s′) 〉0 = δµν∆(s, s′) , (15.260)

where ∆(s, s′) is the Green function (15.246) of the unperturbed action (15.252). The relevant
loop integrals Ii and Hi are calculated using the dimensional regularization rules of Chapter 10.
They are listed in Appendix 15A and Appendix 15B.

We now state the results for various terms in the expansion (15.259):

〈Aint1
n [q]〉0 =

(D−1)

2

[

σn

L
I1 + DI2 −

1

2
∆(0, 0) − 1

2
∆(L,L)

]

− L
R

8
= L

(D−1)n

12
,

〈Aint2
n [q]〉0 =

(D2−1)

4

[(

δ(0) +
σn

2L

)

I3+2(D+2)I4

]

+
(D−1)σn

8L2

[

(D−1)I21 + 2I5
]

= L3 (D2 − 1)

120
δ(0) + L2 (D−1)

1440

[

(25D2+36D+23) + n(11D+5)
]

,

1

2
〈Aint1

n [q]2〉0 =
L2

2

{

(D−1)L

12

[(

δ(0) +
D

2L

)

−
(

δn +
2

L

)]

− R

8

}2

+
(D−1)

4
[Hn

1 − 2(Hn
2 + Hn

3 −H5) + H6 − 4D(Hn
4 −H7 −H10)

+ H11 + 2D2(H8 + H9)
]

+
(D−1)

4
[DH12 + 2(D + 2)H13 + DH14]

=
L2

2

[

(D−1)n

12

]2

+ L3 (D−1)

120
δ(0)

+ L2 (D−1)

1440

[

(25D2 − 22D + 25) + 4(n + 4D − 2)
]

+ L3 (D−1)D

120
δ(0) + L2 (D−1)

720
(29D− 1) . (15.261)

Inserting these results into Eq. (15.259), we find all even and odd moments up to order ε2 ∝ l2

〈Rn 〉/Ln = 1 − εL
(D−1)n

12
+ ε2L2

[

(D−1)2n2

288
+

(D−1)(4n+ 5D − 13)n

1440

]

−O(ε3)

= 1 − n

6
l +

[

n2

72
+

(4n + 5D − 13)n

360(D−1)

]

l2 −O(l3). (15.262)

For n = 0 this gives the properly normalized partition function Z = 1. For all n it reproduces the
large-stiffness expansion (15.198) up to order l4.
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Correlation Function Up to Four Loops

As an important test of the correctness of our perturbation theory we calculating the correlation
function up to four loops and verify that it yields the simple expression (15.153), which reads in
the present units

G(s, s′) = e−|s−s′|/ξ = e−|s−s′|l/L. (15.263)

Starting point is the path integral representation with Neumann boundary conditions for the two-
point correlation function

G(s, s′) = 〈u(s) · u(s′)〉 =

∫

NBC

D ′D−1q(s) f(s, s′) exp
{

−A(0)
tot[q; ε]

}

, (15.264)

with the action of Eq. (15.249) for n = 0. The function in the integrand f(s, s′) ≡ f(q(s), q(s′)) is
an abbreviation for the scalar product u(s) · u(s′) expressed in terms of independent coordinates
qµ(s):

f(q(s), q(s′)) ≡ u(s) · u(s′) =
√

1 − q2(s)
√

1 − q2(s′) + q(s) q(s′). (15.265)

Rescaling the coordinates q → √
ε q, and expanding in powers of ε yields:

f(q(s), q(s′)) = 1 + εf1(q(s), q(s
′)) + ε2f2(q(s), q(s

′)) + . . . , (15.266)

where

f1(q(s), q(s
′)) = q(s) q(s′) − 1

2
q2(s) − 1

2
q2(s′), (15.267)

f2(q(s), q(s
′)) =

1

4
q2(s) q2(s′) − 1

8
[q2(s)]2 − 1

8
[q2(s′)]2. (15.268)

We shall attribute the integrand f(q(s), q(s′)) to an interaction Af [q; ε] defined by

f(q(s), q(s′)) ≡ e−Af [q;ε], (15.269)

which has the ε-expansion

Af [q; ε] = − log f(q(s), q(s′))

= −εf1(q(s), q(s
′))+ε2

[

−f2(q(s), q(s
′))+

1

2
f2
1 (s, s′)

]

−. . . , (15.270)

to be added to the interaction (15.253) with n = 0. Thus we obtain the perturbation expansion of
the path integral (15.264)

G(s, s′) = 1−
〈

(Aint
0 [q; ε] + Af [q; ε])

〉

0
+

1

2

〈

(Aint
0 [q; ε] + Af [q; ε])2

〉

0
− . . . . (15.271)

Inserting the interaction terms (15.253) and (15.271), we obtain

G(s, s′) = 1+ε〈f1(q(s), q(s′))〉0+ε2
[

〈f2(q(s), q(s′))〉0−〈f1(q(s), q(s′))Aint1
0 [q]〉0

]

+. . . ,

(15.272)

and the expectation values can now be calculated using the propagator (15.260) with the Green
function (15.246).

In going through this calculation we observe that because of translational invariance in the
pseudotime, s → s+ s0, the Green function ∆(s, s′)+C is just as good a Green function satisfying
Neumann boundary conditions as ∆(s, s′). We may demonstrate this explicitly by setting C =

H. Kleinert, PATH INTEGRALS



15.9 Schrödinger Equation and Recursive Solution for Moments 963

L(a−1)/3 with an arbitrary constant a, and calculating the expectation values in Eq. (15.272) using
the modified Green function. Details are given in Appendix 15C [see Eq. (15C.1)], where we list
various expressions and integrals appearing in the Wick contractions of the expansion Eq. (15.272).
Using these results we find the a-independent terms up to second order in ε:

〈f1(q(s), q(s′))〉0 = − (D − 1)

2
|s− s′ |, (15.273)

〈f2(q(s), q(s′))〉0 − 〈f1(q(s), q(s′))Aint1
0 [q]〉0

= (D − 1)

[

1

2
D1 −

1

8
(D + 1)D2

2 −K1 −DK2 −
(D − 1)

L
K3 +

1

2
K4 +

1

2
K5

]

=
1

8
(D − 1)2(s− s′)2. (15.274)

This leads indeed to the correct large-stiffness expansion of the exact two-point correlation function
(15.263):

G(s, s′) = 1−ε
D−1

2
|s−s′ | + ε2

(D−1)2

8
(s−s′)2+. . .=1− |s−s′ |

ξ
+

(s−s′)2

2ξ2
− . . . . (15.275)

Radial Distribution up to Four Loops

We now turn to the most important quantity characterizing a polymer, the radial distribution func-
tion. We eliminate the δ-function in Eq. (15.236) enforcing the end-to-end distance by considering
the Fourier transform

P (k;L) =

∫

dr eik(r−1) P (r;L) . (15.276)

This is calculated from the path integral with Neumann boundary conditions

P (k;L) =

∫

NBC

D ′D−1q(s) exp
{

−Atot
k [q; ε]

}

, (15.277)

where the action Atot
k [q; ε] reads, with the same rescaled coordinates as in (15.249),

Atot
k [q; ε] =

∫ L

0

ds

{

1

2

[

q̇2 + ε
(qq̇)2

1 − εq2

]

+
1

2
δ(0) log(1 − εq2) − ik

L

(

√

1 − εq2 − 1
)

}

− 1

4
ε
[

q2(0) + q2(L)
]

− εL
R

8
≡ A0[q] + Aint

k [q; ε]. (15.278)

As before in Eq. (15.253), we expand the interaction in powers of the coupling constant ε. The
first term coincides with Eq. (15.255), except that σn is replaced by

ρk(s) = δk + [δ(s) + δ(s− L)] /2, δk = δ(0) − ik/L, (15.279)

so that

Aint1
k [q] =

∫ L

0

ds
1

2

{

[q(s)q̇(s)]
2 − ρk(s) q

2(s)
}

− L
R

8
. (15.280)

The second expansion term Aint2
k [q] is simpler than the previous (15.257) by not containing the

last nonlocal term:

Aint2
k [q] =

∫ L

0

ds
1

2

{

[q(s)q̇(s)]2 − 1

2

(

δ(0) − ik

2L

)

q2(s)

}

q2(s). (15.281)
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Apart from that, the perturbation expansion of (15.277) has the same general form as in (15.259):

P (k;L) = 1 − ε 〈Aint1
k [q]〉0 + ε2

(

−〈Aint2
k [q]〉0 +

1

2
〈Aint1

k [q]2〉0
)

− . . . . (15.282)

The expectation values can be expressed in terms of the same integrals listed in Appendix 15A
and Appendix 15B as follows:

〈Aint1
, k [q]〉0 =

(D − 1)

2

[

ik

L
I1 + DI2 −

1

2
∆(0, 0) − 1

2
∆(L,L)

]

− L
R

8

= −L
(D − 1) [(D − 1) − ik]

12
, (15.283)

〈Aint2
, k [q]〉0 =

(D2 − 1)

4

[(

δ(0) +
ik

2L

)

I3 + 2(D + 2)I4

]

= L3 (D2 − 1)

120
δ(0) + L2 (D2 − 1) [7(D + 2) + 3ik]

720
, (15.284)

1

2
〈Aint1

, k [q]2〉0 =
L2

2

{

(D − 1)L

12

[(

δ(0) +
D

2L

)

−
(

δk +
2

L

)]

− R

8

}2

+
(D − 1)

4

[

Hk
1 − 2(Hk

2 + Hk
3 −H5) + H6 − 4D(Hk

4 −H7 −H10)

+ H11 + 2D2(H8 + H9)
]

+
(D − 1)

4
[DH12 + 2(D + 2)H13 + DH14]

= L2 (D − 1)2 [(D − 1) − ik]
2

2 · 122

+ L3 (D − 1)

120
δ(0) + L2 (D − 1)

1440

[

(13D2 − 6D + 21) + 4ik(2D + ik)
]

+ L3 (D − 1)D

120
δ(0) + L2 (D − 1)

720
(29D− 1) . (15.285)

In this way we find the large-stiffness expansion up to order ε2:

P (k;L) = 1 + εL
(D − 1)

12
[(D − 1) − ik] + ε2L2 (D − 1)

1440
(15.286)

×
[

(ik)2(5D−1)−2ik(5D2−11D+8)+(D−1)(5D2−11D+14)
]

+O(ε3).

This can also be rewritten as

P (k;L)=P1 loop(k;L)

{

1+
(D−1)

6
l+

[

(D−3)

180(D−1)
ik+

(5D2−11D+14)

360

]

l2+O(l3)

}

,

(15.287)

where the prefactor P1 loop(k;L) has the expansion

P1 loop(k;L) = 1 − εL
(D − 1)

22 · 3 (ik) + ε2L2 (D − 1)(5D − 1)

25 · 32 · 5 (ik)2 − . . . . (15.288)

With the identification ω̄2 = ikεL, this is the expansion of one-loop functional determinant in
(15.227). By Fourier-transforming (15.286), we obtain the radial distribution function

P (r; l) = δ(r−1) +
l

6
[δ′(r−1) + (d− 1) δ(r−1)] +

l2

360(d− 1)
[(5d− 1) δ′′(r−1)

+ 2(5d2−11d+8) δ′(r−1) + (d−1)(5d2−11d+14)δ(r−1)
]

+ O(l3). (15.289)
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As a crosscheck, we can calculate from this expansion once more the even and odd moments

〈Rn 〉 = Ln

∫

dr rn+(D−1) P (r; l), (15.290)

and find that they agree with Eq. (15.262).
Using the higher-order expansion of the moments in (15.198) we can easily extend the distri-

bution (15.289) to arbitrarily high orders in l. Keeping only the terms up to order l4, we find that
the one-loop end-to-end distribution function (15.212) receives a correction factor:

P (r; l) ∝
∫ ∞

−∞

dω̂2

2π
e−iω̂2(r−1)(D−1)/2l

( ω̄

sinh ω̄

)(D−1)/2

e−V (l,ω̂2), (15.291)

with

V (l, ω̂2) ≡ V0(l) + V̄ (l, ω̂2) = V0(l) + V1(l)
ω̂2

l
+ V2(l)

ω̂4

l2
+ V3(l)

ω̂6

l3
+ . . . . (15.292)

The first term

V0(l) = −d− 1

6
l +

d− 9

360
l2 +

(d− 1)
(

32 − 13 d + 5 d2
)

6480
l3

− 34 − 272 d+ 259 d2 − 110 d3 + 25 d4

259200
l4 + . . . (15.293)

contributes only to the normalization of P (r; l), and can be omitted in (15.291). The remainder
has the expansion coefficients

V1(l) = −d− 3

360
l2 +

(−5 + 9 d)

7560 (−1 + d)
l3 +

(

−455 + 431 d+ 91 d2 + 5 d3
)

907200 (d− 1)
2 l4 + . . . ,

V2(l) = − (5 − 3 d) l3

7560
−
(

−31 + 42 d+ 25 d2
)

l4

907200 (d− 1)
+ . . . , (15.294)

V3(l) = − (d− 1) l4

18900
+ . . . .

In the physical most interesting case of three dimensions, the first nonzero correction arises to
order l3. This explains the remarkable agreement of the moments in (15.234) and (15.234) up to
order l2.

The correction terms V̄ (l, ω̂2) may be included perturbatively into the sum over k in
Eq. (15.220) by noting that the expectation value of powers of ω̂2/l within the ω̂-integral (15.221)
are

〈

ω̂2/l
〉

= a2k ≡ 2k + (D − 1)/2

(D − 1)(1 − r)
,
〈

ω̂2/l
〉2

= 3a4k,
〈

ω̂2/l
〉3

= 15a6k, (15.295)

so that we obtain an extra factor e−fk

fk = V1(l)a
2
k +

[

3V2(l)−V 2
1 (l)

]

a4k +

[

15V3(l)−12V1(l)V2(l)+
4

3
V 3
1 (l)

]

a6k + . . . , (15.296)

where up to order l4:

3V2(l)−V 2
1 (l) =

3D − 5

2520
l3 +

156 − 231D− 26D2 − 7D3

907200 (D − 1)
l4 + . . . ,

15V3(l)−12V1(l)V2(l)+
4

3
V 3
1 (l) = −D − 1

1260
l4 + . . . . (15.297)
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15.10 Excluded-Volume Effects

A significant modification of these properties is brought about by the interactions
between the chain elements. If two of them come close to each other, the molecular
forces prevent them from occupying the same place. This is called the excluded-

volume effect . In less than four dimensions, it gives rise to a scaling law for the
expectation value 〈R2〉 as a function of L:

〈R2〉 ∝ L2ν , (15.298)

as stated in (15.38). The critical exponent ν is a number between the random-chain
value ν = 1/2 and the stiff-chain value ν = 1.

To derive this behavior we consider the polymer in the limiting path integral
approximation (15.80) to a random chain which was derived for R2/La ≪ 1 and
which is very accurate whenever the probability distribution is sizable. Thus we
start with the time-sliced expression

PN(R) =
1

√

2πa/M
D

N−1
∏

n=1







∫

dDxn
√

2πa/M
D





 exp
(

−AN/h̄
)

, (15.299)

with the action

AN = a
N
∑

n=1

M

2

(∆xn)
2

a2
, (15.300)

and the mass parameter (15.79). In the sequel we use natural units in which energies
are measured in units of kBT , and write down all expressions in the continuum limit.
The probability (15.299) is then written as

PL(R) =
∫

DDx e−AL[x], (15.301)

where we have used the label L = Na rather than N . From the discussion in
the previous section we know that although this path integral represents an ideal
random chain, we can also account for a finite stiffness by interpreting the number
a as an effective length parameter aeff given by (15.158). The total Euclidean time
in the path integral τb− τa = h̄/kBT corresponds to the total length of the polymer
L.

We now assume that the molecules of the polymer repel each other with a two-
body potential V (x,x′). Then the action in the path integral (15.301) has to be
supplemented by an interaction

Aint =
1

2

∫ L

0
dτ
∫ L

0
dτ ′ V (x(τ),x(τ ′)). (15.302)

Note that the interaction is of a purely spatial nature and does not depend on the
parameters τ , τ ′, i.e., it does not matter which two molecules in the chain come
close to each other.
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The effects of an interaction of this type are most elegantly calculated by making
use of a Hubbard-Stratonovich transformation. Generalizing the procedure in Sub-
section ??, we introduce an auxiliary fluctuating field variable ϕ(x) at every space
point x and replace Aint by

Aϕ
int =

∫ L

0
dτ ϕ(x(τ))− 1

2

∫

dDxdDx′ ϕ(x)V −1(x,x′)ϕ(x′). (15.303)

Here V −1(x,x′) denotes the inverse of V (x,x′) under functional multiplication, de-
fined by the integral equation

∫

dDx′ V −1(x,x′)V (x′,x′′) = δ(D)(x− x′′). (15.304)

To see the equivalence of the action (15.303) with (15.302), we rewrite (15.303) as

Aϕ
int =

∫

dDx ρ(x)ϕ(x)− 1

2

∫

dDxdDx′ ϕ(x)V −1(x,x′)ϕ(x′), (15.305)

where ρ(x) is the particle density

ρ(x) ≡
∫ L

0
dτ δ(D)(x− x(τ)). (15.306)

Then we perform a quadratic completion to

Aϕ
int = −1

2

∫

dDxdDx′
[

ϕ′(x)V −1(x,x′)ϕ′(x′)− ρ(x)V (x,x′)ρ(x′)
]

, (15.307)

with the shifted field

ϕ′(x) ≡ ϕ(x)−
∫

dDx′ V (x,x′)ρ(x′). (15.308)

Now we perform the functional integral
∫

Dϕ(x) e−Aϕ
int (15.309)

integrating ϕ(x) at each point x from −i∞ to i∞ along the imaginary field axis.

The result is a constant functional determinant [det V −1(x,x′)]
−1/2

. This can be
ignored since we shall ultimately normalize the end-to-end distribution to unity.
Inserting (15.306) into the surviving second term in (15.307), we obtain precisely
the original interaction (15.302).

Thus we may study the excluded-volume problem by means of the equivalent
path integral

PL(R) ∝
∫

DDx(τ)
∫

Dϕ(x) e−A, (15.310)

where the action A is given by the sum

A = AL[x, ẋ, ϕ] +A[ϕ], (15.311)
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of the line and field actions

AL[x, ϕ] ≡
∫ L

0
dτ
[

M

2
ẋ2 + ϕ(x(τ))

]

, (15.312)

A[ϕ] ≡ −1

2

∫

dDxdDx′ ϕ(x)V −1(x,x′)ϕ(x′), (15.313)

respectively. The path integral (15.310) over x(τ) and ϕ(x) has the following phys-
ical interpretation. The line action (15.312) describes the orbit of a particle in a
space-dependent random potential ϕ(x). The path integral over x(τ) yields the end-
to-end distribution of the fluctuating polymer in this potential. The path integral
over all potentials ϕ(x) with the weight e−A[ϕ] accounts for the repulsive cloud of
the fluctuating chain elements. To be convergent, all ϕ(x) integrations in (15.310)
have to run along the imaginary field axis.

To evaluate the path integrals (15.310), it is useful to separate x(τ)- and ϕ(x)-
integrations and to write end-to-end distributions as an average over ϕ-fluctuations

PL(R) ∝
∫

Dϕ(x) e−A[ϕ]P ϕ
L (R, 0), (15.314)

where

P ϕ
L (R, 0) =

∫

DDx(τ) e−AL[x,ϕ] (15.315)

is the end-to-end distribution of a random chain moving in a fixed external potential
ϕ(x). The presence of this potential destroys the translational invariance of P ϕ

L . This
is why we have recorded the initial and final points 0 and R. In the final distribution
PL(R) of (15.314), the invariance is of course restored by the integration over all
ϕ(x).

It is possible to express the distribution P ϕ
L (R, 0) in terms of solutions of an

associated Schrödinger equation. With the action (15.312), this equation is obviously

[

∂

∂L
− 1

2M
∂R

2 + ϕ(R)

]

P ϕ
L (R, 0) = δ(D)(R− 0)δ(L). (15.316)

If ψϕE(R) denotes the time-independent solutions of the Hamiltonian operator

Ĥϕ = − 1

2M
∂R

2 + ϕ(R), (15.317)

the probability P ϕ
L (R) has a spectral representation of the form

P ϕ
L (R, 0) =

∫

dEe−ELψϕE(R)ψϕ ∗
E (0), L > 0. (15.318)

From now on, we assume the interaction to be dominated by the simplest possible
repulsive potential proportional to a δ-function:

V (x,x′) = vaDδ(D)(x− x′). (15.319)
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Then the functional inverse is

V −1(x,x′) = v−1a−Dδ(D)(x− x′), (15.320)

and the ϕ-action (15.312) reduces to

A[ϕ] = −v
−1a−D

2

∫

dDxϕ2(x). (15.321)

The path integrals (15.314), (15.315) can be solved approximately by applying the
semiclassical methods of Chapter 4 to both the x(τ)- and the ϕ(x)-path integrals.
These are dominated by the extrema of the action and evaluated via the leading
saddle point approximation. In the ϕ(x)-integral, the saddle point is given by the
equation

v−1a−Dϕ(x) =
δ

δϕ(x)
logP ϕ

L (R, 0). (15.322)

This is the semiclassical approximation to the exact equation

v−1a−D〈ϕ(x)〉 = 〈ρ(x)〉 ≡
〈

∫ L

0
dτ δ(D)(x− x(τ))

〉

x

, (15.323)

where 〈. . .〉x is the average over all line fluctuations calculated with the help of the
probability distribution (15.315).

The exact equation (15.323) follows from a functional differentiation of the path
integral for P ϕ

L with respect to ϕ(x):

δ

δϕ(x)
P ϕ
L (R) =

∫

Dϕ δ

δϕ(x)

∫

DDx e−AL[x,ϕ]−A[ϕ] = 0. (15.324)

By anchoring one end of the polymer at the origin and carrying the path integral
from there to x(τ), and further on to R, the right-hand side of (15.323) can be
expressed as a convolution integral over two end-to-end distributions:

〈

∫ L

0
dτ δ(D)(x− x(τ))

〉

x

=
∫ L

0
dL′ P ϕ

L′(x)P
ϕ
L−L′(R− x). (15.325)

With (15.323), this becomes

v−1a−D〈ϕ(x)〉x =
∫ L

0
dL′ P ϕ

L′(x)P
ϕ
L−L′(R− x), (15.326)

which is the same as (15.323).
According to Eq. (15.322), the extremal ϕ(x) depends really on two variables, x

and R. This makes the solution difficult, even at the semiclassical level. It becomes
simple only for R = 0, i.e., for a closed polymer. Then only the variable x remains
and, by rotational symmetry, ϕ(x) can depend only on r = |x|. For R 6= 0, on the
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other hand, the rotational symmetry is distorted to an ellipsoidal geometry, in which
a closed-form solution of the problem is hard to find. As an approximation, we may
use a rotationally symmetric ansatz ϕ(x) ≈ ϕ(r) also for R 6= 0 and calculate the
end-to-end probability distribution PL(R) via the semiclassical approximation to
the two path integrals in Eq. (15.310).

The saddle point in the path integral over ϕ(x) gives the formula [compare
(15.314)]

PL(R) ∼ P ϕ
L (R, 0) =

∫

DDx exp

{

−
∫ L

0
dτ
[

M

2
ẋ2 + ϕ(r(τ))

]

}

. (15.327)

Thereby it is hoped that for moderate R, the error is small enough to justify this
approximation. Anyhow, the analytic results supply a convenient starting point for
better approximations.

Neglecting the ellipsoidal distortion, it is easy to calculate the path integral over
x(τ) for P ϕ

L (R, 0) in the saddle point approximation. At an arbitrary given ϕ(r),
we must find the classical orbits. The Euler-Lagrange equation has the first integral
of motion

M

2
ẋ2 − ϕ(r) = E = const. (15.328)

At fixed L, we have to find the classical solutions for all energies E and all angular
momenta l. The path integral reduces an ordinary double integral over E and
l which, in turn, is evaluated in the saddle point approximation. In a rotationally
symmetric potential ϕ(r), the leading saddle point has the angular momentum l = 0
corresponding to a symmetric polymer distribution. Then Eq. (15.328) turns into a
purely radial differential equation

dτ =
dr

√

2[E + ϕ(r)]/M
. (15.329)

For a polymer running from the origin to R we calculate

L =
∫ R

0

dr
√

2[E + ϕ(r)]/M
. (15.330)

This determines the energy E as a function of L. It is a functional of the yet
unknown field ϕ(r):

E = EL[ϕ]. (15.331)

The classical action for such an orbit can be expressed in the form

Acl[x, ϕ] =
∫ L

0
dτ
[

M

2
ẋ2 + ϕ(r(τ))

]

= −
∫ L

0
dτ
[

M

2
ẋ2 − ϕ(r(τ))

]

+
∫ L

0
dτM ẋ2

= −EL+
∫ R

0
dr
√

2M [E + ϕ(r)]. (15.332)
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In this expression, we may consider E as an independent variational parameter.
The relation (15.330) between E,L,R, ϕ(r), by which E is fixed, reemerges when
extremizing the classical expression Acl[x, ϕ]:

∂

∂E
Acl[x, ẋ, ϕ] = 0. (15.333)

The classical approximation to the entire action A[x, ϕ] +A[ϕ] is then

Acl = −EL+
∫ r

0
dr′
√

2M [E + ϕ(r′)]− 1

2
v−1a−D

∫

dDxϕ2(r). (15.334)

This action is now extremized independently in ϕ(r), E. The extremum in ϕ(r) is
obviously given by the algebraic equation

ϕ(r′) =

{

0

MvaDS−1
D r′ 1−D/

√

2M [E + ϕ(r′)]
for

r′ > r,
r′ < r,

(15.335)

which is easily solved. We rewrite it as

E + ϕ(r) = ξ3ϕ−2(r), (15.336)

with the abbreviation

ξ3 = αr−2δ, (15.337)

where

δ ≡ D − 1 > 0 (15.338)

and

α ≡ M

2
v2a2DS−2

D . (15.339)

For large ξ ≫ 1/E, i.e., small r ≪ α2/δE−6/δ, we expand the solution as follows

ϕ(r) = ξ − E

3
+
E2

9
+ . . . . (15.340)

This expansion is reinserted into the classical action (15.334), making it a power
series in E. A further extremization in E yields E = E(L, r). The extremal value of
the action yields an approximate distribution function of a monomer in the closed
polymer (which runs through the origin):

PL(R) ∝ e−Acl(L,R). (15.341)

To see how this happens consider first the noninteracting limit where v = 0.
Then the solution of (15.335) is ϕ(r) ≡ 0, and the classical action (15.334) becomes

Acl = −EL+
√
2MER. (15.342)
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The extremization in E gives

E =
M

2

R2

L2
, (15.343)

yielding the extremal action

Acl =
M

2

R2

L
. (15.344)

The approximate distribution is therefore

PN(R) ∝ e−Acl = e−MR2/2L. (15.345)

The interacting case is now treated in the same way. Using (15.336), the classical
action (15.334) can be written as

Acl = −EL+

√

M

2

∫ R

0
dr′

[

√

ϕ+ E − 1

2
ξ3/2

1

ϕ+ E

]

. (15.346)

By expanding this action in a power series in E [after having inserted (15.340) for
ϕ], we obtain with ǫ(r) ≡ E/ξ = Eα−1/3r2δ/3

Acl = −EL+

√

M

2
α1/6

∫ R

0
dr′r′−δ/3

[

3

2
+ ǫ(r′)− 1

6
ǫ2(r′) + . . .

]

. (15.347)

As long as δ < 3, i.e., for

D < 4, (15.348)

the integral exists and yields an expansion

Acl = −EL+ a0(R) + a1(R)E − 1

2
a2(R)E

2 + . . . , (15.349)

with the coefficients

a0(R) = −M
2

√

9

2
R1−δ/3α1/6 1

δ − 3
,

a1(R) = 3

√

M

2
R1+δ/3α−1/6 1

δ + 3
,

a2(R) =
1

3

√

M

2
R1+δα−1/2 1

δ + 1
. (15.350)

Extremizing Acl in E gives the action

Acl = a0(R) +
1

2a2(R)
[L− a1(R)]

2 + . . . . (15.351)
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The approximate end-to-end distribution function is therefore

PL(R) ≈ N exp

{

−a0(R)−
1

2a2(R)
[L− a1(R)]

2

}

, (15.352)

where N is an appropriate normalization factor. The distribution is peaked around

L = 3

√

M

2
R1+δ/3α−1/6 1

δ + 3
. (15.353)

This shows the most important consequence of the excluded-volume effect: The
average value of R2 grows like

〈R2〉 ≈ α1/(D+2)





D + 2

3

√

2

M
L





6/(D+2)

. (15.354)

Thus we have found a scaling law of the form (15.298) with the critical exponent

ν =
3

D + 2
. (15.355)

The repulsion between the chain elements makes the excluded-volume chain reach
out further into space than a random chain [although less than a completely stiff
chain, which is always reached by the solution (15.354) for D = 1].

The restriction D < 4 in (15.348) is quite important. The value

Duc = 4 (15.356)

is called the upper critical dimension. Above it, the set of all possible intersections
of a random chain has the measure zero and any short-range repulsion becomes
irrelevant. In fact, for D > Duc it is possible to show that the polymer behaves like
a random chain without any excluded-volume effect satisfying 〈R2〉 ∝ L.

15.11 Flory’s Argument

Once we expect a power-like scaling law of the form

〈R2〉 ∝ L2ν , (15.357)

the critical exponent (15.355) can be derived from a very simple dimensional argu-
ment due to Flory. We take the action

A =
∫ L

0
dτ

M

2
ẋ2 − vaD

2

∫ L

0
dτ
∫ L

0
dτ ′ δ(D)(x(τ)− x(τ ′)), (15.358)

with M = D/a, and replace the two terms by their dimensional content, L for the
τ -variable and R- for each x-component. Then

A ∼ M

2
L
R2

L2
− vaD

2

L2

RD
. (15.359)



974 15 Path Integrals in Polymer Physics

Extremizing this expression in R at fixed L gives

R

L
∼ R−D−1L2, (15.360)

implying

R2 ∼ L6/(D+2), (15.361)

and thus the critical exponent (15.355).

15.12 Polymer Field Theory

There exists an alternative approach to finding the power laws caused by the
excluded-volume effects in polymers which is superior to the previous one. It is
based on an intimate relationship of polymer fluctuations with field fluctuations in
a certain somewhat artificial and unphysical limit. This limit happens to be acces-
sible to approximate analytic methods developed in recent years in quantum field
theory. According to Chapter 7, the statistical mechanics of a many-particle ensem-
ble can be described by a single fluctuating field. Each particle in such an ensemble
moves through spacetime along a fluctuating orbit in the same way as a random
chain does in the approximation (15.80) to a polymer in Section 15.6. Thus we can
immediately conclude that ensembles of polymers may also be described by a single
fluctuating field. But how about a single polymer? Is it possible to project out
a single polymer of the ensemble in the field-theoretic description? The answer is
positive. We start with the result of the last section. The end-to-end distribution
of the polymer in the excluded-volume problem is rewritten as an integral over the
fluctuating field ϕ(x):

PL(xb,xa) =
∫

Dϕ e−A[ϕ]P ϕ
L (xb,xa), (15.362)

with an action for the auxiliary ϕ(x) field [see (15.312)]

A[ϕ] = −1

2

∫

dDxdDx′ϕ(x)V −1(x,x′)ϕ(x′), (15.363)

and an end-to-end distribution [see (15.315)]

P ϕ
L (xb,xa) =

∫

Dx exp
{

−
∫ L

0
dτ
[

M

2
ẋ2 + ϕ(x(τ))

]

}

, (15.364)

which satisfies the Schrödinger equation [see (15.316)]

[

∂

∂L
− 1

2M
∇

2 + ϕ(x)

]

P ϕ
L (x,x

′) = δ(3)(x− x′)δ(L). (15.365)
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Since PL and P ϕ
L vanish for L < 0, it is convenient to go over to the Laplace

transforms

Pm2(x,x′) =
1

2M

∫ ∞

0
dLe−Lm

2/2MPL(x,x
′), (15.366)

P ϕ
m2(x,x

′) =
1

2M

∫ ∞

0
dLe−Lm

2/2MP ϕ
L (x,x

′). (15.367)

The latter satisfies the L-independent equation

[−∇
2 +m2 + 2Mϕ(x)]P ϕ

m2(x,x
′) = δ(3)(x− x′). (15.368)

The quantity m2/2M is, of course, just the negative energy variable −E in (15.332):

−E ≡ m2

2M
. (15.369)

The distributions P ϕ
m2(x,x′) describe the probability of a polymer of any length run-

ning from x′ to x, with a Boltzmann-like factor e−Lm
2/2M governing the distribution

of lengths. Thus m2/2M plays the role of a chemical potential.
We now observe that the solution of Eq. (15.368) can be considered as the cor-

relation function of an auxiliary fluctuating complex field ψ(x):

P ϕ
m2(x,x

′) = Gϕ
0 (x,x

′) = 〈ψ∗(x)ψ(x′)〉ϕ
≡

∫ Dψ∗(x)Dψ(x) ψ∗(x)ψ(x′) exp {−A[ψ∗, ψ, ϕ]}
∫ Dψ∗(x)Dψ(x) exp {−A[ψ∗, ψ, ϕ]} , (15.370)

with a field action

A[ψ∗, ψ, ϕ]=
∫

dDx
{

∇ψ∗(x)∇ψ(x) +m2ψ∗(x)ψ(x) + 2Mϕ(x)ψ∗(x)ψ(x)
}

.(15.371)

The second part of Eq. (15.370) defines the expectations 〈. . .〉ψ. In this way, we
express the Laplace-transformed distribution Pm2(xb,xa) in (15.366) in the purely
field-theoretic form

Pm2(x,x′) =
∫

Dϕ exp {−A[ϕ]} 〈ψ∗(x)ψ(x′)〉ϕ

=
∫

Dϕ exp
{

1

2

∫

dDydDy′ϕ(y)V −1(y,y′)ϕ(y′)
}

×
∫ Dψ∗Dψ ψ∗(x)ψ(x′) exp {−A[ψ∗, ψ, ϕ]}

∫ Dψ∗
∫ Dψ exp {−A[ψ∗, ψ, ϕ]} . (15.372)

It involves only a fluctuating field which contains all information on the path fluc-
tuations. The field ψ(x) is, of course, the analog of the second-quantized field in
Chapter 7.

Consider now the probability distribution of a single monomer in a closed poly-
mer chain. Inserting the polymer density function

ρ(R) ≡
∫ L

0
dτδ(D)(R− x(τ)) (15.373)
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into the original path integral for a closed polymer

PL(R) =
∫ L

0
dτ

∫

DDx
∫

Dϕ exp {−AL −A[ϕ]} δ(D)(R− x(τ)), (15.374)

the δ-function splits the path integral into two parts

PL(R) =
∫

Dϕ exp {−A[ϕ]}
∫ L

0
dτP ϕ

L−τ (0,R)P ϕ
τ (R, 0). (15.375)

When going to the Laplace transform, the convolution integral factorizes, yielding

Pm2(R) =
∫

Dϕ(x) exp {−A[ϕ]}P ϕ
m2(0,R)P ϕ

m2(R, 0). (15.376)

With the help of the field-theoretic expression for Pm2(R) in Eq. (15.370), the prod-
uct of the correlation functions can be rewritten as

P ϕ
m2(0,R)P ϕ

m2(0,R) = 〈ψ∗(R)ψ(0)〉ϕ〈ψ∗(0)ψ(R)〉ϕ. (15.377)

We now observe that the field ψ appears only quadratically in the action A[ψ∗, ψ, ϕ].
The product of correlation functions in (15.377) can therefore be viewed as a term
in the Wick expansion (recall Section 3.10) of the four-field correlation function

〈ψ∗(R)ψ(R)ψ∗(0)ψ(0)〉ϕ. (15.378)

This would be equal to the sum of pair contractions

〈ψ∗(R)ψ(R)〉ϕ〈ψ∗(0)ψ(0)〉ϕ + 〈ψ∗(R)ψ(0)〉ϕ〈ψ∗(0)ψ(R)〉ϕ. (15.379)

There are no contributions containing expectations of two ψ or two ψ∗ fields which
could, in general, appear in this expansion. This allows the right-hand side of
(15.377) to be expressed as a difference between (15.378) and the first term of
(15.379):

P ϕ
m2(0,R)P ϕ

m2(0,R) = 〈ψ∗(R)ψ(R)ψ∗(0)ψ(0)〉ϕ − 〈ψ∗(R)ψ(R)〉ϕ〈ψ∗(0)ψ(0)〉ϕ.
(15.380)

The right-hand side only contains correlation functions of a collective field, the
density field [8]

ρ(R) = ψ∗(R)ψ(R), (15.381)

in terms of which

P ϕ
m2(0,R)P ϕ

m2(0,R) = 〈ρ(R)ρ(0)〉ϕ − 〈ρ(R)〉ϕ〈ρ(0)〉ϕ. (15.382)

Now, the right-hand side is the connected correlation function of the density field
ρ(R):

〈ρ(R)ρ(0)〉ϕ,c ≡ 〈ρ(R)ρ(0)〉ϕ − 〈ρ(R)〉ϕ〈ρ(0)〉ϕ. (15.383)
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In Section 3.10 we have shown how to generate all connected correlation func-
tions: The action A[ψ, ψ∗, ϕ] is extended by a source term in the density field ρ(x)

Asource[ψ
∗, ψ,K] = −

∫

dDxK(x)ρ(x) =
∫

dDxK(x)ψ∗(x)ψ(x)), (15.384)

and one considers the partition function

Z[K,ϕ] ≡
∫

DψDψ∗ exp {−A [ψ∗, ψ, ϕ]−Asource[ψ
∗, ψ,K]} . (15.385)

This is the generating functional of all correlation functions of the density field
ρ(R) = ψ∗(R)ψ(R) at a fixed ϕ(x). They are obtained from the functional deriva-
tives

〈ρ(x1) · · · ρ(xn)〉ϕ = Z[K,ϕ]−1 δ

δK(x1)
· · · δ

δK(xn)
Z[K,ϕ]

∣

∣

∣

K=0
.

(15.386)

Recalling Eq. (3.559), the connected correlation functions of ρ(x) are obtained sim-
ilarly from the logarithm of Z[K,ϕ]:

〈ρ(x1) · · ·ρ(xn)〉ϕ,c =
δ

δK(x1)
· · · δ

δK(xn)
logZ[K,ϕ]

∣

∣

∣

K=0
.

(15.387)

For n = 2, the connectedness is seen directly by performing the differentiations
according to the chain rule:

〈ρ(R)ρ(0)〉ϕ,c =
δ

δK(R)

δ

δK(0)
logZ[K,ϕ]

∣

∣

∣

K=0

=
δ

δK(R)
Z−1[K,ϕ]

δ

δK(0)
Z[K,ϕ]

∣

∣

∣

K=0

= 〈ρ(R)ρ(0)〉ϕ − 〈ρ(R)〉ϕ〈ρ(0)〉ϕ. (15.388)

This agrees indeed with (15.383). We can therefore rewrite the product of Laplace-
transformed distributions (15.382) at a fixed ϕ(x) as

P ϕ
m2(0,R)P ϕ

m2(0,R) =
δ

δK(R)

δ

δK(0)
logZ[K,ϕ]

∣

∣

∣

K=0
. (15.389)

The Laplace-transformed monomer distribution (15.376) is then obtained by aver-
aging over ϕ(x), i.e., by the path integral

Pm2(R) =
δ

δK(R)

δ

δK(0)

∫

Dϕ(x) exp {−A[ϕ]} logZ[K,ϕ]
∣

∣

∣

K=0
. (15.390)
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Were it not for the logarithm in front of Z, this would be a standard calculation of
correlation functions within the combined ψ, ϕ field theory whose action is

Atot[ψ
∗, ψ, ϕ] = A[ψ∗, ψ, ϕ] +A[ϕ]

=
∫

dDx
(

∇ψ∗
∇ψ +m2ψ∗ψ + 2Mϕψ∗ψ

)

− 1

2

∫

dDxdDx′ϕ(x)V −1(x,x′)ϕ(x′). (15.391)

To account for the logarithm we introduce a simple mathematical device called the
replica trick [9]. We consider logZ[K,ϕ] in (15.388)–(15.390) as the limit

logZ = lim
n→0

1

n
(Zn − 1) , (15.392)

and observe that the nth power of the generating functional, Zn, can be thought
of as arising from a field theory in which every field ψ occurs n times, i.e., with n
identical replica. Thus we add an extra internal symmetry label α = 1, . . . , n to the
fields ψ(x) and calculate Zn formally as

Zn[K,ϕ] =
∫

Dψ∗
αDψα exp {−A[ψ∗

α, ψα, ϕ]−A[ϕ]−Asource[ψ
∗
α, ψα, K]} ,

(15.393)

with the replica field action

A[ψα, ψ
∗
α, ϕ] =

∫

dDx
(

∇ψ∗
α∇ψα +m2ψ∗

αψα + 2Mϕψ∗
αψα

)

, (15.394)

and the source term

Asource[ψ
∗
α, ψα, K] = −

∫

dDxψ∗
α(x)ψα(x)K(x). (15.395)

A sum is implied over repeated indices α. By construction, the action is symmetric
under the group U(n) of all unitary transformations of the replica fields ψα.

In the partition function (15.393), it is now easy to integrate out the ϕ(x)-
fluctuations. This gives

Zn[K,ϕ] =
∫

Dψ∗
αDψα exp {−An[ψ∗

α, ψα]−Asource[ψ
∗
α, ψα, K]} , (15.396)

with the action

An[ψ∗
α, ψα] =

∫

dDx
(

∇ψ∗
α∇ψα +m2ψ∗

αψα
)

+
1

2
(2M)2

∫

dDxdDx′ψα
∗(x)ψα(x)V (x,x

′)ψβ
∗(x′)ψβ(x

′). (15.397)

It describes a self-interacting field theory with an additional U(n) symmetry.
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In the special case of a local repulsive potential V (x,x′) of Eq. (15.319), the
second term becomes simply

Aint[ψ
∗
α, ψα] =

1

2
(2M)2vaD

∫

dDx [ψα
∗(x)ψα(x)]

2 . (15.398)

Using this action, we can find logZ[K,ϕ] via (15.392) from the functional integral

logZ[K,ϕ] ≡ lim
n→0

1

n

(∫

Dψ∗
αDψα exp {−An[ψ∗

α, ψα]−Asource[ψ
∗
α, ψα, K]} − 1

)

.

(15.399)
This is the generating functional of the Laplace-transformed distribution (15.390)
which we wanted to calculate.

A polymer can run along the same line in two orientations. In the above de-
scription with complex replica fields it was assumed that the two orientations can
be distinguished. If they are indistinguishable, the polymer fields Ψα(x) have to be
taken as real.

Such a field-theoretic description of a fluctuating polymer has an important
advantage over the initial path integral formulation based on the analogy with a
particle orbit. It allows us to establish contact with the well-developed theory of
critical phenomena in field theory. The end-to-end distribution of long polymers
at large L is determined by the small-E regime in Eqs. (15.330)–(15.349), which
corresponds to the small-m2 limit of the system here [see (15.369)]. This is precisely
the regime studied in the quantum field-theoretic approach to critical phenomena
in many-body systems [10, 11]. It can be shown that for D larger than the upper
critical dimension Duc = 4, the behavior for m2 → 0 of all Green functions coincides
with the free-field behavior. For D = Duc, this behavior can be deduced from scale
invariance arguments of the action, using naive dimensional counting arguments.
The fluctuations turn out to cause only logarithmic corrections to the scale-invariant
power laws. One of the main developments in quantum field theory in recent years
was the discovery that the scaling powers for D < Duc can be calculated via an
expansion of all quantities in powers of

ǫ = Duc −D, (15.400)

the so-called ǫ-expansion. The ǫ-expansion for the critical exponent ν which rules
the relation between R2 and the length of a polymer L, 〈R2〉 ∝ L2ν , can be derived
from a real φ4-theory with n replica as follows [12]:

ν−1 = 2 + (n+2)ǫ
n+8

{

−1 − ǫ
2(n+8)2 (13n + 44)

+ ǫ2

8(n+8)4
[3n3 − 452n2 − 2672n − 5312

+ ζ(3)(n + 8) · 96(5n + 22)]

+ ǫ3

32(n+8)6
[3n5 + 398n4 − 12900n3 − 81552n2 − 219968n − 357120

+ ζ(3)(n + 8) · 16(3n4 − 194n3 + 148n2 + 9472n + 19488)

+ ζ(4)(n + 8)3 · 288(5n + 22)
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− ζ(5)(n + 8)2 · 1280(2n2 + 55n + 186)]

+ ǫ4

128(n+8)8 [3n7 − 1198n6 − 27484n5 − 1055344n4

−5242112n3 − 5256704n2 + 6999040n − 626688

− ζ(3)(n + 8) · 16(13n6 − 310n5 + 19004n4 + 102400n3

− 381536n2 − 2792576n − 4240640)

− ζ2(3)(n + 8)2 · 1024(2n4 + 18n3 + 981n2 + 6994n + 11688)

+ ζ(4)(n + 8)3 · 48(3n4 − 194n3 + 148n2 + 9472n + 19488)

+ ζ(5)(n + 8)2 · 256(155n4 + 3026n3 + 989n2 − 66018n − 130608)

− ζ(6)(n + 8)4 · 6400(2n2 + 55n + 186)

+ ζ(7)(n + 8)3 · 56448(14n2 + 189n + 526)]
}

, (15.401)

where ζ(x) is Riemann’s zeta function (2.521). As shown above, the single-polymer
properties must emerge in the limit n→ 0. There, ν−1 has the ǫ-expansion

ν−1 = 2− ǫ

4
− 11

128
ǫ2 + 0.114 425 ǫ3 − 0.287 512 ǫ4 + 0.956 133 ǫ5. (15.402)

This is to be compared with the much simpler result of the last section

ν−1 =
D + 2

3
= 2− ǫ

3
. (15.403)

A term-by-term comparison is meaningless since the field-theoretic ǫ-expansion has
a grave problem: The coefficients of the ǫn-terms grow, for large n, like n!, so that
the series does not converge anywhere! Fortunately, the signs are alternating and
the series can be resummed [13]. A simple first approximation used in ǫ-expansions
is to re-express the series (15.402) as a ratio of two polynomials of roughly equal
degree

ν−1|rat =
2.+ 1.023 606 ǫ− 0.225 661 ǫ2

1.+ 0.636 803 ǫ− 0.011 746 ǫ2 + 0.002 677 ǫ3
, (15.404)

called a Padé approximation. Its Taylor coefficients up to ǫ5 coincide with those of
the initial series (15.402). It can be shown that this approximation would converge
with increasing orders in ǫ towards the exact function represented by the divergent
series. In Fig. 15.7, we plot the three functions (15.403), (15.402), and (15.404), the
last one giving the most reliable approximation

ν−1 ≈ 0.585. (15.405)

Note that the simple Flory curve lies very close to the Padé curve whose calculation
requires a great amount of work.

There exists a general scaling relation between the exponent ν and another ex-
ponent appearing in the total number of polymer configurations of length L which
behaves like

S = Lα−2. (15.406)
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Figure 15.7 Comparison of critical exponent ν in Flory approximation (dashed line)

with result of divergent ǫ-expansion obtained from quantum field theory (dotted line) and

its Padé resummation (solid line). The value of the latter gives the best approximation

ν ≈ 0.585 at ǫ = 1.

The relation is

α = 2−Dν. (15.407)

Direct enumeration studies of random chains on a computer suggest a number

α ∼ 1

4
, (15.408)

corresponding to ν = 7/12 ≈ 0.583, very close to (15.405).
The Flory estimate for the exponent α reads, incidentally,

α =
4−D

D + 2
. (15.409)

In three dimensions, this yields α = 1/5, not too far from (15.408).
The discrepancies arise from inaccuracies in both treatments. In the first treat-

ment, they are due to the use of the saddle point approximation and the fact that
the δ-function does not completely rule out the crossing of the lines, as required by
the true self-avoidance of the polymer. The field theoretic ǫ-expansion, on the other
hand, which in principle can give arbitrarily accurate results, has the problem of
being divergent for any ǫ. Resummation procedures are needed and the order of the
expansion must be quite large (≈ ǫ5) to extract reliable numbers.

15.13 Fermi Fields for Self-Avoiding Lines

There exists another way of enforcing the self-avoiding property of random lines
[14]. It is based on the observation that for a polymer field theory with n fluctuating
complex fields Ψα and a U(n)-symmetric fourth-order self-interaction as in the action
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(15.397), the symmetric incorporation of a set ofm anticommuting Grassmann fields
removes the effect of m of the Bose fields. For free fields this observation is trivial
since the functional determinant of Bose and Fermi fields are inverse to one-another.
In the presence of a fourth-order self-interaction, where the replica action has the
form (15.397), we can always go back, by a Hubbard-Stratonovich transformation,
to the action involving the auxiliary field ϕ(x) in the exponent of (15.393). This
exponent is purely quadratic in the replica field, and each path integral over a Fermi
field cancels a functional determinant coming from the Bose field.

This boson-destructive effect of fermions allows us to study theories with a neg-
ative number of replica. We simply have to use more Fermi than Bose fields. More-
over, we may conclude that a theory with n = −2 has necessarily trivial critical
exponents. From the above arguments it is equivalent to a single complex Fermi
field theory with fourth-order self-interaction. However, for anticommuting Grass-
mann fields, such an interaction vanishes:

(θ†θ)2 = [(θ1 − iθ2)(θ1 + iθ2)]
2 = [2iθ1θ2]

2 = 0. (15.410)

Looking back at the ǫ-expansion for the critical exponent ν in Eq. (15.401) we can
verify that up to the power ǫ5 all powers in ǫ do indeed vanish and ν takes the
mean-field value 1/2.

Appendix 15A Basic Integrals

∆(0, 0) = ∆(L,L) = L/3, (15A.1)

I1 =

∫ L

0

ds∆(s, s) = L2/6, (15A.2)

I2 =

∫ L

0

ds ∆̇ 2(s, s) = L/12, (15A.3)

I3 =

∫ L

0

ds∆2(s, s) = L3/30, (15A.4)

I4 =

∫ L

0

ds∆(s, s) ∆̇ 2(s, s) = 7L2/360, (15A.5)

I5 =

∫ L

0

ds

∫ L

0

ds′ ∆2(s, s′) = L4/90, (15A.6)

∆(0, L) = ∆(L, 0) = −L/6, (15A.7)

I6 =

∫ L

0

ds
[

∆2(s, 0) + ∆2(s, L)
]

= 2L3/45, (15A.8)

I7 =

∫ L

0

ds

∫ L

0

ds′ ∆(s, s) ∆̇ 2(s, s′) = L3/45, (15A.9)

I8 =

∫ L

0

ds

∫ L

0

ds′ ∆̇ (s, s)∆(s, s′) ∆̇ (s, s′) = L3/180, (15A.10)

I9 =

∫ L

0

ds∆(s, s)
[

∆̇ 2(s, 0) + ∆̇ 2(s, L)
]

= 11L2/90, (15A.11)

I10 =

∫ L

0

ds ∆̇ (s, s) [∆(s, 0) ∆̇ (s, 0) + ∆(s, L) ∆̇ (s, L)] = 17L2/360, (15A.12)

H. Kleinert, PATH INTEGRALS



Appendix 15B Loop Integrals 983

∆̇ (0, 0) = − ∆̇ (L,L) = −1/2, (15A.13)

I11 =

∫ L

0

ds

∫ L

0

ds′ ∆(s, s) ∆̇ (s, s′) ∆̇ (s′, s′) = L3/360, (15A.14)

I12 =

∫ L

0

ds

∫ L

0

ds′ ∆(s, s′) ∆̇ 2(s, s′) = L3/90. (15A.15)

Appendix 15B Loop Integrals

We list here the Feynman integrals evaluated with dimensional regularization rules whenever nec-
essary. Depending whether they occur in the calculation of the moments from the expectations
(15.261)–(15.261) of from the expectations (15.283)–(15.285) we encounter the integrals depending
on ρn(s) ≡ δn + [δ(s) + δ(s− L)] /2 with δn = δ(0) − σn/L or ρk(s) = δk + [δ(s) + δ(s− L)] /2
with δk = δ(0) − ik/L:

H
n(k)
1 =

∫ L

0

ds

∫ L

0

ds′ρn(k)(s)ρn(k)(s
′)∆2(s, s′),

= δ2n(k) I5 + δn(k) I6 +
1

2

[

∆2(0, 0) + ∆2(0, L)
]

, (15B.1)

H
n(k)
2 =

∫ L

0

ds

∫ L

0

ds′ρn(k)(s
′)∆(s, s) ∆̇ 2(s, s′) = δn(k) I7 +

I9
2
, (15B.2)

H
n(k)
3 =

∫ L

0

ds

∫ L

0

ds′ρn(k)(s
′) ∆̇ d(s, s)∆2(s, s′) =

[

δn(k) I5 +
I6
2

]

δ(0), (15B.3)

H
n(k)
4 =

∫ L

0

ds

∫ L

0

ds′ρn(k)(s
′) ∆̇ (s, s) ∆̇ (s, s′)∆(s, s′) = δn(k) I8 +

I10
2

. (15B.4)

When calculating 〈Rn 〉, we need to insert here δn = δ(0) − σn/L, thus obtaining

Hn
1 =

L4

90
δ2(0)+

L3

45
(3−D−n) δ(0)+

L2

360

[

(45−24D+4D2)−4n(6−2D−n)
]

, (15B.5)

Hn
2 =

L3

45
δ(0) +

L2

180
(15−4D−4n), (15B.6)

Hn
3 =

L4

90
δ2(0)+

L3

90
(3−D−n)δ(0), (15B.7)

Hn
4 =

L3

180
δ(0)+

L2

720
(21−4D−4n) , (15B.8)

where the values for n = 0 correspond to the partition function Z = 〈R0 〉. The substitution
δk = δ(0) − ik/L required for the calculation of P (k;L) yields

Hk
1 =

L4

90
δ2(0) +

L3

45
[2 + (−ik)] δ(0) +

L2

90
(−ik) [4 + (−ik)] +

5L2

72
, (15B.9)

Hk
2 =

L3

45
δ(0) +

L2

180
[11 + 4(−ik)] , (15B.10)

Hk
3 =

L4

90
δ2(0) +

L3

90
[2 + (−ik)] δ(0), (15B.11)

Hk
4 =

L3

180
δ(0) +

L2

720
[17 + 4(−ik)] . (15B.12)

The other loop integrals are

H5 =

∫ L

0

ds

∫ L

0

ds′∆(s, s) ∆̇ 2(s, s′) ∆̇ d(s′, s′) = δ(0)I7 =
L3

45
δ(0), (15B.13)
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H6 =

∫ L

0

ds

∫ L

0

ds′ ∆̇ d(s, s)∆2(s, s′) ∆̇ d(s′, s′) = δ2(0)I5 =
L4

90
δ2(0), (15B.14)

H7 =

∫ L

0

ds

∫ L

0

ds′ ∆̇ (s, s) ∆̇ (s, s′)∆(s, s′) ∆̇ d(s′, s′) = δ(0)I8 =
L3

180
δ(0), (15B.15)

H8 =

∫ L

0

ds

∫ L

0

ds′ ∆̇ (s, s) ∆̇ (s, s′) ∆̇ (s, s′) ∆̇ (s′, s′) = − L2

720
, (15B.16)

H9 =

∫ L

0

ds

∫ L

0

ds′ ∆̇ (s, s)∆(s, s′) ∆̇ d(s, s′) ∆̇ (s′, s′) =
I10
2

− I8
L

−H8 =
7L2

360
, (15B.17)

H10 =

∫ L

0

ds

∫ L

0

ds′∆(s, s) ∆̇ (s, s′) ∆̇ d(s, s′) ∆̇ (s′, s′) =
I9
4

− I7
2L

=
7L2

360
, (15B.18)

H11 =

∫ L

0

ds

∫ L

0

ds′∆(s, s) ∆̇ d2(s, s′)∆(s′, s′) = δ(0)I3 + (
I1
L

)2 − 2(I3 − I11)

L
− 2I4,

+ 2
[

∆2(L,L) ∆̇ (L,L) − ∆2(0, 0) ∆̇ (0, 0)
]

− 2H10 =
L3

30
δ(0) +

L2

9
, (15B.19)

H12 =

∫ L

0

ds

∫ L

0

ds′ ∆̇ 2(s, s′) ∆̇ 2(s, s′) =
L2

90
, (15B.20)

H13 =

∫ L

0

ds

∫ L

0

ds′∆(s, s′) ∆̇ (s, s′) ∆̇ (s, s′) ∆̇ d(s′, s) =
I4
2

− I12
2L

− H12

2
= − L2

720
, (15B.21)

H14 =

∫ L

0

ds

∫ L

0

ds′∆2(s, s′) ∆̇ d2(s, s′) = δ(0)I3 −
2(I3 − I12)

L
− 2I4 +

I5
L2

,

+ 2
[

∆2(L,L) ∆̇ (L,L) − ∆2(0, 0) ∆̇ (0, 0)
]

− 2H13 =
L3

30
δ(0) +

11L2

72
. (15B.22)

Appendix 15C Integrals Involving Modified Green Func-
tion

To demonstrate the translational invariance of results showed in the main text we use the slightly
modified Green function

∆(s, s′) =
L

3
a− | s− s′ |

2
− (s + s′)

2
+

(s2 + s′2)

2L
, (15C.1)

containing an arbitrary constant a. The following combination yields the standard Feynman prop-
agator for the infinite interval [compare (3.249)]

∆F(s, s′) = ∆F(s−s′) = ∆(s, s′)− 1

2
∆(s, s)− 1

2
∆(s′, s′) = −1

2
(s−s′). (15C.2)

Other useful relations fulfilled by the Green function (15C.1) are, assuming s ≥ s′,

D1(s, s
′) = ∆2(s, s′)−∆(s, s)∆(s′, s′) = (s−s′)

[

s(L−s)

L
+

(s−s′)(s+s′)2

4L2
−La

3

]

,

(15C.3)

D2(s, s
′) = ∆(s, s)−∆(s′, s′) =

(s−s′)(s+s′−L)

L
. (15C.4)

The following integrals are needed:

J1(s, s
′) =

∫ L

0

dt∆(t, t) ∆̇ (t, s) ∆̇ (t, s′) =
(s4+s′4)

4L2
− (2s3+s′3)

3L
,

+
((a+3)s2+as′2)

6
− sa

3
L+

(20a−9)

180
L2, (15C.5)
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J2(s, s
′) =

∫ L

0

dt ∆̇ (t, t)∆(t, s) ∆̇ (t, s′) =
(−2s4+6s2s′2+3s′4)

24L2
,

+
(3s3−3s2s′−6ss′2−s′3)

12L
− (5s2−12ss′−4as′2)

24
− s′a

6
L+

(20a−3)

720
L2,

(15C.6)

J3(s, s
′) =

∫ L

0

dt∆(t, s)∆(t, s′) =−(s4+6s2s′2+s′4)

60L
+

(s2+3s′2)s

6
,

− (s2+s′2)

6
L+

(5a2−10a+6)

45
L3. (15C.7)

These are the building blocks for other relations:

〈f2(q(s), q(s′))〉 =
(d−1)

2

[

D1(s, s
′)− (d+1)

4
D2

2(s, s
′)

]

=−(d−1)(s−s′)

4

×
[

2La

3
+

(d−3)s−(d+1)s′

2
− (d−1)s2−(d+1)s′2

L
+
d(s−s′)(s+s′)2

2L2

]

, (15C.8)

and

K1(s, s
′) = J1(s, s

′)− 1

2
J1(s, s)−

1

2
J1(s

′, s′),

= − (s−s′)

[

La

6
− (s+s′)

4
+

(s2+ss′+s′2)

6L

]

, (15C.9)

K2(s, s
′) = J2(s, s

′)+J2(s
′, s)−J2(s, s)−J2(s

′, s′),

= − (s−s′)2
[

1

4
− (5s+7s′)

12L
+

(s+s′)2

4L2

]

, (15C.10)

K3(s, s
′) = J3(s, s

′)− 1

2
J3(s, s)−

1

2
J3(s

′, s′) =−(s−s′)2
[

(s+2s′)

6
− (s+s′)2

8L

]

, (15C.11)

K4(s, s
′) = ∆(0, s)∆(0, s′)− 1

2
∆2(0, s)− 1

2
∆2(0, s′) =− (s−s′)2(s+s′−2L)2

8L2
, (15C.12)

K5(s, s
′) = ∆(L, s)∆(L, s′)− 1

2
∆2(L, s)− 1

2
∆2(L, s′) =− (s2−s′2)2

8L2
. (15C.13)
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Take any shape but that, and my firm nerves

shall never tremble
William Shakespeare (1564–1616), Macbeth

16

Polymers and Particle Orbits
in Multiply Connected Spaces

In the previous chapter, the binary interaction potential between the polymer ele-
ments was approximated by a δ-function. Quantum-mechanically, this potential is
not completely impenetrable. Correspondingly, a polymer with such an interaction
has a finite probability of self-intersections. This is only a rough approximation to
the situation in nature where the atomic potential is of the hard-core type and self-
intersections are extremely rare. In a grand-canonical ensemble, a polymer is often
entangled with itself and with others. It can be disentangled only if it has open
ends. Macroscopic fluctuations are required to achieve this in the form of worm-like
creeping processes. Compared with local fluctuations, these take a very long time.
For closed polymers, disentangling is impossible without breaking bonds at the cost
of large activation energies. In order to study such entanglement phenomena in their
purest form, it is useful to idealize the strongly repulsive interaction potential, as in
Section 15.10, to a topological constraint of the type discussed in Chapter 6.

Entanglement phenomena play an important role also in quantum mechanics.
Fluctuating particle orbits may get entangled with magnetic flux tubes or with
other particle orbits. In fact, the statistical properties of Bose and Fermi particles
may be viewed as entanglement phenomena, as will be shown in this chapter.

16.1 Simple Model for Entangled Polymers

Consider the simplest model system with a topological constraint producing entan-
glement phenomena: a fixed polymer stretched out along the z-axis and a fluctuat-
ing second polymer. Arbitrary entanglements with the straight polymer may occur.
The possible entanglements of the fluctuating polymer with itself are ignored, for
simplicity. Let us study the end-to-end distribution of the fluctuating second poly-
mer. At first we neglect the third dimension, which can be trivially included at
a later stage, imagining the movement to be confined entirely to the xy-plane. If
the polymer along the z-axis is infinitely thin, the total end-to-end distribution of

1096
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the fluctuating polymer in the plane is certainly independent of the presence of the
central polymer. In the random-chain approximation it reads for not too large R

PN(xb − xa) =

√

2

2πLa

2

e−(xb−xa)2/2La, (16.1)

where x is a planar vector.
In the presence of the central polymer, an interesting new problem arises: How

does the end-to-end distribution decompose with respect to the number of times by
which the fluctuating polymer is wrapped around the central polymer? To define
this number, we choose an arbitrary reference line from the origin to infinity, say the
x-axis. For each path from xa to xb, we count how often it crosses this line, including
a minus sign for opposite directions of the crossings. In this way, each path receives
an integer-valued label n which depends on the position of the reference line.

A property independent of the choice of the reference line exists for the pairs
of paths with fixed ends. The difference path is closed. The number n of times by
which a closed path encircles the origin is a topological invariant called the winding
number . Let us find the decomposition of the probability distribution of a closed
polymer PN(xb − xa) with respect to n:

PN (xb − xa) =
∞
∑

n=−∞

P n
N (xb,xa). (16.2)

The topological constraint destroys the translational invariance of the total dis-
tribution on the left-hand side, so that the different fixed-n distributions on the
right-hand side depend separately on both xb and xa.

In a path integral it is easy to keep track of the number of crossings n. The
angular difference between initial and final points xb and xa is given by the integral

ϕb − ϕa =
∫ tb

ta
dt ϕ̇(t) =

∫ tb

ta
dt
x1ẋ2 − x2ẋ1
x21 + x22

=
∫ xb

xa

x× dx

x2
. (16.3)

Given two paths C1 and C2 connecting xa and xb, this integral differs by an integer
multiple of 2π. The winding number is therefore given by the contour integral over
the closed difference path C:

n =
1

2π

∮

C

x× dx

x2
. (16.4)

In order to decompose the end-to-end distribution (16.2) with respect to the
winding number, we recall the angular decomposition of the imaginary-time evolu-
tion amplitude in Eqs. (8.9) and (8.17) of a free particle in two dimensions

PL(xb − xa) =
∑

m

1√
rbra

(rbτb|raτa)m
1

2π
eim(ϕb−ϕa), (16.5)
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with the radial amplitude

(rbτb|raτa)m = 2

√
rbra
La

e−(r2
b
+r2a)/LaIm

(

2
rbra
La

)

. (16.6)

We have inserted the polymer parameters following the rules of Section 15.6, replac-
ing M/2h̄(τb − τa) by 1/La, and using the label L = Na in PL rather than N , as in
Eq. (15.301).

We now recall that according to Section 6.1, an angular path integral consisting
of a product of integrals

N
∏

n=1

∫ π

−π

dϕn
2π

, (16.7)

whose conjugate momenta are integer-valued, can be converted into a product of
ordinary integrals

N
∏

n=1

∫ ∞

−∞

dϕn
2π

, (16.8)

whose conjugate momenta are continuous. These become independent of the time
slice n by momentum conservation, and the common momentum is eventually re-
stricted to its proper integer values by a final sum over an integer number n occurring
in the Poisson formula [see (6.9)]

∑

n

eik(ϕb+2πn−ϕa) =
∞
∑

m=−∞

δ(k −m)eim(ϕb−ϕa). (16.9)

Obviously, the number n on the left-hand side is precisely the winding number by
which we want to sort the end-to-end distribution. The desired restricted probability
P n
L (xb,xa) for a given winding number n is therefore obtained by converting the sum

over m in Eq. (16.5) into an integral over µ and another sum over n as in Eq. (1.205),
and by omitting the sum over n. The result is:

P n
L (xb,xa) =

2

La

∫ ∞

−∞
dµe−(r2

b
+r2a)/LaI|µ|

(

2
rbra
La

)

1

2π
eiµ(ϕb−ϕa+2πn). (16.10)

From this we find the desired probability of a closed polymer running through a
point x with various winding numbers n around the central polymer:

P n
L (x,x) =

2

La

∫ ∞

−∞
dµe−2r2/LaI|µ|

(

2
r2

La

)

1

2π
ei2πµn. (16.11)

Let us also calculate the partition function of a closed polymer with a given
winding number n. To make the partition function finite, we change the system by
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adding a harmonic oscillator potential centered at the origin.1 If ω is measured in
units 1/length, the above probability becomes

P n
L (x,x) =

2

a

ω

sinhωL

∫ ∞

−∞
dµe−2(r2/a)ω cothωLI|µ|

(

2

a

r2ω

sinhωL

)

1

2π
ei2πµn. (16.12)

This can be integrated over the entire space using the formula (2.475). The result
is

P n
L ≡

∫

d2xP n
L (x,x) =

1

2 sinhωL

∫ ∞

−∞
dµe−|µ|ωLe2πiµn. (16.13)

To check this formula, we sum both sides over all n. Then the integral over µ is
reduced, via Poisson’s formula, to a sum over integers µ = m = 0,±1,±2, . . . , and
we find

PL ≡
∫

d2xPL(x,x) =
∞
∑

n=−∞

P n
L

=
1

2 sinhωL

(

2

1− e−ωL
− 1

)

=
1

[2 sinh(ωL/2)]2
. (16.14)

As we should have expected, this is the partition function of the two-dimensional
harmonic oscillator.

To find the contribution of the various winding numbers, we perform the integral
over µ and obtain

P n
L =

ωL

sinhωL

1

4π2n2 + ω2L2
. (16.15)

The right-hand factor is recognized as a term arising in the expansion

1

2ωL
coth(ωL/2) =

∞
∑

n=−∞

1

4π2n2 + (ωL)2

=
1

L2

∞
∑

n=−∞

1

ω2
n + ω2

. (16.16)

The quantities ωn ≡ 2πn/L are the polymer analogs of the Matsubara frequencies.
Thus we may write

P n
L = PL · αn, (16.17)

where αn is the relative probability of finding the winding number n (with the
normalization Σnαn = 1),

αn =
1

ω2
n + ω2

[

∞
∑

n=−∞

1

ω2
n + ω2

]−1

=
1

L2

1

ω2
n + ω2

[

1

2ωL
coth

ωL

2

]−1

. (16.18)

1Alternatively, we may add a magnetic field with the Landau frequency ω = −eB/Mc, as done
in (16.33). Then the amplitude contains ω/2 instead of ω, and an extra factor emωL/2.
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16.2 Entangled Fluctuating Particle Orbit:
Aharonov-Bohm Effect

The entanglement of a fluctuating polymer around a straight central polymer has an
interesting quantum-mechanical counterpart known as the Aharonov-Bohm effect .
Consider a free nonrelativistic charged particle moving through a space containing
an infinitely thin tube of finite magnetic flux along the z-direction:

B3 =
g

2π
ǫ3jk∂j∂kϕ = g δ(2)(x⊥), (16.19)

where x⊥ is the transverse vector x⊥ ≡ (x1, x2). Let us study the associated path
integral. The magnetic interaction is given by [recall Eq. (2.635)]

Amag =
e

c

∫ tb

ta
dt ẋ ·A, (16.20)

where e is the charge and A the vector potential. The flux tube (16.19) is obtained
from the components in the xy-plane.

Ai =
g

2π
∂iϕ, (i = 1, 2), (16.21)

where ϕ is the azimuthal angle around the tube:

ϕ(x) ≡ arctan(x2/x1). (16.22)

Note that the derivatives in front of ϕ in (16.19) commute everywhere, except at
the origin where Stokes’ theorem yields

∫

d2x (∂1∂2 − ∂2∂1)ϕ =
∮

dϕ = 2π. (16.23)

The total magnetic flux through the tube is defined by the integral

Φ =
∫

d2xB3. (16.24)

Inserting (16.19) we see that the total flux is equal to g:

Φ = g. (16.25)

With the vector potentoal (16.21), the interaction (16.20) takes the form

Amag = −h̄µ0

∫ tb

ta
dt ϕ̇, (16.26)

where µ0 is the dimensionless number

µ0 ≡ − eg

2πh̄c
. (16.27)
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The minus sign is a matter of convention.
Since the particle orbits are present at all times, their worldlines in spacetime

can be considered as being closed at infinity, and the integral

n =
1

2π

∫ tb

ta
dt ϕ̇ (16.28)

is the topological invariant (16.4) with integer values of the winding number n. The
magnetic interaction (16.26) is therefore a purely topological one, its value being

Amag = −h̄µ0 2πn. (16.29)

After adding this to the action of a free particle in the radial decomposition (8.9)
of the quantum-mechanical path integral,we rewrite the sum over the azimuthal
quantum numbers m via Poisson’s summation formula as in (16.10), and obtain

(xbτb|xaτa) =
∫ ∞

−∞
dµ

1√
rbra

(rbτb|raτa)µ (16.30)

×
∞
∑

n=−∞

1

2π
ei(µ−µ0)(ϕb+2πn−ϕa).

Since the winding number n is often not easy to measure experimentally, let us
extract observable consequences which are independent of n. The sum over all n
forces µ to be equal to µ0 modulo an arbitrary integer number m = 0,±1,±2, . . . .
The result is

(xbτb|xaτa) =
∞
∑

m=−∞

1√
rbra

(rbτb|raτa)m+µ0

1

2π
eim(ϕb−ϕa), (16.31)

with the radial amplitude

(rbτb|raτa)m+µ0 =
√
rbra

M

h̄

1

(τb − τa)
exp

{

−M
2h̄

r2b + r2a
τb − τa

}

I|m+µ0|

(

M

h̄

rbra
τb − τa

)

.(16.32)

For the sake of generality, we allow for the presence of a homogeneous magnetic field
B whose Landau frequency is ω = −eB/Mc. In analogy with the parameter µ0 in
(16.27), it is defined with a minus sign. Using the radial amplitude (9.105), we see
that (16.32) is simply generalized to

(rbτb|raτa)m+µ0 =
√
rbra

Mω

2h̄η

η

sinh η
exp

[

−M
2h̄

ω

2
coth η(r2b + r2a)

]

× I|m+µ0|

(

Mωrbra
2h̄ sinh η

)

e(m+µ0)η, (16.33)

where η ≡ ω(τb − τa)/2.
At this point we can make an interesting observation: If µ0 is an integer number,

i.e., if

eg

2πh̄c
= integer, (16.34)
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the quantum-mechanical particle distribution function (x tb|x ta) in (16.31) becomes
independent of the magnetic flux tube along the z-axis. The condition implies that
the magnetic flux is an integer multiple of the fundamental flux quantum

Φ0 ≡ g0 ≡
2πh̄c

e
=
hc

e
. (16.35)

We recognize this infinitely thin tube as a Dirac string . Such undetectable strings
were used in Sections 8.12, Appendix 10A.3, and Section 14.6 to import the magnetic
flux of a magnetic monopole from infinity to a certain point where the magnetic
field lines emerge radially. In Appendix 10A.3 we have made the string invisible
mathematically imposing monopole gauge invariance. The present discussion shows
explicitly that the flux quantization makes Dirac strings indeed undetectable by any
charged particle. This observation inspired Dirac his speculation on the existence
of magnetic monopoles.

In low-temperature physics, a quantization of magnetic flux is observable in type-
II superconductors. Superconductors are perfect diamagnets which expel magnetic
fields. Those of type II have the property that above a certain critical external field
called Hc1, the expulsion is not perfect but they admit quantized magnetic tubes
of flux Φ0 (Shubnikov phase). For increasing fields, there are more and more such
flux tubes. They are squeezed together and can form a periodically arranged bundle.
When cut across in the xy-plane, the bundle looks like a hexagonal planar flux lattice
[4]. If the central magnetic flux tube in (16.19) carries an amount of flux that is not
an integer multiple of Φ0, the amplitude of particles passing the tube displays an
interesting interference pattern. This was initially a surprise since the space is free
of magnetic fields. To calculate this pattern we consider the fixed-energy amplitude
of a free particle in two dimensions (9.12), decomposed into partial waves via the
addition theorem (9.14) for Bessel functions as in (9.15):

(xb|xa)E = −2iM

h̄

∞
∑

m=−∞

Im(κr<)Km(κr>)
1

2π
eim(ϕb−ϕa). (16.36)

Comparing this with (16.30) and repeating the arguments leading to (16.31), (16.32),
we can immediately write down the fixed-energy amplitude in the presence of a flux
Φ0:

(xb|xa)E = −2iM

h̄

∞
∑

m=−∞

I|m+µ0|(κr<)K|m+µ0|(κr>)
1

2π
eim(ϕb−ϕa). (16.37)

The wave functions are now easily extracted. In the complex E-plane, the right-
hand side has a discontinuity across the positive real axis. By going through the
same steps as in (9.15)–(9.22), we derive for the discontinuity

∫ ∞

−∞

dE

2πh̄
disc(xb|xa)E =

∞
∑

m=−∞

∫ ∞

0
dkkJ|m+µ0|(krb)J|m+µ0|(kra)

1

2π
eim(ϕb−ϕb). (16.38)
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The integration measure
∫

(dE/2πh̄)(2πM/h̄) has been replaced by
∫∞
0 dkk according

to Eq. (9.23).
In the absence of the flux tube, the amplitude (16.38) reduces to that of a free

particle, which has the decomposition

∫ ∞

−∞

dE

2πh̄
disc(xb|xa)E =

∫

d2k

(2π)2
eik(xb−xa) =

1

2π

∫ ∞

0
dkkJ0(k|xb − xa|)

=
∞
∑

m=−∞

∫ ∞

0
dkkJm(krb)Jm(kra)

1

2π
eim(ϕb−ϕa). (16.39)

If a flux tube is present, a beam of incoming charged particles is deflected even
though the space around the z-axis contains no magnetic field. Let us calculate the
scattering amplitude and the ensuing cross section from the fixed-energy amplitude
(16.37). Recall the results of the quantum-mechanical scattering theory due to
Lippmann and Schwinger. In this theory one studies the effect of an interaction
upon an incoming free-particle state ϕk of wave vector k. The result is the scattering
state ψk obtained from the Lippmann-Schwinger integral equation

ψk = ϕk +
1

E − Ĥ0 + iη
V̂ ψk

= ϕk −
i

h̄
R̂(E) V̂ ϕk, (16.40)

where E is the energy of the incoming particle, V̂ the potential, and R̂(E) the
resolvent operator (1.319). The scattering states ψk are solutions of the Schrödinger
equation

Ĥψk = (Ĥ0 + V̂ )ψk = Eψk. (16.41)

In x-space, the Lippmann-Schwinger equation reads

ψk(x) = ϕk(x)−
i

h̄

∫

dDx′ (x|x′)EV (x′)ϕk(x
′). (16.42)

The first term describes the impinging particles, the second the scattered ones. For
the scattering amplitude, only the large-x behavior of the second term matters. One
usually normalizes ϕk(x) to e

ikx and factorizes the second term asymptotically into
a product of an outgoing spherical wave times a scattering amplitude. In three
dimensions, the asymptotic behavior far away from the scattering center is

ψk(x)
|x|→∞

−−−→ eikx +
ei|k||x|

|x| f(θ, ϕ) + . . . , (16.43)

where θ and ϕ are the scattering angles of the outgoing beam and f is the scattering
amplitude. Its square gives directly the differential cross section

dσ

dΩ
= |f(θ, ϕ)|2. (16.44)
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In two dimensions, the corresponding splitting is

ψk(x)
|x|→∞

−−−→ eikx +
ei|k||x|
√

|x|
f(ϕ) + . . . . (16.45)

The scattering amplitude f(ϕ) which depends only on the azimuthal angle ϕ =
arctan(x2/x1) yields the differential cross section

dσ

dϕ
= |f(ϕ)|2. (16.46)

To calculate f(ϕ), we observe that the most general solution Ψ(x) of the
Schrödinger equation (16.41) is obtained by forming the convolution integral of the
discontinuity of the resolvent with an arbitrary wave function φ(x):

ψ(x) =
∫

dDx′ disc(x|x′)E φ(x′). (16.47)

Using (16.38), this becomes some linear combination of wave functions J|m+µ0|(kr)

ψ(x) =
∞
∑

m=−∞

amJ|m+µ0|(kr)e
imϕ, (16.48)

which certainly satisfies the Schrödinger equation (16.41). The coefficients am have
to be chosen to satisfy the scattering boundary condition at spatial infinity. Suppose
that the incident particles carry a wave vector k = (−k, 0). In the incoming region
x→ ∞, they are described by a wave function

lim
x→∞

ψ(x) = e−ikxe−iµ0ϕ. (16.49)

The extra phase factor is necessary for the correct wave vector since in the presence
of the gauge field

eAi = −h̄cµ0∂iϕ, (16.50)

the physical momentum p = h̄k is not given by the usual derivative operator −ih̄∇
but by the gauge-invariant momentum operator

P̂ = −ih̄∇− e

c
A = −ih̄(∇+ iµ0∇ϕ). (16.51)

The corresponding incident gauge-invariant particle current is

j(x) = −i h̄
2M

ψ†
↔

∇ ψ(x)− e

Mc
A(x)ψ†ψ(x). (16.52)

We demonstrate below that the correct choice for the coefficients am is

am = (−i)|m+µ0|, (16.53)
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leading to the scattering amplitude

f(ϕ) =
1√
2π
e−iπ/4 sin πµ0

e−iϕ/2

cos(ϕ/2)
, (16.54)

i.e., to the cross section

dσ

dϕ
=

1

2π
sin2 πµ0

1

cos2(ϕ/2)
. (16.55)

It has a strong peak near the forward direction ϕ ≈ π. For µ0= integer, there is no
scattering at all and the flux tube becomes an invisible Dirac string.

To derive (16.53) and (16.54) we may assume that µ0 ∈ (0, 1). Otherwise, we
could simply shift the sum over m in (16.37) by an integer ∆m, and this would
merely produce an overall factor ei∆m(ϕb−ϕa) in disc(xb|xa)E. This would wind up
as a factor ei∆mϕ in ψ(x). For µ0 ∈ (0, 1), we split the wave function (16.48) into
three parts:

ψk = ψ(1) + ψ(2) + ψ(3). (16.56)

The first collects the terms with positive m,

ψ(1) =
∞
∑

m=1

(−i)m+µ0Jm+µ0e
imϕ, (16.57)

the second those with negative m,

ψ(2) =
−1
∑

m=−∞

(−i)m+µ0J|m+µ0|e
imϕ

=
∞
∑

m=1

(−i)m−µ0Jm−µ0e
−imϕ, (16.58)

and the third contains only the term m = 0,

ψ(3) = (−i)|µ0|J|µ0|. (16.59)

Obviously, ψ(2) may be obtained from ψ(1) via the identity

ψ(2)(r, ϕ, µ0) = ψ(1)(r,−ϕ,−µ0). (16.60)

Thus, the wave function (16.56) requires only a calculation of ψ(1).
As a first step we observe that the sum (16.57) has an integral representation

ψ(1) =
1

2
(−i)µ0e−iρ cosϕ I(ρ), (16.61)

with I(ρ) being the integral

I(ρ) ≡
∫ ρ

0
dρ′eiρ

′ cosϕ
(

J1+µ0 − iJµ0e
iϕ
)

. (16.62)
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We have set kr ≡ ρ such that kx ≡ ρ cosϕ. To prove the integral representation,
we differentiate (16.61) and find the differential equation

∂ρψ
(1) = −i cosϕ ψ(1) +

1

2
(−i)µ0

(

J1+µ0 − iJµ0e
iϕ
)

, (16.63)

with all functions depending only on kr ≡ ρ. Precisely the same equation is obeyed
by the sum (16.57):

∂ρψ
(1) =

∞
∑

m=1

(−i)m+µ0∂ρJm+µ0e
imϕ

=
∞
∑

m=1

(−i)m+µ0
1

2
(Jm+µ0−1 − Jm+µ0+1) e

imϕ (16.64)

= − i

2

∞
∑

m=1

(−i)m+µ0Jm+µ0e
imϕ

(

eiϕ + e−iϕ
)

+
1

2
(−i)µ0

(

J1+µ0 − iJµ0e
ie
)

.

Thus, the two expressions (16.57) and (16.61) for ψ(1) can differ at most by an
integration constant. However, the constant must be zero since both expressions
vanish at ρ = 0. This proves the integral representation (16.61).

In order to derive the scattering amplitude for the magnetic flux tube, we have
to find the asymptotic of the wave function. This is done by splitting ψ(1)

∞ into two
terms, a contribution ψ(1)

∞ in which the integral I is carried all the way to infinity, to
be denoted by I∞, and a remainder ∆ψ(1) which vanishes for r → ∞. The integral
I∞ can be calculated analytically using the formula

∫ ∞

0
dρeiβρJα(kρ) =

1

(k2 − β2)1/2
eiα arcsin(β/k), 0 < β < k, α > −2. (16.65)

This gives

I∞ ≡
∫ ∞

0
dρ′eiρ

′ cosϕ
(

J1+µ0 − iJµ0e
iϕ
)

=
1

| sinϕ|
[

eiµ0(π/2−|ϕ|) − ieiϕei(1+µ0)(π/2−|ϕ|)
]

=
i

| sinϕ|e
iµ0(π/2−|ϕ|)

(

e−i|ϕ| − eiϕ
)

=

{

0, ϕ < 0,
e−iµ0ϕ2iµ0 , ϕ > 0,

(16.66)

with ϕ ∈ (−π, π). Hence we have

ψ(1)
∞ =

{

0, ϕ < 0,
e−ikxe−iµ0ϕ, ϕ > 0.

(16.67)

Using (16.60), we find

ψ(2)
∞ =

{

e−ikxe−iµ0ϕ, ϕ < 0,
0, ϕ > 0.

(16.68)

The sum ψ(1)
∞ +ψ(2)

∞ represents the incoming wave (16.49). The scattered wave must
therefore reside in the remainder

ψsc = ∆ψ(1) +∆ψ(2) + ψ(3). (16.69)
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For the scattering amplitude, only the leading 1/
√
r-behavior of the three terms is

relevant. To find it for ∆ψ(1), we take (16.61) and write the remainder of the integral
(16.62) as

∆I(ρ) ≡ I(ρ)− I∞ =
∫ ∞

ρ
dρ′eiρ

′ cosϕ
(

J1+µ0 − ieiϕJµ0
)

. (16.70)

At large ρ, the asymptotic expansion

Jα(ρ) ∼
√

2/πρ cos(ρ− α/2− π/4) (16.71)

renders

∆I(ρ) =

√

2

π
[A(ρ) +B(ρ)], (16.72)

with the integrals

A(ρ) =
∫ ∞

ρ

dρ′√
ρ′
eiρ

′ cosϕ cos [ρ′ − (1 + µ0)/2− π/4] ,

B(ρ) = −ieiϕ
∫ ∞

ρ′

dρ′√
ρ′
eiρ

′ cosϕ cos [ρ′ − µ0/2− π/4] . (16.73)

Separating the cosine into exponentials and changing the variable ρ′ in the two terms
to ρ′ = t2/(1± cosϕ), we find

A(ρ) =

[

(−i)1/2+µ0√
1 + cos θ

∫ ∞

√
ρ(1+cosϕ)

dteit
2

+
i3/2+µ0√
1− cos θ

∫ ∞

√
ρ(1−cosϕ)

dte−it
2

]

,

(16.74)
and a corresponding expression for B(ρ). The asymptotic expansion of the error
function

∫ ∞

x
dte±it

2

= ± i

2

exp(±ix2)
x

+ . . . (16.75)

leads to

A(ρ) =
1

2



(−i) 1
2
+µ0

eiρ
√

ρ(1 + cosϕ)2
+ i

1
2
+µ0

e−iρ
√

ρ(1− cosϕ)2



 eiρ cosϕ,

B(ρ) = (−i)e
iϕ

2
(16.76)

×


(−i)− 1
2
+µ0

eiρ
√

ρ(1 + cosϕ)2
+ i−

1
2
+µ0

e−iρ
√

ρ(1 − cosϕ)2



 eiρ cosϕ.

Adding the two terms together in (16.72) and inserting everything into (16.61) gives
the asymptotic behavior

∆ψ(1) =

√
−i

2
√
2πρ

[

(−1)µ0eiρ
1 + eiϕ

1 + cosϕ
+ ie−iρ

1− eiϕ

1− cosϕ

]

. (16.77)
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Together with ∆ψ(2) found via (16.60), we obtain

∆ψ(1) +∆ψ(2) =

√
−i√
2πρ

[

eiρ
cos(πµ0 − ϕ/2)

cos(ϕ/2)
+ ie−iρ

]

+ e−i(ρ cosϕ+µ0ϕ).

(16.78)

Adding further ψ(3) from (16.59) with the asymptotic limit given by (16.71), the
total wave function is seen to behave like

ψ(x) → e−i(ρ cosϕ+µ0ϕ) + ψsc(x), (16.79)

with the scattered wave

ψsc =
1√
2πiρ

eiρ
sin πµ0

cos(ϕ/2)
e−iϕ/2. (16.80)

This corresponds precisely to the scattering amplitude (16.54) with the cross section
(16.55).

Let us mention that for half-integer values of µ0, the solution of the Schrödinger
equation has the simple integral representation

ψ(x) =

√

i

2
e−i(ϕ/2+ρ cosϕ)

∫

√
ρ(1+cosϕ)

0
dteit

2

. (16.81)

It vanishes on the line ϕ = π, i.e., directly behind the flux tube and is manifestly
single-valued.

16.3 Aharonov-Bohm Effect and Fractional Statistics

It was noted in Section 7.5 and it is worth mentioning once more in this context
that the amplitude for the relative motion of two fermion orbits can be obtained
from the amplitude of the Aharonov-Bohm effect.

For this, we take the amplitude with µ0 = 1 and sum it over the final states with
ϕb, ϕb + π, to account for particle identity. The result is

(xb|xa)E + (−xb|xa)E = −2iM

h̄

∑

m

I|m+1|(κr<)K|m+1|(κr>)

× 1

2π

[

eim(ϕb−ϕa) + (−)meim(ϕb−ϕa)
]

= −4iM

h̄
e−i(ϕb−ϕa)

∑

m=odd

I|m|(κr<)K|m|(κr>)
1

2π
eim(ϕb−ϕa). (16.82)

The sum over the two identical final states selects only the odd wave functions, as in
(7.267)–(7.268). When calculating observable quantities such as particle densities or
partition functions which involve only the trace of the amplitude, the phase factor
e−i(ϕb−ϕa) has no observable consequences and can be omitted.
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For µ0 6= 1, the resulting amplitudes may be interpreted as describing particles
in two dimensions obeying an unusual fractional statistics. This interpretation has
recently come to enjoy great popularity,2 since it has led to an understanding of the
experimental data of the fractional quantum Hall effect. The data can be explained
by the following assumption: The excitations of a gas of electrons with Coulomb
interactions in a quasi-two-dimensional material traversed by a strong magnetic
field can be viewed, to lowest approximation, as a gas of quasi-particles which has
no Coulomb interactions, but a new effective pair interaction. Each pair behaves
as if one partner were accompanied by a thin magnetic flux tube of a certain value
of µ0. While the quasi-particles of the ground state carry an integer-valued µ0 and
act statistically like ordinary electrons, the elementary excitations carry a fractional
value of µ0 and display fractional statistics (more in Section 16.11).

To study the fundamental thermodynamic properties of an ensemble of such
particles, we calculate the partition function of a particle running around a thin
flux tube along the z-axis. For finiteness, we assume the presence of an additional
homogeneous magnetic field in the z-direction. Ignoring the third dimension, we
take the amplitude (16.33), integrate it over all space, and find

Z =
∫

d2x(xbτb|xaτa)

=
1

2
eµ0η

∞
∑

m=−∞

emη
∫ ∞

0
dξe−ξ cosh ηI|m+µ0|(ξ), (16.83)

where

ξ ≡Mωr2/2h̄ sinh η (16.84)

[recall that ω = −eB/Mc and η = ω(τb−τa)/2]. To calculate the partition function,
the difference between the Euclidean times τb, τa is set equal to τb−τa = h̄/kβT = h̄β,
so that η = ωh̄β/2.

To deal with two identical particles, we also need the integral in which xb is
exchanged by −xb:

Zex =
∫

d2x(−xbτb|xaτa) =
1

2
eµ0η

∞
∑

m=−∞

(−)memη
∫ ∞

0
dξe−ξ cosh ηI|m+µ0|(ξ). (16.85)

In order to facilitate writing joint equations for both expansions, let us denote Z
and Zex by Z1 and Z1ex , respectively. The integrals are performed with the help of
formula (2.474), yielding the sums

Z1,1ex =
1

2

∞
∑

m=−∞

(±)meη(m+µ0)
1

sinh η
e−η|m+µ0|. (16.86)

These sums are obviously periodic under µ0 → µ0 + 2. Because of translational
invariance, the partition function Z ≡ Z1 diverges with the total area V =

∫

d2x as

2See Notes and References at the end of Chapter 7.
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an overall factor. To enforce convergence, we multiply the volume elements d2x with
an exponential regulating factor e−ǫξ. Then the area integrals can be extended over
all space. In terms of the variable ξ of (16.84), the measure in the above rotationally
symmetric integrals can be written as

d2x = l2e(T )
sinh η

η
dξ, (16.87)

with the thermal length le(T ) ≡
√

2πh̄2/kBTM introduced in Eq. (2.354). The role
of the total area V =

∫

d2x is now played by the finite quantity

V ≡
∫

d2xe−ǫξ =
l2e(T )

ǫ

sinh η

η
. (16.88)

Inserting the factor e−ǫξ into the integrals in Eqs. (16.83) and (16.85), and defining
a variable η′ slightly different from η by

cosh η′ ≡ ǫ+ cosh η, (16.89)

which has the expansion

eη
′

= cosh η′ +
√

cosh2 η′ − 1

= eη
(

1 +
ǫ

sinh η
− 1

2
e−η

ǫ2

sinh3 η
+ . . .

)

, η > 0, (16.90)

the regulated sums (16.86) for Z1 and Z1ex look almost the same as before:

Z1,1ex =
1

2

∞
∑

m=−∞

(±)meη(m+µ0)
1

sinh η′
e−η

′|m+µ0|. (16.91)

Separating positive and negative values of m + µ0, the two sums can be done for
µ0 ∈ (0, 1) and for µ0 ∈ (−1, 0). In the combined interval µ0 ∈ (−1, 1), we find

Z1,1ex =
1

2
eηµ0

1

sinh η′

{

e−η
′µ0

1∓ a
+
eη

′µ0

1∓ b
− eη

′|µ0|

}

, (16.92)

where

a ≡ eη−η
′

, b ≡ e−η−η
′

.

Two identical particles have the partition function

Z =
1

2
(Z1 + Z1ex) =

1

2
eηµ0

1

sinh η′

{

e−η
′µ0

1− a2
+

eη
′µ0

1− b2
− eη

′|µ0|

}

. (16.93)

It is symmetric under the simultaneous exchange µ0 → −µ0, η → −η. Outside the
interval µ0 ∈ (−1, 1), it is defined by periodic extension.
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In the absence of the thin flux tube we may take Z1,1ex directly from the amplitude
(2.668). For xb = xa and xb = −xa, this yields with the present variables

(xaτb|xaτa) = l−2
e (T )

η

sinh η
, (−xaτb|xaτa) = l−2

e (T )
η

sinh η
e−2 cosh η ξ. (16.94)

Their regulated spatial integrals are

Z1,0 =
1

2

∫ ∞

0
dξe−ǫξ =

1

2ǫ
,

Z1ex,0 =
1

2

∫ ∞

0
dξe−(ǫ+2cosh η)ξ =

1

2(ǫ+ 2 cosh η)
. (16.95)

The subtracted partition functions ∆Z1,1ex ≡ Z1,1ex− 1
2Z1,0 have a finite ǫ→ 0 -limit,

and ∆Z = Z − 1
2Z1,0 becomes for µ0 ∈ (0, 2)

∆Z = − 1

8 sinh η

[

cothη + 2(µ0 − 1)− 2e2(µ0+1)η 1

sinh 2η
+ 4e2ηµ0

]

. (16.96)

These results can be used to calculate the second coefficient appearing in a virial
expansion of the equation of state. For a dilute gas of particles with the above
magnetic interactions it reads

pV

NkBT
= 1 +

∞
∑

r=2

Brn
r−1. (16.97)

Here n is the number density of the particles N/V . In many-body theory it is shown
that the coefficient B2 depends on the two-body partition function Z2 as follows:

B2 = V

(

1

2
− Z2

Z2
1

)

, (16.98)

where Z1 is the two-dimensional single particle partition function of mass M . In the
presence of the homogeneous magnetic field, Z1 is given by Z1,0 of Eq. (16.95). With-
out the regulating factor, the spatial integral over the imaginary-time amplitude in
(16.94) gives directly

Z1 = V
η

l2e(T ) sinh η
. (16.99)

Separating the center of mass from the relative motion, we see that Z2 = 2Z1Zrel

and obtain

B2 =
V

Z1
(Z1/2− 2Zrel) =

l2e(T ) sinh η

2η
(Z1 − 4Zrel). (16.100)

The difference on the right-hand side is convergent for V → ∞. It can be evaluated
using any regulator for the area integration, in particular the exponential regulator
of Eq. (16.88).
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Figure 16.1 Second virial coefficient B2 as function of flux µ0 for various external

magnetic field strengths parametrized by η = −(eB/2Mc)h̄β. For a better comparison,

each curve has been normalized to unity at µ0 = 0.

The partition function for the relative motion of two identical particles is ob-
tained from Z by replacing M by the reduced mass, i.e., M → M/2. This renders
a factor 1/2 via l−2

e (T ). Hence Z1/2 − 2Zrel becomes equal to −∆Z and (16.100)
yields [5]

B2=
l2e(T )

4η

[

cothη +2(µ0 − 1)−2e2(µ0+1)η 1

sinh(2η)
+4e2ηµ0

]

. (16.101)

The behavior of B2 as a function of µ0 is shown in Fig. 16.1. In the absence of a
magnetic field, it reduces to

B2 =
l2e(T )

4

[

1− 2(1− |µ0|2)2
]

, µ0 ∈ (−1, 1). (16.102)

As µ0 grows from zero to infinity, B2 oscillates with a period 2 between B2 =
−l2e(T )/4 for even values of µ0, and B2 = l2e(T )/4 for odd values. These are the well-
known second virial coefficients of free bosons and fermions. They can, of course, be
obtained in a simpler and more direct way from the symmetric and antisymmetric
combinations of (16.95), Z0 = (1/2)(Z1,0±Z1ex,0). Subtracting Z1,0 leaves ±Z1ex,0/2
which reduces for η = 0 to ±1/8. Accounting for the factor 2 in the reduced mass,
this yields B2 = ∓l2e(T )/4.

The expression (16.102) can be interpreted as the virial coefficient of particles
which are neither bosons nor fermions, but obey the laws of fractional statistics.
These particles are the anyons introduced in Section 7.5. Unfortunately, there are
at present no experimental data for the virial coefficients to which the theoretical
expressions (16.102) [or (16.101)] could be compared.

At this point we should mention older, meanwhile discarded speculations that
the phenomenon of high-temperature superconductivity might be explained by frac-
tional statistics of some elementary excitations. Indeed, the change in statistics can
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Figure 16.2 Lefthanded trefoil knot in polymer.

be derived from the electromagnetic interaction between the electrons in a quasi-two-
dimensional layer of material moving in a strong magnetic field. Also, it is possible
to construct a model of anyonic two-dimensional superconductivity in which topo-
logical effects lead to a Meissner screening of magnetic fields (see Section 16.13). A
closer investigation, however, shows that the currents in the model show dissipation
after all.

It must be emphasized that the equality between electromagnetic and statistical
interaction used in the above calculations is restricted to two-particle systems and
cannot be extended to arbitrarily many particles as in Section 7.5. Although it is
possible to distribute the magnetic flux in a many-particle system equally between
the constituents producing the desired behavior under particle exchange, an equal
distribution of the charges would create an unwanted additional Coulomb potential,
and the purely topological character of the interaction would be destroyed. The
problem does not arise for charged particles such as electrons. Nevertheless, there
is a definite need for a better and universally applicable theoretical description of
anyons. This will be presented in Section 16.7.

16.4 Self-Entanglement of Polymer

An interesting consequence of the excluded-volume properties of polymers is the
possibility of a self-entanglement of a closed polymer. Since its line elements are
forbidden to cross each other, the fluctuations are unable to explore all possible
configurations. An initially circular polymer, for example, can never turn into a
trefoil knot of the form shown in Fig. 16.2 without breaking a molecular bond.
In the chemical formation process of a large number of polymers, many

entangled configurations arise. It is an interesting problem to find the distribu-
tion of the various independent topology classes. Until recently, the lack of theo-
retical methods has made analytic work almost impossible, restricting it to classi-
fication questions. Only Monte Carlo methods have yielded quantitative insights.
Since 1989, however, interesting new quantum field-theoretic methods have been
developed promising significant progress in the near future. Here we survey these
methods and indicate how to derive analytic results. First, we introduce the relevant
topological concepts.

A closed polymer will in general form a knot. A circular polymer represents
a trivial knot. Two knots are called equivalent if they can be deformed into each
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Figure 16.3 Nonprime (compound) knot. The dashed line separates two pieces. After

closing the open ends, the pieces form two prime knots.

Figure 16.4 Illustration of multiplication law a1a2 ≈ a3 in knot group. The loops a1
and a2 are equivalent, a1 ≈ a2, while a4 ≈ a−1

1 .

other without breaking any line. Such deformations are called isotopic. A first
step towards the classification consists in separating the equivalence classes into
irreducible and reducible ones, defining prime or simple knots and nonprime or
compound knots, respectively. A compound knot is characterized by the existence
of a plane which is intersected twice (after some isotopic deformation) (see Fig. 16.3).
By closing the open ends on each side of the plane one obtains two new knots. These
may or may not be reduced further in the same way until one arrives at simple knots.
One important step towards distinguishing different equivalence classes of simple and
compound knots is the knot group defined as follows. In the multiply connected
space created by a certain knot, choose an arbitrary point P (see Fig. 16.4). Then
consider all possible closed loops starting from P and ending again at P . Two such
loops are said to be equivalent if they can be deformed into each other without
crossing the lines of the knot under consideration. The loops are, however, allowed
to have arbitrary self-intersections. The classes of equivalent knots form the knot
group. Group multiplication is defined by running through any two loops of two
equivalence classes successively. The class whose loops can be contracted into the
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Figure 16.5 Inequivalent (compound) knots possessing isomorphic knot groups. The

upper is the granny knot , the lower the square knot . They are stereoisomers characterized

by the same Alexander polynomial (t2 − t+ 1)2 but different HOMFLY polynomials [see

(16.126)].

point P is defined as the unit element e. Changing the orientation of the loops in a
class corresponds to inverting the associated group element.

In this way, the classification of knots can be related to the classification of all
possible knot groups. Consider the trivial knot, the circle. Obviously, the closed
loops through P fall into classes labeled by an integer number n. The associated
knot group is the group of integers. Conversely, no nontrivial knot is associated with
this group.

Although this trivial example might at first suggest a one-to-one correspondence
between the simple knots and their knot groups, there is none. Many examples
are known where inequivalent knots have isomorphic knot groups. In particular,
all mirror-reflected knots which usually are inequivalent to the original ones (such
as the right- and left-handed trefoil), have the same knot group. Thus, the knot
groups necessarily yield an incomplete classification of knots. An example is shown
in Fig. 16.5.

Fortunately, the degeneracies are quite rare. Only a small fraction of inequivalent
knots cannot be distinguished by their knot groups.

The easiest way of picturing a knot in 3 dimensions is by drawing its projection
onto the paper plane. The lines in the projection show a number of crossings ,
and the drawing must distinguish the top from the bottom line. The knot is then
deformed isotopically until the projection has the minimal number of crossings. In
the projection, all isotopic deformations can be decomposed into a succession of
three elementary types, the so-called Reidemeister moves shown in Fig. 16.6.

A picture of all simple knots up to n = 8 is shown in Fig. 16.7. The numbers of
inequivalent simple and compound knots with a given number n of minimal crossings
are listed in Table 16.1.

The projected pictures can be used to construct an important algebraic quantity
characterizing the knot group, called the Alexander polynomial discovered in 1928.
It reduces the classification of knot groups to that of polynomials. This type of work
is typical of the field of algebraic topology.
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Figure 16.6 Reidemeister moves in projection image of knot which do not change its

class of isotopy. They define the movements of ambient isotopy . For ribbons, only the

second and third movements are allowed, defining the regular isotopy . The first movement

is forbidden since it changes its writhe [for the definition see Eq. (16.110)].

Table 16.1 Numbers of simple and compound knots with n minimal crossings in a pro-

jected plane.

n simple knots compound knots
0 1 0
1 0 0
2 0 0
3 1 0
4 1 0
5 2 0
6 3 1
7 7 1
8 21 3
9 49 5
10 166 10
11 548 37
12 – 154
13 – 484
14 – 1115

We explain the construction for the trefoil knot. Attaching a directional arrow
to the polymer and selecting an arbitrary starting point, we follow the arrow until
we run into a first underpass. This point is denoted by 1. Now we continue to the
next underpass denoted by 2, etc., up to n (see Fig. 16.8). The polymer sections
between two successive underpasses i and i+ 1 are named xi+1. At each underpass
from xi to xi+1, we record (see Table 16.2) whether the overpassing section xk runs
from right to left (type r) or from left to right (type l). We now set up a matrix
Aij. Each underpass with label i defines a row Aij, j = 1, 2, 3, . . . according to the
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Figure 16.7 Simple knots with up to 8 minimal crossings. The number of crossings

under each picture carries a subscript enumerating the equivalence classes.
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Figure 16.8 Labeling of underpasses for construction of Alexander polynomial t2− t+1

of the left-handed trefoil.

Table 16.2 Tables of underpasses (under) and directions (dir) r or l ofoverpassing lines

(over), for trefoil knot 31 and knot 41 of Fig. 16.7.

31 :

under over dir
x1 x3 r
x2 x1 r
x3 x2 r

41 :

under over dir
x1 x4 r
x2 x1 l
x3 x2 r
x4 x3 l

following rules: Let xk be the overpassing section. If xk coincides with xi or xi+1

the underpass is called trivial . In this, case the ith row of the matrix Aij has the
elements

Aii = −1, Ai,i+1 = 1. (16.103)

All other row elements Aij vanish. If the underpass is nontrivial, the nonvanishing
row elements are

Aii = 1, Aii+1 = −t, Aik = t− 1, type r (right to left), (16.104)

Aii = −t, Aii+1 = 1, Aik = t− 1, type l (left to right). (16.105)

In this way, we find the matrix of the trefoil knot:

Aij =







1 −t t− 1
t− 1 1 −t
−t t− 1 1





 . (16.106)

As another example, the knot 41 in Fig. 16.7 has the matrix

Aij =











1 −t 0 t− 1
t− 1 −t 1 0
0 t− 1 1 −t
1 0 t− 1 −t











. (16.107)
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Table 16.3 Alexander, Jones, and HOMFLY polynomials for smallest simple knots up

to 8 crossings. The numbers specify the coefficients; for instance, the knot 71 has the

Alexander polynomial A(t) = 1 − t+ t2 − t3 + t4 − t5 + t6 and the knot 88 has the Jones

polynomial J(t) = t−3(1 − t + 2t2 − t3 + t4). For the HOMFLY polynomial H(t, α), see

the explanation on p. 1125.

A(t) J(t) H(t,α)

31 1−11 (0)1 ([0]2−1)([0]1)

41 1−31 (−2)−1 (1[−1]1)([−1])

51 1−11−11 (0)1101 ([0]03−2)([0]041)([0]01)

52 2−32 (0)101 ([0]11−1)([0]11)

61 2−52 (−2)−10−1 (1[0]−11)([−1]−1)

62 1−33−31 (−1)−11−1 ([2]−21)(1[−3]1)([0]1)

63 1−35−31 (−3)1−11 (−1[3]−1)(−1[3]−1)(1) s

71 1−11−11−11 (0)1111101 ([0]004−3)([0]0010−4)([0]006−1)([0]001)

72 3−53 (0)10101 ([0]10−11)([0]111)

73 2−33−32 (0)110201 (−22−10[0])(−1330[0])(1100[0])

74 4−74 (0)10201 (−1020[0])(121[0])

75 2−45−42 (0)1102−11 ([0]020−1)([0]032−1)([0]011)

76 1−57−51 (−1)−12−11 ([1]−12−1)([1]−22)([0]−1)

77 1−59−52 (−3)1−21−1 (1−2[2])(−2[2]−1)([1])

81 3−73 (−2)−10−10−1 (1−10[0]1)(−1−1[−1])

82 1−33−33−31 (1)1−11−1 (1−33[0])(3−74[0])(1−51[0])(−10[0])

83 4−94 (−4)−10−20−1 (10[−1]01)(−1[−2]−1) s

84 2−55−52 (−3)−10−21−1 (2[−2]01)(1[−3]−21)([−1]−1)

85 1−34−55−31 (1)1−21−1 (2−54[0])(3−84[0])(1−51[0])(−10[0])

86 2−67−62 (−1)−11−21−1 (1−1−1[2])(1−2−2[1])(−1−1[0])

87 1−35−55−31 (−2)1−12−11 ([−1]4−2)([−3]8−3)([−1]5−1)([0]1)

88 2−69−62 (−3)1−12−11 (−1[2]1−1)(−1[2]2−1)([1]1)

89 1−35−75−31 (−4)−11−21−1 (2[−3]2)(3[−8]3)(1[−5]1)([−1]) s

810 1−36−76−31 (−2)1−13−11 ([−2]6−3)([−3]9−3)([−1]5−1)([0]1)

811 2−79−72 (−1)−12−21−1 (1−21[1])(1−2−1[1])(−1−1[0])

812 1−7(13)−71 (−4)−11−31−1 (1−1[1]−11)(−2[1]−2)([1]) s

813 2−7(11)−72 (−3)1−22−11 ([0]2−1)(−1[1]2−1)([1]1)

814 2−8(11)−82 (−1)−12−22−1 ([1])(1−1−1[1])(1−1[0])

815 3−8(11)−83 (0)1103−22−1 (1−4310[0])(−3520[0])(210[0])

816 1−48−98−41 (−2)1−23−21 ([0]2−1)([−2]5−2)([−1]4−1)([0]1)

817 1−48−(11)8−41 (−4)−12−32−1 (1[−1]1)(2[−5]2)(1[−4]1)([−1]) s

818 1−5(10)−(13)(10)−51 (−4)−13−33−1 (−1[3]−1)(1[−1]1)(1[−3]1)([−1]) s

819 1−1010−11 (0)11111 (1−5500[0])(−5(10)00[0])(−1600[0])(100[0])

820 1−23−21 (−1)101 ([−1]4−2)([−1]4−1)([0]1)

821 1−45−41 (0)1−11−1 (1−33[0])(1−32[0])(−10[0])
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Figure 16.9 Exceptional knots found by Kinoshita and Terasaka (a), Conway (b), and

Seifert (c), all with same Alexander polynomial as trivial knot [|A(t)| ≡ 1].

Having set up the n × n-matrix Aij , we choose an arbitrary subdeterminant
(minor) of order n − 1. It is a polynomial in t with integer coefficients. This
polynomial is divided by a suitable power of t to make it start out with a constant.
The result is the Alexander polynomial A(t). It is independent of the choice of the
subdeterminant.

For the left-handed trefoil, the matrix (16.106) yields

A(t) = t2 − t+ 1. (16.108)

For the knot 41, we find from (16.107)

A(t) = t2 − 3t+ 1. (16.109)

The Alexander polynomials of the simple knots in Fig. 16.7 are shown in Table 16.3.
Note that the replacement t→ 1/t leaves the Alexander polynomial invariant (after
renormalizing it back by some power of t to start out with a constant).

The Alexander polynomial of a composite knot factorizes into those of the simple
knots it is composed of. If two knots are mirror images of each other, they have
the same knot group and the same Alexander polynomials. Due to the factoriza-
tion property, two composite knots whose simple parts differ by mirror reflection
(stereoisomers ; see Fig. 16.5) have the same polynomial. Thus the Alexander poly-
nomial cannot render a complete classification of inequivalent knots. This is true
even after removing degeneracies of the above type. In Fig. 16.9, we give the sim-
plest examples of knots with an Alexander polynomial A(t) ≡ ±1 of the trivial knot.
Up to 11 crossings, these are the only examples. Since the total number of simple
knots up to n = 11 is 795, the exceptions are indeed very few.

Recent years have witnessed the development of simpler construction procedures
and more efficient polynomials for the classification of knots and links of several
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knots, the Jones and the HOMFLY polynomials3 and their generalizations. The
former depend on one, the latter on two variables, one of which occurs also with
inverse powers, i.e., in this variable the polynomials are of the Laurent type. Other
polynomials found in the literature, such as Conway , X-, or Kauffman’s bracket
polynomials , are special cases of the HOMFLY polynomials. In addition, there exist
a different type of Kauffman polynomials and of BLM/Ho polynomials F (a, z) and
Q(x), respectively, which are capable of distinguishing some knots with accidentally
degenerate HOMFLY polynomials. They will not be discussed here. For their
definition see Appendix 16B.

The X-polynomial X(a) is trivially related to the Jones polynomial J(t), to
which it reduces after a variable change a = t1/4. The X-polynomial is closely
related to the Kauffman polynomial K(a) by

X(a) = (−a)−3wK(a). (16.110)

The number w is the cotorsion, also called twist number , Tait number , or writhe
[6]. It is defined by giving the loop or link an orientation and attributing to each
crossing a number 1 or −1 according to the following rule. At each crossing follows
the overpass along the direction of orientation. If the underpass runs from right to
left, the crossing carries the number 1, otherwise −1. The sum of these numbers is
the cotorsion w. In the trefoil knot in Fig. 16.2 each crossing carries a −1 so that
w = −3.

The Kauffman polynomial is found by a very simple construction procedure. A
set of n trivial loops is defined to have the Laurent polynomial

Kn(a) = −(a2 + a−2)n−1. (16.111)

Every knot or link can be reduced to such loops by changing the crossings recursively
into two new configurations according to the graphical rule shown in Fig. 16.10.

L+ L0 L∞

= a + a−1

Figure 16.10 Graphical rule for removing crossing in generating Kauffman polynomial.

The first configuration is associated with a factor a, the second with a factor a−1.
The configuration receiving the factor a is most easily identified by approaching
the crossing on the underpassing curve and taking a right turn. The two new

3The word “HOMFLY” collects the initials of the authors (Hoste, Ocneanu, Millet, Freyd,
Lickorish, Yetter). The papers are quoted in Notes and References.
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Figure 16.11 Kauffman decomposition of trefoil knot. The configuration 3 is the Hopf

link. The calculation of the associated polynomials is shown in Table 16.4.

Table 16.4 Kauffman polynomials in decomposition of trefoil knot.

link bracket polynomial rule
15 −a2 − a−2 Eq. 16.111
14 1 Eq. 16.111
13 1 Eq. 16.111
12 −a2 − a−2 Eq. 16.111
11 1 Eq. 16.111
10 −a2 − a−2 Eq. 16.111
9 −a2 − a−2 Eq. 16.111
8 −a4 − 2− a−4 Eq. 16.111
7 −a−3 a〈14〉+ a−1〈15〉, Fig. 16.10
6 −a3 a〈12〉+ a−1〈13〉, Fig. 16.10
5 −a3 a〈10〉+ a−1〈11〉, Fig. 16.10
4 a5 + a a〈8〉+ a−1〈9〉, Fig. 16.10
3 −a4 − a−4 a〈6〉+ a−1〈7〉, Fig. 16.10
2 a6 a〈4〉+ a−1〈5〉, Fig. 16.10
1 a7 − a3 − a−5 a〈2〉+ a−1〈3〉, Fig. 16.10

configurations are processed further in the same way and so on until one arrives
only at trivial loops. By applying these rules to a trefoil knot, we obtain a knot and
a link known as the Hopf link . These are decomposed further as shown in Fig. 16.11.
The Kauffman polynomials of each part are listed in Table 16.4. The polynomial of
the trefoil knot is

K(a) = a7 − a3 − a−5. (16.112)
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Since w = −3, we obtain with the factor (−a)−3w = −a9 the X-polynomial

X(a) = −a16 + a12 + a4. (16.113)

This corresponds to a Jones polynomial J(t) = t+ t3 − t4.
For the Jones polynomials, there exists a simple direct construction. According

to J.H. Conway, any knot can be related to lower knots or links by performing the
skein operations shown in Fig. 16.12 on any crossing in the projection plane. Either

Figure 16.12 Skein operations relating higher knots to lower ones.

a crossing L+ is transformed into L− and L+, or L+ is transformed into L− and L0.
For knots related in this way one defines the Jones polynomial J(t) recursively by
the skein relation

1

t
JL+(t)− tJL−(t) =

(√
t− 1√

t

)

JL0(t). (16.114)

The circular loop is defined to have the trivial polynomial J(t) ≡ 1. By applying the
skein operations to two disjoint unknotted loops in Fig. 16.13, one finds the Jones
polynomial

J2(t) = −(
√
t+ 1/

√
t). (16.115)

Upon carrying this procedure to n such loops, we find

Jn(t) = [−(
√
t+ 1/

√
t)]n−1, (16.116)

in agreement with (16.111). For the lowest knots, the Jones polynomials are listed
in Table 16.3. Up to nine crossings, the Jones polynomials distinguish mirror-
symmetric knots.

Conway discovered the first skein relation in 1970 when trying to develop a
computer program for calculating Alexander polynomials. He found the Alexander
polynomials to obey modulo the normalization convention, the skein relation

AL+(t)−AL−(t) = (
√
t− 1/

√
t)AL0(t), (16.117)

which eventually reduces the polynomials of all knots to the trivial one A1(t) = 1.
The skein relation simplifies the procedure so much that Conway was able to work
out by hand all polynomials known at that time. Because of the simplicity of
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Figure 16.13 Skein operations for calculating Jones polynomial of two disjoint unknotted

loops.

Figure 16.14 Skein operation for calculating Jones polynomial of trefoil knot.

Figure 16.15 Skein operation for calculating Jones polynomial of Hopf link.

this procedure, the Alexander polynomials are now often referred to as Alexander-
Conway polynomials .

Let us now calculate the Jones polynomial for the trefoil knot 31 of Fig. 16.7.
First we apply the skein operation shown in Fig. 16.14. The loop L− is unknotted
and has a unit polynomial. Thus we obtain the polynomial relation

Jtrefoil(t)JL+(t) = t2 · 1 + t(
√
t− 1/

√
t)JL0(t). (16.118)

The configuration L0 is known as a Hopf link . It needs one more reduction4 via the
operation shown in Fig. 16.15, resulting in the relation

1

t
JL 0

+

(t) = tJ2(t) + (
√
t− 1/

√
t)J1(t). (16.119)

4The Kauffman bracket polynomial of the Hopf link is KL0
(a) = −a4− a−4. Together with the

cotorsion w = −2, this amounts to an X-polynomial X(a) = −a10 − a2 and the Jones polynomial
JL0

(t) = −
√
t(1 + t2) as in (16.120).

H. Kleinert, PATH INTEGRALS
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Using (16.111), we find

JL0(t) = −
√
t(1 + t2). (16.120)

Inserting this into (16.118) leads to the Jones polynomial of the trefoil knot

Jtrefoil = t+ t3 − t4. (16.121)

It differs from the result found above for the left-handed trefoil by the substitution
t→ t−1.

The HOMFLY polynomials HL(t, α) are obtained from a slight generalizations
of the skein relation (16.114) of the Jones polynomials: The factor (

√
t− 1/

√
t) on

the right-hand side is replaced by an arbitrary parameter α, leading to the skein
relation

1

t
HL+(t, α)− tHL−(t, α) = αHL0(t, α). (16.122)

The trivial knot is defined to have the trivial polynomial H1(t, α) = 1. For two
independent loops, the relation yields

H2(t, α) = (t−1 − t)α−1. (16.123)

The HOMFLY polynomials H(t, α) transform under a mirror reflection of the knot
into H(−t−1, α). Note that H2(t, α) is mirror-symmetric [H1(t, α) is trivially so].5

In general, the HOMFLY polynomials give reliable information on a possible mirror
symmetry. There are, however, a few exceptions, i.e., mirror-related pairs of knots
possessing the same HOMFLY polynomial.6

Examples for HOMFLY polynomials are

Htrefoil(rh)(t, α) = −t4 + 2t2 + t2α2,

Htrefoil(lh)(t, α) = −t−4 + 2t−2 + t−2α2,

HHopf(rh)(t, α) = (t− t3)α−1 + tα,

Hknot 41(t, α) = t−2 − 1 + t2 − α2. (16.124)

Setting α = t1/2−t−1/2 produces the Jones polynomials, while t→ 1, α→ t1/2−t−1/2

leads, with appropriate powers of t as normalization factors, back to the Alexander-
Conway polynomials.

In Table 16.3, the HOMFLY polynomials are listed for knots up to 8 cross-
ings. For mirror-unsymmetric knots, only one partner is recorded. The re-
flected polynomial is obtained by the substitution t → −t−1. The meaning
of the entries is best explained with an example: The knot 71 has an entry
([0]004 − 3)([0]00(10) − 4)([0]006 − 1)([0]001), which stands for the polynomial

5For the Kauffman polynomials F (a, x) defined in Appendix 16B, mirror reflection implies
F (a, x) → F (a−1, x).

6The first degeneracy of this type occurs for a link of 3 loops with 8 crossings.
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H(t, α) = (4t6 − 3t8) + (10t6 − 4t8)α2 + (6t6 − t8)α4 + t6α6. A bracket marks
the position and coefficient of the zeroth power in t2; the numbers to the right and
the left of it specify the coefficients of the adjacent higher and lower powers of t2,
respectively. Numbers with more than one digit are put in parentheses. The poly-
nomial of the reflected knot is obtained by reflecting the numbers in parentheses on
the associated bracket. The knots marked by an s are mirror-symmetric.

The Alexander-Conway polynomials are special cases of the HOMFLY polyno-
mials. A comparison with the skein relation (16.117) shows that they are obtained
from them by setting t = 1 and replacing α by t1/2 − t−1/2:

AL(t) = HL(1, t
1/2 − t−1/2). (16.125)

The reducible granny and square knots in Fig. 16.5 are distinguished by the
Jones and the HOMFLY polynomials; the latter are

Hgranny(t, α) = (2t2 − t4 + t2α2)2,

Hsquare(t, α) = (2t2 − t4 + t2α2)(2t−2 − t−4 + t2α2); (16.126)

the former are obtained by inserting α = t1/2 − t−1/2.
Up to now, there exists no complete algebraic classification scheme. For example,

the Jones polynomials of the knots with 10 and 13 crossings shown in Fig. 16.16 are

Figure 16.16 Knots with 10 and 13 crossings, not distinguished by Jones polynomials.

the same.7 For further details, see the mathematical literature quoted at the end of
the chapter.

Even with the incomplete classification of knots, it has until now been impossible
to calculate the probability distribution of the various equivalence classes of knots.
Modern computers allow us to enumerate the different topological configurations for
not too long polymers and to simulate their distributions by Monte Carlo methods.
In Fig. 16.17 we show the result of a simulation by Michels and Wiegel, where they
measure the fraction fN of unknotted polymers of N links. They fit their curve by
a power law

fN = CµNNα, (16.127)

7The HOMFLY polynomials have their first degeneracy for prime knots with 9 crossings. It was
checked that up to 13 crossings (amounting to 12 965 knots) no polynomial of a nontrivial knot is
accidentally degenerate with the trivial polynomial of a circle.
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Figure 16.17 Fraction fN of unknotted closed polymers in ensemble of fixed length

L = Na.

with the parameters C ≈ 1.026, µ ≈ 0.99640, α ≈ 0.0088. Thus fN falls off expo-
nentially in N like µN with µ < 1. The exponent α is extremely small. A more
recent simulation by S. Windwer takes account of the fact that the line elements are
self-avoiding. It yields the parameters8

C ≈ 1.2325, µ ≈ 0.9949, α ≈ 0. (16.128)

For a polymer enclosed in a sphere of radius R, the distribution has the finite-size
dependence

fN(R) = e−A(N
β l/R)γ , (16.129)

where l is the length of a link. The “critical exponents” are β ≈ 0.76 and γ ≈ 3.

16.5 The Gauss Invariant of Two Curves

For any analytic calculation of topological properties one needs a functional of the
polymer shape which is capable of distinguishing the different knot classes. Initially,

8A first theoretical determination of these parameters has recently been given by mapping the
problem onto a four-state Potts model. A presentation of this method which does not involve path
integrals would go beyond the scope of this book. See the papers by A. Kholodenko quoted at the
end of the chapter.
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a hopeful candidate was the one-loop version of the contour integral introduced
almost two centuries ago by Gauss for a pair of closed curves C and C ′:

G(C,C ′) =
1

4π

∮

C

∮

C′
[dx× dx′] · x− x′

|x− x′|3 . (16.130)

Gauss proved this to be a topological invariant. In fact, we may rewrite (16.134)
with the help of the δ-function (10A.8) as

∮

C
dx
∮

C′

dx′ × (x− x′)

|x− x′|3 = −
∫

d3x Æ(x;C) ·
[

∫

d3x′ Æ(x′;C ′)× R′

R′3

]

(16.131)

The second integral is recognized as the gradient of the multivalued field Ω(x;C ′)
defined by Eqs. (10A.18), which is the solid angle under which the contour C ′ is
seen from the point x, so that

G(C,C ′) = − 1

4π

∫

d3x Æ(x;C) ·∇Ω(x;C ′). (16.132)

Inserting here Eq. (10A.27), where S ′ is any surface enclosed by the contour L′, and
using the fact that

∫

d3x Æ(x;C) ·∇Ω(x;S ′) = −
∫

d3x∇ · Æ(x;C)Ω(x;S ′) = 0, (16.133)

due to (10A.9) and the fact that Ω(x;S) = 0 is single-valued, we obtain

G(C,C ′) = −
∫

d3x Æ(x;C) · Æ(x;S ′). (16.134)

This is a purely topological integral. By rewriting it as

G(C,C ′) = −
∮

C
dxi δi(x;S

′), (16.135)

we see that G(C,C ′) gives the linking number of C and C ′. It is defined as the
number of times by which one of the curves, say C ′, perforates the surface S spanned
by the other.

Alternative expressions for the Gauss integral (16.134) are

G(C,C ′) = − 1

4π

∮

C′
dΩ′(x′;C) = − 1

4π

∮

C
dΩ(x, C ′), (16.136)

where where Ω′(x′;S) is the solid angle under which the curve C is seen from the
point x′.

The values of the Gauss integral for various pairs of linked curves up to 8 crossings
are given in the third column of Table 16.5. All the intertwined pairs of curves
labeled by 21, 71, 72, 87, for instance, have a Gauss integral G(C,C ′) = ±1.
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Let us end this section by another interpretation of the Gauss integral. According
to Section 10A.1, the solid angle Ω is equal to the magnetic potential of a current
4π running through the curve C ′. Its gradient is the magnetic field

Bi = ∂iΩ. (16.137)

Hence we can write

G(C,C ′) = −
∮

C
dxiBi = −

∮

C′
dx′iB

′
i. (16.138)

According to this expression, G(C,C ′) gives the total work required to move a unit
magnetic charge around the closed orbit C in the presence of the magnetic field due
to a unit electric current along C ′.

Unfortunately, there exists no such topologically invariant integral for a single
closed polymer. If we identify the curves C and C ′, the Gauss integral ceases to be
a topological invariant. It can, however, be used to classify self-entangled ribbons .
These possess two separate edges identified with C and C ′. Such ribbons play
an important role in biophysics. The molecules of DNA, the carriers of genetic
information on the structure of living organisms, can be considered as ribbons.
They consist of two chains of molecules connected by weak hydrogen bridges. These
can break up thermally or by means of enzymes decomposing the ribbon into two
single chains.

16.6 Bound States of Polymers and Ribbons

Two or more polymers may line up parallel to each other and form a bound state.
The most famous example is the molecule of DNA. It is a bound state of two long
chains of molecules which may contain a few thousand up to several billion links.
The distance d between the two chains is about 20A

◦

. In equilibrium, the two chains
are twisted up in the form of a double helix, rising by about 20A

◦

(i.e., about 10
monomers) per turn (see Fig. 16.18). The DNA molecule may be idealized as an
infinitesimally thin ribbon. The ribbon is always two-sided since the edges of the
ribbon are made up of different phosphate groups whose chemical structure makes
the binding unique. One-sided structures formed by a Möbius strip are excluded.

Circular DNA molecules have interesting topological properties. In the double
helix, one edge passes through the other an integer number of times. This is the
linking number Lk of the double helix. Being a topological invariant, it does not
change if the two closed edges become unbound and distorted into an arbitrary
shape.

If the total number of windings Nw in the DNA helix is different from the linking
number Lk, a circular helix is always under mechanical stress. It can relax by forming
a supercoil (see Fig. 16.19). The number of excess turns

τ = Lk −Nw, (16.139)



1130 16 Polymers and Particle Orbits in Multiply Connected Spaces

provides a measure for the supercoiling density which is defined by the ratio

σ ≡ τ

Nw
. (16.140)

In natural DNA, the supercoiling density is usually −σ ∼ 0.03−−0.1. The negative
sign implies that the natural twist of the double helix is slightly decreased by the
supercoiling. The negative sign seems to be essential in the main biological process,
the replication. It may be varied by an enzyme, called DNA gyrase. A cell has a
large arsenal of enzymes which can break one of the chains in the helix and unwind
the linking number Lk by one or more units, changing the topology. Such enzymes
run under the name of topoisomerases of type I. There is also one of a type II which
breaks both chains and can tie or untie knots in the double helix of DNA as a whole.

The biophysical importance of the supercoil derives from the fact that the stress
carried by such a configuration can be relaxed by breaking a number of bonds
between the two chains. In fact, a number θ = −σ of broken bonds leads to a
complete relaxation. During a cell division, all bonds are broken. Note that this
process would be energetically unfavorable if the supercoiling density were positive.

Figure 16.18 Small section and idealized view of circular DNA molecule. The link

number Lk (defined as number of times one chain passes through arbitrary surface spanned

by the other) is Lk ≈ 9.

Figure 16.19 A supercoiled DNA molecule. This is the natural shape when carefully

extracted from a cell. The supercoiling is negative.
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Figure 16.20 Simple links of two polymers up to 8 crossings.
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Just as for knots, no complete topological invariants are known for such types
of links of two (or more) closed polymers. Historically, generalized Alexander poly-
nomials were used to achieve an approximate classification of links. They are poly-
nomials of two variables. To construct them, we take one of the two polymers and
label all underpasses in the same way as for knots. The same thing is done for the
other polymer. For each underpass, a row of the Alexander matrix Aij is written
down with two variables s and t. The Alexander polynomial A(s, t) is again given
by any (n− 1)× (n− 1)-subdeterminant of the n× n-matrix Aij . The links up to 8
crossings are shown in Fig. 16.20. The Alexander polynomials associated with these
are listed in Table 16.5. Note that the replacements s → 1/s, t → 1/t, or both,
leave the Alexander polynomial invariant (due to the prescription of renormalizing
the lowest coefficients to an integer). For unlinked polymers one has A(s, t) = 0.

There is no need to go through the details of the procedure since the more recent
and powerful Jones and HOMFLY polynomials can be constructed for arbitrary links
without additional prescriptions. The latter are tabulated in the fourth column of
Table 16.5. In many cases, a change in the orientation of the second loop gives rise
to an inequivalent link. Then the table shows two entries underneath each other.
For the knot 72, the upper entry {−1}(1 ∗ −1)(1 ∗ 0 − 11)(∗ − 1 − 1) indicates the
polynomial H(t, α) = α−1(t−1− t)+α(t−1− t2+ t3)+α3(−t− t3). The curly bracket
shows the lowest power of α and the star marks the position of the zeroth power of
t. The coefficients of t, t3, . . . stand to the right of it, those of . . . , t−3, t−1 to the left
of it.

For the special case of a circular ribbon such as a DNA molecule, the Gauss
integral over the two edges, being a topological invariant, renders also a classification
of the ribbon as a whole. As shown in Eq. (16.135), the Gauss integral yields precisely
the linking number Lk.

It is useful to calculate G(C,C ′) for a ribbon in the limit of a very small edge-
to-edge distance d. This will also clarify why the Gauss integral G(C,C ′) in which
both C and C ′ run over the same single loop is not a topological invariant. We start
with the Gauss integral for the two edges C,C ′ of the ribbon

G(C,C ′) =
1

4π

∮

C

∮

C′
[dx× dx′] · x− x′

|x− x′|3 (16.141)

and shift the two neighboring integration contours C,C ′ both towards the ribbon
axis called C̄. Let ǫ measure the distance between the two edges, and let n(τ) be
the unit vector orthogonal to the axis pointing from C to C ′. Then we write

G(C,C ′) =
1

4π

∮

C̄
dτ
∮

C̄
dτ ′ [ẋ(τ)× (ẋ(τ ′) + ǫṅ(τ ′))] · x(τ)− x(τ ′)− ǫn(τ ′)

|x(τ)− x(τ ′)− ǫn(τ ′)|3 .

(16.142)

In the limit ǫ → 0, G(C,C ′) does not just become equal to G(C̄, C̄) [which then
would be the same as G(C,C) or G(C ′, C ′)]. A careful limiting procedure performed
below shows that there is a remainder Tw,

Lk = G(C̄, C̄) + Tw. (16.143)
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Table 16.5 Alexander polynomials A(s, t) and the coefficients of HOMFLY polynomi-

als H(t, α) for simple links of two closed curves up to 8 minimal crossings, labeled as

in Fig. 16.20. The value |A(1, 1)| is equal to the absolute value of the Gauss integral

|G(C,C ′)| for the two curves. The entries in the last column are explained in the text.

A(s,t) |A| H(t,α)

21 1 1 {−1}(∗1−1)(∗1)

41 s+t 2 {−1}(∗01−1)(∗11)
{−1}(∗01−1)(∗03−1)(∗01)

51 (s−1)(t−1) 0 {−1}(1∗−1)(−12∗−1)(1∗)

61 s2+t2+st 3 {−1}(∗001−1)(∗006−3)(∗005−1)(∗001)
{−1}(∗001−1)(∗111)

62 st(s+t)−st+s+t 3 {−1}(∗001−1)(∗022−1)(∗011)

63 2st−(s+t)+2 2 {−1}(∗01−1)(∗021−1)(∗011)
{−1}(1−10∗)(−21∗−1)(1∗)

71 s2t2−st(s+t)+st−(s+t)+1 1 {−1}(1−1∗)(−24−3∗)(10∗)
{−1}(∗1−1)(−11∗2−1)(1∗1)

72 st(s+t)−t2−s2−3st+s+t 1 {−1}(∗1−1)(1∗0−11)(∗−1−1)
{−1}(∗1−1)(−2∗5−2)(−1∗4−1)(∗1)

73 2(s−t)(t−1) 0 {−1}(1∗−1)(1∗−1−1)(∗−1−1)

74 (s−1)(t−1)(s2+1) 0 {−1}(−13−2∗)(−25−3∗)(−14−1∗)(10∗)

75 2s3t−t2−s+2 2 {−1}(∗002−3)(∗014−3)(∗012)
{−1}(−1∗3−2)(−2∗6−2)(−1∗4−1)(∗1)

76 (s+1)2(s−1)(t−1) 0 {−1}(1∗−1)(1−2∗1)(1−3∗1)(−1∗)

77 s3+t 2 {−1}(−1∗3−2)(−1∗4−1)(∗1)
{−1}(∗002−31)(∗006−4)(∗005−1)(∗001)

78 (s−t)(t−1) 0 {−1}(−13−2∗)(−13−2∗)(10∗)

81 (s+t)(s2+t2) 4 {−1}(∗0001−1)(∗00010−6)(∗00015−5)(∗0007−1)(∗0001)
{−1}(∗0001−1)(∗1111)

82 st(s+t−1)(st+1)+s+t 4 {−1}(∗0001−1)(∗0034−3)(∗0044−1)(∗0011)
{−1}(∗0001−1)(∗0212−1)(∗0111)

83 2s2t2−st(s+t)+3st−(s+t)+2 3 {−1}(∗001−1)((∗0041−2)(∗0043−1)(∗0011)
{−1}(1−100∗)(−200∗−1)(11∗)

84 s2t2(s+t)−2s2t2+2st(s+t)−2st+s+t 4 {−1}(∗0001−1)(∗0131−1)(∗0121)
{−1}(∗0001−1)(∗0042−2)(∗0043−1)(∗0011)

85 s2t2−2st(s+t)+3st−2(s+t)+1 3 {−1}(∗001−1)(∗0130−1)(∗0121)
{−1}(1−100∗)(1−42−2∗)(−23−1∗)(10∗)

86 2st−3(s+t)+2 2 {−1}(∗01−1)(∗0201−1)(∗0111)
{−1}(1−10∗)(−20∗1−1)(1∗1)

87 s2t2−2st(s+t)+s2+3st+t2−2(s+t)+1 1 {−1}(1−1∗)(1−4∗3−1)(−2∗3−1)(∗1)
{−1}(∗1−1)(∗2−33−1)(∗1−32)(∗0−1)

88 s2t2−2st(s+t)+s2+st+t2−2(s+t)+1 3 {−1}(∗1−1)(−1∗4−31)(−1∗3−2)(∗1)
{−1}(∗1−22−1)(1∗1−33)(∗−1−2)

89 s3+2s2t−4s2−4st+s+2t 2 {−1}(∗1−22−1)(1∗1−33)(∗−1−2)
{−1}(∗1−22−1)(∗2−34−1)(∗1−32)(∗0−1)

810 (s2−1)(t−1) 0 {−1}(1−2∗2−1)(1−4∗4−1)(1−3∗2)(−1∗)

811 s3t−2s2(s+t)+2s(s+t)−2(s+t)+1 2 {−1}(∗002−31)(∗005−2−1)(∗0042−1)(∗0011)
{−1}(2−3∗1)(1−5∗3−1)(−2∗3−1)(∗1)

812 (s2−1)(t−1) 0 {−1}(−13−2∗)(−14−4∗1)(2−3∗1)(−1∗)

813 (s2+1)(s−1)(t−1) 0 {−1}(1∗−1)(∗1−21)(−1∗2−2)(∗1)

814 s3t−4s2t+4s2+4st−4s+1 2 {−1}(∗002−31)(∗005−2−1)(∗0131)
{−1}(−1∗3−2)(1−3∗5−1)(−2∗3−1)(∗1)

815 (s−1)(t−1) 0 {−1}(1−2∗2−1)(−2∗3−1)(∗1)

816 s3−2s(s+1)+1 2 {−1}(∗1−22−1)(∗2−22)(∗0−1)
{−1}(∗1−22−1)(∗3−43)(∗1−41)(∗0−1)
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The remainder is called the twist of the ribbon, defined by

Tw ≡ 1

2π

∮

C̄
dτ ẋ(τ) · [n(τ)× ṅ(τ)]/|ẋ(τ)|. (16.144)

Incidentally, this integral makes sense also for a single curve if n(τ) is taken to be
the principal normal vector of the curve. Then Tw gives what is called the total
integrated torsion of the single curve. The first term in (16.143), the Gauss integral
for a single closed curve C̄, is called in this context the writhing number of the curve

Wr ≡ G(C̄, C̄) =
1

4π

∮

C̄
dτ
∮

C̄
dτ ′ [ẋ(τ)× ẋ(τ ′)] · x(τ)− x(τ ′)

|x(τ)− x(τ ′)|3 . (16.145)

Thus one writes the relation (16.143) commonly in the form

Lk = Wr + Tw. (16.146)

Only the sum Wr+Tw is a topological invariant, with Tw containing the information
on the ribbon structure of the closed loop C̄. This formula was found by Calagareau
in 1959 and generalized by White in 1969.

From what we have seen above in Eq. (16.136), the writhing number may also
be written as an integral

Wr = − 1

4π

∮

C̄
dΩ(x), (16.147)

where Ω(x) is the solid angle under which the axis of the ribbon is seen from an-
other point on the axis. When rewritten in the form (16.138), it has the magnetic
interpretation stated there.

This interpretation is relevant for understanding the spacetime properties of the
dionium atom which in turn may be viewed as a world ribbon whose two edges
describe an electric and a magnetic charge. We have pointed out in Section 14.6
that for a half-integer charge parameter q, a dionium atom consisting of two bosons
is a fermion. For this reason, a path integral over a fluctuating ribbon can be used
to describe the quantum mechanics of a fermion in three spacetime dimensions [7].

Let us derive the relation (16.146). We split the integral (16.142) over τ into two
parts: a small neighborhood of the point τ ′ , i.e.,

τ ∈ (τ ′ − δ, τ ′ + δ) (16.148)

and the remainder, for which the integrand is regular. In the regular part, we can
set the distance ǫ between the curves C and C ′ equal to zero, and obtain the Gauss
integral G(C̄, C̄), i.e., the writhing numberWr. In the singular part, we approximate
x(τ) within the small neighborhood (16.148) by the straight line

x(τ) ≈ x(τ ′) + ẋ(τ ′)(τ − τ ′),

ẋ(τ) ≈ ẋ(τ ′). (16.149)
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Figure 16.21 Illustration of Calagareau-White relation (16.146). The number of wind-

ings around the cylinder is Lk = 2, while Tw = Lk − p/
√

p2 +R2, where p is the pitch of

the helix and R the radius of the cylinder.

Then the τ -integral can be performed. For ǫ≪ δ ≪ 1, we find

Tw = − 1

4π

∮

C′
dτ ′ [n(τ ′)× ẋ(τ ′)] · ṅ(τ ′)ǫ2

∫ τ ′+δ

τ ′−δ
dτ

1
√

|ẋ(τ ′)|2(τ − τ ′)2 + ǫ2

=
1

2π

∮

C′
dτ ′ [ẋ(τ ′)× n(τ ′)] · ṅ(τ ′)/|ẋ(τ ′)|. (16.150)

It is worth emphasizing that in contrast to the Gauss integral for two curves C,C ′,
the value of the Gauss integral for C̄ is not an integer but a continuous number. It
depends on the shape of the ribbon, changing continuously when the ribbon is de-
formed isotopically. If one section of the ribbon passes through the other, however,
it changes by 2 units. The defining equation shows that Wr vanishes if the ribbon
axis has a center or a plane of symmetry. To give an example for a circular closed
ribbon with an integer number Lk and an arbitrary writhing number Wr we follow
Brook-Fuller and Crick. A cylinder with a closed ribbon is wound flat around the
surface of a cylinder, returning along the cylinder axis (see Fig. 16.21). While the
two edges of the ribbon perforate each other an integer number of times such that
Lk = 2, the ribbon axis has a noninteger Gauss integral Wr depending on the ratio
between pitch and radius, Wr = 2− p/

√
p2 +R2 .
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16.7 Chern-Simons Theory of Entanglements

The Gauss integral has a form very similar to the Biot-Savart law of magnetostatics
found in 1820. That law supplies an action-at-a-distance formula for the interaction
energy of two currents I, I ′ running along the curves C and C ′:

E = −II
′

c2

∮

C

∮

C′
dx · dx′ 1

|x− x′| , (16.151)

where c is the light velocity. It was a decisive conceptual advance of Maxwell’s theory
to explain formula (16.151) by means of a local field energy arising from a vector
potential A(x). In view of the importance of the Gauss integral for the topological
classification of entanglements, it is useful to derive a local field theory producing
the Gauss integral as a topological action-at-a-distance. Imagine the two contours
C and C ′ carrying stationary currents of some pseudo-charge which we normalize at
first to unity. These currents are coupled to a vector potential A(x), which is now
unrelated to magnetism and which will be called statisto-magnetic vector potential :

Ae,curr = −i
∮

C
dxA(x)− i

∮

C′
dxA(x). (16.152)

The action is of the Euclidean type as indicated by the subscript e (recall the relation
with the ordinary action A = iAe). We now construct a field action for A(x) so that
the field equations render an interaction between the two currents which is precisely
of the form of the Gauss integral. This field action reads

Ae,CS =
i

2

∫

d3xA · (∇×A) (16.153)

and is called the Chern-Simons action. It shares with the ordinary Euclidean mag-
netic field action the quadratic dependence on the vector potential A(x), as well as
the invariance under local gauge transformations

A(x) → A(x) +∇Λ(x), (16.154)

which is obvious when transforming the second vector potential in (16.153). The
gauge transformation of the first vector potential produces no change after a partial
integration. Also the coupling in (16.152) to the contours C and C ′ is gauge-invariant
after a partial integration, since the contours are closed, satisfying

∇ ·
∮

dx = 0. (16.155)

In contrast to the magnetic field energy, however, the action (16.153) is purely
imaginary. The factor i is important for the applications in which the Chern-Simons
action will give rise to phase factors of the form ei2θG(C,C′).
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By extremizing the combined action, we obtain the field equation

∇×A(x) =
(∮

C
+
∮

C′

)

dx. (16.156)

Its solution is

Ai(x) =
(∮

C
+
∮

C′

)

Gij(x,x
′)dx′j , (16.157)

where Gij(x,x
′) is a suitable Green function solving the inhomogeneous field equa-

tion (16.157) with a δ-function source instead of the current. Due to the gauge
invariance of the left-hand side, however, there is no unique solution. Given a solu-
tion Gij(x,x

′), any gauge-transformed Green function

Gij(x,x
′) → Gij(x,x

′) +∇iΛj(x,x
′) +∇jΛi(x,x

′)

will give the same curl ∇ × A. Only the transverse part of the vector potential
(16.157) is physical, and the Green function has to satisfy

ǫijk∇jGkl(x,x
′) = δ

(3)
ij (x− x′)T , (16.158)

where

δ
(3)
ij (x− x′)T =

(

δij −
∇i∇j

∇
2

)

δ(3)(x− x′) (16.159)

is the transverse δ-function. The vector potential is then obtained from (16.157) in
the transverse gauge with

∇ ·A(x) = 0. (16.160)

The solution of the differential equation (16.158) is easily found in the two-
dimensional transverse subspace. The Fourier transform of Eq. (16.158) reads

iǫijkpjGkl(p) = δil −
pjpl
p2

, (16.161)

and this is obviously solved by

Gij(p) = iǫikjpk
1

p2
. (16.162)

The transverse gauge (16.160) may be enforced in an action formalism by adding
to the action (16.153) a gauge-fixing term

AGF =
1

2α
(∇ ·A)2, (16.163)

with an intermediate gauge parameter α which is taken to zero at the end. The field
equation (16.158) is then changed to

(

ǫijk∇j +
i

α
∇i∇k

)

Gkl(x,x
′) = δikδ

(3)(x− x′), (16.164)
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which reads in momentum space

(

iǫijkpj −
i

α
pipk

)

Gkl(p) = δik. (16.165)

This has the unique solution

Gik(p) =

(

iǫijkpj + iα
pipk
p2

)

1

p2
, (16.166)

whose α → 0 -limit is (16.162).
Going back to configuration space, the Green function becomes

Gij(x,x
′)=

∫

d3p

(2π)3
eip(x−x′) iǫikjpk

p2
=

1

4π
ǫikj∇k

1

|x− x′| =
1

4π
ǫijk

(x− x′)k
|x− x′|3 . (16.167)

Inserting this into Ae,curr +Ae,CS yields the interaction between the currents9

Ae,int = −i
∮

C

∮

C′
dxidx

′
jGij(x,x

′). (16.168)

Up to the prefactor −i, this is precisely the Gauss integral G(C,C ′) of the two curves
C, C ′. In addition there are the self-interactions of the two curves

Ae,int = − i

2

(∮

C

∮

C
+
∮

C′

∮

C′

)

dxidx
′
jGij(x,x

′), (16.169)

which are equal to −(i/2)[G(C,C)+G(C ′, C ′)]. Due to their nontopological nature
discussed earlier, these have no quantized values and must be avoided.

Such unquantized self-interactions can be avoided by considering systems whose
orbits are subject to appropriate restrictions. They may, for instance, contain only
lines which are not entangled with themselves and run in a preferred direction from
−∞ to ∞. Ensembles of nonrelativistic particles in two space dimensions have
precisely this type of worldlines in three-dimensional spacetime. They are therefore
an ideal field for the Chern-Simons theory, as we shall see below in more detail.

Another way of avoiding unquantized self-interactions is based on a suitable lim-
iting procedure. If the lines C and C ′ coincide, the Gaussian integral G(C,C ′)
over C = C ′ may be spread over a large number N of parallel running lines
Ci (i = 1, . . . , N), each of which carries a topological charge 1/N . The sum
(1/N2)

∑

ij G(Ci, Cj) contains N -times the same self-interaction and N(N−1)-times
the same integer-valued linking number Lk of pairs of lines. In the limit N → ∞,
only the number Lk survives. The result coincides with the Gauss integral for the
two frame lines C1 and CN of the ribbon. The number LK may therefore be called
the frame linking number . This number depends obviously on the choice of the
framing. There is a preferred choice for which Lk vanishes. This eliminates the
self-interaction trivially.

9Compare this with the derivation of Eq. (3.247).
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Although the limiting procedure makes the self-interaction topological, the ar-
bitrariness of the framing destroys all information on the knot classes. This infor-
mation can be salvaged by means of a generalization of the above topological action
leading to a nonabelian version of the Chern-Simons theory. That theory has the
same arbitrariness in the choice of the framing. However, by choosing the fram-
ing to be the same as in the abelian case and calculating only ratios of observable
quantities, it is possible to eliminate the framing freedom. This will enable us to
distinguish the different knot classes after all.

16.8 Entangled Pair of Polymers

For a pair of polymers, the above problems with self-entanglement can be avoided by a slight
modification of the Chern-Simons theory. This will allow us to study the entanglement of the pair.
In particular, we shall be able to calculate the second topological moment of the entanglement,
which is defined as the expectation value 〈m2〉 of the square of the linking number m [8]. The
self-entanglements will of the individual polymers will be ignored.

The result will apply approximately to a polymer in an ensemble of many others, since these
may be considered roughly as a single very long effective polymer.

Consider two polymers running along the contours C1 and C2 which statistically can be linked
with each other any number of times m = 0, 1, 2, . . . . The situation is illustrated in Fig. 16.22 for
m = 2. The linking number (16.134) for these two polymers can be calculated with the help of

Figure 16.22 Closed polymers along the contours C1, C2 respectively.

a slight modification of the Chern-Simons action (16.153) and the couplings (16.152). We simply
introduce two vector potentials and the Euclidean action

Ae = Ae,CS12 + Ae,curr, (16.170)

where

Ae,CS12 = i

∫

d3xA1 · (∇×A2) (16.171)

and

Ae,curr = −i
∮

C1

dxA1(x) − i

∮

C2

dxA2(x). (16.172)

If we choose the gauge fields to be transverse, as in (16.160), we obtain with the same technique
as before the correlation functions of the gauge fields

Dµν
ab (x,x′) ≡ 〈Aµ

a(x)Aν
b (x′)〉, a, b = 1, 2 (16.173)
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are

Dij
11(x,x

′) = 0, Dij
22(x,x

′) = 0, (16.174)

Dij
12(x,x

′) = Dij
21(x,x

′) =

∫

d3p

(2π)3
eip(x−x′) iǫikjk

k

p2
=

1

4π
ǫikj∇k

1

|x− x′|

=
1

4π
ǫijκ

(x − x′)k

|x− x′|3 . (16.175)

The transverse gauge is enforced by adding to the action (16.171) a gauge-fixing term

AGF =
1

2α
[(∇ ·A1)

2 + (∇ ·A2)
2], (16.176)

and taking the limit α → 0 at the end. Extremizing the extended action produces the Gaussian
linking number −iG(C1, C2) of Eq. (16.134). The calculation is completely analogous to that
leading to Eq. (16.168).

The partition function of the two polymers and the gauge fields is given by the path integral

Z =

∫

C1

Dx1

∫

C2

Dx2

∫

DA1DA2e
−Ae−AGF . (16.177)

Performing the functional integral over the gauge fields, we obtain from the extremum

Z = const ×
∫

C1

Dx1

∫

C2

Dx2 e
iG(C1,C2), (16.178)

where the constant is the trivial fluctuation factor of the vector potentials. The Gaussian integral
G(C1, C2) has the values m = 0,±1,±2, . . . of the linking numbers.

In order to analyze the distribution of linking number in the two-polymer system we must be
able to fix a certain linking number. This is possible by replacing the phase factor eim in the path
integral (16.178) by eimλ, and calculating Z(κ). An integral

∫

dκe−imλZ(λ) will then select any
specific linking number m. But a phase factor eimλ is simply produced in the partition function
(16.178) by attaching to one of the current couplings in the interaction (16.172), say to that of C2,
a factor λ, thus changing (16.172) to

Ae,curr,λ = −i
∮

C1

dxA1(x) − iλ

∮

C2

dxA2(x). (16.179)

The λ-dependent partition function is then

Z(λ) =

∫

C1

Dx1

∫

C2

Dx2

∫

DA1DA2e
−Ae,CS12−Ae,curr,λ−AGF

= const ×
∫

C1

Dx1

∫

C2

Dx2 e
imλ. (16.180)

Ultimately, we want to find the probability distribution of the linking numbers m as a function
of the lengths of C1 and C2. The solution of this two-polymer problem may be considered as an
approximation to a more interesting physical problem in which a particular polymer is linked to
any number N of polymers, which are effectively replaced by a single long “effective” polymer [9].
Unfortunately, the full distribution of m is very hard to calculate. Only a calculation of the second
topological moment is possible with limited effort. This quantity is given by the expectation value
〈m2〉 of the square of the linking number m.

Let PL1,L2
(x1,x2;m) be the configurational probability to find the polymer C1 of length L1

with fixed coinciding endpoints at x1 and the polymer C2 of length L2 with fixed coinciding
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endpoints at x2, entangled with a Gaussian linking number m. The second moment 〈m2〉 is given
by the ratio of integrals

〈m2〉 =

∫

d3x1d
3x2

∫ +∞
−∞ dm m2PL1,L2

(x1,x2;m)
∫

d3x1d3x2
∫ +∞
−∞ dmPL1,L2

(x1,x2;m)
, (16.181)

performed for either of the two probabilities. The integrations in d3x1d
3x2 covers all positions of

the endpoints. The denominator plays the role of a partition function of the system:

Z ≡
∫

d3x1d
3x2

∫ +∞

−∞
dmPL1,L2

(x1,x2;m). (16.182)

Due to translational invariance of the system, the probabilities depend only on the differences
between the endpoint coordinates:

PL1,L2
(x1,x2;m) = PL1,L2

(x1 − x2;m). (16.183)

Thus, after the shift of variables, the spatial double integrals in (16.181) can be rewritten as
∫

d3x1d
3x2PL1,L2

(x1,x2;m) = V

∫

d3xPL1,L2
(x;m), (16.184)

where V denotes the total volume of the system.

16.8.1 Polymer Field Theory for Probabilities

The calculation of the path integral over all line configurations is conveniently done within the
polymer field theory developed in Section 15.12. It permits us to rewrite the partition function
(16.180) as a functional integral over two ψα1

1 (x1) and ψα2

2 (x2) with n1 and n2 replica (α1 =
1, . . . , n1, α2 = 1, . . . , n2). At the end we shall take n1, n2 → 0 to ensure that these fields describe
only one polymer each, es explained in Section 15.12. For these fields we define an auxiliary
probability P~z(~x1, ~x2;λ) to find the polymer C1 with open ends at x1,x

′
1 and the polymer C2 with

open ends at x2,x
′
2. The double vectors ~x1 ≡ (x1,x

′
1) and ~x2 ≡ (x2,x

′
2) collect initial and final

endpoints of the two polymers C1 and C2. The auxiliary probability P~z(~x1, ~x2;λ) is given by a
functional integral

P~z(~x1, ~x2;λ) = lim
n1,n2→0

∫

D(fields)ψαi

1 (x1)ψ
∗α1

1 (x′
1)ψ

α2

2 (x2)ψ
∗α2

2 (x′
2)e

−A, (16.185)

where D(fields) indicates the measure of functional integration, and A the total action (16.180)
governing the fluctuations. The expectation value is calculated for any fixed pair (α1, α2) of replica
labels, i.e., replica labels are not subject to Einstein’s summation convention of repeated indices.
The action A consists of kinetic terms for the fields, a quartic interaction of the fields to account for
the fact that two monomers of the polymers cannot occupy the same point, the so-called excluded-

volume effect , and a Chern-Simons field to describe the linking number m. Neglecting at first the
excluded-volume effect and focusing attention on the linking problem only, the action reads

A = ACS12 + Ae,curr + Apol + AGF, (16.186)

with a polymer field action

Apol =

2
∑

i=1

∫

d3x
[

|D̄iψi|2 +m2
i |Ψi|2

]

. (16.187)

They are coupled to the polymer fields by the covariant derivatives

Di = ∇ + iγiA
i, (16.188)
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with the coupling constants γ1,2 given by

γ1 = 1, γ2 = λ. (16.189)

The square masses of the polymer fields are given by

m2
i = 2Mzi. (16.190)

where M = 3/a, with a being the length of the polymer links [recall (15.79)], and zi the chemical
potentials of the polymers, measured in units of the temperature. The chemical potentials are
conjugate variables to the length parameters L1 and L2, respectively. The symbols Ψi collect the
replica of the two polymer fields

Ψi =
(

ψ1
i , . . . , ψ

ni

i

)

, (16.191)

and their absolute squares contain the sums over the replica

|DiΨ̄i|2 =

ni
∑

αi=1

|Diψαi

i |2, |Ψi|2 =

ni
∑

αi=1

|ψαi

i |2. (16.192)

Having specified the fields, we can now write down the measure of functional integration in
Eq. (16.185):

D(fields) =

∫

DAi
1DAj

2DΨ1DΨ∗
1DΨ2DΨ∗

2. (16.193)

By Eq. (16.180), the parameter λ is conjugate to the linking number m. We can therefore calculate
the probability PL1,L2

(~x1, ~x2;m) in which the two polymers are open with different endpoints from
the auxiliary one P~z(~x1, ~x2;λ) by the following Laplace integral over ~z = (z1, z1):

PL1,L2
(~x1, ~x2;m) = lim

x′

1
→x1

x′

2
→x2

∫ c+i∞

c−i∞

Mdz1
2πi

Mdz2
2πi

ez1L1+z2L2

∫ ∞

−∞
dke−imλP~z (~x1, ~x2;λ) .

(16.194)

16.8.2 Calculation of Partition Function

Let us use the polymer field theory to calculate the partition function (16.182). By Eq. (16.194),
it is given by the integral over the auxiliary probabilities

Z =

∫

d3x1d
3x2 lim

x′

1
→x1

x′

2
→x2

∫ c+∞

c−i∞

Mdz1
2πi

Mdz2
2πi

ez1L1+z2L2

∫ ∞

−∞
dm

∫ +∞

−∞
dλe−imλP~z (~x1, ~x2;λ) .

(16.195)

The integration over m is trivial and gives 2πδ(λ), enforcing λ = 0, so that

Z =

∫

d3x1d
3x2 lim

x′

1
→x1

x′

2
→x2

∫ c+i∞

c−i∞

Mdz1Mdz2
2πi

ez1L1+z2L2P~z (~x1, ~x2; 0) . (16.196)

To calculate P~z (~x1, ~x2; 0), we observe that the action A in Eq. (16.186) depends on λ only via the
polymer part (16.187), and is quadratic in λ. Let us expand A as

A = A0 + λA1 + λ2A2, (16.197)
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with the λ-independent part

A0 ≡ ACS12 + AGF +

∫

d3x

[

|D1Ψ1|2 + |∇Ψ2|2 +

2
∑

i=1

|Ψi|2
]

, (16.198)

a linear coefficient

A1 ≡
∫

d3x j2(x) ·A2(x) (16.199)

containing a pseudo-current of the second polymer field

j2(x) = iΨ∗
2(x)∇Ψ2(x), (16.200)

and a quadratic coefficient

A2 ≡ 1

4

∫

d3x A2
2|Ψ2(x)|2. (16.201)

With these definitions we write with the help of (16.198):

P~z (~x1, ~x2; 0) =

∫

D(fields)e−A0ψα1

1 (x1)ψ
∗α1

1 (x′
1)ψ

α2

2 (x2)ψ
α2

2 (x′). (16.202)

In the action (16.198), the fields Ψ2,Ψ
∗
2 are obviously free, whereas the fields Ψ1,Ψ

∗
1 are apparently

not because of the couplings with the Chern-Simons fields in the covariant derivative D1. This
coupling is, however, without physical consequences. Indeed, by integrating out Ai

2 in (16.202), we
find from ACS12 the flatness condition:

∇×A1 = 0. (16.203)

On a flat space with vanishing boundary conditions at infinity this implies A1 = 0. As a conse-
quence, the functional integral (16.202) factorizes as follows [compare (15.370)]

P~z (~x1, ~x2; 0) = G0(x1 − x′
1; z1)G0(x2 − x′

2; z2), (16.204)

where G0(xi − x′
i; zi) are the free correlation functions of the polymer fields:

G0(xi − x′
i; zi) = 〈ψαi

i (xi)ψ
∗αi

i (x′
i)〉. (16.205)

In momentum space, the correlation functions are

〈ψ̃αi

i (ki)ψ̃
∗αi

i (k′
i)〉 = δ(3)(ki − k′

i)
1

k2
i +m2

i

, (16.206)

such that

G0(xi − x′
i; zi) =

∫

d3k

(2π)3
eik·x

1

k2
i +m2

i

, (16.207)

and

G0(xi − x′
i;Li) =

∫ c+i∞

c−i∞

Mdzi
2πi

eziLiG0(xi − x′
i; zi)

=
1

2

(

M

4πLi

)3/2

e−M(xi−x′

i)/2Li . (16.208)
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The partition function (16.196) is then given by the integral

Z = 2π

∫

d3x1d
3x2 lim

x′

1
→x1

x′

2
→x2

G0(x1 − x′
1;L1)G0(x2 − x′

2;L2). (16.209)

The integrals at coinciding endpoints can easily be performed, yielding

Z =
2πM3V 2

(8π)3
(L1L2)

−3/2. (16.210)

It is important to realize that in Eq. (16.195) the limits of coinciding endpoints x′
i → xi and

the inverse Laplace transformations do not commute unless a proper renormalization scheme is
chosen to eliminate the divergences caused by the insertion of the composite operators |ψα(x)|2.
This can be seen for a single polymer. If we were to commuting the limit of coinciding endpoints
with the Laplace transform, we would obtain

∫ c+i∞

c−i∞

dz

2π
ezL lim

x′→x
G0(x− x′; z) =

∫ c+i∞

c−i∞

dz

2πi
ezLG0(0, z), (16.211)

where

G0(0; z) = 〈|ψ(x)|2〉. (16.212)

This expectation value, however, is linearly divergent:

〈|ψ(x)|2〉 =

∫

d3k

k2 +m2
→ ∞. (16.213)

16.8.3 Calculation of Numerator in Second Moment

Let us now turn to the numerator in Eq. (16.181):

N ≡
∫

d3x1d
3x2

∫ ∞

−∞
dm m2 PL1,L2

(x1,x2;m). (16.214)

We shall set up a functional integral for N in terms of the auxiliary probability P~z(~x1, ~x2; 0)
analogous to Eq. (16.195). First we observe that

N =

∫

d3x1d
3r2

∫ ∞

−∞
dm m2 lim

x′

1
→x1

x′

2
→x2

∫ cτ i∞

c−i∞

Mdzi
2πi

Mdz2
2πi

× ez1L1+z2L2

∫ ∞

−∞
dλe−imλP~z(~x1, ~x2;λ). (16.215)

The integration in m is easily performed after noting that

∫ ∞

−∞
dm m2e−imλP~z(~x1, ~x2;λ) = −

∫ ∞

−∞
dm

(

∂2

∂λ2
e−imλ

)

P~z(~x1, ~x2;λ). (16.216)

After two integrations by parts in λ, and an integration in m, we obtain

N =

∫

d3x1d
3x2 lim

x′

1
→x1

x′

2
→x2

(−1)

∫ c+i∞

c−i∞

Mdz1
2πi

Mdz2
2πi

ez1L1+z2L2

×
∫ ∞

−∞
dλ δ(λ)

[

∂2

∂λ2
P~z(~x1, ~x2;λ)

]

. (16.217)
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Performing the now the trivial integration over λ yields

N=

∫

d3x1d
3x2 lim

x′

1
→x1

x′

2
→x2

(−1)

∫ c+i∞

c−i∞

Mdz1
2πi

Mdz2
2πi

ez1L1+z2L2

[

∂2

∂λ2
P~z(~x1, ~x2; 0)

]

. (16.218)

To compute the term in brackets, we use again (16.197) and Eqs. (16.198)–(16.223), to find

N =

∫

d3x1d
3x2 lim

n1→0

n2→0

∫ c+i∞

c−i∞

Mdz1
2πi

Mdz2
2πi

ez1L1+z2L2

×
∫

D(fields) exp(−A0)|ψα1

1 (x1)|2|ψα2

2 (x2)|2

×
[

(∫

d3xA2 · Ψ∗
2∇Ψ2

)2

+
1

2

∫

d3xA2
2 |Ψ2|2

]

. (16.219)

In this equation we have taken the limits of coinciding endpoint inside the Laplace integral over
z1, z2. This will be justified later on the grounds that the potentially dangerous Feynman diagrams
containing the insertions of operations like |Ψi|2 vanish in the limit n1, n2 → 0.

In order to calculate (16.219), we decompose the action into a free part

A0
0 ≡ ACS +

∫

d3x

[

|D1Ψ1|2 + |∇Ψ2|2 +

2
∑

i=1

2|Ψi|2
]

, (16.220)

and interacting parts

A0
1 ≡

∫

d3x j1(x) ·A1(x), (16.221)

with a “current” of the first polymer field

j1(x) ≡ iΨ∗
1(x)∇Ψ1(x), (16.222)

and

A2
0 ≡ 1

4

∫

d3x A2
1|Ψ1(x)|2. (16.223)

Expanding the exponential

eA0 = eA
0
0+A1

0+A2
0 = eA0

[

1−A1
0+

(A1
0)

2

2
−A2

0+. . .

]

, (16.224)

and keeping only the relevant terms, the functional integral (16.219) can be rewritten as a purely
Gaussian expectation value

N = κ2
∫

d3x1d
3x2 lim

n1→0

n2→0

∫ c+i∞

c−i∞

Mdz1
2πi

Mdz2
2πi

ez1L1+z2L2

×
∫

D(fields) exp(−A0
0)|ψα1

1 (x1)|2|ψα2

2 (x2)|2

×
[

(∫

d3xA1 · Ψ∗
1∇Ψ1

)2

+
1

2

∫

d3xA2
1 |Ψ1|2

]

×
[

(∫

d3xA2 · Ψ∗
2∇Ψ2

)2

+
1

2

∫

d3xA2
2 |Ψ2|2

]

. (16.225)
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+ + +

Figure 16.23 Four diagrams contributing in Eq. (16.225). The lines indicate correlation

functions of Ψi-fields. The crossed circles with label i denote the insertion of |Ψi(xi)|2.

Note that the initially asymmetric treatment of polymers C1 and C2 in the action (16.187) has led
to a completely symmetric expression for the second moment.

Only four diagrams shown in Fig. 16.23 contribute in Eq. (16.225). The first diagram is
divergent due to the divergence of the loop formed by two vector correlation functions. This
infinity may be absorbed in the four-Ψ interaction accounting for the excluded volume effect which
we do not consider at the moment. We now calculate the four diagrams separately.

16.8.4 First Diagram in Fig. 16.23

From Eq. (16.225) one has to evaluate the following integral

N1 =
κ2

4
lim
n1→0

n2→0

∫ c+i∞

c−i∞

Mdz1
2πi

Mdz2
2πi

ez1L1+z2L2

∫

d3x1d
3x2

∫

d3x′1d
3x′2 (16.226)

×
〈

|ψα1

1 (x1)|2|ψα2

2 (x2)|2
(

|Ψ1|2A2
1

)

x′

1

(

|Ψ2|2A2
2

)

x′

2

〉

.

As mentioned before, there is an ultraviolet-divergent contribution which must be regularized. The
system has, of course, a microscopic scale, which is the size of the monomers. This, however, is not
the appropriate short-distance scale to be uses here. The model treats the polymers as random
chains. However, the monomers of a polymer in the laboratory are usually not freely movable, so
that polymers have a certain stiffness. This gives rise to a certain persistence length ξ0 over which
a polymer is stiff. This length scale is increased to ξ > ξ0 by the excluded-volume effects. This is
the length scale which should be used as a proper physical short-distance cutoff. We may impose
this cutoff by imagining the model as being defined on a simple cubic lattice of spacing ξ. This
would, of course, make analytical calculations quite difficult. Still, as we shall see, it is possible to
estimate the dependence of the integral N1 and the others in the physically relevant limit in which
the lengths of the polymers are much larger than the persistence length ξ.

An alternative and simpler regularization is based on cutting off all ultraviolet-divergent con-
tinuum integrals at distances smaller than ξ.

After such a regularization, the calculation of N1 is rather straightforward. Replacing the
expectation values by the Wick contractions corresponding to the first diagram in Fig. 16.23, and
performing the integrals as shown in Appendix 16A, we obtain

N1 =
V

4π

M4

(8π)6
(L1L2)

− 1
2

∫ 1

0

ds [(1 − s)s]−
3
2

∫

d3xe−Mx2/2s(1−s) (16.227)

×
∫ 1

0

dt [(1 − t)t]−
3
2

∫

d3ye−My2/2t(1−t)

∫

d3x′′1
1

|x′′
1 |4

.

The variables x and y have been rescaled with respect to the original ones in order to extract the
behavior of N1 in L1 and L2. As a consequence, the lattices where x and y are defined have now
spacings ξ/

√
L1 and ξ/

√
L2 respectively.
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The x,y integrals may be explicitly computed in the physical limit L1, L2 ≫ ξ, in which the
above spacings become small. Moreover, it is possible to approximate the integral in x′′

1 with an
integral over a continuous variable l and a cutoff in the ultraviolet region:

∫

d3x′′1
1

|x′′
1 |4

∼ 4π2

∫ ∞

ξ

dl

l2
. (16.228)

After these approximations, we finally obtain

N1 = V π1/2 M

(4π)3
(L1L2)

−1/2ξ−1. (16.229)

16.8.5 Second and Third Diagrams in Fig. 16.23

Here we have to calculate

N2 = κ2 lim
n1→0

n2→0

∫ c+i∞

c−i∞

Mdz1
2πi

Mdz2
2πi

ez1L1+z2L2

∫

d3x1d
3x2

∫

d3x′1d
3x′′1d

3x′2

×
〈

|ψα1

1 (x1)|2|ψα2

2 (x2)|2 (A1 ·Ψ∗
1∇Ψ1)x′

1
(A1 ·Ψ∗

1∇Ψ1)x′′

1

(

A2
2 |Ψ2|2

)

x′

2

〉

. (16.230)

The above amplitude has no ultraviolet divergence, so that no regularization is required. The Wick
contractions pictured in the second Feynman diagrams of Fig. 16.23 lead to the integral

N2 = −4
√

2V L
−1/2
2 L−1

1

M3

π6

∫ 1

0

dt

∫ t

0

dt′C(t, t′), (16.231)

where C(t, t′) is a function independent of L1 and L2:

C(t, t′) = [(1 − t)t′(t− t′)]
−3/2

∫

d3xd3yd3ze−M(y−x)2/2(1−t)

×
(

∇
j
ye

−My2/2t′
)(

∇
i
xe

−Mx2/2(t−t′)
) [δijz · (z + x) − (z + x)i zj]

|z|3|z + x|3 . (16.232)

As in the previous section, the variables x,y, z have been rescaled with respect to the original ones
in order to extract the behavior in L1.

If the polymer lengths are much larger than the persistence length one can ignore the fact that
the monomers have a finite size and it is possible to compute C(t, t′) analytically, leading to

N2 = −V L
−1/2
2 L−1

1

(2π)6
M3/2 4K, (16.233)

where K is the constant

K ≡ 1

6
B

(

3

2
,
1

2

)

+
1

2
B

(

5

2
,
1

2

)

−B

(

7

2
,
1

2

)

+
1

3
B

(

9

2
,
1

2

)

=
19π

384
≈ 0.154, (16.234)

and B(a, b) = Γ(a)Γ(b)/Γ(a+ b) is the Beta function. For large L1 → ∞, this diagram gives a
negligible contribution with respect to N1.

The third diagram in Fig. 16.23 give the same as the second, except that L1 and L2 are
interchanged.

N3 = N2|L1↔L2
. (16.235)
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16.8.6 Fourth Diagram in Fig. 16.23

Here we have the integral

N4 = −4κ2
1

2
lim
n1→0

n2→0

∫ c+i∞

c−i∞

Mdz1
2πi

Mdz2
2πi

ez1L1+z2L2

∫

d3x1d
3x2

∫

d3x′1d
3x′2d

3x′′1d
3x′′2

×
〈

|ψα1

1 (x1)|2|ψ2(x
α2

2 )|2(A1 ·Ψ∗
1∇Ψ1)x′

1
(A1 ·Ψ∗

1∇Ψ1)x′′

1

× (A2 ·Ψ∗
2∇Ψ2)x′

2
(A2 · Ψ∗

2∇Ψ2)x′′

2

〉

, (16.236)

which has no ultraviolet divergence. After some analytic effort we find

N4 = − 1

16

M5V

(2π)11
(L1L2)

−1/2

∫ 1

0

ds

∫ s

0

ds′
∫ 1

0

dt

∫ t

0

dt′C(s, s′, t, t′), (16.237)

where

C(s, s′; t, t′) = [(1 − s)s′(s− s′)]
−3/2

[(1 − t)t′(t− t′)]
−3/2

×
∫

d3p

(2π)3

[

ǫikα
pα

p2
ǫjlβ

pβ

p2
+ ǫilα

pα

p2
ǫjkβ

pβ

p2

]

(16.238)

×
[∫

d3x′d3y′e−i
√
L1p(x′−y′)e−Mx′2/2(1−s)

(

∇
j
y′e

−My′2/2t′
)(

∇
i
x′e−M(x−y)2/2(s−s′)

)]

×
[∫

d3u′d3v′e−i
√
L2p(u′−v′)e−Mv′2/2(1−t)

(

∇
l
u′e−Mu

′2/2t′
)(

∇
k
v′e−M(u′−v

′)2/2(t−t′)
)]

,

and x′,y′ are scaled variables. To take into account the finite persistence length, they should be
defined on a lattice with spacing ξ/

√
L1. Similarly, u′,v′ should be considered on a lattice with

spacing ξ/
√
L2. Without performing the space integrations d3x′d3y′d3u′d3v′, the behavior of N4

as a function of the polymer lengths can be easily estimated in the following limits:

1. L1 ≫ 1;L1 ≫ L2

N4 ∝ L−1
1 (16.239)

2. L2 ≫ 1;L2 ≫ L1

N4 ∝ L−1
2 (16.240)

3. L1, L2 ≫ 1, L2/L1 = α = finite

N4 ∝ L
−3/2
1 . (16.241)

Moreover, if the lengths of the polymers are considerably larger than the persistence length,
the function C(s, s′, t, t′) can be computed in a closed form:

N4 ≈ −128V

π5

M

π3/2
(L1L2)

−1/2

∫ 1

0

ds

∫ 1

0

dt(1 − s)(1 − t)(st)1/2

× [L1t(1 − s) + L2(1 − t)s]
−1/2

. (16.242)

It is simple to check that this expression has exactly the above behaviors.
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16.8.7 Second Topological Moment

Collecting all contributions we obtain the result for the second topological moment:

〈m2〉 =
N1 +N2 +N3 +N4

Z
, (16.243)

with N1, N2, N3, N4, Z given by Eqs. (16.210), (16.229), (16.233), (16.235), and (16.231).
In all formulas, we have assumed that the volume V of the system is much larger than the size

of the volume occupied by a single polymer, i.e., V ≫ L3
1

To discuss the physical content of the result (16.232), we assume C2 to be a long effective
polymer representing all polymers in a uniform solution. We introduce the polymer concentration
l as the average mass density of the polymers per unit volume:

l =
M

V
, (16.244)

where M is the total mass of the polymers

M =

Np
∑

i=1

ma
Lk

a
. (16.245)

Here ma is the mass of a single monomer of length a, Lk is the length of polymer Ck, and Np is
the total number of polymers. Thus Lk/a is the number of monomers in the polymer Ck. The
polymer C1 is singled out as any of the polymers Ck, say Ck̄, of length L1 = Lk̄. The remaining
ones are replaced by a long effective polymer C2 of length L2 = σk 6=k̄Lk. From the above relations
we may also write

L2 ≈ aV l

ma
. (16.246)

In this way, the length of the effective molecule C2 is expressed in terms of physical parameters, the
concentration of polymers, the monomer length, and the mass and volume of the system. Inserting
(16.246) into (16.232), with N1, N2, N3, N4, Z given by Eqs. (16.210), (16.229), (16.233), (16.235),
and (16.231). and keeping only the leading terms for V ≫ 1, we find for the second topological
moment 〈m2〉 the approximation

〈m2〉 ≈ N1 +N2

Z
, (16.247)

and this has the approximate form

〈m2〉 =
al

ma

[

ξ−1Li

2π1/2M2
− 2KL

1/2
1

π4M3/2

]

, (16.248)

with K of (16.234).
Thus we have succeeded in setting up a topological field theory to describe two fluctuating

polymers C1 and C2, and calculated the second topological moment for the linking number m
between C1 and C2. The result is used as an approximation for the second moment for a single
polymer with respect to all others in a solution of many polymers.

An interesting remaining problem is to calculate the effect of the excluded volume.

16.9 Chern-Simons Theory of Statistical Interaction

The Chern-Simons theory (16.153) together with the coupling (16.152) generates
the desired topological interaction corresponding to the Gaussian integral between
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pairs of curves C and C ′. We now demonstrate that this topological interaction is
the same as the statistical interaction introduced in Eq. (7.279) and encountered
again in (16.26), where it governed the physics of a charged particle running around
a magnetic flux tube. This observation will make the Gaussian integral and thus
the Chern-Simons action relevant for the description of the statistical properties
of nonrelativistic particle orbits. In contrast to the electromagnetic generation of
fractional statistics for particle orbits in Section 16.2 via the Aharonov-Bohm effect,
the field theory involving the statisto-magnetic vector potential has the advantage of
removing the asymmetry between the particles, of which one had to carry a charge,
the other one a magnetic flux. An arbitrary number of identical particle orbits
can now be endowed with a fractional statistics, the same that was produced by
topological interaction (7.279).

To prove the equality between the two topological interactions in two space and
one time dimension, consider an electron in a plane encircling an infinitely thin
magnetic “flux tube” at the origin (the word flux tube stands between quotation
marks since the “tube” is only a point in the two-dimensional space). In a Euclidean
spacetime, the worldline of the electron C winds itself around the straight “flux tube”
C ′ along the τ -axis. For this geometry, the integral over C ′ in (16.134) can easily

be done using the formula
∫∞
−∞ dt/

√
t2 + d2

3
= 2. The result is

G(C,C ′) =
1

2π

∫

dτ ẋ(τ)∇ϕ(x(τ)) =
1

2π

∫

dτ ϕ̇(x(τ)), (16.249)

where ϕ(x(τ)) denotes the azimuthal angle of the electron with respect to the “flux
tube” at the time τ

Up to a factor 2π, the expression (16.249) agrees with the statistical interaction
in (16.26) and (7.279). In two space and one time dimension, the behavior under
particle exchange can be assigned to an amplitude at will by adding to the Euclidean
action a Gaussian integral with a suitable prefactor. A phase factor eiθ is produced
by the exchange when choosing the following Euclidean action-at-a-distance:

Ae,int = i2h̄θG(C,C ′). (16.250)

This topological interaction is generated by the Chern-Simons action

Ae,CS =
1

4θh̄i

∫

d3xA · (∇×A). (16.251)

The phase angle θ is related to the former parameter µ0 of the statistical interactions
(16.26) and (7.279) by

θ = πµ0. (16.252)

For µ0 = ±1,±3,±5, . . . , the particle orbits have Fermi statistics; for µ0 =
0,±2,±4, . . . , they have Bose statistics. Fractional values of µ0 lead to fractional
statistics. In contrast to the magnetic generation of fractional statistics, the Chern-
Simons mechanism applies to any number of particle orbits. By one of the methods
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discussed after Eq. (16.169) it must, however, be assured that the Gaussian “self-
energy” does not render any undesirable nontopological contributions.

To maintain the analogy with the magnetic interactions as far as possible, we
write the Chern-Simons action for a gas of electrons in the form

Ae,CS =
1

4πi

e2

c2h̄µ0

∫

d3xA× (∇×A), (16.253)

and the coupling of the statisto-magnetic vector potential to the particle orbits as

Ae,curr = −ie
c

∮

C
dxA(x)− i

e

c

∮

C′
dxA(x). (16.254)

This looks precisely like the Euclidean coupling of an ordinary vector potential to
electrons. For an arbitrary number of orbits we define the Euclidean two-dimensional
current density

j(x) ≡ ec
∑

α

∮

Cα

dxα δ
(3)(x− xα) (16.255)

and write the interaction (16.254) as

Ae,curr = −i 1
c2

∫

d3x j(x)A(x). (16.256)

The curl of the vector potential

B ≡ ∇×A (16.257)

is referred to as a statisto-magnetic field . By varying (16.253) plus (16.256) with
respect to A(x), we obtain the field equation

B(x) = µ0
2πh̄c

e2
j(x). (16.258)

With the help of the elementary flux quantum Φ0, this can also be written as

B(x) = µ0Φ0
1

e
j(x). (16.259)

To apply the above formulas, we must transform them from the three-dimensional
Euclidean spacetime to the Minkowski space, where the curves Cα become particle
orbits in two space dimensions whose coordinates x⊥ = (x, y) are functions of the
time t. Specifically, we substitute the three coordinates (x1, x2, x3) as follows:

(x1, x2) → x⊥ ≡ (x, y),

x3 → ix0 ≡ ict.
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The Euclidean field components A1,2,3 go over into the Minkowskian statisto-electric
potentialφ and two spatial components Ax,y. The three fields B1,2,3 turn into the
Minkowskian statisto-electric fields Ey, Ex and a statisto-magnetic field Bz:

A3 = iφ = iA0, A1 = Ax, A2 = Ay,

B3 = iBz, B1 = −iEy, B2 = iEx. (16.260)

The Euclidean currents become, up to a factor i, the two-dimensional charge and
current densities:

j3 = ij0 = icρ(x⊥), ρ(x) ≡ e
∑

α

δ(2)(x⊥ − x⊥α),

j1 = ijx(x⊥) = e
∑

α

ẋαδ
(2)(x⊥ − x⊥α),

j2 = ijy(x⊥) = e
∑

α

ẏαδ
(2)(x⊥ − x⊥α), (16.261)

where ρ is the particle density per unit area. The motion of a particle in an external
field φ,Ax, Ay is then governed by the interaction

Aint =
∫

dtd2x
[

ρφ− 1

c
(jxAx + jxAy)

]

. (16.262)

Conversely, particles with fractional statistics in a 2+1-dimensional spacetime
generate Minkowskian statisto-electromagnetic fields following the equations

Bz = µ0Φ0ρ, Ex = µ0Φ0
1

c
jy, Ey = µ0Φ0

1

c
jx. (16.263)

The electromagnetic normalization in Eq. (16.262) has the advantage that a
charged particle cannot distinguish a statisto-magnetic field from a true magnetic
field. This property forms the basis for a simple interpretation of the fractional
quantum Hall effect as will be seen in Section 18.9.

16.10 Second-Quantized Anyon Fields

After the developments in Chapter 7, we should expect that the phase factor eiµ0π,
appearing in the path integral upon exchanging the endpoints of two anyonic orbits,
can also be found in a second-quantized operator formulation. To verify this, we
consider a free Bose field with the action (7.286) and couple it with a statisto-
electromagnetic field subject to a Chern-Simons action. The resulting free anyon
action reads

Aanyon = ACS +Aboson, (16.264)

where

Aboson =
∫

d2x
∫ tb

ta
dt

{

ψ∗(x, t)
[

ih̄
(

∂t + i
e

h̄
φ(x, t)

)

+ µ
]

ψ(x, t)

− h̄2

2M

∣

∣

∣

∣

[

∇− i
e

h̄c
A(x, t)

]

ψ(x, t)
∣

∣

∣

∣

2
}

. (16.265)
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The latter corresponds to the action (7.286) in the continuum limit with the deriva-
tives replaced by covariant derivatives according to the usual minimal substitution
rule (2.644):

p0 → p0 −
e

c
φ, p → p− e

c
A. (16.266)

The first field equation in (16.263) now reads

Bz(x, t) = µ0Φ0ψ
†(x, t)ψ(x, t), (16.267)

so that the vector potential satisfies the differential equation

∂xAy(x, t)− ∂yAx(x, t) = µ0Φ0ψ
†(x, t)ψ(x, t). (16.268)

It determines (Ax, Ay) up to the gauge freedom (∂xΛ, ∂yΛ), where Λ(x, t) is an
arbitrary single-valued function satisfying Schwarz’ integrability condition

(∂x∂y − ∂y∂x)Λ(x, t) = 0. (16.269)

In the present case, it is useful to allow for a violation of this condition by searching
for a multivalued function α(x, t) whose gradient is equal to a given vector potential:

(Ax, Ay) = (∂xα, ∂yα). (16.270)

This function must obey the differential equation (recall the discussion in Ap-
pendix 10A)

(∂x∂y − ∂y∂x)α(x, t) = µ0
2πh̄c

e
ψ†(x, t)ψ(x, t). (16.271)

The Green function of this differential equation, which is the elementary building
block for the construction of all multivalued functions in two dimensions, is the
function used before in Eq. (16.249) [see also (10A.30)]:

ϕ(x− x′) ≡ arctan[(y − y′)/(x− x′)]. (16.272)

It gives the angle between the vectors x and x′ and violates the Schwarz integrability
condition at the points where the vectors coincide [recall (10A.33)]:

(∂x∂y − ∂y∂x)ϕ(x− x′) = 2πδ(2)(x− x′). (16.273)

To satisfy this equation, the cut of the arctan in the complex plane must be avoided,
which is always possible by deforming it appropriately. The function ϕ(x− x′) has
the important property

ϕ(x− x′)− ϕ(x′ − x) = π. (16.274)

In the two terms on the left-hand side, the point x′ is moved around the point x in
the anticlockwise sense.
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With the help of the multivalued Green function (16.272) we find immediately
the solution of Eq. (16.271):

α(x, t) = µ0
h̄c

e

∫

d2xϕ(x− x′)ψ†(x, t)ψ(x, t). (16.275)

The relation (16.270) permits the elimination of the statisto-magnetic field from the
action. Actually, this statement is true in general. One can always multiply the
fields ψ(x, t) by a phase factor

exp
[

−i e
h̄c

∫ x

dx′A(x′, t)
]

,

where the contour integral is taken to x from any fixed point along some fixed path.
In front of the transformed field

Ψ(x, t) = e−i(e/h̄c)
∫

x

dx′A(x′,t)ψ(x, t), (16.276)

the covariant derivatives

Diψ(x, t) = (∂i − i
e

h̄c
Ai)ψ(x, t) (16.277)

become ordinary derivatives ∂i. Unfortunately, the new field Ψ(x, t) depends on
the vector potential in a complicated nonlocal way so that this transformation is in
general not worthwhile. In the present case, however, the equation of motion for
the vector potential is so simple that the transformation can be done explicitly. In
fact, the nonlocality has precisely the desired property of changing the statistics of
the fields from Bose statistics to any statistics.

We show this by considering the field operators ψ̂(x, t) which are canonically
quantized according to Eq. (7.294). In the continuum limit they satisfy the commu-
tation rules

[ψ̂(x, t), ψ̂†(x′, t)] = δ(2)(x− x′),

[ψ̂†(x, t), ψ̂†(x′, t)] = 0, (16.278)

[ψ̂(x, t), ψ̂(x′, t)] = 0.

The transformed field operators satisfy the corresponding commutation rules mod-
ified by a phase factor eiµ0π:

ψ̂(x, t)ψ̂†(x′, t)− eiπµ0ψ̂†(x′, t)ψ̂(x, t) = δ(2)(x− x′),

ψ̂†(x, t)ψ̂†(x′, t)− eiπµ0ψ̂†(x′, t)ψ̂†(x, t) = 0, (16.279)

ψ̂(x, t)ψ̂(x′, t)− eiπµ0 ψ̂(x′, t)ψ̂(x, t), = 0.

As in (16.274), the vector x′ on the left-hand side has to be carried around x in
the anticlockwise sense. Using the relation (16.270), the integral in the prefactor of
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(16.276) can immediately be performed and the transformed fields are simply given
by

ψ̃(x, t) = e−i
e
h̄c
α(x,t)ψ(x, t), ψ̃†(x, t) = ψ(x, t)ei

e
h̄c
α(x,t). (16.280)

The same relations hold for the second-quantized field operators. This makes it
quite simple to prove the commutation rules (16.279). We do this here only for the
second rule which controls the behavior of the many-body wave functions under the
exchange of any two-particle coordinates:

ψ̂†(x, t)ψ̂†(x′, t)− eiπµ0 ψ̂†(x′, t)ψ̂†(x, t) = 0.

This amounts to the relation

ψ̂†(x, t)ei
e
h̄c
α̂(x,t)ψ̂†(x′, t)ei

e
h̄c
α̂(x′,t) = eiπµ0 ψ̂†(x′, t)ei

e
h̄c
α̂(x′,t)ψ̂†(x, t)ei

e
h̄c
α̂(x,t). (16.281)

The phase factors in the middle can be taken to the right-hand side by using the
transformation formula

ei
∫

d2x′f(x′,t)ψ̂†(x,t)ψ̂(x,t)ψ̂†(x, t)e−i
∫

d2x′f(x′,t)ψ̂†(x,t)ψ̂(x,t) = eif(x,t)ψ̂†(x, t), (16.282)

which follows from the Lie expansion [recall (1.297)]

eiÂB̂e−iÂ = 1 + i[Â, B̂] +
i2

2!
[Â, [Â, B̂]] + . . . . (16.283)

Setting f(x) equal to µ0ϕ(x− x′), Eq. (16.281) goes over into

ψ̂†(x, t)ψ̂†(x′, t)eiµ0ϕ(x−x′)ei
e
h̄c

[α̂(x,t)+α̂(x′,t)]

= eiπµ0ψ̂†(x′, t)ψ̂†(x, t)eiµ0ϕ(x
′−x)ei

e
h̄c

[α̂(x′,t)+α̂(x,t)] . (16.284)

The correctness of this equation follows directly from the property (16.274) of the
ϕ(x) field and from the commutativity of the Bose fields ψ†(x, t) with each other.
This proves the second of the anyon commutation rules (16.279). The others are
obtained similarly.

Note that we could just as well have constructed the anyon fields from Fermi
fields by shifting the exchange phase by an angle π.

16.11 Fractional Quantum Hall Effect

If particles obeying fractional statistics move in an ordinary magnetic field, they
are also subject to a statisto-magnetic field . As observed earlier, this acts upon
each particle in the same way as an additional true magnetic field. This observation
provides a key for the understanding of the fractional quantum Hall effect . The
arguments will now be sketched.

To measure the effect experimentally, a thin slab of conducting material (the
original experiment used the compound AlxGa1−xAs) is placed at low temperatures
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(≈ 0.5 K) in the xy-plane traversed by a strong magnetic field Bz (between 10 and
200 kG) along the z-axis. An electric field Ex is applied in the x-direction and an
electric Hall current jy per length unit is measured in the y-direction. Such a current
is expected in a dissipative electron gas with a number density (per unit area) ρ,
where the fields satisfy the relation

Ex = − 1

ρec
jyBz (16.285)

(see Appendix 16E). The transverse resistance defined by

Rxy ≡
Bz

ρec
(16.286)

rises linearly in Bz. Its dimension is sec/cm. In contrast with this naive expectation,
the experimental data for Rxy rise stepwise with a number of plateaus whose resis-
tance take the values h/e2ν, where ν is a rational number with odd denominators:

ν = 1
5 ,

2
7 ,

1
3 ,

2
5 ,

2
3 , . . . . (16.287)

We have omitted the observed number ν = 5
2 since its theoretical explanation re-

quires additional physical considerations (see the references at the end of the chap-
ter).

Similar plateaus had been observed at integer values of ν. Those are explained
as follows.

In an ideal Fermi liquid at zero temperature, the electron orbits have energies
p2/2M . Their momenta fill a Fermi sphere of radius pF . The size of pF is determined
from the particle number per unit area ρ via the phase space integral

ρLxLy = 2×
∫

dpxdpyLxLy
(2πh̄)2

, (16.288)

where Lx and Ly are the lengths of the rectangular layered material in the x- and
y-directions. The factor 2 accounts for the two spin orientations. The rotationally
invariant integration up to pF yields

pF =
√

2πρh̄. (16.289)

By switching on a magnetic field Bz, the rotational invariance is destroyed and
the electrons circle with a velocity v = ωr on Landau orbits around the z-direction
with the cyclotron frequency ω = eB/Mc. In quantum mechanics, the system corre-
sponds to an ensemble of harmonic oscillators which in the gauge A = (0, Bx, 0) [see
Eq. (9.93)] move back and forth in the x-direction and have a spectrum (n+1/2)h̄ω
[see Eq. (9.100)]. The phase space integral in the x-direction

∫

dpxLx/(2πh̄) be-
comes therefore a sum over n. The center of oscillations is x0 = py/Mω [see
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Eq. (9.95)], so that the remaining phase space integral
∫

dpyLy/(2πh̄) can be in-
tegrated to MωLx/(2πh̄). Thus (16.288) gives, for each spin orientation,

ρ =Mω
1

2πh̄

nF
∑

n=0

. (16.290)

The number of filled levels is ν = nF + 1. In the vacuum, the levels of one ori-
entation are degenerate with those of the opposite orientation at a neighboring n
(up to radiative corrections of the order α ≈ 1/137). This is due to the anoma-
lous magnetic moment of the spin-1/2 electron being equal to one Bohr magneton
µB = eh̄/2Mc ≈ 0.927× 10−20erg/gauss (i.e., twice as large as classically expected,
the factor 2 being caused by the relativistic Thomas precession). Due to the factor
2, the energy levels for the two orientations are split by ωh̄, which is precisely equal
to the energy difference between levels of neighboring n. In a solid material, how-
ever, the anomalous magnetic moment is strongly renormalized and the degeneracy
is removed. There, every level has a definite spin orientation.

According to Eq. (16.290), the highest level is occupied completely if each level
has taken up a particle number corresponding to its maximal filling density

ρmax =
Mω

2πh̄
. (16.291)

At smaller magnetic fields, this density is small and the electrons are spread over
many levels whose number ν is given by

ρ =
Mω

2πh̄
ν. (16.292)

Expressing ω in terms of Bz leads to

Bz

ρ
=
hc

e

1

ν
. (16.293)

Using the flux quantum Φ0 = hc/e, this equation states that the magnetic flux per
electron

Φ ≡ Bz

ρ
(16.294)

has the value

Φ

Φ0

=
1

ν
. (16.295)

If the magnetic field is increased, the Landau levels can accommodate more electrons
which then reside in a decreasing number ν of levels. By inserting into Eq. (16.286)
the values of Bz at which the highest level becomes depleted, one obtains precisely
the experimentally observed quantized Hall resistances

Rxy =
h

e2
1

ν
(16.296)
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Figure 16.24 Values of parameter ν, at which plateaus in fractional quantum Hall

resistance h/e2ν are expected theoretically. The right-hand side shows the values

νeff/(2mνeff + 1), the left-hand side νeff/(2mνeff − 1). The full circles indicate the values

found experimentally.

with integer values of ν. The assumption of a statisto-magnetic interaction makes it
possible to explain the fractional quantum Hall effect by reducing it to the ordinary
quantum Hall effect.

In the fractional quantum Hall effect, the magnetic field is so strong that even
the lowest Landau level is only partially filled. This is why one did not expect any
plateaus at all. According to a simple idea due to Jain, however, it is possible to
relate the fractional plateaus to the integer plateaus. For this one assumes that
the electrons in the ground state of the fractional quantum Hall effect carry an
even statisto-magnetic flux −2mΦ0 due to the presence of a Chern-Simons action.
For the wave function, this amounts to a statistical phase factor ei2πm under the
exchange of two particle coordinates; it leaves the Fermi statistics of the electrons
unchanged. Now one takes advantage of the observation made in the last section that
the electrons cannot distinguish a statisto-magnetic field from an external magnetic
field. They move in Landau orbits enforced by the combined field

Beff
z = Bz − Bstat

z , Bstat
z = 2mΦ0ρ. (16.297)

The cyclotron frequency of the electrons in their Landau orbits is

ωeff = eBeff
z /Mc. (16.298)

Since the effective field is now much smaller than the external field, the Landau
levels possess a greatly reduced capacity. Thus the electrons must be distributed
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over several levels in spite of the large magnetic field. The number decreases as the
field grows further. The steps appear at those places where the effective magnetic
field has its integer quantum Hall plateaus, i.e., at the effective magnetic fields

Beff
z = ±ρΦ0/ν

eff , νeff = 1, 2, 3, . . . . (16.299)

The values of νeff are related to the ν-values of the external magnetic field as follows:

± 1

νeff
=

1

ν
− 2m. (16.300)

From this one has

ν =
νeff

2mνeff ± 1
. (16.301)

The resulting values of ν on the integer-valued plane spanned by the numbers m
and νeff are shown in Fig. 16.24. Only odd denominators are allowed. The values of
ν found by this simple hypothesis agree well with those of the lower experimental
levels (16.287).

16.12 Anyonic Superconductivity

At the end of Section 16.3 we have mentioned that an ensemble of particles with
fractional statistics in 2+1 spacetime dimensions exhibits Meissner screening. This
has given rise to speculations that the presently poorly understood phenomenon of
high-temperature superconductivity may be explained by anyons physics. The new
kind of superconductivity is observed in materials which contain pronounced layer
structures, and it is conceivable that the currents move in these two-dimensional
subspaces without dissipation. With some effort it can indeed be shown that in 2+1
dimensions a Chern-Simons action may be generated in principle10 by integrating
out Fermi fields. Accepting this, we can easily derive that an addition of this action
to the usual electromagnetic field action gives the magnetic field a finite range, i.e.,
a finite penetration depth. The usual electromagnetic action reads

A =
1

8π

∫

dtd3x[E2 − (∇×A)2], (16.302)

where E is the electric field

E = −1

c

∂A

∂t
−∇A0. (16.303)

In the Euclidean formulation with x4 = ict, the action becomes

Ae =
1

8πc

∫

d4x[E2 + (∇×A)2]. (16.304)

10See Notes and References at the end of the chapter.
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To add the Chern-Simons action, we restrict the spacetime dimensionality to 3.
The restriction is imposed by considering a system in 4 spacetime dimensions and
assuming it to be translationally invariant along the fourth coordinate direction x4.
Then there are no electric fields, and the Euclidean action becomes

Ae =
L

8πc

∫

d3x(∇×A)2, (16.305)

where L denotes the length of the system in the x4-direction. To this, we now add
the Chern-Simons action (16.253) and the current coupling (16.256). By extremizing
the total action, we obtain the field equation:

L

4πc
∇× (∇×A) + i

e2

2πc2h̄µ0
∇×A = i

1

c2
j. (16.306)

For the magnetic field B = ∇×A, the equation reads

L

4πc
(∇×B+ iλ−1B) = i

1

c2
j, (16.307)

where the parameter λ denotes the following length (α = e2/h̄c = fine-structure
constant ≈ 1/137):

λ ≡ ch̄µ0

2e2
L =

µ0

2α
L. (16.308)

By multiplying (16.307) vectorially with ∇ and using the equation once more, we
obtain

L

4πc
(−∇

2 + λ−2)B = i
1

c2
∇× j+

1

c2
λ−1j . (16.309)

In the current-free case, the magnetic field is seen to have only a finite penetration
depth λ into the material. In an ordinary superconductor, this phenomenon is
known as the Meissner effect . There it can be understood as a consequence of the
induction of supercurrents in an ideal (i.e., incompressible and frictionless) liquid of
charged particles, which lowers the invading magnetic field according to Lenz’ rule.
In the absence of friction, there is a complete extinction.

Recall that a superconductor with time-dependent currents and fields is governed
by the characteristic London equation (see Appendix 16D)

∇× j ∝ B. (16.310)

For a two-dimensional superconductor, this amounts to

(∇× j⊥)z ∝ Bz. (16.311)

The above anyonic system shows a similar induction phenomenon. In the absence
of currents, Eq. (16.309) determines the magnetic field Bz from the particle density
by

Bz = µ0Φ0ρ. (16.312)
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If there are currents in the xy-plane j⊥ = (jx, jy), the magnetic field is increased by
∆Bz in accordance with the equation

L

4πc
(−∇

2 + λ−2)∆Bz =
1

c2
(∇× j⊥)z. (16.313)

This is the desired relation between the magnetic field and the curl of the current
which indicates the superconducting character of the system expressed before in the
London equation (16.311). The contact with the London equation is established by
a restriction to smooth field configurations in which the first term in (16.313) can
be ignored.

Thus we conclude that the currents and magnetic fields in a two-dimensional
system of anyons show Meissner screening. This is not sufficient to make the system
superconductive since it does not automatically imply the absence of dissipation. In
a usual superconductor, the existence of an energy gap makes the dissipative part of
the current-current correlation function vanish for wave vectors smaller than some
value kc. This value determines the critical current strength above which super-
conductivity returns to normal. In the anyonic system, the absence of dissipation
was proved in an approximation. Recent studies of higher corrections, however,
have shown the presence of dissipation after all, destroying the hope for an anyonic
superconductor.

16.13 Non-Abelian Chern-Simons Theory

The topological field interaction (16.153) can be generalized to nonabelian gauge
groups. For the local symmetry group SU(N) it reads

Ae,CS =
k

4πi

∫

d3xǫijktrN

(

Ai∇jAk +
2

3
AiAjAk

)

, (16.314)

where Ai are Hermitian traceless N × N -matrices and tr N denotes the associated
trace. In the nonabelian theory, the gauge transformations are

Ai ↔ UAiU
−1 + i(∂iU)U

−1. (16.315)

It can be shown that they transform Ae,CS as follows [10]:

Ae,CS → Ae,CS + 2πinkh̄, n = integer. (16.316)

Thus, the action is not completely gauge-invariant. For integer values of k, however,
the additional 2πinkh̄ does not have any effect upon the phase factor e−Ae,CS/h̄ in the
path integral associated with the orbital fluctuations. Thus there is gauge invariance
for integer values of k (in contrast to the abelian case where k is arbitrary).

In the nonabelian theory, gauge fixing is a nontrivial issue. It is no longer possible
to simply add a gauge fixing functional of the type (16.163). The reason is that the
volume in the field space of gauge transformations depends on the gauge field. For
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a consistent gauge fixing, this volume has to be divided out of the gauge-fixing
functional as was first shown by Fadeev and Popov [11]. For an adequate discussion
of this interesting topic which lies beyond the scope of this quantum-mechanical text
the reader is referred to books on quantum field theory.

As in the abelian case, the functional derivative of the Chern-Simons action with
respect to the vector potential gives the field strength

Bi ≡ ǫijkFjk, (16.317)

where Fij is the nonabelian version of the curl:

Fij ≡ ∂iAj − ∂jAi − i[Ai, Aj]. (16.318)

In 1989, Witten found an important result: The expectation value of a gauge-
invariant integral defined for any loop L,

WL[A] ≡ trNŴ [A] ≡ trN P̂ e
i
∮

L
dxA, (16.319)

the so-called Wilson loop integral , possesses a close relationship with the Jones poly-
nomials of knot theory. The loop L can consist of several components linked in an
arbitrary way, in which case the integral in WL[A] runs successively over all compo-
nents. The operator P̂ in front of the exponential function denotes the path-ordering
operator . It is defined in analogy with the time-ordering operator T̂ in (1.241): If
the exponential function in (16.319) is expanded into a Taylor series, it specifies the
order in which the N ×N -matricesAi(x), which do not commute for different x and
i, appear in the products. If the path is labeled by a “time parameter”, the earlier
matrices stand to the right of the later ones. The fluctuations of the vector potential
are controlled by the Chern-Simons action (16.314). Expectation values of the loop
integrals are defined by the functional integral

〈WL[A]〉 ≡
∫ DAie−Ae,CS/h̄WL[A]

∫ DAie−Ae,CS/h̄
. (16.320)

To calculate the self-interaction of a loop, we proceed as described in the abelian
case after Eq. (16.169) by spreading the line out into an infinitely thin ribbon of
parallel lines. The borders of the ribbon are positioned in such a way that their
linking number Lk vanishes. If 0 denotes a circle, i.e., a trivial knot, one can show
that

〈W0[A]〉 = qN/2 − q−N/2

q1/2 − q−1/2
, (16.321)

with

q ≡ e−2πi/(N+k). (16.322)

For an arbitrary link L one finds the skein relation (see Appendix 16C)

qN/2〈WL+ [A]〉 − q−N/2〈WL−[A]〉 = (q1/2 − q−1/2)〈WL0 [A]〉. (16.323)
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If N = 2, this agrees up to the sign of the right-hand side with the relation (16.114)
for the Jones polynomials JL(t). For general values of N 6= 2, we obviously obtain
with t = q−N/2 and α = q1/2 − q−1/2 = −(t1/N − t−1/N ) the skein relations (16.122)
of the HOMFLY polynomials. The important relation is

〈WL[A]〉
〈W0[A]〉 = HL(t,−(t1/N − t−1/N )), t = eπi/k. (16.324)

Since the second variable in HL(t, α) appears only in even or odd powers,
HL(t,−(t1/2 − t−1/2)) is a Jones polynomial up to a sign (−1)s+1, where s is the
number of loops in L.

A favored choice of framing is one in which the self-linking number Lk of each
component is equal to the twist number or writhe w introduced in Eq. (16.110).
Then the ribbon lies flat on the projection plane of the knot. This framing can easily
be drawn on the blackboard by splitting the line L into two parallel running lines;
it is therefore called the blackboard framing . Incidentally, each choice of framing
can be drawn as a blackboard framing if one adds to the loop L an appropriate
number of windings via a Reidemeister move of type I. These are trivial for lines
and nontrivial only for ribbons (see Fig. 16.6). In the blackboard framing, each such
winding changes the values Lk and w simultaneously by one unit. Thus Lk = w can
be brought to any desired value. Take, for example, the trefoil knot in Fig. 16.2. In
the blackboard framing it has the self-linking number Lk = w = −3. This can be
brought to zero by adding three windings via a Reidemeister move of type I.11

In the framing Lk = w, the right-hand side of (16.324) carries an extra phase
factor cw, where

c = e−i2π(N
2−1)/2Nk. (16.325)

For comparison: In the abelian Chern-Simons theory, the phase factor is c =
e−2πi/k, and the expectation 〈WL[A]〉 has the value cΣi6=jLkij for a link of several
loops labeled by i with vanishing individual self-linking numbers Lki. In the framing
Lki = wi, the value is cΣi6=jLkij+Σiwi.

The investigation of the properties of loops with nonabelian topological interac-
tions is an interesting task of present-day research.

Appendix 16A Calculation of Feynman Diagrams in
Polymer Entanglement

For the calculation of the amplitudes N1, . . . , N4 in Eqs. (16.226), (16.230), (16.235), and (16.236),
we need the following simple tensor formulas involving two completely antisymmetric tensors εijl:

εijkε
imn = δmj δ

n
k − δnj δ

m
k , εijkε

ijl = 2δlk. (16A.1)

The Feynman diagrams shown in Fig. 16.23 corresponds to integrals over products of the polymer
correlation functions G0 defined in Eq. (16.213), which have to be integrated over space and

11Mathematicians usually prefer another framing in which the ribbons lie flat on the so-called
Seifert surfaces .
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Laplace transformed. For the latter we make use of the convolution property of the integral over
two Laplace transforms f̃(z) and g̃(z) of the functions f, g:

∫ c+i∞

c−i∞

Mdz

2πi
ezLf̃(z)g̃(z) =

∫ L

0

dsf(s)g(L− S). (16A.2)

All spatial integrals are Gaussian of the form
∫

d3xe−ax2+2bx·y = (2π)3/2a−3/2eb
2y2/a, a > 0. (16A.3)

Contracting the fields in Eq. (16.226), and keeping only the contributions which do not vanish in
the limit of zero replica indices, we find with the help of Eqs. (16A.1) and (16A.2):

N1 =

∫

d3x1, d
3x2

∫ L1

0

ds

∫ L2

0

dt

∫

d3x′1d
3x′2G0(x1−x′

1; s)G0(x
′
1 − x1;L1 − s)

× G0(x2 − x′
2; t)G0(x

′
2 − x2;L2 − t)

l

|x′
1 − x′

2|4
. (16A.4)

Performing the changes of variables

s′ =
s

L1
, t′ =

t

L2
, x =

x1 − x′
1√

L1

, y =
x2 − x′

2√
L2

, (16A.5)

and setting x′′
1 ≡ x′

1 − x′
2, we easily derive (16.227).

For small ξ/
√
L1 and ξ/

√
L2, we use the approximation (16.228). The space integrals can be

done using the formula (16A.3). After some work we obtain the result (16.240).
For the amplitude N2 in Eq. (16.230) we obtain likewise the integral

N2 =

∫

d3x1d
3x2

∫

d3x′1d
3x′′1d

3x′2

×
[

∫ L1

0

ds

∫ S

0

ds′G0(x
′
1 − x1;L1 − s) ∇

j
x′′

1

G0(x1 − x′′
1 ; s′)∇i

x′

1
G0(x

′′
1 − x′

1; s− s′)
]

× Dik(x
′
1 − x2)Djk(x′′

1 − x′
2)

[

∫ L2

0

dtG0(x2 − x′
2;L2 − t)G0(x

′
2 − x2; t)

]

, (16A.6)

whereDij(x,x
′) are the correlation functions (16.174) and (16.175) of the vector potentials. Setting

x2 ≡
√
L2u + x′

2 and supposing that ξ/
√
L2 is small, the integral over u can be easily evaluated

with the help of the Gaussian integral (16A.3). After the substitutions x′′
1 =

√
L1y + x1 x′

1 =√
L1(y−x)+x1, x′

2 =
√
L1(y−x− z)+x1 and a rescaling of the variables s, s′ by a factor L−1

1 ,
we derive Eq. (16.231) with (16.232).

For small ξ/
√
L1, ξ/

√
L2, the spatial integrals are easily evaluated leading to:

N2 =
−
√

2V L
−1/2
2 L−1

1 M−1/2

(4n)6

∫ 1

0

dt

∫ t

0

dt′t′(1 − t)

√

t− t′

1 − t+ t′
. (16A.7)

After the change of variable t′ → t′′ = t − t′, the double integral is reduced to a sum of integrals
the type

c(n,m) =

∫ 1

0

dttm
∫ t

0

dt′t′n
√

t′

1 − t′
, m, n = integers .

These can be simplified by replacing tm by dtm+1/dt(m+ 1), and doing the integrals by parts. In
this way, we end up with a linear combination of integrals of the form:

∫ 1

0

dt
tκ+

1
2

√
1 − t

= B

(

κ+
3

2
,
1

2

)

. (16A.8)

The calculations of N3 and N4 are very similar, and are therefore omitted.
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Appendix 16B Kauffman and BLM/Ho Polynomials

The Kauffman polynomials are given by F (a, x) = a−wΛ(a, x), where w is the writhe and Λ(a, x)
satisfies the skein relation

ΛL+
(a, x) + ΛL−

(a, x) = x[ΛL0
(a, x) + ΛL∞

(a, x)]. (16B.1)

The subscripts refer to the same loop configurations as in Figs. 16.10 and 16.12. The trivial loop
has

Λ(a, x) =
a+ a−1

z
− 1. (16B.2)

While the Kauffman polynomial is a knot invariant, the Λ-polynomial is only a ribbon invariant.12

If a winding LT+ or LT− is removed from a loop with the help of a Reidemeister move of type I
in Fig. 16.6 (which for infinitely thin lines would be trivial while changing the writhe of a ribbon
by one unit) then Λ(a, x) receives a factor a or a−1, respectively (see Fig. 16.25).

LT+ LT0 LT− LT0

= a × = a−1 ×

Figure 16.25 Trivial windings LT+ and LT−. Their removal by means of Reidemeister

move of type I decreases or increases writhe w by one unit.

The Kauffman polynomials arise from Wilson loop integrals of a nonabelian Chern-Simons
theory, if the action (16.314) is SO(N)- rather than SU(N)-symmetric. A list of these polynomials
can be found in papers by Lickorish and Millet and by Doll and Hoste quoted at the end of the
chapter.

The BLM/Ho polynomials are special cases of the Kauffman polynomials. The relation between
them is Q(x) ≡ F (1, x).

Appendix 16C Skein Relation between Wilson Loop
Integrals

Here we sketch the derivation of the skein relation (16.323) for the expectation values of Wilson’s
loop integrals (16.319). Let us decompose Ai in terms of the N2 − 1 generators Ta of the group
SO(N):

Ai =
∑

a

Aa
i Ta. (16C.1)

They satisfy the commutation rules

[Ta, Tb] = ifabcTc. (16C.2)

12More precisely, F (a, x) is invariant under the three Reidemeister moves which, in the projected
picture of the knot in Fig. 16.6, define the ambient isotopy, whereas Λ changes under the first
Reidemeister move, associated only with regular isotopy. whereas
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For simplicity, we assume k to be very large so that we can restrict the treatment to the lowest
order in 1/k. To avoid inessential factors of the constants e, c, h̄, we set these equal to 1. Under a
small variation of the fields one has

δŴL[A]

δAa
i (x)

= iP̂

∫

L

dx′iδ
(3)(x− x′)Ta(x

′)ŴL[A], (16C.3)

where the path-ordering operator P̂ arranges the expression to its right in such a way that Ta is
situated in ŴL at the correct path-ordered place. To emphasize this, we have recorded the position
of Ta by means of an x-argument. More precisely, if we discretize the loop integral and write

ŴL[A] = eiAi(x̄
1)∆x1

i eiAi(x̄
2)∆x2

i · · · eiAi(x̄
n)∆xn

i · · · , (16C.4)

where x̄n are the midpoints of the intervals ∆xn, a differentiation with respect to one of the
Ai(x̄

n)-fields replaces the associated factor eiAi(x̄n)∆xn
i by iTae

iAi(x̄
n)∆xn

i . With the δ-function on
a line L defined in Eq. (10A.8), we write (16C.3) as

δŴL[A]

δAa
i (x)

= iP̂ δi(x, L)Ta(x)ŴL[A]. (16C.5)

For simplicity, we assume x to be only once traversed by the loop L.
If the shape of the loop is deformed infinitesimally by dSi = ǫijkdxid

′xj , then ŴL changes by

δŴL = idxid
′xjP̂F

a
ij(x)Ta(x)ŴL, (16C.6)

where F a
ij are the N2 − 1 components of the nonabelian field strengths

Fij = ∂iAj − ∂jAi − i[Ai, Aj ] (16C.7)

and x the midpoints of the parallelograms spanned by dx and d′x. The derivation of Eq. (16C.6)
is based on the observation that a change of the path by a small parallelogram adds to the line
integral ŴL a factor Ŵ , which is a Wilson loop integral around the small parallelogram. The

latter is evaluated as follows:

Ŵ = eiAi(x−d′x/2)dxieiAj(x+dx/2)d′xje−iAi(x+d′x/2)dxie−iAj(x−dx/2)d′xj

= ei[Ai(x)dxi−∂jAi(x)dxid
′xj+...]ei[Aj(x)d

′xj+∂iAj(x)dxid
′xj+...]

× e−i[Ai(x)dxi+∂jAi(x)dxid
′xj+...]e−i[Aj(x)d

′xj−∂iAj(x)dxid
′xj+...]

= eiFij(x)dxid
′xj . (16C.8)

The last line is found with the help of the Baker-Hausdorff formula eAeB = eA+B+[A,B]/2+... (recall
Appendix 2A).

Let us denote the Chern-Simons functional integral over ŴL[A] by ŴL. Their N ×N -traces
are WL[A] and W̄L. The latter differs from the expectation 〈WL[A]〉 in (16.320) by not containing
the normalizing denominator, i.e.,

WL ≡
∫

DAe−Ae,CSWL[A]. (16C.9)

This changes under the loop deformation by

δWL =

∫

DAδWL[A]e−Ae,CS

= idxid
′xj

∫

DAF a
ij(x)Ta(x)WL[A]e−Ae,CS , (16C.10)
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with the tacit agreement that a generator Ta(x) written in front of the trace has to be evaluated
within the trace at the correct path-ordered position. Now we observe that F a

ij can also be obtained
by applying a functional derivative to the Chern-Simons action (16.314):

i
4π

k
ǫijk

δAe,CS

δAa
k(x)

= F a
ij(x). (16C.11)

This allows us to rewrite (16C.10) as

−4π

k

∫

DA

∫

dSi
δAe,CS

δAa
i (x)

Ta(x)WL[A]e−Ae,CS

and further as
4π

k

∫

DAdSiTa(x)WL
δ

δAa
i (x)

e−Ae,CS .

A partial functional integration produces

−4π

k

∫

DA

∫

dSiTa(x)
δWL[A]

δAa
i (x)

e−Ae,CS ,

which brings the variation to the form

δWL = −4πi

k

∫

DAdSiδi(x, L)Ta(x)Ta(x)WL[A]e−Ae,CS . (16C.12)

The expectation of Wilson’s loop integral WL changes under a deformation only if the loop crosses
another line element. This property makes WL a ribbon invariant, i.e., an invariant of regular
isotopy.

For a finite deformation, the right-hand side has to be integrated over the area S across which
the line has swept. Using the integral formula

∫

S

dSiδi(x, L) =

{

1
0

}

if the line L

{

pierces S
misses S

}

, (16C.13)

we obtain for each crossing

WL+
−WL−

≡ ∆WL = −4πi

k

∫

DATa(x)Ta(x)WL[A]e−Ae,CS . (16C.14)

The two generators Ta(x) lie path-ordered on the different line pieces of the crossing. To establish
contact with the knot polynomials, the left-hand sides have been labeled by the loop subscripts
L+ and L− appearing in the skein relations of Eq. 16.114.

The product of the generators on the right-hand side is the Casimir operator of the N × N
-representation of SO(N):

(Ta)αβ(Ta)γδ =
1

2
δαδδβγ − 1

2N
δαβδγδ. (16C.15)

When inserted into Eq. (16C.14), we obtain the graphical relation:

.

The second graph on the right-hand side can be decomposed into
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2

.

Taking these two terms to the left-hand side of (16C.14), we obtain the skein relation

(

1 − πi

Nk

)

WL+
−
(

1 +
πi

Nk

)

WL−
= −2πi

k
WL0

. (16C.16)

We now apply this relation to the windings displayed in Fig. 16.25. They decompose into a
line and a circle. Due to the trace operation in WL0

, the circle contributes a factor N . Thus we
obtain the relation

(

1 − πi

Nk

)

WLT+
−
(

1 +
πi

Nk

)

WLT−
= −2πi

k
N WLT0

. (16C.17)

Now we remove on the left-hand side the windings according to the graphical rules of Fig. 16.25.
Under this operation, the Wilson loop integral is not invariant. Like BLM/Ho polynomials, it
acquires a factor a or a−1:

WLT+
= aWLT0

, WLT−
= a−1WLT0

. (16C.18)

To be compatible with (16C.17), the parameter a must satisfy

a = 1 − πi

Nk
(N2 − 1), a−1 = 1 +

πi

Nk
(N2 − 1). (16C.19)

Due to (16C.18), the Wilson loop integral is only a ribbon invariant exhibiting regular isotopy. A
proper knot invariant which distinguishes ambient isotopy classes arises when multiplying WL by
a−w. The polynomials HL ≡ e−wWL satisfy the skein relation

[(

1 − πi

Nk

)

a

]

HL+
−
[(

1 +
πi

Nk

)

a−1

]

HL−
= −2πi

k
HL0

. (16C.20)

The prefactors on the left-hand side can be written for large k as 1 − 2πiN/k ≈ qN/2 and 1 +
2πiN/k ≈ q−N/2 with q = 1 − 2πiπ/k. The prefactor on the right-hand side is equal to q1/2 −
q−1/2. To leading order in 1/k, we have thus derived the skein relation (16.323) for the HOMFLY
polynomials HL.

Appendix 16D London Equations

Consider an ideal fluid of charged particles. By definition, it is non-viscous and incompressible,
satisfying ∇ ·v = 0. If the charge of the particles is e (which we take to be negative for electrons),
the electric current density is

j = ρev, (16D.1)

where ρ is the particle density. The current is obviously conserved.
The equation of motion of the particles in an electric and magnetic field is governed by the

Lorentz force and reads

M v̇ = e

(

E +
1

c
v ×B

)

. (16D.2)
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Using the kinematic identity

dv

dt
=
∂v

∂t
+ (v ·∇)v =

∂v

∂t
+ ∇

(

1

2
v2

)

− v × (∇ × v), (16D.3)

this leads to the partial differential equation for the velocity field v(x, t)

M
∂v

∂t
+ ∇

(

M

2
v2

)

= eE +Mv ·
(

∇× v +
e

Mc
B
)

. (16D.4)

Consider the time dependence of the vector field on the right-hand side

X = ∇× v +
e

Mc
B. (16D.5)

Using Maxwell’s equation

∂

∂t
B = −c∇×E, (16D.6)

we derive

∂

∂t
X = ∇× (∇ ×X). (16D.7)

Suppose now that there is initially no B-field in the ideal fluid at rest which therefore has X ≡ 0
everywhere. If a magnetic field is turned on, Eq. (16D.7) guarantees that X remains zero at all
times. This implies that

∇× j = − ρe2

Mc
B, (16D.8)

which is the first London equation. By inserting the first London equation into Eq. (16D.4), we
find the second London equation

∂

∂t
v + ∇

(

M

2
v2

)

= eE. (16D.9)

If the vector potential is taken in the transverse gauge ∇ ·A = 0 (which in this context is also
called London gauge), then the first London equation can be solved and yields

j = − ρe2

Mc
A. (16D.10)

By inserting this equation into the Maxwell equation with no electric field E, we obtain

∇×B =
4π

c
j = −ρ4πe

2

Mc2
A. (16D.11)

When rewritten in the form

∇× (∇×A) + λ−2A = 0, (16D.12)

with

λ−2 =
ρ4πe2

Mc2
, (16D.13)

the equation exhibits directly the finite penetration depth λ of a magnetic field into the fluid,
the celebrated Meissner effect. It is the ideal manifestation of the Lenz rule, according to which
an incoming magnetic field induces currents reducing the magnetic field — in the present case to
extinction.
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Appendix 16E Hall Effect in Electron Gas

A gas of electrons with a density ρ carries an electric current

j = ρev. (16E.1)

In a magnetic field, the particle velocities change due to the Lorentz force by

M v̇ = e

(

E +
1

c
v ×B

)

. (16E.2)

If σ0 denotes the conductivity of the system without a magnetic field, the electric current is
obviously given by

j = σ0

(

E +
1

c
v ×B

)

= σ0

(

E +
1

ρec
j×B

)

. (16E.3)

The second term shows the classical Hall resistance (16.286).
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So many paths, that wind and wind,

While just the art of being kind

Is all the sad world needs
Ella Wilcox (1855-1919), The World’s Needs

17

Tunneling

Tunneling processes govern the decay of metastable atomic and nuclear states, as
well as the transition of overheated or undercooled thermodynamic phases to a
stable equilibrium phase. Path integrals are an important tool for describing these
processes theoretically. For high tunneling barriers, the decay proceeds slowly and
its properties can usually be explained by a semiclassical expansion of a simple
model path integral. By combining this expansion with the variational methods of
Chapter 5, it is possible to extend the range of applications far into the regime of
low barriers.

In this chapter we present a novel theory of tunneling through high and low
barriers and discuss several typical examples in detail. A useful fundamental appli-
cation arises in the context of perturbation theory since the large-order behavior of
perturbation expansions is governed by semiclassical tunneling processes. Here the
new theory is used to calculate perturbation coefficients to any order with a high
degree of accuracy.

17.1 Double-Well Potential

A simple model system for tunneling processes is the symmetric double-well potential
of Eq. (5.78). It may be rewritten in the form

V (x) =
ω2

8a2
(x− a)2(x+ a)2, (17.1)

which exhibits the two degenerate symmetric minima at x = ±a (see Fig. 17.1).
The coupling strength is

g = ω2/2a2. (17.2)

Near the minima, the potential looks approximately like a harmonic oscillator po-
tential V±(x) = ω2(x∓ a)2/2:

V (x) =
ω2

2
(x∓ a)2

(

1± x∓ a

a
+ . . .

)

≡ V±(x) + ∆V±(x) + . . . . (17.3)
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Figure 17.1 Plot of symmetric double-well potential V (x) = (x− a)2(x + a)2ω2/8a2 for

ω = 1 and a = 1.

The height of the potential barrier at the center is

Vmax =
(ωa)2

8
. (17.4)

In the limit a → ∞ at a fixed frequency ω, the barrier height becomes infinite and
the system decomposes into a sum of two independent harmonic-oscillator potentials
widely separated from each other. Correspondingly, the wave functions of the system
should tend to two separate sets of oscillator wave functions

ψn(∆x±) →
(

ω

πh̄

)1/4 1

2n/2
√
n!
e−ω(∆x±)2/2h̄Hn(∆x±

√

ω/h̄), (17.5)

where the quantities

∆x± ≡ x± a (17.6)

measure the distances of the point x from the respective minima.
A similar separation occurs in the time evolution amplitude which decomposes

into the sum of the amplitudes of the individual oscillators

(xbtb|xata)
a→∞−−−→ (xbtb|xata)− + (xbtb|xata)+ (17.7)

≡
∫

Dx(t) exp
{

i

h̄

∫ tb

ta
dt
1

2
[ẋ2 − ω2(x+ a)2]

}

+ (a→ −a).

For convenience, we have assumed a unit particle mass M = 1 in the Lagrangian of
the system:

L =
ẋ2

2
− V (x). (17.8)
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If a is no longer infinite, a particle in either of the two oscillator wells has a
nonvanishing amplitude for tunneling through the barrier to the other well, and the
wave functions of the right- and left-hand oscillators are mixed with each other.
Since the action is symmetric under the mirror reflection x → −x, the solutions of
the Schrödinger equation

Ĥψ(x, t) = H(−i∂x, x)ψ(x, t) = ih̄∂tψ(x, t), (17.9)

with the Hamiltonian

H(p, x) =
p2

2
+ V (x), (17.10)

can be separated into symmetric and antisymmetric wave functions. As usual, the
symmetric states have a lower energy than the antisymmetric ones since a smaller
number of nodes implies less kinetic energy for the particles.

If the distance parameter a is very large, then, to leading order in a → ∞, the
lowest two wave functions coincide approximately with the symmetric and antisym-
metric combinations of the harmonic-oscillator wave functions

ψs,a ≈
1√
2
[ψ0(x− a)± ψ0(x+ a)]. (17.11)

Due to tunneling, the lowest two energies show some deviation from the harmonic
ground state value

E(0)
s,a =

1

2
h̄ω +∆E(0)

s,a . (17.12)

At a large distance parameter a, this deviation is very small. In quantum mechan-
ics, the level shifts ∆Es,a can be calculated in lowest-order perturbation theory by
inserting the approximate wave functions (17.11) into the formula

∆Es,a =
∫

dxψs,aĤψs,a. (17.13)

Since the wave functions ψ0(x ± a) of the individual potential wells fall off expo-
nentially like e−x

2/2 at large x, the level shifts ∆Es,a are exponentially small in the
square distance a2.

In this chapter we derive the level shifts ∆Es,∆Ea and the related tunneling
amplitudes from the path integral of the system. For large a, this will be relatively
simple since we can have recourse to the semiclassical approximation developed in
Chapter 4 which becomes exact in the limit a → ∞. As long as we are interested
only in the lowest two states, the problem can immediately be simplified. We take
the spectral representation of the amplitude

(xbtb|xata) =
∫

Dx(t)e(i/h̄)
∫ tb
ta
dt[ẋ2/2−V (x)]

=
∑

n

ψn(xb)ψn(xa)e
−iEn(tb−ta)/h̄ (17.14)
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to imaginary times ta,b → τa,b = ∓iL/2, where it becomes

(xb L/2|xa − L/2) =
∫

Dx(τ)e−(1/h̄)
∫ L/2

−L/2
dτ [x′2/2+V (x)]

(17.15)

=
∑

n

ψn(xb)ψn(xa)e
−EnL/h̄,

with the notation x′(τ) ≡ dx(τ)/dτ . In the limit of large L, the spectral sum
(17.15) is obviously most sensitive to the lowest energies, the contributions of the
higher energies En being suppressed exponentially. Thus, to calculate the small
level shifts of the two lowest states, ∆Es,a, we have only to find the leading and
subleading exponential behaviors. Since the wave functions are largest close to the
bottoms of the double well at x ∼ ±a, we may consider the amplitudes with the
initial and final positions xa and xb lying precisely at the bottoms, once on the same
side of the potential barrier,

(a L/2|a − L/2) = (−a L/2| −a −L/2), (17.16)

and once on the opposite sides

(a L/2| −a −L/2) = (−a L/2|a −L/2). (17.17)

For these amplitudes we now calculate the semiclassical approximation in the limit
L→ ∞. The results will lead to level shift formula in Section 17.7.

17.2 Classical Solutions —— Kinks and Antikinks

According to Chapter 4, the leading exponential behavior of the semiclassical ap-
proximation is obtained from the classical solutions to the path integral. The fluc-
tuation factor requires the calculation of the quadratic fluctuation correction. The
result has the form

∑

class. solutions

exp{−Acl/h̄} × F , (17.18)

where Acl denotes the action of each classical solution and F the fluctuation factor.

The amplitude (17.16), which contains the bottom of the same well on either
side, is dominated by a trivial classical solution which remains all the time at the
same bottom:

x(τ) ≡ ±a. (17.19)

Classical solutions exist also for the other amplitudes (17.17) which connect the
different bottoms at −a and a. These solutions cross the barrier and read, in the
limit L→ ∞,

x(τ) = x±cl(τ) ≡ ±a tanh[ω(τ − τ0)/2], (17.20)
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Figure 17.2 Classical kink solution (solid curve) in double-well potential (short-dashed

curve with units marked on the lower half of the vertical axis). The solution connects the

two degenerate maxima in the reversed potential. The long-dashed curve shows a solution

which starts out at a maximum and slides down into the adjacent abyss.

with an arbitrary parameter τ0 specifying the point on the imaginary time axis where
the crossing takes place. The crossing takes place within a time of the order of 2/ω.
For large positive and negative τ , the solution approaches ±a exponentially (see
Fig. 17.2). Alluding to their shape, the solutions x±cl(τ) are called kink and antikink

solutions, respectively.1

To derive these solutions, consider the equation of motion in real time,

ẍ(t) = −V ′(x(t)), (17.21)

where V ′(x) ≡ dV (x)/dx. In the Euclidean version with τ = −it, this reads

x′′(τ) = V ′(x(τ)). (17.22)

Since the differential equation is of second order, there is merely a sign change in
front of the potential with respect to the real-time differential equation (17.21). The
Euclidean equation of motion corresponds therefore to a usual equation of motion
of a point particle in real time, whose potential is turned upside down with respect
to Fig. 17.1. This is illustrated in Fig. 17.3. The reversed potential allows obviously
for a classical solution which starts out at x = −a for τ → −∞ and arrives at
x = a for τ → +∞. The particle needs an infinite time to leave the initial potential
mountain and to climb up to the top of the final one. The movement through the
central valley proceeds within the finite time ≈ 2/ω. If the particle does not start

1In field-theoretic literature, such solutions are also referred to as instanton or anti-instanton
solutions, since the valley is crossed within a short time interval. See the references quoted at the
end of the chapter.
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−V (x)

x

Figure 17.3 Reversed double-well potential governing motion of position x as function

of imaginary time τ .

its movement exactly at the top but slightly displaced towards the valley, say at
x = −a+ ǫ, it will reach x = a− ǫ after a finite time, then return to x = −a+ ǫ, and
oscillate back and forth forever. In the limit ǫ→ 0, the period of oscillation goes to
infinity and only a single crossing of the valley remains.

To calculate this movement, the differential equation (17.22) is integrated once
after multiplying it by x′ = dx/dτ and rewriting it as

1

2

d

dτ
x′2 =

d

dτ
V (x(τ)). (17.23)

The integration gives

x′2

2
+ [−V (x(τ))] = const . (17.24)

If τ is reinterpreted as the physical time, this is the law of energy conservation

for the motion in the reversed potential −V (x). Thus we identify the integration
constant in (17.24) as the total energy E in the reversed potential:

const ≡ E. (17.25)

Integrating (17.24) further gives

τ − τ0 = ± 1√
2

∫ x(τ)

x(τ0)

dx
√

E + V (x)
. (17.26)

A look at the potential in Fig. 17.3 shows that an orbit starting out with the particle
at rest for τ → −∞ must have E = 0. Inserting the explicit potential (17.1) into
(17.26), we obtain for |x| < a

τ − τ0 = ±2a

ω

∫ x

0

dx′

(a− x′)(x′ + a)
= ± 1

ω
log

a+ x

a− x
(17.27)

= ± 2

ω
arctanh

x

a
.
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Thus we find the kink and antikink solutions crossing the barrier:

xcl(τ) = ±a tanh[(τ − τ0)ω/2]. (17.28)

The Euclidean action of such a classical object can be calculated as follows [using
(17.24) and (17.25)]:

Acl =
∫ ∞

−∞
dτ

[

x′cl
2

2
+ V (xcl(τ))

]

=
∫ ∞

−∞
dτ(x′2cl − E)

= −EL+
∫ a

−a
dx
√

2[E + V (x)]. (17.29)

The kink has E = 0, so that

√

2[E + V (x)] =
ω

2a
(a2 − x2), (17.30)

and the classical action becomes

Acl =
ω

2a

∫ a

−a
dx(a2 − x2) =

2

3
a2ω =

ω3

3g
. (17.31)

Note that for E = 0, the classical action is also given by the integral

Acl =
∫ ∞

−∞
dτ x′cl

2. (17.32)

There are also solutions starting out at the top of either mountain and sliding
down into the adjacent exterior abyss, for instance (see again Fig. 17.3)

τ − τ0 = ∓2a

ω

∫ ∞

x

dx′

(x′ − a)(x′ + a)
= ± 1

ω
log

x+ a

x− a
(17.33)

= ± 2

ω
arccoth

x

a
.

However, these solutions cannot connect the bottoms of the double well with each
other and will not be considered further.

Being in the possession of the classical solutions (17.19) and (17.28) with a finite
action, we are now ready to write down the classical contributions to the amplitudes
(17.16) and (17.17). According to the semiclassical formula (17.18), they are

(a L/2|a − L/2) = 1× Fω(L) (17.34)

and

(a L/2| − a − L/2) = e−Acl/h̄ × Fcl(L). (17.35)

The factor 1 in (17.34) emphasizes the vanishing action of the trivial classical solution
(17.19). The exponential e−Acl/h̄ contains the action of the kink solutions (17.28).
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The degeneracy of the solutions in τ0 is accounted for by the fluctuation factor
Fcl(L), as will be shown below.

Actually, the classical kink and antikink solutions (17.28) do not occur exactly
in (17.35) since they reach the well bottoms at x = ±a only at infinite Euclidean
times τ → ±∞. For the amplitude to be calculated we need solutions for which x
is equal to ±a at large but finite values τ = ±L/2. Fortunately, the error can be
ignored since for large L the kink and antikink solutions approach ±a exponentially
fast. As a consequence the action of a proper solution which would reach ±a at
a finite L differs from the action Acl only by terms which tend to zero like e−ωL.
Since we shall ultimately be interested only in the large-L limit we can neglect such
exponentially small deviations.

In the following section we determine the fluctuation factors Fcl.

17.3 Quadratic Fluctuations

The semiclassical limit includes the effects of the quadratic fluctuations. These are
obtained after approximating the potential around each minimum by a harmonic
potential and keeping only the lowest term in the expansion (17.3). The fluctuation
factor of a pure harmonic oscillator of frequency ω and unit mass has been calculated
in Section 2.3 with the result

Fω(L) =

√

ω

2πh̄ sinhωL
∼
√

ω

πh̄
e−ωL/2 +O(e−3ωL/2). (17.36)

The leading exponential at large L displays the ground state energy ω/2, while the
corrections contain all information on the exited states whose energy is (n + 1/2)ω
with n = 1, 2, 3, . . . .

Note that according to the spectral representation of the amplitude (17.15), the

factor
√

ω/πh̄ in (17.36) must be equal to the square of the ground state wave

function Ψ0(∆x±) at the potential minimum. This agrees with (17.5).
Consider now the fluctuation factor of a single kink contribution. It is given by

the path integral over the fluctuations y(τ) ≡ δx(τ)

Fcl(L) =
∫

Dy(τ)e−(1/h̄)
∫ L/2

−L/2
dτ(1/2)[y′2+V

′′
(xcl(τ))y

2]
, (17.37)

where xcl(τ) is the kink solution, and y(τ) vanishes at the endpoints:

y(L/2) = y(−L/2) = 0. (17.38)

Suppose for the moment that L = ∞. Then the kink solution is given by (17.28)
and we obtain the fluctuation potential

V
′′

(xcl(τ)) =
3

2

ω2

a2
x2cl(τ)−

1

2
ω2 = ω2

(

3

2
tanh2[ω(τ − τ0)/2]−

1

2

)

= ω2

(

1− 3

2

1

cosh2[ω(τ − τ0)/2]

)

. (17.39)
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Figure 17.4 Potential (17.41) for quadratic fluctuations around kink solution (17.28) in

Schrödinger equation. The dashed lines indicate the bound states at energies 0 and 3ω2/4.

Thus, the quadratic fluctuations are governed by the Euclidean action

A0
fl =

∫ L/2

−L/2
dτ

1

2

[

y′2 + ω2

(

1− 3

2

1

cosh2[ω(τ − τ0)/2]

)

y2
]

. (17.40)

The rules for doing a functional integral with a quadratic exponent were explained in
Chapter 2. The paths y(τ) are expanded in terms of eigenfunctions of the differential
equation

[

− d2

dτ 2
+ ω2

(

1− 3

2

1

cosh2[ω(τ − τ0)/2]

)]

yn(τ) = λnyn(τ), (17.41)

with λn being the eigenvalues. This is a Schrödinger equation for a particle moving
along the τ -axis in an attractive potential well of the Rosen-Morse type [compare
(14.135) and see Fig. 17.4]:ref(14.135)

lab(14.124)
est(14.158)

V (τ) = ω2

(

1− 3

2

1

cosh2[ω(τ − τ0)/2]

)

. (17.42)

The eigenfunctions yn(τ) satisfy the usual orthonormality condition

∫ ∞

−∞
dτyn(τ)yn′(τ) = δnn′. (17.43)

Given a complete set of these solutions yn(τ) with n = 0, 1, 2, . . . , we now perform
the normal-mode expansion

yξ0,ξ1,...(τ) =
∞
∑

n=0

ξnyn(τ). (17.44)
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After inserting this into (17.40), we perform a partial integration in the kinetic
term and the τ -integrals with the help of (17.43), and the Euclidean action of the
quadratic fluctuations takes the simple form

A =
1

2

∞
∑

n=0

λnξ
2
n. (17.45)

With this, the fluctuation factor (17.37) reduces to a product of Gaussian integrals
over the normal modes

Fcl(L) = N
∞
∏

n=0

[

∫ ∞

−∞

dξn√
2πh̄

]

e−
∑

∞

n=0
ξ2nλn/2h̄ = N 1√

Πnλn
. (17.46)

The normalization constant N , to be calculated below, accounts for the Jacobian
which relates the time-sliced measure to the normal mode measure.

First we shall calculate the eigenvalues λn. For this we use the amplitude of the
Rosen-Morse potential obtained via the Duru-Kleinert transformation (14.138) in ref(14.138)

lab(x14.160)
est(14.161)

Eq. (14.139). If the potential is written in the form

ref(14.139)
lab(8.1443ccca)
est(14.162)

V (τ) = ω2 − V0

cosh2[m(τ − τ0)]
, (17.47)

there are bound states for n = 0, 1, 2, . . . , nmax < s, where s is defined by [2]

s ≡ 1

2



−1 +

√

1 + 4
V0
m2



 . (17.48)

Their wave functions are, according to (14.141), and (14.143), ref(14.141)
lab(x14.164)
est(14.164)
ref(14.143)
lab(x14.166)
est(14.166)

yn(τ) =

√

m

n!

√

Γ(s− n)Γ(1 + 2s− n)
2n−s

Γ(1 + s− n)
coshn−s[m(τ − τ0)]

× F (−n, 1 + 2s− n; s− n+ 1; 1
2(1− tanh[m(τ − τ0)])), (17.49)

where F (a, b; c; z) are the hypergeometric functions (1.453). In terms of s, the
parameter V0 becomes

V0 = m2s(s+ 1). (17.50)

The bound-state energies are

λ2n = ω2 −m2(s− n)2. (17.51)

In the Schrödinger equation (17.41), we have m = ω/2, V0 = 3ω2/2, so that s = 2
and there are exactly two bound-state solutions. These are

y0(τ) = −
√

3ω

8

1

cosh2[ω(τ − τ0)/2]
(17.52)
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and

y1(τ) =

√

3ω

4

1

cosh[ω(τ − τ0)/2]
F (−1, 4; 2; 1

2(1− tanh[ω(τ − τ0)/2]))

=

√

3ω

4

sinh[ω(τ − τ0)/2]

cosh2[ω(τ − τ0)/2]
. (17.53)

The negative sign in (17.52) is a matter of convention, to give y1(τ) the same sign
as xcl(τ − τ0) in Eq. (17.89) below. The normalization factors can be checked using
the formula

∫ ∞

0

sinhµ x

coshν x
=

1

2
B(

µ+ 1

2
,
ν − µ

2
), (17.54)

with B(x, y) ≡ Γ(x)Γ(y)/Γ(x + y) being the Beta function. The corresponding
eigenvalues are

λ0 = 0, λ1 = 3ω2/4. (17.55)

The existence of a zero-eigenvalue mode is a general property of fluctuations
around localized classical solutions in a system which is translationally invariant
along the τ -axis. It prevents an immediate application of the quadratic approxi-
mation, since a zero-eigenvalue mode is not controlled by a Gaussian integral as
the others are in Eq. (17.46). This difficulty and its solution will be discussed in
Subsection 17.3.1.

In addition to the two bound states, there are continuum wave functions with
λn ≥ ω2. For an energy

λk = ω2 + k2, (17.56)

they are given by a linear combination of

yk(τ) ∝ AeikτF (s+ 1,−s; 1− ik/m; 1
2(1− tanh[m(τ − τ0)])) (17.57)

and its complex-conjugate (see the end of Subsection 14.4.4). Using the identity for
the hypergeometric function2

F (a, b, c; z) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
F (a, b; a+ b− c+ 1; 1− z)

+ (1− z)c−a−b
Γ(c)Γ(−c+ a+ b)

Γ(a)Γ(b)
F (c− a, c− b; c− a− b+ 1; 1− z), (17.58)

and F (a, b; c; 0) = 1, we find the asymptotic behavior

F
τ→∞−−−→ 1, (17.59)

F
τ→−∞−−−→ Γ(−ik/m)Γ(1 − ik/m)

Γ(−s− ik/m)Γ(s+ 1− ik/m)
+ e−2ikτ Γ(ik/m)Γ(1− ik/m)

Γ(−s)Γ(1 + s)
.

(17.60)

2M. Abramowitz and I. Stegun, op. cit., formula 15.3.6.
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These limits determine the asymptotic behavior of the wave functions (17.57). With
an appropriate choice of the normalization factor in (17.57) we fulfill the standard
scattering boundary conditions

ψ(τ) →
{

eikτ +Rke
−ikτ , τ → −∞,

Tke
ikτ , τ → ∞.

(17.61)

These define the transmission and reflection amplitudes. From (17.59) and (17.60)
we calculate directly

Tk =
Γ(−s− ik/m)Γ(s + 1− ik/m)

Γ(−ik/m)Γ(1 − ik/m)
, (17.62)

Rk =
Γ(−s− ik/m)Γ(s + 1− ik/m)

Γ(−s)Γ(1 + s)

Γ(ik/m)

Γ(−ik/m)
= Tk

Γ(ik/m)Γ(1− ik/m)

Γ(−s)Γ(1 + s)
. (17.63)

Using the relation Γ(z) = π/ sin(πz)Γ(1− z), this can be written as

Tk =
Γ(s+ 1− ik/m)

Γ(s+ 1 + ik/m)

Γ(1 + ik/m)

Γ(1− ik/m)

sin(ik/m)

sin(s+ ik/m)
, (17.64)

Rk = Tk
sin(πs)

sin(ik/m)
. (17.65)

The scattering matrix

Sk =

(

Tk Rk

Rk Tk

)

(17.66)

is unitary since

RkT
∗
k +R∗

kTk = 0, |Tk|2 + |Rk|2 = 1. (17.67)

It is diagonal on the state vectors

ψe =
1√
2

(

1
1

)

, ψo =
1√
2

(

1
− 1

)

, (17.68)

which, as we shall prove below, correspond to odd and even partial waves. The
respective eigenvalues λe,ok = e2iδ

e,o
k define the phase shifts δe,ok , in terms of which

Tk =
1

2
(e2iδ

e
k + e2iδ

o
k), (17.69)

Rk =
1

2
(e2iδ

e
k − e2iδ

o
k). (17.70)

Let us verify the association of the eigenvectors (17.68) with the even and odd partial
waves. For this we add to the wave function (17.61) the mirror-reflected solution

ψr(τ) →
{

Tke
−ikτ , τ → −∞,

e−ikτ +Rke
ikτ , τ → ∞,

(17.71)
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and obtain

ψe(τ) = ψ(τ) + ψr(τ) →
{

eikτ + (Rk + Tk)e
−ikτ , τ → −∞,

e−ikτ + (Rk + Tk)e
ikτ , τ → ∞.

(17.72)

Inserting (17.69), this can be rewritten as

ψe(τ) →
{

eiδ
e
k [ei(kτ−δ

e
k
) + e−i(kτ−δ

e
k
)] = 2eiδ

e
k cos(k|τ |+ δek), τ → −∞,

eiδ
e
k [e−i(kτ+δ

e
k
) + ei(kτ+δ

e
k
)] = 2eiδ

e
k cos(k|τ |+ δek), τ → ∞.

(17.73)

The odd combination, on the other hand, gives

ψo(τ) = ψ(τ)− ψr(τ) →
{

eikτ + (Rk − Tk)e
−ikτ , τ → −∞,

−e−ikτ − (Rk − Tk)e
ikτ , τ → ∞,

(17.74)

and becomes with (17.69):

ψo(τ) →
{

eiδ
o
k [ei(kτ−δ

e
k) − e−i(kτ−δ

o
k)] = 2ieiδ

e
k sin(k|τ |+ δok), τ → −∞,

−eiδek [e−i(kτ+δok) − ei(kτ+δ
e
k)] = −2ieiδ

e
k sin(k|τ |+ δok), τ → ∞.

(17.75)

From Eqs. (17.69), (17.70) we see that

|Tk|2 = cos2(δek − δok), |Rk|2 = sin2(δek − δok), (17.76)

and further

e2i(δ
e
k
+δo

k
)=(Tk +Rk)(Tk − Rk)=T

2
k +

RkR
∗
kTk

T ∗
k

=T 2
k + (1− TkT

∗
k )
Tk
T ∗
k

=
Tk
T ∗
k

. (17.77)

From this we find the explicit equation for the sum of even and odd phase shifts

δek + δok =
1

2
arg

Tk
T ∗
k

= argTk. (17.78)

Similarly we derive the equation for the difference of the phase shifts:

−i sin[2(δek − δok)] = TkR
∗
k − T ∗

kRk = 2TkR
∗
k = −2

R∗
k

T ∗
k

|Tk|2. (17.79)

Dividing this by the first equation in (17.76), we obtain

−i tan(δek − δok) = −R
∗
k

T ∗
k

= −sinh(ik/m)

sin(πs)
, (17.80)

and thus

δek − δok = arctan
sin(πs)

sinh(k/m)
sin(πs). (17.81)
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For s = integer, the even and odd phase shifts become equal,

δek = δok ≡ δk, (17.82)

so that the reflection amplitude vanishes, and the transmission amplitude reduces
to a pure phase factor Tk = e2iδk , with the phase shift determined from (17.78) to

2δk = −i log Tk. (17.83)

Now the wave functions have the simple asymptotic behavior

yk(τ) → ei(kτ±δk), τ → ±∞, (17.84)

and (17.64) reduces for both even and odd phase shifts to

e2iδk = (−1)s
Γ(s+ 1− ik/m)

Γ(1− ik/m)

Γ(1 + ik/m)

Γ(s+ 1 + ik/m)
. (17.85)

For the Schrödinger equation (17.41) with s = 2, this becomes simply

e2iδk =
2− ik/m

2 + ik/m

1− ik/m

1 + ik/m
, (17.86)

and hence

δk = arctan[k/m] + arctan[k/2m]. (17.87)

If we now try to evaluate the product of eigenvalues in (17.46), two difficulties
arise:
1) The zero eigenvalue causes the result to be infinite.
2) The continuum states make the evaluation of the product of eigenvalues

∏

n

√
λn

nontrivial.
These two difficulties will be removed in the following two subsections.

17.3.1 Zero-Eigenvalue Mode

The physical origin of the infinity caused by the zero-eigenvalue solution in the
fluctuation integral over ξ0 in (17.46) lies in the time-translational invariance of the
system. This fact supplies the key to removing the infinity. A kink at an imaginary
time τ0 contributes as much to the path integral as a kink at any other time τ ′0. The
difference between two adjacent solutions at an infinitesimal temporal distance can
be viewed as a small kink fluctuation which does not change the Euclidean action.
There is a zero eigenvalue associated with this difference. If there is only a single
zero-eigenvalue solution as in the Schrödinger equation (17.41) its wave function
must be proportional to the derivative of the kink solution:

y0 = α

[

xcl(τ − τ0)− xcl(τ − τ1)

τ0 − τ1

]

τ0→τ1

= αx′cl(τ − τ0)

= −α aω/2

cosh2[ω(τ − τ0)/2]
. (17.88)
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This coincides indeed with the zero-eigenvalue solution (17.52). The normalization
factor α is fixed by the integral

α =
[∫ ∞

−∞
dτx′2cl

]−1/2

. (17.89)

With the help of (17.32) the right-hand side can also be expressed in terms of the
kink action:

α =
1√Acl

. (17.90)

Inserting (17.2) and (17.31), this becomes

α =
√

3/2a2ω =
√

3g/ω3 (17.91)

[the positive square root corresponding to the negative sign in (17.52)]. The zero-
eigenvalue mode is associated with a shift of the position of the kink solution from
τ0 to any other place τ ′0. For an infinite length L of the τ -axis, this is the source
of the infinity of the integral over ξ0 in the product (17.46). At a finite L, on the
other hand, only a τ -interval of length L is available for displacements. Therefore,
the infinite 1/

√
λ0 should become proportional to L for large L:

1√
λ0

= const · L. (17.92)

What is the proportionality constant? We find it by transforming the integration
measure (17.46),

N
∫ ∞

−∞

dξ0√
2πh̄

∞
∏

n=1

[

∫ ∞

−∞

dξn√
2πh̄

]

, (17.93)

to a form in which the translational degree of freedom appears explicitly

N 1√
2πh̄

∫ ∞

−∞
dτ0

∏

n 6=0

∫ ∞

−∞

[

dξn√
2πh̄

] ∣

∣

∣

∣

∣

∂ξ0
∂τ0

(ξ1, ξ2, . . .)

∣

∣

∣

∣

∣

. (17.94)

The Jacobian appearing in the integrand satisfies the identity

∫

dτ0 δ(ξ0)

∣

∣

∣

∣

∣

∂ξ0
∂τ0

∣

∣

∣

∣

∣

= 1. (17.95)

Let us calculate this Jacobian using the method developed by Faddeev and Popov
[3]. Given an arbitrary fluctuation yξ0,ξ1,ξ2,..., the parameter ξ0 may be recovered by
forming the scalar product with the zero-eigenvalue wave function y0(τ):

ξ0 =
∫ ∞

−∞
dτyξ0,ξ1,ξ2,...(τ)y0(τ). (17.96)
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Moreover, it is easy to see that the fluctuation yξ0,ξ1,ξ2,... can be replaced by the full
path

xξ0,ξ1,ξ2,...(τ) = xcl(τ) + yξ0,ξ1,ξ2,...(τ), (17.97)

so that we can also write

ξ0 =
∫ ∞

−∞
dτ xξ0,ξ1,ξ2,...(τ)y0(τ). (17.98)

This follows from the fact that the additional kink solution xcl(τ) does not have any
overlap with its derivative. Indeed,

∫ ∞

−∞
dτ xcl(τ − τ0)y0(τ − τ0) ∝

∫ ∞

−∞
dτ xcl(τ − τ0)x

′
cl(τ − τ0)

∝ 1

2
x2cl

∣

∣

∣

∣

∞

−∞
= 0. (17.99)

With (17.98), the delta function δ(ξ0) appearing in (17.95) can be rewritten in the
form

δ(ξ0) = δ
(∫ ∞

−∞
dτ xξ0,ξ1,ξ2,...(τ)y0(τ)

)

. (17.100)

To establish the relation between the normal coordinate ξ0 and the kink position τ0,
we now replace xξ0,ξ1,ξ2,... by an alternative parametrization of the paths in which
the role of the variable ξ0 is traded against the position of the kink solution, i.e., we
rewrite the fluctuating path

xξ0,ξ1,ξ2,...(τ) = xcl(τ) +
∞
∑

n=0

ξnyn(τ) (17.101)

in the form

xτ0,ξ1,ξ2,...(τ) ≡ xcl(τ − τ0) +
∞
∑

n=1

ξnyn(τ − τ0). (17.102)

By definition the point τ0 = 0 coincides with ξ0 = 0. Thus, if we insert (17.102)
into (17.100) and use this δ-function in the identity (17.95), we find the condition
for the Jacobian ∂ξ0/∂τ0:

∫ ∞

−∞
dτ0 δ

(∫ ∞

−∞
dτ xτ0,ξ1,ξ2,...(τ)y0(τ)

)

∣

∣

∣

∣

∣

∂ξ0
∂τ0

∣

∣

∣

∣

∣

= 1. (17.103)

Since the δ-function has a vanishing argument at τ0 = 0, we expand the argument
in powers of τ0, keeping only the lowest order. Writing y0(τ) = αx′cl(τ), we obtain

∫ ∞

−∞
dτ xτ0,ξ1,ξ2,...(τ)y0(τ) = −ατ0

[

∫ ∞

−∞
dτ x′2cl +

∞
∑

n=1

ξn

∫ ∞

−∞
dτ x′cl y

′
n

]

+O(τ 20 ).

(17.104)
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Using (17.32) and abbreviating the scalar products in the brackets as

rn ≡
∫ ∞

−∞
dτ x′cl y

′
n, (17.105)

we may express the right-hand side of (17.104) more succinctly as

−ατ0
[

Acl +
∞
∑

n=1

ξnrn

]

+O(τ 20 ). (17.106)

Inserting this into (17.103), and using (17.90), we arrive at the Jacobian
∣

∣

∣

∣

∣

∂ξ0
∂τ0

∣

∣

∣

∣

∣

= Acl
1/2

(

1 +Acl
−1

∞
∑

n=1

ξnrn

)

. (17.107)

As a consequence, the zero-eigenvalue modes contribute to the fluctuation factor
(17.46) as follows:

Fcl(L) = N
∞
∏

n=1

[

∫ ∞

−∞

dξn√
2πh̄

]

e−(1/2h̄)
∑

∞

n=1
ξ2nλn

∫ ∞

−∞

dξ0√
2πh̄

e−(1/2h̄)ξ20λ0

= N
∞
∏

n=1

[

∫ ∞

−∞

dξn√
2πh̄

e−(1/2h̄)
∑

∞

n=1
ξ2nλn

]

∫ ∞

−∞

dτ0√
2πh̄

Acl
1/2

(

1+Acl
−1

∞
∑

n=1

ξnrn

)

= N 1
√

∏∞
n=1 λn

√

Acl

2πh̄

∫ ∞

−∞
dτ0. (17.108)

The linear terms in the large parentheses disappear at the level of quadratic fluc-
tuations since they are odd in ξ. Thus we may use for quadratic fluctuations the
simple mnemonic rule

−∂ξ0
∂τ0

=
∂x(τ)/∂τ0
∂x(τ)/∂ξ0

=
ẋcl(τ) + . . .

αẋcl(τ)
=

1

α
+ . . . =

√

Acl + . . . , (17.109)

where . . . stands for the irrelevant linear terms in ξn inside the integral (17.108).
For higher-order fluctuations, the linear terms in the large parentheses cannot

be ignored. They contribute an effective Euclidean action

Aeff
e = −h̄ log

[

1 +Acl
−1

∞
∑

n=1

ξnrn

]

= −h̄ log
[

1 +A−1
cl

∫

dτ x′cl(τ)y
′(τ)

]

, (17.110)

which will be needed for calculations in Section 17.8.
The integral over τ0 is now an appropriate place to impose the finiteness of the

time interval τ ∈ (−L/2, L/2), namely
∫ L/2

−L/2
dτ0 = L. (17.111)

A comparison of (17.108) with (17.46) shows that the correct evaluation of the
formally diverging zero-eigenvalue contribution 1/

√
λ0 is equivalent to the following

replacement:

1√
λ0

≡
∫

dξ0√
2πh̄

e−(1/2h̄)λ0ξ20 −−−→
√

Acl

2πh̄

∫ L/2

−L/2
dτ0 =

√

Acl

2πh̄
L. (17.112)
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17.3.2 Continuum Part of Fluctuation Factor

We now turn to the second problem, the calculation of the product of the continuum
eigenvalues in (17.46). To avoid carrying around the overall normalization factor N
it is convenient to factor out the quadratic fluctuations (17.36) in the absence of
a kink solution. Let λ0n be the associated eigenvalues. Their fluctuation potential
V ′′(xcl(τ)) = ω2x2 is harmonic [compare (17.39)] with a fluctuation factor known
from (2.171). Comparing this with the expression (17.46) without a kink, we obtain
for the normalization factor the equation

N 1
√

∏

n λ
0
n

= Fω(L) =

√

ω

2πh̄ sinhωL
∼
√

ω

πh̄
e−ωL/2. (17.113)

Pulling this factor out of the product on the right-hand side of (17.46), we are left
with a ratio of eigenvalue products:

Fcl(L) = N 1√
∏

n λn
= N 1

√

∏

n λ
0
n

√

∏

n λ
0
n

∏

n λn
= Fω(L)

√

∏

n λ
0
n

∏

n λn
. (17.114)

As long as L is finite, the continuum wave functions are all discrete. Let ∂n/∂k de-
note their density of states per momentum interval. Then the ratio of the continuum
eigenvalues can be written for large L as

√

∏

n λ0n
∏

n λn

∣

∣

∣

∣

∣

cont

= exp

[

−1

2

∫ ∞

0
dk

(

∂n

∂k
− ∂n

∂k

∣

∣

∣

∣

0

)

log λn

]

. (17.115)

The density of states, in turn, may be extracted from the phase shifts (17.85). For
this we observe that for a very large L where boundary conditions are a matter of
choice, we may impose the periodic boundary condition

y(τ + L) = y(τ). (17.116)

Together with the asymptotic forms (17.84), this implies

ei(kL/2+δk) = e−i(kL/2+δk), (17.117)

which quantizes the wave vectors k to discrete values satisfying

kL+ 2δk = 2πn. (17.118)

The derivative with respect to k yields the density of states

∂n

∂k
=

L

2π
+

1

π

dδk
dk

. (17.119)

Since the phase shifts vanish in the absence of a kink solution, this implies

∂n

∂k

∣

∣

∣

∣

0
=

L

2π
, (17.120)
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and the general formula (17.115) becomes simply
√

∏

n λ
0
n

∏

n λn

∣

∣

∣

∣

∣

cont

= exp

[

− 1

2π

∫ ∞

0
dk
dδk
dk

log(ω2 + k2)

]

. (17.121)

To calculate the integral for our specific fluctuation problem (17.41), we use the
expression (17.85) to find the derivative of the phase shift for any integer value of s:

dδk
dk

= − 1

m

[

2

4 + (k/m)2
+ . . .+

s

s2 + (k/m)2

]

. (17.122)

For s = 2, the exponent in (17.121) becomes

1

2π

∫ ∞

−∞
dx
(

1

1 + x2
+

2

4 + x2

)

log
[

ω2(1 + x2m2/ω2)
]

. (17.123)

The ω2-term in the logarithm can be separated from this using Levinson’s theo-
rem [1]. It states that the integral

∫∞
0 dk(∂n/∂k − ∂n/∂k|0) is equal to the number

of bound states:
∫ ∞

0
dk

(

∂n

∂k
− ∂n

∂k

∣

∣

∣

∣

0

)

=
1

π

∫ ∞

0
dk
dδk
dk

= s. (17.124)

This relation is obviously fulfilled by (17.122). It is a consequence of the fact that a
potential with s bound states has s states less in the continuum than a free system.
Using this property, the integral (17.123) can be rewritten as

log ω2 +
∫ ∞

−∞

dx

2π

(

1

1 + x2
+

2

4 + x2

)

log(1 + x2m2/ω2). (17.125)

The rescaled integral is calculated using the formula

∫ ∞

−∞

dx

2π

log(1 + p2x2)

r2 + s2x2
=

1

rs
log

(

1 + p
r

s

)

. (17.126)

The result is

log ω2 + log
(

1 +
m

ω
1
)

+ log
(

1 +
m

ω
2
)

. (17.127)

When inserted into the exponent of (17.121), it yields
√

∏

n λ
0
n

∏

n λn

∣

∣

∣

∣

∣

cont

= ω2
(

1 +
m

ω

)(

1 +
m

ω
2
)

. (17.128)

In our case with m = ω/2, this reduces to 3ω2. Including the bound-state eigenvalue
λ1 of Eq. (17.55) in the denominator, this amounts to

√

√

√

√

∏

n λ
0
n

∏′
n λn

=
1

√

3ω2/4
3ω2 =

√
12ω ≡ K ′. (17.129)
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Multiplying this with the zero-eigenvalue contribution as evaluated in Eq. (17.108),
we arrive at the final result for the fluctuation factor in the presence of a kink or an
antikink solution:

Fcl(L) = Fω(L)KL, (17.130)

with

K =
1√
λ0L

K ′ =

√

Acl

2πh̄

√
12ω. (17.131)

17.4 General Formula for Eigenvalue Ratios

The above-calculated ratio of eigenvalue products
√

∏

n λ
0
n

∏

n λn

∣

∣

∣

∣

∣

cont

(17.132)

of the Rosen-Morse Schrödinger equation appears in many applications with different
potential strength parameters s. It is therefore useful to derive a formula for this
ratio which is valid for any s. The eigenvalue equation reads

[

− d2

dτ 2
+ ω2 − m2s(s+ 1)

cosh2m(τ − τ0)

]

yn(τ) = λnyn(τ). (17.133)

First we consider the case of an arbitrary integer value of s. Following the previous
discussion, the ratio of eigenvalue products is found to be
√

∏

n λ
0
n

∏

n λn

∣

∣

∣

∣

∣

cont

= exp

[

− 1

2π

∫ ∞

0
dk
dδk
dk

log(ω2 + k2)

]

(17.134)

= exp

{

− 1

2π

∫ ∞

0
d(k/m)

s
∑

n=1

n

n2 + (k/m)2
log[ω2 + (k/m)2m2]

}

.

The ω2-term in the logarithm is eliminated by the generalization of (17.124) to any
integer s:

1

π

∫ ∞

−∞
d(k/m)

s
∑

n=1

n

n2 + (k/m)2
= s. (17.135)

Hence
√

∏

n λ0n
∏

n λn

∣

∣

∣

∣

∣

cont

= ωs exp

[

1

2π

∫ ∞

−∞
dx

s
∑

n=1

n

n2 + x2
log(1 + x2m2/ω2)

]

. (17.136)

The integrals can be done using formula (17.126), and we obtain
√

∏

n λ
0
n

∏

n λn

∣

∣

∣

∣

∣

cont

= ωs
s
∏

n=1

(

1 +
m

ω
n
)

. (17.137)
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For s = 2, and m = ω/2, this reduces to the previous result (17.128).
Only a little more work is required to find the ratio of all discrete and continuous

eigenvalue products for a noninteger value of s. Introduce a new parameter z, let s
be a parameter smaller than 1 so that there are no bound states, and consider the
fluctuation equation

[

− d2

dτ 2
+m2

(

z − s(s+ 1)

cosh2m(τ − τ0)

)]

yn(τ) = λnyn(τ). (17.138)

The general Schrödinger operator under consideration (17.133) corresponds to z =
ω2/m2. Since there are no bound states by assumption, the first line in formula
(17.134) now gives the ratio of all eigenvalues:

√

∏

n λ
0
n

∏

n λn
= exp

[

− 1

2π

∫ ∞

−∞
dk
dδk
dk

log(m2z + k2)

]

. (17.139)

Here δk is equal to the average of even and odd phase shifts (δek + δok)/2. For the
same reason, we can replace log(m2z + k2) by log(z + k2/m2) without error [using
the generalization of (17.124)]. After substituting k2 → ω2ǫ, we find

√

Πnλ0n
Πnλn

= exp

[

− 1

2π

∫

C
dǫ
dδω

√
ǫ

dǫ
log(z + ǫ)

]

, (17.140)

where the contour of integration C encircles the right-hand cut clockwise in the
ǫ-plane. A partial integration brings this to

exp
(

1

2π

∫

C
dǫ δm√

ǫ

1

z + ǫ

)

. (17.141)

For z < 0, the contour of integration can be deformed to encircle the only pole at
ǫ = −z counterclockwise, yielding

√

∏

n λ
0
n

∏

n λn
= exp[iδm

√
−z]. (17.142)

Inserting for δk the average of even and odd phase shifts from (17.78), we obtain

√

∏

n λ
0
n

∏

n λn
=

[

Γ(
√
z − s)Γ(

√
z + s+ 1)

Γ(
√
z)Γ(

√
z + 1)

]1/2

. (17.143)

In the fluctuation equation (17.41), the parameters m2 and ω2 = zm2 are such as
to create a zero eigenvalue at n = 0 according to formula (17.51). Then z = s2. In
the neighborhood of this z-value, the eigenvalue

λ0 = m2[z − s2] (17.144)
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is a would-be zero eigenvalue. Dividing it out of the product (17.143), we obtain an
equation which remains valid in the limit z → s2:

√

√

√

√

∏

n λ
0
n

∏′
n λn

= m

[

(
√
z + s)

Γ(
√
z − s+ 1)Γ(

√
z + s+ 1)

Γ(
√
z)Γ(

√
z + 1)

]1/2

. (17.145)

This can be continued analytically to arbitrary z and s, as long as z remains suffi-
ciently close to s = 2. For s = 2 and z = 4 (corresponding to m = ω/2) we recover
the earlier result (17.129):

√

√

√

√

∏

n λ0n
∏′
n λn

=
√
12ω. (17.146)

17.5 Fluctuation Determinant from Classical Solution

The above evaluations of the fluctuation determinant require the complete know-
ledge of the bound and continuum spectrum of the fluctuation equation. Fortunately,
there exists a way to find the determinant which needs much less information, re-
quiring only the knowledge of the large-τ behavior of the classical solution and the
value of its action. The basis for this derivation is the Gelfand-Yaglom formula
derived in Section 2.4. According to it, the fluctuation determinant of a differential
operator

Ô = − d2

dτ 2
+ ω2 − m2s(s+ 1)

cosh2[m(τ − τ0)]
(17.147)

is given by the value of the zero-eigenvalue solution D(τ) at the final τ value τ = L/2

det Ô = ND(L/2), (17.148)

provided that it was chosen to satisfy the initial conditions at τ = −L/2:

D(−L/2) = 0, Ḋ(−L/2) = 1. (17.149)

The normalization factor N is irrelevant when considering ratios of fluctuation de-
terminants, as we do in the problem at hand.3 To satisfy the boundary conditions
(17.149), we need two linearly independent solutions of zero eigenvalue. One is
known from the invariance under time translations. It is proportional to the time
derivative of the classical solution [see (17.88)]:

y0(τ) = αx′cl(τ). (17.150)

3If the determinant is calculated for the time-sliced operator Ô with d/dτ replaced by the
difference operator ∇τ , the normalization is N = 1/ǫ where ǫ is the thickness of the time slices.
See Chapter 2.



1198 17 Tunneling

In the above fluctuation problem (17.41) with s = 2 and m = ω/2, the classical
solution is xcl(τ) = arctanh[ω(τ − τ0)/2]. It has the asymptotic behavior

y0(τ) →
ω

2
e−ω|τ | for τ → ±∞, (17.151)

with a symmetric exponential falloff in both directions of the τ -axis. In the sequel
it will be convenient to work with zero-eigenvalue solutions without the prefactor
ω/2, which behave asymptotically like a pure exponential. These will be denoted
by ξ(τ) and η(τ), the solution ξ(τ) being proportional to y0, i.e.,

ξ(τ) → e−ω|τ | for τ → ±∞. (17.152)

The second independent solution can be found from d’Alembert’s formula
(2.236). Its explicit form is not required; only its asymptotic behavior is relevant.
Assuming the Lagrangian to be invariant under time reversal, which is usually the
case, this asymptotic behavior is found via the following argument: Since φ

(2)
0 (τ) is

linearly independent of φ
(1)
0 (τ), we can be sure that it has asymptotically the oppo-

site exponential behavior (i.e., it grows with τ) and the opposite symmetry under
time reversal (i.e., it is antisymmetric). Thus η must behave as follows:

η(τ) → ±eω|τ | for τ → ±∞. (17.153)

We now form the linear combination which satisfies the boundary conditions (17.149)
for large negative τ = −L/2:

D(τ) =
1

W
[ξ(−L/2)η(τ)− η(−L/2)ξ(τ)] , (17.154)

where

W ≡W [ξ(τ)η(τ)] = ξ(τ)η̇(τ)− η(τ)ξ̇(τ) (17.155)

is the Wronskian of the two solutions. It is independent of τ and can be evaluated
from the asymptotic behavior as

W = 2ω. (17.156)

Inserting (17.152) and (17.153) into (17.154), we find the solution

D(τ) =
1

W

[

e−ωL/2η(τ) + eωL/2ξ(τ)
]

. (17.157)

Even without knowing the solutions φ
(1)
0 (τ), φ

(2)
0 (τ) at a finite τ , the fluctuation

determinant at large τ = L/2 can be written down:

D(L/2) =
2

W
=

1

ω
. (17.158)
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For fluctuations around the constant classical solution, the zero-eigenvalue solution
with the boundary conditions (17.149) is

D(0)(τ) =
1

ω
sinh[ω(τ + L/2)]. (17.159)

It behaves for large τ = L like

D(0)(L/2) → 1

2ω
eωL for large L. (17.160)

The ratio is therefore

D(0)(L/2)

D(L/2)
→ 1

2
eωL for large L. (17.161)

This exponentially large number is a signal for the presence of a would-be zero
eigenvalue in D(L/2). Since the τ -interval (−L/2, L/2) is finite, there exists no
exactly vanishing eigenvalue. In the finite interval, the derivative (17.150) of the kink
solution does not quite satisfy the Dirichlet boundary condition. If the vanishing
at the endpoints was properly enforced, the particle distribution would have to
be compressed somewhat, and this would shift the energy slightly upwards. The
shift is exponentially small for large L, so that the would-be zero eigenvalue has an
exponentially small eigenvalue λ0 ∝ e−ωL. A finite result for L→ ∞ is obtained by
removing this mode from the ratio (17.161) and considering the limit

∏

n λn
0

∏′
n λn

= lim
L→∞

D(0)(L/2)

D(L/2)
λ0. (17.162)

The leading e−ωL-behavior of the would-be zero eigenvalue can be found per-
turbatively using as before only the asymptotic behavior of the two independent
solutions. To lowest order in perturbation theory, an eigenfunction satisfying the
Dirichlet boundary condition at finite L is obtained from an eigenfunction φ0 which
vanishes at τ = −L/2 by the formula

φL0 (τ) = φ0(τ) +
λ0
W

∫ τ

−L/2
dτ ′ [ξ(τ)η(τ ′)− η(τ)ξ(τ ′)]φ0(τ

′). (17.163)

The limits of integration ensure that φL0 (τ) vanishes at τ = −L/2. The eigenvalue
λ0 is determined by enforcing the vanishing also at τ = L/2. Taking for φ0(τ) the
zero-eigenvalue solution D(τ)

λ0 = −D(L/2)W

[

ξ(L/2)
∫ L/2

−L/2
dτ η(τ)D(τ)− η(L/2)

∫ L/2

−L/2
dτ ξ(τ)D(τ)

]−1

. (17.164)

Inserting (17.154) and using the orthogonality of ξ(τ) and η(τ) (following from the
fact that the first is symmetric and the second antisymmetric), this becomes

λ0=−D(L/2)W 2

[

ξ(−L/2)ξ(L/2)
∫ L/2

−L/2
dτ η2(τ) + η(−L/2)η(L/2)

∫ L/2

−L/2
dτ ξ2(τ)

]−1

.

(17.165)
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Invoking once more the symmetry of ξ(τ) and η(τ) and the asymptotic behavior
(17.152) and (17.153), we obtain

λ0 = −D(L/2)W 2

[

e−ωL
∫ L/2

−L/2
dτ η2(τ)− eωL

∫ L/2

−L/2
dτ ξ2(τ)

]−1

. (17.166)

The first integral diverges like eωL; the second is finite. The prefactor makes the
second integral much larger than the first, so that we find for large L the would-be
zero eigenvalue

λ0 = D(L/2)e−ωL
W 2

∫∞
−∞ dτ ξ2(τ)

. (17.167)

This eigenvalue is exponentially small and positive, as expected. Inserting it into
(17.162) and using (17.156) and (17.160), we find the eigenvalue ratio

∏

n λ
0
n

∏′
n λn

= lim
L→∞

2ω
1

∫∞
−∞ dτ ξ2(τ)

. (17.168)

The determinant D(L/2) has disappeared and the only nontrivial quantity to be
evaluated is the normalization integral over the translational eigenfunction ξ(τ).

The normalization integral requires the knowledge of the full τ -behavior of the
zero-eigenvalue solution φ

(1)
0 (τ); the asymptotic behavior used up to this point is

insufficient. Fortunately, the classical solution xcl(τ) also supplies this information.
The normalized solution is y0 = αx′cl(τ) behaving asymptotically like 2aαωe−ωτ .

Imposing the normalization convention (17.152) for φ
(1)
0 (τ), we identify

ξ(τ) =
1

2aωα
αx′cl(τ). (17.169)

Using the relation (17.32), the normalization integral is simply

∫ ∞

−∞
dτ ξ(τ)2 =

Acl

4a2ω2
. (17.170)

With it the eigenvalue ratio (17.168) becomes

∏

n λ
0
n

∏′
n λn

= 2ω
4a2ω

Acl

. (17.171)

By inserting the value of the classical action Acl = 2a2ω/3 from (17.31), we obtain

∏

n λ
0
n

∏′
n λn

= 12ω2, (17.172)

just as in (17.146) and (17.129).
It is remarkable that the calculation of the ratio of the fluctuation determinants

with this method requires only the knowledge of the classical solution xcl(τ).
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17.6 Wave Functions of Double-Well

The semiclassical result for the amplitudes

(a L/2|a −L/2), (a L/2| −a −L/2), (17.173)

with the endpoints situated at the bottoms of the potential wells can easily be
extended to variable endpoints xb 6= a, xa 6= ±a, as long as these are situated near the
bottoms. The extended amplitudes lead to approximate particle wave functions for
the lowest two states. The extension is trivial for the formula (17.34) without a kink
solution. We simply multiply the fluctuation factor by the exponential exp(−Acl/h̄)
containing the classical action of the path from xa to xb. If xa and xb are both near
one of the bottoms of the well, the entire classical orbit remains near this bottom.
If the distance of the orbit from the bottom is less than 1/a

√
ω, the potential can

be approximated by the harmonic potential ω2x2. Thus near the bottom at x = a,
we have the simple approximation to the action

Acl ≈
ω

2h̄ sinhωL

{

[(xa − a)2 + (xb − a)2] coshωL− 2(xb − a)(xa − a)
}

.

(17.174)

For a very long Euclidean time L, this tends to

Acl ≈
ω

2h̄
[(xb − a)2 + (xa − a)2]. (17.175)

The amplitude (17.34) can therefore be generalized to

(xb L/2|xa L/2) ≈
√

ω

πh̄
e−(ω/2h̄)[(xb−a)2+(xa−a)2]e−ωL/2h̄.

This can also be written in terms of the bound-state wave functions (17.5) for n = 0
as

(xb L/2|xa L/2) ≈ ψ0(xb − a)ψ0(xa − a)e−ωL/2h̄. (17.176)

For the amplitude (17.35) with the path running from one potential valley to the
other, the construction is more subtle. The approximate solution is obtained by
combining a harmonic classical path running from (xa,−L/2) to (a,−L/4), a kink
solution running from (a,−L/4) to (a, L/4), and a third harmonic classical path
running from (a, L/4) to (xb, L/2). This yields the amplitude

√

ω

πh̄
e−(ω/2h̄)(xb−a)2KLe−Acl/h̄e−(ω/2h̄)(xa−a)2. (17.177)

Note that by patching the three pieces together, it is impossible to obtain a true
classical solution. For this we would have to solve the equations of motion containing
a kink with the modified boundary conditions x(−L/2) = xa, x(L/2) = xb. From
the exponential convergence of x(τ) → ±a (like e−ωL) it is, however, obvious that the
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true classical action differs from the action of the patched path only by exponentially
small terms.

As before, the prefactor in (17.177) can be attributed to the ground state wave
functions ψ0(x), and we find the amplitude for xb close to −a and xa close to a:

(xb L/2|xa − L/2) ≈ ψ0(xb + a)ψ0(xa − a)KLe−Acl/h̄e−ωL/2h̄. (17.178)

17.7 Gas of Kinks and Antikinks and

Level Splitting Formula

The above semiclassical treatment is correct to leading order in e−ωL. This accuracy
is not sufficient to calculate the degree of level splitting between the two lowest states
of the double well caused by tunneling. Further semiclassical contributions to the
path integral must be included. These can be found without further effort. For very
large L, it is quite easy to accommodate many kinks and antikinks along the τ -axis
without a significant deviation of the path from the equation of motion. Due to the
fast approach to the potential bottoms x = ±a near each kink or antikink solution,
an approximate solution can be constructed by smoothly combining a number of
individual solutions as long as they are widely separated from each other. The
deviations from a true classical solution are all exponentially small if the separation
distance ∆τ on the τ -axis is much larger than the size of an individual kink (i.e.,
∆τ ≫ 1/ω). The combined solution may be thought of as a very dilute gas of kinks
and antikinks on the τ -axis. This situation is referred to as the dilute-gas limit .
Consider such an “almost-classical solution” consisting of N kink-antikink solutions
xcl(τ) = ±atanh[ω(τ−τi)/2] in alternating order positioned at, say, τ1 ≫ τ2 ≫ τ3 ≫
. . .≫ τN and smoothly connected at some intermediate points τ̄1, . . . , τ̄N−1. In the
dilute-gas approximation, the combined action is given by the sum of the individual
actions. For the amplitude (17.34) in which the paths connect the same potential
valleys, the number of kinks must be equal to the number of antikinks. The action
combined is then an even multiple of the single kink action:

A2n ≈ 2nAcl. (17.179)

For the amplitude (17.35), where the total number is odd, the combined action is

A2n+1 ≈ (2n+ 1)Acl. (17.180)

As the kinks and antikinks are localized objects of size 2/ω, it does not matter how
they are distributed on the large-τ interval [−L/2, L/2], as long as their distances
are large compared with their size. In the dilute-gas limit, we can neglect the sizes.
In the path integral, the translational degree of freedom of widely spaced N kinks
and antikinks leads, via the zero-eigenvalue modes, to the multiple integral

∫ L/2

−L/2
dτN

∫ τN

−L/2
dτN−1. . .

∫ τ1

−L/2
dτ1 =

LN

N !
. (17.181)
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The Jacobian associated with these N integrals is [see (17.112)]

√

Acl

2πh̄

N

. (17.182)

The fluctuations around the combined solution yield a product of the individual
fluctuation factors. For a given set of connection points we have

1
√

∏′

n λn
∣

∣

∣

L̄N

1
√

∏′

n λn
∣

∣

∣

L̄N−1

× . . .× 1
√

∏′

n λn
∣

∣

∣

L̄1

, (17.183)

where L̄i ≡ τ̄i − τ̄i−1 are the patches on the τ -axis in which the individual solutions
are exact. Their total sum is

L =
N
∑

i=1

L̄i. (17.184)

We now include the effect of the fluctuations at the intermediate times τ̄i where
the individual solutions are connected. Remembering the amplitudes (17.176), we
see that the fluctuation factor for arbitrary endpoints xi, xi−1 near the bottom of
the potential valley must be multiplied at each end with a wave function ratio
ψ0(x± a)/ψ0(0). Thus we have to replace

1√
∏

n λn
→ ψ0(xi ± a)

ψ0(0)

1√
∏

n λn

ψ†
0(xi−1 ± a)

ψ†
0(0)

. (17.185)

The adjacent xi-values of all fluctuation factors are set equal and integrated out,
giving

1√
∏

n λn

∣

∣

∣

∣

L
=
∫

dxN · · · dx1
1√
∏

n λn

∣

∣

∣

∣

LN

ψ0(xN−1 − a)ψ†
0(xN−1 − a)

|ψ0(0)|2
1√
∏

n λn

∣

∣

∣

∣

LN−1

× . . .× ψ0(x1 − a)ψ†
0(x1 − a)

|ψ0(0)|2
1√
∏

n λn

∣

∣

∣

∣

L1

. (17.186)

Due to the unit normalization of the ground state wave functions, the integrals are
trivial. Only the |ψ0(0)|2-denominators survive. They yield a factor

1

|ψ0(0)|2(N−1)
=

√

ω

πh̄

−(N−1)

. (17.187)

It is convenient to multiply and divide the result by the square root of the product
of eigenvalues of the harmonic kink-free fluctuations, whose total fluctuation factor
is known to be

1
√

Πnλ0n|L
=

√

ω

πh̄
e−ωL/2h̄. (17.188)



1204 17 Tunneling

Then we obtain the total corrected fluctuation factor

√

ω

πh̄

−(N−2)

e−ωL/2h̄
√

∏

n

λ0n

∣

∣

∣

∣

L

1
√

∏′
nλn

∣

∣

∣

L1

1
√

∏′
nλn

∣

∣

∣

L2

× . . .× 1
√

∏′
nλn

∣

∣

∣

LN

. (17.189)

We now observe that the harmonic fluctuation factor (17.188) for the entire interval
√

∏

n λ
0
n|L =

√

ω/πh̄ exp(−ωL/2h̄) can be factorized into a product of such factors
for each interval τ̄i, τ̄i−1 as follows:

√

∏

n

λ0n

∣

∣

∣

∣

L
=

√

ω

πh̄

−(N−1)√
∏

n

λ0n

∣

∣

∣

∣

L1

· · ·
√

∏

n

λ0n

∣

∣

∣

∣

LN

. (17.190)

The total corrected fluctuation factor can therefore be rewritten as

√

ω

πh̄
e−ωL/2h̄

√

√

√

√

∏

n λ0n
∏′
n λn

∣

∣

∣

∣

∣

L1

× . . .×
√

√

√

√

∏

n λ0n
∏′
n λn

∣

∣

∣

∣

∣

LN

. (17.191)

Each eigenvalue ratio gives the Li-independent result

K ′ =

√

√

√

√

∏

n λ
0
n

∏′
nλn

∣

∣

∣

∣

∣

Li

, (17.192)

with K ′ of Eq. (17.131). Expressing K ′ in terms of K via

K ′ =

√

Acl

2πh̄

−1

K, (17.193)

the factors
√

Acl/2πh̄
−1

remove the Jacobian factors (17.182) arising from the posi-

tional integrals (17.181). Altogether, the total fluctuation factor of N kink-antikink
solutions with all possible distributions on the τ -axis is

√

ω

πh̄
e−ωL/2h̄

LN

N !
KNe−NAcl/h̄. (17.194)

Summing over all even and odd kink-antikink configurations, we thus obtain

(a L/2| ± a − L/2) =

√

ω

πh̄
e−ωL/2h̄

∑

even
odd

1

N !
(KLe−Acl/h̄)

N
. (17.195)

This can be summed up to

(a L/2| ± a − L/2) =

√

ω

πh̄
e−ωL/2h̄ (17.196)

×1

2

[

exp
(

KLe−Acl/h̄
)

± exp
(

−KLe−Acl/h̄
)]

.
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As in the previous section, we generalize this result to positions xb, xa near the

potential minima (with a maximal distance of the order of
√

h̄/ω). Using the classical

action (17.175) and expressing it in terms of ground state wave functions, we can
now add the contribution of the amplitudes for all possible configurations, arriving
at

(xb L/2|xa − L/2) = e−ωL/2h̄ (17.197)

×
{

ψ0(xb − a)ψ0(xa − a)
1

2

[

exp(Ke−Acl/h̄L) + exp(−Ke−Acl/h̄L)
]

+ψ0(xb − a)ψ0(xa − a)
1

2

[

exp(Ke−Acl/h̄L)− exp(−Ke−Acl/h̄L)
]

+(xb → −xb) + (xa → −xa) + (xb → −xb, xa → −xa)
}

.

The right-hand side is recombined to

1√
2
[ψ0(xb − a) + ψ0(xb + a)]× 1√

2
[ψ0(xa − a) + ψ0(xa + a)]

× exp
[

−
(

ω

2
−Ke−Acl/h̄

)

L
]

+
1√
2
[ψ0(xb − a)− ψ0(xb + a)]× 1√

2
[ψ0(xa − a)− ψ0(xa + a)]

× exp
[

−
(

ω

2
+Ke−Acl/h̄

)

L
]

. (17.198)

Here we identify the ground state wave function as the symmetric combination of
the ground state wave functions of the individual wells

Ψ0(x) =
1√
2
[ψ0(x− a) + ψ0(x+ a)]. (17.199)

Its energy is

E (0) = E(0) − ∆E(0)

2
=
(

ω/2−Ke− Acl/h̄
)

h̄. (17.200)

The first excited state has the antisymmetric wave function

Ψ1(x) =
1√
2
[ψ0(x− a)− ψ0(x+ a)] (17.201)

and the slightly higher energy

E (1) = E(0) +
∆E(0)

2
=
(

ω/2 +Ke−Acl/h̄
)

h̄. (17.202)

The level splitting is therefore

∆E = 2Kh̄e−Acl/h̄. (17.203)
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Inserting K from (17.131), we obtain the formula

∆E = 4
√
3

√

Acl

2πh̄
h̄ωe−Acl/h̄, (17.204)

with Acl = (2/3)a2ω. When expressing the action in terms of the height of the
potential barrier Vmax = a2ω2/8 = 3ωAcl/16, the formula reads

∆E = 4
√
3

√

8Vmax

3πωh̄
h̄ωe−16Vmax/3h̄ω. (17.205)

The level splitting decreases exponentially with increasing barrier height. Note that
Vmax is related to the coupling constant of the x4-interaction by Vmax = ω4/16g.

To ensure the consistency of the approximation we have to check that the as-
sumption of a low density gas of kinks and antikinks is self-consistent. When looking
at the series (17.195) for the exponential (17.196), we see that the average number
of contributing terms is given by

N̄ ≈ KLe−Acl/h̄ =
∆E

2h̄
L. (17.206)

The associated average separation between kinks and antikinks is

∆L ≡ 2h̄/∆E. (17.207)

If we compare this with their size 2/ω, we find the ratio

distance

size
≈ h̄ω

∆E
. (17.208)

For increasing barrier height, the level splitting decreases and the dilution increases
exponentially. Thus the dilute-gas approximation becomes exact in the limit of
infinite barrier height.

17.8 Fluctuation Correction to Level Splitting

Let us calculate the first fluctuation correction to the level splitting formula (17.204). For this we
write the potential (17.1) as in (5.78):ref(5.78)

lab(5.56)
est(5.77) V (x) = −ω2

4
x2 +

g

4
x4 +

1

4g
, (17.209)

with the interaction strength

g ≡ ω2

2a2
. (17.210)

Expanding the action around the classical solution, we obtain the action of the fluctuations y(τ) =
x(τ) − xcl(τ). Its quadratic part was given in Eq. (17.40) which we write as

A0
fl =

1

2

∫

dτdτ ′ y(τ)Oω(τ, τ ′)y(τ ′), (17.211)
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with the functional matrix

Oω(τ, τ ′) ≡
[

− d2

dτ2
+ ω2

(

1 − 3

2

1

cosh2[ω(τ − τ0)/2]

)]′

δ(τ − τ ′) (17.212)

associated with the Schrödinger operator for a particle in a Rosen-Morse potential (14.136). Theref(14.136)
lab(14.125)
est(14.159)

prime indicates the absence of the zero eigenvalue in the spectral decomposition of Oω(τ, τ ′). Since
the associated mode does not perform Gaussian fluctuations, it must be removed from y(τ) and
treated separately. At the semiclassical level, this was done in Subsection 17.3.1, and the zero
eigenvalue appeared in the level splitting formula (17.204) as a factor (17.112). The removal gave
rise to an additional effective interaction (17.110):

Aeff
e = −h̄ log

[

1 + A−1
cl

∫

dτ x′
cl(τ)y′(τ)

]

. (17.213)

With (17.88)–(17.91), this can be rewritten after a partial integration as

Aeff
e = −h̄ log

[

1 −
√

3g

ω3

∫

dτ y′0(τ)y(τ)

]

. (17.214)

The interaction between the fluctuations is

Aint
fl =

g

4

∫

dτ
[

y4(τ) + 4xcl(τ)y3(τ)
]

. (17.215)

In the path integral, we now perform a Taylor series expansion of the exponential e−(Aint

fl
+Aeff

e )/h̄

in powers of the coupling strength g. A perturbative evaluation of the correlation functions of the
fluctuations y(τ) according to the rules of Section 3.20 produces a correction factor to the path
integral

C =

[

1 − (I1 + I2 + I3)
gh̄

ω3
+ O(g2)

]

, (17.216)

where I1, I2, and I3 are the dimensionless integrals running over the entire τ -axis:

I1 =
ω3

4h̄2

∫

dτ 〈y4(τ)〉Oω ,

I2 = −ω3g

2h̄3

∫

dτdτ ′ xcl(τ)〈y3(τ)y3(τ ′)〉Oωxcl(τ
′), (17.217)

I3 = −ω3

h̄2

√

3g

ω3

∫

dτdτ ′ y′0(τ)〈y(τ)y3(τ ′)〉Oωxcl(τ
′).

In order to check the dimensions we observe that the classical solution (17.28) can be written
with (17.210) as xcl(τ) =

√

ω2/2g tanh[ω(τ − τ0)/2], while y(τ) and τ have the dimensions
√

h̄/ω
and 1/ω, respectively. The Dirac brackets 〈. . .〉Oω denote the expectation with respect to the
quadratic fluctuations controlled by the action (17.211). Due to the absence of a zero eigenvalue,
the fluctuations are harmonic. The expectation values of the various powers of y(τ) can therefore
be expanded according to the Wick rule of Section 3.17 into a sum of pair contractions involving
products of Green functions

G′
Oω

(τ, τ ′) = 〈y(τ)y(τ ′)〉Oω = h̄O−1
ω (τ, τ ′), (17.218)

where O−1
ω (τ, τ ′) denotes the inverse of the functional matrix (17.212).

The first term in (17.217) gives rise to three Wick contractions and becomes

I1 =
3ω3

4h̄2

∫

dτ G′
Oω

2 (τ, τ). (17.219)
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The integrand contains an asymptotically constant term which produces a linear divergence for
large L. This divergence is subtracted out as follows:

I1 = L
3ω

16
+

3ω3

4h̄2

∫

dτ

[

G′
Oω

2 (τ, τ) − h̄2

4ω2

]

. (17.220)

The first term is part of the first-order fluctuation correction without the classical solution, i.e., it
contributes to the constant background energy of the classical solution. It is obtained by replacing

G′
Oω

2 (τ, τ ′) → h̄Gω(τ − τ ′) =
h̄

2ω
e−ω|τ−τ ′| (17.221)

[recall (3.304) and (3.249)]. In the amplitudes (17.195), the background energy changes only the

exponential prefactor e−ωL/2h̄ to e−(1+3gh̄/16ω3)ωL/2h̄ and does not contribute to the level splitting.
The level splitting formula receives a correction factor

C′ =

[

1 − c1
gh̄

ω3
+ . . .

]

=

[

1 − (I ′1 + I ′2 + I ′3)
gh̄

ω3
+ O(g2)

]

, (17.222)

in which all contributions proportional to L are removed. Thus I1 is replaced by its subtracted
part I ′1 ≡ I1 − L3ω/16.

The integral I2 has 15 Wick contractions which decompose into two classes:

I2 ≡ I21 + I22 = −gω3

2h̄3

∫

dτdτ ′

× xcl(τ)
[

6G′
Oω

3 (τ, τ ′) + 9G′
Oω

(τ, τ)G′
Oω

(τ, τ ′)G′
Oω

(τ ′, τ ′)
]

xcl(τ
′). (17.223)

Each of the two subintegrals I21 and I22 contains a divergence with L which can again be found
via the replacement (17.221). The subtracted integrals in (17.222) are I ′21 = I21 + ωL/8 and
I ′22 = I22+3ωL/16. Thus, altogether, the exponential prefactor e−ωL/2h̄ in the amplitudes (17.195)

is changed to e−[1/2+(3/16−1/8−9/16)gh̄/ω3)ωL/2h̄ = e−(1/2−gh̄/2ω3)ωL/2h̄, in agreement with (5.258).
To compare the two expressions, we have to set ω =

√
2 since the present ω is the frequency at

the bottom of the potential wells whereas the ω in Chapter 5 [which is set equal to 1 in (5.258)]
parametrized the negative curvature at x = 0.

The Wick contractions of the third term lead to the finite integral

I3 = I ′3 = −3
ω3

h̄2

√

3g

ω3

∫

dτdτ ′ y′0(τ)G′
Oω

(τ, τ ′)G′
Oω

(τ ′, τ ′)xcl(τ
′). (17.224)

The correction factor (17.216) can be pictured by means of Feynman diagrams as

C = 1 − 3 +
1

2!

(

6 + 9

)

+ 3 + O(g2), (17.225)

where the vertices and lines represent the analytic expressions shown in Fig. 17.5.
For the evaluation of the integrals we need an explicit expression for G′

Oω
(τ, τ ′). This is easily

found from the results of Section 14.4.4. In Eq. (14.139), we gave the fixed-energy amplituderef(14.139)
lab(8.1443ccca)
est(14.162)

(xb|xa)ERM,EPT
solving the Schrödinger equation

(

− h̄2

2µ

d2

dx2
− ERM +

h̄2

2µ
− EPT

cosh2 x

)

(xb|xa)ERM,EPT
= −ih̄δ(xb − xa).

(17.226)
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Inserting EPT = (h̄2/2µ)s(s + 1), the amplitude reads for xb > xa

(xb|xa)ERM,EPT
=

−iµ

h̄
Γ(m(ERM) − s)Γ(s + m(ERM) + 1)

× P−m(ERM)
s (tanh xb)P

−m(ERM)
s (− tanhxa), (17.227)

with

m(ERM) =

√

1 − 2µERM/h̄2. (17.228)

After a variable change x = ωτ/2 and h̄2/µ = ω2/2, we set s = 2 and insert the energy ERM =
−3ω2/4. Then the operator in Eq. (17.226) coincides with Oω(τ, τ ′) of Eq. (17.212), and we obtain
the desired Green function for τ > τ ′

GOω(τ, τ ′) =
h̄

ω
Γ(m− 2)Γ(m + 3)P−m

2 (tanh
ωτ

2
)P−m

2 (− tanh
ωτ

2

′
), (17.229)

with m = 2. Due to translational invariance along the τ -axis, this Green function has a pole at
ERM = −3ω2/4 which must be removed before going to this energy. The result is the subtracted
Green function G′

Oω
(τ, τ ′) which we need for the perturbation expansion. The subtraction pro-

cedure is most easily performed using the formula G′
Oω

= (d/dERM)ERMGOω |ERM=−3ω2/4. In
terms of the parameter m, this amounts to

G′
Oω

(τ, τ ′) =
1

2m

d

dm
(m2 − 4)GOω (τ, τ ′)

∣

∣

∣

∣

m=2

. (17.230)

Inserting into (17.227) the Legendre polynomials from (14.143), ref(14.143)
lab(x14.166)
est(14.166)

P−m
2 (z) =

1

Γ(1 + m)

(

1 + z

1 − z

)−m/2 [

1 − 3

1 + m
(1 − z) +

3

(1 + m)(2 + m)
(1 − z)2

]

, (17.231)

the Green function (17.230) can be written as

G′
Oω

(τ, τ ′) = h̄[Y0(τ>)y0(τ<) + y0(−τ>)Y0(−τ<)], (17.232)

where τ> and τ< are the greater and the smaller of the two times τ and τ ′, respectively, and
y0(τ), Y0(τ) are the wave functions

y0(τ) = −2
√

6ωP−2
2

(

− tanh
ωτ

2

)

= −
√

3ω

8

1

cosh2 ωτ
2

, (17.233)

g

h̄
xcl(τ)

g

4h̄
√

3g

ω3
y′0(τ)

G′
Oω

(τ, τ ′)

Figure 17.5 Vertices and lines of Feynman diagrams for correction factor C in

Eq. (17.225).
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Y0(τ) =
1

2
√

6ω

1

2ωm

{

1

2

[

d

dm
(m2 − 4)Γ(m− 2)Γ(m + 3)

]

P−m
2

(

tanh
ωτ

2

)

+
[

(m2 − 4)Γ(m− 2)Γ(m + 3)
] d

dm
P−m
2

(

tanh
ωτ

2

)

}∣

∣

∣

∣

m=2

. (17.234)

From (17.231) we see that

d

dm
P−m
2

(

tanh
ωτ

2

)

∣

∣

∣

∣

m=2

=

√
6

144
y0(τ)[6(3 − 2γ + ωτ) − e−ωτ (8 + e−ωτ )], (17.235)

where γ ≈ 0.5773156649 is the Euler-Mascheroni constant (2.469). Hence

Y0(τ) =
1

12ω2
y0(τ)[e−ωτ (e−ωτ + 8) − 2(2 + 3ωτ)]. (17.236)

For τ = τ ′, the Green function is

G′
Oω

(τ, τ) =
h̄

2ω

1

cosh4 ωτ
2

(

cosh4 ωτ

2
+ cosh2 ωτ

2
− 11

8

)

. (17.237)

Note that an application of the Schrödinger operator (17.212) to the wave functions Y0(τ) and
y0(τ) produces −y0(τ) and 0, respectively. These properties can be used to construct the Green
function G′

Oω
(τ, τ ′) by a slight modification of the Wronski method of Chapter 3. Instead of the

differential equation OωG(τ, τ ′) = h̄δ(τ − τ ′), we must solve the projected equation

O′
ωG

′
Oω

(τ, τ ′) = h̄[δ(τ − τ ′) − y0(τ)y0(τ
′)], (17.238)

where the right-hand side is the completeness relation without the zero-eigenvalue solution:

∑

n6=0

yn(τ)yn(τ ′) = δ(τ − τ ′) − y0(τ)y0(τ
′). (17.239)

The solution of the projected equation (17.238) is precisely given by the combination (17.232) of
the solutions Y0(τ) and y0(τ) with the above-stated properties.

The evaluation of the Feynman integrals I1, I21, I22, I3 is somewhat tedious and is therefore
described in Appendix 17A. The result is

I ′1 =
97

560
, I ′21 =

53

420
, I ′22 =

117

560
, I3 =

49

20
. (17.240)

These constants yield for the correction factor (17.222)

C′ =

[

1 − 71

24

gh̄

ω3
+ O(g2)

]

, (17.241)

modifying the level splitting formula (17.204) for the ground state energy to

∆E(0) = 4
√

3

√

ω3/3g

2πh̄
h̄ωe−ω3/3gh̄−71gh̄/24ω3+.... (17.242)

This expression can be compared with the known energy eigenvalues of the lowest two double-well
states. In Section 5.15, we have calculated the variational approximation W3(x0) to the effective
classical potential of the double well and obtained for small g an energy (see Fig. 5.24) which did
not yet incorporate the effects of tunneling. We now add to this the level shifts ±∆E(0)/2 from
Eq. (17.242) and obtain the curves also shown in Fig. 5.24. They agree reasonably well with the
Schrödinger energies.
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Figure 17.6 Positions of extrema xex in asymmetric double-well potential, plotted as

function of asymmetry parameter ǫ. If rotated by 900, the plot shows the typical cubic

shape. Between ǫ> and ǫ<, there are two minima and one central maximum. The branches

denoted by “min” are absolute minima; those denoted by “rel min” are relative minima.

17.9 Tunneling and Decay

The previous discussion of level splitting leads us naturally to another important
tunneling phenomenon of quantum theory: the decay of metastable states. Suppose
that the potential is not completely symmetric. For definiteness, let us add to V (x)
of Eq. (17.1) a linear term which breaks the symmetry x→ −x:

∆V = −ǫx− a

2a
. (17.243)

For small ǫ > 0, this slightly depresses the left minimum at x = −a. The positions
of the extrema are found from the cubic equation

V ′(xex) =
ω2a

2

[

(

xex
a

)3

− xex
a

− ǫ

ω2a2

]

= 0. (17.244)

They are shown in Fig. 17.6. For large ǫ, there is only one extremum, and this is
always a minimum. In the region where xex has three solutions, say x−, x0, x+, the
branches denoted by “rel min.” in Fig. 17.6 correspond to relative minima which lie
higher than the absolute minimum. The central branch corresponds to a maximum.
As ǫ decreases from large positive to large negative values, a classical particle at rest
at the minimum follows the upper branch of the curve and drops to the lower branch
as ǫ becomes smaller than ǫ<. Quantum-mechanically, however, there is tunneling
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to the lower state before ǫ<. Tunneling sets in as soon as ǫ becomes negative, i.e.,
as soon as the initial minimum at x+ comes to lie higher than the other minimum
at x−. The state whose wave packet is localized initially around x+ decays into the
lower minimum around x−. After some finite time, the wave packet is concentrated
around x−.

A state with a finite lifetime is described analytically by an energy which lies in
the lower half of the complex energy plane, i.e., which carries a negative imaginary
part Eim. The imaginary part gives half the decay rate Γ/2h̄. This follows directly
from the temporal behavior of a wave function with an energy E = Ere+ iEim which
is given by

ψ(x)e−iEt/h̄ = ψ(x)e−iE
ret/h̄eE

imt/h̄ = ψ(x)e−iE
ret/h̄e−Γt/2h̄. (17.245)

The last factor leads to an exponential decay of the norm of the state
∫

d3x|ψ(x)|2 = e−Γt/h̄, (17.246)

which shows that h̄/Γ is the lifetime of the state. A positive sign of the imaginary
part of the energy is ruled out since it would imply the state to have an exponentially
growing norm.

We are now going to calculate Γ for the lowest state.4 If ǫ has a small negative
value, the initial probability is concentrated in the potential valley around the right-
hand minimum x = x+ ≈ a. We assume the potential barrier to be high compared
to the ground state energy. Then a semiclassical treatment is adequate. In this
approximation we evaluate the amplitude

(x+tb|x+ta).

It contains the desired information on the lifetime of the lowest state by behaving,
for large tb − ta, as

(x+tb|x+ta) ∼ ψ0(0)ψ0(0)e
−iEre(tb−ta)/h̄e−Γ(tb−ta)/2h̄.

As before, it is convenient to work with the Euclidean amplitude with τa = −L/2
and τb = L/2,

(x+ L/2|x+ − L/2), (17.247)

which behaves for large L as

(x+ L/2|x+ − L/2) ∼ ψ0(0)ψ0(0)e
−EreL/h̄eiΓL/2h̄. (17.248)

The classical approximation to this amplitude is dominated by the path solving the
imaginary-time equation of motion which corresponds to a real-time motion in the
reversed potential −V (x) (see Fig. 17.7). The particle starts out at x = x+ for

4Due to the finite lifetime this state is not stationary. For sufficiently long lifetimes, however,
it is approximately stationary for a finite time.

H. Kleinert, PATH INTEGRALS



17.9 Tunneling and Decay 1213

Figure 17.7 Classical bubble solution in reversed asymmetric quartic potential for ǫ < 0,

starting out at the potential maximum at x+, crossing the valley, and returning to the

maximum.

τ = −L/2, traverses the minimum of −V (x) at some finite value τ = τ0, and comes
back to x+ at τ = L/2. This solution is sometimes called a bounce solution, because
of its returning to the initial point.

There exists an important application of the tunneling theory to the vaporization
process of overheated water, to be discussed in Section 17.11. There the same type
of solutions plays the role of critical bubbles triggering the phase transition. Since
bounce solutions were first discussed in this context [4], we shall call them bubble

solutions or critical bubbles.
We now proceed as in the previous section, i.e., we calculate

a) the classical action of a bubble solution,
b) the quadratic fluctuations around a bubble solution,
c) the sum over infinitely many bubble solutions.

By following these three steps naively, we obtain the amplitude

(x+ L/2|x+ − L/2) =

√

ω

πh̄
e−ωL/2h̄ exp

[

√

Acl/2πh̄K
′Le−Acl/h̄

]

. (17.249)

Here Acl is the action of the bubble solution and K ′ collects the fluctuations of all
nonzero-eigenvalue modes in the presence of the bubble solution as in (17.192):

K ′ =

√

√

√

√

∏0
n λn

∏′
nλn

∣

∣

∣

∣

∣

L

. (17.250)

The translational invariance makes the imaginary part in the exponent proportional
to the total length L of the τ -axis.

From the large-L behavior of the amplitude (17.249) we obtain the ground state
energy

E(0) =





ω

2
−
√

Acl

2πh̄
K ′e−Acl/h̄



 . (17.251)

In order to deduce the finite lifetime of the state from this formula we note that,
just like the kink solution, the bubble solution has a zero-eigenvalue fluctuation
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associated with the time translation invariance of the system. As before, its wave
function is given by the time derivative of the bubble solution

y0(τ) =
1√Acl

x′cl(τ). (17.252)

In contrast to the kink solution, however, the bubble solution returns to the initial
position, implying that xcl(τ) has a maximum. Thus, the zero-eigenvalue mode
∝ x′cl(τ) contains a sign change (see Fig. 17.7). In wave mechanics, such a place
is called a node of the wave function. A wave function with a node cannot be the
ground state of the Schrödinger equation governing the fluctuations

[

− d2

dτ 2
+ V ′′(xcl(τ))

]

yn(τ) = λnyn(τ). (17.253)

A symmetric wave function without a node must exist, which will have a lower energy
than the zero-eigenvalue mode, i.e., it will have a negative eigenvalue λ−1 < 0. The
associated wave function is denoted by y−1(τ). It corresponds to a size fluctuation of
the bubble solution. The nodeless wave function y−1(τ) is the ground state. There
can be no further negative-eigenvalue solution [5].

It is instructive to trace the origin of the negative sign within the efficient cal-
culation method of the fluctuation determinant in Section 17.5. In contrast to the
instanton treated there, the bubble solution has opposite symmetry, with an anti-
symmetric translational mode x′cl(τ). From this we may construct again two linearly
independent solutions to find the determinant D(τ) to be used in Eq. (17.154).

The negative eigenvalue λ−1 enters in the calculation of the functional integral
(17.46) via a fluctuation integral

∫

dξ1√
2πh̄

e−(1/2h̄)ξ21λ−1 . (17.254)

This integral diverges. The harmonic fluctuations of the integration variable take
place around a maximum; they are unstable. At first sight one might hope to obtain
a correct result by a naive analytic continuation doing first the integral for λ−1 > 0,
where it gives

∫

dξ−1√
2πh̄

e−(1/2h̄)ξ 2
−1λ−1 =

1√
λ−1

, (17.255)

and then continuing the right-hand side analytically to negative λ−1. The result
would be

∫ dξ−1√
2πh̄

e−(1/2h̄)ξ 2
−1λ−1 = ± i

√

|λ−1|
. (17.256)

From (17.250) and (17.251) we then might expect the formula for the decay rate to
be

1

h̄
Γ = −2i

√

Acl

2πh̄
K ′e−Acl/h̄ (wrong), (17.257)

H. Kleinert, PATH INTEGRALS
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Figure 17.8 Action of deformed bubble solution as function of deformation parameter

ξ. The maximum at ξ = 1 represents the critical bubble.

with

K ′ = i|K ′| =
√

√

√

√

∏0
n λn

∏

n 6=0,−1λn

∣

∣

∣

∣

∣

L

i
√

|λ−1|
. (17.258)

However, this naive manipulation does not quite give the correct result. As we
shall see immediately, the error consists in a missing factor 1/2 which has a simple
physical explanation. A more careful analytic continuation is necessary to find this
factor [4]. As a function of ξ, it behaves as shown in Fig. 17.8.

For a proper analytic continuation, consider a continuous sequence of paths in
the functional space and parametrize it by some variable ξ. Let the trivial path

x(τ) ≡ x+ (17.259)

correspond to ξ = 0, and the bubble solution

x(τ) = xcl(τ) (17.260)

to ξ = 1. The action of the trivial path is zero, that of the bubble solution isA = Acl.
As the parameter ξ increases to values > 1, the bubble solution is deformed with a
growing portion of the curve moving down towards the bottom of the lower potential
valley (see Fig. 17.9). This lowers the action more and more.

There is a maximum at the bubble solution ξ = 1. The negative eigenvalue
λ−1 < 0 of the fluctuation equation (17.253) is proportional to the negative curvature
at the maximum. Since there exists only a single negative eigenvalue, the fluctuation
determinant of the remaining modes is positive. It does not influence the process of
analytic continuation. Thus we may study the analytic continuation within a simple
model integral designed to have the qualitative behavior described above:

Z =
∫ ∞

0

dξ√
2π
eλ(ξ

2+αξ3). (17.261)

The parameter λ stands for the negative eigenvalue λ−1, whereas α is an auxiliary
parameter to help perform the analytic continuation. For α > 0, the integral is
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Figure 17.9 Sequence of paths as function of parameter ξ, starting out at ξ = 0, with

a constant solution in the metastable valley x(τ) ≡ x ≡ x+, reaching the extremal bubble

solution x(τ) ≡ xcl(τ) for ξ = 1, and sliding more and more down towards the stable

minimum for 1 < ξ → ∞.

stable and well defined. For α < 0, the “Euclidean action” in the exponent A =
−λ(ξ2 + αξ3) has a maximum at

ξm = − 2

3α
. (17.262)

Near the maximum, it has the expansion

A = −λ
[

4

27α2
− (ξ − ξm)

2 + . . .
]

. (17.263)

The second term possesses a negative curvature λ which represents the negative
eigenvalue λ−1. The parameter α2 plays the role of h̄/(−λAcl) in the bubble discus-
sion, and the semiclassical expansion of the path integral corresponds to an expan-
sion of the model integral in powers of α2. We want to show that the lowest two
orders of this expansion yield an imaginary part

ImZ ∼ eλ4/27α
2 1

2

1
√

|λ|
, (17.264)

where the exponential is the classical contribution and the factor contains the fluc-
tuation correction. To derive (17.264), we continue the integral (17.261) analytically
from α > 0, where it is well defined, into the complex α-plane. It is convenient to
introduce a new variable t = αξ. Then Z becomes

Z =
1

α

∫ ∞

0

dt√
2π

exp

[

λ

α2
(t2 + t3)

]

. (17.265)

Since λ < 0 this integral converges for α > 0. To continue it to negative real values
of α, we set α ≡ |α|eiϕ and increase the angle ϕ from zero to π/2. While doing so,
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Figure 17.10 Lines of constant Re (t2 + t3) in complex t-plane and integration contours

Ci for various phase angles of α (shown in the insert) which maintain convergence of the

integral (17.265).

we deform the contour in the t-plane in order to maintain convergence. Thus we
introduce an auxiliary real variable t′ and set

t = ei2ϕ/3t′, t′ ∈ (0,∞). (17.266)

The continued integral is then performed as
∫

dt = ei2ϕ/3
∫∞
0 dt′. From the geometric

viewpoint, the convergence is maintained for the following reason: For α > 0, the
real part of the “action” −(λ/α2)(t2 + t3) has asymptotically three mountains at
azimuthal angles ϕ = 0, 2π/3, 4π/3, and three valleys at ϕ = π/3, π, 5π/3 (see
Fig. 17.10). As α is rotated by the phase eiϕ, these mountains rotate with 2/3 of
the angle ϕ anticlockwise in the t-plane. Since the contour keeps running up the
same mountain, the integral continues to converge, rendering an analytic function
of α. After α has been rotated to eiπα = −α, the exponent in (17.265) takes back
the original form, but the contour C runs up the mountain at ϕ = 2π/3. It does
not matter which particular shape is chosen for the contour in the finite regime.
We may deform the contour to the shape C2 shown in Fig. 17.10. Next we observe
that the point −α can also be reached by rotating α in the clockwise sense with −ϕ
increasing to π. In this case the final contour will run like C3 in Fig. 17.10. The
difference between the two analytic continuations is

∆Z ≡ Z(|α|e−iπ)− Z(|α|eiπ) = 1

|α|
∫

C4

dt√
2π

exp

{

λ

α2
(t2 + t3)

}

, (17.267)

where the contour C4 = C2 − C3 connects the mountain at ϕ = 4π/3 with that at
ϕ = 2π/3. The convergence of the combined integral is most rapid if the contour
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C4 is chosen to run along the line of steepest slope. This traverses the minimum at
t = −1 vertically in the complex t-plane.

The fact that ∆Z is nonzero implies that the partition function has a cut in
the complex α-plane along the negative real axis. Since Z is real for α > 0, it is a
real analytic function in the complex α-plane and the difference ∆Z gives a purely
imaginary discontinuity across the cut:

∆Z ≡ discZ = Z(−|α| − iη)− Z(−|α|+ iη). (17.268)

Let us calculate the discontinuity in the limit of small α where the dominant
contribution comes from the neighborhood of the point t = −1. While the action at
this point has a local maximum along the real t-axis, it has a local minimum along
the vertical contour in the complex t-plane. For small α2, the integral can be found
via the saddle point approximation calculating the local minimum in the quadratic
approximation:

discZ ≈ eλ4/27α
2
∫ i∞

−i∞

dξ√
2π
eλ(ξ−ξ0)

2

(17.269)

= eλ4/27α
2 i√

−λ.

Due to the real analyticity of Z, the imaginary part of Z is equal to one half of this:

ImZ(−|α| ∓ iη) = ±eλ4/27α2 1

2
√
−λ. (17.270)

The contour leading up to the extremal point adds only a real part to Z. The result
(17.270) is therefore the exact leading contributing to the imaginary part in the
limit α2 → 0, corresponding to the semiclassical limit h̄→ 0.

The exponent in (17.270) is the action of the model integral at the saddle point.
The second factor produces the desired imaginary part. For a sequence of paths in
functional space whose action depends on ξ as in Fig. 17.9, the result can be phrased
as follows:
∫ ∞

0

dξ√
2πh̄

e−A(ξ)/h̄ =
∫ 1

0

dξ√
2πh̄

e−A(ξ)/h̄ + e−A(1)/h̄
∫ 1−i∞

1

dξ√
2πh̄

e−A′′(1)(ξ−1)2/2h̄

≈
∫ 1

0

dξ√
2πh̄

e−A(ξ)/h̄ +
i

2
e−A(1)/h̄ 1

√

−A′′(1)
. (17.271)

After translating this result to the form (17.254), we conclude that the integration
over the negative-eigenvalue mode

∫

dξ−1√
2πh̄

e−ξ
2

−1λ−1/2h̄ (17.272)

becomes, for λ−1 < 0 and after a proper analytic continuation,
∫

dξ−1√
2πh̄

e−ξ
2

−1λ−1/2h̄ =
i

2

1
√

|λ−1|
. (17.273)
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It is easy to give a physical interpretation to the factor 1/2 appearing in this formula,
in contrast to the naively continued formula (17.287). At the extremum, the classical
solution, which plays the role of a critical bubble, can equally well contract or expand
in size. In the first case, the path x(τ) returns towards to the original valley and the
bubble disappears. In the second case, the path moves more and more towards the
lower valley at x = −x−, thereby transforming the system into the stable ground
state. The factor 1/2 accounts for the fact that only the expansion of the bubble
solution produces a stable ground state, not the contraction.

The factor 1/2 multiplies the naively calculated imaginary part of the partition
function which becomes

ImZ(−|g| − iη) ≈ 1

2

√

Acl/2πh̄|K ′|Le−Acl/h̄. (17.274)

The summation over an infinite number of bubble solutions moves the imaginary
contribution to Z into the exponent as follows:

ReZ + ImZ = ReZ(1 + ImZ/ReZ) −−−→
infinite sum

ReZeImZ/ReZ (17.275)

as in Eqs. (17.195), (17.196). By comparison with (17.248), we obtain the correct
semiclassical tunneling rate formula [rather than (17.257)]:

1

h̄
Γ =

√

Acl

2πh̄
|K ′|e−Acl/h̄, (17.276)

where K ′ is the square root of the eigenvalue ratios, with the zero-eigenvalue mode
removed. The prefactor has the dimension of a frequency. It defines the bubble decay
frequency

ωatt =

√

Acl

2πh̄
|K ′|. (17.277)

The exponential in (17.276) is a “quantum Boltzmann factor” which suppresses
the formation of a bubble triggering the tunneling process via its expansion. The
subscript indicates that the frequency plays the role of an attempt frequency by
which the metastable state attempts to tunnel through the barrier into the stable
ground state.

17.10 Large-Order Behavior of Perturbation Expansions

The above semiclassical approach of the decay rate of a metastable state has an
important fundamental application. At the end of Chapter 3 we have remarked
that the perturbation expansion of the anharmonic oscillator has a zero radius of
convergence. This property is typical for many quantum systems. The precise form
of the divergence is controlled by the tunneling rate formula (17.276), as we shall
see now.
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17.10.1 Growth Properties of Expansion Coefficients

As a specific, but typical, example we consider the anharmonic oscillator with the
action

A =
∫ L/2

−L/2
dτ

[

x′2

2
− ω2

2
x2 − g

4
x4
]

, (17.278)

and study the partition function as an analytic function of g. It is given by the path
integral at large L (which now represents the imaginary time β = 1/kBT , setting
h̄ = 1)

Z(g) =
∫

Dx(τ)eA. (17.279)

The L-dependence of the partition function follows from the spectral representation

Z(g) =
∑

n

e−E
(n)(g)L, (17.280)

where E(n)(g) are the energy eigenvalues of the system. In the limit L → ∞, this
becomes an expansion for the ground state energy E(0)(g). In the limit L → ∞,
Z(g) behaves like

Z(g) → e−E
(0)(g)L, (17.281)

exhibiting directly the ground state energy.
Since the path integral can be done exactly at the point g = 0, it is suggestive

to expand the exponential in powers of g and to calculate the perturbation series

Z(g) =
∑

k=0

Zk

(

g

ω3

)k

. (17.282)

As shown in Section 3.20, the expansion coefficients are given by the path integrals

Zk =
(−g)k
k!

∫

Dx(τ)
[

∫ L/2

−L/2
dτ x4(τ)

]k

exp

[

−
∫ L/2

−L/2
dτ

(

1

2
ẋ2 +

ω2

2
x2
)]

= Z−1 (−g)k
k!

〈

∫ L/2

−L/2
dτ x4(τ)

〉

ω

. (17.283)

By selecting the connected Feynman diagrams in Fig. 3.7 contributing to this path
integral, we obtain the perturbation expansion in powers of g for the free energy
F . In the limit L → ∞, this becomes an expansion for the ground state energy
E(0)(g), in accordance with (17.281). By following the method in Section 3.18, we
find similar expansions for all excited energies E(n)(g) in powers of g. For g = 0,

the energies are, of course, those of a harmonic oscillator, E
(n)
0 = ω(n + 1/2). In

general, we find the series

E(n)(g) =
∞
∑

k=0

E
(n)
k

(

g

4

)k

. (17.284)
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Most perturbation expansions have the grave deficiency observed in Eq. (3C.27).
Their coefficients grow for large order k like a factorial k! causing a vanishing radius
of convergence. They can yield approximate results only for very small values of g.
Then the expansion terms E

(n)
k (g/4)k decrease at least for an initial sequence of k-

values, say for k = 0, . . . , N . For large k-values, the factorial growth prevails. Such
series are called asymptotic. Their optimal evaluation requires a truncation after
the smallest correction term. In general, the large-order behavior of perturbation
expansions may be parametrized as

Ek = γpβ+1kβ(−4a)k(pk)!
[

1 +
γ1
k

+
γ2
k2

+ . . .
]

, (17.285)

where the leading term (pk)! grows like

(pk)! = (k!)p(pp)kk(1−p)/2
√
p

(2π)(p−1)/2
[1 +O(1/k)] . (17.286)

This behavior is found by approximating n! via Stirling’s formula (5.204). It is easy
to see that the kth term of the series (17.284) is minimal at

k ≈ kmin ≡
1

p(a|g|)1/p . (17.287)

This is found by applying Stirling’s formula once more to (k!)p and by minimizing
γ(k!)pkβ

′

(ppa|g|)k with β ′ = β + (1− p)/2, which yields the equation

p log k + log(ppa|g|) + (β + p/2)/k + . . . = 0. (17.288)

An equivalent way of writing (17.285) is

Ek = γp(−4a)kΓ(pk + β + 1)

[

1 +
c1

pk + β
+

c2
(pk + β)(pk + β − 1)

+ . . .

]

.(17.289)

The simplest example for a function with such strongly growing expansion coef-
ficients can be constructed with the help of the exponential integral

E1(g) =
∫ ∞

g

dt

t
e−t. (17.290)

Defining

E(g) ≡ 1

g
e1/gE1(1/g) =

∫ ∞

0
dt

1

1 + gt
e−t, (17.291)

this has the diverging expansion

E(g) = 1− g + 2!g2 − 3!g3 + . . .+ (−1)NN !gN + . . . . (17.292)

At a small value of g, such as g = 0.05, the series can nevertheless be evaluated
quite accurately if truncated at an appropriate value of N . The minimal correction
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is reached at N = 1/g = 20 where the relative error with respect to the true value
E ≈ 0.9543709099 is equal to ∆E/E ≈ 1.14 · 10−8. At a somewhat larger value
g = 0.2, on the other hand, the optimal evaluation up to N = 5 yields the much
larger relative error ≈ 1.8%, the true value being E ≈ 0.852110880.

The integrand on the right-hand side of (17.291), the function

B(t) =
1

1 + t
, (17.293)

is the so-called Borel transform of the function E(g). It has a power series expansion
which can be obtained from the divergent series (17.292) for E(g) by removing in
each term the catastrophically growing factor k!. This produces the convergent
series

B(t) = 1− t+ t2 − t3 + . . . , (17.294)

which sums up to (17.293). The integral

F (g) =
∫ ∞

0

dt

g
e−t/gB(t) (17.295)

restores the original function by reinstalling, in each term tk, the removed k!-factor.
Functions F (g) of this type are called Borel-resummable. They possess a con-

vergent Borel transform B(t) from which F (g) can be recovered with the help of the
integral (17.295). The resummability is ensured by the fact that B(t) has no sin-
gularities on the integration path t ∈ [0,∞), including a wedge-like neighborhood
around it. In the above example, B(t) contains only a pole at t = −1, and the
function E(g) is Borel-resummable. Alternating signs of the expansion coefficients
of F (g) are a typical signal for the resummability.

The best-known quantum field theory, quantum electrodynamics , has divergent
perturbation expansions, as was first pointed out by Dyson [6]. The expansion
parameter g in that theory is the fine-structure constant

α = 1/137.035963(15) ≈ 0.0073. (17.296)

Fortunately, this is so small that an evaluation of observable quantities, such as the
anomalous magnetic moment of the electron

ae =
∆µ

µ
=

1

2

α

π
− 0.328 478 965 7

(

α

π

)2

+ 1.1765(13)
(

α

π

)3

+ . . . , (17.297)

gives an extremely accurate result:

atheore = (1 159 652 478± 140) · 10−12. (17.298)

The experimental value differs from this only in the last three digits, which are
200± 40. The divergence of the series sets in only after the 137th order.
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A function E(g) with factorially growing expansion coefficients cannot be ana-
lytic at the origin. We shall demonstrate below that it has a left-hand cut in the
complex g-plane. Thus it satisfies a dispersion relation

E(g) =
1

2πi

∫ ∞

0
dg′

discE(−g′)
g′ + g

, (17.299)

where discE(g′) denotes the discontinuity across the left-hand cut

discE(g) ≡ E(g − iη)− E(g + iη). (17.300)

It is then easy to see that the above large-order behavior (17.289) is in one-to-one
correspondence with a discontinuity which has an expansion, around the tip of the
cut,

discE(−|g|)=2πiγ(a|g|)−(β+1)/pe−1/(a|g|)p [1 + c1(a|g|)1/p+ c2(a|g|)2/p+ . . .] . (17.301)

The parameters are the same as in (17.289). The one-to-one correspondence is
proved by expanding the dispersion relation (17.299) in powers of g/4, giving

Ek = (−4)k
∫ ∞

0

dg′

2πi

1

g′k+1
discE(−g′). (17.302)

The expansion coefficients are given by moment integrals of the discontinuity with
respect to the inverse coupling constant 1/g. Inserting (17.301) and using the inte-
gral formula5

∫ ∞

0
dg

1

|g|α+1
e−1/(a|g|)(1/p) = aαpΓ(pα), (17.303)

we indeed recover (17.289).
From the strong-coupling limit of the ground state energy of the anharmonic

oscillator Eq. (5.168) we see that the discontinuity grow for large g like g1/3. In this
case, the dispersion relation (17.304) needs a subtraction and reads

E(g) = E(0) +
g

2πi

∫ ∞

0

dg′

g′
discE(−g′)
g′ + g

. (17.304)

This does not influence the moment formula (17.302) for the expansion coefficients,
except that the lowest coefficient is no longer calculable from the discontinuity. Since
the lowest coefficient is known, there is no essential restriction.

17.10.2 Semiclassical Large-Order Behavior

The large-order behavior of many divergent perturbation expansions can be deter-
mined with the help of the tunneling theory developed above. Consider the potential

5I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 3.478.
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of the anharmonic oscillator at a small negative coupling constant g (see Fig. 17.11).
The minimum at the origin is obviously metastable so that the ground state has only
a finite lifetime. There are barriers to the right and left of the metastable minimum,
which are very high for very small negative coupling constants. In this limit, the life-
time can be calculated accurately with the semiclassical methods of the last section.
The fluctuation determinant yields an imaginary part of Z(g) of the form (17.270),
which determines the imaginary part of the ground state energy via (17.276), which
is accurate near the tip of the left-hand cut in the complex g-plane. From this imag-
inary part, the dispersion relation (17.302) determines the large-order behavior of
the perturbation coefficients.

The classical equation of motion as a function of τ is

x′′(τ)− V ′(x(τ)) = 0. (17.305)

The differential equation is integrated as in (17.26), using the first integral of motion

1

2
x′2 − 1

2
ω2x2 − g

4
x4 = E = const , (17.306)

from which we find the solutions for E = 0

τ − τ0 = ± 1

ω

∫

dx
1

x
√

1− (|g|/2ω2)x2
= ∓ 1

ω
arcosh





√

√

√

√

2ω2

|g|
1

x



 , (17.307)

or

x(τ) = xcl(τ) ≡ ±
√

√

√

√

2ω2

|g|
1

cosh[ω(τ − τ0)]
. (17.308)

They represent excursions towards the abysses outside the barriers and correspond
precisely to the bubble solutions of the tunneling discussion in the last section. The
excursion towards the abyss on the right-hand side is illustrated in Fig. 17.11. The
associated action is calculated as in (17.29):

Acl =
∫ L/2

−L/2
dτ

[

1

2
x′2cl(τ) + V (xcl(τ))

]

= 2
∫ L/2

0
dτ [x′2cl(τ)− E]

= 2
∫ xm

0
dx
√

2(E + V )− EL, (17.309)

where xm is the maximum of the solution. The bubble solution has E = 0, so that

Acl = 2
∫ xm

0
dx

√
2V =

4ω3

3|g| . (17.310)

Inserting the fluctuating path x(τ) = xcl(τ) + y(τ) into the action (17.278) and
expanding it in powers of y(τ), we find an action for the quadratic fluctuations of
the same form as in Eq. (17.211), but with a functional matrix

Oω(τ, τ
′) =

[

− d2

dτ 2
+ ω2 + 3gx2cl(τ)

]′
δ(τ − τ ′)

=

[

− d2

dτ 2
+ ω2

(

1− 6

cosh2[ω(τ − τ0)]

)]′
δ(τ − τ ′). (17.311)
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Figure 17.11 Potential of anharmonic oscillator (17.278) for small negative coupling

g. The ground state centered at the origin is metastable. It decays via a classical solution

which makes an excursion towards the abyss as indicated by the oriented curve.

This is once more the operator of the Rosen-Morse type encountered in Eq. (17.138)
with m = ω, z = 1, and s = 2. The subscript ω on the operator symbol indicates
the asymptotic harmonic form of the potential. The potential accommodates again
two bound states with the normalized wave functions6 and energies (see Fig. 17.12)

y0(τ) = −
√

3ω

2

sinh[ω(τ − τ0)]

cosh2[ω(τ − τ0)]
with λ0 = 0, (17.312)

y−1(τ) =

√

3ω

4

1

cosh2[ω(τ − τ0)]
with λ−1 = −3ω2. (17.313)

These are the same functions as in (17.52), (17.53), apart from the fact that m is
now ω rather than ω/2. However, the energies are shifted with respect to the earlier
case. Now the first excited state has a zero eigenvalue so that the ground state has
a negative eigenvalue. This is responsible for the finite lifetime of the ground state.

The fluctuation determinant is obtained by any of the above procedures, for
instance from the general formula (17.143),

∏

n λ
0
n

∏

n λn
=

Γ(
√
z − s)Γ(

√
z + s+ 1)

Γ(
√
z)Γ(

√
z + 1)

, (17.314)

6The sign of y0 is chosen to agree with that of x′
cl(τ) in accordance with (17.88).
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Figure 17.12 Rosen-Morse Potential for fluctuations around the classical bubble solu-

tion.

by inserting the parameters z = 1 and s = 2. The zero eigenvalue is removed by
multiplying this with (z − 1)ω2, resulting in the eigenvalue ratio

∏

n λ
0
n

∏′
n λn

= lim
z→1

(
√
z − 1)(

√
z + 1)ω2

[

Γ(
√
z − 2)Γ(

√
z + 3)

Γ(
√
z)Γ(

√
z + 1)

]

= −12ω2. (17.315)

The negative sign due to the negative-eigenvalue solution in (17.313) accounts for
the instability of the fluctuations.

Using formula (17.274), we find the imaginary part of the partition function

ImZ(−|g| − iη) ≈
√

6

π

√

√

√

√

4ω3

3|g|ωLe
−4ω3/3|g|e−ωL/2. (17.316)

After summing over all bubble solutions, as in (17.275), we obtain the imaginary
part of the ground state energy

ImE(0)(−|g| − iη)=− ω

√

6

π

√

√

√

√

4ω3

3|g|e
−4ω3/3|g|. (17.317)

A comparison of this with (17.301) fixes the growth parameters of the large-order
perturbation coefficients to

a = 3/4ω3, β = −1

2
, γ = −ω

π

√

6

π
, p = 1. (17.318)

Recalling the one-to-one correspondence between (17.301) and (17.289), we see that
the large-order behavior of the perturbation coefficients of the ground state energy
E(0)(g) is

E
(0)
k = −ω

π

√

6

π
(−3/ω3)kΓ(k + 1/2). (17.319)
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It is just as easy to find the large-k behavior of the excited states. Their decay is
triggered by a periodic classical solution with a very long but finite Euclidean period

L, which moves back and forth between positions x< 6= 0 and x> <
√

2ω2/|g|. Its
action is approximately given by

A′
cl ≈

4ω3

3|g|(1− 12e−ωL). (17.320)

In comparison with the limit L→ ∞, the Boltzmann-like factor e−Acl of this solution
is replaced by

e−A′
cl = e−Acl

∞
∑

n=0

An
cl

12n

n!
e−nωL. (17.321)

The exponentials in the sum raise the reference energies in the imaginary part of
Z(−|g|−iη) in (17.316) from ω/2 to ω(n+1/2). The imaginary parts for the energies
to the nth excited states become

ImE(n)(−|g| − iη)=− 12n

n!
ω

√

6

π

√

√

√

√

4ω3

3|g|

1+2n

e−4ω3/3|g|, (17.322)

implying an asymptotic behavior of the perturbation coefficients:

E
(n)
k = −ω

π

√

6

π

12n

n!
(−3/ω3)kΓ(k + n + 1/2). (17.323)

It is worth mentioning that within the semiclassical approximation, the disper-
sion integrals for the energies can be derived directly from the path integral (17.279).
This can obviously be rewritten as

Z(g) =
∫ i∞

−i∞

dλ

2πi

∫ ∞

0

da

4
e−(ga+λa)/4

×
∫

Dx(τ) exp
{

−
∫ L/2

L/2
dτ

[

1

2
x′2 +

ω2

2
x2 − λ

4
x4
]}

. (17.324)

The integration over λ generates a δ-function 4δ(
∫

dτ x4(τ) − a) which eliminates
the additionally introduced a-integration. The integral over a is easily performed.
It yields a factor 1/(λ+ g), so that we obtain the integral formula

Z(g) =
∫ i∞

−i∞

dλ

2πi

1

λ + g
Z(−λ). (17.325)

The integrand has a pole at λ = −g and a cut on the positive real λ-axis. We
now deform the contour of integration in λ until it encloses the cut tightly in the
clockwise sense. In the semiclassical approximation, the discontinuity across the cut
is given by Eq. (17.316), i.e., with the present variable λ:

ImZ(−|λ| − iη)=

√

6

π

√

4ω3

3λ
e−4ω3/3λe−ωL/2. (17.326)
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On the upper branch of the cut,
√
λ is positive, on the lower negative. Thus we

arrive at a simple dispersion integral from λ = 0 to λ = ∞:

Z(g)=2ω
∫ ∞

0

dλ

2π

1

λ+ g

√

6

π

√

4ω3

3λ
e−4ω3/3λe−ωL/2. (17.327)

For the ground state energy, this implies

E(0)(g)=− 2ω
∫ ∞

0

dλ

2π

1

λ+ g

√

6

π

√

4ω3

3λ
e−4ω3/3λ. (17.328)

Of course, this expression is just an approximation, since the integrand is valid only
at small λ. In fact, the integral converges only in this approximation. If the full
imaginary part is inserted, the integral diverges. We shall see below that for large λ,
the imaginary part grows like λ1/3. Thus a subtraction is necessary. A convergent
integral representation exists for E(0)(g)−E(0)(0). With E(0)(0) being equal to ω/2,
we find the convergent dispersion integral

E(0)(g)=
ω

2
+ 2ωg

∫ ∞

0

dλ

2π

1

λ(λ+ g)

√

6

π

√

4ω3

3λ
e−4ω3/3λ. (17.329)

The subtraction is advantageous also if the initial integral converges since it sup-
presses the influence of the large-λ regime on which the semiclassical tunneling
calculation contains no information.

After substituting λ→ 4g/3tω3, the integral (17.329) is seen to become a Borel
integral of the form (17.295).

By expanding 1/(λ+ g) in a power series in g

1

λ+ g
=

∞
∑

k=0

(−1)kgkλ−k−1, (17.330)

we obtain the expansion coefficients as the moment integrals of the imaginary part
as a function of 1/g:

E
(0)
k = −2ω (−4)k

∫ ∞

0

dλ

2π

1

λk+1

√

6

π

√

4ω3

3λ
e−4ω3/3λ. (17.331)

This leads again to the large-k behavior (17.319).
The direct treatment of the path integral has the virtue that it can be generalized

also to systems which do not possess a Borel-resummable perturbation series. As an
example, one may derive and study the integral representation for the level splitting
formula in Section 17.7.

17.10.3 Fluctuation Correction to the Imaginary Part

and Large-Order Behavior

It is instructive to calculate the first nonleading term c1a|g| in the imaginary part
(17.301), which gives rise to a correction factor 1 + c1/k in the large-order behavior
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(17.289). As in Section 17.8, we expand the action around the classical solution.
The interaction between the fluctuations y(τ) is the same as before in (17.215). The
quadratic fluctuations are now governed by the differential operator

Oω(τ, τ
′) =

[

− d2

dτ 2
+ ω2

(

1− 6

cosh2 ω(τ − τ0)

)]′
δ(τ − τ ′), (17.332)

the prime indicating the absence of the zero eigenvalue. Its removal gives rise to the
factor

Aeff
e = −h̄ log



1−
√

3|g|
4ω3

∫

dτ y′0(τ)y(τ)



 . (17.333)

After expanding, in the path integral, the exponential e−(Aint
fl +Aeff

e )/h̄ in powers of
the interaction up to the second order, a perturbative evaluation of the correlation
functions of the fluctuations y(τ) according to the rules of Section 3.20 yields a
correction factor

C =

[

1 + (I1 + I2 + I3)
|g|h̄
ω3

+O(g2)

]

, (17.334)

with the same τ -integrals as in Eqs. (17.217), (17.219), (17.223), and (17.224), after
replacing g by |g|. The correction parameter C has again a diagrammatic expansion
(17.225), where the vertices stand for the same analytic expressions as in Fig. 17.5,
except for the third vertex, which is now

√

3|g|
4ω3

y′0(τ). (17.335)

The lines represent the subtracted Green function

G′
Oω

(τ, τ ′) = 〈y(τ)y(τ ′)〉Oω = h̄O−1
ω (τ, τ ′), (17.336)

where O−1
ω (τ, τ ′) is the inverse of the functional matrix (17.332).

In contrast to the level splitting calculation in Section 17.8, only the integral I1
requires a subtraction,

I1 =
3ω3

4h̄2

∫

dτ G′
Oω

2 (τ, τ) = L
3ω

16
+

3ω3

4h̄2

∫

dτ

[

G′
Oω

2 (τ, τ)− h̄2

4ω2

]

, (17.337)

and Eq. (17.334) assumes that I1 is subtracted, i.e., I1 should be replaced by I ′1 ≡
I1 − L3ω/16. The correction factor for the tunneling rate reads, therefore,

C ′ =

[

1 + (I ′1 + I2 + I3)
|g|h̄
ω3

+O(g2)

]

. (17.338)

The subtracted integral contributes only to the real part of the ground state
energy which we know to be (1/2 + 3gh̄/16ω3)h̄ω.
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As in Section 17.8, the explicit Green function G′
Oω

(τ, τ ′) is found from the
amplitude (17.227). By a change of variables x = ωτ and h̄2/2µ = ω2, setting s = 2,
the Schrödinger operator in (17.226) coincides with that in (17.212), provided we
set ERM = 0. The amplitude (17.227) then yields the Green functions for τ > τ ′

GOω(τ, τ
′) =

h̄

2ω
Γ(m− 2)Γ(m+ 3)× P−m

2 (tanhωτ)P−m
2 (− tanhωτ ′), (17.339)

with m = 1. Due to translational invariance along the τ -axis, this Green function
has a pole at ERM = 0 [just like the Green function (17.229)]. The pole must be
removed before going to this energy, and the result is the subtracted Green function
G′

Oω
(τ, τ ′), given by

G′
Oω

(τ, τ ′) =
1

2m

d

dm
(m2 − 1)GOω(τ, τ

′)

∣

∣

∣

∣

∣

m=1

. (17.340)

Using (17.231), we find the subtracted Green function

G′
Oω

(τ, τ ′) = h̄[Y0(τ>)y0(τ<) + y0(−τ>)Y0(−τ<)], (17.341)

with

y0(τ) = 2

√

3ω

2
P−1
2 (− tanhωτ) = −

√

3ω

2

sinhωτ

cosh2 ωτ
, (17.342)

Y0(τ) =

√

2

3ω

1

8ωm

{

1

2

[

d

dm
(m2 − 1)Γ(m− 2)Γ(m+ 3)

]

P−m
2 (tanhωτ)

+
[

(m2 − 1)Γ(m− 2)Γ(m+ 3)
] d

dm
P−m
2 (tanhωτ)

}∣

∣

∣

∣

∣

m=1

= −
√

2

3ω3

[

3

4

1

coshωτ
+
(

−3

4
ωτ −1

8

)

sinhωτ

cosh2 ωτ
− 1

4
e−ωτ

]

. (17.343)

For τ = τ ′

G′
Oω

(τ, τ) =
h̄

2ω

1

cosh2 ωτ
(cosh2 ωτ − 1)(cosh2 ωτ − 1/2). (17.344)

The evaluation of the integrals I ′1, I21, I22, I3 proceeds as in Section 17.8 (per-
formed in Appendix 17A), yielding [7]

I ′1 = − 11 · 29
24 · 5 · 7 , I21 = − 71

25 · 3 · 7 , I22 =
3 · 13
24 · 7 , I3 = − 53

24 · 5 . (17.345)

The correction factor (17.338) is therefore

C ′ =

[

1− 95

72

3|g|h̄
4ω3

+O(g2)

]

. (17.346)

Using the one-to-one correspondence between (17.289) and (17.301), this yields the
large-k behavior of the expansion coefficients of the ground state energy:

E
(0)
k = −ω

π

√

6

π
(−3/ω3)kΓ(k + 1/2)[1− 95/72k + . . .]. (17.347)
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17.10.4 Variational Approach to Tunneling. Perturbation

Coefficients to All Orders

The semiclassical calculations of tunneling amplitudes are valid only for very high
barriers. It is possible to remove this limitation with the help of a variational
approach [8] similar to the one described in Chapter 5. For simplicity, we discuss
here only the case of an anharmonic oscillator at zero temperature. For the lowest
energy levels we shall derive highly accurate imaginary parts over the entire left-hand
cut in the coupling constant plane. The accuracy can be tested by inserting these
imaginary parts into the dispersion relation (17.329) to recover the perturbation
coefficients of the energies. These turn out to be in good agreement with the exact
ones to all orders.

For the path integral of the anharmonic oscillator

Z(g) =
∫

Dx(τ) exp
{

−
∫ L/2

−L/2
dτ

[

1

2
x′2 +

ω2

2
x2 +

g

4
x4
]}

, (17.348)

the variational energy (5.32) at zero temperature is given by ref(5.32)
lab(5.36)
est(5.43)

W1 =
Ω

2
+
ω2 − Ω2

2
a2 +

3g

4
a4, (17.349)

with a2 = 1/2Ω. We have omitted the path average argument x0 since, by symmetry
of the potential, the minimum lies at x0 = 0. The energy has to be extremized in
Ω2. This yields the cubic equation Ω3 − ω2Ω − 3g/2 = 0. The physically relevant
solution starts out with ω at g = 0 and has two branches: For g ∈ (−g(0), 0) with
g(0) = 4ω3/9

√
3 [compare (5.163)], it is given by

Ω =
2ω√
3
cos

[

π

3
− 1

3
arccos (−g/g(0))

]

. (17.350)

For large negative coupling constants g < −g(0), the solution is

Ωre =
ω√
3
cosh(γ/3), Ωim = ω sinh(γ/3); γ = arcosh (−g/g(0)). (17.351)

In this regime, the ground state energy acquires an imaginary part

ImW1 =
1

4
Ωi(1− 1/|Ω|2)− 3g

4
ΩreΩim/2|Ω|4. (17.352)

This imaginary part describes the instability of the system to slide down into the
two abysses situated at large positive and negative x. In this regime of coupling
constants, the barriers to the right and left of the origin are no obstacle to the decay
since they are smaller than the zero-point energy.

In the first regime of small negative coupling constants g ∈ (−g(0), 0), the barriers
are high enough to prevent at least one long-lived ground state from sliding down.
Its energy is approximately given by the minimum of (17.349). It can decay towards
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the abysses via an extremal excursion across the trial potential Ω2x2/2+gx4/4. The
associated bubble solution reads, according to (17.308),

x(τ) = xcl(τ) ≡ ±
√

2Ω2/|g| 1

cosh[Ω(τ − τ0)]
. (17.353)

It has the action Acl = 4Ω3/3|g|. Its fluctuation determinant is given by (17.315), if

ω is replaced by the trial frequency Ω. Translations contribute a factor βΩ
√

Acl/2π.
Thus, the partition function has an imaginary part

ImZ(−|g| − iη)=βΩ

√

6

π

√

√

√

√

4Ω3

3|g|e
−βΩ/2−4Ω3/3|g|. (17.354)

In the variational approach, this replaces the semiclassical expression (17.316), which
will henceforth be denoted by Z im

sc (g).
The expression (17.354) receives fluctuation corrections. To lowest order, they

produce a factor exp(−〈Aint
fl,tot〉OΩ

), where the action Aint
fl,tot contains the interaction

terms (17.215) and (17.213) of the fluctuations, with ω replaced by Ω, plus additional
terms arising from the variational ansatz. They compensate for the fact that we are
using the trial potential Ω2x2/2 rather than the proper ω2x2/2 as the zeroth-order
potential for the perturbation expansion. These compensation terms have the action

Aint
fl,var =

∫ ∞

−∞
dτ

ω2 − Ω2

2
x2(τ)

=
∫ ∞

−∞
dτ

ω2 − Ω2

2
[x2cl(τ) + 2xcl(τ)y(τ) + y2(τ)]. (17.355)

The expectations 〈. . .〉OΩ
in the perturbation correction are calculated with respect

to fluctuations governed by the operator (17.332), in which ω is replaced by Ω. As
before, all correlation functions are expanded by Wick’s rule into sums of products
of the simple correlation functions G′

OΩ
(τ, τ ′) of (17.336). Using the integral formula

(17.54), we have

∫ ∞

−∞
dτ x2cl(τ) = 4Ω/|g|. (17.356)

The expectation of
∫∞
−∞ dτ y(τ)2 is found with the help of (17.344) as

∫ ∞

−∞
dτ 〈y2(τ)〉OΩ

= L
1

2Ω
+

1

Ω

∫ ∞

−∞
dτ

[

G′
OΩ

(τ, τ)− 1/2
]

= L
1

2Ω
− 7

6Ω2
. (17.357)

The second term can be obtained quite simply by differentiating the logarithm of
(17.314) with respect to Ω2z.

The linearly divergent term L/2Ω contributes to the earlier-calculated term pro-
portional to L in the integral (17.337) (with ω replaced by Ω); together they yield
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L-times W1 of (17.349). Thus we can remove a factor e−LW1 from ImZ, write Z as
≈ ReZeImZ/ReZ = e−LW1+ImZ/ReZ [as in (17.275)], and deduce the imaginary part of
the energy from the exponent.

We now go over to the cumulants in accordance with the rules of perturbation
theory in Eqs. (3.483)–(3.487) involving the integrals (17.217) (with g and ω replaced ref(3.483)

lab(2.42cd4)
est(3.175)
ref(3.487)
lab(3.fvers)
est(3.179)

by |g| and Ω, respectively). Using (17.345) we find the correction factor e−A0−A1

with

A0 =
95

96

|g|
Ω3
, A1 =

1

2
(ω2 − Ω2)

(

4Ω

|g| −
7

6Ω2

)

. (17.358)

If we want to find all terms contributing to the imaginary part up to the order
g, we must continue the perturbation expansion to the next order. This yields a
further factor

exp
{

1

2
[〈Aint 2

fl,tot〉OΩ
− 〈Aint

fl,tot〉2OΩ
]
}

= exp(−A2 − A3 − A4), (17.359)

with the integrals

A2 = −1

2
(ω2 − Ω2)2

∫

dτdτ ′ xcl(τ)〈y(τ)y(τ ′)〉OΩ
xcl(τ

′),

A3 = −(ω2 − Ω2)

√

3|g|
4Ω3

∫

dτdτ ′ y′0(τ)〈y(τ)y(τ ′)〉OΩ
xcl(τ

′),

A4 = (ω2 − Ω2)|g|
∫

dτdτ ′ xcl(τ)〈y(τ)y3(τ ′)〉OΩ
xcl(τ

′). (17.360)

Performing the Wick contractions in the correlation functions, the integrals are
conveniently rewritten as

A2 = −1

2
(ω2 − Ω2)2

1

Ω|g|a2,

A3 = −(ω2 − Ω2)
1

Ω2
a3,

A4 = (ω2 − Ω2)
1

Ω2
a4, (17.361)

where a2, a3, a4 are given by

a2 = |g|Ω
∫

dτdτ ′ xcl(τ)G
′
OΩ

(τ, τ ′)xcl(τ
′),

a3 = Ω2

√

3|g|
4Ω3

∫

dτdτ ′ y′0(τ)G
′
OΩ

(τ, τ ′)xcl(τ
′),

a4 = 3|g|Ω2
∫

dτdτ ′ xcl(τ)G
′
OΩ

(τ, τ ′)G′
OΩ

(τ ′, τ ′)xcl(τ
′). (17.362)

In terms of these, the imaginary part of the energy reads

ImE(−|g| − iη) = −Ω

√

6

π

√

√

√

√

4Ω3

3|g|e
−4Ω3/3|g|−c13|g|/4Ω3

× exp

[

−ω
2 − Ω2

2

(

4Ω

|g| −
7

6Ω2
− 2

a3 − a4
Ω2

)

+
(ω2 − Ω2)2

2Ω|g| a2

]

, (17.363)
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evaluated at the Ω-value (17.350).
To best visualize the higher-order effect of fluctuations, we factorize (17.363) into

the semiclassical part (17.317) and a correction factor εi(g),

ImE(−|g| − iη) = −ω
√

6

π

√

√

√

√

4ω3

3|g|e
−4ω3/3|g|εi(g), (17.364)

where

εi(g) =
(

Ω

ω

)5/2

exp
[

− 4
Ω3 − ω3

3|g| − c1
3|g|
4Ω3

− ω2 − Ω2

2

(

4Ω

|g| −
7

6Ω2
− 2

a3 − a4
Ω2

)

+
(ω2 − Ω2)2

2Ω|g| a2

]

. (17.365)

The calculation of the integrals (17.362) proceeds as in Appendix 17A, yielding

Figure 17.13 Reduced imaginary part of lowest three energy levels of anharmonic oscil-

lator for negative couplings plotted against g′ ≡ g/ω3. The semiclassical limit corresponds

to εi ≡ 1. The small-|g′| branch is due to tunneling, the large-|g′| branch to direct decay

(sliding). Solid and dotted curves show the imaginary parts of the variational approxima-

tions W1 and W3, respectively; dashed straight lines indicate the exactly known slopes.

a2 = −1, a3 = 3/4, a4 = 1/12.
The result is shown in Fig. 17.13. The slope of εi(g) at g = 0 maintains the first-

order value c13/4 = 95/96, i.e., the additional terms in the exponent of (17.365)
cancel each other to first order in g.

There exists a short derivation of this result using the same method as in the
derivation of Eq. (5.190). We take the fluctuation-corrected semiclassical approxi-ref(5.190)

lab(5.r0)
est(5.149)
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mation at the frequency ω

ImE(−|g| − iη) = −ω
√

6

π

√

√

√

√

4ω3

3|g|e
−4ω3/3|g|−3c1|g|/4ω3

, (17.366)

move the ω-dependent prefactor into the exponent with the help of the logarithm,

replace everywhere ω by
√

Ω2 − (Ω2 − ω2) =
√

Ω2 − gr2/2 with r2 = 2(Ω2 − ω2)/g,
and expand the exponent in powers of g including all orders of g to which the
exponent of (17.366) is known (treating r as a quantity of order unity). This leads
again to (17.364) with (17.365).

The imaginary part is inserted into the dispersion relation (17.329) and yields
for positive g the energy

E(0)(g)=
ω

2
+ 2ωg

∫ ∞

0

dλ

2π

1

λ(λ+ g)

√

6

π

√

4ω3

3λ
e−4ω3/3λεi(λ). (17.367)

Expanding the integrand in powers of g gives an integral formula for the pertur-
bation coefficients analogous to (17.331). Its evaluation yields the numbers shown
in Table 17.1. They are compared with exact previous larger-order values (17.319)
which follow from εi ≡ 1. The improvement of our knowledge on the imaginary
part of the energy makes it possible to extend the previous large-order results to
low orders. Even the lowest coefficient with k = 1 is reproduced very well [9].

The high degree of accuracy of the low-order coefficients is improved further
by going to the higher variational approximation W3 of Eq. (5.192) and extracting
from it the imaginary part ImW3(0) at zero temperature [10]. When continuing the
coupling constant g to the sliding regime, we obtain the dotted curve in Fig. 17.13.
It merges rather smoothly into the tunneling branch at g ≈ −0.24. Plotting the
merging regime with more resolution, we find two closely lying intersections at g′ =
−0.229 and g′ = −0.254. We choose the first of these to cross over from one branch
to the other. After inserting the imaginary part into the integral (17.331), we obtain
the fifth column in Table 17.1. For k = 1, the accuracy is now better than 0.05%. To
make the approximation completely consistent, the tunneling amplitude should also
be calculated to the corresponding order. This would yield a further improvement
in the low-order coefficients.

It is instructive to test the accuracy of our low-order results by evaluating the
dispersion relation (17.367) for the g-dependent ground state energy E(0)(g). The re-
sults shown in Fig. 17.14 compare well with the exact curves. They are only slightly
worse than the original Feynman-Kleinert approximation W1 evaluated at positive
values of g. We do not show the approximation W3 since it is indistinguishable from
the exact energy on this plot.

The approximation obtained from the dispersion relation has the advantage of
possessing the properly diverging power series expansion and a reliable information
on the analytic cut structure in the complex g-plane. Also here, the third-order
result E

(0)
var3+disp based on the imaginary part of W3 for g < 0 is so accurate that it

cannot be distinguished from the exact ones on the plot.
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Table 17.1 Comparison between exact perturbation coefficients, semiclassical ones, and

those obtained from moment integrals over the imaginary parts consisting of (17.363) in

the tunneling regime and the analytic continuation of the variational approximations W1

and W3 in the sliding regime. An alternating sign (−1)k−1 is omitted and ω is set equal

to 1.

k Ek Esc
k Evar1+disp

k Evar3+disp
k

1 0.75 1.16954520 0.76306206 0.74932168
2 2.625 5.26295341 2.49885978 2.61462012
3 20.8125 39.4721506 18.3870038 20.7186128
4 241.289063 414.457581 205.886443 240.857317
5 3580.98047 5595.17734 3093.38043 3590.69587
6 63982.8135 92320.4261 57436.2852 64432.5387
7 1329733.73 1800248.43 1244339.99 1342857.03
8 31448214.7 40505587.0 30397396.0 31791078.0
9 833541603 1032892468 822446267 842273537

10 24478940700 29437435332 24420208763 24703889150

The strong-coupling behavior is well reproduced by our curves. Recall the lim-
iting expression for the middle curve given in Eq. (5.77) and the exact one (5.226)
with the coefficients of Table 5.9.

The calculation of the imaginary part in the sliding regime can be accelerated by
removing from the perturbation coefficients the portion which is due to the imaginary
part of the tunneling amplitude. By adding the energy associated with this portion
in the form of a dispersion relation it is possible to find variational approximations
which for positive coupling constants are not only numerically accurate but which
also have power series expansions with the correct large-order behavior [which was
not the case for the earlier approximations WN(g)].

The entire treatment can be generalized to excited states. The variational ener-
gies are then replaced by the minima of the expressions derived in Section 5.19,

W
(n)
1 = Ωn2 +

ω2 − Ω2

2

n2

Ω
+
g

4

n4

Ω2
, (17.368)

with n2 = n + 1/2 and n4 = (3/2)(n2 + n + 1/2). The optimal Ω-values are given
by the solutions (17.350), (17.351), with g(0) replaced by g(n) = 2n2/3

√
3n4. For

g ∈ (−g(n), 0), the energies are real; for g < −g(n) they possess the imaginary part

ImW
(n)
1 =

1

2
Ωi

(

1− ω2

|Ω|2
)

n2 −
g

2
ΩreΩim n4

|Ω|4 . (17.369)

For g ∈ (−g(n), 0), the imaginary part arises from the bubble solution. In the
semiclassical limit it produces a factor 12nAn

cl/n! for n > 0 as in Eq. (17.322) (with
ω replaced by Ω). Also here, the variational approach can easily be continued higher
order approximations W2, W3, . . . .
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Figure 17.14 Energies of anharmonic oscillator as function of g′ ≡ g/ω3, obtained

from variational imaginary part, and the dispersion relation (17.328) as a function of the

coupling constant g. Comparison is made with the exact curve and the Feynman-Kleinert

variational energy for g > 0.

To first order in g, the imaginary part is known from a WKB calculation [11]. It
reads

ImE(n)(−|g| − iη)=− 12n

n!
ω

√

6

π

√

√

√

√

4ω3

3|g|

1+2n

e−4ω3/3|g|−c(n)
1 3|g|/4ω3

, (17.370)

with the slope parameter

c
(n)
1 =

d ε
(n)
i

d(g/ω3)
=
(

95

96
+

29

16
n+

17

16
n2
)

ω−3. (17.371)

Following the procedure described after Eq. (17.366), we obtain from this a varia-
tional expression for the imaginary part which generalizes Eq. (17.364) to any n:

ImE(n)(−|g| − iη)=− 12n

n!
ω

√

6

π

√

√

√

√

4ω3

3|g|

1+2n

e−4ω3/3|g|ε
(n)
i (g), (17.372)

with a correction factor

ε
(n)
i (g) =

(

Ω

ω

)3n+5/2

exp
[

− 4
Ω3 − ω3

3|g| − c
(n)
1

3|g|
4Ω3

− ω2 − Ω2

2

(

4Ω

|g| −
3n+ 5/2

Ω2

)

− (ω2 − Ω2)2

2Ω|g|
]

. (17.373)
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Im εi(g)

Figure 17.15 Reduced imaginary part of ground state energy of anharmonic oscillator

from variational perturbation theory plotted for small negative g against log(−g/4). The

fat curve is the analytic continuation of the strong-coupling expansion (5.226) with the ex-

pansion coefficients up to the 22nd order listed in Table 5.9. The thin curve is the divergent

semiclassical expansion of the contribution of the classical solution in Eq. (17.374).

Inserting for Ω the optimal value Ω(n), we obtain the solid curves shown in Fig. 17.13.
Their slopes have the exact values (17.371).

The sliding regime for the excited states can be obtained from an analytic con-
tinuation of the variational energies. For n = 1, 2 the resulting imaginary parts are
shown as dotted curves in Fig. 17.13. They merge smoothly with the corresponding
tunneling branches obtained from W1.

If we extend the variational evaluation of the perturbation expansions to high
orders in g, we find the imaginary part over the left-hand cut extending deeper
and deeper into the regime dominated by the classical solution and the fluctuations
around it [10]. This is shown in the double-logarithmic plot of Fig. 17.15.

The result may be compared with the the divergent semiclassical expansion
around the classical solution [13]

log εi(g) = − 4

3g
+ k1

g

4
+ k2

(

g

4

)2

+ . . . . (17.374)

also plotted in Fig. 17.15. The coefficients are listed in Table 17.2.

Table 17.2 Coefficients kn of semiclassical expansion (17.374) around classical solution.

1 2 3 4 5
3.95833 19.3437500 174.2092014 2177.286133 34045.58329

6 7 8 9 10
632817.0536 1.357206× 107 3.2924× 108 8.92 × 109 2.65 × 1011
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The inclusion of finite temperatures is possible by summing over the imaginary
parts of the energies weighted by a Boltzmann factor with these energies. This opens
the road to applications in many branches of physics where tunneling phenomena
are relevant.

It will be interesting to generalize this procedure to quantum field theories, where
it can give rise to the development of much more efficient resummation techniques
for perturbation series. One will be able to set up system-dependent basis functions
in terms of which these series possess a convergent re-expansion. The critical expo-
nents of the O(N)-symmetric ϕ4-theory should then be calculable from the presently
known five-loop results [14] with a much greater accuracy than before.

17.10.5 Convergence of Variational Perturbation Expansion

The knowledge of the discontinuity across the left-hand makes it possible to under-
stand roughly the convergence properties of the variational perturbation expansion
developed in Section 5.14. The ground state energy satisfies the subtracted disper-
sion relation [compare (17.299)]

E(0)(g) =
ω

2
− g

2πi

∫ −∞

0

dg′

g′
discE(0)(g′)

g′ − g
, (17.375)

where discE(0)(g′) denotes the discontinuity across the left-hand cut in the complex
g-plane. An expansion of the integrand in powers of g yields the perturbation series

E(0)(g) = ω
N
∑

k=0

E
(0)
k

(

g

4ω3

)k

. (17.376)

The associated variational energy has the form [compare (5.206)]

WΩ
N (g) = Ω

N
∑

k=0

ε
(0)
k

(

g

4Ω3

)k

. (17.377)

It is obtained from (17.376) by the replacement (5.188) and a re-expansion in powers
of g. In the present context, we write this replacement as

ω −−−→ Ω(1− σĝ)1/2, (17.378)

where ĝ is the dimensionless coupling constant g/Ω3, and

σ = Ω(Ω2 − 1)/g (17.379)

[recall Eqs. (5.213) and (5.208)].
There is a simple way of obtaining the same re-expansion from the dispersion

relation (17.375). Introducing the dimensionless coupling constant ḡ ≡ g/ω3, the
replacement (17.378) amounts to

ḡ −−−→ g̃(ĝ) ≡ ĝ

(1− σĝ)3/2
. (17.380)
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Since Eq. (17.375) represents an energy, it can be written as ω times a dimensionless
function of ḡ. Apart from the replacement (17.380) in the argument, it receives an
overall factor Ω/ω = (1− σĝ)1/2. We introduce the reduced energies

Ê(ĝ) ≡ E(g)/Ω, (17.381)

which depends only on the reduced coupling constant ĝ, the dispersion relation
(17.375) for E(0)(g) implies a dispersion relation for Ê(0)(ĝ):

Ê(0)(g) = (1− σĝ)1/2
[

1

2
+
g̃(ĝ)

2πi

∫ −∞

0

dḡ′

ḡ′
disc Ē(0)(ḡ′)

ḡ′ − g̃(ĝ)

]

. (17.382)

The resummed perturbation series is obtained from this by an expansion in powers
of ĝ/4 up to order N .

It should be emphasized that only the truncation of the expansion causes a
difference between the two expressions (17.375) and (17.382), since ḡ and g̃ are the
same numbers, as can be verified by inserting (17.379) into the right-hand side of
(17.380).

To find the re-expansion coefficients we observe that the expression (17.382)
satisfies a dispersion relation in the complex ĝ-plane. If C denotes the cuts in this
plane and discCE(ĝ) is the discontinuity across these cuts, the dispersion relation
reads

Ê(0)(ĝ) =
1

2
+

ĝ

2πi

∫

C

dĝ′

ĝ′
discCÊ

(0)(ĝ′)

ĝ′ − ĝ
. (17.383)

We have changed the argument of the energy from ḡ to ĝ since this will be the
relevant variable in the sequel.

When expanding the denominator in the integrand in powers of ĝ/4, the expan-

sion coefficients ε
(0)
l are found to be moment integrals with respect to the inverse

coupling constant 1/ĝ [compare (17.302)]:

ε
(0)
k = − 4k

2πi

∫

C

dĝ

ĝk+1
discCÊ

(0)(ĝ). (17.384)

In the complex ĝ-plane, the integral (17.382) has in principle cuts along the contours
C1, C1̄, C2, C2̄, and C3, as shown in Fig. 17.16. The first four cuts are the images of
the left-hand cut in the complex g-plane; the curve C3 is due to the square root of
1− σĝ in the mapping (17.380) and the prefactor of (17.382).

Let D̄(ḡ) abbreviate the reduced discontinuity in the original dispersion relation
(17.375):

D̄(ḡ) ≡ disc Ē(0)(ḡ) = 2iIm Ē(0)(ḡ − iη), ḡ ≤ 0. (17.385)

Then the discontinuities across the various cuts are

disc
C1,1̄,2,2̄

Ê(0)(ĝ) = (1− σĝ)1/2D̄(ĝ(1− σĝ)−3/2), (17.386)
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Figure 17.16 Cuts in complex ĝ-plane whose moments with respect to inverse coupling

constant determine re-expansion coefficients. The cuts inside the shaded circle happen to

be absent due to the convergence of the strong-coupling expansion for g > gs.

disc
C3

Ê(0)(ĝ) = −2i(σĝ − 1)1/2

×
[

1

2
−
∫ ∞

0

dḡ′

2π

ĝ(σĝ − 1)−3/2

ḡ′2 + ĝ2(σĝ − 1)−3
D̄(−ḡ′)

]

. (17.387)

For small negative ḡ, the discontinuity is given by the semiclassical limit (17.317):

D̄ḡ) ≈ −2i

√

6

π

√

4

−3ḡ
e4/3ḡ. (17.388)

We denote by ε
(0)
k (Ci) the contributions of the different cuts to the integral

(17.384) for the coefficients. After inserting (17.388) into Eq. (17.386), we obtain
from the cut along C1 the semiclassical approximation

ε
(0)
k (C1) ≈ −2 4k

∫

C1

dĝ

2π

1

ĝk+1

√

6

π

√

√

√

√−4(1 − σĝ)5/2

3ĝ
e4(1−σĝ)

3/2/3ĝ. (17.389)

For the kth term Sk of the series this yields an estimate

Sk ∝
[

∫

Cγ

dγ

2π
efk(γ)

]

(σĝ)k, (17.390)

where fk(γ) is the function of γ ≡ σĝ

fk(γ) = −
(

k +
3

2

)

log(−γ) + 4σ

3γ
(1− γ)3/2. (17.391)

For large k, the integral may be evaluated via the saddle point approximation of
Subsection 4.2.1. The extremum of fk(γ) satisfies the equation

−k + 3

2
=

4σ

3γ
(1− γ)1/2 (1 + 1

2γ) , (17.392)
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which is solved by

γ−−−→
k→∞

γk = −4σ/3k. (17.393)

At the extremum, fk(γ) has the value

fk −−−→
k→∞

k log(3k/4eσ)− 2σ. (17.394)

The constant −2σ in this limiting expression arises when expanding the second term
of Eq. (17.391) into a Taylor series, (4σ/3γ)(1− γ)3/2 = 4σ/3γk − 2σ + . . . . Only
the first two terms survive the large-k limit.

Thus, to leading order in k, the kth term of the re-expanded series becomes

Sk ∝ e−2σ

(

−3k

e

)k (
ĝ

4

)k

. (17.395)

The corresponding re-expansion coefficients are

ε
(0)
k ∝ e−2σE

(0)
k . (17.396)

They have the remarkable property of growing in precisely the same manner with
k as the initial expansion coefficients E

(0)
k , except for an overall suppression factor

e−2σ. This property was found empirically in Fig. 5.20b.
In order to estimate the convergence of the variational perturbation expansion,

we note that with

σ =
Ω(Ω2 − 1)

g
(17.397)

and ĝ from (5.213), we have

σĝ = 1− 1

Ω2
. (17.398)

For large Ω, this expression is smaller than unity. Hence the powers (σĝ)k alone
yield a convergent series. An optimal re-expansion of the energy can be achieved
by choosing, for a given large maximal order N of the expansion, a parameter σ
proportional to N :

σ ≈ σN ≡ cN. (17.399)

Inserting this into (17.391), we obtain for large k = N

fN(γ) ≈ N

[

− log(−γ) + 4c

3γ
(1− γ)3/2

]

. (17.400)

The extremum of this function lies at

1 +
4c

3γ
(1− γ)1/2(1 + 1

2γ) = 0. (17.401)
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The constant c is now chosen in such a way that the large exponent proportional
toN in the exponential function efN (γ) due to the first term in (17.400) is canceled by
an equally large contribution from the second term, i.e., we require at the extremum

fN (γ) = 0. (17.402)

The two equations (17.401) and (17.402) are solved by

γ = −0.242 964 029 973 520 . . . , c = 0.186 047 272 987 975 . . . . (17.403)

In contrast to the extremal γ in Eq. (17.393) which dominates the large-k limit,
the extremal γ of the present limit, in which k is also large but of the order of N ,
remains finite (the previous estimate holds for k ≫ N). Accordingly, the second
term (4c/3γ)(1 − γ)3/2 in fN(γ) contributes in full, not merely via the first two
Taylor expansion terms of (1− γ)3/2, as it did in (17.394).

Since fN(γ) vanishes at the extremum, the Nth term in the re-expansion has the
order of magnitude

SN ∝ (σN ĝN)
N =

(

1− 1

Ω2
N

)N

. (17.404)

According to (17.397) and (17.399), the frequency ΩN grows for large N like

ΩN ∼ σ
1/3
N g1/3 ∼ (cNg)1/3. (17.405)

As a consequence, the last term of the series decreases for large N like

SN (C1) ∝
[

1− 1

(σNg)2/3

]N

≈ e−N/(σg)
2/3 ≈ e−N

1/3/(cg)2/3 . (17.406)

This estimate does not yet explain the convergence of the variational perturba-
tion expansion in the strong-coupling limit observed in Figs. 5.21 and 5.22. For
the contribution of the cut C1 to SN , the derivation of such a behavior requires
including a little more information into the estimate. This information is supplied
by the empirically observed property, that the best ΩN -values lie for finite N on a
curve [recall Eq. (5.211)]:

σN ∼ cN
(

1 +
6.85

N2/3

)

. (17.407)

Thus the asymptotic behavior (17.399) receives, at a finite N , a rather large cor-
rection. By inserting this σN into fN(γ) of (17.400), we find an extra exponential
factor

e∆fN ≈ exp

[

N
4c

3

(1− γ)3/2

γ

6.85

N2/3

]

= exp
[

−N log(−γ) 6.85
N2/3

]

≈ e−9.7N1/3

. (17.408)
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This reduces the size of the last term due to the cut C1 in (17.406) to

SN(C1) ∝ e−[9.7+(cg)−2/3]N1/3

, (17.409)

which agrees with the convergence seen in Figs. 5.21 and 5.22.
There is no need to evaluate the effect of the shift in the extremal value of γ

caused by the correction term in (17.407), since this would be of second order in
1/N2/3.

How about the contributions of the other cuts? For C1̄, the integrals in (17.384)
run from ĝ = −2/σ to −∞ and decrease like (−2/σ)−k. The associated last term
SN(C1̄) is of the negligible order e−N logN . For the cuts C2,2̄,3, the integrals (17.384)
start at ĝ = 1/σ and have therefore the leading behavior

ε
(0)
k (C2,2̄,3) ∼ σk. (17.410)

This implies a contribution to the Nth term in the re-expansion of the order of

SN(C2,2̄,3) ∼ (σĝ)N , (17.411)

which decreases merely like (17.406) and does not explain the empirically observed
convergence in the strong-coupling limit. As before, an additional information pro-
duces a better estimate. The cuts in Fig. 17.16 do not really reach the point σĝ = 1.
There exists a small circle of radius ∆ĝ > 0 in which Ê(0)(ĝ) has no singularities at
all. This is a consequence of the fact unused up to this point that the strong-coupling
expansion (5.231) converges for g > gs. For the reduced energy, this expansion reads:

Ê(0)(ĝ) =

(

ĝ

4

)1/3






α0 + α1

[

ĝ

4ω3

1

(1− σĝ)3/2

]−2/3

+ α2

[

ĝ

4ω3

1

(1− σĝ)3/2

]−4/3

+ . . .







.

(17.412)

The convergence of (5.231) for g > gs implies that (17.412) converges for all σĝ in
a neighborhood of the point σĝ = 1 with a radius

∆(σĝ) ∼
(

ĝ

−ḡs

)2/3

=

{

1

−σḡs
[1 + ∆(σĝ)]

}2/3

, (17.413)

where ḡs ≡ gs/ω
3. For large N , ∆(σĝ) goes to zero like 1/(N |ḡs|c)2/3. Thus the

integration contours of the moment integrals (17.384) for the contributions ε
(0)
k (Ci)

of the other cuts do not begin at the point σĝ = 1, but a little distance ∆(σĝ) away
from it. This generates an additional suppression factor

(σĝ)−N ∼ [1 + ∆(σĝ)]−N . (17.414)

Let us set −ḡs = |ḡs| exp(iϕs) and xs ≡ (−ĝ/ḡs)2/3 = −|xs| exp(iθ), and introduce
the parameter a ≡ 1/[|ḡs|c]2/3. Since there are two complex conjugate contributions
we obtain, for large N a last term of the re-expanded series the order of

SN(C2,2̄,3) ≈ e−N
1/3a cos θ cos(N1/3a sin θ). (17.415)
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2 3 4 5

-40

-30

-20

-10

exp(6.41 − 9.42N1/3)

|SN |

N1/3

Figure 17.17 Theoretically obtained convergence behavior of Nth approximants for α0,

to be compared with the empirically found behavior in Fig. 5.21.

e9.23N
1/3−5.14SN

N1/3

Figure 17.18 Theoretically obtained oscillatory behavior around exponentially fast

asymptotic approach of α0 to its exact value as a function of the order N of the ap-

proximant, to be compared with the empirically found behavior in Fig. 5.22, averaged

between even and odd orders.

By choosing

|ḡs| ∼ 0.160, θ ∼ −0.467, (17.416)

we obtain the curves shown in Figs. 17.17 and 17.18 which agree very well with the
observed Figs. 5.21 and 5.22. Their envelope has the asymptotic falloff e−9.23N1/3

.
Let us see how the positions of the leading Bender-Wu singularities determined by

(17.416) compare with what we can extract directly from the strong-coupling series
(5.231) up to order 22. For a pair of square root singularities at xs = −|xs| exp(±iθ),
the coefficients of a power series

∑

αnx
n have the asymptotic ratios Rn ≡ αn+1/αn ∼
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n

Rn

Figure 17.19 Comparison of ratios Rn between successive expansion coefficients of

strong-coupling expansion (dots) with ratios Ras
n of expansion of superposition of two

singularities at g = 0.156 × exp(±0.69) (crosses).

exact

E(0)(g)

strong coupling

3rd order PT

2nd order PT

g

Figure 17.20 Strong-coupling expansion of ground state energy in comparison with

exact values and perturbative results of 2nd and 3rd order. The convergence radius in 1/g

is larger than 1/0.2.

H. Kleinert, PATH INTEGRALS



17.11 Decay of Supercurrent in Thin Closed Wire 1247

Ras
n ≡ − cos[(n+1)θ+ δ]/|xs| cos(nθ+ δ). In Fig. 17.19 we have plotted these ratios

against the ratios Rn obtained from the coefficients αn of Table 5.9 . For large n,
the agreement is good if we choose

|xs| = 1/0.117, θ = −0.467, (17.417)

with an irrelevant phase angle δ = −0.15. The angle θ is in excellent agreement with
the value found in (17.416). From |xs| we obtain |ḡs| = 4|1/xs|3/2 = 0.160, again in
excellent agreement with (17.416).

This convergence radius is compatible with the heuristic convergence of the
strong-coupling series up to order 22, as can be seen in Fig. 17.19 by comparing the
curves resulting from the series with the exact curve.

It is possible to extend the convergence proof to the more general divergent
power series discussed in Section 5.17, whose strong-coupling expansions have the
more general growth parameters p and q [15]. The convergence is assured for 1/2 <
2/q < 1 [16]. If the interaction of the anharmonic oscillator is

∫

dτ xn(τ) with n 6= 4,
the dimensionless expansion parameter for the energies is g/ωn/2+1 rather than g/ω3.
Then q = n/2 + 1, such that for n ≥ 6 the convergence is lost. This can be verified
by trying to resum the expansions for the ground state energies of n = 6 and n = 8,
for example. For n = 6, the cut in Fig. 17.16 becomes circular such that there is no
more shaded circle C3 in which the strong-coupling series converges.

17.11 Decay of Supercurrent in Thin Closed Wire

An important physical application of the above tunneling theory explains the tem-
perature behavior of the resistance of a thin7 superconducting wire. The supercon-
ducting state is described by a complex order parameter ψ(z) depending on the
spatial variable z along the wire. We then speak of an order field . The variable z
plays the role of the Euclidean time τ in the previous sections. We shall consider a
closed wire where ψ(z) satisfies the periodic boundary condition

ψ(z) = ψ(z + L). (17.418)

The energy density of the system is described approximately by a Ginzburg-Landau

expansion in powers of ψ and its gradients containing only the terms

ε(z) = |∂zψ(z)|2 +m2|ψ(z)|2 + g

4
|ψ(z)|4. (17.419)

The total fluctuating energy is given by the functional

E[ψ∗, ψ] =
∫ L/2

−L/2
dz ε(z), (17.420)

7A superconducting wire is called thin if it is much smaller than the coherence length to be
defined in Eq. (17.425).
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and the probability of each fluctuation is determined by the Boltzmann factor
exp{−E[ψ∗, ψ]/kBT}. The parameter m2 in front of |ψ(z)|2 is called the mass term

of the field. It vanishes at the critical temperature Tc and behaves near Tc like

m2 ≈ m2
0

(

T

Tc
− 1

)

. (17.421)

Below Tc, the square mass is negative and the wire becomes superconducting. One
can easily estimate, that each term in the Landau expansion is of the order of
|1 − T/Tc|2 and any higher expansion term in (17.419) would be smaller than that
by at least a power |1− T/Tc|1/2.

The partition function of the system is given by the path integral

Z =
∫

Dψ∗(z)Dψ(z)e−E[ψ∗,ψ]/kBT . (17.422)

If T does not lie too close to Tc [although close enough to justify the Landau expan-
sion, i.e., the neglect of higher expansion terms in (17.419) suppressed by a factor
|1− T/Tc|1/2], this path integral can be treated semiclassically in the way described
earlier in this chapter [17].

The basic microscopic mechanism responsible for the phenomenon of supercon-
ductivity will be irrelevant for the subsequent discussion. Let us only recall the
following facts: A superconductor is a metal at low temperatures whose electrons
near the surface of the Fermi sea overcome their Coulomb repulsion due to phonon

exchange. This enables them to form bound states between two electrons of opposite
spin orientations in a relative s-wave, the celebrated Cooper pairs .8 The attraction
which binds the Cooper pairs is extremely weak. This is why the temperature has
to be very small to keep the pairs from being destroyed by thermal fluctuations.
The critical temperature Tc, where the pairs break up, is related to the binding en-
ergy of the Cooper pairs by Epair = kBTc. The field-theoretic process called phonon
exchange is a way of describing the accumulation of positive ions along the path of
an electron which acts as an attractive potential wake upon another electron while
screening the Coulomb repulsion. The attraction is very weak and leads to a bound
state only in the s-wave (the centrifugal barrier ∝ l(l+ 1)/r2 preventing the forma-
tion of a bound state in higher partial waves). The potential between the electrons
may well be approximated by a δ-function potential V (x) ≈ −gδ(r). The critical
temperature Tc, usually a few degrees Kelvin, is found to satisfy the characteristic
exponential relation

TckB = µe−1/g. (17.423)

The parameter µ denotes the upper energy cutoff of the phonon spectrum TDkB,
where TD is the Debye temperature of the lattice vibration.

8We consider here only with old-fashioned superconductivity which sets in below a very
small critical temperature of a few-degree Kelvin. The physics of the recently discovered high-
temperature superconductors is at present not sufficiently understood to be discussed along the
same lines.
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Figure 17.21 Renormalization group trajectories in the g, µ plane of superconducting

electrons (g=attractive coupling constant, µ=Debye temperature, kB = 1). Curves with

same Tc imply identical superconducting properties. The renormalization group deter-

mines the reparametrizations of a fixed superconductive system along any of these curves.

An important result of the theory, confirmed by experiment, is that all T -
dependent characteristic equilibrium properties of the superconductor near Tc de-
pend only on the single parameter Tc. Thus, many quite different systems with
different microscopic parameters µ ≡ TD and g will have the same superconducting
properties (see Fig. 17.21). The critical temperature is an important prototype for
the understanding of the so-called dimensionally transmuted coupling constant in
quantum field theories, which plays a completely analogous role in specifying the
system. In quantum field theory, an arbitrary mass parameter µ is needed to define
the coupling strength of a renormalized theory and physical quantities depend only
on the combination9

Mc = µe−1/g(µ). (17.424)

The set of all changes µ which are accompanied by a simultaneous change of g(µ)
such as to stay on a fixed curve with Mc from the renormalization group. The curve
µ, g(µ) is called the renormalization group trajectory [16].

If one works in natural units with h̄ = kB = M = 1, the critical temperature
corresponds to a length of ≈ 1000A

◦

. This length sets the scale for the spatial
correlations of the Cooper pairs near the critical point via the relation

ξ(T ) =
const.

Tc

(

1− T

Tc

)−1/2

≈ 1000A
◦

(

1− T

Tc

)−1/2

. (17.425)

9In quantum chromodynamics, this dimensionally transmuted coupling constant is of the order
of the pion mass and usually denoted by Λ.
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The Cooper pairs are much larger than the lattice spacing, which is of the order of
1A

◦

. Their size is determined by the ratio h̄2kF/meπkBTc, where kF is the wave num-
ber of electrons of mass me on the surface of the Fermi sphere. The temperature Tc
in conventional superconductors of the order of 1 K corresponds to 1/11604.447 eV.
Thus the thermal energy kBTc is smaller than the atomic energy EH = 27.210 eV
(recall the atomic units defined on p. 13.7) by a factor 2.345 × 10−3, and we find
that h̄2/meπkBTc is of the order of 102a2H . Since aH is of the order of 1/kF , we
estimate the size of the Cooper pairs as being roughly 100 times larger than the
lattice spacing.

This justifies a posteriori the δ-function approximation for the attractive poten-
tial, whose range is just a few lattice spacings, i.e., much smaller than ξ(T ). The
presence of such large bound states causes the superconductor to be coherent over
the large distance ξ(T ). For this reason, ξ(T ) is called the coherence length.

Similar Cooper pairs exist in other low-temperature fermion systems such as
3He, where they give rise to the phenomenon of superfluidity . There, the interatomic
potential contains a hard repulsive core for r < 2.7A

◦

. This prevents the formation of
an s-wave bound state. In addition it produces a strong spin-spin correlation in the
almost fully degenerate Fermi liquid, with a preference of parallel spin configurations.
Because of the necessary antisymmetry of the pair wave function of the electrons,
this amounts to a repulsion in any even partial wave. For this reason, Cooper pairs
can only exist in the p-wave spin triplet state. The binding energy is much weaker
than in a superconductor, suppressing the critical temperature by roughly a factor
thousand. Experimentally, one finds Tc = 27mK at a pressure of p = 35 bar. Since
the masses of the 3He atoms are larger than those of the electrons by about the
same factor thousand, the coherence length ξ has the same order of magnitude in
both systems, i.e., 1/Tc has the same length when measured in units of A

◦

.

The theoretical description of the behavior of the condensate is greatly simplified
by re-expressing the fundamental Euclidean action in terms of a Cooper pair field

which is the composite field

ψpair(x) = ψe(x)ψe(x). (17.426)

Such a change of field variables can easily be performed in a path integral formulation
of the field theory. The method is very similar to the introduction of the auxiliary
field ϕ(x) in the polymer field theory of Section 15.12. Since this subject has been
treated extensively elsewhere10 we shall not go into details. The partition function
of the system reads

Z =
∫

Dψ∗
e (x)Dψe(x)e

−A[ψ∗
e ,ψe]. (17.427)

10The way to describe the pair formation by means of path integrals is explained in H. Klein-
ert, Collective Quantum Fields , Fortschr. Phys. 26 , 565 (1978) (http://www.physik.fu-ber-
lin.de/~kleinert/55).
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By going from integration variables ψe to ψpair, we can derive the alternative pair
partition function

Z =
∫

Dψ∗
pair(x)Dψpair(x)e

−A[ψ∗
pair,ψpair], (17.428)

where ψpair is the Cooper pair field (17.426).
In general, the new action is very complicated. For temperatures close to Tc,

however, it can be expanded in powers of the field ψpair and its derivatives, leading
to a Landau expansion of the type (17.419). For static fields the Euclidean field
action is

A[ψ∗
pair, ψpair] = E/kBT =

1

kBT

∫

d3x ε(x) (17.429)

=
1

kBT

∫

d3x

[(

− log
µ

T
+

1

g2

)

|ψpair|2+
1

2T 2
c

|ψpair|4 +
1

T 2
c

|∇ψpair|2 + . . .

]

,

where the dots denote the omitted higher powers of ψpair and of their derivatives,
each accompanied by an additional factor 1/Tc.

Let us discuss the path integral (17.429) first in the classical limit. We observe
that with the critical temperature (17.423), the mass term in the energy can be
written as

− log
Tc
T

|ψpair|2 ∼ −
(

1− T

Tc

)

|ψpair|2. (17.430)

It has the “wrong sign” for T < Tc, so that the field has no stable minimum at
ψpair = 0. It fluctuates around one of the infinitely many nonzero values with the
fixed absolute value

|ψpair,0| = Tc

√

1− T

Tc
. (17.431)

It is then useful to take a factor Tc (1− T/Tc)
1/2 out of the field ψpair, define

ψ(x) ≡ ψpair(x)
1

Tc(1− T/Tc)1/2
, (17.432)

and write the renormalized energy density as

ε(x) = |∇ψ|2 − |ψ|2 + 1

2
|ψ|4. (17.433)

Here we have made use of the coherence length (17.425) to introduce a dimensionless
space variable x, replacing x → x ξ. We also have dropped an overall energy density
factor proportional to (1− T/Tc)

2 T 2
c .

In the rescaled form (17.433), the minimum of the energy lies at |ψ0| = 1, where
it has the density

ε = εc = −1/2. (17.434)
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The negative energy accounts for the binding of the Cooper pairs in the condensate
(in the present natural units) and is therefore called the condensation energy . In
terms of (17.433), the partition function in equilibrium can be written as

Z =
∫

Dψ∗(x)Dψ(x)e−(1/T )
∫

d3x ε(x). (17.435)

We are now prepared to discuss the flow properties of an electric current of the
system carried by the Cooper pairs. It is carried by the divergenceless pair current
[compare (1.102)]

j(x) =
1

2i
ψ∗(x)

↔
∇ ψ(x) (17.436)

associated with the transport of the number of pairs, apart from a charge factor of
the pairs, which is equal to twice the electron charge.

The important question to be understood by the theory is: How can this current
become “super”, and stay alive for a very long time (in practice ranging from hours
to years, as far as the patience of the experimentalist may last) [18]. To see this
let us set up a current in a long circular wire and assume that the wire thickness is
much smaller than the coherence length ξ(T ). Then transverse variations of the pair
field ψ(x) are strongly suppressed with respect to longitudinal ones (by the gradient
terms |∇ψ(x)|2 in the Boltzmann factor) and the system depends mainly on the
coordinate z along the wire, so that the above formalism can be applied. If the
cross section of the wire is absorbed into the inverse temperature prefactor in the
Boltzmann factor in (17.435), we may simply study the partition function (17.435)
for a one-dimensional problem along the z-axis. The energy density (17.433) is
precisely of the form announced in the beginning in Eq. (17.419). It is convenient
to decompose the complex field ψ(z) into polar coordinates

ψ(z) = ρ(z)eiγ(z), (17.437)

in terms of which the energy density reads

ε(z) = −ρ2 + 1

2
ρ4 + ρ2z + ρ2γ2z , (17.438)

where the subscript z indicates a derivative with respect to z. The field equations
are

j(z) = ρ2(z)γz(z) = const (17.439)

and

ρzz = −ρ+ ρ3 +
j2

ρ3
. (17.440)
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Figure 17.22 Potential V (ρ) = −ρ2 + ρ4/2 − j2/ρ2 showing barrier in superconducting

wire to the left of ρ0 to be penetrated if the supercurrent is to relax.

If z is reinterpreted as an imaginary “time”, the latter equation can be interpreted
as describing the mechanical motion of a mass point at the position ρ(z) moving as
a function of the “time” z in the potential

−V (ρ) ≡ ρ2 − 1

2
ρ4 +

j2

ρ2
, (17.441)

which is the potential shown in Fig. 17.22 turned upside down.
Certainly, the time-sliced path integral in ρ would suffer from the phenomenon

of path collapse described in Chapter 8. At the level of the semiclassical approxi-
mation to be performed here, however, this does not happen. There are two types
of extremal solutions. The trivial solutions are

γ(z) = kz, ρ(z) ≡ ρ0 =
√
1− k2. (17.442)

Since the wire is closed, the phase γ(z) has to be periodic over the total length L of
the wire. This implies the quantization of the wave number k,

kn =
2π

L
n, n = 0,±1,±2, . . . . (17.443)

The current associated with these solutions is

j = ρ20k = (1− k2)k. (17.444)
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Figure 17.23 The condensation energy as function of velocity parameter kn = 2πn/L.

As a function of k, this has an absolute maximum at the so-called critical current

jc, i.e.,

|j| < jc ≡
2

3
√
3
. (17.445)

No solution of the field equations can carry a larger current than this. The critical
wave number is

kc ≡
1√
3
, (17.446)

and the energy density:

ec(k) = V (ρ0) = −1

2
(1− k2)2. (17.447)

It is plotted in Fig. 17.23. Note that the k-values (17.446) for which a supercurrent
can exist between the turning points. The energy ec(k) represents the negative
condensation energy of the state in the presence of the current. For k → 0 it goes
against the current-free value (17.434).

We can now understand why all states of current jn smaller than jc are, in fact,
“super” in the sense of having an extremely long lifetime. At each value of kn, the
wire carries a metastable current which can only decay by a slow tunneling. To see
this, we picture the field configuration as a spiral of radius ρ wound around the wire
with the azimuthal angle representing the phase γ(z) = knz (see Fig. 17.24). At
zero temperature, the size ρ of the order parameter is frozen at ρ0 and the winding
number is absolutely stable on topological grounds. Then, each metastable state with
wave number kn has an infinite lifetime. If the current is to relax by one unit of n
it is necessary that at some place z, thermal fluctuations carry ρ(z) to zero. There

H. Kleinert, PATH INTEGRALS



17.11 Decay of Supercurrent in Thin Closed Wire 1255

z−axis

Figure 17.24 Order parameter ∆(z) = ρ(z)eiγ(z) of superconducting thin circular wire

neglecting fluctuations. The order parameter is pictured as a spiral of radius ρ0 and pitch

∂γ(z)/∂z = 2πn/L winding around the wire. At T = 0, the supercurrent is absolutely

stable since the winding number n is fixed topologically.

the phase becomes undefined and may slip by 2π. At the typical low temperatures
of these systems, such phase slips are extremely rare. To have a local excursion of
ρ(z) to ρ ≈ 0 at one place z, with an appreciable measure in the functional integral
(17.435), it must start from a nontrivial solution of the equations of motion which
carries ρ(z) as closely as possible to zero. From our experience with the mechanical
motion of a mass point in a potential such as −V (ρ) of Eq. (17.441), it is easily
realized that there exists such a solution. It carries ρ(z) from ρ0 =

√
1− k2 at

z = −∞ across the potential barrier to the small value ρ1 =
√
2k and back once

more across the barrier to ρ0 at z = ∞ (see Fig. 17.25). Using the first integral of

Figure 17.25 Extremal excursion of order parameter in superconducting wire. It corre-

sponds to a mass point starting out at ρ0, rolling under the influence of “negative gravity”

up the mountain unto the point ρ1 =
√

2k, and returning back to ρ0, with the variable z

playing the role of a time variable.
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motion of the differential equation (17.440), the law of energy conservation

1

2
ρ2z −

1

2
V (ρ) = E = −1

2
V (ρ0) =

1

4
ρ0(ρ0 + 2ρ1) (17.448)

leads to the equation

ρz =
√

2E + V (ρ). (17.449)

This is solved by the integral

z − z1 =
√
2
∫ ρ

ρ1

ρdρ√
ρ6 − 2ρ4 + 4Eρ2 − 2j2

=
1√
2

∫ ρ2

ρ21

dρ2
√

(ρ2 − ρ21)(ρ
2 − ρ20)

, (17.450)

yielding

z − z1 = − 2
√

2(ρ20 − ρ21)
arctanh

√

√

√

√

ρ2 − ρ21
ρ20 − ρ21

. (17.451)

Inverting this, we find the bubble solution

ρ2cl(z) = 1− k2 − ω2/2

cosh2[ω(z − z1)/2]
, (17.452)

where

ω =
√

2(ρ20 − ρ21) (17.453)

is the curvature of V (ρ) close to ρ0, i.e.,

V (ρ) ≈ ω2(ρ− ρ0)
2 + . . . . (17.454)

The extra energy of the bubble solution is

Ecl =
∫ L

0
dz [e(ρcl)− ec(k)] =

4

3
ω =

4

3

√

2(1− 3k2). (17.455)

The explicit solution (17.452) reaches the point of smallest ρ at z1, where its
value is

ρ1 ≡ ρ(z1) =
√
2k. (17.456)

This value is still nonzero and does not yet permit a phase slip. However, we shall
now demonstrate that quadratic fluctuations around the solution (17.456) do, in
fact, to reduce the current. For this, we insert the fluctuating order field

ρ(z) = ρcl(z) + δρ(z) (17.457)
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Figure 17.26 Infinitesimal translation of critical bubble yields antisymmetric wave func-

tion of zero energy ρ′cl solving differential equation (17.509). Since this wave function has

a node, there must be a negative-energy bound state.

into the free energy. With ρcl being extremal, the lowest variation of E is of second
order in δρ(z)

δ2E =
∫ L

0
dz δρ(z)[−∂2z + V ′′(ρ)]δρ(z). (17.458)

This expression is not positive definite as can be verified by studying the eigenvalue
problem

[−∂2z + V ′′(ρcl)]ψn(z) =

[

−∂2z − 1 + 3ρ2cl − 3
j4

ρ4cl

]

ψn(z) = λnψ(z). (17.459)

The potential V ′′(ρcl(z)) has asymptotically the value ω2. When approaching z = z1
from the right, it develops a minimum at a negative value (see Fig. 17.26). After
that it goes again against ω2. The energy eigenvalues λ0 and λ−1 lie as indicated in
the figure. The fact that there is precisely one negative eigenvalue λ−1 can be proved
without an explicit solution by the same physical argument that was used to show
the instability of the fluctuation problem (17.253): A small temporal translation of
the classical solution corresponds to a wave function which has no energy and a zero
implying the existence of precisely one lower wave function with λ−1 < 0 and no
zero.

The negative eigenvalue makes the critical bubble solution unstable against con-
traction or expansion. The former makes the fluctuation return to the spiral classical
solution (17.452) of Fig. 17.24, the second removes one unit from the winding num-
ber of the spiral and reduces the supercurrent. For the precise calculation of the
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decay rate, the reader is referred to the references quoted at the end of the chapter.
Here we only give the final result which is [19]

rate = const × Lω(k)e−Ecl/kBT , (17.460)

with the k-dependent prefactor

Figure 17.27 Logarithmic plot of resistance of thin superconducting wire as function

of temperature at current 0.2µA in comparison with experimental data (vertical axis is

normalized by the Ohmic resistance Rn = 0.5Ω measured at T > Tc, see papers quoted at

end of chapter).

ω(k) = 2|λ′−1|
(1− 3k2)7/4

(1− k2)1/2
exp

[

− 3
√
2k√

1− 3k2
arctan

(√
1− 3k2√

2k

)]

, (17.461)

where

λ′−1 ≡ −1

2

{

[

(1 + k2)2 + 3(1− 3k2)2
]1/2 − (1 + k2)

}

< 0 (17.462)

is the negative eigenvalue of the fluctuations in the complex field ψ(z) [which is
not directly related to λ−1 of Eq. (17.459) and requires a separate discussion of the
initial path integral (17.435)]. This complicated-looking expression has a simple
quite accurate approximation which had previously been deduced from a numerical
evaluation of the fluctuation determinant [20]:

ω(k) ≈ (1−
√
3k)15/4(1 + k2/4). (17.463)

Both expressions vanish at the critical value k = kc = 1/
√
3.

The resistance of a thin superconducting wire following from this calculation is
compared with experimental data in Fig. 17.27.
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17.12 Decay of Metastable Thermodynamic Phases

A generalization of this decay mechanism can be found in the first-order phase
transitions of many-particle systems. These possess some order parameter with an
effective potential which has two minima corresponding to two different thermo-
dynamic phases. Take, for instance, water near the boiling point. At the boiling
temperature, the liquid and gas phases have the same energy. This situation cor-
responds to the symmetric potential. At a slightly higher temperature, the liquid
phase is overheated and becomes metastable. The potential is now slightly asym-
metric. The decay of the overheated phase proceeds by the formation of critical
bubbles [4]. Their outside consists of the metastable water phase, their inside is
filled with vapor lying close to the stable minimum of the potential. The radius
of the critical bubble is determined by the equilibrium between the gain in volume
energy and the cost in surface energy. If σ is the surface tension and ǫ the difference
in energy density, the energy of bubble solution depends on the radius as follows:

E ∝ σ 4πR2 − ǫ
4π

3
R3. (17.464)

A plot of this energy in Fig. 17.28 looks just like that of the action A(ξ) in Fig. 17.8.
Thus the role of the deformation parameter ξ is played here by the bubble radius R.

Figure 17.28 Bubble energy as function of its radius R.

At the critical bubble, the energy has a maximum. The fluctuations of the critical
bubble must therefore have a negative eigenvalue. This negative eigenvalue mode
accounts for the fact that the critical bubble is unstable against expansion and
contraction. When expanding, the bubble transforms the entire liquid into the
stable gas phase. When contracting, the bubble disappears and the liquid remains
in the overheated phase. Only the first half of the fluctuations have to be counted
when calculating the lifetime of the overheated phase.

It is instructive to take a comparative look at the instability of a critical bubble
to see how the different spatial dimensions modify the properties of the solution.
We shall discuss first the case of three space dimensions. As in the case of super-
conductivity, the description of the liquid-vapor phase transition makes use of a
space-dependent order parameter, the real order field ϕ(x). The two minima of the
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potential V (ϕ) describe the two phases of the system. The kinetic term x′2 in the
path integral is now a field gradient term [(∂

x
ϕ(x))2] which ensures finite correla-

tions between neighboring field configurations. The Euclidean action controlling the
fluctuations is therefore of the form

A[ϕ] =
∫

d3x
{

1

2
[∇ϕ(x)]2 + V (ϕ)

}

, (17.465)

where V (ϕ) is the same potential as in Eq. (17.1), but it is extended by the asym-
metric energy (17.243). Within classical statistics, the thermal fluctuations are
controlled by the path integral for the partition function

Z =
∫

Dϕ(x)e−A[ϕ]/T . (17.466)

Here T is the temperature measured in multiples of the Boltzmann constant kB.
The path integral

∫ Dϕ(x) is defined by cutting the three-dimensional space into
small cubes of size ǫ and performing one field integration at each point.

The critical bubble extremizes the action. Assuming spherical symmetry, the
bubble satisfies in D dimensions the classical Euler-Lagrange field equation

(

− d2

dr2
− D − 1

r

d

dr

)

ϕcl + V ′(ϕcl(r)) = 0. (17.467)

This differs from the equation (17.305) for the one-dimensional bubble solution by
the extra gradient term −[(D−1)/r]∂rϕcl(r). Such a term is an obstacle to an exact
solution of the equation via the energy conservation law (17.306). The relevant
qualitative properties of the solution can nevertheless be seen in a similar way as
for the bubble solution. As in Fig. 17.11 we plot the reversed potential and imagine
the solution ϕ(r) to describe the motion of a mass point in this potential with −r
playing the role of a “time”. Setting ϕcl(r) = x(−t), the field equation (17.467)
takes the form

ẍ(t)− D − 1

t
ẋ(t)− V ′(x(t)) = 0. (17.468)

In this notation, the second term, i.e., the term −[(D − 1)/r]∂rϕcl(r) in (17.467)
plays the role of a negative “friction” accelerating motion of the particle along x(t).
This effect decreases with time like 1/t. With our everyday experience of mechanical
systems, the qualitative behavior of the solution can immediately be plotted qualita-
tively as shown in Fig. 17.29. For D = 1, the energy conservation makes the particle
reach the right-hand zero of the potential. For D > 1, the “antifriction” makes the
trajectory overshoot. At r = 0, the solution is closest to the stable minimum (the
maximum of the reversed potential) on the left-hand side. In the superheated water
system, this corresponds to the inside of the bubble being filled with vapor. As r
moves outward in the bubble, the state moves closer to the metastable state, i.e.,
it becomes more and more liquid. The antifriction term has the effect that the
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φcl(r)

φcl(r)

−m
2

2
φ2 − g

4!
φ4

r = 0

r

r = 0r = ∞

Figure 17.29 Qualitative behavior of critical bubble solution as function of its radius.

point of departure on the left-hand side lies energetically below the final value of
the metastable state.

Consider now the fluctuations of such a critical bubble in D = 3 dimensions.
Suppose that the field deviates from the solution of the field equation (17.467) by
δϕ(x). The deviations satisfy the differential equation

[

− d2

dr2
− 2

r

d

dr
+
L̂2

r2
+ V ′′(ϕcl(r))

]

δϕ(x) = λ δϕ(x), (17.469)

where L̂2 is the differential operator of orbital angular momentum (in units h̄ = 1).
Taking advantage of rotational invariance, we expand δϕ(x) into eigenfunctions of
angular momentum ϕnlm, the spherical harmonics Ylm(x̂):

φ(x) =
∑

nlm

ϕnlm(r)Ylm(x̂). (17.470)

The coefficients ϕnlm satisfy the radial differential equation
[

− d2

dr2
− 2

r

d

dr
+
l(l + 1)

r2
+ V ′′(ϕcl(r))

]

ϕnlm(r) = λnlϕnlm(r), (17.471)
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with

V ′′(ϕcl(r)) = −ω
2

2
+

3

2

ω2

a2
ϕ2
cl(r). (17.472)

One set of solutions is easily found, namely those associated with the translational
motion of the classical solution. Indeed, if we take the bubble at the origin,

ϕcl(x) = ϕcl(r), (17.473)

to another place x+ a, we find, to lowest order in a,

ϕcl(x + a) = ϕcl(x) + a∂
x
ϕcl(x) (17.474)

= ϕcl(r) + ax̂∂rϕcl(r).

But x̂ is just the Cartesian way of writing the three components of the spherical
harmonics Y1m(x̂). If we introduce the spherical components of a vector as follows







x0
x1
x−1





 ≡







x3
(x1 + ix2)/

√
2

−(x1 − ix2)/
√
2





 , (17.475)

we see that

x̂m =

√

4π

3
Y1m(x̂). (17.476)

Thus, δϕ(x) = ax̂∂rϕ(x) must be a solution of Eq. (17.469) with zero eigenvalue
λ. This can easily be verified directly: The factor x̂ causes L̂2 to have the eigen-
value 2, and the accompanying radial derivative δϕ(x) = ∂rϕcl(r) is a solution of
Eq. (17.471) for l = 1 and λnl = 0, as is seen by differentiating the Euler-Lagrange
equation (17.467) with respect to r. Choosing the principal quantum number of
these translational modes to be n = 1, we assign the three components of x̂∂rϕcl(r)
to represent the eigenmodes ϕ1,1,m.

As long as the bubble radius is large compared to the thickness of the wall,
which is of the order 1/ω, the 1/r2 -terms will be very small. There exists then
an entire family of solutions ϕ1lm(x) with all possible values of l which all have
approximately the same radial wave function ∂rϕcl(r). Their eigenvalues are found
by a perturbation expansion. The perturbation consists in the centrifugal barrier
but with the l = 1 barrier subtracted since it is already contained in the derivative
∂rϕcl(r), i.e.,

Vpert = [l(l + 1)− 2]/2r2. (17.477)

The bound-state wave functions ϕ1lm are normalizable and differ appreciably from
zero only in the neighborhood of the bubble wall. To lowest approximation, the
perturbation expansion produces therefore an energy

λnl ≈
l(l + 1)− 2

r2c
, (17.478)
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where rc is the radius of the critical bubble. As a consequence, the lowest l = 0
eigenstate has a negative energy

λ00 ≈ − 1

r2c
. (17.479)

Physically, this single l = 0 -mode corresponds to an infinitesimal radial vibration of
the bubble. As already explained above it is not astonishing that a radial vibration
has a negative eigenvalue. The critical bubble lies at a maximum of the action.
Expansion or contraction is energetically favorable. Since Y00(x) is a constant, the
wave function is proportional to (d/dr)ϕcl(r) itself without an angular factor. This
is seen directly by performing an infinitesimal radial contraction

ϕcl((1− ǫ)r) = ϕcl(r)− ǫr∂rϕcl(r). (17.480)

The variation r∂rϕcl(r) is almost zero except in the vicinity of the critical radius rc,
so that r∂rϕcl(r) ≈ rc∂rϕcl(r) which is the above wave function. Being the ground
state of the Schrödinger equation (17.469), it should be denoted by ϕ000(r). Since
it solves approximately the Schrödinger equation (17.471) with l = 1, it also solves
this equation approximately with l = 0 and the energy (17.479).

Finally let us point out that in D > 1 dimensions, the value of the negative
eigenvalue can be calculated very simply from a phenomenological consideration of
the bubble action. Since the inside of the bubble is very close to the true ground
state of the system whose energy density lies lower than that of the metastable one
by ǫ, the volume energy of a bubble of an arbitrary radius R is

EV = −SD
RD

D
ǫ, (17.481)

where SDR
D−1 is the surface of the bubble and SDR

D/D its volume. The surface
energy can be parametrized as

ES = SDR
D−1σ, (17.482)

where σ is a constant proportional to the surface tension. Adding the two terms
and differentiating with respect to R, we obtain a critical bubble radius at

R = rc = (D − 1)σ/ǫ, (17.483)

with a critical bubble energy

Ec =
SD
D
RD−1
c σ =

SD
D(D − 1)

RD
c ǫ =

SD
D

(D − 1)D−1 σ
D

ǫD−1
. (17.484)

The second derivative with respect to the radius R is, at the critical radius,

d2E

dR2

∣

∣

∣

R=rc
= −DEc

D − 1

r2c
. (17.485)



1264 17 Tunneling

Identifying the critical bubble energy Ec with the classical Euclidean action Acl we
find the variation of the bubble action as

δ2Acl ≈ −1

2
(δR)2DAcl

D − 1

r2c
. (17.486)

We now express the dilational variation of the bubble radius in terms of the normal
coordinate of (17.470). The normalized wave function is obviously

ϕ000(r) =
∂rϕcl(r)

√

∫

dDx(∂rϕcl)
2
. (17.487)

But the expression under the square root is exactly D times the action of the critical
bubble

∫

dDx(∂rϕcl)
2 = DAcl. (17.488)

To prove this we introduce a scale factor s into the solution of the bubble and
evaluate the action

Ãcl =
∫

dDx
{

1

2
([∂rϕcl(sr)]

2 + V (ϕcl(sr))
}

=
1

sD

∫

dDx
{

s

2

2

[∂rϕcl(r)]
2 + V (ϕcl(r))

}

. (17.489)

Since Ãcl is extremal at s = 1, it has to satisfy

∂Ãcl

∂s

∣

∣

∣

∣

s=1
= 0, (17.490)

or
∫

dDx
{

(D − 2)
1

2
[∂rϕcl]

2 +DV (ϕcl(r))
}

= 0. (17.491)

Hence
∫

dDxV (ϕcl(r)) = −D − 2

D

∫

dDx
1

2
[∂rϕcl(r)]

2, (17.492)

implying that

Acl =
(

1

2
− D − 2

2D

) ∫

dDx[∂rϕcl(r)]
2

=
1

D

∫

dDx[∂rϕcl(r)]
2. (17.493)

With (17.487), the ϕ000 contribution to δϕ(x) reads

δϕ(x) = ξ000ϕ000(r) = ξ000
∂rϕ√
DAcl

, (17.494)

H. Kleinert, PATH INTEGRALS



17.12 Decay of Metastable Thermodynamic Phases 1265

and we arrive at

δR =
ξ000√
DAcl

. (17.495)

Inserting this into (17.486) shows that the second variation of the Euclidean ac-
tion δ2Acl can be written in terms of the normal coordinates associated with the
normalized fluctuation wave function ϕ000 as

δ2Acl = −ξ2000
D − 1

2r2c
. (17.496)

From this relation, we read off the negative eigenvalue

λ00 = −D − 1

2r2c
. (17.497)

For D = 3, this is in agreement with the D = 3 value (17.479). For general D, the
eigenvalue corresponding to (17.479) would have been derived with the arguments
employed there from the derivative term −[(D − 1)/r]d/dr in the Lagrangian and
would also have resulted in (17.497).

All other multipole modes ϕnlm have a positive energy. Close to the bubble wall
(as compared with the radius), the classical solutions (1/r)ϕnlm(r) can be taken
approximately from the solvable one-dimensional equation

[

−1

2

d2

dr2
+
ω2

2

(

1− 3

2

1

cosh2[ω(r − rc)/2]

)]

(

1

r
ϕnlm

)

≈ λ̃n

(

1

r
ϕnlm

)

. (17.498)

The wave functions with n = 0 are

ϕ0lm ≈
√

3ω

8

1

cosh2[ω(r − rc)/2]
, (17.499)

and have the eigenvalues

λ0l ≈
l(l + 1)− 2

2r2c
. (17.500)

The n = 1 -bound states are

ϕ1lm ≈
√

3ω

4

sinh[ω(r − rc)/2]

cosh2[ω(r − rc)/2]
, (17.501)

with eigenvalues

λ1l ≈
3

8
ω2 +

l(l + 2)− 2

2r2c
. (17.502)
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Figure 17.30 Decay of metastable false vacuum in Minkowski space. It proceeds as a

shock wave which after some time traverses the world almost with light velocity, converting

the false into the true vacuum.

17.13 Decay of Metastable Vacuum State

in Quantum Field Theory

The theory of decay presented in the last section has an interesting quantum field-
theoretic application. Consider a metastable scalar field system in a D-dimensional
Euclidean spacetime at temperature zero. At a fixed time, there will be a cer-
tain average number of bubbles, regulated by the “quantum Boltzmann factor”
exp(−Acl/h̄). If the bubble gas is sufficiently dilute (i.e., if the distances between
bubbles is much larger than the radii), each bubble is described quite accurately
by the classical solution. In Minkowski space, a Euclidean radius r =

√
x2 + c2τ 2

corresponds to r =
√
x2 − c2t2, where c is the light velocity. The critical bubble has

therefore the spacetime behavior

ϕcl(x, t) = ϕcl(r =
√
x2 − c2t2). (17.503)

From the above discussion in Euclidean space we know that ϕ will be equal to the
metastable false vacuum in the outer region r > rc, i.e., for

x2 − c2t2 > r2c . (17.504)

The inside region

x2 − c2t2 < r2c (17.505)

contains the true vacuum state with the lower energy. Thus a critical bubble in
spacetime has the hyperbolic structure drawn in Fig. 17.30. Therefore, the Euclidean
critical bubble describes in Minkowski space the growth of a bubble as a function of
time. The bubble starts life at some time t = rc/c and expands almost instantly to
a radius of order rc. The position of the shock wave is described by

x2 − c2t2 = r2c . (17.506)
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This implies that a shock wave that runs through space with a velocity

v =
|x|
t

=
c

√

1− r2c/c
2t2

(17.507)

and converts the metastable into the stable vacuum — a global catastrophe. A
Euclidean bubble centered at another place xb, τb would correspond to the same
process starting at xb and a time

tb = rc/c+ τb. (17.508)

A finite time after the creation of a bubble, of the order rc/c, the velocity of the
shock wave approaches the speed of light (in many-body systems the speed of sound).
Thus, we would hardly be able to see precursors of such a catastrophe warning us
ahead of time. We would be annihilated with the present universe before we could
even notice.

17.14 Crossover from Quantum Tunneling to Thermally

Driven Decay

For completeness, we discuss here the difference between a decay caused by a
quantum-mechanical tunneling process at T = 0, and a pure thermally driven de-
cay at large temperatures. Consider a one-dimensional system possessing, at some
place x∗, a high potential barrier, much higher than the thermal energy kBT , with
a shape similar to Fig. 17.10. Let the well to the left of the barrier be filled with
a grand-canonical ensemble of noninteracting particles of mass M in a nearly per-
fect equilibrium. Their distribution of momenta and positions in phase space is
governed by the Boltzmann factor e−β[p

2/2M+V (x)]. The rate, at which the particles
escape across the barrier, is given by the classical statistical integral

Γcl = Z−1
cl

∫

dx
∫

dp

2πh̄
e−β[p

2/2M+V (x)]δ(x− x∗)
p

M
Θ(p), (17.509)

where Zcl is the classical partition function

Zcl =
∫

dx
∫

dp

2πh̄
e−β[p

2/2M+V (x)]. (17.510)

The step function Θ(p) selects the particles running to the right across the top of
the potential barrier. Performing the phase space path integral in (17.509) yields

Γcl =
Z−1

cl

2πh̄β
e−V (x∗). (17.511)

If the metastable minimum of the potential is smooth, V (x) can be replaced ap-
proximately in the neighborhood of x0 by the harmonic expression

V (x) ≈ M

2
ω2
0(x− x0)

2. (17.512)
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The classical partition function is then given approximately by

Zcl ≈
1

h̄βω0
, (17.513)

and the decay rate follows the simple formula

Γcl ≈
ω0

2π
e−βV (x∗). (17.514)

Let us compare this result with the decay rate due to pure quantum tunneling.
In the limit of small temperatures, the decay proceeds from the ground state, and
the partition function is approximately equal to

Z ≈ e−β(E
(0)−ih̄Γ/2). (17.515)

The decay rate is given by the small imaginary part of the partition function:

Γ−−−→
T→0

2

h̄β

ImZ

ReZ
. (17.516)

In contrast to this, the thermal rate formula (17.511) implies for the high-
temperature regime, where Γ becomes equal to Γcl, the relation:

Γ−−−→
T→∞

ω∗
π

ImZcl

ReZcl
. (17.517)

The frequency ω∗ is determined by the curvature of the potential at the top of the
barrier, where it behaves like

V (x) ≈ −M
2
ω2
∗(x− x∗)

2. (17.518)

The relation (17.517) follows immediately by calculating in the integral (17.510)
the contribution of the neighborhood of the top of the barrier in the saddle point
approximation. As in the integral, this is done (17.261) by rotating the contour
of integration which starts at x = x∗ into the upper complex half-plane. Writing
x = x∗ + iy this leads to the following integral:

ImZcl ≈
∫ ∞

0

dy
√

2πh̄2β/M
e−β[V (x∗)+

M
2
ω2
∗y

2] ≈ 1

2h̄βω∗
e−βV (x∗). (17.519)

Since the real part is given by (17.513) we find the ratio

ImZcl

ReZcl
≈ ω0

2ω∗
e−βV (x∗), (17.520)

so that (17.511) is equivalent to (17.517).
The two formulas (17.516) and (17.517) are derived for the two extreme regimes

T ≫ T0 and T ≪ T0, respectively, where T0 denotes the characteristic temperature
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associated with the curvature of the potential at the metastable minimum T0 =
h̄ω0/kB. Numerical studies have shown that the applicability extends into the close
neighborhood of T0 on each side of the temperature axis. The crossover regime is
quite small, of the order O(h̄3/2).

Note that given the knowledge of the imaginary parts of all excited states, which
can be obtained as in Section 17.9, it will be possible to calculate the average lifetime
of a metastable state at all temperatures without the restrictions of the semiclassical
approximation. This remains to be done.

Appendix 17A Feynman Integrals for Fluctuation

Correction

For the integral (17.219) we obtain with (17.237) immediately the result stated in Eq. (17.240)

I ′1 =
97

560
. (17A.1)

To calculate the remaining three double integrals I21, I22, I3 in (17.223) and (17.224) we observe
that because of the symmetry of the Green function GOω(τ, τ ′) in τ, τ ′ the measure of integration

can be rewritten as 2
∫∞

−∞ dτ
∫ t

−∞ dτ ′. We further introduce the dimensionless classical functions

x̃cl(τ) ≡
√

g

2ω2
xcl(τ) = tanh(τ/2),

ỹ0(τ) ≡
√

8

3ω
y0(τ) =

1

cosh2(ωτ/2)
, (17A.2)

use natural units with ω = 1, g = 1, since these quantities cancel in all integrals, and define

xG(τ) ≡ x̃cl(τ)GOω (τ, τ)

xKG(τ) ≡
[∫ τ

−∞

GOω(τ, τ ′)xG(τ ′)dτ ′
]

A

xK3G(τ) ≡
[∫ τ

−∞

G3
Oω

(τ, τ ′)xG(τ ′)dt′
]

A

, (17A.3)

where the subscript A denotes the antisymmetric part in τ . Because of the antisymmetry of xcl,
the symmetric part gives no contribution to the integrals which can be written as

I21 = 6

∫ ∞

0

dτ x̃cl(τ)xK3G(τ), (17A.4)

I22 = 9

∫ ∞

0

dτ xG(τ)xKG(τ), (17A.5)

I3 = 24

∫ ∞

0

dτ y′0(τ)xKG(τ). (17A.6)

When evaluating the integrals in (17A.3) the antisymmetry of y0(τ) is useful. We easily find

xKG(τ) =
1

4

12τ + tanh(τ/2)

12cosh2(τ/2)
. (17A.7)

Inserting this into I22 and I3 we encounter integrals of two types
∫ ∞

0

dτ sinhm(τ/2)/ coshn(τ/2) and

∫ ∞

0

τ sinhm(τ/2)/ coshn(τ/2).
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The former can be performed with the help of formula (17.54), the latter require integrations by
parts of the type

∫ ∞

0

f(τ/2) tanh
τ

2
dτ = −

∫ ∞

0

f ′(τ/2) ln(2 cosh
τ

2
) dτ, (17A.8)

which lead to a finite sum of integrals of the first type plus integrals of the type11

∫ ∞

0

log cosh(τ/2) sinhm(τ/2)/ coshn(τ/2).

These, in turn, are equal to −∂ν
∫∞

0 dτ sinhm(τ/2)/ coshν+1(τ/2) so that it is evaluated again via
(17.54). After performing the subtraction in I22 we obtain the values given in Eq. (17.240).

The evaluation of the integral I21 is more tedious since we must integrate over the third power
of the Green function, which is itself a lengthy function of τ . It is once more useful to exploit the
symmetry properties of the integrand. We introduce the abbreviations

fS/A
n (τ) ≡ 1

2
[Hn

R(τ) ±Hn
R(−τ)]y3−n

0 (τ),

F S/A
n (τ) ≡

∫ τ

0

fS/A
n (τ ′)x̃cl(τ

′)dτ ′, (17A.9)

Nn ≡
∫ ∞

0

Hn
R(τ)y3−n

0 (τ ′)x̃cl(τ
′)dτ ′,

and find xK3G in the form

xK3G(τ) = fA
3 (τ)[N0 − F S

0 (τ)] + 3fA
2 (τ)[N1 − F S

1 (τ)] + 3fA
1 (τ)[N2 − F S

2 (τ)]

+3fS
2 (τ)FA

1 (τ) + 3fS
1 (τ)FA

2 (τ) + fS
0 (τ)FA

3 (τ), (17A.10)

with

N0 =
3

32
, N1 = − 7

128
, N2 =

203

512
− log2

2
. (17A.11)

Explicitly:

xK3G(τ) =
sech7 τ

2

3 · 29

[

3 τ

(

58 cosh
τ

2
− 27 cosh

3 τ

2
− 3 cosh

5 τ

2

)

−
(

753 sinh
τ

2
+ 48 sinh

3 τ

2
+ 22 sinh

5 τ

2
+ sinh

7 τ

2

)

+ 36 cosh
τ

2
ln(2 cosh

τ

2
) (6 τ + 8 sinh τ + sinh 2τ)

− 108 cosh
τ

2

(∫ τ

0

dτ ′ τ ′ tanh
τ ′

2

)

]

. (17A.12)

The integrals to be performed are of the same types as before, except for the one involving the last
term which requires one further partial integration:

−
∫ ∞

0

dτ x̃cl(τ)sech6 τ

2

∫ τ

0

dτ ′ τ ′ tanh
τ ′

2
=

1

3

∫ ∞

0

dτ
d

dτ

[

sech6 τ

2

]

∫ τ

0

dτ ′ τ ′ tanh
τ ′

2

= −1

3

∫ ∞

0

dτ sech6 τ

2
τ tanh

τ

2
= − 16

135
. (17A.13)

11I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formulas 2.417.
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After the necessary subtraction of the divergent term we find the value of I21 given in Eq. (17.240).
The final result for the first coefficient of the Taylor expansion of the subtracted fluctuation

factor C′ in Eq. (17.222) is therefore

c1 =
71

24
≈ 2.958. (17A.14)

This number was calculated in Ref. [13] by solving the Schrödinger equation [21].
With the help of the WKB approximation he derived a recursion relation for the higher coef-

ficients ck of the expansion of C′:

C′ =

[

1 − c1
gh̄

ω3
− c2

(

gh̄

ω3

)2

− c3

(

gh̄

ω3

)3

+ . . .

]

. (17A.15)

From this he calculated the next nine coefficients

c2 =
315

32
≈ 9.84376, c3 =

65953

1152
≈ 57.2509. (17A.16)

Their large behavior is

ck ∼ 9

π

(

3

2

)k

k![ln(6k) + γ]. (17A.17)
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18

Nonequilibrium Quantum Statistics

Quantum statistics described by the theoretical tools of the previous chapters is
quite limited. The physical system under consideration must be in thermodynamic
equilibrium, with a constant temperature enforced by a thermal reservoir. In this
situation, partition function and the density matrix can be calculated from an ana-
lytic continuation of quantum-mechanical time evolution amplitudes to an imaginary
time tb − ta = −ih̄/kBT . In this chapter we want to go beyond such equilibrium
physics and extend the path integral formalism to nonequilibrium time-dependent
phenomena. The tunneling processes discussed in Chapter 17 belong really to this
class of phenomena, and their full understanding requires the theoretical frame-
work of this chapter. In the earlier treatment this was circumvented by addressing
only certain quasi-equilibrium questions. These were answered by applying the
equilibrium formalism to the quantum system at positive coupling constant, which
guaranteed perfect equilibrium, and extending the results to the quasi-equilibrium
situation analytic continuation to small negative coupling constants.

Before we can set up a path integral formulation capable of dealing with true
nonequilibrium phenomena, some preparatory work is useful based on the traditional
tools of operator quantum mechanics.

18.1 Linear Response and Time-Dependent Green
Functions for T =/ 0

If the deviations of a quantum system from thermal equilibrium are small, the
easiest description of nonequilibrium phenomena proceeds via the theory of linear

response. In operator quantum mechanics, this theory is introduced as follows.
First, the system is assumed to have a time-independent Hamiltonian operator Ĥ .
The ground state is determined by the Schrödinger equation, evolving as a function
of time according to the equation

|ΨS(t)〉 = e−iĤt|ΨS(0)〉 (18.1)

(in natural units with h̄ = 1, kB = 1). The subscript S denotes the Schrödinger
picture.
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Next, the system is slightly disturbed by adding to Ĥ a time-dependent external
interaction,

Ĥ → Ĥ + Ĥext(t), (18.2)

where Ĥext(t) is assumed to set in at some time t0, i.e., Ĥ
ext(t) vanishes identically

for t < t0. The disturbed Schrödinger ground state has the time dependence

|Ψdist
S (t)〉 = e−iĤtÛH(t)|ΨS(0)〉, (18.3)

where ÛH(t) is the time translation operator in the Heisenberg picture. It satisfies
the equation of motion

i
˙̂
UH(t) = Ĥext

H (t)ÛH(t), (18.4)

with1

Ĥext
H (t) ≡ eiĤtĤext(t)e−iĤt. (18.5)

To lowest-order perturbation theory, the operator ÛH(t) is given by

ÛH(t) = 1− i
∫ t

t0
dt′ Ĥext

H (t′) + · · · . (18.6)

In the sequel, we shall assume the onset of the disturbance to lie at t0 = −∞.
Consider an arbitrary time-independent Schrödinger observable Ô whose Heisenberg
representation has the time dependence

ÔH(t) = eiĤtÔe−iĤt. (18.7)

Its time-dependent expectation value in the disturbed state |Ψdist
S (t)〉 is given by

〈Ψdist
S (t)|Ô|Ψdist

S (t)〉 = 〈ΨS(0)|Û †
H(t)e

iĤtÔe−iĤtÛH(t)|ΨS(0)〉
≈ 〈ΨS(0)|

(

1 + i
∫ t

−∞
dt′ Ĥext

H (t′) + . . .
)

ÔH(t)

×
(

1− i
∫ t

−∞
dt′ Ĥext

H (t′) + . . .
)

|ΨS(0)〉 (18.8)

= 〈ΨH |ÔH(t)|ΨH〉 − i〈ΨH |
∫ t

−∞
dt′

[

ÔH(t), Ĥ
ext
H (t′)

]

|ΨH〉+ . . . .

We have identified the time-independent Heisenberg state with the time-dependent
Schrödinger state at zero time in the usual manner, i.e., |ΨH〉 ≡ |ΨS(0)〉. Thus the
expectation value of Ô deviates from equilibrium by

δ〈ΨS(t)|Ô|ΨS(t)〉 ≡ 〈Ψdist
S (t)|Ô(t)|Ψdist

S (t)〉 − 〈ΨS(t)|Ô(t)|ΨS(t)〉
= −i

∫ t

−∞
dt′ 〈ΨH |

[

ÔH(t), Ĥ
ext
H (t′)

]

|ΨH〉. (18.9)

1Note that after the replacementsH → H0, H
ext
H → H int

I , Eq. (18.4) coincides with the equation
for the time evolution operator in the interaction picture to appear in Section 18.7. In contrast to
that section, however, the present interaction is a nonpermanent artifact to be set equal to zero
at the end, and H is the complicated total Hamiltonian, not a simple free one. This is why we do
not speak of an interaction picture here.
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If the left-hand side is transformed into the Heisenberg picture, it becomes

δ〈ΨS(t)|Ô|ΨS(t)〉 = δ〈ΨH |ÔH(t)|ΨH〉 = 〈ΨH |δÔH(t)|ΨH〉,

so that Eq. (18.9) takes the form

〈ΨH |δÔH(t)|ΨH〉 = −i
∫ t

−∞
dt′ 〈ΨH |

[

ÔH(t), Ĥ
ext
H (t′)

]

|ΨH〉. (18.10)

It is useful to use the retarded Green function of the operators ÔH(t) and ĤH(t
′) in

the state |ΨH〉 [compare (3.40)]:

GR
OH(t, t

′) ≡ Θ(t− t′)〈ΨH|
[

ÔH(t), ĤH(t
′)
]

|ΨH〉. (18.11)

Then the deviation from equilibrium is given by the integral

〈ΨH |δÔH(t)|ΨH〉 = −i
∫ ∞

−∞
dt′GR

OH(t, t
′). (18.12)

Suppose now that the observable ÔH(t) is capable of undergoing oscillations.
Then an external disturbance coupled to ÔH(t) will in general excite these oscilla-
tions. The simplest coupling is a linear one, with an interaction energy

Ĥext(t) = −ÔH(t)δj(t), (18.13)

where j(t) is some external source. Inserting (18.13) into (18.12) yields the linear-
response formula

〈ΨH |δÔH(t)|ΨH〉 = i
∫ ∞

−∞
dt′GR

OO(t, t
′)δj(t′), (18.14)

where GR
OO is the retarded Green function of two operators Ô:

GR
OO(t, t

′) = Θ(t− t′)〈ΨH |
[

ÔH(t), ÔH(t
′)
]

|ΨH〉. (18.15)

At frequencies where the Fourier transform of GOO(t, t
′) is singular, the slightest

disturbance causes a large response. This is the well-known resonance phenomenon
found in any oscillating system. Whenever the external frequency ω hits an eigen-
frequency, the Fourier transform of the Green function diverges. Usually, the eigen-
frequencies of a complicated N -body system are determined by calculating (18.15)
and by finding the singularities in ω.

It is easy to generalize this description to a thermal ensemble at a nonzero
temperature. The principal modification consists in the replacement of the ground
state expectation by the thermal average

〈Ô〉T ≡ Tr (e−Ĥ/T Ô)

Tr (e−Ĥ/T )
.
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Using the free energy

F = −T log Tr (e−Ĥ/T ),

this can also be written as

〈Ô〉T = eF/TTr (e−Ĥ/T Ô). (18.16)

In a grand-canonical ensemble, Ĥ must be replaced by Ĥ−µN̂ and F by its grand-
canonical version FG (see Section 1.17). At finite temperatures, the linear-response
formula (18.14) becomes

δ〈Ô(t)〉T = i
∫ ∞

−∞
dt′GR

OO(t, t
′)δj(t′), (18.17)

where GR
OO(t, t

′) is the retarded Green function at nonzero temperature defined by
[recall (1.306)]

GR
OO(t, t

′) ≡ GR
OO(t− t′) ≡ Θ(t− t′) eF/TTr

{

e−Ĥ/T
[

ÔH(t), ÔH(t
′)
]}

. (18.18)

In a realistic physical system, there are usually many observables, say Ôi
H(t) for

i = 1, 2, . . . , l, which perform coupled oscillations. Then the relevant retarded Green
function is some l × l matrix

GR
ij(t, t

′) ≡ GR
ij(t− t′) ≡ Θ(t− t′) eF/TTr

{

e−Ĥ/T
[

Ôi
H(t), Ô

j
H(t

′)
]}

. (18.19)

After a Fourier transformation and diagonalization, the singularities of this matrix
render the important physical information on the resonance properties of the system.

The retarded Green function at T 6= 0 occupies an intermediate place between
the real-time Green function of field theories at T = 0, and the imaginary-time Green
function used before to describe thermal equilibria at T 6= 0 (see Subsection 3.8.2).
The Green function (18.19) depends both on the real time and on the temperature
via an imaginary time.

18.2 Spectral Representations of Green Functions for T =/ 0

The retarded Green functions are related to the imaginary-time Green functions of
equilibrium physics by an analytic continuation. For two arbitrary operators Ô1

H ,
Ô2

H , the latter is defined by the thermal average

G12(τ, 0) ≡ G12(τ) ≡ eF/TTr
[

e−Ĥ/T T̂τ Ô
1
H(τ)Ô

2
H(0)

]

, (18.20)

where ÔH(τ) is the imaginary-time Heisenberg operator

ÔH(τ) ≡ eĤτ Ôe−Ĥτ . (18.21)
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To see the relation between G12(τ) and the retarded Green function GR
12(t), we take

a complete set of states |n〉, insert them between the operators Ô1, Ô2, and expand
G12(τ) for τ ≥ 0 into the spectral representation

G12(τ) = eF/T
∑

n,n′

e−En/T e(En−En′)τ 〈n|Ô1|n′〉〈n′|Ô2|n〉. (18.22)

Since G12(τ) is periodic under τ → τ +1/T , its Fourier representation contains only
the discrete Matsubara frequencies ωm = 2πmT :

G12(ωm) =
∫ 1/T

0
dτ eiωmτG12(τ)

= eF/T
∑

n,n′

e−En/T
(

1− e(En−En′ )/T
)

〈n|Ô1|n′〉〈n′|Ô2|n〉

× −1

iωm −En′ + En

. (18.23)

The retarded Green function satisfies no periodic (or antiperiodic) boundary condi-
tion. It possesses Fourier components with all real frequencies ω:

GR
12(ω) =

∫ ∞

−∞
dt eiωt Θ(t)eF/TTr

{

e−Ĥ/T
[

Ô1
H(t), Ô

2
H(0)

]

∓

}

= eF/T
∫ ∞

0
dt eiωt

∑

n,n′

[

e−En/T ei(En−En′ )t〈n|Ô1|n′〉〈n′|Ô2|n〉

∓e−En/T e−i(En−En′)t〈n|Ô2|n′〉〈n′|Ô1|n〉
]

. (18.24)

In the second sum we exchange n and n′ and perform the integral, after having
attached to ω an infinitesimal positive-imaginary part iη to ensure convergence
[recall the discussion after Eq. (3.84)]. The result isref(3.84)

lab(3.50)
est(3.50) GR

12(ω) = eF/T
∑

n,n′

e−En/T
[

1− e(En−En′)/T
]

〈n|Ô1|n′〉〈n′|Ô2|n〉

× i

ω −En′ + En + iη
. (18.25)

By comparing this with (18.23) we see that the thermal Green functions are obtained
from the retarded ones by replacing [1]

i

ω − En′ + En + iη
→ −1

iωm − En′ + En
. (18.26)

A similar procedure holds for fermion operators Ôi (which are not observable).
There are only two changes with respect to the boson case. First, in the Fourier
expansion of the imaginary-time Green functions, the bosonic Matsubara frequen-
cies ωm in (18.23) become fermionic. Second, in the definition of the retarded Green
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functions (18.19), the commutator is replaced by an anticommutator, i.e., the re-
tarded Green function of fermion operators Ôi

H is defined by

GR
ij(t, t

′) ≡ GR
ij(t− t′) ≡ Θ(t− t′)eF/TTr

{

e−Ĥ/T
[

Ôi
H(t), Ô

j
H(t

′)
]

+

}

. (18.27)

These changes produce an opposite sign in front of the e(En−En′ )/T -term in both of
the formulas (18.23) and (18.25). Apart from that, the relation between the two
Green functions is again given by the replacement rule (18.26).

At this point it is customary to introduce the spectral function

ρ12(ω
′) =

(

1∓ e−ω′/T
)

eF/T

×∑n,n′ e−En/T2πδ(ω − En′ + En)〈n|Ô1|n′〉〈n′|Ô2|n〉,
(18.28)

where the upper and the lower sign hold for bosons and fermions, respectively. Under
an interchange of the two operators it behaves like

ρ12(ω
′) = ∓ρ12(−ω′). (18.29)

Using this spectral function, we may rewrite the Fourier-transformed retarded and
thermal Green functions as the following spectral integrals:

GR
12(ω) =

∫ ∞

−∞

dω′

2π
ρ12(ω

′)
i

ω − ω′ + iη
, (18.30)

G12(ωm) =
∫ ∞

−∞

dω′

2π
ρ12(ω

′)
−1

iωm − ω′
. (18.31)

These equations show how the imaginary-time Green functions arise from the re-
tarded Green functions by a simple analytic continuation in the complex frequency
plane to the discrete Matsubara frequencies, ω → iωm. The inverse problem of re-
constructing the retarded Green functions in the entire upper half-plane of ω from
the imaginary-time Green functions defined only at the Matsubara frequencies ωm

is not solvable in general but only if other information is available [2]. For instance,
the sum rules for canonical fields to be derived later in Eq. (18.66) with the ensuing ref(18.66)

lab(18.41)
est(18.59)

asymptotic condition (18.67) are sufficient to make the continuation unique [3].
Going back to the time variables t and τ , the Green functions are

GR
12(t) = Θ(t)

∫ ∞

−∞

dω′

2π
ρ12(ω

′)e−iω′t, (18.32)

G12(τ) =
∫ ∞

−∞

dω′

2π
ρ12(ω

′)T
∑

ωm

e−iωmτ −1

iωm − ω′
. (18.33)

The sum over even or odd Matsubara frequencies on the right-hand side of G12(τ)
was evaluated in Section 3.3 for bosons and fermions as

T
∑

n

e−iωmτ −1

iωm − ω
= Gp

ω,e(τ) = e−ω(τ−1/2T ) 1

2 sin(ω/2T )

= e−ωτ (1 + nω) (18.34)
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and

T
∑

n

e−iωmτ −1

iωm − ω
= Ga

ω,e(τ) = e−ω(τ−1/2T ) 1

2 cos(ω/2T )

= e−ωτ (1− nω), (18.35)

with the Bose and Fermi distribution functions [see (3.93), (7.542), (7.544)]

nω =
1

eω/T ∓ 1
, (18.36)

respectively.

18.3 Other Important Green Functions

In studying the dynamics of systems at finite temperature, several other Green
functions are useful whose spectral functions we shall now derive.

In complete analogy with the retarded Green functions for bosonic and fermionic
operators, we may introduce their counterparts, the so-called advanced Green func-

tions (compare page 38)

GA
12(t, t

′) ≡ GA
12(t− t′) = −Θ(t′ − t)eF/TTr

{

e−Ĥ/T
[

Ô1
H(t), Ô

2
H(t

′)
]

∓

}

.

(18.37)

Their Fourier transforms have the spectral representation

GA
12(ω) =

∫ ∞

−∞

dω′

2π
ρ12(ω

′)
i

ω − ω′ − iη
, (18.38)

differing from the retarded case (18.30) only by the sign of the iη-term. This makes
the Fourier transforms vanish for t > 0, so that the time-dependent Green function
has the spectral representation [compare (18.32)]

GA
12(t) = −Θ(−t)

∫ ∞

−∞

dω

2π
ρ12(ω)e

−iωt. (18.39)

By subtracting retarded and advanced Green functions, we obtain the thermal
expectation value of commutator or anticommutator:

C12(t, t
′) = eF/TTr

{

e−Ĥ/T
[

Ô1
H(t), Ô

2
H(t

′)
]

∓

}

= GR
12(t, t

′)−GA
12(t, t

′). (18.40)

Note the simple relations:

GR
12(t, t

′) = Θ(t− t′)C12(t, t
′), (18.41)

GA
12(t, t

′) = −Θ(t′ − t)C12(t, t
′). (18.42)

H. Kleinert, PATH INTEGRALS



18.3 Other Important Green Functions 1281

When inserting the spectral representations (18.30) and (18.39) of GR
12(t) and

GA
12(t) into (18.40), and using the identity (1.328),

i

ω − ω′ + iη
− i

ω − ω′ − iη
= 2

η

(ω − ω′)2 + η2
= 2πδ(ω − ω′), (18.43)

we obtain the spectral integral representation for the commutator function:2

C12(t) =
∫ ∞

−∞

dω

2π
ρ12(ω)e

−iωt. (18.44)

Thus a knowledge of the commutator function C12(t) determines directly the spectral
function ρ12(ω) by its Fourier components

C12(ω) = ρ12(ω). (18.45)

An important role in studying the dynamics of a system in a thermal environment
is played by the time-ordered Green functions. They are defined by

G12(t, t
′) ≡ G12(t− t′) = eF/TTr

[

e−Ĥ/T T̂ Ô1
H(t)Ô

2
H(t

′)
]

. (18.46)

Inserting intermediate states as in (18.23) we find the spectral representation

G12(ω) =
∫ ∞

−∞
dt eiωt Θ(t) eF/TTr

{

e−Ĥ/T Ô1
H(t)Ô

2
H(0)

}

+
∫ ∞

−∞
dt eiωt Θ(−t)eF/TTr

{

e−Ĥ/T Ô2
H(t)Ô

1
H(0)

}

= eF/T
∫ ∞

0
dt eiωt

∑

n,n′

e−En/T ei(En−En′)t 〈n|Ô1|n′〉〈n′|Ô2|n〉

± eF/T
∫ 0

−∞
dt eiωt

∑

n,n′

e−En/T e−i(En−En′)t〈n|Ô2|n′〉〈n′|Ô1|n〉 . (18.47)

Interchanging again n and n′, this can be written in terms of the spectral function
(18.28) as

G12(ω)=
∫ ∞

−∞

dω′

2π
ρ12(ω

′)

[

1

1∓ e−ω′/T

i

ω − ω′ + iη
+

1

1∓ eω′/T

i

ω − ω′ − iη

]

. (18.48)

Let us also write down the spectral decomposition of a further operator expres-
sion complementary to C12(t) of (18.40), in which boson or fermion fields appear
with the “wrong” commutator:

A12(t− t′) ≡ eF/TTr
{

e−Ĥ/T
[

Ô1
H(t), Ô

2
H(t

′)
]

±

}

. (18.49)

2Due to the relation (18.41), the same representation is found by dropping the factor Θ(t) in
(18.32).
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This function characterizes the size of fluctuations of the operators O1
H and O2

H .
Inserting intermediate states, we find

A12(ω) =
∫ ∞

−∞
dt eiωteF/TTr

{

e−Ĥ/T
[

Ô1
H(t), Ô

2
H(0)

]

±

}

= eF/T
∫ ∞

−∞
dt eiωt

∑

n,n′

[

e−En/T ei(En−En′ )t〈n|Ô1|n′〉〈n′|Ô2|n〉

±e−En/T e−i(En−En′ )t〈n|Ô2|n′〉〈n′|Ô1|n〉
]

. (18.50)

In the second sum we exchange n and n′ and perform the integral, which runs now
over the entire time interval and gives therefore a δ-function:

A12(ω) = eF/T
∑

n,n′

e−En/T
[

1± e(En−En′)/T
]

〈n|Ô1|n′〉〈n′|Ô2|n〉

× 2πδ(ω − En′ + En). (18.51)

In terms of the spectral function (18.28), this has the simple form

A12(ω) =
∫ ∞

−∞

dω′

2π
tanh∓1 ω

′

2T
ρ12(ω

′) 2πδ(ω − ω′) = tanh∓1 ω

2T
ρ12(ω). (18.52)

Thus the expectation value (18.49) of the “wrong” commutator has the time depen-
dence

A12(t, t
′) ≡ A12(t− t′) =

∫ ∞

−∞

dω

2π
ρ12(ω) tanh

∓1 ω

2T
e−iω(t−t′). (18.53)

There exists another way of writing the spectral representation of the various
Green functions. For retarded and advanced Green functions GR

12, G
A
12, we decom-

pose in the spectral representations (18.30) and (18.38) according to the rule (1.329):

i

ω − ω′ ± iη
= i

[ P
ω − ω′

∓ iπδ(ω − ω′)
]

, (18.54)

where P indicates principal value integration across the singularity, and write

GR,A
12 (ω) = i

∫ ∞

−∞

dω′

2π
ρ12(ω

′)
[ P
ω − ω′

∓ iπδ(ω − ω′)
]

. (18.55)

Inserting (18.54) into (18.48) we find the alternative representation of the time-
ordered Green function

G12(ω) = i
∫ ∞

−∞

dω′

2π
ρ12(ω

′)
[ P
ω − ω′

− iπ tanh∓1 ω

2T
δ(ω − ω′)

]

. (18.56)

The term proportional to δ(ω − ω′) in the spectral representation is commonly
referred to as the absorptive or dissipative part of the Green function. The first
term proportional to the principal value is called the dispersive or fluctuation part .
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The relevance of the spectral function ρ12(ω
′) in determining both the fluctua-

tion part as well as the dissipative part of the time-ordered Green function is the
content of the important fluctuation-dissipation theorem. In more detail, this may
be restated as follows: The common spectral function ρ12(ω

′) of the commutator
function in (18.44), the retarded Green function in (18.30), and the fluctuation part

of the time-ordered Green function in (18.56) determines, after being multiplied by
a factor tanh∓1(ω′/2T ), the dissipative part of the time-ordered Green function in
Eq. (18.56).

The three Green functions −iG12(ω), −iGR
12(ω), and −iGA

12(ω) have the same
real parts. By comparing Eqs. (18.30) and (18.31) we found that retarded and
advanced Green functions are simply related to the imaginary-time Green function
via an analytic continuation. The spectral decomposition (18.56) shows this is not
true for the time-ordered Green function, due to the extra factor tanh∓1(ω/2T ) in
the absorptive term.

Another representation of the time-ordered Green is useful. It is obtained by
expressing tan∓1 in terms of the Bose and Fermi distribution functions (18.36) as
tan∓1 = 1± 2nω. Then we can decompose

G12(ω) =
∫ ∞

−∞

dω′

2π
ρ12(ω

′)

[

i

ω − ω′ + iη
± 2πnω δ(ω − ω′)

]

. (18.57)

18.4 Hermitian Adjoint Operators

If the two operators Ô1
H(t), Ô

2
H(t) are Hermitian adjoint to each other,

Ô2
H(t) = [Ô1

H(t)]
†, (18.58)

the spectral function (18.28) can be rewritten as

ρ12(ω
′) = (1∓ e−ω′/T )eF/T

×
∑

n,n′

e−En/T 2πδ(ω′ − En′ + En)|〈n|Ô1
H(t)|n′〉‖2. (18.59)

This shows that

ρ12(ω
′)ω′ ≥ 0 for bosons,

ρ12(ω
′) ≥ 0 for fermions.

(18.60)

This property permits us to derive several useful inequalities between various diag-
onal Green functions in Appendix 18A.

Under the condition (18.58), the expectation values of anticommutators and
commutators satisfy the time-reversal relations

GA
12(t, t

′) = ∓GR
21(t

′, t)∗, (18.61)

A12(t, t
′) = ±A21(t

′, t)∗, (18.62)

C12(t, t
′) = ∓C21(t

′, t)∗. (18.63)

G12(t, t
′) = ±G21(t

′, t)∗. (18.64)
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Examples are the corresponding functions for creation and annihilation operators
which will be treated in detail below. More generally, this properties hold for any
interacting nonrelativistic particle fields Ô1

H(t) = ψ̂p(t), Ô
2
H(t) = ψ̂†

p(t) of a specific
momentum p.

Such operators satisfy, in addition, the canonical equal-time commutation rules
at each momentum

[

ψ̂p(t), ψ̂
†
p(t)

]

= 1 (18.65)

(see Sections 7.6, 7.9). Using (18.40), (18.44) we derive from this spectral function
sum rule:

∫ ∞

−∞

dω′

2π
ρ12(ω

′) = 1. (18.66)

For a canonical free field with ρ12(ω
′) = 2πδ(ω′−ω), this sum rule is of course trivially

fulfilled. In general, the sum rule ensures the large-ω behavior of imaginary-time,
retarded, and advanced Green functions of canonically conjugate field operators to
be the same as for a free particle, i.e.,

G12(ωm) −−−→
ωm→∞

i

ωm
, GA,R

12 (ω) −−−→
ω→∞

1

ω
. (18.67)

18.5 Harmonic Oscillator Green Functions for T =/ 0

As an example, consider a single harmonic oscillator of frequency Ω or, equivalently,
a free particle at a point in the second-quantized field formalism (see Chapter 7).
We shall start with the second representation.

18.5.1 Creation Annihilation Operators

The operators Ô1
H(t) and Ô

2
H(t) are the creation and annihilation operators in the

Heisenberg picture

â†H(t) = â†eiΩt, âH(t) = âe−iΩt. (18.68)

The eigenstates of the Hamiltonian operator

Ĥ =
1

2

(

p̂2 + Ω2x̂2
)

=
ω

2

(

â†â + ââ†
)

= ω
(

â†â± 1

2

)

(18.69)

are

|n〉 = 1√
n!
(â†)n|0〉, (18.70)

with the eigenvalues En = (n ± 1/2)Ω for n = 0, 1, 2, 3, . . . or n = 0, 1, if â† and
â commute or anticommute, respectively [compare Eq. (7.564)]. In the second-
quantized field interpretation the energies are En = nΩ and the final Green functions
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are the same. The spectral function ρ12(ω
′) is trivial to calculate. The Schrödinger

operator Ô2 = â† can connect the state |n〉 only to 〈n+1|, with the matrix element√
n+ 1. The operator Ô1 = â does the opposite. Hence we have

ρ12(ω
′) = 2πδ(ω′ − Ω)(1∓ e−Ω/T )eF/T

∞,0
∑

n=0

e−(n±1/2)Ω/T (n + 1). (18.71)

Now we make use of the explicit partition functions of the oscillator whose paths
satisfy periodic and antiperiodic boundary conditions:

ZΩ ≡ e−F/T =
∞,1
∑

n=0

e−(n±1/2)Ω/T =

{

[2 sinh(Ω/2T )]−1

2 cosh(Ω/2T )
for

bosons
fermions

}

. (18.72)

These allow us to calculate the sums in (18.71) as follows

∞
∑

n=0

e−(n+1/2)Ω/T (n+ 1) =

(

−T ∂

∂Ω
+

1

2

)

e−F/T =
(

1∓ e−Ω/T
)−1

e−F/T ,

0
∑

n=0

e−(n−1/2)Ω/T (n+ 1) = eΩ/2T =
(

1 + e−Ω/T
)−1

e−F/T . (18.73)

The spectral function ρ12(ω
′) of the a single oscillator quantum of frequency Ω is

therefore given by

ρ12(ω
′) = 2πδ(ω′ − Ω). (18.74)

With it, the retarded and imaginary-time Green functions become

GR
Ω(t, t

′) = Θ(t− t′)e−Ω(t−t′), (18.75)

GΩ(τ, τ
′) = −T

∞
∑

m=−∞

e−iωm(τ−τ ′) 1

iΩm − Ω
(18.76)

= e−Ω(τ−τ ′)







1± nΩ

±nΩ

for τ
≥
<

τ ′, (18.77)

with the average particle number nΩ of (18.36). The commutation function, for
instance, is by (18.44) and (18.74):

C12(t, t
′) = e−iΩ(t−t′), (18.78)

and the correlation function of the “wrong commutator” is from (18.53) and (18.74):

AΩ(t, t
′) = tanh∓1 Ω

2T
e−iΩ(t−t′). (18.79)

Of course, these harmonic-oscillator expressions could have been obtained di-
rectly by starting from the defining operator equations. For example, the commu-
tator function

CΩ(t, t
′) = eF/TTr

{

e−Ĥ/T [âH(t), â
†
H(t

′)]∓
}

(18.80)
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turn into (18.78) by using the commutation rule at different times

[âH(t), â
†
H(t

′)] = e−iΩ(t−t′), (18.81)

which follows from (18.68). Since the right-hand side is a c-number, the thermody-
namic average is trivial:

eF/TTr (e−Ĥ/T ) = 1. (18.82)

After this, the relations (18.41), (18.42) determine the retarded and advanced
Green functions

GR
Ω(t− t′) = Θ(t− t′)e−iΩ(t−t′), GA

Ω(t− t′) = −Θ(t′ − t)e−iΩ(t−t′). (18.83)

For the Green function at imaginary times

GΩ(τ, τ
′) ≡ eF/TTr

[

e−Ĥ/T T̂τ âH(τ)â
†
H(τ

′)
]

, (18.84)

the expression (18.77) is found using [see (18.85)]

â†H(τ) ≡ eĤτ â†e−Ĥτ = â†eΩτ ,

âH(τ) ≡ eĤτ âe−Ĥτ = âe−Ωτ , (18.85)

and the summation formula (18.73).
The “wrong” commutator function (18.79) can, of course, be immediately derived

from the definition

A12(t− t′) ≡ eF/TTr
{

e−Ĥ/T
[

âH(t), â
†
H(t

′)
]

±

}

(18.86)

and (18.68), by inserting intermediate states.
For the temporal behavior of the time-ordered Green function we find from

(18.48)

GΩ(ω) =
(

1∓ e−Ω/T
)−1

GR
Ω(ω) +

(

1∓ eΩ/T
)−1

GA
Ω(ω), (18.87)

and from this by a Fourier transformation

GΩ(t, t
′) =

(

1∓ e−Ω/T
)−1

Θ(t− t′)e−iΩ(t−t′) −
(

1∓ eΩ/T
)−1

Θ(t′ − t)e−iΩ(t−t′)

=
[

Θ(t− t′)± (eΩ/T ∓ 1)−1
]

e−iΩ(t−t′) = [Θ(t− t′)± nΩ] e
−iΩ(t−t′).

(18.88)

The same result is easily obtained by directly evaluating the defining equation using
(18.68) and inserting intermediate states:

GΩ(t, t
′) ≡ GΩ(t− t′) = eF/TTr

[

e−Ĥ/T T̂ âH(t)â
†
H(t

′)
]

= Θ(t− t′)〈â â†〉e−iΩ(t−t′) ±Θ(t′ − t)〈â† â〉e−iΩ(t−t′)

= Θ(t− t′)(1± nΩ)e
−iΩ(t−t′) ±Θ(t′ − t)nΩe

−iΩ(t−t′), (18.89)
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which is the same as (18.88). For the correlation function with a and a† interchanged,

ḠΩ(t, t
′) ≡ GΩ(t− t′) = eF/TTr

[

e−Ĥ/T T̂ â†H(t)âH(t
′)
]

, (18.90)

we find in this way

ḠΩ(t, t
′) = Θ(t− t′)〈â† â〉e−iΩ(t−t′) ±Θ(t′ − t)〈â â†〉e−iΩ(t−t′)

= Θ(t− t′)nΩe
−iΩ(t−t′) ±Θ(t′ − t)(1± nΩ)e

−iΩ(t−t′), (18.91)

in agreement with (18.64).

18.5.2 Real Field Operators

From the above expressions it is easy to construct the corresponding Green functions
for the position operators of the harmonic oscillator x̂(t). It will be useful to keep
the discussion more general by admitting oscillators which are not necessarily mass
points in space but can be field variables. Thus we shall use, instead of x̂(t), the
symbol ϕ(t), and call this a field variable. As in Eq. (7.295) we decompose the field
as

x̂(t) =

√

h̄

2MΩ

[

âe−iΩt + â†eiΩt
]

. (18.92)

In this section we use physical units. The commutator function (18.40) is directly

C(t, t′) ≡ 〈[ϕ̂(t), ϕ̂(t′)]∓〉ρ = − h̄

2MΩ
2i sinΩ(t− t′), (18.93)

implying a spectral function [recall (18.44)]

ρ(ω′) =
1

2MΩ
2π [δ(ω′ − Ω)− δ(Ω′ + Ω)]. (18.94)

The real operator ϕ̂(t) behaves like the difference of a particle of frequency Ω and
−Ω, with an overall factor 1/2MΩ. It is then easy to find the retarded and advanced
Green functions of the operators ϕ̂(t) and ϕ̂(t′):

GR(t, t′) =
h̄

2MΩ

[

GR
Ω(t, t

′)−GR
−Ω(t, t

′)
]

= − h̄

2MΩ
Θ(t− t′) 2i sinΩ(t− t′), (18.95)

GA(t, t′) =
h̄

2MΩ

[

GA
Ω(t, t

′)−GA
−Ω(t, t

′)
]

=
h̄

2MΩ
Θ(t− t′) 2i sinΩ(t′ − t). (18.96)

From the spectral representation (18.53), we obtain for the “wrong commutator”

A(t, t′) = 〈[ϕ̂(t), ϕ̂(t′)]∓〉 =
h̄

2MΩ
coth±1 Ω

2kBT
2 cosΩ(t− t′). (18.97)

The relation with (18.93) is again a manifestation of the fluctuation-dissipation
theorem (18.53).
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The average of these two functions yields the time-dependent correlation function
at finite temperature containing only the product of the operators

GP (t, t′) ≡ 〈ϕ̂(t)ϕ̂(t′)〉 = h̄

2MΩ
[(1± 2nΩ) cosΩ(t− t′)− i sinΩ(t− t′)] , (18.98)

with the average particle number nΩ of (18.36). In the limit of zero temperature
where nΩ ≡ 0, this reduces to

GP (t, t′) = 〈ϕ̂(t)ϕ̂(t′)〉 = h̄

2MΩ
e−iΩ(t−t′). (18.99)

The time-ordered Green function is obtained from this by the obvious relation

G(t, t′) = Θ(t− t′)GP (t, t′)±Θ(t′ − t)GP (t′, t) =
1

2
[A(t, t′) + ǫ(t− t′)C(t, t′)] ,

(18.100)
where ǫ(t − t′) is the step function of Eq. (1.316). Explicitly, the time-ordered
Green function is

G(t, t′) ≡ 〈T̂ ϕ̂(t)ϕ̂(t′)〉 = h̄

2MΩ
[(1± 2nΩ) cosΩ|t− t′| − i sinΩ|t− t′|] , (18.101)

which reduces for T → 0 to

G(t, t′) = 〈T̂ ϕ̂(t)ϕ̂(t′)〉 = h̄

2MΩ
e−iΩ|t−t′|. (18.102)

Thus, as a mnemonic rule, a finite temperature is introduced into a zero-
temperature Green function by simply multiplying the real part of the exponential
function by a factor 1±2nΩ. This is another way of stating the fluctuation-dissipation
theorem.

There is another way of writing the time-ordered Green function (18.101) in the
bosonic case:

G(t, t′) ≡ 〈T̂ ϕ̂(t)ϕ̂(t′)〉 = h̄

2MΩ

cosh
[

Ω

2
(h̄β − i|t− t′|)

]

sinh
h̄Ωβ

2

. (18.103)

For t− t′ > 0, this coincides precisely with the periodic Green function Gp
e (τ, τ

′) =
Gp

e (τ − τ ′) at imaginary-times τ > τ ′ [see (3.251)], if τ and τ ′ are continued analyti-
cally to it and it′, respectively. Decomposing (18.101) into real and imaginary parts
we see by comparison with (18.100) that anticommutator and commutator functions
are the doubled real and imaginary parts of the time-ordered Green function:

A(t, t′) = 2ReG(t, t′), C(t, t′) = 2i ImG(t, t′). (18.104)

In the fermionic case, the hyperbolic functions cosh and sinh in numerator and
denominator are simply interchanged, and the result coincides with the analytically
continued antiperiodic imaginary-time Green function (3.266).
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The time-reversal properties (18.61)–(18.64) of the Green functions become for
real fields ϕ̂(t):

GA(t, t′) = ∓GR(t′, t), (18.105)

A(t, t′) = ±A(t′, t), (18.106)

C(t, t′) = ∓C(t′, t), (18.107)

G(t, t′) = ±G(t′, t). (18.108)

18.6 Nonequilibrium Green Functions

Up to this point we have assumed the system to be in intimate contact with a
heat reservoir which ensures a constant temperature throughout the volume. The
disturbance in (18.3) was taken to be small, so that only a small fraction of the
particles could be excited. If the disturbance grows larger, large clouds of excitations
can be formed in a local region. Such a system leaves thermal equilibrium, and the
response is necessarily nonlinear. The system must be studied in its full quantum-
mechanical time evolution. In order to describe such a process theoretically, we
shall assume an initial equilibrium characterized by some density operator [compare
(2.367)]

ρ̂ =
∑

n

ρn|n〉〈n|, (18.109)

with eigenvalues

ρn = e−En/T . (18.110)

The disturbance sets in at some time t0. If the initial state is out of equilibrium,
the formalism to be described remains applicable, with only a few adaptations, if
the initial state at t0 is still characterized by a density operator of type (18.109),
but has probabilities ρn different from (18.110). Of course, in the limit of very small
deviations from thermal equilibrium, the formalism to be described reduces to the
previously treated linear-response theory.

We first develop a perturbation theory for the time evolution of operators in a
nonequilibrium situation. This serves to set up a path integral formalism for the
description of the dynamical behavior of a single particle in contact with a thermal
reservoir. This description can, in principle, be extended to ensembles of many
particles by considering a similar path integral for a fluctuating field. After the
discussion in Chapter 7, the necessary second quantization is straightforward and
requires no detailed presentation.

The perturbation theory for nonequilibrium quantum-statistical mechanics to be
developed now is known under the name of closed-time path Green function formal-

ism (CTPGF). This formalism was developed by Schwinger [4] and Keldysh [5],
and has been applied successfully to many nonequilibrium problems in statistical
physics, in particular to superconductivity and plasma physics.
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The fundamental problem of nonequilibrium statistical mechanics is finding the
time evolution of thermodynamic averages of products of Heisenberg operators
ϕ̂H(t). For interesting applications it is useful to keep the formulation general and
deal with relativistic fields of operators ϕ̂H(x, t). As in Section 7.6, an extra spatial
argument x allows for a different time-dependent operator ϕ̂(t) at each point x in
space. In order to prepare ourselves for the most interesting study of electromagnetic
fields, we consider the simplest relativistically invariant classical action describing
an observable field in D dimensions which has the form

A0=
∫

dtdDxL0(x, t)≡
1

2

∫

dtdDx
{

[ϕ̇(x, t)]2 − [∇ϕ(x, t)]2 −m2ϕ2(x, t)
}

. (18.111)

As in Section 7.6, we go over to a countable set of infinite points x assuming that
space is a fine lattice of spacing ǫ, with the continuum limit ǫ→ 0 taken at the end.
The associated Euler-Lagrange equation extremizing the action is the Klein-Gordon

equation

ϕ̈(x, t) + (−∂2x +m2)ϕ(x, t) = 0. (18.112)

This is solved by plane waves

fp(x, t) =
1

√

2ωpV
e−iωpt+ipx, f̄p(x, t) =

1
√

ωpV
eiωpt+ipx (18.113)

of positive and negative energy. As in Section 7.6, we imagine the system to be
confined to a finite cubic volume V . Then the momenta p are discrete. The solutions
(18.113) behave like an infinite set of harmonic oscillator solution, one for each
momentum vector p, with the p-dependent frequencies

ωp ≡
√

p2 +m2. (18.114)

The general solution of (18.112) may be expanded as

ϕ(x, t) =
∑

p

1

2ωpV

(

ape
−iωp+ipx + a∗pe

iωpt+ipx
)

. (18.115)

The canonical momenta of the field variables ϕ(x, t) are the field velocities

π(x, t) ≡ px(t) ≡ ϕ̇(x, t). (18.116)

The fields are quantized by the canonical commutation rules

[π̂(x, t), ϕ(x, t)] = −iδxx′ . (18.117)

The quantum field is now expanded as in (18.115), but in terms of operators âp and
their Hermitian adjoint operators â†p. These satisfy the usual canonical commutation
rules of creation and annihilation operators of Eq. (7.294):

[âp(t), â
†
p′(t)] = δpp′, [â†p(t), â

†
p′(t)] = 0, [âp(t), âp′(t)] = 0. (18.118)
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The simplest nonequilibrium quantities to be studied are the thermal averages of
one or two such field operators. More generally, we may investigate the averages of
one or two fields with respect to an arbitrary initial density operator ρ̂, the so-called
ρ-averages :

〈ϕ̂H(x)〉ρ = Tr [(ρ̂ ϕ̂H(x)] ,

〈ϕ̂H(x)ϕ̂H(y)〉ρ = Tr [ρ̂ ϕ̂H(x)ϕ̂H(y)] .
(18.119)

For brevity, we have gone over to a four-vector notation and use spacetime coordi-
nates x ≡ (x, t) to write ϕ̂H(x, t) as ϕ̂H(x).

In general, the fields ϕ(x, t) will interact with each other and with further fields,
adding to (18.111) some interaction Aint. The behavior of an interacting field system
can then be studied in perturbation theory. This is done by techniques related to
those in Section 1.7. First we identify a time-independent part of the Hamiltonian
for which we can solve the Schrödinger equation exactly. This is called the free part
of the Hamiltonian Ĥ0. For the field ϕ(x, t) at hand this follows from the action
(18.111) via the usual Legendre transformation (1.13). Its operator version is

Ĥ0 =
∫

dDx Ĥ0(x, t) ≡
1

2

∫

dDx
{

[ ˙̂ϕ(x, t)]2 + [∇ϕ̂(x, t)]2 +m2ϕ̂2(x, t)
}

. (18.120)

The interaction Aint gives rise to an interaction Hamiltonian Ĥ int(t). Then we
introduce the field operators in Dirac’s interaction picture ϕ̂(x). These are related
to the Heisenberg operators via the free Hamiltonian Ĥ0, by

ϕ̂(x) ≡ eiĤ0(t−t0)ϕ̂H(x, t0)e
−iĤ0(t−t0). (18.121)

The operators in the two pictures are equal to each other at a time t0 at which
the density operator ρ̂ is known. We also introduce the interaction picture for the
interaction Hamiltonian3

Ĥ int
I (t) ≡ eiĤtĤ int(t)e−iĤt. (18.122)

This operator is used to set up the time evolution operator in the interaction picture

Û(t, t0) ≡ T̂ exp
[

i
∫ t

t0
dt′ Ĥ int

I (t′)
]

. (18.123)

It allows us to express the time dependence of the field operators ϕ̂(x) as follows:

ϕ̂H(x) = Û(t0, t)ϕ̂(x)Û(t, t0). (18.124)

3For consistency, the field operator ϕ̂(x) should carry the same subscript I which is, however,
omitted to shorten the notation.
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The ρ-averages of the Heisenberg fields in the interaction representation are therefore

〈ϕ̂H(x)〉ρ = Tr
[

ρ̂ Û(t0, t)ϕ̂(x)Û(t, t0)
]

, (18.125)

〈ϕ̂H(x)ϕ̂H(x
′)〉ρ =











Tr
[

ρ̂ Û(t0, t)ϕ̂(x)Û(t, t
′)ϕ̂(x′)Û(t′, t0)

]

, t > t′,

Tr
[

ρ̂ Û(t0, t
′)ϕ̂(x′)Û(t′, t)ϕ̂(x)Û(t, t0)

]

, t′ > t.
(18.126)

Now, suppose that the interaction has been active for a very long time, i.e., we let
t0 → −∞. In this limit, (18.125) can be rewritten in terms of the scattering operator
Ŝ ≡ Û(∞,−∞) of the system.4 Using the time-ordering operator T̂ of Eq. (1.241),
we may write

〈ϕ̂H(x)〉ρ = Tr
[

ρ̂ Ŝ†T̂ Ŝϕ̂(x)
]

, (18.127)

〈ϕ̂H(x)ϕ̂H(y)〉ρ = Tr
[

ρ̂ Ŝ†T̂ Ŝϕ̂(x)ϕ̂(y)
]

. (18.128)

These expressions are indeed the same as those in (18.125) and (18.125); for instance

Ŝ†T̂
(

Ŝϕ̂(x)
)

= Û(−∞, t)Û(t,∞)T̂
(

Û(∞, t)ϕ̂(x)Û(t,−∞)
)

= Û(−∞, t)ϕ̂(x)Û(t,−∞).
(18.129)

For further development it is useful to realize that the operators in the expectations
(18.127) and (18.128) can be reinterpreted time-ordered products of a new type,
ordered along a closed-time contour which extends from t = −∞ to t = ∞ and

back . This contour is imagined to encircle the time axis in the complex t-plane as
shown in Figure 18.1. The contour runs from t = −∞ to t = ∞ above the real

Figure 18.1 Closed-time contour in forward–backward path integrals.

time axis and returns below it. Accordingly, we distinguish t values from the upper
branch and the lower branch by writing them as t+ and t−, respectively. Similarly
we define x(t+) ≡ x+ and x(t−) ≡ x−. When viewed as a function of the closed-time
contour, the operator

Ŝ†T̂
(

Ŝϕ̂(x)
)

(18.130)

4The matrix elements of Ŝ between momentum eigenstates form the so-called S-matrix.
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can be rewritten as

T̂P
(

Ŝ†Ŝϕ̂(x+)
)

, (18.131)

where T̂P performs a time ordering along the closed-time contour. The coordinate x
lies on the positive branch of the contour, where it is denoted by x+. The operator
T̂P is called path-ordering operator .

We can then write down immediately a generating functional for an arbitrary
product of field operators ordered along the closed-time path:

T̂P

{

Ŝ†Ŝ exp
[

i
∫

dx j(x+)ϕ̂(x+)
]}

, (18.132)

where dx is short for d3xdt. Functional differentiation with respect to j(x+) produces
ϕ̂(x+) ≡ ϕ̂(x). For symmetry reasons it is also useful to introduce the source j(x−)
coupled to the field on the lower time branch ϕ̂(x−). Thus we shall work with the
symmetric generating functional

Z[jP] = Tr
(

ρ̂ T̂PŜ
†Ŝ exp

{

i
[∫

dx j(x+)ϕ̂(x+) +
∫

dx j(x−)ϕ̂(x−)
]})

.

It can be written as

Z[jP] = Tr
{

ρ̂ T̂PŜ
†Ŝ exp

[

i
∫

P
dx jP(x)ϕ̂P(x)

]}

, (18.133)

with the subscript p distinguishing the time branches.
The path-ordering symbol serves to write down a useful formal expression for

the interaction representation of the operator Ŝ†Ŝ:5

Ŝ†Ŝ = T̂P exp
[

−i
∫

P
dt Ĥ int

I (t)
]

. (18.134)

In terms of this, Z[jP] takes the suggestive form

Z[jP] = Tr
{

ρ̂ T̂P exp
[

−i
∫

P
dtĤ int

I (t) + i
∫

P
dx jP(x)ϕ̂P(x)

]}

. (18.135)

To calculate the integrals along the closed-time contour p, it is advantageous to
traverse the lower time branch in the same direction as the upper from t = −∞ to
∞ (since we are used to integrating in this direction), and rewrite the closed-contour
integral in the source term,

∫

P
dx jP(x)ϕ̂P(x) =

∫

d3x
[∫ ∞

−∞
dt j(x, t+)ϕ̂(x+)+

∫ −∞

∞
dt j(x, t−)ϕ̂(x−)

]

, (18.136)

5Note that the left-hand side is equal to 1 due to Ŝ being unitary. However, this identity cannot
be inserted into the path-ordered expressions (18.131)–(18.133), since the current terms require a
factorization of Ŝ or Ŝ† at specific times and an insertion of field operators between the factors.
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as
∫

P
dx jP(x)ϕ̂P(x) =

∫

d3x
∫ ∞

−∞
dt [j(x, t+)ϕ̂(x+)− j(x, t−)ϕ̂(x−)] . (18.137)

Obviously, the functional derivative with respect to −j(x, t−) produces a factor
ϕ̂(x−). Correspondingly, we shall imagine the two fields ϕ̂(x+), ϕ̂(x−) as two com-
ponents of a vector

~̂ϕ(x) =





ϕ̂(x+)

ϕ̂(x−)



 , (18.138)

with the associated current

~ (x) =





j(x+)

−j(x−)



 . (18.139)

In this vector notation, the source term reads
∫

dx~(x) ~̂ϕ(x), (18.140)

and all closed-time path formulas go directly over into vector or matrix formulas
whose integrals run only once along the positive time axis, for example

∫

P
dx jP(x)GP(x, x

′)jP(x
′) =

∫

dx~(x)G(x, x′)~(x′), (18.141)

where G(x, x′) on the right-hand side denotes the 2× 2 matrix

G(x, y) =





G++(x, y) G+−(x, y)

G−+(x, y) G−−(x, y)



 ≡




G(x+, y+) G(x+, y−)

G(x−, y+) G(x−, y−)



 . (18.142)

Since all formulas for jP and ϕ̂P hold also for ~ and ~̂ϕ, we shall identify the closed-
time path objects with the corresponding vectors and matrices.

Differentiating the generating functional with respect to jP produces all Green
functions of the theory. Forming two derivatives gives the two-point Green function

GP(x, y) =
δ

iδjP(x)

δ

iδjP(y)
Z[jP]

∣

∣

∣

jP=0
= Tr

[

ρ̂ T̂PŜ
†Ŝ ϕ̂P(x)ϕ̂P(y)

]

, (18.143)

which we decompose according to the branches of the closed-time contour in the
same way as the matrix (18.142):

GP(x, y) =





G++(x, y) G+−(x, y)

G−+(x, y) G−−(x, y)



 . (18.144)

The four matrix elements collect precisely the four physically relevant time-
dependent Green functions discussed in the last section for the case of ρ̂ being an
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equilibrium density operator. Here they may be out of thermal equilibrium, formed
with an arbitrary ρ-average rather than the thermal average at a given tempera-
ture. Going back from the interaction picture to the Heisenberg picture, the matrix
GP(x, y) is the expectation

GP(x, y) = 〈T̂Pϕ̂H(xP)ϕ̂H(yP)〉ρ, (18.145)

where xP can be x+ or x−. Considering the different components we observe that
the path order is trivial as soon as x and y lie on different branches of the time axis.
Since y+ lies always before x−, the path-ordering operator can be omitted so that

G−+(x, y) = 〈ϕ̂H(x)ϕ̂H(y)〉ρ. (18.146)

In the opposite configuration, the path order is opposite. When reestablishing the
original order, a negative sign arises for fermion fields. Hence,

G+−(x, y) = 〈ϕ̂H(y)ϕ̂H(x)〉ρ = ±〈ϕ̂H(x)ϕ̂H(y)〉ρ. (18.147)

In either case, a distinction of the upper and lower time branches is superfluous after
an explicit path ordering.

If both x and y lie on the upper branch, the path order coincides with the usual
time order so that G++(x, y) is equal to the expectation

G++(x, y) = 〈T̂ ϕ̂H(x)ϕ̂H(y)〉ρ ≡ G(x, y), (18.148)

i.e., the ρ-average of the usual time-ordered Green function. Similarly, if x and y
both lie on the lower branch, the path order coincides with the usual anti-time order
and

G−−(x, y) = 〈T̂ ϕ̂H(x)ϕ̂H(y)〉ρ ≡ Ḡ(x, y). (18.149)

From these relations it is easy to see that only three of the four matrix elements of
GP(x, y) are linearly independent, since there exists the relation

G++ +G−− = G+− +G−+. (18.150)

This can be verified by writing out explicitly the time order and antiorder on the
left-hand side. In the linear-response theory of Sections 18.1 and 18.2, the most
convenient independent Green functions are the retarded and the advanced ones,
together with the expectation of the anticommutator (the commutator for fermions).
By analogy, we also define here, in the nonequilibrium case,

GR(x, y) = Θ(x− y)〈[ϕ̂H(x), ϕ̂H(y)]∓〉ρ, (18.151)

GA(x, y) = −Θ(y − x)〈[ϕ̂H(x), ϕ̂H(y)]∓〉ρ, (18.152)

A(x, y) = 〈[ϕ̂H(x), ϕ̂H(y)]±〉ρ. (18.153)
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As in (18.53), the last expression coincides with the absorptive or dissipative part
of the Green function. The expectation of the commutator (the anticommutator for
fermions),

C(x, y) = 〈[ϕ̂H(x), ϕ̂H(y)]∓〉ρ, (18.154)

is not an independent quantity. It is related to the others by

C(x, y) = GR(x, y)−GA(x, y). (18.155)

A comparison of the Fourier decomposition of the field (18.115) with (18.92)
shows that the Green functions are simple plane-wave superpositions of harmonic
oscillator of all momenta p and frequency Ω = ωp. The normalization factor h̄/M
becomes 1/V . For instance

GR(x, x′) =
∑

p

M

h̄V
eip(x−x′)GR(t, t′)|Ω=ωp

. (18.156)

In the continuum limit, where the sum over momenta goes over into an integral with
the rule (7.571), this becomes, from (18.95),

GR(x, x′) = −Θ(x− x′)
∫ dDp

2ωp(2π)D
eik(x−x′) 2i sinωp(t− t′). (18.157)

Similarly we find from (18.102)

A(x, x′) =
∫

dDp

2ωp(2π)D
eik(x−x′) 2 cosωp(t− t′). (18.158)

These and the other Green functions satisfy identities analogous to those formed
from the position operator ϕ̂(t) of a simple harmonic oscillator in (18.105)–(18.108):

GA(x, x′) = ∓GR(x′, x), (18.159)

A(x, x′) = ±A(x′, x), (18.160)

C(x, x′) = ∓C(x′, x). (18.161)

G(x, x′) = ±G(x′, x)∗. (18.162)

It is now easy to express the matrix elements of the 2×2 Green function GP(x, y)
in (18.144) in terms of the three independent quantities (18.153). Since

GR = G−+ −G−− = G++ −G+−,

GA = G+− −G−− = G++ −G−+,

A = G−+ + G+− = G++ +G−−,

C = G−+ −G+− = GR −GA,

(18.163)
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we find

G−+ =
1

2
(A + C) = 1

2(A+GR −GA),

G+− =
1

2
(A− C) = 1

2(A−GR +GA),

(18.164)

and

G++ = GR +G+− = 1
2(A+GR +GA),

G−− = G+− +G−+ −G++

= A−G++ = 1
2(A−GR −GA).

(18.165)

The matrix GP(x, y) can therefore be written as follows:

GP =
1

2





A+GR +GA A−GR +GA

A+GR −GA A−GR −GA



 . (18.166)

For actual calculations it is somewhat more convenient to use a transformation
introduced by Keldysh [5]. It arises from the similarity transformation

G̃ = QGPQ
−1, with Q =

1√
2





1 −1

1 1



 = (QT )−1, (18.167)

producing the simpler triangular Green function matrix

G̃(x, y) =
1√
2





1 −1

1 1





1

2





A+GR +GA A−GR +GA

A +GR −GA A−GR −GA





× 1√
2





1 1

−1 1



 =





0 GA

GR A



 . (18.168)

Due to the calculational advantages it is worth re-expressing all quantities in the
new basis. The linear source term, for example, becomes

∫

P dx jP(x)ϕ̂P(x) =
∫

dx (j(x+),−j(x−))




ϕ̂(x+)

ϕ̂(x−)





=
∫

dx ̃(x)ˆ̃ϕ(x),

(18.169)

with the source vectors

˜̂ϕ(x) ≡ Q

(

ϕ̂(x+)

ϕ̂(x−)

)

=
1√
2

(

ϕ̂(x+)− ϕ̂(x−)

ϕ̂(x+) + ϕ̂(x−)

)

, (18.170)

and the field vectors

̃(x) ≡




j1(x)

j2(x)



 = Q





j(x+)

−j(x−)



 =
1√
2





j(x+) + j(x−)

j(x+)− j(x−)



 . (18.171)
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The quadratic source term
∫

dx dx′ jP(x)GP(x, x
′)jP(x

′) (18.172)

=
∫

dx dx′ (j(x+),−j(x−))




G++ G+−

G−+ G−−



 (x, x′)





j(x′+)

−j(x′−)





becomes
∫

dx dx′ ̃T (x)G̃(x, x′)̃(x′). (18.173)

The product6 of two Green functions G̃(1) and G̃(2) has the same triangular form as
each factor. The three nonzero entries are composed as follows:

G̃12 = G̃(1)G̃(2) = QG
(1)
P Q−1QG

(2)
P Q−1

=

(

0 GA
1G

A
2

GR
1G

R
2 GR

1A2 + A1G
A
2

)

. (18.174)

More details on these Green functions can be found in the literature [6].

18.7 Perturbation Theory for Nonequilibrium Green
Functions

The interaction picture can be used to develop a perturbation expansion for nonequi-
librium Green functions. For this we go back to the generating functional (18.135)
and assume that the interaction depends only on the field operators. Usually it will
be a local interaction, i.e., a spacetime integral over an interaction density:

exp
[

−i
∫

P
dt Ĥ int

I (t)
]

= exp
[

i
∫

P
dt
∫

d3xLint(ϕ̂P(x, t))
]

. (18.175)

The subsequent formal development applies also to the case of a more general non-
local interaction

exp
{

iAint
P [ϕ̂P]

}

. (18.176)

To account for the interaction, we use the fact used in Section 3.18, that within the
expectation (18.135) the field ϕ̂P can be written as a differential operator δ/iδjP(x)
applied to the source term. In this form, the interaction term can be moved outside
the thermal expectation. The result is the generating functional in the interaction
picture

Z[jP] = exp
{

iAint
P [δ/iδjP]

}

Z0[jP], (18.177)

6The product is meant in the functional sense, i.e.,
(G(1)G(2))(x, y) =

∫

dz G(1)(x, z)G(2)(z, y).
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where

Z0[jP] = Tr
{

ρ̂ T̂P exp
[

i
∫

P
dx ϕ̂P(x) jP(x)

]}

(18.178)

is the free partition function.
To apply this formula, we have to find Z0[jP] explicitly. By expanding the expo-

nential in powers of iAint
P [δ/iδjP] and performing the functional derivatives δ/iδjP,

we obtain the desired perturbation expansion for Z[jP].
For a general density operator ρ̂, the free partition function Z0[jP] cannot be

written down in closed form. Here we give Z0[jP] explicitly only for a harmonic
system in thermal equilibrium, where the ρ-averages 〈. . .〉ρ are the thermal averages
〈. . .〉T calculated in Sections 18.1 and 18.2. Since the fluctuation terms in the field
ϕ(t) are quadratic, Z0[jP] must have an exponent quadratic in the sources jP. To
satisfy (18.143), the functional is necessarily given by

Z0[jP] = exp
[

−1

2

∫

dxdy jP(x)GP(x, y)jP(y)
]

. (18.179)

Inserting the 4× 4-matrix (18.166), this becomes

Z0[j+, j−] = exp

[

−1

2

∫

dx
∫

dx′ (j+,−j−)Q−1

(

0 GA

GR A

)

Q

(

j+

−j−

)]

= exp
{

− 1

4

∫

dx
∫

dx′
[

(j+ + j−)(x)G
A(x, x′)(j+ − j−)(x

′)

+ (j+ − j−)(x)G
R(x, x′)(j+ + j−)(x

′)

+ (j+ − j−)(x)A(x, x
′)(j+ − j−)(x

′)]
}

, (18.180)

where

j+(x) ≡ j(x+), j−(x) ≡ j(x−). (18.181)

The advanced Green functions are different from zero only for t < t′. Using relation
(18.159), the second term is seen to be the same as the first. For the real field
at hand, these terms are purely imaginary [see (18.156)]. The anticommutation
function A(x, x′) is symmetric by (18.160). We therefore rewrite (18.180) as

Z0[j+, j−] = exp
{

− 1

2

∫

dx
∫

dx′ Θ(x′ − x) (18.182)

×
[

(j+ − j−)(x)G
R(x, x′)(j+ + j−)(x

′) + (j+ − j−)(x)A(x, x
′)(j+ − j−)(x

′)
]

}

.

For any given spectral function, the exponent can easily be written down explic-
itly using the spectral representations (18.44) and (18.53).

As an important example consider the simple case of a single harmonic oscillator
of frequency Ω. Then the field ϕ̂(x) depends only on the time t, and the commutator
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and “wrong” commutator functions are given by (18.93) and (18.102). Reintroducing
all factors h̄ and kB, we have

Z0[j+, j−] = exp
{

− 1

2h̄2

∫

dt
∫

dt′Θ(t− t′) (18.183)

×
[

(j+ − j−)(t)C(t, t
′)(j+ + j−)(t

′) + (j+ − j−)(t)A(t, t
′)(j+ − j−)(t

′)
]

}

or, more explicitly,

Z0[j+, j−] = exp
{

− 1

2MΩh̄

∫

dt
∫

dt′ Θ(t′ − t)

×
[

− (j+ − j−)(t) i sin Ω(t− t′) (j+ + j−)(t
′) (18.184)

+ (j+ − j−)(t) coth
h̄Ω

2kBT
cosΩ(t− t′) (j+ − j−)(t

′)
]

}

.

We have taken advantage of the presence of the Heaviside function to express the
retarded Green function for t > t′ as a commutator function C(t, t′) [recall (18.151),
(18.154)]. Together with the anticommutator function A(t, t′), we obtain for t > t′

G(t, t′) =
1

2
[A(t, t′) + C(t, t′)] =

h̄

2MΩ

cosh
Ω

2
[h̄β − i(t− t′)]

sinh
h̄Ωβ

2

, (18.185)

which coincides with the time-ordered Green function (18.101) for t > t′, and thus
with the analytically continued periodic imaginary-time Green function (3.251). The
exponent in this generating functional is thus quite similar to the equilibrium source
term (3.221).

The generating functional (18.180) can, of course, be derived without the previ-
ous operator discussion completely in terms of path integrals for the harmonic oscil-
lator in thermal equilibrium. Using the notation X̂(t) for a purely time-dependent
oscillator field ϕ̂(x), we can take the generating functional directly from Eq. (3.168):

(Xbtb|Xata)
j
Ω =

∫

DX(t) exp
{

i

h̄

∫ tb

ta
dt
[

M

2
(Ẋ2 − Ω2X2) + jX

]}

= e(i/h̄)Acl,jFΩ,j(tb, ta). (18.186)

with a total classical action

Acl,j =
1

2

MΩ

sinΩ(tb − ta)

[

(X2
b +X2

a) cosΩ(tb − ta)−2XbXa

]

+
1

sinΩ(tb − ta)

∫ tb

ta
dt[Xa sin Ω(tb − t) +Xb sinΩ(t− ta)]j(t), (18.187)

and the fluctuation factor (3.170), and express (18.187) as in (3.171) in terms of the
two independent solutions Da(t) and Db(t) of the homogenous differential equations
(3.48) introduced in Eqs. (2.228) and (2.229):

Acl,j =
M

2Da(tb)

[

X2
b Ḋa(tb)−X2

aḊb(ta)−2XbXa

]
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+
1

Da(tb)

∫ tb

ta
dt [XbDa(t)+XaDb(t)]j(t). (18.188)

The fluctuation factor is taken as in (3.172). Then we calculate the thermal average
of the forward–backward path integral of the oscillatorX(t) via the Gaussian integral

Z0[j+, j−] =
∫

dXb dXa (Xb h̄β|Xa0)Ω (Xbtb|Xata)
j+
Ω (Xbtb|Xata)

j−∗
Ω . (18.189)

Here (Xb h̄β|Xa0)Ω is the imaginary-time amplitude (2.411):

(Xbh̄β|Xa0) =
1

√

2πh̄/M

√

Ω

sinh h̄β

× exp

{

− 1

2h̄

MΩ

sinh h̄βΩ
[(X2

b +X2
a) cosh h̄βΩ− 2XbXa]

}

. (18.190)

We have preferred deriving Z0[j+, j−] in the operator language since this illuminates
better the physical meaning of the different terms in the result (18.185).

18.8 Path Integral Coupled to Thermal Reservoir

After these preparations, we can embark on a study of a simple but typical problem
of nonequilibrium thermodynamics. We would like to understand the quantum-
mechanical behavior of a particle coupled to a thermal reservoir of temperature T
and moving in an arbitrary potential V (x) [7]. Without the reservoir, the probability
of going from xa, ta to xb, tb would be given by7

|(xbtb|xata)|2 =
∣

∣

∣

∣

∫

Dx(t) exp
{

i

h̄

∫

dt
[

M

2
ẋ2 − V (x)

]}∣

∣

∣

∣

2

. (18.191)

This may be written as a path integral over two independent orbits, to be called
x+(t) and x−(t):

(xbtb|xata)(xbtb|xata)∗ =
∫

Dx+(t)Dx−(t) (18.192)

× exp
{

i

h̄

∫ tb

ta
dt
[

M

2
(ẋ2+ − ẋ2−)− (V (x+)− V (x−))

]}

.

In accordance with the development in Section 18.7, the two orbits are reinterpreted
as two branches of a single closed-time orbit xP(t). The time coordinate tP of the
path runs from ta to tb slightly above the real time axis and returns slightly below
it, just as in Fig. 18.1. The probability distribution (18.191) can then be written as
a path integral over the closed-time contour encircling the interval (ta, tb):

|(xbtb|xata)|2 =
∫

DxP exp
{

i

h̄

∫

P
dt
[

M

2
ẋ2P − V (xP)

]}

. (18.193)

7In the sequel, we display the constants h̄ and kB explicitly.
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We now introduce a coupling to a thermal reservoir for which we use, as in the
equilibrium discussion in Section 3.13, a bath of independent harmonic oscillators
ϕ̂i(t) of masses Mi and frequencies Ωi in thermal equilibrium at temperature T .
For simplicity, the coupling is assumed to be linear in ϕ̂i(t) and the position of
the particle x(t). The bath contributes to (18.193) a factor involving the thermal
expectation of the linear interaction

|(xbtb|xata)|2 =
∫

DxP exp
{

i

h̄

∫

P
dt
[

M

2
ẋ2P − V (xP)

]}

× Tr

{

ρ̂ T̂P exp

[

i

h̄

∑

i

ci

∫

P
dt ϕ̂i

P(t) xP(t)

]}

. (18.194)

Here, ϕ̂i
P(t) for i = 1, 2, 3, . . . are the position operators of the auxiliary harmonic

oscillators. Since the oscillators are independent, the trace of the exponentials fac-
torizes into a product of single-oscillator expressions

Tr

{

ρ̂ T̂P exp

[

i

h̄

∑

i

ci

∫

P
dt ϕ̂i

P(t)xP(t)

]}

=
∏

i

Tr
{

ρ̂ T̂P exp
[

i

h̄
ci

∫

P
dt ϕ̂i

P(t)xP(t)
]}

.

(18.195)
The density operator ρ̂ has the eigenvalues (18.110).

Each factor on the right-hand side is of the form (18.178) with ϕ̂(t) = ciϕ̂
i
P(t)/h̄

and j+,− = x+,−(t), so that (18.195) leads to the partition function (18.183), which
reads here

Zb
0 [x+, x−] = exp

{

− 1

2h̄2

∫

dt
∫

dt′ Θ(t− t′) (18.196)

×
[

(x+ − x−)(t)Cb(t, t
′)(x+ + x−)(t

′) + (x+ − x−)(t)Ab(t, t
′)(x+ − x−)(t

′)
]

}

,

where Cb(t, t
′) and Ab(t, t

′) collect the commutator and anticommutator functions
of the bath. They are sums of correlation functions (18.93) and (18.102) of the
individual oscillators of mass Mi and frequency Ωi, each contributing with a weight
c2i . Thus we may write

Cb(t, t
′)=

∑

i

c2i 〈[ϕ̂i(t), ϕ̂i(t
′)]〉T = −h̄

∫ ∞

−∞

dω′

2π
ρb(ω

′)i sinω′(t−t′), (18.197)

Ab(t, t
′)=

∑

i

c2i 〈{ϕ̂i(t), ϕ̂i(t
′)}〉T = h̄

∫ ∞

−∞

dω′

2π
ρb(ω

′) coth
h̄ω′

2kBT
cosω′(t−t′), (18.198)

where the ensemble averages at a fixed temperature T are now denoted by a subscript
T , and

ρb(ω
′) ≡ 2π

∑

i

c2i
2MiΩi

[δ(ω′ − Ωi)− δ(ω′ + Ωi)] (18.199)

is the spectral function of the bath. It is the antisymmetric continuation of the
spectral function (3.408) to negative ω′. Since the spectral function of the bath ρb(ω

′)
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of (18.199) is odd in ω′, we can replace both trigonometric functions −i sinω′(t− t′)
and cosω′(t− t′) in (18.199) by the exponentials e−iω′(t−t′).

The expression in the exponent of (18.196) may be considered as an effective
action in the path integral, caused by the thermal bath. We shall therefore write

Z0[x+, x−]=exp
{

i

h̄
AFV[x+, x−]

}

=exp
{

i

h̄

(

AFV
D [x+, x−] +AFV

F [x+, x−]
)

}

,(18.200)

where the effective action AFV[x+, x−] consists of a dissipative part AFV
D [x+, x−] and

a fluctuation part AFV
F [x+, x−]. The expression Z0[x+, x−] is the famous influence

functional first introduced by Feynman and Vernon.
Inserting (18.200) into (18.194) and displaying explicitly the two branches of the

path xP (t) with the proper limits of time integrations, we obtain from (18.194) the
probability for the particle to move from xata to xb tb as the path integral

|(xbtb|xata)|2 =
∫

Dx+(t)
∫

Dx−(t)×

× exp
{

i

h̄

∫ tb

ta
dt
[

M

2
(ẋ2+ − ẋ2−)− (V (x+)− V (x−))

]

+
i

h̄
AFV[x+, x−]

}

. (18.201)

For a better understanding of the influence functional, we introduce an auxiliary
retarded function

γ(t− t′) ≡ Θ(t− t′)
1

M

∫ ∞

−∞

dω

2π

σb(ω)

ω
e−iω(t−t′). (18.202)

Then we can write

Θ(t− t′)Cb(t, t
′) = ih̄Mγ̇(t− t′) + ih̄M∆ω2δ(t− t′), (18.203)

where the quantity

∆ω2 ≡ − 1

M

∫ ∞

−∞

dω′

2π

σb(ω
′)

ω′
= − 1

M

∑

i

c2i
MiΩ2

i

(18.204)

was introduced before in Eq. (3.420). Inserting the first term of the decomposi-
tion (18.203) into (18.196), the dissipative part of the influence functional can be
integrated by parts in t′ and becomes

AFV
D [x+, x−] = −M

2

∫ tb

ta
dt
∫ tb

ta
dt′ (x+ − x−)(t)γ(t− t′)(ẋ+ + ẋ−)(t

′)

+
M

2

∫ tb

ta
dt(x+ − x−)(t)γ(t− tb)(x+ + x−)(ta). (18.205)

The δ-function in (18.203) contributes to AFV
D [x+, x−] a term analogous to (3.421)

∆Aloc[x+, x−] =
M

2

∫ tb

ta
dt∆ω2(x2+ − x2−)(t), (18.206)
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which may simply be absorbed into the potential terms of the path integral (18.201),
renormalizing them to

− i

h̄

∫ tb

ta
dt [Vren(x+)− Vren(x−)] . (18.207)

This renormalization is completely analogous to that in the imaginary-time formula
(3.423).

The odd bath function ρb(ω
′) can be expanded in a power series with only odd

powers of ω′. The lowest approximation

ρb(ω
′) ≈ 2Mγω′, (18.208)

describes Ohmic dissipation with some friction constant γ [recall (3.427)]. For fre-
quencies much larger than the atomic relaxation rates, the friction goes to zero.
This behavior is modeled by the Drude form (3.428) of the spectral function

ρb(ω
′) ≈ 2Mγω′ ω2

D

ω2
D + ω′2

. (18.209)

Inserting this into Eq. (18.202), we obtain the Drude form of the function γ(t):

γRD(t) ≡ Θ(t) γωDe
−ωDt. (18.210)

The superscript emphasizes the retarded nature. This can also be written as a
Fourier integral

γRD(t) =
∫ ∞

−∞

dω′

2π
γRD(ω

′)e−iω′t, (18.211)

with the Fourier components

γRD(ω
′) = γ

iωD

ω′ + iωD
. (18.212)

The position of the pole in the lower half-plane ensures the retarded nature of the
friction term by producing the Heaviside function in (18.210) [recall (1.312)].

The imaginary-time expansion coefficients γm of Eq. (3.431) are related to these
by

γm = γ(ω′)|ω′=i|ωm|, (18.213)

by close analogy with the relation between the retarded and imaginary-time Green
functions (18.30) and (18.31).

In the Ohmic limit (18.208), the dissipative part of the influence functional sim-
plifies. Then γRD(t) becomes narrowly peaked at positive t, and may be approximated
by a right-sided retarded δ-function as

γRD(t) → γ δR(t), (18.214)
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whose superscript R indicates the retarded asymmetry of the δ-function. With
this, (18.205) becomes a local action

AFV
D [x+, x−] = −M

2
γ
∫ tb

ta
dt(x+ − x−)(ẋ+ + ẋ−)

R − M

2
γ(x2+ − x2−)(ta). (18.215)

The right-sided nature of the function δR(t) causes an infinitesimal negative shift in
the time argument of the velocities (ẋ+ + ẋ−)(t) with respect to the factor (x+ −
x−)(t), indicated by the superscript R. It expresses the causality of the friction
forces and will be seen to be crucial in producing a probability conserving time
evolution of the probability distribution.

The second term changes only the curvature of the effective potential at the
initial time, and can be ignored.

It is useful to incorporate the slope information (18.208) also into the bath cor-
relation function Ab(t, t

′) in (18.198), and factorize it as

Ab(t, t
′) = 2MγkBTK(t, t′), (18.216)

where

K(t, t′) = K(t− t′) ≡ 1

2MγkBT

∑

i

c2i 〈{ϕ̂i(t), ϕ̂i(t
′)}〉T . (18.217)

The prefactor in (18.216) is conveniently abbreviated by the constant

w ≡ 2MγkBT, (18.218)

which is related to the so-called diffusion constant

D ≡ kBT/Mγ (18.219)

by

w = 2γ2M2D. (18.220)

The Fourier decomposition of (18.217) is

K(t, t′) =
∫ ∞

−∞

dω′

2π
K(ω′)e−iω′(t−t′), (18.221)

with

K(ω′) ≡ 1

2Mγ

ρb(ω
′)

ω′

h̄ω′

2kBT
coth

h̄ω′

2kBT
. (18.222)

In the limit of a purely Ohmic dissipation this simplifies to

K(ω′) → KOhm(ω′) ≡ h̄ω′

2kBT
coth

h̄ω′

2kBT
. (18.223)
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The function K(ω′) has the normalization K(0) = 1, giving K(t−t′) a unit temporal
area:

∫ ∞

−∞
dtK(t− t′) = 1. (18.224)

In the classical limit h̄→ 0, the Drude spectral function (18.209) leads to

Kcl
D(ω

′) =
ω2
D

ω′2 + ω2
D

, (18.225)

with the Fourier transform

Kcl
D(t− t′) =

1

2ωD
e−ωD(t−t′). (18.226)

In the limit of Ohmic dissipation, this becomes a δ-function. Thus K(t− t′) may be
viewed as a δ-function broadened by quantum fluctuations and relaxation effects.

With the function K(t, t′), the fluctuation part of the influence functional in
(18.196), (18.200), (18.201) becomes

AFV
F [x+, x−] = i

w

2h̄

∫ tb

ta
dt
∫ tb

ta
dt′ (x+ − x−)(t)K(t, t′) (x+ − x−)(t

′). (18.227)

Here we have used the symmetry of the function K(t, t′) to remove the Heaviside
function Θ(t − t′) from the integrand, and to extend the range of t′-integration to
the entire interval (ta, tb).

In the Ohmic limit, the probability of the particle to move from xata to xb tb is
given by the path integral

|(xbtb|xata)|2 =
∫

Dx+(t)
∫

Dx−(t)

× exp
{

i

h̄

∫ tb

ta
dt
[

M

2
(ẋ2+ − ẋ2−)− (V (x+)− V (x−))

]}

× exp
{

−i
∫ tb

ta
dt
Mγ

2h̄
(x+ − x−)(t)(ẋ+ + ẋ−)

R(t)

− w

2h̄2

∫ tb

ta
dt
∫ tb

ta
dt′ (x+ − x−)(t)K

Ohm(t, t′) (x+ − x−)(t
′)
}

. (18.228)

This is the closed-time path integral of a particle in contact with a thermal reservoir.
The paths x+(t), x−(t) may also be associated with a forward and a backward

movement of the particle in time. For this reason, (18.228) is also called a forward–

backward path integral . The hyphen is pronounced as minus , to emphasize the
opposite signs in the partial actions.

It is now convenient to change integration variables and go over to average and
relative coordinates of the two paths x+, x−:

x ≡ (x+ + x−)/2,

y ≡ x+ − x− . (18.229)
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Then (18.228) becomes

|(xbtb|xata)|2 =
∫

Dx(t)
∫

Dy(t)

× exp
{

− i

h̄

∫ tb

ta
dt
[

M
(

−ẏẋ+ γyẋR
)

+ V
(

x+
y

2

)

− V
(

x− y

2

)]

− w

2h̄2

∫ tb

ta
dt
∫ tb

ta
dt′ y(t)KOhm(t, t′)y(t′)

}

. (18.230)

18.9 Fokker-Planck Equation

At high temperatures, the Fourier transform of the Kernel K(t, t′) in Eq. (18.223)
tends to unity such that K(t, t′) becomes a δ-function, so that the path integral
(18.230) for the probability distribution of a particle coupled to a thermal bath
simplifies to

P (xbtb|xata) ≡ |(xbtb|xata)|2 =
∫

Dx(t)
∫

Dy(t)

× exp
{

− i

h̄

∫ tb

ta
dt y[Mẍ+MγẋR + V ′(x)]− w

2h̄2

∫ tb

ta
dt y2

}

. (18.231)

The superscript R records the infinitesimal backward shift of the time argument as
in Eq. (18.215). The y-variable can be integrated out, and we obtain

P (xbtb|xata) = N
∫

Dx(t) exp
{

− 1

2w

∫ tb

ta
dt [Mẍ+MγẋR + V ′(x)]2

}

. (18.232)

The proportionality constant N can be fixed by the normalization integral
∫

dxb P (xbtb|xata) = 1. (18.233)

Since the particle is initially concentrated around xa, the normalization may also be
fixed by the initial condition

lim
tb→ta

P (xbtb|xata) = δ(xb − xa). (18.234)

The right-hand side of (18.232) looks like a Euclidean path integral associated
with the Lagrangian [8]

Le =
1

2w
[Mẍ +Mγẋ+ V ′(x)]2. (18.235)

The result will, however, be different, due to time-ordering of the ẋR-term.
Apart from this, the Lagrangian is not of the conventional type since it involves a

second time derivative. The action principle δA = 0 now yields the Euler-Lagrange
equation

∂L

∂x
− d

dt

∂L

∂ẋ
+
d2

dt2
∂L

∂ẍ
= 0. (18.236)

This equation can also be derived via the usual Lagrange formalism by considering
x and ẋ as independent generalized coordinates x, v.
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18.9.1 Canonical Path Integral for Probability Distribution

In Section 2.1 we have constructed path integrals for time evolution amplitudes to
solve the Schrödinger equation. By analogy, we expect the path integral (18.232)
for the probability distribution to satisfy a differential equation of the Schrödinger
type. This equation is known as a Fokker-Planck equation. As in Section 2.1, the
relation is established by rewriting the path integral in canonical form. Treating
v = ẋ as an independent dynamical variable, the canonical momenta of x and v are
[9]

p = i
∂L

∂ẋ
= i

Mγ

w
[Mẍ +Mγẋ+ V ′(x)] = i

Mγ

w
[Mv̇ +Mγv + V ′(x)],

pv = i
∂L

∂ẍ
=

1

γ
p. (18.237)

The Hamiltonian is given by the Legendre transform

H(p, pv, x, v) = Le(ẋ, ẍ)−
2
∑

i=1

∂Le

∂ẋi
ẋi = Le(v, v̇) + ipv + ipvv̇, (18.238)

where v̇ has to be eliminated in favor of pv using (18.237). This leads to

H(p, pv, x, v) =
w

2M2
p2v − ipv

[

γv +
1

M
V ′(x)

]

+ ipv. (18.239)

The canonical path integral representation for the probability distribution reads
therefore

P (xbtb|xata) =
∫

Dx
∫ Dp

2π

∫

Dv
∫ Dpv

2π

× exp
{ ∫ tb

ta
dt [i(pẋ+ pvv̇)−H(p, pv, x, v)]

}

. (18.240)

It is easy to verify that the path integral over p enforces v ≡ ẋ, after which the
path integral over pv leads back to the initial expression (18.232). We may keep the
auxiliary variable v(t) as an independent fluctuating quantity in all formulas and
decompose the probability distribution P (xbtb|xata) with respect to the content of
v as an integral

P (xbtb|xata) =
∫ ∞

−∞
dvb

∫ ∞

−∞
dva P (xbvbtb|xavata). (18.241)

The more detailed probability distribution on the right-hand side has the path in-
tegral representation

P (xbvbtb|xavata) = |(xbvbtb|xavata)|2 =
∫

Dx
∫ Dp

2π

∫

Dv
∫ Dpv

2π

× exp
{∫ tb

ta
dt [i(pẋ+ pvv̇)−H(p, pv, x, v)]

}

, (18.242)
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where the endpoints of v are now kept fixed at vb = v(tb), va = v(ta).
We now use the relation between a canonical path integral and the Schrödinger

equation discussed in Section 2.1 to conclude that the probability distribution
(18.242) satisfies the Schrödinger-like differential equation [10]:

H(p̂, p̂v, x, v)P (x v tb|xavata) = −∂tP (x v t|xavata). (18.243)

It is called the Klein-Kramers equation for the motion of an inert point particle
with dissipation. It is a special case of a two-variable Fokker-Planck equation whose
general version deals with N variables xx1, . . . , xN collected in a vector x, and has
the form

∂tP (x t|xavata) =
[

−∂iDi(x) + ∂i∂jD
(2)
ij (x)

]

P (x t|xavata). (18.244)

The above equation (18.243) is a special case of this for N = 2;

∂tP (x t|taxa) = (−κij∂ixj +Dij∂i∂j)P (x t|taxa). (18.245)

with the diffusion matrix

D =

(

0 0
0 w/2M2

)

=

(

0 0
0 γkBT/M

)

=

(

0 0
0 γ2D

)

, (18.246)

and

� =

(

0 −1
V ′(x)/M γ

)

. (18.247)

It must be realized that when going over from the classical Hamiltonian (18.239)
to the Hamiltonian operator in the differential equation (18.243), there is an operator
ordering problem. Such a problem was encountered in Section 10.5 and discussed
further at the end of Section 11.3. In this respect the analogy with the simple path
integrals in Section 2.1 is not perfect. When writing down Eq. (18.243) we do not
know in which order the momentum operator p̂v must stand with respect to v. If
we were dealing with an ordinary functional integral in (18.232) we would know
the order. It would be found as in the case of the electromagnetic interaction in
Eq. (11.89) to have the symmetric order −(p̂vv + vp̂v)/2.

On physical grounds, it is easy to guess the correct order. The differential equa-
tion (18.243) has to conserve the total probability

∫

dx dvP (x v tb|xavata) = 1 (18.248)

for all times t. This is guaranteed if all momentum operators stand to the left of
all coordinates in the Hamiltonian operator. Indeed, integrating the Fokker-Planck
equation (18.243) over x and v, only a left-hand position of the momentum operators
leads to a vanishing integral, and thus to a time independent total probability. We
suspect that this order must be derivable from the retarded nature of the velocity
in the term yẋR in (18.231). This will be shown in the next section.
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18.9.2 Solving the Operator Ordering Problem

The ordering problem in the Hamiltonian operator associated with (18.239) does
not involve the potential V (x). We may therefore study this problem most simply
by considering the classical free Hamiltonian

H̃0(p, pv, x, v) =
w

2M2
p2v − iγpvv + ipv, (18.249)

associated with the Lagrangian path integral

P0(xbtb|xata) = N
∫

Dx(t) exp
{

− 1

2w

∫ tb

ta
dt [Mẍ+MγẋR]2

}

, (18.250)

if we ignore the operator ordering problem. We may further concentrate our atten-
tion upon the probability distribution with xb = xa = 0, and assume tb − ta to be
very large. Then the frequencies of all Fourier decompositions are continuous.

In spite of the restrictions to large tb − ta, the result to be derived will be valid
for any time interval. The reason is that operator order is a property of extremely
short time intervals, so that it does not matter, how long the time interval is on
which we solve the problem.

Forgetting for a moment the retarded nature of the velocity ẋ, the Gaussian path
integral can immediately be done and yields

P0(0 tb|0 ta) ∝ Det−1(−∂2t − γ∂t)

∝ exp

[

−(tb − ta)
∫ ∞

−∞

dω′

2π
log(ω′2 − iγω′)

]

, (18.251)

where γ is positive. The integral on the right-hand side diverges. This is a con-
sequence of the fact that we have not used Feynman’s time slicing procedure for
defining the path integral. As for an ordinary harmonic oscillator discussed in detail
in Sections 2.3 and 2.14), this would lead to a finite integral in which ω′ is replaced
by ω̃′ ≡ (2− 2 cos aω′)/a2:

1

2

∫ ∞

−∞

dω′

2π
log[ω̃′4 + γ2ω̃′2] =

1

2

∫ ∞

−∞

dω′

2π
log ω̃′2 +

1

2

∫ ∞

−∞

dω′

2π
log[ω̃′2 + γ2] = 0 +

γ

2
.

(18.252)
For a derivation see Section 2.14, in particular the first term in Eq. (2.485). The
same result can equally well be obtained without time slicing by regularizing the
divergent integral in (18.251) analytically, as shown in (2.504). Recall the discussion
in Section 10.6 where analytic regularization was seen to be the only method that
allows to define path integrals without time slicing in such a way that they are
invariant under coordinate transformations [11]. It is therefore suggestive to apply
the same procedure also to the present path integrals with dissipation and to use
the dimensionally regularized formula (2.541):

∫ ∞

−∞

dω′

2π
log(ω′ ± iγ) =

γ

2
, γ > 0. (18.253)
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Applying this to the functional determinant in (18.251) yields

Det(−∂2t − γ∂t) = Det(i∂t)Det(i∂t + iγ) = exp [Tr log(i∂t) + Tr log(i∂t + iγ)]

= exp
[

(tb − ta)
γ

2

]

, (18.254)

and thus

P0(0 tb|0 ta) ∝ exp
[

−(tb − ta)
γ

2

]

. (18.255)

This corresponds to an energy γ/2, and an ordering −iγ(p̂vv+ vp̂v)/2 in the Hamil-
tonian operator.

We now take the retardation of the time argument of ẋR into account. Specifi-
cally, we replace the term γyẋR in (18.230) by the Drude form on the left-hand side
(18.214) before going to the limit ωD → ∞:

γyẋR(t) →
∫

dt′ y(t) γRD(t− t′) x(t′), (18.256)

containing now explicitly the retarded Drude function (18.210) of the friction. Then
the frequency integral in (18.251) becomes

∫ ∞

−∞

dω′

2π
log

(

ω′2 − γ
ω′ωD

ω′+iωD

)

=
∫ ∞

−∞

dω

2π

[

−log(ω′+iωD) + log
(

ω′2+iω′ωD−γωD

)]

,

(18.257)
where we have omitted a vanishing integral over log ω′ on account of (18.253). We
now decompose

log
(

ω′2+iω′ωD−γωD

)

= log(ω′+iω1) + log(ω′+iω2), (18.258)

with

ω1,2 =
ωD

2

(

1±
√

1− 4γ

ωD

)

, (18.259)

and use formula (2.541) to find

∫ ∞

−∞

dω

2π

[

−log(ω′+iωD)+log
(

ω′2+iω′ωD−γωD

)]

= −ωD

2
+
ω1

2
+
ω2

2
= 0. (18.260)

The vanishing frequency integral implies that the retarded functional determinant
is trivial:

Det(−∂2t − γ∂Rt ) = exp
[

Tr log(−∂2t − γ∂Rt )
]

= 1, (18.261)

instead of (18.254) obtained from the frequency integral without the Drude modifi-
cation. With the determinant (18.261), the probability becomes a constant

P0(0 tb|0 ta) = const. (18.262)
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This shows that the retarded nature of the friction force has subtracted an energy
γ/2 from the energy in (18.255). Since the ordinary path integral corresponds to a
Hamiltonian operator with a symmetrized term −i(p̂vv+ v p̂v)/2, the subtraction of
γ/2 changes this term to −iγp̂vv.

Note that the opposite case of an advanced velocity term ẋA in (18.250) would
be approximated by a Drude function γAD(t) which looks just like γRD(t) in (18.212),
but with negative ωD. The right-hand side of (18.260) would then become 2γ rather
than zero. The corresponding formula for the functional determinant is

Det(−∂2t − γ∂At ) = exp
[

Tr log(−∂2t − γ∂At )
]

= exp [(tb − ta)γ] , (18.263)

where γ∂At stands for the advanced version of the functional matrix (18.256) in which
ωD is replaced by −ωD. Thus we would find

P0(0 tb|0 ta) ∝ exp [−(tb − ta)γ] , (18.264)

with an additional energy γ/2 with respect to the ordinary formula (18.255). This
corresponds to the opposite (unphysical) operator order −iγvp̂v in Ĥ0, which would
violate the probability conservation of time evolution twice as much as the symmetric
order.

The above formulas for the functional determinants can easily be extended to
the slightly more general case where V (x) is the potential of a harmonic oscillator
V (x) = Mω2

0x
2/2. Then the path integral (18.232) for the probability distribution

becomes

P0(xbtb|xata) = N
∫

Dx(t) exp
{

− 1

2w

∫ tb

ta
dt [Mẍ+MγẋR + ω2

0x]
2
}

, (18.265)

which we evaluate at xb = xa = 0, where it is given by the properly retarded
expression

P0(0 tb|0 ta) ∝ Det−1(−∂2t − γ∂t + ω2
0)

∝ exp

[

−(tb − ta)
∫ ∞

−∞

dω′

2π
log(ω′2 − iγω′ − ω2

0)

]

. (18.266)

The logarithm can be decomposed into a sum log(ω′ + iω1) + log(ω′ + iω2) with

ω1,2 =
γ

2



1±
√

√

√

√1− 4ω2
0

γ2



 . (18.267)

We now apply the analytically regularized formula (2.541) to obtain
∫ ∞

−∞

dω′

2π
[log(ω′ + iω1)+log(ω′ + iω2)]=

ω1

2
+
ω2

2
= γ. (18.268)

Both under- and overdamped motion yield the same result. This is one of the situ-
ations where our remarks after Eqs. (2.544) and (2.543) concerning the cancellation
of oscillatory parts apply. For the functional determinant (18.266), the result is

Det(−∂2t − γ∂t − ω2
0) = exp

[

Tr log(−∂2t − γ∂t − ω2
0)
]

= exp
[

(tb − ta)
γ

2

]

. (18.269)
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Note that the result is independent of ω0. This can simply be understood by forming
the derivative of the logarithm of the functional determinant in (18.254) with respect
to ω2

0. Since log DetM = Tr logM , this yields the trace of the associated Green
function:

∂

∂ω2
0

Tr log(−∂2t − γ∂t − ω2
0) = −

∫

dt (−∂2t − γ∂t − ω2
0)

−1(t, t). (18.270)

In Fourier space, the right-hand side turns into the frequency integral

−
∫

dω′

2π

1

(ω′ + iω1)(ω′ + iω1)
. (18.271)

Since the two poles lie below the contour of integration, we may close it in the upper
half-plane and obtain zero. Closing it in the lower half plane would initially lead to
two nonzero contributions from the residues of the two poles which, however, cancel
each other.

The Green function (18.270) is causal, in contrast to the oscillator Green function
in Section 3.3 whose left-hand pole lies in the upper half-plane (recall Fig. 3.3). Thus
it carries a Heaviside function as a prefactor [recall Eq. (1.305) and the discussion of
causality there]. The vanishing of the integral (18.270) may be interpreted as being
caused by the Heaviside function (1.304).

The γ-dependence of (18.269) can be calculated likewise:

∂

∂γ
log Det∂t(−∂2t − γ∂t − ω2

0) = −
∫

dt [∂t(−∂2t − γ∂t − ω2
0)

−1](t, t). (18.272)

We perform the trace in frequency space:

i
∫

dω′

2π

ω′

(ω′ + iω1)(ω′ + iω1)
. (18.273)

If we now close the contour of integration with an infinite semicircle in the upper half
plane to obtain a vanishing integral from the residue theorem, we must subtract the
integral over the semicircle i

∫

dω′/2πω′ and obtain 1/2, in agreement with (18.269).
Formula (18.269) can be generalized further to time-dependent coefficients

Det
[

−∂2t −γ(t)∂t − Ω2(t)
]

=exp
{

Tr log
[

−∂2t −γ(t)∂t − Ω2(t)
]}

= exp

[

∫ tb

ta
dt
γ(t)

2

]

.

(18.274)

This follows from the factorization

Det
[

−∂2t − γ(t)∂t − Ω2(t)
]

= Det[∂t + Ω1(t)] Det[∂t + Ω2(t)] , (18.275)

with

Ω1(t) + Ω2(t) = γ(t), ∂tΩ2(t) + Ω1(t)Ω2(t) = Ω2(t), (18.276)
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and applying formula (3.134).
The probability obtained from the general path integral (18.232) without retar-

dation of the velocity term is therefore

P0(0 tb|0 ta) ∝ exp
[

−(tb − ta)
γ

2

]

, (18.277)

as in (18.255).
Let us now introduce retardation of the velocity term by using the ω′-dependent

Drude expression (18.212) for the friction coefficient. First we consider again the
harmonic path integral (18.265), for which (18.266) becomes

P0(0 tb|0 ta) ∝ exp

{

−(tb − ta)
∫ ∞

−∞

dω′

2π
log

[

ω′2 − iγRD(ω
′)ω′ − ω2

0

]

}

. (18.278)

Rewriting the logarithm as − log(ω′ + iωD) + Σ3
k=1 log(ω

′ + iωk) with

ω1,2 =
γ

2



1±
√

√

√

√1− 4ω2
0

γ2



 , ω3 = ωD − γ (18.279)

[recall Eq. (3.454) in the equilibrium discussion of Section 3.15], we use again formula
(2.541) to find

∫ ∞

−∞

dω′

2π

[

− log(ω′ + iωD) +
3
∑

k=1

log(ω′ + iωk)

]

= −ωD +
3
∑

k=1

ωk

2
= 0. (18.280)

Thus γ and ω0 disappear from the functional determinant, and we remain with

P0(0 tb|0 ta) = const . (18.281)

This implies a unit functional determinant [12]

Det(∂2t + iγ∂Rt + ω2
0) = 1, (18.282)

in contrast to the unretarded determinant (18.269). The γ-independence of this can
also be seen heuristically as in (18.270) by forming the derivative with respect to γ:

∂

∂γ
Det(−∂2t − γ∂Rt − ω2

0) = −
∫

dt [∂Rt (∂
2
t − γ∂t − ω2

0)
−1(t, t). (18.283)

Since the retarded derivative carries a Heaviside factor Θ(t− t′) of (1.304), we find
zero for t = t′.

The result 1/2 of the unretarded derivative in (18.272) can similarly be under-
stood as a consequence of the average Heaviside function (1.313) at t = t′.

An advanced time derivative in the determinant (18.282) would, of course, have
produced the result

Det(∂2t + iγ∂At + ω2
0) = γ. (18.284)
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By analogy with (18.275), the general retarded determinant is also independent
of γ(t) and Ω(t).

Det
[

−∂2t − γ(t)∂Rt − Ω2(t)
]

= 1. (18.285)

In the advanced case, we would find similarly

Det
[

−∂2t − γ(t)∂At − Ω2(t)
]

= exp
[∫

dt γ(t)
]

. (18.286)

By comparing the functional determinants (18.269) and (18.282) we see that
the retardation prescription can be avoided by a trivial additive change of the La-
grangian (18.235) to

Le(x, ẋ) =
1

2w
[ẍ+Mγẋ + V ′(x)]

2 − γ

2
. (18.287)

From this, the path integral can be calculated with the usual time slicing, and the
result can be deduced directly from Ref. [8].

The Hamiltonian associated with this Lagangian is only slightly modified with
respect to the naive form (18.249):

H0(p, pv, x, v) =
w

2M2
p2v − iγpvv + ipv − γ

2
. (18.288)

The extra γ/2 ensures that the operator version of the Hamiltonian (18.239) has p̂v
to the left of v.

18.9.3 Strong Damping

For γ ≫ V ′′(x)/M , the dynamics is dominated by dissipation, and the Lagrangian
(18.235) takes a more conventional form in which only x and ẋ appear:

Le(x, ẋ) =
1

2w

[

MγẋR + V ′(x)
]2

=
1

4D

[

ẋR +
1

Mγ
V ′(x)

]2

, (18.289)

where ẋR lies slightly earlier V ′(x(t)). The probability distribution

P (xbtb|xata) = N
∫

Dx exp
[

−
∫ tb

ta
dt Le(x, ẋ

R)
]

(18.290)

looks like an ordinary Euclidean path integral for the density matrix of a particle of
mass M = 1/2D. As such it obeys a differential equation of the Schrödinger type.
Forgetting for a moment the subtleties of the retardation, we introduce an auxiliary
momentum integration and go over to the canonical representation of (18.290):

P (xbtb|xata) =
∫

Dx
∫ Dp

2π
exp

{

∫ tb

ta
dt

[

ipẋ− 2D
p2

2
+ ip

1

Mγ
V ′(x)

]}

. (18.291)
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This probability distribution satisfies therefore the Schrödinger type of equation

H(p̂b, xb)P (xbtb|xata) = −∂tbP (xbtb|xata), (18.292)

with the Hamiltonian operator

H(p̂, x) ≡ 2D
p̂2

2
− ip̂

1

Mγ
V ′(x) = −D∂x

[

∂x +
1

DMγ
V ′(x)

]

. (18.293)

In order to conserve probability, the momentum operator has to stand to the left
of the potential term. Only then does the integral over xb of Eq. (18.292) van-
ish. Equation (18.292) is the overdamped Klein-Kramers equation, also called the
Smoluchowski equation. It is a special case of ordinary Fokker-Planck equation.

Without the retardation on ẋ in (18.290), the path integral would give a sym-
metrized operator −i[p̂V ′(x) + V ′(x)p̂]/2 in Ĥ. This follows from the fact that
the coupling (1/2DMγ)ẋV ′(x) looks precisely like the coupling of a particle to a
magnetic field with a “vector potential” A(x) = (1/2DMγ)V ′(x) [see (10.171)].

Realizing this it is not difficult to account quite explicitly for the effect of retar-
dation of the velocity in the path integral (18.289) Let us assume, for a moment,
that w is very small. Then the path integral (18.290) without the retardation,

P0(xbtb|xata) = N
∫

Dx exp
{

− 1

2w

∫ tb

ta
dt [Mγẋ + V ′(x)]

2
}

, (18.294)

can be performed in the Gaussian approximation resulting for xb = xa = 0 in the
inverse functional determinant

P0(0 tb|0 ta) = Det−1 [∂t + V ′′(x)/Mγ] , (18.295)

whose value is according to formula (3.134)

Det [∂t + V ′′(x)/Mγ] = exp
[∫

dt V ′′(x)/2Mγ
]

. (18.296)

The retarded version of this determinant is trivial:

Det
[

∂Rt + V ′′(x)/Mγ
]

= 1, (18.297)

as we learned from Eq. (18.285. The advanced version would be [compare (18.286)]

Det
[

∂At + V ′′(x)/Mγ
]

= exp
[∫

dt V ′′(x)/Mγ
]

. (18.298)

Although the determinants (18.296), (18.297), and (18.298) were discussed here
only for a large time interval tb − ta, the formulas remain true for all time intervals,
due to the trivial first-order nature of the differential operator. In a short time
interval, however, the second derivative is approximately time-independent. For
this reason the difference between ordinary and retarded path integrals (18.290) is
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given by the difference between the functional determinants (18.296) and (18.297)
not only if w is very small but for all w. Thus we can avoid the retardation of the
velocity as in Eq. (18.287) by adding to the Lagrangian (18.289) a term containing
the second derivative of the potential:

Le(x, ẋ) =
1

4D

[

ẋ+
1

Mγ
V ′(x)

]2

− 1

2Mγ
V ′′(x). (18.299)

From this, the path integral can be calculated with the same slicing as for the
gauge-invariant coupling in Section 10.5:

P0(xbtb|xata) = N
∫

Dx(t) exp


−
∫ tb

ta
dt







1

4D

[

ẋ+
V ′(x)

Mγ

]2

− V ′′(x)

2Mγ









 . (18.300)

As an example consider a harmonic potential V (x) = Mω2
0x

2/2, where the La-
grangian (18.299) becomes

Le(x, ẋ) =
1

4D
(ẋ+ κx)2 − κ

2
, (18.301)

with the abbreviation κ ≡ ω2
0/γ. The equation of motion reads

−ẍ+ κ2x = 0, (18.302)

and its solution connecting xa, ta with xb, tb is

x(t) =
1

e2κta−e2κtb
[

eκ(t+ta)xa−eκ(−t+ta+2κtb)xa−eκ(t+tb)xb+e
κ(−t+2 ta+tb)xb

]

. (18.303)

This has the total Euclidean action

Ae =
κ(eκtb xb − eκta xa)

2

2D (e2κtb − e2κta)
− κ

2
. (18.304)

The fluctuation determinant is from Eq. (2.171), after an appropriate substitution
of variables,

Fκ(tb − ta) =
1

√

2π sinh κ(tb−ta)
. (18.305)

The probability distribution is then given by

P (xbtb|xata) = Fκ(tb−ta)e−Ae =
1

√

2πσ2(tb − ta)
exp

{

− [xb − x̄(tb−ta)]2
2σ2(tb−ta)

}

,(18.306)

where x̄(t), σ2(t) are the averages

x̄(t) ≡ 〈x(t)〉 = xae
−κt, σ2(t) ≡ 〈[x(t)− x̄(t)]2〉 = D

κ

(

1− e−2κt
)

, (18.307)
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obtained from the integrals8

x̄(tb − ta) ≡ 〈x(tb − ta)〉 ≡
∫ ∞

−∞
xbP (xbtb|xata), (18.308)

〈[x(tb − ta)− x̄(tb − ta)]
2〉 ≡

∫ ∞

−∞
[xb − x̄(tb − ta)]

2P (xbtb|xata). (18.309)

The canonical momentum associated with the Lagrangian (18.301) is p =
(ẋ + κx)/2D so that the Hamiltonian operator becomes, via the Euclidean Leg-
endre transformation (2.340), and with the operator ordering fixed as discussed
after Eq. (18.247):

Ĥ(p, x) = Dp̂2 + iκp̂x, p ≡ −i∂x. (18.310)

This is the same operator as in Eq. (18.293), and the Fokker-Planck equation
(18.292) reads, for the harmonic potential:

(

−D∂2xb
+ κ∂xb

xb
)

P (xbtb|xata) = −∂tbP (xbtb|xata). (18.311)

For tb → ta, the probability distribution (18.306) starts out as a δ-function
around the initial position xa. In the limit of large tb − ta, it converges against the
limiting distribution

lim
tb→∞

P (xbtb|xata) =
√

κ

2πD
exp

{

−κ x
2
b

2D

}

. (18.312)

Replacing κ again by ω2
0/γ = V ′′(0)/Mγ, and D from (18.219), this becomes

lim
tb→∞

P (xbtb|xata) =
√

V ′′(0)

2πkBT
exp

{

− 1

kBT
V (xb)

}

. (18.313)

Thus, the limiting distribution of (18.290) depends only on xb. It is given by the
Boltzmann factor associated with the potential V (x), in which the particle moves.
This result can be generalized to a large class of potentials.

An interesting related result can be derived by introducing an external source
term jb x(tb) into the Lagrangian (18.299). By repeated functional differentiation
with respect to jb we find that the expectation values

〈xn〉 = lim
tb→∞

〈xn(tb)〉 = lim
tb→∞

∫ Dxxn(tb)e−
∫ tb
ta

dt Le(x,ẋR)

∫ Dx e−
∫ tb
ta

dt Le(x,ẋR)
(18.314)

have the large-time limit

lim
tb→∞

〈xn(tb)〉 = 〈xn〉 =
∫

dx xne−V (x)/kBT

∫

dx e−V (x)/kBT
. (18.315)

The generalization of this relation to quantum field theory forms the basis of stochas-
tic quantization in Section 18.12.

8An alternative method for calculating such expectation values will be presented in Section
18.15.
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18.10 Langevin Equations

Consider the forward–backward path integral (18.230) for high γT . Then the second
exponent limits the fluctuations of y to satisfy |y| ≪ |x|, and K(t, t′) will be assumed
to take the Drude form (18.226), which becomes a δ-function for ωD → ∞. Then
we can expand

V
(

x+
y

2

)

− V
(

x− y

2

)

∼ yV ′(x) +
y3

24
V ′′′(x) + . . . , (18.316)

keeping only the first term. We further introduce an auxiliary quantity η(t) by

η(t) ≡Mẍ(t) +MγẋR(t) + V ′(x(t)). (18.317)

With this, the exponential function in (18.230) becomes after a partial integration
of the first term using the endpoint properties y(tb) = y(ta) = 0:

exp
{

− i

h̄

∫ tb

ta
dt yη − w

2h̄2

∫ tb

ta
dt
∫ tb

ta
dt′ y(t)K(t, t′)y(t′)

}

. (18.318)

The variable y can obviously be integrated out and we find a probability distribution

P [η] ∝ exp
{

− 1

2w

∫ tb

ta
dt
∫ tb

ta
dt′ η(t)K−1(t, t′)η(t′)

}

, (18.319)

where the fluctuation width w was given in (18.218), and K−1(t, t′) denotes the
inverse functional matrix of K(t, t′).

The defining equation (18.317) for η(t) may be viewed as a stochastic differential

equation to be solved for arbitrary initial positions x(ta) = xa and velocities ẋ(ta) =
va. The differential equation is driven by a Gaussian random noise variable η(t)
with a correlation function

〈η(t)〉η = 0, 〈η(t)η(t′)〉η = wK(t− t′), (18.320)

where the expectation value of an arbitrary functional of F [x] is defined by the path
integral

〈F [x]〉η ≡ N
∫

x(ta)=xa

DxP [η]F [x]. (18.321)

The normalization factor N is fixed by the condition N ∫ Dη P [η] = 1, so that
〈 1 〉η = 1. In the sequel, this factor will always be absorbed in the measure Dη.

For each noise function η(t), the solution of the differential equation yields
a path xη(xa, xb, ta) with a final position xb = xη(xa, xb, tb) and velocity vb =
ẋη(xa, xb, tb), all being functionals of η(t). From this we can calculate the distri-
bution P (xbvbtb|xavata) of the final xb and vb by summing over all paths resulting
from the noise functions η(t) with the probability distribution (18.319). The re-
sult is of course the same as the distribution (18.242) obtained previously from the
canonical path integral.
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It is useful to exhibit clearly the dependence on initial and final velocities by
separating the stochastic differential equation (18.317) into two first-order equations

Mv̇(t) +MγvR(t) + V ′(x(t)) = η(t), (18.322)

ẋ(t) = v(t), (18.323)

to be solved for initial values x(ta) = xa and ẋ(ta) = va. For a given noise function
η(t), the final positions and velocities have the probability distribution

Pη(xbvbtb|xavata) = δ(xη(t)− xb)δ(ẋη(t)− vb). (18.324)

Given these distributions for all possible noise functions η(t), we find the final prob-
ability distribution P (xbvbtb|xavata) from the path integral over all η(t) calculated
with the noise distribution (18.319). We shall write this in the form

P (xbvbtb|xavata) = 〈Pη(xbvbtb|xavata)〉η. (18.325)

Let us change of integration variable from x(t) to η(t). This produces a Jacobian

J [x] ≡ Det[δη(t)/δx(t′)] = det [M∂2t +Mγ∂Rt + V ′′(x(t))]. (18.326)

In Eq. (18.285) we have seen that due to the retardation of ∂Rt , this Jacobian is
unity. Hence we can rewrite the expectation value (18.321) as a functional integral

〈F [x]〉η ≡
∫

Dη P [η]F [x]
∣

∣

∣

x(ta)=xa
. (18.327)

From the probability distribution P (xbvbtb|xavata) we find the pure position
probability P (xbtb|xata) by integrating over all initial and final velocities as in
Eq. (18.241). Thus we have shown that a solution of the forward–backward path
integral at high temperature (18.232) can be obtained from a solution of the stochas-
tic differential equations (18.317), or more specifically, from the pair of stochastic
differential equations (18.322) and (18.323).

The stochastic differential equation (18.317) together with the correlation func-
tion (18.320) is called semiclassical Langevin equation. The fluctuation width w in
(18.320) was given in (18.218). The attribute semiclassical emphasizes the trun-
cation of the expansion (18.316) after the first term, which can be justified only
for nearly harmonic potentials. For a discussion of the range of applicability of the
truncation see the literature [14]. The untruncated path integral is equivalent to an
operator form of the Langevin equation, the so-called quantum Langevin equation

[15]. This equivalence will be discussed further in Subsection 18.19.
The physical interpretation of Eq. (18.320) goes as follows. For T → 0 and

h̄ → 0 at h̄/T = const, the random variable η(t) does not fluctuate at all and
(18.317) reduces to the classical equation of motion of a particle in a potential V (x),
with an additional friction term proportional to γ. For T and h̄ both finite, the
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particle is shaken around its classical path by thermal and quantum fluctuations.
At high temperatures (at fixed h̄), K(ω′) reduces to

lim
T→∞

K(ω′) ≡ 1. (18.328)

Then η(t) is an instantaneous random variable with zero average and a nonzero pair
correlation function:

〈η(t)〉η = 0, 〈η(t)η(t′)〉η = w δ(t− t′), (18.329)

All higher correlation functions vanish. A random variable with these characteristics
is referred to as white noise. The stochastic differential equation (18.317) with the
white noise (18.329) reduces to the classical Langevin equation with inertia [16].

In the opposite limit of small temperatures, K(ω′) diverges like

K(ω′)−−−→
T→0

h̄|ω′|
2kBT

, (18.330)

so that wK(ω′) has the finite limit

lim
T→0

wK(ω′) =Mγh̄|ω′|. (18.331)

To find the Fourier transformation of this, we use the Fourier decomposition of the
Heaviside function (1.306)

Θ(ω′) =
1

2π

∫ ∞

−∞
dt e−iω′t i

t + iη
(18.332)

to form the antisymmetric combination

Θ(ω′)−Θ(−ω′) =
1

2π

∫ ∞

−∞
dt e−iω′t

(

i

t+ iη
+

i

t− iη

)

≡ i

π

∫ ∞

−∞
dt e−iω′tP

t
. (18.333)

A multiplication by ω′ yields

|ω′| = ω′[Θ(ω′)−Θ(−ω′)] = −1

π

∫ ∞

−∞
dt ∂te

−iω′tP
t
=

1

π

∫ ∞

−∞
dt e−iω′t∂t

P
t

= −1

π

∫ ∞

−∞
dt e−iω′tP

t2
. (18.334)

By comparison with (18.331) we see that the pure quantum limit of K(t − t′) can
be written as

wK(t− t′) =
T=0

−Mγh̄

π

P
(t− t′)2

. (18.335)
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Hence the quantum-mechanical motion in contact with a thermal reservoir looks just
like a classical motion, but disturbed by a random source with temporally long-range
correlations

〈η(t)η(t′)〉η = −Mγh̄

π

P
(t− t′)2

. (18.336)

The temporal range is found from the temporal average

〈(∆t)2〉t ≡
∫ ∞

−∞
d∆t (∆t)2K(∆t) = − ∂2

∂ω′2
K(ω′)

∣

∣

∣

∣

ω′=0
= −1

6

(

h̄

kBT

)2

. (18.337)

Apart from the negative sign (which would be positive for Euclidean times), the
random variable acquires more and more memory as the temperature decreases and
the system moves deeper into the quantum regime. Note that no extra normal-
ization factor is required to form the temporal average (18.337), due to the unit
normalization of K(t− t′) in (18.224).

In the overdamped limit, the classical Langevin equation with inertia (18.317)
reduced to the overdamped Langevin equation:

ẋ(t) = −V ′(x(t))/Mγ + η(t)/Mγ. (18.338)

At high temperature, the noise variable η(t) has the correlation functions (18.329).
Then the stochastic differential equation (18.338) is said to describe a Wiener pro-

cess .The first term on the right-hand side rx(x(t)) ≡ −V ′(x(t))/Mγ is called the
drift of the process.

The probability distribution of x(t) resulting from this process is calculated as
in Eqs. (18.325), (18.321) from the path integral

P (xbta|xata) =
∫

Dη P [η] δ(xη(t)− xb), (18.339)

and Dη is normalized so that
∫ Dη P [η] = 1.

A path integral representation closely related to this is obtained by using the
identity

∫ x(tb)=xb

x(ta)=xa

Dx δ[ẋ− η] = δ(xη(tb)− xb), (18.340)

which can easily be proved by time-slicing the Fourier representation of the δ-
functional

δ[ẋ− η] =
∫

Dp ei
∫

dt p (ẋ−η) (18.341)

and performing all the momentum integrals. This brings the path integral (18.339)
to the form

P (xbtb|xata) =
∫ x(tb)=xb

x(ta)=xa

Dx
∫

Dη P [η] δ[ẋ− η]. (18.342)
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For a harmonic potential V (x) =Mω2
0x

2/2, where the overdamped Langevin equa-
tion reads

ẋ(t) = −ω2
0 x(t)/Mγ + η(t)/Mγ = −κ x(t)/Mγ + η̄(t), (18.343)

where the noise variable η̄(t) ≡ η(t)/Mγ has the correlation functions

〈η̄(t)〉 = 0, 〈η̄(t)η̄(t′)〉η =
w

M2γ2
δ(t− t′) = 2Dδ(t− t′), (18.344)

the calculation of the stochastic path integral yields, of course, once more the prob-
ability (18.306).

18.11 Path Integral Solution of Klein-Kramers Equation

For a free particle at finite temperature, there exists another way of representing
the solution (18.440). Consider the original path integral for the probability in
Eq. (18.240) with the Hamiltonian (18.288). Let us introduce the thermal velocity

vT ≡
√

kBT/M and write the action as [compare (2.340)]

Ae=
∫ tb

ta
dt [−i(pẋ+pvv̇) +H(p, pv, v, x)] , (18.345)

with

H(p, pv, v, x) = γv2T

(

pv − i
v

2v2T

)2

+
γ

4v2T

(

v + 2i
v2T
γ
p

)2

+
v2T
γ
p2 +

γ

2
. (18.346)

In the path integral (18.240), we may integrate out x(t), which converts the path
integral over p(t) into an ordinary integral, so that we obtain the integral represen-
tation

P (xbvbtb|xavata) =
∫

dp

2π
P (vbtb|vapa)peip(xb−xa)−v2T p2(tb−ta)/γ , (18.347)

where

Pp(vbtb|vata) =
∫

Dv
∫ Dpv

2π
exp

{ ∫ tb

ta
dt [ipvv̇ −Hp(pv, v)]

}

, (18.348)

with the p-dependent Hamiltonian governing pv and v:

Hp(pv, v) ≡ γv2T

(

pv − i
v

2v2T

)2

+
γ

4v2T

(

v + 2i
v2T
γ
p

)2

− γ

2
. (18.349)

In the associated Hamiltonian operator, the shift of pv by −iv/2v2T can be removed
by a similarity transformation to

H̃p(pv, v) ≡ ev
2/4v2T Ĥpe

−v2/4v2T = γv2Tp
2
v +

γ

4v2T

(

v + 2i
v2T
γ
p

)2

− γ

2
. (18.350)
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Thus we can rewrite Pp(vbtb|vata) as

Pp(vbtb|vata) = e−v2
b
/4v2T P̃p(vbtb|vata)ev

2
a/4v

2
T (18.351)

where P̃p(vbtb|vata) is the probability associated with the Hamiltonian H̃p(pv, v).
This describes a harmonic oscillator with frequency γ around the p-dependent center
at vp = −2iv2T p/γ. If we denote the mass of this oscillator by m = 1/2γv2T , we
can immediately write down the wave eigenfunctions as ψn(v − vp) with ψ(x) of
Eq. (2.302). The energies are nγ. Thus we may express the probability distribution
of x and v as a spectral representation

P (xbvbtb|xavata) = e−(v2
b
−v2a)/4v

2
T

∫

dp

2π

∞
∑

n=0

ψn(vb − vp)ψn(va − vp)e
−nγ(tb−ta)

× eip(xb−xa)−v2T p2(tb−ta)/γ , (18.352)

where

ψn(v) =
1

(2nn!
√
π)1/2(

√
2vT )1/2

e−v2/4v2THn(v/
√
2vT ). (18.353)

In the limit of strong damping, only n = 0 contributes to the sum, and we find

P (xbvbtb|xavata) =
e−(v2

b
−v2a)/4v

2
T√

2πvT

∫ dp

2π
e−[(vb−vp)2+(va−vp)2]/4v2T eip(xb−xa)−v2T p2(tb−ta)/γ .

Integrating this over vb leads to

P (xbtb|xavata) =
∫

dp

2π
eip(xb−xa−va/γ)−v2T p2(tb−ta)/γ=

1
√

4πv2T/γ
e
−

γ(xb−xa−va/γ)2

4v2
T
(tb−ta) ,(18.354)

where we have neglected terms of order γ−2 in the exponent. A compact expression
for the general solution will be derived in (18.440) by stochastic calculus.

18.12 Stochastic Quantization

In Eq. (18.314) we observed that the expectation value of powers of a classical vari-
able x in a potential V (x) can be recovered as a result of a path integral associated
with the Lagrangian (18.299). From Eq. (18.339) we know that the path integral
(18.314) can be replaced by the stochastic path integral:

〈xn〉 = lim
s→∞

〈xn(s)〉 = lim
s→∞

∫

Dη xnη (s)P [η] , (18.355)

where

P [η] ≡
∫

Dηe−(1/4kBT )
∫ s

sa
ds′η2(s′)

, (18.356)
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To simplify the equations, we have replaced the physical time by a rescaled parameter
s = t/Mγ.

Equivalently we may say that we obtain the expectation values (18.355) by solv-
ing the stochastic differential equation of the Wiener process

x′(s) = −V ′(x) + η(s), (18.357)

where η(s) is a white noise with the pair correlation functions

〈η(s)〉T = 0, 〈η(s)η(s′)〉T = 2kBT δ(s− s′), (18.358)

and going to the large-s limit of the expectation values 〈xn(s)〉.
This can easily be generalized to Euclidean quantum mechanics. Suppose we

want to calculate the correlation functions (3.298)

〈x(τ1)x(τ2) · · ·x(τn)〉 ≡ Z−1
∫

Dxx(τ1)x(τ2) · · ·x(τn) exp
(

−1

h̄
Ae

)

. (18.359)

We introduce an additional auxiliary time variable s and set up a stochastic differ-
ential equation

∂sx(τ ; s) = − δAe

δx(τ ; s)
+ η(τ ; s), (18.360)

where η(τ ; s) has correlation functions

〈η(τ ; s)〉 = 0, 〈η(τ ; s)η(τ ′; s′)〉 = 2h̄δ(τ − τ ′)δ(s− s′). (18.361)

The role of the thermal fluctuation width 2kBT in (18.358) is now played by 2h̄. The
correlation functions (18.359) can now be calculated from the auxiliary correlation
functions of x(τ, s) in the large-s limit:

〈x(τ1)x(τ2) · · ·x(τn)〉 = lim
s→∞

〈x(τ1, s)x(τ2, s) · · ·x(τn, s)〉. (18.362)

Due to the extra time variable of stochastic variable x(τ ; s) with respect to
(18.357), the probability distribution associated with the stochastic differential equa-
tion (18.379) is a functional P [xb(τ), sb; xa(τ), sa] given by the functional generaliza-
tion of the path integral (18.300):

P [xb(τb), s; xa(τ), sa] = N
∫

Dx(τ ; s)

× e
−
∫ sb
sa

ds

{

1
4h̄

∫

∞

−∞
dτ[∂sx(τ ;s)+ δ

δx(τ ;s)
Ae]− 1

2h̄
δ2

δx(τ ;s)2
Ae

}

. (18.363)

This satisfies the functional generalization of the Fokker-Planck equation (18.292):

H [p̂(τ), x(τ)]P (x(τ)s|xa(τ); sa) = −∂sP (x(τ)s|xa(τ); sa), (18.364)
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with the Hamiltonian

H [p̂(τ), x(τ)] =
∫ ∞

−∞
dτ

[

h̄p̂2(τ)− ip̂(τ)
δ

δx(τ)
Ae

]

, (18.365)

where p̂(τ) ≡ δ/δx(τ). We have dropped the subscript b of the final state, for
brevity. Explicitly, the Fokker-Planck equation (18.364) reads

−
∫ ∞

−∞
dτ

h̄δ

δx(τ)

[

h̄δ

δx(τ)
+

δAe

δx(τ)

]

P [x(τ), s; xa(τ), sa]=−h̄∂sP [x(τ), s; xa(τ), sa].(18.366)

For s→ ∞, the distribution becomes independent of the initial path xa(τ), and
has the limit [compare (18.314)]

lim
s→∞

P [x(τ), s; xa(τ), sa] =
e−Ae[x]/h̄

∫

Dx(τ) e−Ae[x]/h̄
, (18.367)

and the correlation functions (18.378) are given by the usual path integral, apart
from the normalization which is here such that 〈1〉 = 1.

As an example, consider a harmonic oscillator where Eq. (18.360) reads

∂sx(τ ; s) = −M(−∂2τ + ω2)x(τ ; s) + η(τ ; s). (18.368)

This is solved by

x(τ ; s) =
∫ s

0
ds′ e−M(−∂2

τ+ω2)(s′−s)η(τ ; s′). (18.369)

The correlation function reads, therefore,

〈x(τ1; s1)x(τ2; s2)〉=
∫ s1

0
ds′1

∫ s2

0
ds′2 e

M(−∂2
τ+ω2)(s′1+s′2−s1−s2)〈η(τ1; s′1)η(τ2; s′2)〉. (18.370)

Inserting (18.361), this becomes

〈x(τ1; s1)x(τ2; s2)〉= h̄
∫ ∞

0
ds
[

e−M(−∂2
τ+ω2)(s+|s1−s2|) − e−M(−∂2

τ+ω2)(s+s1+s2)
]

,(18.371)

or

〈x(τ1; s1)x(τ2; s2)〉 =
h̄

M

1

−∂2τ + ω2

[

e−M(−∂2
τ+ω2)|s1−s2| − e−M(−∂2

τ+ω2)(s1+s2)
]

. (18.372)

For Dirichlet boundary conditions (xb = xa = 0) where operator (−∂2τ +ω2) has the
sinusoidal eigenfunctions of the form (3.63) with eigenfrequencies (3.64), this has
the spectral representation

〈x(τ1; s1)x(τ2; s2)〉 =
h̄

M

2

tb − ta

∞
∑

n=1

1

ν2n + ω2
sin νn(τ1 − τa) sin νn(τ2 − τa)

×
[

e−M(ν2n+ω2)|s1−s2| − e−M(−ν2n+ω2)(s1+s2)
]

. (18.373)
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For large s1, s2, the second term can be omitted. If, in addition, s1 = s2, we obtain
the imaginary-time correlation function [compare (3.69), (3.304), and (3.36)]:

lim
s1=s2→∞

〈x(τ1; s)x(τ2; s)〉 = 〈x(τ1)x(τ2)〉 =
h̄

M

1

−∂2τ + ω2
(τ1, τ2)

=
h̄

M

sinhω(τb − τ>) sinhω(τ< − τa)

ω sinhω(τb − τa)
. (18.374)

We can use these results to calculate the time evolution amplitude according to an
imaginary-time version of Eq. (3.318):

(xbτb|xaτa) = C(xb,xa)e
−Ae(xb,xa;τb−τa)/h̄e

−
∫ τb
τa

M
2
dτ ′b〈Le,fl(xb,ẋb)〉/h̄, (18.375)

where Ae(xb,xa; τb−τa) is the Euclidean version of the classical action (4.87). If the
Lagrangian has the standard form, then

〈Le,fl(xb, ẋb)〉 =
M

2
〈δẋ2

b〉, (18.376)

and we obtain the imaginary-time evolution amplitude in an expression like (3.318).
The constant of integration is determined by solving the differential equation (3.319),
and a similar equation for xa. From this we find as before that C(xb,xa) is inde-
pendent of xb and xa.

For the harmonic oscillator with Dirichlet boundary conditions we calculate from
this

M

2
〈δẋ2

b〉 =
h̄ω

2
D cothω(τb − τa). (18.377)

Integrating this over τb yields h̄(D/2) log[2 sinhω(τb − τa)], so that the second ex-
ponential in (18.375) reduces to the correct fluctuation factor in the D-dimensional
imaginary-time amplitude [compare (2.411)].

The formalism can easily be carried over to real-time quantum mechanics. We
replace t → −iτ and Ae → −iA, and find that the real-time correlation functions
are obtained from the large-s limit

〈x(t1)x(t2) · · ·x(τn)〉 = lim
s→∞

〈x(t1, s)x(t2, s) · · ·x(tn, s)〉, (18.378)

where x(t; s) satisfies the stochastic differential equation

h̄∂sx(t; s) = i
δA

∂x(t; s)
+ η(t; s), (18.379)

where the noise η(t; s) has the same correlation functions as in (18.361), if we replace
τ by t. This procedure of calculating quantum-mechanical correlation functions is
called stochastic quantization [17].
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18.13 Stochastic Calculus

The relation between Langevin and Fokker-Planck equations is a major subject of
the so-called stochastic calculus . Given a Langevin equation, the time order of the
potential V (x) with respect to ẋ and ẍ is a matter of choice. Different choices
form the basis of the Itō or the Stratonovich calculus . The retarded position which
appears naturally in the derivation from the forward–backward path integral favors
the use of the Itō calculus. A midpoint ordering as in the gauge-invariant path
integrals in Section 10.5 corresponds to the Stratonovich calculus.

18.13.1 Kubo’s stochastic Liouville equation

It is worthwhile to trace how the retarded operator order of the friction term enters
the framework of stochastic calculus. Thus we assume that the stochastic differential
equations (18.322) and (18.323) have been solved for a specific noise function η(t)
such that we know the probability distribution Pη(x v t|xavata) in (18.324). Now
we observe that the time dependence of this distribution is governed by a simple
differential equation known as Kubo’s stochastic Liouville equation [18], which is
derived as follows [19]. A time derivative of (18.324) yields

∂tPη(x v t|xavata) = ẋη(t)δ
′(xη(t)− x)δ(ẋη(t)− v) + ẍη(t)δ(xη(t)− x)δ′(ẋη(t)− v).

(18.380)

The derivatives of the δ-functions are initially with respect to the arguments xη(t)
and ẋη(t). These can, however, be expressed in terms of derivatives with respect to
−x and−v. However, since ẍη(t) depends on ẋη(t) we have to be careful where to put
the derivative −∂v. The general formula for such an operation may be expressed as
follows: Given an arbitrary dynamical variable z(t) which may be any local function
(local in the temporal sense) of x(t) and ẋ(t), and whose derivative is some function
of z(t), i.e., ż(t) = F (z(t)), then

d

dt
δ(z(t)−z) = ż(t)

∂

∂z(t)
δ(z(t)−z) = − ∂

∂z
[ż(t)δ(z(t)−z)] = − ∂

∂z
[F (z)δ(z(t)−z)].

(18.381)
To prove this formula, we multiply each expression by an arbitrary smooth test
function g(z) and integrate over z. Each integral yields indeed the same result
ġ(z(t)) = ż(t)g′(z(t)) = F (z)g′(z(t)). Applying the identity (18.381) to (18.380), we
obtain an equation for Pη(x v t|xavata):

∂tPη(x v t|xavata) = −[∂xẋη(t) + ∂vẍη(t)]Pη(x v t|xavata). (18.382)

We now express ẍη(t) with the help of the Langevin equation (18.317) in terms of the
friction force −Mγẋη(t), the force −V ′(xη(t)), and the noise η(t). In the presence
of the δ-function δ(ẋη(t) − v), the velocity ẋη(t) can everywhere be replaced by v,
and Eq. (18.382) becomes

∂tPη(x v t|xavata) = −
{

v∂x +
1

M
[η(t) + f(x, v)]

}

Pη(x v t|xavata), (18.383)
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where

f(x, v) ≡ −Mγv − V ′(x) (18.384)

is the sum of potential and friction forces. This is Kubo’s stochastic Liouville equa-
tion which, together with the correlation function (18.218) of the noise variable and
the prescription (18.325) of forming expectation values, determines the temporal
behavior of the probability distribution P (x v t|xavata).

18.13.2 From Kubo’s to Fokker-Planck Equations

Let us calculate the expectation value of Pη(x v t|xavata) with respect to noise fluc-
tuations and show that P (x v t|xavata) of Eq. (18.325) satisfies the Fokker-Planck
equation with inertia (18.243). First we observe that in a Gaussian expectation
value (18.321), the multiplication of a functional F [η] by η produces the same re-
sult as the functional differentiation with respect to η with a subsequent functional
multiplication by the correlation function 〈η(t)η(t′)〉:

〈η(t)F [η]〉η =
∫

dt′〈η(t)η(t′)〉η
〈

δη(t)

δη(t′)
F [η]

〉

η

. (18.385)

This follows from the fact that η(t) can be obtained from a functional derivative of
the Gaussian distribution in (18.321) as:

η(t)e−
1
2w

∫

dtdt′η(t)K−1(t,t′)η(t′)= −w
∫

dt′K(t, t′)
δ

δη(t′)
e−

1
2w

∫

dtdt′η(t)K−1(t,t′)η(t′). (18.386)

Inside the functional integral (18.321) over η(t), an integration by parts moves the
functional derivative −δ/δη(t′) in front of F [η] with a sign change. The surface terms
can be discarded since the integrand decrease exponentially fast for large noises η(t).
Thus we obtain indeed the useful formula (18.385).

With the goal of a Gaussian average (18.321) in mind, we can therefore replace
Eq. (18.383) by

∂tPη(x v t|xavata) = −
{

v∂x+
1

M
∂v

[

w
∫

dt′K(t, t′)
δ

δη(t′)
+ f(x, v)

]}

Pη(x v t|xavata).

(18.387)

After this, we observe that

δ

δη(t′)
δ(xη(t)−x)δ(ẋη(t)−v) = −

[

δxη(t)

δη(t′)
∂x +

δẋη(t)

δη(t′)
∂v

]

δ(xη(t)−x)δ(ẋη(t)−v).

(18.388)
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From the stochastic differential equation (18.317) we deduce the following behavior
of the functional derivatives:

δẍη(t)

δη(t′)
=

1

M
δ(t− t′)− γΘ(t− t′) + smooth function of t− t′, (18.389)

δẋη(t)

δη(t′)
=

1

M
Θ(t− t′) +O(t− t′), (18.390)

δxη(t)

δη(t′)
= O((t− t′)2). (18.391)

Inserting (18.380) with (18.390) and (18.391) into (18.387), the functional derivatives
(18.390) and (18.391) are multiplied by K(t, t′) and integrated over t′.

Consider now the regime of large temperatures. There the function K(t, t′) is
narrowly peaked around t = t′, forming almost a δ-function [recall the unit normal-
ization (18.328)]. We shall emphasize this by writing K(t, t′) ≡ δǫ(t − t′), with the
subscript indicating the width ǫ of K(t, t′) which goes to zero like h̄/kBT for large T
[recall (18.337)]. In this limit, the contribution of the derivative (18.391) vanishes,
whereas (18.390) contributes to (18.387) a term
∫

dt′K(t, t′)
δ

δη(t′)
δ(xη(t)−x)δ(ẋη(t)−v) (18.392)

=−
∫

dt′δǫ(t−t′)
δẋη(t)

δη(t′)
∂vδ(xη(t)−x)δ(ẋη(t)−v) =− 1

2M
∂vδ(xη(t)−x)δ(ẋη(t)−v).

The factor 1/2 on the right-hand side arises from the fact that the would-be δ-
function δǫ(t−t′) is symmetric in t − t′, so that its convolution with the Heaviside
function Θ(t − t′) is nonzero only over half the peak. Taking the noise average
(18.325), we obtain from (18.387) the Fokker-Planck equation with inertia (18.243):

∂tP (x v t|xavata) =
{

−v∂x +
1

M
∂v

[

w

2M
∂v − f(x, v)

]}

P (x v t|xavata). (18.393)

Note that the differential operators have precisely the same order as in Eq. (18.239)
as a consequence of formula, here (18.381).

In the overdamped limit, the derivation of the Fokker-Planck equation becomes
simple. Then we have to consider only the pure x-space distribution

Pη(x t|xata) =
∫

dv Pη(x v t|xavata) = δ(xη(t)− x), (18.394)

whose time derivative is given by

∂tPη(x t|xavata) = −∂xẋη(t)Pη(x t|xavata)
= − 1

Mγ
∂x[η(t)− V ′(x)]Pη(x t|xavata). (18.395)

After treating the noise term η(t) according to the rule (18.385),

η(t) → w
∫

dt′δǫ(t− t′)
δ

δη(t′)
, (18.396)
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we use

δ

δη(t′)
δ(xη(t)− x) = −δxη(t)

δη(t′)
δ(xη(t)− x) (18.397)

and

δẋη(t)

δη(t′)
=

1

Mγ
δ(t− t′) + smooth function of t− t′,

δxη(t)

δη(t′)
=

1

Mγ
Θ(t− t′) +O(t− t′), (18.398)

to find the overdamped Fokker-Planck equation (18.292):

∂tP (x t|xata) =
[

D∂2 +
1

Mγ
V ′(x)

]

P (x t|xata). (18.399)

The distributions P (x t|xata) and P (x v t|xavata) develop from initial δ-function
distributions P (x ta|xata) = δ(x− xa) and P (x v ta|xata) = δ(x− xa)δ(v − xa).

Let us multiply these δ-functions with arbitrary initial probabilities P (x, ta) and
P (x v, ta) and integrate over x and v. Then we obtain the stochastic path integrals

P (x , t) =
∫

Dη e−(1/2w)
∫

dtdt′ η(t)K−1(t,t′)η(t′)P (xaη(t), ta), (18.400)

P (x v, t) =
∫

Dη e−(1/2w)
∫

dtdt′ η(t)K−1(t,t′)η(t′)P (xaη(t), vaη, t), (18.401)

where xaη and vaη are initial positions and velocities of paths which arrive at the
final x and v following the equation of motion with a fixed noise η(t):

xaη(t) = x−
∫ t

ta
dt′ ẋ(t′), vaη(t) = x−

∫ t

ta
dt′ v̇(t′). (18.402)

At high temperatures, the overdamped equation can be written with (18.338) as

P (x , t) =
∫

Dη e−(1/2w)
∫

dt η2(t)P

(

x− 1

Mγ

∫ t

ta
dt′ [η(t′)− V ′(x(t′))] , t

)

. (18.403)

The time evolution equation (18.399) follows from this by calculating for a short
time increment ǫ:

P (x , t+ ǫ) =
∫

Dη e−(1/2w)
∫

dt η2(t)

{

− ǫ

Mγ

∫ t+ǫ

t
dt′ [η(t′)− V ′(x(t′))] ∂x

+
1

2M2γ2

∫ t+ǫ

t
dt′
∫ t+ǫ

t
dt′′ [η(t′)− V ′(x(t′))] [η(t′′)− V ′(x(t′′))] ∂2x + . . .

}

× P

(

x− 1

Mγ

∫ t

ta
dt′ [η(t′)− V ′(x(t′))] , t

)

. (18.404)

We now use the correlation functions (18.329), ignore all powers higher than linear
in ǫ, and find in the limit ǫ→ 0 directly the equation (18.399).
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18.13.3 Itō’s Lemma

An important tool for dealing with stochastic variables is suplied by Itō’s lemma.
Let x(t) be a stochastic variable following a Wiener process with a drift rx(x(t), t)
which is supposed to be a smooth function of x(t) and t [compare (18.338)], i.e.,
ẋ(t) fluctuates harmonically with a white noise around its average 〈ẋ(t)〉 = rx(x(t), t)
according to a stochastic differential equation

ẋ(t) = 〈ẋ(t)〉+ η(t) = rx + η(t). (18.405)

We shall omit the smooth dependence of rx on its arguments since this will be irrel-
evant for the subsequent arguments. The white noise has zero average 〈η(t)〉 = 0,
and its only nonzero correlation function is

〈η(t)η(t′)〉 = σ2δ(t− t′). (18.406)

The value of x(t) at a slightly later time t+ ǫ is x(t + ǫ) = x(t) + ∆x(t), where

∆x(t) ≡
∫ t+ǫ

t
dt′ ẋ(t′) = ǫrx +

∫ t+ǫ

t
dt′ η(t′). (18.407)

Consider now an arbitrary function f(x(t)). Its value at the time t+ǫ has the Taylor
expansion

f(x(t+ ǫ)) = f(x(t)) + f ′(x(t))∆x(t)

+
1

2
f ′′(x(t))[∆x(t)]2 +

1

3!
f (3)[∆x(t)]3 + . . . . (18.408)

The linear term in ∆x(t) on the right-hand side of (18.408) has the average

〈∆x(t)〉 =
∫ t+ǫ

t
dt′ 〈ẋ(t′) + η(t′)〉 =

∫ t+ǫ

t
dt′ 〈ẋ(t′)〉 ≈ ǫrx, (18.409)

where we have omitted the arguments x(t) and t of rx(x(t), t), since the variation of
rx(x(t), t) in the small interval (t, t+ ǫ) can be neglected to lowest order in ǫ.

The average of the quadratic term 〈[∆x(t)]2〉 is

〈[∆x(t)]2〉 =
∫ t+ǫ

t
dt1

∫ t+ǫ

t
dt2 〈[〈ẋ(t1)〉+ η(t1)] [〈ẋ(t2)〉+ η(t2)]〉

≈ ǫ2r2x + 〈η(t1)η(t2)〉.
The second term is of the order ǫ due to the δ-function in the correlation function
(18.406). Thus we find

〈[∆x(t)]2〉 = ǫσ2 +O(ǫ2). (18.410)

The average of the cubic term 〈[∆x(t)]3〉 is given by the integral
∫ t+ǫ

t
dt1

∫ t+ǫ

t
dt2

∫ t+ǫ

t
dt3 〈[〈ẋ(t1)〉+ η(t1)] [〈ẋ(t2)〉+ η(t2)] [〈ẋ(t3)〉+ η(t2)]〉

=
∫ t+ǫ

t
dt1

∫ t+ǫ

t
dt2

∫ t+ǫ

t
dt3

[

〈ẋ(t1)〉〈ẋ(t2)〉〈ẋ(t3)〉+ 〈ẋ(t1)〉〈η(t2)η(t3)〉

+ 〈ẋ(t2)〉〈η(t1)η(t3)〉+ 〈ẋ(t3)〉〈η(t1)η(t2)〉
]

=ǫ3r3x + 3ǫ2rxσ
2 = O(ǫ2). (18.411)
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The averages of the higher powers [∆x(t)]n are obviously at least of order ǫn/2. Thus
we find in the limit ǫ → 0 the simple formula

〈ḟ(x(t))〉 = 〈f ′(x(t))〉〈ẋ(t)〉+ σ2

2
〈f ′′(x(t))〉. (18.412)

Note that in a time-sliced formulation, f(x(t))ẋ(t) has the form f(xn)(xn+1−xn)/ǫ,
with independently fluctuating xn and xn+1, so that we may treat xn and (xn+1 −
xn)/ǫ as independent fluctuating variables. In the continuum limit x(t) and ẋ(t)
become independent.

The important point noted by Itō is now that this result is not only true for the
averages but also for the derivative ḟ(x(t)) itself, i.e., f(x(t)) obeys the stochastic
differential equation

ḟ(x(t)) = f ′(x(t)) ẋ(t) +
σ2

2
f ′′(x(t)), (18.413)

which is known as Itō’s lemma.
In order to prove this we must show that the omitted fluctuations in the higher

powers [∆x(t)]n for n ≥ 2 are of higher order in ǫ than the leading fluctuation of
∆x(t) which is of order ǫ. Indeed, let us denote the fluctuating part of [∆x(t)]n by
zn(t). For n = 1, 2, these are

z1(t) =
∫ t+ǫ

t
dt η(t), z2(t) ≡ [z2,1(t) + z2,2(t)] , (18.414)

where the two parts of z2(t) are

z2,1(t)=2
∫ t+ǫ

t
dt1 〈ẋ(t1)〉 z1(t) ≈ 2ǫrx z1(t), z2,2(t)=[z1(t)]

2. (18.415)

The fluctuations of z2,1(t) are smaller than the leading ones of z1(t) by a factor ǫ.
They can therefore be ignored in the limit ǫ→ 0.

The size of the fluctuations z2,2(t) are estimated by calculating its variance
〈[z2,2(t)]2〉 − 〈z2,2(t)〉2. The first of the two expectation values is

〈

[z2,2(t)]
2
〉

=
∫ t+ǫ

t
dt1

∫ t+ǫ

t
dt2

∫ t+ǫ

t
dt3

∫ t+ǫ

t
dt4 〈η(t1)η(t2)η(t3)η(t4)〉. (18.416)

According to Wick’s rule (3.305) for harmonic fluctuations, the expectation value
on the right-hand sid is equal to the sum of three pair contractions

〈η(t1)η(t2)〉〈η(t3)η(t4)〉+ 〈η(t1)η(t3)〉〈η(t2)η(t4)〉〈η(t1)η(t4)〉〈η(t2)η(t3)〉. (18.417)

Inserting (18.406) and performing the integrals yields

〈

[z2,2(t)]
2
〉

= 3ǫ2σ4. (18.418)
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The second term in the variance of z2,2(t) is

〈z2,2(t)〉2 = 〈z21(t)〉2 =
[∫ t+ǫ

t
dt1

∫ t+ǫ

t
dt2 〈η(t1)η(t2)〉

]2

= ǫ2σ4. (18.419)

Hence we obtain for the variance of z2,2(t):

〈[z2,2(t)]2〉 − 〈z2,2(t)〉2 = 2σ4ǫ2. (18.420)

This must be compared with the variance of the leading fluctuations z1(t) in (18.413):

〈[z1(t)]2〉 − 〈z1(t)〉2 =
∫ t+ǫ

t
dt1

∫ t+ǫ

t
dt2 〈η(t1)η(t2)〉 = ǫσ2, (18.421)

which implies that z1(t) is of the order of σ
√
ǫ. Thus the fluctuating part of [∆x(t)]2

is by a factor
√
ǫ smaller than that of ∆x(t), so that it can be ignored in the

continuum limit ǫ→ 0.
Thus we have proved that not only the expectation value 〈[∆x(t)]2〉 becomes

equal to ǫσ2 as stated in Eq. (18.410), but also the fluctuating quantity [∆x(t)]2

itself:

[∆x(t)]2 = ǫσ2 +O(ǫ2). (18.422)

In a similar way we can derive the estimates [∆x(t)]n = O((σ
√
ǫ)n) for all higher

fluctuations zn(t) in the Taylor expansion (18.408). These can all be neglected
compared to z1(t), thus proving Itō’s lemma (18.413).

For an exponential function, Itō’s lemma yields

d

dt
ePx =

(

P ẋ+
σ2P 2

2

)

ePx. (18.423)

This can be integrated to

ePx = e
∫ t

0
dt′ P ẋ eP

2σ2t/2. (18.424)

The expectation value of this can also be formulated as a rule for calculating
the expectation value of an exponential of an integral over a Gaussian noise variable
with zero average:

〈

eP
∫ t

0
dt′ η(t′)

〉

= eP
2
∫ t

0
dt′
∫ t

0
dt′′〈η(t′)η(t′′)〉 = eP

2σ2t/2. (18.425)

This rule can also be derived directly from Wick’s rule (3.310). The right-hand side
corresponds to the Debye-Waller factor introduced in solid-state physics to describe
the reduction of the intensities of Bragg peaks by thermal fluctuations of the atomic
positions [see Eq. (3.311)].
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There is a simple mnemonic way of formalizing this derivation of Eq. (18.413) in
a sloppy differential notation. We expand

f(x(t+ dt)) = f(x(t) + ẋdt) = f(x(t)) + f ′(x(t))ẋ(t)dt+
1

2
f ′′(x(t))ẋ2(t)dt2 + . . . ,

(18.426)
and insert in the higher-order expansion terms ẋ = 〈ẋ〉+ η(t) where 〈η(t)〉 = 0 and
the expectation

〈η2(t)〉 dt = σ2, (18.427)

which expresses infinitesimally the correct equation

∫ t+ǫ

t
dt′ 〈η(t′)η(t)〉 =

∫ t+ǫ

t
dt′ σ2 δ(t′ − t) = σ2. (18.428)

The variable ẋ2(t)dt2 has an expectation value σ2dt and a variance 〈[ẋ2(t)dt2]2 −
〈ẋ2(t)dt〉2〉 = 2σ2dt2, so that ẋ2(t)dt2 in (18.426) can be replaced as follows:

ẋ2(t)dt2 → σ2dt/2. (18.429)

A corresponding estimate holds for all higher powers:

zn ≈ O((σ
√
ǫ)n). (18.430)

or
ẋn(t)dtn ≈ O((σ

√
dt)n). (18.431)

These can all be omitted in the expansion (18.426), thus leading back to Itō’s rule
(18.412).

It must be realized that Itō’s lemma is valid only in the limit ǫ → 0. For a
discrete time axis with small but finite time intervals ∆t = ǫ, the fluctuations of
zn(t) cannot strictly be ignored but are only suppressed by a small factor σ

√
∆T .

The discrete version of Itō’s lemma expands the fluctuating difference ∆f(x(tn)) ≡
f(x(tn+1))− f(x(tn)) as follows:

∆f(x(tn))

∆t
= f ′(x(tn))

∆x(tn)

∆t
+
σ2

2
f ′′(x(tn)) +O(σ

√
∆t). (18.432)

18.14 Solving the Langevin Equation

In Eq. (18.306) we have found the probability distribution for the motion of a par-
ticle with large dissipation by solving the path integral (18.300) for the harmonic
oscillator potential V (x) = ω2

0x
2/2. For completeness, let us calculated the same re-

sult within stochastic calculus. The stochastic differential equation associated with
the Lagrangian (18.301) is

ẋ(t) = −κx(t) + η̄(t), (18.433)
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where

〈η̄(t)〉η, 〈η̄(t)η̄(t′)〉η = 2Dδ(t− t′). (18.434)

This equation is solved by

x(t) = x0e
−κt +

∫ t

0
dt1 e

−κ(t−t1)η̄(t1), (18.435)

so that we obtain 〈x(t)〉η = x0e
−γt and

〈x(t)x(t′)〉η = x20e
−κ(t+t′) + 2D

∫ t

0
dt1 e

−κ(t−t1)
∫ t′

0
dt2 e

−(t′−t2)δ(t1 − t2)

= x20e
−κ(t+t′) + κ−1D

(

e−κ|t−t′|−e−κ(t+t′)
)

, (18.436)

and the mean-square deviation

〈[x(t)− 〈x(t)〉]2〉η = κ−1D
(

1− e−2κt
)

. (18.437)

From these expectation values we recover immediately the previous distribution
function (18.306).

This result can easily be generalized to a D-component Langevin equation

ẋ(t) = −�x(t) + �̄(t), (18.438)

where � is a matrix, and �̄(t) a noise vector. Its correlation functions may be
expressed in terms of a diffusion matrix D as

〈�̄(t)〉 = 0, 〈�̄(t)�̄T (t′)〉
�

= 2Dδ(t− t′), (18.439)

to be compared with the one-dimensional expressions (18.329).
Then the probability (18.306) becomes

P (xbtb|xata) =
1

√
2π

D

1
√

det [σ2(tb − ta)]
D

× exp
{

−1

2
[xb − x̄(tb−ta)]i[σ2

ij(tb−ta)]−1[xb − x̄(tb−ta)]j
}

, (18.440)

where
x̄(t) = e−�t xa , (18.441)

and
σ2
ij(t) ≡ 〈[x(t)− x̄(t)]i[x(t)− x̄(t)]j〉

�

. (18.442)

The probability (18.440) solves the Fokker-Planck equation (18.245)

∂tP (x t|taxa) = (−κij∂ixj +Dij∂i∂j)P (x t|taxa). (18.443)
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The D-component result (18.440) allows us to solve the Langevin equation with
inertia in Eq. (18.317). We simply rewrite the equivalent pair of equations (18.322)
and (18.323) in the matrix form (18.438) with x1 = x and x2 = v, and identify

� =

(

0 −1
ω2
0 γ

)

, �̄(t) =
1

M

(

0
η(t)

)

, (18.444)

so that the diffusion matrix takes the form (18.246).
The eigenvalues of the nonhermitian matrix � in (18.441) are κ1,2 = 1

2
(γ ±

√

γ2 − 4ω2
0 ). The associated eigenvectors u(1,2) satisfying �u(1,2) = κ1,2u

(1,2) are

(−1, κ1) and (1,−κ2), respectively, while those to the left satisfying v(1,2)
� =

κ(1,2)v
(1,2) are (κ2, 1)/(κ1 − κ2) and (κ1, 1)/(κ1 − κ2), respectively. The two sets of

eigenvectors are mutually orthonormal and complete: u(i) ·v(j) = δij,
∑

k v
(k)
i u

(k)
j =

δij . The matrix � has then the spectral representation κij =
∑

k κku
(k)
i v

(k)
j , and an

exponential (e−�t)ij =
∑

k e
−κktu

(k)
i v

(k)
j . which reads explicitly

e−�t =
1

κ1 − κ2

(

κ1e
−κ2t − κ2e

−κ1t e−κ2t − e−κ1t

ω2
0(e

−κ1t − e−κ2t) κ1e
−κ1t − κ2e

−κ2t

)

. (18.445)

The inverse matrix [σ2
ij(tb−ta)]−1 is given by

[σ2
ij(t)]

−1 =
[

det σ2
ij(t)

]−1
(

σ2
vv(t) −σ2

xv(t)
−σ2

xv(t) σ2
xx(t)

)

(18.446)

where the matrix elements σ2
ij(tb− ta) are calculated from the expectation values

(18.442). This is done by expressing the solution of (18.438) as in (18.435) in the
form

x(t) = e−�t xa +
∫ t

ta
dt �̄(t), (18.447)

and using the correlation functions (18.439) to find

σ2
xx(t) =

γ2D

(κ1 − κ2)2

[

1

κ1

(

1− e−2κ1t
)

+
1

κ2

(

1− e−2κ2t
)

− 4

κ1 + κ2

(

1− e−κ1+κ2)t
)

]

,

σ2
xv(t) =

γ2D

(κ1 − κ2)2

(

e−κ1t − e−κ2t
)2
, (18.448)

σ2
vv(t) =

γ2D

(κ1 − κ2)2

[

κ1
(

1− e−2κ1t
)

+ κ2
(

1− e−2κ2t
)

− 4

κ−1
1 +κ−1

2

(

1− e−κ1+κ2)t
)

]

.

After a long time, these converge to

σ2
xx(t) →

γD

κ1κ2
=
γD

ω2
0

, σ2
xv(t) → 0, σ2

vv(t) → γD, (18.449)

so that the determinant det σ2
ij(t) becomes γ2D2/ω2

0, and the distribution (18.440)
turns into the Boltzmann distribution

lim
tb→∞

P (xbvbtb|xavata) =
ω0

2πγD
e−(v2b+ω2

0x
2
b)/2γD =

Mω0

2πkBT
e−M(v2b+ω2

0x
2
b)/2kBT . (18.450)
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The velocity shows the well-known Maxwell distribution:

P (vb) =
1√

2πγD
e−v2b /2γD =

1
√

2πkBT/M
e−Mv2b/2kBT =

1√
2πvT

e−v2b /2v
2
T ,(18.451)

which exhibits an average thermal velocity

vT ≡
√

kBT/M. (18.452)

If we integrate the two-dimensional result P (xbvbtb|xavata) over all final velocities,
we obtain

P (xbtb|xavata)=
∫

dvb P (xbvbtb|xavata)=
1

√

2πσ2
xx(tb−ta)

exp

{

−1

2

[xb−x̄(tb−ta)]2
σ2
xx(tb−ta)

}

.

(18.453)

Note that this depends on va via x̄(tb−ta) = xa + γ−1(1− e−γ(tb−ta))va.

In the absence of an external potential, i.e. for ω0 = 0, the eigenvalues κ1,2 are
γ and 0, respectively, and the matrix e−�t reduces to

e−�t =

(

1 γ−1(1− e−γt)
0 e−γt

)

. (18.454)

The matrix elements σ2
ij(t) are simply9

σ2
xx(t)=γ

−1D(2γt−3+4e−γt− e−2γt), σ2
xv(t) = D(1−e−γt)2, σ2

vv(t) = γD(1−e−2γt),

(18.455)

whose determinant is

det σ2
ij(t) = D2

[

2γt(1− e−2γt) + (1− e−γt)2(−4 − 2e−γt + e−3γt)
]

. (18.456)

In the large-time limit, these become

σ2
xx(t) → 2Dt, σ2

xv(t) → D, σ2
vv(t) → γD, det σ2

ij(t) → 2γtD2. (18.457)

The last result can, of course, be derived by integrating the pair of Langevin equa-
tions with inertia (18.322) and (18.323) for zero potential V (x) successively. First
the equation for v(t) which reads v(t) = v0e

−γt +
∫ t
0 dt1 e

−γ(t−t1)η(t1)/M , and yields

〈v(t)v(t′)〉η = v20e
−γ(t+t′)+ γD

(

e−γ|t−t′|−e−γ(t+t′)
)

, using the white noise correlation

functions (18.329). The equations for x(t) are obtained from these by integration
over t.

9See Section 18.15 for an alternative method of calculating the expectation values (18.442).
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18.15 Heisenberg Picture for Probability Evolution

It is possible to develop a Heisenberg operator description of the time dependence of thermal
expectations. This goes by complete analogy with the development in Section 2.23 for the quantum-
mechanical time evolution amplitude. Consider the thermal expectations of x and x2 for a particle
which sits at the initial time t = ta at xa. They are given by the integrals

〈x〉 ≡
∫ ∞

−∞

dxb xbP (xbtb|xata), (18.458)

〈x2〉 ≡
∫ ∞

−∞

dxb x
2
bP (xbtb|xata). (18.459)

For simplicity, let us first look at the case of a dominant friction term. As in quantum mechanics,
it is useful to introduce a bra-ket notation, but for the probabilities rather than the amplitudes,

〈xbtb|xata〉 ≡ |(xbtb|xata)|2. (18.460)

The fact that this probability satisfies the Fokker-Planck equation implies that we can write it as

〈xbtb|xata〉 = e−(tb−ta)H(p̂b,xb)δ(xb − xa). (18.461)

Thus we may introduce time-independent basis vectors |xa〉 satisfying

〈xb|xa〉 = δ(xb − xa). (18.462)

On this basis, the operators p̂, x̂ are defined in the usual way. They satisfy

〈xb|x̂ = xb〈xb|, 〈xb|p̂ = −i ∂
∂xb

〈xb|. (18.463)

Then we may rewrite (18.461) in bra-ket notation as

〈xbtb|xata〉 = 〈xb|e−H(p̂,x̂)(tb−ta)|xa〉. (18.464)

The expectation value of any function f(x) is calculated as follows

〈f(x)〉 =

∫ ∞

−∞

dxb f(xb)〈xb|e−(tb−ta)H(p̂,x̂)|xa〉

=

∫ ∞

−∞

dxb 〈xb|f(x̂)e−(tb−ta)H(p̂,x̂)|xa〉 (18.465)

=

∫ ∞

−∞

dxb

∫ ∞

−∞

dx 〈xb|e−(tb−ta)H(p̂,x̂)|x〉〈x|f(x̂(tb − ta))|xa〉.

In the last term we have introduced the time-dependent Heisenberg type of operator

x̂(t) ≡ etH(p̂,x̂)x̂e−tH(p̂,x̂). (18.466)

The probability P (xbtb|xata) satisfies the normalization condition
∫ ∞

−∞

dxb P (xbtb|xata) =

∫ ∞

−∞

dxb 〈xbtb|xata〉 (18.467)

=

∫ ∞

−∞

dxb 〈xb|e−(tb−ta)H(p̂,x̂)|xa〉 = 1.

Appliying this to the last line of (18.465), we arrive at the simple formula

〈f(x)〉 =

∫ ∞

−∞

dxb 〈xb|f(x̂(tb − ta))|xa〉. (18.468)
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For the Brownian motion of a point particle where

Le =
ẋ2

4D
, H = Dp2, (18.469)

the Heisenberg operators are

p̂(t) = p̂, x̂(t) = eĤtx̂e−Ĥt = x̂− i2Dp̂t, (18.470)

and

x̂2(t) = x̂2 − i2D · (p̂x̂+ x̂p̂)t− 4D2p̂2t2,

= x̂2 + 2Dt− i2D · 2x̂p̂− 4D2p̂2t. (18.471)

It is easy to calculate the following matrix elements:

∫ ∞

−∞

dxb 〈xb|x̂|xa〉 = xa,

∫ ∞

−∞

dxb 〈xb|p̂|xa〉 = −i
∫ ∞

−∞

dxb
∂

∂xb
δ(xb − xa) = 0,

∫ ∞

−∞

dxb 〈xb|x̂2|xa〉 =

∫ ∞

−∞

dxb xb
2δ(xb − xa) = xa

2, (18.472)

∫ ∞

−∞

dxb 〈xb|p̂2|xa〉 = −
∫ ∞

−∞

dxb
∂2

∂xb2
δ(xb − xa) = 0,

∫ ∞

−∞

dxb 〈xb|p̂x̂|xa〉 = −i
∫ ∞

−∞

dxb
∂

∂xb
δ(xb − xa)xa = 0.

The vanishing integrals reflect the translational invariance of the integrated bra state
∫∞

−∞ dxb 〈xb|,
which is therefore annihilated by a translational operator p̂b on its right:

∫ ∞

−∞

dxb 〈xb|p̂ = 0. (18.473)

With the help of Eqs. (18.472), we obtain

〈x〉 = xa, 〈x2〉 = xa
2 + 2D(tb − ta), (18.474)

and

〈(x− xa)
2〉 = 2D(tb − ta). (18.475)

Clearly, a similar formalism can be developed for the general case with the Lagrangian con-
taining ẍ-terms. All we have to do is define time-dependent Heisenberg operators for both sets of
canonical coordinates x, p, v, pv. For instance, consider the case of a free particle, where V (x) = 0
and the Hamiltonian (18.239) reduces to

H =
w

2M2
p2v − iγpvv + ipv. (18.476)

If we want to calculate expectations 〈f(x, v)〉 for a particle initially at xa with an initial velocity
ẋa = va, we now have to evaluate integrals of the form

〈f(x, v)〉 =

∫ ∞

−∞

dxb

∫ ∞

−∞

dvb f(xb, vb)P (xbvbtb|xavata)

=

∫ ∞

−∞

dxb

∫ ∞

−∞

dvb 〈xbvb|f(x̂(tb − ta), v̂(tb − ta))|xava〉. (18.477)
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Here we introduce basis vectors |xv〉 which diagonalize the operators x̂, v̂. The momentum opera-
tors satisfy

〈xv|p̂ = − ∂

∂x
〈xv|, 〈xv|p̂v = − ∂

∂v
〈xv|. (18.478)

Then we can write

〈x2〉 =

∫ ∞

−∞

dxb

∫ ∞

−∞

dvb 〈xbvb|x̂2(tb − ta)|xava〉, (18.479)

where x̂(t) is the Heisenberg operator defined by

x̂(t) = etH(p̂,p̂v,x̂,v̂)x̂e−tH(p̂,p̂v,x̂,v̂). (18.480)

The Heisenberg equations of motions are

˙̂p(t) = [Ĥ, p̂(t)] = 0,
˙̂pv(t) = [Ĥ, p̂v(t)] = γp̂v(t) − p̂(t),
˙̂x(t) = [Ĥ, x̂(t)] = v̂(t),

˙̂v(t) = [Ĥ, v̂(t)] = −i w
M2

p̂v(t) − γv̂(t). (18.481)

According to the first equation, p̂(t) is a constant operator:

p̂(t) ≡ p̂ = const.

The second equation is solved by

p̂v(t) = p̂ve
γt − 1

γ
p̂(eγt − 1), (18.482)

where p̂v is the initial value of p̂v(t) at t = 0. With this, the fourth equation in (18.481) can be
integrated to give

v̂(t) = v̂e−γt − i
w

M2

∫ t

0

dt′ e−γ(t−t
′)p̂v(t

′)

= v̂e−γt − i
w

γM2

[

p̂v sinh γt− 1

γ
p̂(cosh γt− 1)

]

. (18.483)

Inserting this into the third equation in (18.481) we obtain immediately

x̂(t) = x̂+ v̂
1

γ
(1 − e−γt) − i

w

γM2

[

pv cosh γt− 1

γ
p(sinh γt− γt)

]

. (18.484)

Using now the relations extending (18.473):

∫ ∞

−∞

dxb

∫ ∞

−∞

dx2b 〈xbx2b|
{

p̂
p̂v

}

= 0 (18.485)

to express the translational invariance of the integrated bra state, we find directly

〈x〉 = xa + ẋa
1

γ

(

1 − e−γ(tb−ta)
)

, 〈v〉 = vae
−γ(tb−ta), (18.486)

in agreement with (18.441) and (18.454). The expectations values of the quadratic cumulants
〈

(x− 〈x〉)2
〉

,
〈

(x− 〈x〉)(v − 〈v〉)
〉

,
〈

(v − 〈v〉)2
〉

are found to be the same as in (18.457).
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18.16 Supersymmetry

An interesting new symmetry can be derived from the functional determinant (18.296) which causes
the extra last term in the exponent of the path integral (18.300). Let us rewriting this implicitly
as

P0(xbtb|xata) ∝
∫

Dx(t)Det

[

∂t +
V ′′(x)

Mγ

]

exp

{

−
∫ tb

ta

dt
1

4D

[

ẋ+
V ′(x)

Mγ

]2
}

.

(18.487)
In this expression, the time ordering of the velocity ẋ with respect to V ′(x)/Mγ is arbitrary. It
may be quantum-mechanical (Stratonovich-like), but equally well retarded (Itō-like), or advanced,
as long as the same ordering is used in both the Lagrangian and the determinant.

The new symmetry arises if one generates the determinant with the help of an auxiliary fermion
field c(t) from a path integral over c(t):

det [∂t + V ′′(x(t))/Mγ] ∝
∫

DcDc̄ e−
∫

dtc̄(t)[Mγ∂t+V ′′(x(t))]c(t). (18.488)

In quantum field theory, such auxiliary fermionic fields are referred to as ghost fields . With these we
can rewrite the path integral (18.290) for the probability distribution as an ordinary path integral

P (xbtb|xata) =

∫

Dx
∫

DcDc̄ exp {−APS[x, c, c̄]} , (18.489)

where APS is the Euclidean action

APS =
1

2DM2γ2

∫ tb

ta

dt

{

1

2
[Mγẋ+ V ′(x)]

2
+ c̄(t) [Mγ∂t + V ′′(x(t))] c(t)

}

, (18.490)

first written down by Parisi and Sourlas [20] and by McKane [21]. This action has a particular
property. If we denote the expression in the first brackets by

Ux ≡Mγ∂tx+ V ′(x), (18.491)

the operator between the Grassmann variables in (18.490) is simply the functional derivative of
Ux:

Uxy ≡ δUx

δy
= Mγ∂t + V ′′(x). (18.492)

Thus we may write

APS =
1

2D

∫ tb

ta

dt

[

1

2
U2
x + c̄(t)Uxy c(t)

]

, (18.493)

where Uxyc(t) is the usual short notation for the functional matrix multiplication
∫

dt′Uxy(t, t
′)c(t′).

The relation between the two terms makes this action supersymmetric. It is invariant under
transformations which mix the Fermi and Bose degrees of freedom. Denoting by ε and ε̄ a small
anticommuting Grassmann variable and its conjugate (see Section 7.10), the action is invariant
under the field transformations

δx(t) = ε̄c(t) + c̄(t)ε, (18.494)

δc̄(t) = −ε̄Ux, (18.495)

δc(t) = Uxε. (18.496)

The invariance follows immediately after observing that

δUx = ε̄Uxyc(t) + c̄(t)Uxyε. (18.497)
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Formally, a similar construction is also possible for a particle with inertia in the path integral
(18.232), which is an ordinary path integral involving the Lagrangian (18.287). Here we can write

P (xbtb|xata) = N
∫

DxJ [x] exp

{

− 1

2w

∫ tb

ta

dt [Mẍ+Mγẋ+ V ′(x)]2
}

, (18.498)

where J [x] abbreviates the determinant

J [x] = det [M∂2t +Mγ∂t + V ′′(x(t))], (18.499)

which is known from formula (18.274). The path integral (18.498) is valid for any ordering of the
velocity term, as long as it is the same in the exponent and the functional determinant.

We may now express the functional determinant as a path integral over fermionic ghost fields

J [x] = det [M∂2t +Mγ∂t + V ′′(x(t))] ∝
∫

DcDc̄ e−
∫

dt c̄(t)[M∂2
t +Mγ∂t+V ′′(x(t))]c(t),

(18.500)
and rewrite the probability distribution P (xbtb|xata) as an ordinary path integral

P (xbtb|xata) ∝
∫

Dx
∫

DcDc̄ exp{−AKS[x, ,̧c̄]}, (18.501)

where A[x, ,̧c̄] is the Euclidean action

AKS[x, ,̧c̄] ≡
∫ tb

ta

dt

{

1

2w
[Mẍ+Mγẋ+V ′(x)]2 + c̄(t)

[

M∂2t +Mγ∂t+V
′′(x(t))

]

c(t)

}

.

(18.502)

This formal expression contains subtleties arising from the boundary conditions when calculating
the Jacobian (18.500) from the functional integral on the right-hand side. It is necessary to factorize
the second-order operator in the functional determinant and express the determinant of each first-
order factor as a functional integral over Grassmann variables as in (18.488). At the end, the
action is again supersymmetric, but there are twice as many auxiliary Fermi fields [22].

As a check of this formula, we may let the coupling to the thermal reservoir go to zero, γ → 0.
Then the first factor in (18.501),

exp

(

−
∫ tb

ta

dt

{

1

2w
[Mẍ+Mγẋ+V ′(x)]2

})

becomes proportional to a δ-functional δ[Mẍ+V ′(x)]. The argument is simply the functional
derivative of the original action of the quantum system in (18.191), so that we obtain in the limit
δ[δA/δx]. The functional matrix between the Grassmann fields in (18.501), on the other hand,
reduces to δ2A/δx(t)δx(t′), and we arrive at the path integral

P (xbtb|xata) ∝
γ→0

∫

Dx δ[δA/δx]

×
∫

DcDc̄ exp

{

−
∫ tb

ta

dt

∫ tb

ta

dt′ c̄(t)δ2A/∂x(t)∂x(t′)c(t′)
}

. (18.503)

Performing the integral over the Grassmann variables yields

P (xbtb|xata) ∝
γ→0

∫

Dx δ[δA/δx] Det
[

δ2A/∂x(t)∂x(t′)
]

. (18.504)

The δ-functional selects from all paths only those which obey the Euler-Lagrange equations of
motion. With the help of the functional identity

δ[Mẍ+ V ′(x)] = δ[x− xcl] × Det−1[Mẍ+ V ′′(x)], (18.505)
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which generalizes identity δ(f(x)) = δ(x)/f ′(x) if f(0) = 0, the above path integral becomes simply

P (xbtb|xata) ∝
γ→0

∫

Dx δ[x − xcl], (18.506)

which is the correct probability distribution of classical physics. Note the important difference with
respect to the classical amplitude in Eq. (4.96), where the concentration of the path integral on the
classical path is enforced by a strongly oscillating complex expression requiring the semiclassical
fluctuation factor in Eq. (4.97) for proper normalization. In the probability (18.506) this is achieved
by a real δ-functional.

Note that by a Fourier decomposition of the δ-functional (18.503) we obtain the alternative
path integral representation of classical physics

P (xbtb|xata) ∝
γ→0

∫

DxDλDcDc̄ e−
∫

tb

ta
dtδA/δx(t)λ(t)−

∫

tb

ta
dt
∫

tb

ta
dt′c̄(t)δ2A/δx(t)δx(t′)c(t′)

. (18.507)

This is supersymmetric under the transformations

δx = ε̄c , δc = 0 , δc̄ = −ε̄λ , δλ = 0 , (18.508)

as observed by Gozzi [23].
There exists a compact way of rewriting the action using superfields . We define a three-

dimensional superspace consisting of time and two auxiliary Grassmann variables θ and θ̄. Then
we define a superfield

X(t) ≡ x(t) + iθ̄c(t) − iθ̄c(t) − θ̄λ(t). (18.509)

We now consider the superaction

Asuper ≡
∫

dθ̄dθA[X ] ≡
∫

dθ̄dθA[x + iθ̄c− iθc̄− θ̄θλ] (18.510)

and expand the action into a functional Taylor series:

∫

dθ̄dθ

{

A[x] +
δA
δx

(iθ̄c− iθc̄− θ̄θλ) +
1

2
(iθ̄c− iθc̄− θ̄θλ)

∂2A
δxδx

(iθ̄c− iθc̄c− θ̄θλ)

}

.

Due to the nilpotency (7.375) of the Grassmann variables, the expansion stops after the second
term. Recalling now the integration rules (7.378) and (7.379), this becomes

δA
δx
λ+

1

2
c̄
∂2A
δxδx

c,

which is precisely the short-hand functional notation for the negative exponent in the path integral
(18.507).

18.17 Stochastic Quantum Liouville Equation

At lower temperatures, where quantum fluctuations become important, the forward–backward path
integral (18.230) does not allow us to derive a Schrödinger-like differential equation for the proba-
bility distribution P (x v t|xavatt). To see the obstacle, we go over to the canonical representation
of (18.230):

|(xbtb|xata)|2 =

∫

DxDy
∫ Dp

2π

Dpy
2π

exp

{

i

h̄

∫ tb

ta

dt [pẋ+ py ẏ −HT ]

}

, (18.511)
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where

HT =
1

M
pypx + γpyy + V (x+ y/2) − V (x− y/2)− i

w

2h̄
yK̂Ohmy (18.512)

plays the role of a temperature-dependent quasi-Hamiltonian for an Ohmic system associated
with the Lagrangian of the forward–backward path integral (18.230). The notation K̂Ohmy(t)
abbreviates the product of the functional matrixKOhm(t, t′) with the functional vector y(t′) defined
by K̂Ohmy(t) ≡

∫

dt′KOhm(t, t′)y(t′). Hence is HT a nonlocal object (in the temporal sense), and
this is the reason for calling it quasi-Hamiltonian.

It is useful to omit y-integrations at the endpoints in the path integral (18.511), and set up a
path integral representation for the product of amplitudes

U(xbybtb|xayata) ≡ (xb + yb/2 tb|xa + ya/2 ta)(xb − yb/2 tb|xa − ya/2 ta)
∗. (18.513)

Given some initial density matrix ρ(x+, x−; t) = ρ(x + y/2, x − y/2; t) at time t = ta, which
may actually be in equilibrium and time-independent, as in Eq. (2.367), the functional matrix
U(xbybtb|xayata) allows us to calculate ρ(x+, x−; t) at any time by the time evolution equation

ρ(x+ y/2, x− y/2; t)=

∫

dxa dya U(x y t|xayata) ρ(xa + ya/2, xa − ya/2; ta). (18.514)

Recall that the Fourier transform of ρ(x+ y/2, x− y/2; t) with respect to y is the Wigner function
(1.224).

When considering the change of U(x y t|xayata) over a small time interval ǫ, the momentum
variables p and py have the same effect as differential operators −i∂xb

and −i∂yb
, respectively. The

last term in HT , however, is nonlocal in time, thus preventing a derivation of a Schrödinger-like
differential equation.

The locality problem can be removed by introducing a noise variable η(t) with the correlation
function determined by (18.321):

〈η(t)η(t′)〉T =
w

2
[KOhm]−1(t, t′). (18.515)

Then we can define a temporally local η-dependent Hamiltonian operator

Ĥη ≡ 1

M
(p̂x + γy) p̂y + V (x+ y/2) − V (x− y/2)− yη, (18.516)

which governs the evolution of η-dependent versions of the amplitude products (18.513) via the
stochastic Schrödinger equation

ih̄∂tUη(x y t|xayata) = Ĥη Uη(x y t|xayata). (18.517)

The same equation is obeyed by the noise-dependent density matrix ρη(x, y; t).
Averaging these equation over η with the distribution (18.321) yields for ya = yb = 0 the same

probability distribution as the forward–backward path integral (18.230):

|(xbtb|xata)|2 = U(xb 0 tb|xa 0 ta) ≡ 〈U(xb 0 tb|xa ya ta)〉η. (18.518)

At high temperatures, the noise averaged stochastic Schrödinger equation (18.517) takes the form

ih̄∂tU(x y t|xa ya ta) = ˆ̄HTU(x y t|xa ya ta), (18.519)

where ˆ̄H is now a local (in the temporal sense)

ˆ̄HT ≡ 1

M
p̂yp̂x + γyp̂y + V (x+ y/2)− V (x− y/2) − i

w

2h̄
y2, (18.520)
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arising from the Hamiltonian (18.512) in the high-temperature limit KOhm → 1 [recall (18.223)].
In terms of the separate path positions x± = x± y/2 where px = ∂+ + ∂− and py = (∂+ − ∂−)/2,
this takes the more familiar form [24]

ˆ̄HT ≡ 1

2M

(

p̂2+ − p̂2−
)

+ V (x+) − V (x−) +
γ

2
(x+ − x−)(p̂+ − p̂−) − i

w

2h̄
(x+ − x−)2.

(18.521)
The last term is often written as −ih̄Λ(x+ − x−)2, where Λ is the so-called decoherence rate per
square distance

Λ ≡ w

2h̄2
=
MγkBT

h̄2
. (18.522)

It is composed of the damping rate γ and the squared thermal length (2.353):

Λ =
2πγ

l2e(h̄β)
, (18.523)

and controls the decay of interference peaks [25].
Note that the order of the operators in the mixed term of the form yp̂y in Eq. (18.520)

is opposite to the mixed term −ip̂vv in the differential operator (18.239) of the Fokker-Planck
equation. This order is necessary to guarantee the conservation of probability. Indeed, multiplying
the time evolution equation (18.519) by δ(y), and integrating both sides over x and y, the left-hand
side vanishes.

The correctness of this order can be verified by calculating the fluctuation determinant of the
path integral for the product of amplitudes (18.513) in the Lagrangian form, which looks just like
(18.230), except that the difference between forward and backward trajectories y(t) = x+(t)−x−(t)
is nonzero at the endpoints. For the fluctuation which vanish at the endpoints, this is irrelevant.
As explained before, the order is a short-time issue, and we can take tb− ta → ∞. Moreover, since
the order is independent of the potential, we may consider only the free case V (x± y/2) ≡ 0. The
relevant fluctuation determinant was calculated in formula (18.254). In the Hamiltonian operator
(18.520), this implies an additional energy −iγ/2 with respect to the symmetrically ordered term
γ{y, p̂y}/2, which brings it to γyp̂y, and thus the order in (18.521).

18.18 Master Equation for Time Evolution

In the high-temperature limit, the Hamiltonian (18.521) becomes local. Then the evolution equa-
tion (18.514) for the density matrix ρ(x+a, x−a; ta) can be converted into an operator equation

ih̄∂tρ(x+, x−; ta) = ˆ̄HTρ(x+, x−; ta), (18.524)

where ˆ̄HT is the operator version of the temperature-dependent Hamiltonian (18.521). Such an
equation does not exist at low temperatures, due to the nonlocality of the last term in (18.512).
Then one cannot avoid solving the stochastic Schrödinger equation (18.517) with the subsequent
averaging (18.518). For moderately high temperatures, however, a Hamiltonian formalism can still
be set up, although it requires solving a recursion relation. For this purpose we write down the
quasi-Hamiltonian in D dimensions

ˆ̄HT ≡ 1

2M

(

p̂2
+ − p̂2

−

)

+ V (x+) − V (x−) +
Mγ

2
(x̂+ − x̂−)(ˆ̇x+ + ˆ̇x−)R

− i
w

2h̄
(x̂+ − x̂−)K̂Ohm(x̂+ − x̂−), (18.525)

where the Fourier transform of KOhm(t, t′) is expanded in powers of ω′ [recall (18.223)]

KOhm(ω′) = 1 +
1

3

(

h̄ω′

2kBT

)2

+ . . . . (18.526)
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Each power of ω′2 stands for the operator −
←

∂t∂t. In this way we find for the last term the locally
looking high-temperature expansion

−i(x̂+−x̂−)K̂Ohm(x̂+−x̂−)=−i(x̂+−x̂−)2 + i
wh̄

24(kBT )2
(ˆ̇x+− ˆ̇x−)2 + . . . . (18.527)

The expression is not really local, since the operator ˆ̇x is defined implicitly as an abbreviations for
the commutator

ˆ̇x ≡ i

h̄
[ ˆ̄HT , x̂]. (18.528)

If the expansion (18.527) is carried further, higher derivatives of x arise, which are all defined
recursively:

ˆ̈x ≡ i

h̄
[ ˆ̄HT , ˆ̇x], ˆ̇̈x ≡ i

h̄
[ ˆ̄HT , ˆ̈x], . . . . (18.529)

Thus Eq. (18.525) with the expansion (18.527) is a recursive equation for the Hamiltonian operator
ˆ̄HT . For small γ (and thus w = 2MγkBT ), the recursion can be solved iteratively, in the first step
by inserting ˆ̇x ≈ p̂/M into Eq. (18.530).

It is useful to re-express (18.524) in the Dirac operator form where the density matrix has
a bra–ket representation ρ̂(t) =

∑

mn ρmn(t)|m〉〈n|. Denoting p̂2/2M + V̂ in (18.525) by Ĥ , we
obtain with the expansion (18.527) the local master equation:

ih̄∂tρ̂ = ˆ̄HT ρ̂ ≡ [Ĥ, ρ̂] +
Mγ

2

(

x̂ˆ̇xρ̂− ρ̂ˆ̇xx̂ + x̂ ρ̂ ˆ̇x− ˆ̇x ρ̂ x̂
)

− iw

2h̄
[x̂, [x̂, ρ̂]] − iwh̄2

24(kBT )2
[ˆ̇x, [ˆ̇x, ρ̂]] + . . . . (18.530)

The validity of the above iterative procedure is most easily proved in the time-sliced path
integral. The final slice of infinitesimal width ǫ reads

U(x+b,x−b, tb|x+a,x−a, tb − ǫ)

=

∫

dp+(tb)

(2π)3

∫

dp−(tb)

(2π)3
e

i
h̄{p+(tb)[x+(tb)−x+(tb−ǫ)]−p−ẋ−−H̄T (tb)}. (18.531)

Consider now a term of the generic form Ḟ+(x+(t))F−(x−(t)) in H̄T (t). When differen-
tiating U(x+b,x−b, tb|x+a,x−a, tb − ǫ) with respect to the final time tb, the integrand re-
ceives a factor −H̄T (tb). At tb, the term Ḟ+(x+(t))F−(x−(t)) in H̄T (t) has the explicit form
ǫ−1 [F+(x+(tb)) − F+(x+(tb − ǫ))]F−(x−(tb)). It can be taken out of the integral, yielding

ǫ−1 [F+(x+(tb))U − UF+(x+(tb − ǫ))]F−(x−(tb)). (18.532)

In operator language, the amplitude U is associated with Û ≈ 1 − iǫ ˆ̄HT /h̄, such the term

Ḟ+(x+(t))F−(x−(t)) in ˆ̄HT yields a Schrödinger operator

i

h̄

[

ˆ̄HT , F̂+(x+)
]

F−(x−) (18.533)

in the time evolution equation (18.530).
For functions of the second derivative ẍ we have to split off the last two time slices in (18.531)

and convert the two intermediate integrals over x into operator expressions, which obviously leads

to the repeated commutator of ˆ̄HT with x̂, and so on.
The operator order in the terms in the parentheses of Eq. (18.530) is fixed by the retardation

of ẋ± with respect to x± in (18.521). This implies that the associated operator ˆ̇x(t) has a time
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argument which lies slightly before that of x̂±, thus acting upon ρ̂ before x̂. This puts ˆ̇x(t) to the
right of x̂, i.e., next to ρ̂. On the right-hand side of ρ̂, the time runs in the opposite direction such
that ˆ̇x must lie to the left of x̂, again next to ρ̂. In this way we obtain an operator order which
ensures that Eq. (18.530) conserves the total probability.

This property and the positivity of ρ̂ are actually guaranteed by the observation, that the
master equation (18.530) can be written in the Lindblad form [26]

∂tρ̂ = − i

h̄
[Ĥ, ρ̂] −

2
∑

n=1

(

1

2
L̂nL̂

†
nρ̂+

1

2
ρ̂L̂nL̂

†
n − L̂†nρ̂L̂n

)

, (18.534)

with the two Lindblad operators [27]

L̂1 ≡
√
w

2h̄
x̂, L̂2 ≡

√
3w

2h̄

(

x̂− i
h̄

3kBT
ˆ̇x

)

. (18.535)

Note that the operator order in Eq. (18.530) prevents the term x̂ˆ̇xρ̂ from being a pure diver-
gence. If we rewrite it as a sum of a commutator and an anticommutator, [x̂, ˆ̇x]/2+{x̂, ˆ̇x}/2, then
the latter term is a pure divergence, and we can think of the first two γ-terms in (18.530) as being
due to an additional anti-Hermitian term in the Hamiltonian operator Ĥ , the dissipation operator

Ĥγ = γM
1

4
[x̂, ˆ̇x]. (18.536)

18.19 Relation to Quantum Langevin Equation

The stochastic Liouville equation (18.517) can also be derived from an operator version of the
Langevin equation (18.317), the so-called Quantum Langevin equation

M ¨̂x(t) +Mγ ˙̂x(t) + V ′(x̂(t)) = η̂(t), (18.537)

where η̂(t) is an operator noise variable with the commutation rule

[η̂t, η̂t′ ] = w
ih̄

kBT
∂tδ(t− t′), (18.538)

and the correlation function [28]

1

2
〈[η̂t, η̂t′ ]+〉η̂ = wK(t, t′). (18.539)

The commutator (18.538) and the correlation function (18.539) are related to each other as required
by the fluctuation-dissipation theorem: By omitting the factor coth(h̄ω/2kBT ) in Eq. (18.223), the
Fourier integral (18.221) for K(t, t′) reduces to (h̄/2kBT )∂tδ(t−t′). A comparison with the general
spectral representation (18.53) shows that the expectation value (18.539) has the spectral function

ρb(ω
′) = 2Mγh̄ω′. (18.540)

By inserting this into the spectral representation (18.53) we obtain the right-hand side of the
commutator equation (18.538).

A noise variable with the properties (18.538) and (18.539) can be constructed explicitly by
superimposing quantized oscillator velocities of frequencies ω as follows:

η̂(t) = −i
√

Mh̄γ

π

∫ ∞

0

dΩ′
√

Ω′[aΩ′e−iω
′t − a†ω′e

iω′t]. (18.541)

It is worth pointing out that there exists a direct derivation of the quantum Langevin equation
(18.537), whose noise operator η̂(t) satisfies the commutator and fluctuation properties (18.538)
and (18.539), from Kubo’s stochastic Liouville equation, and thus from the forward–backward path
integral (18.230) [29].
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18.20 Electromagnetic Dissipation and Decoherence

There exists a thermal bath of particular importance: atoms are usually observed at a finite tem-
perature where they interact with a grand-canonical ensemble of photons in thermal equilibrium.
This interaction will broaden the natural line width of atomic levels even if all major mechanisms
for the broadening are removed. To study this situation, let us set up a forward–backward path
integral description for a bath of photons, and derive from it a master equation for the density
matrix which describes electromagnetic dissipation and decoherence. As an application, we shall
calculate the Wigner-Weisskopf formula for the natural line width of an atomic state at zero tem-
perature, find the finite-temperature effects, and calculate the Lamb shift between atomic s- and
p-wave states of principal quantum number n = 2 with the term notation 2S1/2 and 2P1/2. The
master equation may eventually have applications to dilute interstellar gases or to few-particle
systems in cavities.

18.20.1 Forward–Backward Path Integral

With the application to atomic physics in mind, we shall consider a three-dimensional quantum
system described by a time-dependent quantum-mechanical density matrix ρ(x+,x−; t). In con-
trast to Eq. (18.514), we use here the forward and backward variables as arguments, and write the
time evolution equation as

ρ(x+b,x−a; tb) =

∫

dx+a dx−a U(x+b,x−b, tb|x+a,x−a, ta)ρ(x+a,x−a; ta). (18.542)

In an external electromagnetic vector potential A(x, t), the time-evolution kernel is determined by
a forward–backward path integral of the type (18.192), in which the forward and backward paths
start at different initial and final points x+a,x−a and x+b,x−b, respectively:

U(x+b,x−b, tb|x+a,x−a, ta) ≡ (x+b, tb|x+a, ta)(x−b, tb|x−a, ta)∗ =

∫

Dx+Dx−

× exp

{

i

h̄

∫ tb

ta

[

M

2

(

x2
+ − x2

−

)

− V (x+) + V (x−) − e

c
ẋ+A(x+, t) +

e

c
ẋ−A(x−, t)

]}

.

(18.543)

The vector potential A(x, t) is a superposition of oscillators Xk(t) of frequency Ωk = c|k| in a
volume V :

A(x, t) =
∑

k

ck(x)Xk(t), ck =
eikx√
2ΩkV

,
∑

k

=

∫

d3kV

(2π)3
. (18.544)

At a finite temperature T , these oscillators are assumed to be in equilibrium, where we shall write
their time-ordered correlation functions as

Gij
kk′(t, t

′) = 〈T̂ X̂ i
k(t), X̂j

−k′(t
′)〉 = δij tr

kk′ GΩk
(t, t′) ≡ δkk′P⊥k

ijGΩk
(t, t′). (18.545)

The transverse projection matrix is the result of the sum over the transverse polarization vectors
of the photons:

P⊥k
ij =

∑

h=±

ǫi(k, h)ǫj ∗(k, h) = (δij − kikj/k2). (18.546)

The function GΩk
(t, t′) on the right-hand side of (18.545) is the Green function (18.185) of a single

oscillator of frequency Ωk. It is decomposed into real and imaginary parts, defining AΩk
(t, t′) and

CΩk
(t, t′) as in (18.185), which are commutator and anticommutator functions of the oscillator at

temperature T : CΩk
(t, t′) ≡ 〈[X̂(t), X̂(t′)]〉T and AΩk

(t, t′) ≡ 〈[X̂(t), X̂(t′)]〉T , respectively.
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The thermal average of the evolution kernel (18.543) is then given by the forward–backward
path integral

U(x+b,x−b, tb|x+a,x−a, ta) =

∫

Dx+(t)

∫

Dx−(t)

× exp

{

i

h̄

∫ tb

ta

dt

[

M

2
(ẋ2

+ − ẋ2
−) − (V (x+) − V (x−))

]

+
i

h̄
AFV[x+,x−]

}

, (18.547)

where exp{iAFV[x+,x−]/h̄} is the Feynman-Vernon influence functional defined in Eq. (18.200).
The influence action AFV[x+,x−] is the sum of a dissipative and a fluctuating part AFV

D [x+,x−]
and AFV

F [x+,x−], whose explicit forms are now

AFV
D [x+,x−] =

ie2

2h̄c2

∫

dt

∫

dt′Θ(t− t′)

×
[

ẋ+(t)Cb(x+ t,x
′
+ t
′)ẋ+(t′) − ẋ+(t)Cb(x+ t,x

′
− t
′)ẋ−(t′)

− ẋ−(t)Cb(x− t,x
′
+ t
′)ẋ+(t′) + ẋ−(t)Cb(x− t,x

′
− t
′)ẋ−(t′)

]

, (18.548)

and

AFV
F [x+,x−] =

ie2

2h̄c2

∫

dt

∫

dt′Θ(t− t′)

×
[

ẋ+(t)Ab(x+ t,x
′
+ t
′)ẋ+(t′) + ẋ+(t)Ab(x+ t,x

′
− t
′)ẋ−(t′)

+ ẋ−(t)Ab(x− t,x
′
+ t
′)ẋ+(t′) + ẋ−(t)Ab(x− t,x

′
− t
′)ẋ−(t′)

]

, (18.549)

with Cb(x− t,x
′
− t
′) and Ab(x− t,x

′
− t
′) collecting the 3 × 3 commutator and anticommutator

functions of the bath of photons. They are sums of correlation functions over the bath of the
oscillators of frequency Ωk, each contributing with a weight ck(x)c−k(x′) = eik(x−x

′)/2ΩkV .
Thus we may write, generalizing (18.197) and (18.198),

Cij
b (x t,x′ t′) =

∑

k

c−k(x)ck(x′)
〈

[X̂ i
−k(t), X̂j

k
(t′)]

〉

T

= −ih̄
∫

dω′d3k

(2π)4
ρk(ω′)P⊥k

ijeik(x−x
′) sinω′(t− t′), (18.550)

Aij
b (x t,x′ t′) =

∑

k

c−k(x)ck(x′)
〈{

X̂ i
−k(t), X̂j

k
(t′)
}〉

T

= h̄

∫

dω′d3k

(2π)4
ρk(ω′)P⊥k

ij coth
h̄ω′

2kBT
eik(x−x

′) cosω′(t− t′), (18.551)

where ρk(ω′) is the spectral density contributed by the oscillator of momentum k:

ρk(ω′) ≡ 2π

2Ωk

[δ(ω′ − Ωk) − δ(ω′ + Ωk)]. (18.552)

At zero temperature, we recognize in (18.550) and (18.551) twice the imaginary and real parts
of the Feynman propagator of a massless particle for t > t′, which in four-vector notation with
k = (ω/c,k) and x = (ct,x) reads

G(x, x′) =
1

2
[A(x, x′) + C(x, x′)] =

∫

d4k

(2π)4
eik(x−x

′) ih̄

k2 + iη

=

∫

dω d3k

(2π)4
ich̄

ω2 − Ω2
k

+ iη
e−i[ω(t−t′)−k(x−x′)], (18.553)
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where η is an infinitesimally small number > 0.
We shall now focus attention upon systems which are so small that the effects of retardation

can be neglected. Then we can ignore the x-dependence in (18.551) and (18.552) and find

Cij
b (x t,x′ t′) ≈ Cij

b (t, t′) = i
h̄

2πc

2

3
δij∂tδ(t− t′). (18.554)

Inserting this into (18.548) and integrating by parts, we obtain two contributions. The first is a
diverging term

∆Aloc[x+,x−] =
∆M

2

∫ tb

ta

dt (ẋ2
+ − ẋ2

−)(t), (18.555)

where

∆M ≡ −e
2

c2

∫

dω′d3k

(2π)4
σk(ω′)

ω′
δij trkk = − e2

3π2c3

∫ ∞

0

dk (18.556)

diverges linearly. This simply renormalizes the kinetic terms in the path integral (18.547), renor-
malizing them to

i

h̄

∫ tb

ta

dt
Mren

2

(

ẋ2
+ − ẋ2

−

)

. (18.557)

By identifying M with Mren this renormalization may be ignored.
The second term has the form [compare (18.205)]

AFV
D [x+,x−] = −γM

2

∫ tb

ta

dt (ẋ+ − ẋ−)(t)(ẍ+ + ẍ−)R(t), (18.558)

with the friction constant of the photon bath encountered before in Eq. (3.444):

γ ≡ e2

6πc3M
=

2

3

α

ωM
, (18.559)

where α ≡ e2/h̄c ≈ 1/137 is the fine-structure constant (1.505) and ωM ≡ Mc2/h̄ the Compton
frequency associated with the mass M . Note once more that in contrast to the usual friction
constant γ in Section 3.13, this has the dimension 1/frequency.

As discussed in Section 18.8, the retardation enforced by the Heaviside function in the exponent
of (18.548) removes the left-hand half of the δ-function [see (18.214)]. It ensures the causality of the
dissipation forces, which has been shown in Section 18.9.2 to be crucial for producing a probability
conserving time evolution of the probability distribution [13]. The superscript R in (18.558) shifts
the acceleration (ẍ+ + ẍ−)(t) slightly towards an earlier time with respect to the velocity factor
(ẋ+ − ẋ−)(t).

We now turn to the anticommutator function. Inserting (18.552) and the friction constant γ
from (18.559), it becomes

e2

c2
Ab(x t,x

′ t′) ≈ 2γkBTK
Ohm(t, t′), (18.560)

as in Eq. (18.216), with the same function KOhm(t, t′) as in Eq. (18.223), whose high-temperature
expansion starts out as in Eq. (18.526).

In terms of the function KOhm(t, t′), the fluctuation part of the influence functional in (18.549),
(18.548), (18.547) becomes [compare (18.227)]

AFV
F [x+,x−] = i

w

2h̄

∫ tb

ta

dt

∫ tb

ta

dt′ (ẋ+ − ẋ−)(t)KOhm(t, t′) (ẋ+ − ẋ−)(t′). (18.561)
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Here we have used the symmetry of the function KOhm(t, t′) to remove the Heaviside function
Θ(t − t′) from the integrand, extending the range of t′-integration to the entire interval (ta, tb).
We also have introduced the constant

w ≡ 2MkBTγ, (18.562)

for brevity.
In the high-temperature limit, the time evolution amplitude for the density matrix is given by

the path integral

U(x+b,x−b, tb|x+a,x−a, ta) =

∫

Dx+(t)

∫

Dx−(t)

× exp

{

i

h̄

∫ tb

ta

dt

[

M

2
(ẋ2

+ − ẋ2
−) − (V (x+) − V (x−))

]}

(18.563)

× exp

{

− i

2h̄
Mγ

∫ tb

ta

dt (ẋ+ − ẋ−)(ẍ+ + ẍ−)R − w

2h̄2

∫ tb

ta

dt (ẋ+ − ẋ−)2
}

,

where the last term is now local since KOhm(t, t′) → δ(t− t′). In this limit (as in the classical limit
h̄→ 0), this term squeezes the forward and backward paths together. The density matrix (18.563)
becomes diagonal. The γ-term, however, remains and describes classical radiation damping.

At moderately high temperature, we should include also the first correction term in (18.526)
which adds to the exponent an additional term

− w

24(kBT )2

∫ tb

ta

dt (ẍ+ − ẍ−)2. (18.564)

The extended expression is the desired closed-time path integral of a particle in contact with a
thermal reservoir.

18.20.2 Master Equation for Time Evolution in Photon Bath

It is possible to derive a master equation for the evolution of the density matrix ρ(x+a,x−a; ta)
analogous to Eq. (18.530) for a quantum particle in a photon bath. Since the dissipative and fluctu-
ating parts of the influence functional in Eq. (18.555) and (18.561) coincide with the corresponding
terms in (18.230), except for an extra dot on top of the coordinates, the associated temperature-
dependent Hamiltonian operator is directly obtained from (18.525) with the expansion (18.527) by
adding the extra dots: In the high-temperature limit we obtain

Ĥ ≡ 1

2M

(

p̂2
+−p̂2

−

)

+ V (x+) − V (x−) +
Mγ

2
(ˆ̇x+− ˆ̇x−)(ˆ̈x++ˆ̈x−)R − i

w

2h̄
(ˆ̇x+− ˆ̇x−)2,

(18.565)
extended at moderately high temperatures by the Hamiltonian corresponding to (18.564):

∆ ˆ̄HT ≡ i
wh̄

24(kBT )2
(ˆ̈x+ − ˆ̈x−)2. (18.566)

The master equation corresponding to the Ohmic equation (18.530) reads now

ih̄∂tρ̂ = ˆ̄HT ρ̂ ≡ [Ĥ, ρ̂] +
Mγ

2

(

ˆ̇xˆ̈xρ̂− ρ̂ˆ̈xˆ̇x + ˆ̇x ρ̂ ˆ̈x− ˆ̈x ρ̂ ˆ̇x
)

− iw

2h̄
[ˆ̇x, [ˆ̇x, ρ̂]] − iwh̄2

24(kBT )2
[ˆ̈x, [ˆ̈x, ρ̂]]. (18.567)

The conservation of total probability and the positivity of ρ̂ are ensured by the observation, that
Eq. (18.567) can be written in the Lindblad form

∂tρ̂ = − i

h̄
[Ĥ, ρ̂] −

2
∑

n=1

(

1

2
L̂nL̂

†
nρ̂+

1

2
ρ̂L̂nL̂

†
n − L̂†nρ̂L̂n

)

, (18.568)
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with the two Lindblad operators

L̂1 ≡
√
w

2h̄
ˆ̇x, L̂2 ≡

√
3w

2h̄

(

ˆ̇x− i
h̄

3kBT
ˆ̈x

)

. (18.569)

As noted in the discussion of Eq. (18.530), the operator order in (18.567) prevents the term ˆ̇xˆ̈xρ̂
from being a pure divergence. By rewriting it as a sum of a commutator and an anticommutator,
[ˆ̇x, ˆ̈x]/2 + {ˆ̇x, ˆ̈x}/2, the latter term is a pure divergence, and we can think of the first two γ-terms
in (18.567) as being due to an additional anti-Hermitian dissipation operator

Ĥγ = γM
1

4
[ˆ̇x, ˆ̈x]. (18.570)

For a free particle with V (x) ≡ 0 and [Ĥ, p̂] = 0, one has ˆ̇x± = p̂±/M to all orders in γ, such
that the time evolution equation (18.567) becomes

ih̄∂tρ̂ = [Ĥ, ρ̂] − iw

2M2h̄
[p̂, [p̂, ρ̂]]. (18.571)

In the momentum representation of the density matrix ρ̂ =
∑

pp′ ρpp′ |p〉〈p′|, the last term sim-

plifies to −iΓ ≡ −iw(p− p′)2/2M2h̄2 multiplying ρ̂, which shows that a free particle does not
dissipate energy by radiation, and that the off-diagonal matrix elements decay with the rate Γ.

For small e2, the implicit equation Eq. (18.565) with the expansion term (18.566) can be solved
approximately in a single iteration step, inserting ˆ̇x ≈ p̂/M and ˆ̈x ≈ −∇V/M .

18.20.3 Line Width

Let us apply the master equation (18.567) to atoms, where V (x) is the Coulomb potential, assuming
it to be initially in an eigenstate |i〉 of H , with a density matrix ρ̂(0) = |i〉〈i|. Since atoms decay
rather slowly, we may treat the γ-term in (18.567) perturbatively. It leads to a time derivative of
the density matrix

∂t〈i|ρ̂(t)|i〉 = − γ

h̄M
〈i|[Ĥ, p̂] p̂ ρ̂(0)|i〉 =

γ

M

∑

f 6=i

ωif 〈i|p|f〉〈f |p|i〉

= −Mγ
∑

f

ω3
if |xfi|2, (18.572)

where h̄ωif ≡ Ei − Ef , and xfi ≡ 〈f |x|i〉 are the matrix elements of the dipole operator.
An extra width comes from the last two terms in (18.567):

∂t〈i|ρ̂(t)|i〉 = − w

M2h̄2
〈i|p2|i〉 − w

12M2(kBT )2
〈i|ṗ2|i〉

= −w
∑

n

ω2
if

[

1 +
h̄2ω2

if

12(kBT )2

]

|xfi|2. (18.573)

This time dependence is caused by spontaneous emission and induced emission and absorption. To
identify the different contributions, we rewrite the spectral decompositions (18.550) and (18.551)
in the x-independent approximation as

Cb(t, t
′) +Ab(t, t

′) (18.574)

=
4π

3
h̄

∫

dω′d3k

(2π)4
π

2MΩk

{

1 + coth
h̄ω′

2kBT

}

[δ(ω′ − Ωk) − δ(ω′ + Ωk)] e−iω
′(t−t′),

or

Cb(t, t
′) +Ab(t, t

′) (18.575)

=
4π

3
h̄

∫

dω′d3k

(2π)4
π

2MΩk

{

2δ(ω′− Ωk)+
2

eh̄Ωk/kBT−1
[δ(ω′−Ωk) + δ(ω′+Ωk)]

}

e−iω
′(t−t′).
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Following Einstein’s intuitive interpretation, the first term in curly brackets is due to spontaneous
emission, the other two terms accompanied by the Bose occupation function account for induced
emission and absorption. For high and intermediate temperatures, (18.575) has the expansion

4π

3
h̄

∫

dω′d3k

(2π)4
π

2MΩk

{

2δ(ω′ − Ωk)

+

(

2kBT

h̄Ωk

− 1 +
1

6

h̄Ωk

kBT

)

[δ(ω′ − Ωk) + δ(ω′ + Ωk)]

}

e−iω
′(t−t′). (18.576)

The first term in curly brackets corresponds to the spontaneous emission. It contributes to the
rate of change ∂t〈i|ρ̂(t)|i〉 a term −2Mγ

∑

f<i ω
3
if |xfi|2. This differs from the right-hand side of

Eq. (18.572) in two important respects. First, the sum is restricted to the lower states f < i with
ωif > 0, since the δ-function allows only for decays. Second, there is an extra factor 2. Indeed, by
comparing (18.574) with (18.576) we see that the spontaneous emission receives equal contributions
from the 1 and the coth(h̄ω′/2kBT ) in the curly brackets of (18.574), i.e., from dissipation and
fluctuation terms Cb(t, t

′) and Ab(t, t
′).

Thus our master equation yields for the natural line width of atomic levels the equation

Γ = 2Mγ
∑

f<i

ω3
if |xfi|2, (18.577)

in agreement with the historic Wigner-Weisskopf formula.

In terms of Γ, the rate (18.572) can therefore be written as

∂t〈i|ρ̂(t)|i〉 = −Γ +Mγ
∑

f<i

ω3
if |xfi|2 +Mγ

∑

f>i

|ωif |3 |xfi|2. (18.578)

The second and third terms do not contribute to the total rate of change of 〈i|ρ̂(t)|i〉 since they
are canceled by the induced emission and absorption terms associated with the −1 in the big
parentheses of the fluctuation part of (18.576). The finite lifetime changes the time dependence of
the state |i, t〉 from |i, t〉 = |i, 0〉e−iEt to |i, 0〉e−iEt−Γt/2.

Note that due to the restriction to f < i in (18.577), there is no operator local in time
whose expectation value is Γ. Only the combination of spontaneous and induced emissions and
absorptions in (18.578) can be obtained from a local operator, which is in fact the dissipation
operator (18.570).

For all temperatures, the spontaneous and induced transitions together lead to the rate of
change of 〈i|ρ̂(t)|i〉:

∂t〈i|ρ̂(t)|i〉 = −2Mγ





∑

f<i

ω3
if +

∑

f

ω3
if

1

eh̄ωif/kBT − 1



 |xfi|2. (18.579)

For a state with principal quantum number n the temperature effects become detectable only
if T becomes larger than −1/(n + 1)2 + 1/n2 ≈ 2/n3 times the Rydberg temperature TRy =
157886.601K. Thus we have to go to n >∼ 20 to have observable effects at room temperature.

18.20.4 Lamb shift

For atoms, the Feynman influence functional (18.547) allows us to calculate the celebrated Lamb
shift. Being interested in the time behavior of the pure-state density matrix ρ = |i〉〈i|, we may
calculate the effect of the actions (18.548) and (18.549) perturbatively. For this, consider the
dissipative part of the influence action (18.548), and in it the first term involving x+(t) and x+(t′),
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and integrate the external positions in the path integral (18.547) over the initial wave functions,
forming

Uii,tb;ii,ta =

∫

dx+b dx−b

∫

dx+a dx−a〈i|x+b〉〈i|x−b〉

× U(x+b,x−b, tb|x+a,x−a, ta)〈x+b|i〉〈x−b|i〉. (18.580)

To lowest order in γ, the effect of the Cb-term in (18.548) can be evaluated in the local approxima-
tion (18.554) as follows. We take the linear approximation to the exponential exp[

∫

dtdt′O(t, t′)] ≈
1 +

∫

dtdt′O(t, t′) and propagate the initial state with the help of the amplitude Uii,t′;ii,ta to the
first time t′, then with Ufi,t;fi,t′ to the later time t, and finally with Uii,ta;ii,t to the final time tb.
The intermediate state between the times t and t′ are arbitrary and must be summed. Details how
to do such a perturbation expansion are given in Section 3.17. Thus we find

∆CUii,tb;ii,ta = i
e2

2h̄2c2

∫ tb

ta

dtdt′
∑

f

∫

dx+

∫

dx′+ Uii,ta;ii,t〈i|x+〉x+〈x+|f〉

×[∂t∂t′Cb(t, t
′)]Ufi,t;fi,t′〈f |x′+〉x′+〈x′+|i〉Uii,t′;ii,ta . (18.581)

Inserting Uii,ta;ii,t = e−iEi(ta−t)/h̄ etc., this becomes

∆CUii,tb;ii,ta = − e2

2h̄2c2

∫ tb

ta

dtdt′ 〈i|x̂(t) [∂t∂t′Cb(t, t
′)] x̂(t′)|i〉

= − e2

2h̄2c2

∑

f

∫ tb

ta

dtdt′ eiωif (t−t
′)〈i|ˆ̇x|f〉Cb(t, t

′)〈f |ˆ̇x|i〉. (18.582)

Expressing Cij
b (t, t′) of Eq. (18.554) in the form

Cij
b (t, t′) =

h̄

2πc

2

3
δij
∫

dω

2π
ω e−iω(t−t′), (18.583)

the integration over t and t′ yields

∆CUii,tb;ii,ta = −i e2

4πh̄c3
2

3

∫ tb

ta

dt

∫

dω

2π

∑

f

ω

ω − ωif − iη
|ˆ̇xfi|2. (18.584)

The same treatment is applied to the Ab in the action (18.549), where the first term involving
x+(t) and x+(t′) changes (18.585) to

∆Uii,tb;ii,ta=−i e2

4πh̄c3
2

3

∫ tb

ta

dt

∫

dω

2π

∑

f

ω

ω − ωif + iη

(

1+coth
h̄ω

2kBT

)

|ˆ̇xfi|2. (18.585)

The ω-integral is conveniently split into a zero-temperature part

I(ωif , 0) ≡
∫ ∞

0

dω

π

∑

f

ω

ω − ωif + iη
, (18.586)

and a finite-temperature correction

∆IT (ωif , T ) ≡ 2

∫ ∞

0

dω

π

∑

f

ω

ω − ωif + iη

1

eh̄ω/kBT − 1
. (18.587)

Decomposing 1/(ωif − ω + iη) = P/(ω − ωif )− iπδ(ωif −ω), the imaginary part of the ω-integral
yields half of the natural line width in (18.572). The other half comes from the part of the integral
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(18.548) involving x−(t) and x−(t′). The principal-value part of the zero-temperature integral
diverges linearly, the divergence yielding again the mass renormalization (18.556). Subtracting
this divergence from I(ωif , 0), the remaining integral has the same form as I(ωif , 0), but with ω
in the numerator replaced by ωif = 0. This integral diverges logarithmically like (ωif/π) log[(Λ −
ωif )/|ωif |], where Λ is Bethe’s cutoff [30]. For Λ ≫ |ωif |, the result (18.585) implies an energy
shift of the atomic level |i〉:

∆Ei =
e2

4πc3
2

3π

∑

f

ω3
if |x̂fi|2 log

Λ

|ωif |
, (18.588)

which is the Lamb shift .
Usually, the weakly varying logarithm is approximated by a weighted averageL = log[Λ/〈|ωif |〉]

over energy levels and taken out of the integral. Then contribution of the term (18.585) can be
attributed to an extra term

ĤLS ≈ −iL
π
γM

1

4
[ˆ̇x, ˆ̈x] (18.589)

in the Hamiltonian (18.567). In this form, the Lamb shift appears as a Hermitian logarithmically
divergent correction to the operator (18.570) governing the spontaneous emission of photons.

To lowest order in γ, the commutator is for a Coulomb potential V (x) = −e2/r equal to

− i

M2
[p̂, ˆ̇p] =

h̄

M2
∇

2V (x) =
h̄2c α

M2
4πδ(3)(x), (18.590)

leading to

∆Ei =
4α2h̄3

3M2c
〈i|δ(3)(x)|i〉. (18.591)

For an atomic state of principal quantum number n with a wave function ψn(x), this becomes

∆En =
4αh̄3

3M2c2
αL |ψn(0)|2. (18.592)

Only atomic s-states can contribute, since the wave functions of all other angular momenta vanish
at the origin. Explicitly, the s-states of the hydrogen atom (13.219) have the value at the origin

ψn(0) =
1√
n3π

(

1

aH

)3/2

, (18.593)

where aH = h̄/Mcα is the Bohr radius (4.376). If the nuclear charge is Z, then aB, is diminished
by this factor. Thus we obtain the energy shift

∆En =
4α2h̄3

3M2c

(

Mcα

h̄

)3
L

n3π
. (18.594)

For a hydrogen atom with n = 2, this becomes

∆E2 =
α3

6π
α2Mc2L. (18.595)

The quantity Mc2α2 is the unit energy of atomic physics determining the hydrogen spectrum to
be En = −Mc2α2/2n2. Thus

Mα2 = 4.36 × 10−11erg = 27.21eV = 2 Ry = 2 · 3.288 × 1015Hz. (18.596)
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Inserting this together with α ≈ 1/137.036 into (18.595) yields10

∆E2 ≈ 135.6MHz× L. (18.597)

The constant L can be calculated approximately as

L ≈ 9.3, (18.598)

leading to the estimate

∆E2 ≈ 1261MHz. (18.599)

The experimental Lamb shift

∆ELamb shift ≈ 1057 MHz (18.600)

is indeed contained in this range. In this calculation, two effects have been ignored: the vacuum
polarization of the photon and the form factor of the electron caused by radiative corrections.
They reduce the frequency (18.599) by (27.3 + 51)MHz bringing the theoretical number closer to
experiment. The vacuum polarization will be discussed in detail in Section 19.4.

At finite temperature, (18.588) changes to

∆Ei =
e2

4πc3
2

3π

∑

f

ω3
if |x̂fi|2

[

log
Λ

|ωif |
+

(

kBT

h̄ωij

)2

J

(

h̄ωif

kBT

)

]

, (18.601)

where J(z) denotes the integral

J(z) ≡ z

∫ ∞

0

dz
P

z′ − z

z′

ez′ − 1
, (18.602)

which has the low-temperature (large-z) expansion J(z) = −π2/6 − 2ζ(3)/z + . . . , and goes to
zero for high temperature (small z) like −z log z, as shown in Fig. 18.2.

10 20 30 40 50

-1.5

-1.25

-1

-0.75

-0.5

-0.25

z = h̄ωij/kBT

6J(z)/π2

Figure 18.2 Behavior of function 6J(z)/π2 in finite-temperature Lamb shift.

The above equations may have applications to dilute interstellar gases or, after a reformulation
in a finite volume, to few-particle systems contained in cavities. So far, a master equation has been
set up only for a finite number of modes [31].

10The precise value of the Lamb constant α4M/6π is 135.641± 0.004 MHz.
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18.20.5 Langevin Equations

For high γT , the last term in the forward–backward path integral (18.563) makes the size of
the fluctuations in the difference between the paths y(t) ≡ x+(t) − x−(t) very small. It is then
convenient to introduce the average of the two paths as x(t) ≡ [x+(t) + x−(t)] /2, and expand

V
(

x +
y

2

)

− V
(

x− y

2

)

∼ y ·∇V (x) + O(y3) . . . , (18.603)

keeping only the first term. We further introduce an auxiliary quantity �(t) by

�̇(t) ≡M ẍ(t) −Mγ ˙̈x(t) + ∇V (x(t)). (18.604)

With this, the exponential function in (18.563) becomes

exp

[

− i

h̄

∫ tb

ta

dt ẏ�− w

2h̄2

∫ tb

ta

dt ẏ2(t)

]

, (18.605)

where w is the constant (18.562).
Consider now the diagonal part of the amplitude (18.603) with x+b = x−b ≡ xb and x+a =

x−a ≡ xa, implying that yb = ya = 0. It represents a probability distribution

P (xb tb|xa ta) ≡ |(xb, tb|xa, ta)|2 ≡ U(xb,xb, tb|xa,xa, ta). (18.606)

Now the variable y can simply be integrated out in (18.605), and we find the probability distribution

P [�] ∝ exp

[

− 1

2w

∫ tb

ta

dt�2(t)

]

. (18.607)

The expectation value of an arbitrary functional of F [x] can be calculated from the path integral

〈F [x]〉η ≡ N
∫

DxP [�]F [x], (18.608)

where the normalization factor N is fixed by the condition 〈 1 〉 = 1. By a change of integration
variables from x(t) to η(t), the expectation value (18.608) can be rewritten as a functional integral

〈F [x]〉η ≡ N
∫

D�P [�] F [x]. (18.609)

Note that the probability distribution (18.607) is h̄-independent. Hence in the approximation
(18.603) we obtain the classical Langevin equation. In principle, the integrand contains a factor
J−1[x], where J [x] is the functional Jacobian

J [x] ≡ Det[δηi(t)/δxj(t′)] = det [
(

M∂2t −Mγ∂3Rt
)

δij + ∇i∇jV (x(t))]. (18.610)

By the same procedure as in Section 18.9.2 it can be shown that the determinant is unity, due to
the retardation of the friction term, thus justifying its omission in (18.609).

The path integral (18.609) may be interpreted as an expectation value with respect to the
solutions of a stochastic differential equation (18.604) driven by a Gaussian random noise variable
η(t) with a correlation function

〈ηi(t)ηj(t′)〉T = δijw δ(t− t′). (18.611)

Since the dissipation carries a third time derivative, the treatment of the initial conditions is
nontrivial and will be discussed elsewhere. In most physical applications γ leads to slow decay
rates. In this case the simplest procedure to solve (18.604) is to write the stochastic equation as

M ẍ(t) + ∇V (x(t)) = �̇(t) +Mγ ˙̈x(t), (18.612)
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and solve it iteratively, first without the γ-term, inserting the solution on the right-hand side, and
such a procedure is equivalent to a perturbative expansion in γ in Eq. (18.563).

Note that the lowest iteration of Eq. (18.612) with � ≡ 0 can be multiplied by ẋ and leads to
the equation for the energy change of the particle

d

dt

[

M

2
ẋ2 + V (x) −Mγẋẍ

]

= −Mγ ẍ2. (18.613)

The right-hand side is the classical electromagnetic power radiated by an accelerated particle. The
extra term in the brackets is known as Schott term [32].

18.21 Fokker-Planck Equation in Spaces with Curvature
and Torsion

According to the new equivalence principle found in Chapter 10, equations of motion can be
transformed by a nonholonomic transformation dxi = eiµ(q)dqµ into spaces with curvature and
torsion, where they are applicable to the diffusion of atoms in crystals with defects [33]. If we
denote gµν q̇

ν by vµ, the Langevin equation (18.317) goes over into

v̇µ = Fµ(q, v) + eiµ(q)ηi (18.614)

where Fµ(q, v) is the sum of all forces after the nonholonomic transformation:

Fµ(q, v) ≡M
[

Γνλµ(q)vνvλ − γvµ
]

− ∂µV (q). (18.615)

In addition to the transformed force (18.384), Fµ(q, v) contains the apparent forces resulting from
the coordinate transformation. For a distribution

Pη(qvt|qavata) = δ(qη(t) − q)δ(q̇η − vµ) (18.616)

one obtains, instead of (18.383), the Kubo equation

∂tPη(q v t|qavata) =

{

−∂µgµν(q)vν − 1

M
∂vµ
[

eiµ(q)ηi + Fµ(q, v)
]

}

Pη(q v t|qavata),

(18.617)

and from this the generalization of the Fokker-Planck equation (18.393) to spaces with curvature
and torsion:

∂tP (x v t|xavata)=
{

−∂µgµνvν +
1

M
∂vµ

[ w

2M
∂vµ − Fµ(q, v)

]

}

P (x v t|xavata). (18.618)

In the overdamped limit, the integrated probability distributions

P (q t|qata) ≡
∫

dDvP (q v t|qavata) (18.619)

satisfies the equation [generalizing (18.399)]

∂tP (q t|qat) =

[

D∂µei
µ∂νei

ν +
1

Mγ
∂νg

µνVν(q)

]

P (q t|qat), (18.620)

where Vν(q) ≡ ∂νV (q).
In the Fokker-Planck equations (18.617) and (18.620), the probability distributions

P (q v t|qavata) and P (qt|qat) have the unit normalizations
∫

dDqdDv P (q v t|qavata) = 1,

∫

dDq P (q t|qata) = 1, (18.621)
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as can be seen from the definitions (18.616) and (18.619). For distributions normalized with the
invariant volume integral

∫

dDq
√
g, to be denoted by P inv(qt|qata) ≡ √

g−1P (qt|qat), we obtain
from (18.620) the following invariant Fokker-Planck equation:

∂tP
inv(q t|qata) =

{

D√
g
∂µg

µν√g
[

∂ν + 2Sν +
1

kBT
Vν(x)

]}

P inv(q t|qata). (18.622)

The first term on the right-hand side contains the Laplace-Beltrami operator (11.13).
With the help of the covariant derivative D∗µ defined in Eq. (11.96), which arises from Dµ by

a partial integration, this equation can also be written as

∂tP
inv(q t|qata) =

[

D gµνD∗µD
∗
ν +

1

Mγ
D̄µV

µ(x)

]

P inv(q t|qata), (18.623)

where D̄µ is the covariant derivative (10.37) associated with the Christoffel symbol.

18.22 Stochastic Interpretation of Quantum-Mechanical
Amplitudes

In the last section we have seen that the probability distribution |(xb, tb|xa, ta)|2 is the result of a
stochastic differential equation describing a classical path disturbed by a noise term η(t) with the
correlation function (18.320). It is interesting to observe that the quantum-mechanical amplitude
(xb, tb|xa, ta) possesses quite a similar stochastic interpretation, albeit with some imaginary factors
i and an unsatisfactory aspect as we shall see. Recall the path integral representation of the time
evolution amplitude in Eq. (2.712). It involves the action A(x, t;xa, ta) from the initial point xa
to the actual particle position x. Recalling the definition of the fluctuation factor F (xb, xa; tb− ta)
in Eq. (4.97), we see that this factor is given by the path integral

F (xb, xa; tb − ta) =

∫

(xa,ta)❀(xb,tb)

Dx exp

[

i

h̄

∫ tb

ta

dt
M

2
(ẋ− v)

2

]

, (18.624)

where v(x, t) = (1/M)∂xA(x, xa; tb − ta) is the classical particle velocity. Up to a factor i and
the absence of the retardation symbol, this path integral has the same form as the one for the
probability (18.290) at large damping. As in (2.713) we introduce the momentum variable p(t)
and obtain the canonical path integral

F (xb, xa; tb−ta) =

∫

(xa,ta)❀(xb,tb)

D′x Dp
2πh̄

e
(i/h̄)

∫

tb

ta
dt{p(t)[ẋ(t)−v(x(t),t)]−p2(t)/2M}

, (18.625)

which looks similar to the stochastic path integral (18.290). The role of the diffusion constant
D = kBT/Mγ is now played by h̄/2. By analogy with the path integral of a particle in a magnetic
field in (2.654), the fluctuation factor satisfies a Schrödinger-like equation

(

p̂2b
2M

+
1

2
{p̂b, vb}

)

F (xb, xa; tb − ta) = ih̄F (xb, xa; tb − ta). (18.626)

This can easily be verified for the free particle, where vb = (xb − xa)/(tb − ta), and the fluctuation
factor is from (2.130) F (xb, xa; tb − ta) =

√

2πih̄(tb − ta). Note the symmetric operator order of
the product p̂v in accordance with the time slicing in Section 10.5, and the ensuing operator order
observed in Eq. (11.88). By reordering the Hamiltonian operator on the left-hand side of (18.626)
to position p̂ to the left of the velocity,

Ĥ → p̂2

2M
+ p̂v +

i

2
∇v. (18.627)
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Without the last term, the path integral (18.625) would describe fluctuating paths obeying the
stochastic differential equation analogous to the classical Langevin equation (18.338) [34]:

ẋ(t) − v(x(t), t) = p(t)/M. (18.628)

The momentum variable p(t) plays the role of the noise variable η(t). Up to a factor i, this quantum
noise has the same correlation functions as a white-noise variable:

〈p(t)p(t′)〉 = −iMh̄δ(t− t′). (18.629)

The “Fokker-Planck equation” associated with this “process” would be the ordinary Schrödinger
equation for the amplitude (xbtb|xata).

For a free particle, the ordering problem can be solved by noting that in the path integral
(18.624), the constant v can be removed from the path integral leaving

F (xb, xa; tb − ta)=e
−iA(xb,xa;tb−ta)/h̄

∫

(xa,ta)❀(xb,tb)

Dx exp

(

i

h̄

∫ tb

ta

dt
M

2
ẋ2
)

, (18.630)

the right-hand factor being the path integral for the amplitude (xbtb|xata) itself. This is iden-
tical with the path integral for the probability distribution of Brownian motion, and quantum-
mechanical fluctuations are determined by the process

ẋ(t) = p(t)/M, (18.631)

with the quantum noise (18.629).
But also in the presence of a potential, it is possible to specify a process which properly

represents quantum-mechanical fluctuations, although the situation is more involved [35]. To find
it we rewrite the action in (18.624) as

A =

∫ tb

ta

dt
M

2
(ẋ− v)2 =

∫ tb

ta

dt
M

2

[

(ẋ− s)2 − ih̄

2
s′2
]

, (18.632)

with some as yet unknown function s(x). The associated Hamiltonian is now

Ĥ → p̂2

2M
+

1

2
{p̂, s} + ih̄s′2 =

p̂2

2M
+ p̂s, (18.633)

with the proper operator order. In order for (18.632) to hold, the function s(x) must satisfy the
equations

v = s′, − ih̄s′2 + s2 = v2. (18.634)

Recalling Eqs. (4.12) and (4.5) we see that the equations in (18.634) can be satisfied with the help
of the full eikonal S(x):

s(x) = S(x)/M. (18.635)

The process which describes the quantum-mechanical fluctuations is therefore

ẋ(t) − S(x)/M = p(t)/M. (18.636)

The analogy is, however, not really satisfactory, since the full eikonal contains information on all
fluctuations. Indeed, by the definition (4.4), it is given by the logarithm of the amplitude (x t|xata),
or any superposition ψ(x, t) =

∫

dxa (x t|xata)ψ(xata) of it:

S(x) = −ih̄ log(x t|xata). (18.637)
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For the fluctuation factor this implies

s(x) − v(x) = δv(x) ≡ − i

M
h̄F (x t|xata). (18.638)

The path integral representation (18.624) for the fluctuation factor which has maximal analogy
with the stochastic path integral (18.300) is therefore

F (xbtb, xata)=

∫

(xa,ta)❀(xb,tb)

Dx exp

{

i

h̄

∫ tb

ta

dt
M

2

[

ẋR − v +
i

M
h̄ logF (xbtb, xata)

]2
}

.

(18.639)

Since we have to know F (xbtb, xata) to describe quantum-mechanical fluctuations as a process,
this representation is of little practical use. The initial representation (18.624) which does not
correspond to a proper process can, however, be used to solve quantum-mechanical problems.

18.23 Stochastic Equation for Schrödinger Wave Function

It is possible to write a stochastic type of path integral for the Schrödinger wave function ψ(x, t)
in D dimensions. By close analogy with Eq. (18.403), it reads

ψ(xb, tb) =

∫

Dv e
(i/h̄)

∫

tb

ta
dt [(M/2)v2(t)−V (xv(tb,t))]

ψ (xv(tb, ta), ta) , (18.640)

where

xv(tb, t) ≡ x(tb) −
∫ tb

t

dt′ v(t′) (18.641)

is a functional of v(t′) parameterizing all possible fluctuating paths arriving at the fixed final point
x(tb) after having started from an arbitrary initial point x(t). They are Brownian bridges between
the two points. The variables v(t) are the independently fluctuating velocities of the particle. The
natural appearance of the velocities in the measure of the stochastic path integral (18.640) is in
agreement with our observation in Eq. (10.141) that the time-sliced measure should contain the
coordinate differences ∆xn as the integration variables rather than the coordinates themselves,
which was the starting point for the nonholonomic coordinate transformations to spaces with
curvature and torsion.

We easily verify that (18.640) satisfies the Schrödinger equation by calculating the wave func-
tion at a slightly later time tb + ǫ, and expanding the right-hand side in powers of ǫ. Using the
correlation functions

〈vi(t)〉 = 0, 〈vi(t)vj(t′)〉 = ih̄δij δ(t− t′), (18.642)

we find, via a similar intermediate step as in (18.404), the desired result:

i∂tψ(x, t) =

[

− h̄2

2M
∂2x + V (x)

]

ψ(x, t). (18.643)

One may also write down a corresponding path integral for the time evolution amplitude

(xbtb|xata)=

∫

Dv e
(i/h̄)

∫

tb

ta
dt [(M/2)v2(t)−V (xv(tb,t))]

δ(D)(xa − xb +

∫ tb

ta

dtv(t)), (18.644)

which returns the Schrödinger amplitude (18.640) after convolution with ψ(xa, ta) (and reduces to
δ(D)(xa − xb) for tb → ta, as it should).
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The addition of an interaction with a vector potential is nontrivial. The electromagnetic
interaction in (10.168)

Aem =

∫ t

ta

dtA(x(t)) · ẋ (18.645)

cannot be simply inserted into the exponent of the path integral (18.640) since in the evaluation
via the correlation functions (18.642) assumes the independence of the noise variables v(t). This,
however, is not true in the interaction (18.645). Recall the discussion in Section 10.6 which showed
that the time-sliced version of the interaction (18.645) must contain the midpoint ordering of the
vector potential with respect to the intervals ∆x to be compatible with the classical field equation.
In Section 11.3 we have furthermore seen that this guaranteed gauge invariance. For the time-sliced
short-time action, this implies that (18.645) has the form [see (10.179)]

Aǫ
em = A(x̄) · ∆x. (18.646)

In this expression, a variation of ∆x changes also x̄, implying that in the sum over all sliced actions,
the ∆x are not independent. This is only achieved by the re-expanded postpoint interaction [see
10.178]. In the continuum, we shall indicate the postpoint product as before in (18.231) by a
retardation symbol R, and rewrite (18.645) as

Aem =

∫ t

ta

dt

[

A(x(t))ẋR(t) − iǫ
h̄

2M
∇·A(x(t))

]

. (18.647)

In the theory of stochastic differential equations, this postpoint expression is called an Itō integral .
The ordinary midpoint integral (18.645) is referred to as Stratonovich integral .

The Itō integral can now be added to the action in (18.644) with ẋ(t) replaced by v(t), and
we obtain

(xbtb|xata) =

∫

Dv exp

{

i

h̄

∫ tb

ta

dt

[

M

2
v2(t) + A(xv(tb, t))v

R(t) − V (xv(tb, t))

]}

× exp

{

i

h̄

∫ tb

ta

dt

[

−iǫ h̄

2M
∇·A(xv(tb, t))

]}

δ(D)(xa − xb +

∫ tb

ta

dtv(t)). (18.648)

Expanding the functional integrand in powers of v(t) as in (18.403) and using the correlation
functions (18.642) we obtain the Schrödinger equation

i∂t(x t|xata) =

[

− h̄2

2M
[∇− iA(x)]

2
+ V (x)

]

(x t|xata). (18.649)

The advantage of the Itō integral is that such a calculation becomes quite simple using the cor-
relation functions (18.642). The integral itself, however, is awkward to handle since it cannot be
modified by partial integration. This is only possible for the ordinary, Stratonovich integral.

18.24 Real Stochastic and Deterministic Equation
for Schrödinger Wave Function

The noise variable in the previous stochastic differential equation had an imaginary correlation
function (18.629). It is possible to set up a completely real stochastic differential equation and
modify this into a simple deterministic model which possesses the quantum properties of a particle
in an arbitrary potential. In particular, the model has a discrete energy spectrum with a definite
ground state energy, in this respect going beyond an earlier model by ’tHooft [36], whose spectrum
was unbounded from below.
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Let u(x) =
(

u1(x), u2(x)
)

be a time-independent field in two dimensions to be called mother
field . The reparametrization freedom of the spatial coordinates is fixed by choosing harmonic
coordinates in which

∇
2u(x) = 0, (18.650)

where ∇
2 is the Laplace operator. Equivalently, the components u1(x) and u2(x) may be assumed

to satisfy the Cauchy-Riemann equations

∂µu
ν = ǫµ

ρǫνσ∂ρu
σ, (µ, ν, . . . = 1, 2), (18.651)

where ǫµν is the antisymmetric Levi-Civita pseudotensor. The metric is δµν , so that indices can
be sub- or superscripts.

18.24.1 Stochastic Differential Equation

Consider now a point particle in contact with a heat bath of “temperature” h̄. Its classical orbit
x(t) is assumed to follow a stochastic differential equation consisting of a fixed rotation and a
random translation in the diagonal direction n ≡ (1, 1):

ẋ(t) = !× x(t) + n η(t), (18.652)

where ! is the rotation vector of length ω pointing orthogonal to the plane, and η(t) a white-noise
variable with zero expectation and the correlation function

〈η(t)η(t′)〉 = h̄ δ(t− t′). (18.653)

For a particle starting at x(0) = x, the position x(t) at a later time t is a function of x and a
functional of the noise variable η(t′) for 0 < t′ < t:

x(t) = Xη(x, t). (18.654)

As earlier in Section 18.13, a subscript η is used to indicate the functional dependence on the noise
variable ν.

We now use the orbits ending at all possible final points x = x(t) to define a time-dependent
field u(x; t) which is equal to u(x) at t = 0, and evolves with time as follows:

u(x; t) = ut[x; η] ≡ u (X0[t,x; η]) , (18.655)

where the notation ut[x; η] indicates the variables as in (18.654).
As a consequence of the dynamic equation (20A.1), the change of the field u(x, t) in a small

time interval from t = 0 to t = ∆t has the expansion

∆uη(x, 0) = ∆t [!× x] ·∇uη(x, 0) +

∫ ∆t

0

dt′ η(t′) (n ·∇)uη(x, 0)

+
1

2

∫ ∆t

0

dt′
∫ ∆t

0

dt′′ η(t′)η(t′′) (n ·∇)
2
uη(x, 0) + . . . . (18.656)

The omitted terms are of order ∆t3/2.

18.24.2 Equation for Noise Average

We now perform the noise average of Eq. (20A.2), defining the average field

u(x, t) ≡ 〈uη(x, t)〉. (18.657)
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Using the vanishing average of η(t) and the correlation function (18.653), we obtain in the limit
∆t→ 0 the time derivative

∂tu(x, t) = Ĥu(x, t), at t = 0, (18.658)

with the time evolution operator

Ĥ ≡ {[!× x] ·∇} +
h̄

2
(n ·∇)2. (18.659)

The average over η has made the operator Ĥ time-independent. For this reason, the average field
u(x, t) at an arbitrary time t is obtained by the operation

u(x, t) = Û(t)u(x, 0), (18.660)

where Û(t) is a simple exponential

Û(t) ≡ eĤt, (18.661)

as follows immediately from (18.658) and the trivial property Ĥ Û(t) = Û(t)Ĥ.
Note that the operator Ĥ commutes with the Laplace operator ∇

2, thus ensuring that the
harmonic property (18.650) of u(x) remains true for all times, i.e.,

∇
2u(x, t) ≡ 0. (18.662)

18.24.3 Harmonic Oscillator

We now show that Eq. (18.658) describes the quantum mechanics of a harmonic oscillator. Let us
restrict our attention to the line with arbitrary x1 ≡ x and x2 = 0. Applying the Cauchy-Riemann
equations (18.651), we can rewrite Eq. (18.658) in the pure x-form

∂tu
1(x, t) = ω x∂xu

2(x, t) − h̄

2
∂2x u

2(x, t), (18.663)

∂tu
2(x, t) = −ω x∂xu1(x, t) +

h̄

2
∂2x u

1(x, t), (18.664)

where we have omitted the second spatial coordinates x2 = 0. Now we introduce a complex field

ψ(x, t) ≡ e−ωx2/2h̄
[

u1 (x, t) + iu2 (x, t)
]

. (18.665)

This satisfies the differential equation

ih̄∂tψ(x, t) =

(

− h̄
2

2
∂2x +

ω2

2
x2 − h̄ω

2

)

ψ(x, t), (18.666)

which is the Schrödinger equation of a harmonic oscillator with the discrete energy spectrum
En = (n+ 1/2)h̄ω, n = 0, 1, 2, . . . .

18.24.4 General Potential

The method can easily be generalized to an arbitrary potential. We simply replace (18.652) by

ẋ1(t) = −∂2S1(x(t)) + n1 η(t),

ẋ2(t) = −∂1S1(x(t)) + n2 η(t), (18.667)

where S(x) shares with u(x) the harmonic property (18.650):

∇
2S(x) = 0, (18.668)
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i.e., the functions Sµ(x) with µ = 1, 2 fulfill Cauchy-Riemann equations like uµ(x) in (18.651).
Repeating the above steps we find, instead of the operator (18.659),

Ĥ ≡ −(∂2S
1)∂1 − (∂1S

1)∂2 +
h̄

2
(n ·∇)2, (18.669)

and Eqs. (18.663) and (18.664) become:

∂tu
1(x, t) = (∂xS

1)∂xu
2(x, t) − h̄

2
∂2x u

2(x, t), (18.670)

∂tu
2(x, t) = −(∂xS

1) ∂xu
1(x, t) +

h̄

2
∂2x u

1(x, t). (18.671)

This time evolution preserves the harmonic nature of u(x). Indeed, using the harmonic property
∇

2S(x) = 0 we can easily derive the following time dependence of the Cauchy-Riemann combina-
tions in Eq. (18.651):

∂t(∂1u
1 − ∂2u

2) = Ĥ(∂1u
1 − ∂2u

2) − ∂2∂1S
1(∂1u

1 − ∂2u
2) + ∂22S

1(∂2u
1 + ∂1u

2),

∂t(∂2u
1 + ∂1u

2) = Ĥ(∂2u
1 + ∂1u

2) − ∂2∂1S
1(∂2u

1 + ∂1u
2) − ∂22S

1(∂1u
1 − ∂2u

2).

Thus ∂1u
1 − ∂2u

2 and ∂2u
1 + ∂1u

2 which are zero at any time remain zero at all times.
On account of Eqs. (18.671), the combination

ψ(x, t) ≡ e−S
1(x)/h̄

[

u1 (x, t) + iu2 (x, t)
]

(18.672)

satisfies the Schrödinger equation

ih̄∂tψ(x, t) =

[

− h̄
2

2
∂2x + V (x)

]

ψ(x, t), (18.673)

where the potential is related to S1(x) by the Riccati differential equation

V (x) =
1

2
[∂x S

1(x)]2 − h̄

2
∂2x S

1(x). (18.674)

The harmonic oscillator is recovered for the pair of functions

S1(x) + iS2(x) = ω(x1 + ix2)2/2. (18.675)

18.24.5 Deterministic Equation

The noise η(t) in the stochastic differential equation Eq. (18.667) can also be replaced by a source
composed of deterministic classical oscillators qk(t), k = 1, 2, . . . with the equations of motion

q̇k = pk, ṗk = −ω2
kqk, (18.676)

as

η(t) ≡
∑

k

q̇k(t). (18.677)

The initial positions qk(0) and momenta pk(0) are assumed to be randomly distributed with a
Boltzmann factor e−βHosc/h̄, such that

〈qk(0)qk(0)〉 = h̄/ω2
k, 〈pk(0)pk(0)〉 = h̄. (18.678)

Using the equation of motion

q̇k(t) = ωkqk(0) sinωkt+ pk(0) sinωkt, (18.679)
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we find the correlation function

〈q̇k(t)q̇k(t
′)〉 = ω2

k cosωkt cosωkt
′〈qk(0)qk(0)〉 + sinωkt sinωkt〈pk(0)pk(0)〉

= cosωk(t− t′). (18.680)

We may now assume that the oscillators qk(t) are the Fourier components of a massless field, for
instance the gravitational field whose frequencies are ωk = k, and whose random initial conditions
are caused by the big bang. If the sum over k is simply a momentum integral

∫∞

−∞ dk, then (18.680)
yields a white-noise correlation function (18.653) for η(t).

Thus it is indeed possible to simulate the quantum-mechanical wave functions ψ(x, t) and the
energy spectrum of an arbitrary potential problem by deterministic equations with random initial
conditions at the beginning of the universe.

It remains to solve the open problem of finding a classical origin of the second important
ingredient of quantum theory: the theory of quantum measurement to be extracted from the wave
function ψ(x, t). Only then shall we understand how God throws dice [37].

Appendix 18A Inequalities for Diagonal Green Functions

Let us introduce several diagonal Green functions consisting of thermal averages of equal-time com-
mutators and anticommutators of bosonic and fermionic field operators, elementary or composite.
For brevity, we write

〈. . .〉T = Tr
[

exp(−Ĥ/T ) . . .
]

/

Tr
[

exp(−Ĥ/T )
]

= 〈. . .〉T (18A.1)

and define the averages with obvious spectral representations

c ≡ 〈[ψ̂, ψ̂†]∓〉T =

∫ ∞

−∞

dω

2π
ρ12(ω),

a ≡ 〈[ψ̂, ψ̂†]±〉T =

∫ ∞

−∞

dω

2π
ρ12(ω) tanh∓1

ω

2T
.

(18A.2)

We shall also introduce a quantity obtained by integrating the imaginary-time Green function over
a period τ ∈ [0, 1/T ). This gives for boson and fermion fields the nonnegative expression [see
(18.23)]

g ≡ G(ωm = 0) =

∫ 1/T

0

dτ 〈ψ̂(τ)ψ̂†(0)〉T

=

∫ ∞

−∞

dω

2π
ρ12(ω)

1

ω

{

1

tanh(ω/2T )

}

≥ 0. (18A.3)

Note that for fermion fields, the spectral weight in this integral is accompanied by an extra factor
tanh(ω/2T ). This is due to the fact that ωm = 0 is no fermionic Matsubara frequency, but a
“wrong” bosonic one. In fact, the sum (18.23) for G(ωm) contains a factor 1 − e(En−En′)/T for
both bosons and fermions, while ρ12(ω) in the spectral representation (18A.3) introduces, via
(18.59), a factor 1 − e−ω/T for bosons and a factor 1 + eω/T for fermions, thus explaining the
relative factor tanh(ω/2T ) in (18A.3).

The integration over τ leads to the factor 1/ω in (18A.3). This factor is also found by integrat-
ing the retarded Green function G12(t) and the commutator function C12(t) over all real times,
resulting in the spectral representations

i

∫ ∞

−∞

dtΘ(t)〈[ψ̂(t), ψ̂†(0)]∓〉T =
∫ dω

2π ρ12(ω) 1
ω ,

i

∫ ∞

−∞

dtΘ(t)〈[ψ̂(t), ψ̂†(0)]±〉T =
∫ dω

2π ρ12(ω) 1
ω tanh∓1 ω

2T .

(18A.4)
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Another set of thermal expectation values involves products of field operators with time deriva-
tives rather than integrals. Their spectral representations contain an extra factor ω. For example,
the τ -derivative of the expectation value in (18A.3) leads to

−〈 ˙̂
ψ(0), ψ̂†(0)〉T =

∫ ∞

−∞

dω

2π
ρ12(ω)ω(1 ± nω). (18A.5)

The real-time derivatives of the expectation values in (18A.4) have the spectral integrals

d ≡ i〈[ ˙̂ψ(0), ψ̂†(0)]∓〉T =
∫∞

−∞
dω
2π ρ12(ω)ω,

e ≡ i〈[ ˙̂ψ(0), ψ̂†(0)]±〉T =
∫∞

−∞
dω
2π ρ12(ω)ω tanh∓1 ω

2T .
(18A.6)

The expectation values c, a, g, d, e satisfy several rigorous inequalities. To derive these, we
observe that

µ(ω) =
1

g

1

2π
ρ12(ω)

1

ω

{

1

tanh(ω/2T )

}

(18A.7)

is a positive function. This follows directly from (18.59), according to which ρ12(ω) at negative ω
is negative for bosons and positive for fermions. Having divided out the total integral g defined in
(18A.3), the integral over µ(ω) is normalized to unity,

∫ ∞

−∞

dω µ(ω) = 1, (18A.8)

for both bosons and fermions. Using µ(ω), we form the following ratios:

c

g
=

∫ ∞

−∞

dω µ(ω)ω

{

1

coth(ω/2T )

}

, (18A.9)

a

g
=

∫ ∞

−∞

dω µ(ω)ω

{

coth(ω/2T )

1

}

, (18A.10)

d

g
=

∫ ∞

−∞

dω µ(ω)ω2

{

1

coth(ω/2T )

}

, (18A.11)

e

g
=

∫ ∞

−∞

dω µ(ω)ω2

{

coth(ω/2T )

1

}

. (18A.12)

The inequalities to be derived are based on the Jensen-Peierls inequality for convex functions
derived in Chapter [5]. Recall that a convex function f(ω) satisfies

f

(

ω1 + ω2

2

)

≤ f(ω1) + f(ω2)

2
, (18A.13)

which is generalized to

f

(

∑

i

µiωi

)

≤
∑

i

µif(ωi), (18A.14)

where µi is an arbitrary set of positive numbers with
∑

i µi = 1. In the continuum limit, this
becomes

f

(∫ ∞

−∞

dω µ(ω)ω

)

≤
∫ ∞

−∞

dω µ(ω)f(ω). (18A.15)
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It is obvious that a similar Jensen-Peierls inequality holds also for concave functions with inequality
sign in the opposite direction.

The Jensen-Peierls inequality (18A.15) is now applied to the function

f(ω) = ω coth
ω

2T
, (18A.16)

which looks like a slightly distorted hyperbola coming in from infinity along the diagonal lines |ω|
and crossing the f -axis at ω = 0, f(0) = 2T . The second derivative of f(ω) is positive everywhere,
ensuring the convexity. The function (18A.16) appears in the integrand of the boson part of
Eq. (18A.10). The right-hand side of (18A.15) can therefore be written as a/g. The left-hand side
is obviously equal to (c/g) coth(c/2Tg). Hence we arrive at the inequality

c coth
c

2Tg
≤ a. (18A.17)

In terms of the original field operators, this amounts to

〈[ψ̂, ψ̂†]+〉T ≥ 〈[ψ̂, ψ̂†]−〉T coth
〈[ψ̂, ψ̂†]−〉T

2T
∫ 1/T

0 dτ 〈ψ̂(τ)ψ̂†(0)〉T
. (18A.18)

In the special case that ψ̂ is a canonical interacting boson field of momentum p, the commutator
is simply [ψ̂, ψ̂†]− = 1, and the inequality becomes

1 + 2〈ψ̂†pψ̂p〉T ≥ coth(1/2Tg) = 1 +
2

e1/gT − 1
= 1 + 2ng−1 , (18A.19)

i.e.,

〈ψ̂†pψ̂p〉T ≥ 1

e1/gT − 1
≡ ng−1 , (18A.20)

where ng−1 is the free-boson distribution function (18.36) for an energy g−1.
This is quite an interesting relation. The quantity g is the Euclidean equilibrium Green function

G(ωm,p) at ωm = 0. For free particles in contact with a reservoir, it is given by

g−1 = G(0,p)−1 =
p2

2M
− µ ≡ ξ(p), (18A.21)

i.e., it is equal to the particle energy measured with respect to the chemical potential µ. Moreover,
we know that for free particles

〈ψ̂†pψ̂p〉T = nξ(p), (18A.22)

so that the inequality (18A.20) becomes an equality. The content of the inequality (18A.20) may
therefore be phrased as follows: For any interaction, the occupation of a state with momentum p
is never smaller than for a free boson level of energy g−1 = G(0,p).

Another inequality can be derived from the concave function

f̄(y) =
√
y coth

√
y

2T
, (18A.23)

using y = ω2 and the measure

∫ ∞

−∞

dω µ(ω) =

∫ ∞

0

dy√
y
µ(
√
y) = 1. (18A.24)
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As argued before, concave functions satisfy the inequality opposite to (18A.15), from which we
derive the inequality

f̄

(∫ ∞

0

dy√
y
µ(
√
y)y

)

≥
∫ ∞

0

dy√
y
µ(
√
y)f̄(y), (18A.25)

which can be rewritten as

f̄

(∫ ∞

−∞

dω µ(ω)ω2

)

≥
∫ ∞

−∞

dω µ(ω)f̄(ω2). (18A.26)

Again, the right-hand side is a/g, but now it is bounded from above by

a

g
≤
√

d

g
coth

(

1

2T

√

d

g

)

. (18A.27)

The combined inequality

c coth
c

2Tg
≤ a ≤

√

dg coth

(

1

2T

√

d

g

)

(18A.28)

may be used to derive further inequalities:

c2 ≤ dg,

c coth(d/2Tc) ≤ a,

g ≤ coth(c/2Ta),

c ≤ d tanh(c/2Ta),

c ≤ a tanh(d/2Tc).

(18A.29)

For fermion fields we see that an inequality like (18A.17) holds with c and a interchanged, i.e.,

a coth
a

2Tg
≤ c, (18A.30)

which leads to

〈[ψ̂, ψ̂†]−〉T ≤ 〈[ψ̂, ψ̂†]+〉T tanh
〈[ψ̂, ψ̂†]+〉T

2T
∫ 1/T

0 dτ 〈ψ̂(τ)ψ̂†(0)〉T
. (18A.31)

For canonical fermion fields with [ψ̂, ψ̂†]+ = 1, this becomes

1 − 2〈ψ̂†ψ̂〉T ≤ tanh(1/2gT ) = 1 − 2

e1/gT + 1
, (18A.32)

i.e., the fermionic counterpart of (18A.20):

〈ψ̂†pψ̂p〉T ≤ 1

e1/gT + 1
= ng−1 , (18A.33)

where ng−1 is the free-fermion distribution function (18.36) at an energy g−1. As in the Bose case,
free particles fulfill

〈ψ̂†pψ̂p〉T = nξ(p), (18A.34)

with g−1 = ξ(p), so that the inequality (18A.33) becomes an equality. The inequality implies
that an interacting Fermi level is never occupied more than a free fermion level of energy g−1 =
G(0,p)−1.

Also the second inequality in (18A.29) can be taken over to fermions which amounts to
(18A.30), but with a and d replaced by c and e.
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Appendix 18B General Generating Functional

For a field operator a(t) of frequency Ω and its Hermitian conjugate a†(t), the retarded and
advanced Green functions and the expectation values of commutators and anticommutators were
derived in Eqs. (18.68)–(18.77):

GR
Ω(t, t′) = Θ(t− t′)e−iΩ(t−t′),

GA
Ω(t, t′) = −Θ(t′ − t)e−iΩ(t−t′),

CΩ(t, t′) = e−iΩ(t−t′),

AΩ(t, t′) =

(

tanh
Ω

2T

)∓1

e−iΩ(t−t′). (18B.1)

Introducing complex sources η(t) and η†(t) associated with these operators, the generating func-
tional for these functions is

Z0[ηP, η
†
P] = Tr

{

ρ̂ T̂P exp

[

−i
∫ tb

ta

dt(â†η + η†â)

]}

. (18B.2)

The complex sources are distinguished according to the closed-time contour branches by a subscript
P. The generating functional can then be written down immediately as

Z0[ηP, η
†
P] = exp

{

−
∫

dt

∫

dt′η†P(t)GP(t, t′)ηP(t′)

}

, (18B.3)

generalizing (18.179), where the matrix

Gp =
1

2

(

AΩ +GR
Ω +GA

Ω AΩ −GR
Ω +GA

Ω

AΩ +GR
Ω −GA

Ω AΩ −GR
Ω −GA

Ω

)

(18B.4)

contains the following operator expectations on the two time branches:

Gp(t, t
′) =

(

〈T̂PâH(t+)â†H(t′+)〉T 〈T̂PâH(t+)â†H(t′−)〉T
〈T̂PâH(t−)â†H(t′+)〉T 〈T̂PâH(t−)â†H(t′−)〉T

)

=

(

〈T̂ âH(t+)â†H(t′+)〉T ±〈â†H(t′−)âH(t+)〉T
〈âH(t−)â†H(t′+)〉T 〈T̂ âH(t−)â†H(t′−)〉T

)

. (18B.5)

Note that âH(t+), â†H(t+) and âH(t−), â†H(t−) obey the Heisenberg equations of motion with the
Hamiltonians

Ĥ+ ≡ Ω

2

[

â†H(t+)âH(t+) ± âH(t+)â†H(t+)
]

,

Ĥ− ≡ −Ω

2

[

â†H(t−)âH(t−) ± âH(t−)â†H(t−)
]

. (18B.6)

In the second-quantized field interpretation, they read

Ĥ+ ≡ Ω

2
â†H(t+)âH(t+),

Ĥ− ≡ −Ω

2
â†H(t−)âH(t−).

The explicit time dependence of the matrix elements of GP(t, t′) in Eq. (18B.5) is

GP(t, t′) = e−iΩ(t−t′)

(

Θ(t− t′) ± nΩ ±nΩ

1 ± nΩ Θ(t′ − t) ± nΩ

)

, (18B.7)
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with nΩ = (eΩ/T ± 1)−1.
This Green function can, incidentally, be decomposed as

G0
P(t, t′) +GN

P (t, t′), (18B.8)

where G0
P(t, t′) is the Green function at zero temperature, i.e., the expression (18B.7) for nΩ ≡ 0.

The matrix GN (t, t′) contains the expectations of the normal products :

GN
P (t, t′) ≡

(

〈N̂ âH(t+)â†H(t′+)〉T 〈N̂ âH(t+)â†H(t′−)〉T
〈N̂ âH(t−)â†H(t′+)〉T 〈N̂ âH(t−)â†H(t′−)〉T

)

≡ ±
(

〈â†H(t′+)âH(t+)〉T 〈â†H(t′−)âH(t+)〉T
〈â†H(t′+)âH(t−)〉T 〈â†H(t′−)âH(t−)〉T

)

. (18B.9)

For an arbitrary product of operators, the normal product N̂(. . .) is defined by reordering the
operators so that all annihilation operators come to act first upon the state on the right-hand
side. At the end, the product receives the phase factor (−)F , where F is the number of fermion
permutations to arrive at the normal order. A similar decomposition exists at the operator level
before taking expectation values. For any pair of operators Â(t), B̂(t′) which are linear combinations
of creation and annihilation operators, the time-ordered product can be decomposed as

T̂ Â(t)B̂(t′) = 〈T̂ Â(t)B̂(t′)〉0 + N̂Â(t)B̂(t′), (18B.10)

where 〈. . .〉0 ≡ Tr (|0〉〈0| . . .) denotes the zero-temperature expectation. This decomposition is
proved in Appendix 18C, where it is also generalized to products of more than two operators.

Let us also go to the Keldysh basis here:

η̃P = QηP =
1√
2

(

1 −1
1 1

)

η̂P. (18B.11)

Then the generating functional becomes [instead of (18.180)]:

Z0[η
∗
P, ηP] = exp

[

−
∫

dt

∫

dt′ (η∗+,−η∗−)Q−1

(

0 GA
Ω

GR
Ω A

)

Q

(

η+

−η−

)]

= exp
{

− 1

2

∫

dt

∫

dt′
[

(η∗+ − η∗−)(t)GR
Ω(t− t′)(η+ + η−)(t′)

+ (η∗+ + η∗−)(t)GA
Ω(t− t′)(η+ − η−)(t′)

+ (η∗− − η∗−)(t)AΩ(t− t′)(η+ − η−)(t′)
]

}

, (18B.12)

where we have used the notation

η+(t) ≡ η(t+), η−(t) ≡ η(t−). (18B.13)

Expression (18B.12) can be simplified [as before (18.180)] using the time reversal relation (18.62)
in the form

AΩ(t, t′) = Θ(t, t′)AΩ(t, t′) ± Θ(t′ − t)AΩ(t′, t), (18B.14)

leading to

Z0[η
∗
P, ηP] = exp

{

− 1

2

∫ ∞

−∞

dt

∫ t

−∞

dt′

×
[

(η+ − η−)∗(t)GR
Ω(t, t′)(η+ + η−)(t′)

− (η+ − η−)(t)GR
Ω(t, t′)∗(η+ + η−)∗(t′)

+ (η+ − η−)∗(t)AΩ(t, t′)(η+ − η−)(t′)

+ (η+ − η−)(t)AΩ(t, t′)∗(η+ − η−)∗(t′)
]

}

. (18B.15)
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For the case of a second-quantized field, this is the most useful generating functional.
The expression (18B.15) can be used to derive the generating functional for correlation func-

tions between one or more ϕ(t) and the associated canonically-conjugate momenta. As an example,
consider immediately a harmonic oscillator with ϕ(t) = x(t) and the momentum p(t). We would
like to find the generating functional

Z[jP, kP] = Tr

(

ρ̂ T̂P exp

{

i

∫

P

dx [jP(t)xP(t) + kP(t)pP(t)]

})

. (18B.16)

The position variable x(t) is decomposed as in (18.92) into a sum of creation and an annihilation
operators:

x̂(t) =

√

h̄

2MΩ

[

âe−iΩt + â†eiΩt
]

. (18B.17)

The inverse of this decomposition is

{

â
â†

}

= (MΩ ϕ̂± ip̂)/
√

2MΩh̄, (18B.18)

and there is an analogous relation of the complex sources:

{

η
η†

}

= (j ± iMΩ k) /
√

2MΩh̄. (18B.19)

Inserting these sources into (18B.15), we obtain the generating functional

Z0[jP, kP] = exp

{

− 1

2MΩ

∫ ∞

−∞

dt

∫ t

−∞

dt′ (j+ − j−)(t)

×
{

[ReAΩ(t, t′) + iImGR
Ω(t, t′)]j+(t′)

− [ReAΩ(t, t′) − iImGR
Ω(t, t′)]j−(t′)

}

(18B.20)

−1

2

∫ ∞

−∞

dt

∫ t

−∞

dt′ (k+ − k−)(t) {[ImAΩ(t, t′) − iReGR
Ω(t, t′)]j+(t′)

− [ImAΩ(t, t′) + iReGR
Ω(t, t′)]j−(t′)

}

+ (j ↔ kMΩ)

}

.

Here it is useful to introduce the quantities

α(t, t′) =
1

2MΩ

[

ReAΩ(t, t′) + iImGR
Ω(t, t′)

]

,

β(t, t′) =
1

2MΩ

[

ImAΩ(t, t′) − iReGR
Ω(t, t′)

]

. (18B.21)

Then the generating functional reads

Z0[j+, j−, k+, k−]= exp

{

−
∫ ∞

−∞

dt

∫ t

−∞

dt′ (j+−j−)(t) [α(t, t′)j+(t′)−α∗(t, t′)j−(t′)] + (j ↔ kMΩ)

−MΩ

∫ ∞

−∞

dt

∫ t

−∞

dt′ (k+−k−)(t) [β(t, t′)j+(t′)−β∗(t, t′)j−(t′)] + (j ↔ kMΩ)

}

.

(18B.22)

If the oscillator is coupled only to the real source j, i.e., if its generating functional reads

Z[jP] = Tr

{

ρ̂ T̂P exp

[

i

∫

P

dx jP(t)x̂P(t)

]}

, (18B.23)
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we can drop all but the first line in the exponent of (18B.22) and have

Z0[j+, j−] = exp

{

−
∫ ∞

−∞

dt

∫ t

−∞

dt′ (j+ − j−)(t) [α(t, t′)j+(t′) − α∗(t, t′)j−(t′)]

}

.

(18B.24)

Since (18B.22) and (18B.24) contain only the causal temporal order t > t′, the retarded Green
function GR

Ω(t, t′) in (18B.21) can be replaced by the expectation value of the commutator [see
(18.40), (18.41), and (18.42)]. Thus, for t > t′, the functions α(t, t′) and β(t, t′) are equal to11

α(t, t′) =
1

2MΩ
[ReAΩ(t, t′) + iImCΩ(t, t′)] , t > t′,

β(t, t′) =
1

2MΩ
[ImAΩ(t, t′) − iReCΩ(t, t′)] , t > t′. (18B.25)

For a single oscillator of frequency Ω, we use the spectral function (18.74) properties (18.44)
and (18.53) of AΩ(t, t′) and CΩ(t, t′), and find the simple expressions:

α(t, t′) =
1

2MΩ

[

Re e−iΩ(t−t′)

{

coth Ω
2T

tanh Ω
2T

}

+ iIm e−iΩ(t−t′)

]

=
1

2MΩ

[

cosΩ(t− t′)

{

coth Ω
2T

tanh Ω
2T

}

− i sinΩ(t− t′)

]

, (18B.26)

β(t, t′) =
1

2MΩ

[

Im e−iΩ(t−t′)

{

coth Ω
2T

tanh Ω
2T

}

− iRe e−iΩ(t−t′)

]

= − 1

2MΩ

[

sin Ω(t− t′)

{

coth Ω
2T

tanh Ω
2T

}

+ i cosΩ(t− t′)

]

. (18B.27)

Note that real and imaginary parts of the functions ᾱ(t−t′) can be combined into a single expression
(β = 1/T )

ᾱ(t− t′) =
1

2MΩ















cosh[Ω(β/2 − i(t− t′)]

sinh(Ωβ/2)
for bosons,

sinh[Ω(β/2 − i(t− t′)]

cosh(Ωβ/2)
for fermions.

(18B.28)

The bosonic function agrees with the time-ordered Green function (18.101) for t > t′ and continues
it analytically to t < t′.

In Fourier space, the functions (18B.26) and (18B.27) correspond to

α(ω′) =
π

2MΩ

(

coth±1
ω′

2T
+ 1

)

[δ(ω′ − Ω) − δ(ω′ + Ω)] ,

β(ω′) = − iπ

2MΩ

(

coth±1
ω′

2T
+ 1

)

[δ(ω′ − Ω) + δ(ω′ + Ω)] .

Let us split these functions into a zero-temperature contribution plus a remainder

α(ω′) =
π

MΩ

{

δ(ω′ − Ω) ± 1

eΩ/T ∓ 1
[δ(ω′ − Ω) + δ(ω′ + Ω)]

}

,

β(ω′) =
π

MΩ

{

δ(ω′ − Ω) ± 1

eΩ/T ∓ 1
[δ(ω′ − Ω) − δ(ω′ + Ω)]

}

.

11Note that α(t, t′) = 〈x(t)x(t′)〉T .
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On the basis of this formula, Einstein first explained the induced emission and absorption of
light by atoms which he considered as harmonically oscillating dipoles in contact with a thermal
reservoir. He imagined them to be harmonically oscillating dipole moments coupled to a thermal
bath consisting of the Fourier components of the electromagnetic field in thermal equilibrium. Such
a thermal bath is called a black body. The first purely dissipative and temperature-independent
term in α(ω′) was attributed by Einstein to the spontaneous emission of photons. The second term
is caused by the bath fluctuations, making energy go in and out via induced emission and absorption
of photons. It is proportional to the occupation number of the oscillator state nΩ = (e−Ω/T ∓1)−1.
The equality of the prefactors in front of the two terms is the important manifestation of the
fluctuation-dissipation theorem found earlier [see (18.53)].

Appendix 18C Wick Decomposition of Operator Products

Consider two operators Â(t) and B̂(t) which are linear combinations of creation and annihilation
operators

Â(t) = α1â(t) + α2â
†(t),

B̂(t) = β1â(t) + β2â
†(t). (18C.1)

We want to show that the time-ordered product of two operators has the decomposition quoted in
Eq. (18B.10):

T̂ Â(t)B̂(t) = 〈T̂ Â(t)B̂(t)〉0 + N̂Â(t)B̂(t). (18C.2)

The first term on the right-hand side is the thermal expectation of the time-ordered product at
zero temperature; the second term is the normal product of the two operators.

If Â and B̂ are both creation or annihilation operators, the statement is trivial with 〈T̂ ÂB̂〉0 =
0. If one of the two, say Â(t), is a creation operator and the other, B̂(t), an annihilation operator,
then

T̂ â(t)â†(t′) = Θ(t− t′)â(t)â†(t′) ± Θ(t′ − t)â†(t′)â(t)

= Θ(t− t′)[â(t)â†(t′)]∓ ± â†(t′)â(t). (18C.3)

Due to the commutator (anticommutator) the first term is a c-number. As such it is equal to the
expectation value of the time-ordered product at zero temperature. The second term is a normal
product, so that we can write

T̂ â(t)â†(t′) = 〈T̂ â(t)â†(t′)〉0 + N̂ â(t)â†(t′). (18C.4)

The same thing is true if a and a† are interchanged (such an interchange produces merely a sign
change on both sides of the equation). The general statement for Â(t)B̂(t′) follows from the
bilinearity of the product.

The decomposition (18C.2) of the time-ordered product of two operators can be extended to
a product of n operators, where it reads

T̂ Â(t1) . . . Â(tn) =
n
∑

i=2

N̂
˙̂
A(t1) . . .

˙̂
A(ti) . . . Â(tn). (18C.5)

A common pair of dots on top of a pair of operators denotes a Wick contraction of Section 3.10. It
indicates that the pair of operators has been replaced by the expectation 〈T̂ Â(t1)Â(ti)〉0, multiplied
by a factor (−)F , if F = fermion permutations were necessary to bring the contracted operator to
the adjacent positions. The remaining factors are contracted further in the same way. In this way,
any time-ordered product

T̂ Â(t1) · · · Â(tn) (18C.6)
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can be expanded into a sum of normal products of these operators containing successively one,
two, three, etc. pairs of contracted operators.

The expansion rule can be phrased most compactly by means of a generating functional

T̂ e
i
∫

∞

−∞

dtÂ(t)j(t)
= e
− 1

2

∫

∞

−∞

dtdt′j(t)〈T̂ Â(t)Â(t′)〉0j(t
′)
N̂

(

e
i
∫

∞

−∞

dtÂ(t)j(t)
)

. (18C.7)

Differentiations with respect to the source j(t) on both sides produce precisely the above decom-
positions.

By going to thermal expectation values of (18C.7) at a temperature T , we find

〈

T̂ e
i
∫

∞

−∞

dtÂ(t)j(t)
〉

T

= e
− i

2

∫

∞

−∞

dtdt′j(t)G(t,t′)j(t′)
, (18C.8)

with

G(t, t′) = 〈T̂ Â(t)Â(t′)〉0 + 〈N̂Â(t)Â(t′)〉T . (18C.9)

The first term on the right-hand side is calculated at zero temperature. All finite temperature
effects reside in the second term.
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Agri non omnes frugiferi sunt

Not all fields are fruitful
Cicero (106BC–43BC), Tusc. Quaest., 2, 5, 13

19
Relativistic Particle Orbits

Particles moving at large velocities near the speed of light are called relativistic

particles. If such particles interact with each other or with an external potential,
they exhibit quantum effects which cannot be described by fluctuations of a single
particle orbit. Within short time intervals, additional particles or pairs of particles
and antiparticles are created or annihilated, and the total number of particle orbits
is no longer invariant. Ordinary quantum mechanics which always assumes a fixed
number of particles cannot describe such processes. The associated path integral
has the same problem since it is a sum over a given set of particle orbits. Thus, even
if relativistic kinematics is properly incorporated, a path integral cannot yield an
accurate description of relativistic particles. An extension becomes necessary which
includes an arbitrary number of mutually linked and branching fluctuating orbits.

Fortunately, there exists a more efficient way of dealing with relativistic particles.
It is provided by quantum field theory . We have demonstrated in Section 7.14
that a grand-canonical ensemble of particle orbits can be described by a functional
integral of a single fluctuating field. Branch points of newly created particle lines
are accounted for by anharmonic terms in the field action. The calculation of their
effects proceeds by perturbation theory which is systematically performed in terms
of Feynman diagrams with calculation rules very similar to those in Section 3.18.
There are again lines and interaction vertices, and the main difference lies in the
lines which are correlation functions of fields rather than position variables x(t).
The lines and vertices represent direct pictures of the topology of the worldlines of
the particles and their possible collisions and creations.

Quantum field theory has been so successful that it is generally advantageous
to describe the statistical mechanics of many completely different types of line-like
objects in terms of fluctuating fields. One important example is the polymer field
theory in Section 15.12. Another important domain where field theory has been
extremely successful is in the theory of line-like defects in crystals, superfluids, and
superconductors. In the latter two systems, the defects occur in the form of quan-
tized vortex lines or quantized magnetic flux lines, respectively. The entropy of their
classical shape fluctuations determines the temperature where the phase transitions
take place. Instead of the usual way of describing these systems as ensembles of
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particles with their interactions, a field theory has been developed whose Feynman
diagrams are the direct pictures of the line-like defects, called disorder field theory

[1].
The most important advantage of field theory is that it can describe most eas-

ily phase transitions, in which particles form a condensate. The disorder theory
is therefore particularly suited to understand phase transitions in which defect-,
vortex-, or flux-lines proliferate, which happens in the processes of crystal melting,
superfluid to normal, or superconductor to normal transitions, respectively. In fact,
the disorder theory is so far the only theory in which the critical behavior of the
superconductor near the transition is properly understood [2].

A particular quantum field theory, called quantum electrodynamics describes
with great success the electromagnetic interactions of electrons, muons, quarks, and
photons. It has been extended successfully to include the weak interactions among
these particles and, in addition, neutrinos, using only a few quantized Dirac fields
and a quantized electromagnetic vector potential. The inclusion of a nonabelian
gauge field, the gluon field, is a good candidate for explaining all known features of
strong interactions.

It is certainly unnecessary to reproduce in an orbital formulation the great
amount of results obtained in the past from the existing field theory of weak, electro-
magnetic, and strong interactions. The orbital formulation was, in fact, proposed
by Feynman back in 1950 [3], but never pursued very far due to the success of
quantum field theory. Recently, however, this program was revived in a number of
publications [4, 5]. The main motivation for this lies in another field of fundamental
research: the string theory of fundamental particles. In this theory, all elementary
particles are supposed to be excitations of a single line-like object with tension, and
various difficulties in obtaining a consistent theory in the physical spacetime have
led to an extension by fermionic degrees of freedom, the result being the so-called
superstring . Strings moving in spacetime form worldsurfaces rather than worldlines.
They do not possess a second-quantized field theoretic formulation. Elaborate rules
have been developed for the functional integrals describing the splitting and merg-
ing of strings. If one cancels one degree of freedom in such a superstring, one has a
theory of splitting and merging particle worldlines. As an application of the calcu-
lation rules for strings, processes which have been known from calculations within
the quantum field theory have been recalculated using these reduced superstring
rules. In this textbook, we shall give a small taste of such calculations by evaluating
the change in the vacuum energy of electromagnetic fields caused by fluctuating
relativistic spinless and spin-1/2 particles.

It should be noted that since up to now, no physical result has emerged from
superstring theory,1 there is at present no urgency to dwell deeper into the subject.

By giving a short introduction into this subject we shall be able to pay tribute to
some historic developments in quantum mechanics, where the relativistic generaliza-

1This theory really deserves a price for having the highest popularity-per-physicality ratio in
the history of science, enjoying a great amount of financial support. The situation is very similar
to the geocentric medieval picture of the world.
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tion of the Schrödinger equation was an important step towards the development of
quantum field theory [6]. For this reason, many textbooks on quantum field theory
begin with a discussion of relativistic quantum mechanics. By analogy, we shall
incorporate relativistic kinematics into path integrals.

It should be noted that an esthetic possibility to give a path Fermi statistics is
based on the Chern-Simons theory of entanglement of Chapter 16. However, this
approach is still restricted to 2 + 1 spacetime dimensions [7], and an extension to
the physical 3 + 1 spacetime dimensions is not yet in sight.

19.1 Special Features of Relativistic Path Integrals

Consider a free point particle of massM moving through the 3+1 spacetime dimen-
sions of Minkowski space at relativistic velocity. Its path integral description is con-
veniently formulated in four-dimensional Euclidean spacetime where the fluctuating
worldlines look very similar to the fluctuating polymers discussed in Chapter 15.

Thus, time is taken to be imaginary, i.e.,

t = −iτ = −ix4/c, (19.1)

and the length of a four-vector x = (x, x4) is given by

x2 = x2 + (x4)2 = x2 + c2τ 2. (19.2)

If xµ(λ) is an arbitrarily parametrized orbit, the well-known classical Euclidean
action is proportional to the invariant length of the orbit in spacetime:

S =
∫ λb

λa

dλ
√

x′2(λ), (19.3)

and reads

Acl,e =McS, (19.4)

or, explicitly,

Acl,e =Mc
∫ λb

λa

ds(λ), (19.5)

with

ds(λ) ≡ dλ
√

x′2(λ) = dλ
√

x′2(λ) + c2τ ′2(λ). (19.6)

The prime denotes the derivative with respect to the parameter λ. The action is
independent of the choice of the parametrization. If λ is replaced by a new parameter

λ→ λ̄ = f(λ), (19.7)
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then

x′2 → 1

f ′2
x′2, (19.8)

dλ → dλ f ′, (19.9)

so that ds and the action remain invariant.
We now calculate the Euclidean amplitude for the worldline of the particle to run

from the spacetime point xa = (xa, cτa) to xb = (xb, cτb). For the sake of generality,
we treat the case of D Euclidean spacetime dimensions. Before starting we observe
that the action (19.5) does not lend itself easily to a calculation of the path integral
over e−Acl,e/h̄. There exists an alternative form for the classical action that is more
suitable for this purpose. It involves an auxiliary field h(λ) and reads:

Āe =
∫ λb

λa

dλ

[

Mc

2h(λ)
x′2(λ) + h(λ)

Mc

2

]

. (19.10)

This has the advantage of containing the particle orbit quadratically as in a free
nonrelativistic action. The auxiliary field h(λ) has been inserted to make sure that
the classical orbits of the action (19.10) coincide with those of the original action
(19.5). Indeed, extremizing Āe in h(λ) gives the relation

h(λ) =
√

x′2(λ). (19.11)

Inserting this back into Āe renders the classical action

Acl,e =Mc
∫ λb

λa

dλ
√

x′2(λ), (19.12)

which is the same as (19.5).
At this point the reader will worry that although the new action (19.10) describes

the same classical physics as the original action (19.12), it may lead to a completely
different quantum physics of a relativistic partile. With a little effort, however, it
can be shown that this is not so. Since the proof is quite technical, it will be given
in Appendix 19A.

The new action (19.10) shares with the old action (19.12) the reparametrization
invariance (19.7) for arbitrary fluctuating path configurations. We only have to
assign an appropriate transformation behavior to the extra field h(λ). If λ is replaced
by a new parameter λ̄ = f(λ), then x′2 and dλ transform as in (19.8) and (19.9),
and the action remains invariant, if h(λ) is simultaneously changed as

h→ h/f ′. (19.13)

We now set up the path integral of a relativistic particle associated with the
action (19.10). First we sum over the orbital fluctuations at a fixed h(λ). To find
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the correct measure of integration, we use the canonical formulation in which the
Euclidean action reads

Āe[p, x] =
∫ λb

λa

dλ

[

−ipx′ + h(λ)

2Mc

(

p2 +M2c2
)

]

. (19.14)

This must be sliced in the length parameter λ. We form N + 1 slices as usual,
choosing arbitrary small parameter differences ǫn = λn − λn−1 depending on n, and
write the sliced action as

ĀN
e [p, x] =

N+1
∑

n=1

[

−ipn(xn − xn−1) + hnǫn
p2n

2Mc
+ ǫnhn

Mc

2

]

. (19.15)

This path integral has a universal phase space measure [recall (2.28)]

∫

DDx
∫ DDp

(2πh̄)D
e−Āe[p,x]/h̄ ≈

N
∏

n=1

[∫

dDxn

]N+1
∏

n=1

[

∫ dDpn
(2πh̄)D

e−ĀN
e [p,x]/h̄

]

. (19.16)

The momentum variables pn are integrated out to give the configuration space in-
tegrals (setting λN+1 ≡ λb, hN+1 ≡ hb) [compare (2.79)]

1
√

2πh̄ǫbhb/Mc
D

N
∏

n=1







∫ dDxn
√

2πh̄ǫnhn/Mc
D





 exp
(

−1

h̄
ĀN

e [x]
)

, (19.17)

with the time-sliced action in configuration space

ĀN
e [x] =

N+1
∑

n=1

[

Mc

2hnǫn
(∆xn)

2 + ǫnhn
Mc

2

]

. (19.18)

The Gaussian integrals over xn in (19.17) can now be done successively using For-
mula (2.75), and we find [as in (2.80)]

1
√

2πh̄S/Mc
D exp

[

−Mc

2h̄

(xb − xa)
2

S
− Mc

2h̄
S

]

, (19.19)

where S is the total sliced length of the orbit

S ≡
N+1
∑

n=1

ǫnhn, (19.20)

whose continuum limit is

S =
∫ λb

λa

dλ h(λ). (19.21)

The result (19.19) does not depend on the function h(λ) but only on S, this
being a consequence of the reparametrization invariance of the path integral. While
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the total λ-interval changes under the transformation, the total length S of (19.21)
is invariant under the joint transformations (19.7) and (19.13). This invariance
permits only the invariant length S to appear in the integrated expression (19.19),
and the path integral over h(λ) can be reduced to a simple integral over S. The
appropriate path integral for the time evolution amplitude reads

(xb|xa) = N
∫ ∞

0
dS

∫

DhΦ[h]
∫

DDx e−Āe/h̄, (19.22)

where N is some normalization factor and Φ[h] an appropriate gauge-fixing func-

tional .

19.1.1 Simplest Gauge Fixing

The simplest choice for the gauge-fixing functional is a δ-functional,

Φ[h] = δ[h− 1], (19.23)

which fixes h(λ) to be equal to the light velocity everywhere, and relates

S = λb − λa. (19.24)

This Lorentz-invariant length parameter is the so-called proper length of special
relativity, equal to c times the proper time. By analogy with the discussion of
thermodynamics in Chapter 2 we shall then denote λb−λa by ch̄β and write (19.24)
as

S = λb − λa ≡ c h̄β. (19.25)

If we further use translational invariance to set λa = 0, we arrive at the gauge-fixed
path integral

(xb|xa) = N c h̄
∫ ∞

0
dβ e−βMc2/2

∫

DDx e−A0,e/h̄, (19.26)

with

A0,e =
∫ h̄β

0
dλ

M

2
ẋ2. (19.27)

Here we have gone to a timelike paramter τ = λ/c und therefore used a dot to denote
the derivative: ẋ(τ) ≡ dx(λ)/dτ . Remarkably, the gauge-fixed action coincides with
the action of a free nonrelativistic particle in D Euclidean spacetime dimensions.
Having taken the trivial term

∫ h̄β
0 dτ Mc2/2h̄ out of the action (19.14), the expression

(19.26) contains a Boltzmann weight e−βMc2/2 for each particle orbit of mass M .
The solution of the path integral is then given by

(xb|xa) =N c h̄
∫ ∞

0
dβ

1
√

2πh̄2β/M
D exp

[

−M
2h̄

(xb − xa)
2

h̄β
−βMc2

2

]

. (19.28)
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By Fourier-transforming the x-dependence, this amplitude can also be written as

(xb|xa) = N c h̄
∫ ∞

0
dβ e−βMc2/2

∫ dDk

(2π)D
exp

[

ik(xb − xa)− β
h̄2k2

2M

]

, (19.29)

and evaluated to

(xb|xa) = N 2Mc

h̄

∫

dDk

(2π)D
1

k2 +M2c2/h̄2
eik(xb−xa). (19.30)

Upon setting N = λCM/2, where

λCM ≡ h̄/Mc, (19.31)

is the well-known Compton wavelength of a particle of mass M [recall Eq. (4.377)],
this becomes the Green function of the Klein-Gordon field equation in Euclidean
time:

(−∂2b +M2c2/h̄2)(xb|xa) = δ(D)(xb − xa). (19.32)

In the Fourier representation (19.30), the integral over k [or the integral over β
in (19.28)] can be performed with the explicit result for the Green function

(xb|xa) =
1

(2π)D/2

(

Mc

h̄
√
x2

)D/2−1

KD/2−1

(

Mc
√
x2/h̄

)

, (19.33)

where Kν(z) denotes the modified Bessel function and x ≡ xb − xa. In the nonrela-

tivistic limit c→ ∞, the asymptotic behavior Kν(z) →
√

π/2ze−z [see Eq. (1.357)]
leads to

(xb|xa) = (xbτa|xaτa)
c→∞−−−→ h̄

2Mc
e−Mc2(τb−τa)/h̄ (xbτb|xaτa)Schr , (19.34)

with the usual Euclidean time evolution amplitude of the free Schrödinger equation

(xbτb|xaτa)Schr =
1

√

2πh̄(τb − τa)/M
D−1 exp

{

−M
2h̄

(xb − xa)
2

τb − τa

}

. (19.35)

The exponential prefactor in (19.34) contains the effect of the rest energy Mc2

which is ignored in the nonrelativistic Schrödinger theory.
Note that the same limit may be calculated conveniently in the saddle point

approximation to the β-integral (19.28). For c → ∞, the exponent has a sharp
extremum at

β=

√

(xb−xa)2
ch̄

=

√

(xb−xa)2+c2(τb−τa)2
ch̄

→
c→∞

τb−τa
h̄

+
(xb−xa)

2

2c2h̄(τb − τa)
+ . . . ,(19.36)

and the β-integral can be evaluated in a quadratic approximation around this value.
This yields once again (19.34).
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19.1.2 Partition Function of Ensemble of Closed Particle Loops

The diagonal amplitude (19.26) with xb = xa contains the sum over all lengths and
shapes of a closed particle loop in spacetime. This sum can be made a partition
function of a closed loop if we remove a degeneracy factor proportional to 1/L from
the integral over L. Then all cyclic permutations of the points of the loop are
counted only once. Apart from an arbitrary normalization factor to be fixed later,
the partition function of a single closed loop reads

Z1 =
∫ ∞

0

dβ

β
e−βMc2/2

∫

DDx e−A0,e/h̄. (19.37)

Inserting the right-hand integral in (19.29) for the path integral (with xb = xa), this
becomes

Z1 = VD

∫ ∞

0

dβ

β
e−βMc2/2

∫

dDk

(2π)D
exp

(

−β h̄
2k2

2M

)

, (19.38)

where VD is the total volume of spacetime. This can be evaluated immediately. The

Gaussian integral gives for each of the D dimensions a factor 1/
√

2πh̄2β/M , after
which formula (2.498) leads to

Z1 = VD

∫ ∞

0

dβ

β
e−βMc2/2 1

√

2πh̄2β/M
D =

VD

λCM
D

Γ(1−D/2)

(4π)D/2
, (19.39)

where λCM is the Compton wavelength (19.31). With the help of the sloppy formula
(2.506) of analytic regularization which implies the minimal subtraction explained
in Subsection 2.15.1, the right-hand side of (19.38) can also be written as

Z1 = −VD
∫

dDk

(2π)D
log

(

k2 +M2c2/h̄2
)

. (19.40)

The right-hand side can be expressed in functional form as

Z1 = −Tr log
(

−∂2 +M2c2/h̄2
)

= −Tr log
(

−h̄2∂2 +M2c2
)

, (19.41)

the two expressions being equal in the analytic regularization of Section 2.15, since
a constant inside the logarithm gives no contribution by Veltman’s rule (2.508).

The partition function of a grand-canonical ensemble is obtained by exponenti-
ating this:

Z = eZ1 = e−Tr log(−h̄2∂2+M2c2). (19.42)

In order to interprete this expression physically, we separate the integral
∫

dDk/(2π)D into an integral over the temporal component kD and a spatial re-
mainder, and write

k2 +M2c2/h̄2 =
(

kD
)2

+ ω2
k
/c2, (19.43)
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with the frequencies

ωk ≡ c
√

k2 +M2c2/h̄2. (19.44)

Recalling the result (2.505) of the integral (2.491) we obtain

Z1 = −2VD

∫

dD−1k

(2π)D−1

h̄ωk

2c
. (19.45)

The exponent is the sum of two ground state energies of oscillators of energy h̄ωk/2,
which are the vacuum energies associated with two relativistic particles. In quantum
field theory one learns that these are particles and antiparticles. Many neutral
particles are identical to their antiparticles, for example photons, gravitons, and the
pion with zero charge. For these, the factor 2 is absent. Then the integral (19.38)
contains a factor 1/2 accounting for the fact that paths running along the same
curve in spacetime but in the opposite sense are identified.

Comparing (19.42) with (3.559) and (3.622) for j = 0 we identify −Z1h̄ with
−W [0] and the Euclidean effective action Γ of the ensemble of loops:

−Z1 = −W [0]/h̄ = Γe/h̄. (19.46)

19.1.3 Fixed-Energy Amplitude

The fixed-energy amplitude is related to (19.22) by a Laplace transformation:

(xb|xa)E ≡ −i
∫ ∞

τa
dτb e

E(τb−τa)/h̄ (xb|xa) , (19.47)

where τb, τa are once more the time components in xb, xa. As explained in Chapter 9,
the poles and the cut along the energy axis in this amplitude contain all information
on the bound and continuous eigenstates of the system. The fixed-energy amplitude
has the reparametrization-invariant path integral representation which reads with
the conventions of Eq. (19.10):

(xb|xa)E =
h̄

2Mc

∫ ∞

0
dL

∫

DhΦ[h]
∫

DDx e−Āe,E/h̄, (19.48)

with the Euclidean action

Āe,E =
∫ λb

λa

dλ

[

Mc

2h(λ)
x′2(λ)− h(λ)

E2

2Mc3
+ h(λ)

Mc

2

]

. (19.49)

To prove this, we write the temporal xD-part of the sliced D-dimensional action
(19.18) in the canonical form (19.15). In the associated path integral (19.16), we
integrate out all xDn -variables, producing N δ-functions. These remove the integrals
over N momentum variables pDn , leaving only a single integral over a common pD.
The Laplace transform (19.47), finally, eliminates also this integral making pD equal
to −iE/c. In the continuum limit, we thus obtain the action (19.49).

The path integral (19.48) forms the basis for studying relativistic potential prob-
lems. Only the physically most relevant example will be treated here.
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19.2 Tunneling in Relativistic Physics

Relativistic harbors several new tunneling phenomena, of which we want to discuss
two especially interesting ones.

19.2.1 Decay Rate of Vacuum in Electric Field

In relativistic physics, an empty Minkowski space with a constant electric field E

is unstable. There is a finite probability that a particle-antiparticle pair can be
created. For particles of mass M , this requires the energy

Epair = 2Mc2. (19.50)

This energy can be supplied by the external electric field. If the pair of charge ±e
is separated by a distance which is roughly twice the Compton wavelength λCM =
h̄/Mc of Eq. (19.31), it gains an energy 2|E|λCMe. The decay will therefore become
significant when

|E| > Ec =
M2c3

eh̄
. (19.51)

Euclidean Action

In Chapter 17 we have shown that in the semiclassical limit where the decay-rate
is small, it is proportional to a Boltzmann-like factor e−Acl,e/h̄, where Acl,e is the
action of a Euclidean classical solution mediating the decay. Such a solution is easily
found. We use the classical action in the form (19.12) and choose the parameter λ
to measure the imaginary time λ = τ = it = x4/c. Then the action takes the form

Acl,e =
∫ τb

τa
dτ
[

Mc2
√

1 + ẋ2(τ)/c2 − eE · x(τ)
]

. (19.52)

This is extremized by the classical equation of motion

M
d

dτ

ẋ(τ)
√

1 + ẋ2(τ)/c2
= −eE, (19.53)

whose solutions are circles in spacetime of a fixed E-dependent radius lE:

(x− x0)
2 + c2(τ − τ0)

2 = l2E ≡
(

Mc2

eE

)2

, E ≡ |E|. (19.54)

To calculate their action we parametrize the circles in the Ê− τ -plane, where Ê is
the unit vector in the direction of E, by an angle θ as

x(θ) = lEÊ cos θ + x0, τ(θ) =
lE
c
sin θ + τ0. (19.55)
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A closed circle has an action

Acl,e =Mc2
lE
c

∫ 2π

0
dθ cos θ

[

1

cos θ
− cos θ

]

=Mc lEπ = h̄
Ec

E
π. (19.56)

The decay rate of the vacuum is therefore proportional to

Γ ∝ e−πEc/E. (19.57)

The circles (19.54) are, of course, the space-time pictures of the creation and the
annihilation of particle-antiparticle pairs at times τ0 − lE/c and τ0 + lE/c and
positions x0, respectively (see Fig. 19.1). A particle can also run around the circle

(x0cτ0)

(x0, cτ0 + lE)

(x0, cτ0 − lE)

❄ ✻

r

r

Figure 19.1 Spacetime picture of pair creation at the point x0 and time τ0 − lE/c and

annihilation at the later time τ0 + lE/c.

repeatedly. This leads to the formula

Γ ∝
∞
∑

n=1

Fn e
−nπEc/E , (19.58)

with fluctuation factors Fn which we are now going to determine.

Fluctuations

As explained above, fluctuations must be calculated with the relativistic Euclidean
action (19.10), in which we have to include the electric field by minimal coupling:

Āe =
∫ λb

λa

dλ

[

M

2h(λ)
x′2(λ) + h(λ)

Mc

2
− i

e

c
A(x(λ)) x′(λ)

]

. (19.59)

The vacuum will decay by the creation of an ensemble of pairs which in Euclidean
spacetime corresponds to an ensemble of particle loops. For free particles, the par-
tition function Z was given in (19.42) as an exponential of the one-loop partition
function Z1 in (19.37). The corresponding Z1 in the presence of an electromagnetic
field has the one-loop partition function

Z1 =
∫ ∞

0

dβ

β
e−βMc2/2

∫

D4x e−Āe/h̄, (19.60)
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with the Euclidean action

Āe =
∫ h̄β

0
dτ
[

M

2
x′2(τ)− i

e

c
A(x(τ)) x′(τ)

]

. (19.61)

The equations of motion are now

x′′ =
e

Mc
(x′4E− ix′ ×B) , x′′4 = − e

Mc
x′ · E, (19.62)

If both a constant electric and a constant magnetic field are present, the vector
potential is Aµ = −Fµνx

ν/2 and the action (19.61) takes the simple quadratic form

Āe =
∫ h̄β

0
dτ
[

M

2
x′2 − i

e

2c
Fµνx

µx′ν
]

, (19.63)

and the equations of motion (19.62) are

x′′µ = −i e
c
F µνx′ν , with Fij = −ǫijkBk, F i4 = iF i0 = iEi. (19.64)

In a purely electric field, the solutions are circular orbits:

x(τ) = ÊA cosωE
L (τ − τ0) + c2, x4(τ) = A sinωE

L (τ − τ0) + c4, (19.65)

with the electric version of the Landau or cyclotron frequency (2.648)

ωE
L ≡ eE

Mc
. (19.66)

The circular orbits are the same as those in the previous formulation (19.55). If E
points in the z-direction, the action (19.63) decomposes into two decoupled quadratic
actions Ā(12)

e + Ā(34)
e for the motion in the x1 − x2 and x3 − x4 -planes, respectively,

and the one-loop partition function (19.60) factorizes as follows:

Z1 =
∫ ∞

0

dβ

β
e−βMc2/2

∫

D2x(12) e−Ā
(12)
e /h̄

∫

D2x(34) e−Ā
(34)
e /h̄

≡
∫ ∞

0

dβ

β
e−βMc2/2Z(12)(0)Z(34)(E). (19.67)

The path integral for Z(12)(0) collecting the fluctuations in the x1 − x2 -plane have
the trivial action

Ā(12)
e =

∫ h̄β

0
dτ

M

2
(x′1

2 + x′2
2), (19.68)

with the trivial fluctuation determinant Det (−∂2τ ) = 1, so that we obtain for Z(12)(0)
the free-particle partition function in two dimensions

Z(12)(0) = ∆x1∆x2

√

M

2πh̄2β

2

. (19.69)



1392 19 Relativistic Particle Orbits

The factor ∆x1∆x2 is the total area of the system in the x1 − x2 -plane. Note that
upper and lower indices are the same in the present Euclidean metric.

For the motion in the x3 − x4 -plane, the quadratic fluctuations with periodic
boundary conditions have a functional determinant

Det

(

−∂2τ −ωE
L∂τ

ωE
L∂τ −∂2τ

)

= Det
(

−∂2τ
)

×Det
(

−∂2τ − ωE
L

2
)

= 1× sin h̄ωE
Lβ/2

h̄ωE
Lβ/2

, (19.70)

leading to the partition function

Z(34)(E) = ∆x3∆x4

√

M

2πh̄2β

2
sin h̄ωE

Lβ/2

h̄ωE
Lβ/2

, . (19.71)

This result can, of course, also be obtained without calculation from the observation
that the Euclidean electric path integral is completely analogous to the real-time
magnetic path integral solved in Section 2.18. Indeed, with the E-field pointing in
the z-direction, the action (19.63) becomes for the motion in the x3 − x4 -plane

Ā(34)
e =

∫ h̄β

0
dτ
M

2

[

x′3
2 + x′4

2 +
e

c
E(x3x

′
4 − x4x

′
3)
]

. (19.72)

This coincides with the magnetic action (2.635) in real time, if we insert there the
magnetic vector potential (2.636) and replace B by E. The equations of motion
(19.62) reduces to

x′′3 = ωE
Lx

′
4, x′′4 = −ωE

L x
′
3, (19.73)

in agreement with the magnetic equations of motion (2.672) in real time. Thus the
motion in the x3 − x4 -plane as a function of the pseudotime τ is the same as the
real-time motion in the x − y -plane, if the magnetic field B in the z-direction is
exchanged by an E-field of the same size pointing in the x3-axis. The amplitude can
therefore be taken directly from (2.668), — we must merely replace the real time
difference tb − ta by h̄β. Anyhow, it is zero for any closed orbit.

Yet another way of obtaining the result (19.71) is by summing over the imaginary-
time Boltzmann factors eiβEm of the energies Em = (m+ 1

2)h̄ω
E
L of the Hamiltonian

associated with the Euclidean action (19.72):

Z(34)(E) = ∆x3∆x4

√

M

2πh̄2β

2

h̄ωE
Lβ

∞
∑

m=0

e−i(m+ 1
2 )h̄ω

E
L . (19.74)

Inserting (19.69) and (19.71) into (19.67), we obtain the partition function of a
single closed particle orbit in four Euclidean spacetime dimensions:

Z1 = ∆x4 V
∫ ∞

0

dβ

β

√

M

2πh̄2β

4
ωE
L h̄β/2

sinωE
L h̄β/2

e−βMc2/2, (19.75)
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where V ≡ ∆x1∆x2∆x3 is the total spatial volume. We now go over to real times
by setting ∆x4 = ic∆t. By exponentiating the subtracted expression (19.75) as in
Eq. (19.42), we go to a grand-canonical ensemble, and may identify Z1 with i times
the effective electromagnetic action caused by fluctuating ensemble of particle loops

Z1 = i∆Aeff/h̄ = i∆t V ∆Leff/h̄. (19.76)

The integral over β in (19.75) is divergent. In order to make it convergent, we
perform two subtractions. In the subtracted expression we change the integration
variable to the dimensionless ζ = βMc2/2, and obtain the effective Lagrangian
density

∆Leff = h̄c
(

Mc

h̄

)4 1

4(2π)2

∫ ∞

0

dζ

ζ3

[

Eζ/Ec

sinEζ/Ec

− 1− 1

6

(

E

Ec

)2
]

e−ζ . (19.77)

The first subtraction has removed the divergence coming from the 1/ζ3-singularity
in the integrand. This produces a real infinite field-independent contribution to the
effective action which can be omitted since it is unobservable by electromagnetic
experiments.2 After subtracting this divergence, the integral still contains a loga-
rithmic divergence. It can be interpreted as a contribution proportional to E2 to
the Lagrangian density

∆Leff
div = h̄c

(

Mc

h̄

)4 1

24(2π)2

(

E

Ec

)2 ∫ ∞

0

dζ

ζ
e−ζ =

α

24π

∫ ∞

0

dζ

ζ
e−ζ , (19.78)

which changes the original Maxwell term E2/2 to ZAE
2/2 with

ZA = 1 +
α

12π

∫ ∞

0

dζ

ζ
e−ζ . (19.79)

According to the rules of renormalization theory, the prefactor is removed by renor-
malizing the field strength, replacing E → E/Z

1/2
A , and identifying the replaced field

with the physical, renormalized field E/Z
1/2
A ≡ ER.

Due to the presence of the affective action, the vacuum is no longer time in-
dependent, put depends on time like e−i(H−iΓh̄/2)∆t/h̄. Thus the decay rate of the
vacuum per unit volume is given by the imaginary part of the effective Lagrangian
density

Γ

V
=

2

h̄
Im∆Leff . (19.80)

In order to calculate this we replace Eζ/Ec by z in (19.77), and expand in the
integrand

z

sin z
= 1 + 2

∞
∑

n=1

(−1)n
z2

z2 − n2π2
= 2

∞
∑

n=1

(−1)n
ζ2

ζ2 − ζ2n
, ζn ≡ nπ

Ec

E
. (19.81)

2This energy would, however, be observable in the cosmological evolution to be discussed in
Subsection 19.2.3.
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Adding to the poles the usual infinitesimal iη-shifts in the complex plane (see p. 115),
we replace with the help of the decomposition (1.329)

ζ

ζ2 − ζ2n
→ ζ

ζ2 − ζ2n + iη
= i

π

2
δ(ζ + ζn)− i

π

2
δ(ζ − ζn) + ζ

P
ζ2 − ζ2n

. (19.82)

The δ-functions yield imaginary parts and thus directly the decay rate

Γ

V
=

2

h̄
ImLeff = c

(

Mc

h̄

)4 ( E

Ec

)2 1

4π3

1

2

∞
∑

n=1

(−1)n−1 (−1)n−1

n2
e−nπEc/E

=
1

8π3

e2

h̄c
E2

∞
∑

n=1

(−1)n−1

n2
e−nπEc/E . (19.83)

The principal values produce a real effective Lagrangian density

∆Leff
P = h̄c

(

Mc

h̄

)4 1

4(2π)2
P
∫ ∞

0

dζ

ζ3

(

Eζ/Ec

sinEζ/Ec
− 1− E2ζ2

6E2
c

)

e−ζ . (19.84)

If we expand

z

sin z
= 1 +

z2

6
+

7

360
z4 +

31

15120
z6 + . . . (19.85)

and perform the integrals over ζ , we find

∆Leff = h̄c
(

Mc

h̄

)4 1

4(2π)2

[

7

360

(

E

Ec

)4

+
31

2520

(

E

Ec

)6

+ . . .

]

, (19.86)

or

Leff =
1

2







E2 +
7α2

180

(h̄c)3

(Mc2)4
E4 +

31πα3

315

[

(h̄c)3

(Mc2)4

]2

E6 + . . .







, (19.87)

The subscript P of L has been omitted since the imaginary part of the effective
Lagrangian density (19.83) has a vanishing Taylor expansion. Each coefficient in
(19.87) is exact to leading order in α.

The extra expansion terms in (19.87) imply that the physical vacuum has a
nontrivial E-dependent dielectric constant ǫ(E). This is caused by the virtual cre-
ation and annihilation of particle-antiparticle pairs. Since the dielectric displacement
D(E) is obtained from the first derivative of Leff , the dielectric constant is given by
ǫ(E) = D(E)/E = ∂Leff/E∂E. From (19.87) we find the lowest expansion terms

ǫ(E) = 1 +
7α2

90

(h̄c)3

(Mc2)4
E2 +

31πα3

105

[

(h̄c)3

(Mc2)4

]2

E4 + . . . . (19.88)

Such a term gives rise to a small amplitude for photon-photon scattering in the
vacuum, a process which has been observed in the laboratory.
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Another way of evaluating (19.83) is based on the representation (19.74) of the
partition function in terms of the energy eigenvalues Em = (m + 1

2)h̄ω
E
L of the

Hamiltonian associated with (19.72). Then Z1 is given by

Z1 = ∆x4 V
∫ ∞

0
dβ

√

M

2πh̄2β

4

ωE
L h̄

∞
∑

n=0

e−i(n+ 1
2 )h̄ω

E
L
β, (19.89)

Then the integral representation (19.77) becomes (before the subtraction)

∆Leff = h̄c
(

Mc

h̄

)4 1

2(2π)2

∫ ∞

0

dζ

ζ2
E

Ec

[

∞
∑

m=0

ei(m+ 1
2 )2Eζ/Ec

]

e−ζ . (19.90)

This can be rewritten as

∆Leff
reg = h̄c

(

Mc

h̄

)4 i

2(2π)2

[

∞
∑

k=4,6,...

(−1)k/2−1

(k−1)(k−2)
(21−k−1)ζ(1− k)2k−1

(

E

Ec

)k
]

α=1

,

(19.91)

Expanding the terms in the sum in powers of E/Ec yields two divergent terms plus
a regular series

∆Leff
reg = h̄c

(

Mc

h̄

)4 i

2(2π)2

[

∫

dα
∫

dα
∞
∑

k=4,6,...

×
∞
∑

m=0

(−1)k/2−1

αk
(−1)k/2−1[(m+ 1

2)]
k−12k−1

(

E

Ec

)k
]

α=1

. (19.92)

Performing the sum over m using Riemann’s zetafuntions (2.521), this becomes

∆Leff
reg= h̄c

(

Mc

h̄

)4 i

2(2π)2

[

∞
∑

k=4,6,...

(−1)k/2−1

(k−1)(k−2)
(21−k−1)ζ(1−k)2k−1

(

E

Ec

)k
]

α=1

(19.93)

and coincides with the previous result (19.87).

Including Constant Magnetic Field parallel to Electric Field

Let us see how the decay rate (19.83) and the effective Lagrangian (19.77) are
influenced by the presence of an additional constant B-field. This will at first be
assumed to be parallel to the E-field, with both fields pointing in the z-direction.
Then the action (19.68) for the motion in the x1 − x2 -plane becomes

Ā(12)
e =

∫ h̄β

0
dτ
M

2

[

x′1
2 + x′2

2 +
e

c
iB(x1x

′
2 − x2x

′
1)
]

. (19.94)

The partition function in the x1 − x2 -plane will therefore have the same form as
(19.71), except with ωE

L replaced by iωB
L :

Z(12)(B) = Z(34)(iB). (19.95)
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Thus the B-field changes the partition function (19.89) of a single closed orbit to

Z1 = ∆x4 V
∫ ∞

0

dβ

β

√

M

2πh̄2β

4
ωE
L h̄β/2

sinωE
L h̄β/2

ωB
L h̄β/2

sinhωB
L h̄β/2

e−βMc2/2, (19.96)

and the effective Lagrangian (19.77) becomes

∆Leff = h̄c
(

Mc

h̄

)4 1

4(2π)2

∫ ∞

0

dζ

ζ3

[

Eζ/Ec

sinEζ/Ec

Bζ/Ec

sinhBζ/Ec
− 1− (E2 − B2)ζ2

6E3
c

]

e−ζ .

(19.97)

In the subtracted free-field term (19.78), the term E2 is changed to the Lorentz-
invariant combination E2 − B2. The decay rate (19.83) is modified to

Γ

V
=

2

h̄
Im∆Leff = c

(

Mc

h̄

)4( E

Ec

)2 1

4π3

1

2

∞
∑

n=1

(−1)n−1 1

n2

nπB/E

sinhnπB/E
e−nπEc/E. (19.98)

In Eqs. (7.521)–(7.525) we have shown that all results derived for parallel con-
stant electric and magnetic fields remain valid if we replace E → E , B → B, where
E and B are given in Eq. (7.524). After this we may expand the integrand in (19.97)
in powers of ε and β using Eq. (19.85),

1

τ 3
eβτ

sin eβτ

eετ

sinh eετ
=

1

τ 3
− e2

6τ

(

ε2 − β2
)

+ e4
τ

360

(

7ε4 − 10ε2β2 + 7β4
)

− e6
τ 3

1520

(

31ε6 − 49ε4β2 + 49ε2β4 − 31β6
)

+ . . . . (19.99)

and obtain the effective Lagrangian the fields generalizing (19.87):

Leff =
1

2

{

(E2 −B2) +
7α2

180

(h̄c)3

(Mc2)4
(E2 −B2)2

+
31πα3

315

[

(h̄c)3

(Mc2)4

]2

(E2 −B2)[2(E2 −B2)2 − 4(EB)2] + . . .







,(19.100)

For strong fields, a saddle point approximation to the generalized version of the
integral (19.97) yields the asymptotic form

Leff ≡ − e2

192π2
(E2 −B2) log

[

−4e2
(h̄c)3

(Mc2)4
(E2 −B2)

]

+ . . . . (19.101)

Spin-1/2 Particles

We anticipate the small modification which is necessary to obtain the analogous re-
sult for spin-1/2 fermions: The tools for this will be developed in Subsections 19.5.1–
19.5.3. The relevant formula has actually been derived before in Eq. (7.520). Ex-
tending that equation to a constant field tensor that contains both magnetic and
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electric fields, and going to imaginary time τ = λ/c and antiperiodic boundary
conditions in the interval tb − ta = ih̄β, we find the functional determinant

4Det1/2
(

−gµν ∂λ + i
e

Mc2
Fµν

)

= 4det 1/2

(

cosh
e

Mc
Fµν

h̄β

2

)

, (19.102)

with an ordinary determinant of the 4 × 4-dimensional matrix of the cosin on the
right-hand side. According to Eqs. (7.520) and (7.525), the result is

4Det1/2
(

−gµν ∂λ + i
e

Mc2
Fµν

)

= 4 cosh(µBBβ/2) cos(µBEβ/2). (19.103)

where µB = eh̄/Mc is the Bohr magneton (2.649), and B and E are defined in
Eq. (7.525)

For a purely electric field, the right-hand side becomes 4 cos(µBEβ/2) =
4 cos(ωE

L h̄β/2) [recall (19.66)]. Multiplying the cos-factor into the expansion (19.81),
this is modified to

z
cos z

sin z
= 1 + 2

∞
∑

n=1

z2

z2 − n2π2
= 2

∞
∑

n=1

ζ2

ζ2 − ζ2n
, ζn ≡ nπ

Ec

E
. (19.104)

Performing now the singular integral over ζ in (19.77), we obtain for the decay
rate the same formula as in (19.83), except that the alternating signs are absent.
The factor 4 in (19.103) reduces to a factor 2 in the effective action. The resulting
effective Lagrangian density for spin-1/2 fermions is therefore

∆Leff
spin 1

2
=−h̄c

(

Mc

h̄

)4 1

2(2π)2

∫ ∞

0

dζ

ζ3

(

Eζ/Ec

tanEζ/Ec
− 1 +

E2ζ2

3E3
c

)

e−ζ , (19.105)

a result first derived by Heisenberg and Euler in 1935 [8]. Its imaginary part yields
the decay rate of the vacuum due to pair creation

Γspin 1
2

V
=

2

h̄
Im∆Leff

spin 1
2
= c

(

Mc

h̄

)4 ( E

Ec

)2 1

4π3

∞
∑

n=1

1

n2
e−nπEc/E

=
1

4π3

e2

h̄c
E2

∞
∑

n=1

1

n2
e−nπEc/E . (19.106)

The reason for the reduction from 4 to 2 is that the sum over bosonic paths has to be
first divided by a factor 2 to remove their orientation, before the fermionic factor 4 is
applied. This procedure is not so obvious at this point but will be understood later
in Subsection 19.5.2. The remaining factor 2 accounts for the two spin orientations
of the charged particles.

The Taylor series

z

tan z
= 1− z2

3
− 1

45
z4 − 2

945
z6 − . . . (19.107)
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in the integrand of (19.105) leads to the expansion

∆Leff = h̄c
(

Mc

h̄

)4 2

16π2

[

1

45

(

E

Ec

)4

+
4

315

(

E

Ec

)6

+ . . .

]

, (19.108)

so that

Leff =
1

2







E2 +
4α2

45

(h̄c)3

(Mc2)4
E4 +

64πα3

315

[

(h̄c)3

(Mc2)4

]2

E6 + . . .







. (19.109)

The term proportional to α2-term implies a small amplitude for photon-photon
scattering which can be observed in the laboratory [9].

As in the boson result (19.100), each coefficient is exact to leading order in α, and
the virtual creation and annihilation of fermion-antifermion pairs gives the physical
vacuum a nontrivial E-dependent dielectric constant

ǫ(E) =
1

E

∂Leff

∂E
= 1 +

8α2

45

(h̄c)3

(Mc2)4
E2 +

64πα3

105

[

(h̄c)3

(Mc2)4

]2

E4 + . . . . (19.110)

If we admit also a constant B-field parallel to E, the formulas (19.106) and
(19.105) for the spin-1

2
-particles are modified in the same way as the bosonic for-

mulas (19.83) and (19.84), except that the determinant (19.102) in spinor space
introduces a further factor cosh(eB/Mc). Thus we obtain

∆Leff
spin 1

2
=−h̄c

(

Mc

h̄

)4 1

2(2π)2

∫ ∞

0

dζ

ζ3

[

Eζ/Ec

tanEζ/Ec

Bζ/Ec

tanhBζ/Ec

− 1 +
(E2−B2)ζ2

3E3
c

]

e−ζ .

(19.111)

For a general combination of constant electric and magnetic fields, we simply ex-
change E and B by the Lorentz invariants ε and β. From the imaginary part we
obtain the decay rate

Γspin1
2

V
=

2

h̄
Im∆Leff

spin 1
2
= c

(

Mc

h̄

)4 ( ε

Ec

)2 1

4π3

∞
∑

n=1

1

n2

nπβ/ε

tanhnπβ/ε
e−nπEc/ε.(19.112)

For strong fields, a saddle point approximation to the generalized integral
(19.105) yields the asymptotic form

Leff ≡ − e2

48π2
(E2 −B2) log

[

−4e2
(h̄c)3

(Mc2)4
(E2 −B2)

]

+ . . . . (19.113)

19.2.2 Birth of Universe

A similar tunneling phenomenon could explain the birth of the expanding uni-
verse [10].
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As an idealization of the observed density of matter, the universe is usually
assumed to be isotropic and homogeneous. Then it is convenient to describe it
by a coordinate frame in which the metric is rotationally invariant. To account
for the expansion, we have to allow for an explicit time dependence of the spatial
part of the metric. In the spatial part, we choose coordinates which participate in
the expansion. They can be imagined as being attached to the gas particles in a
homogenized universe. Then the time passing at each coordinate point is the proper
time. In this context it is the so-called cosmic standard time to be denoted by t. We
imagine being an observer at a coordinate point with dxi/dt = 0, and measure t by
counting the number of orbits of an electron around a proton in a hydrogen atom,
starting from the moment of the big bang (forgetting the fact that in the early time
of the universe, the atom does not yet exist).

Geometry

With this time calibration, the component g00 of the metric tensor is identically
equal to unity

g00(x) ≡ 1, (19.114)

such that at a fixed coordinate point, the proper time coincides with the coordinate
time, dτ = dt. Moreover, since all clocks in space follow the same prescription, there
is no mixing between time and space coordinates, a property called time orthogo-

nality , so that

g0i(x) ≡ 0. (19.115)

As a consequence, the Christoffel symbol Γ̄00
µ [recall (10.7)] vanishes identically:

Γ̄00
µ ≡ 1

2
gµν(∂0g0ν + ∂0g0ν − g00) ≡ 0. (19.116)

This is the mathematical way of expressing the fact that a particle sitting at a coor-
dinate point, which has dxi/dt = 0, and thus dxµ/dt = uµ = (c, 0, 0, 0), experiences
no acceleration

duµ

dτ
= −Γ̄00

µc2 = 0. (19.117)

The coordinates themselves are trivially comoving.
Under the above condition, the invariant distance has the general form

ds2 = c2dt2 − (3)gij(x)dx
idxj . (19.118)

We now impose the spatial isotropy upon the spatial metric gij . Denote the spatial
length element by dl, so that

dl2 = (3)gij(x)dx
idxj. (19.119)



1400 19 Relativistic Particle Orbits

The isotropy and homogeneity of space is most easily expressed by considering the
spatial curvature (3)Rijk

l calculated from the spatial metric (3)gij(x). The space
corresponds to a spherical surface. If its radius is a, the curvature tensor is, according
to Eq. (10.161),

(3)Rijkl(x) =
1

a2

[

(3)gil(x)
(3)gjk(x)− (3)gik(x)

(3)gjl(x)
]

. (19.120)

The derivation of this expression in Section 10.4 was based on the assumption of a
spherical space whose curvature K ≡ 1/a2 is positive. If we allow also for hyperbolic
and parabolic spaces with negative and vanishing curvature, and characterize these
by a constant

k =











1 spherical
0 parabolic
− 1 hyperbolic











universe, (19.121)

then the prefactor 1/a2 in (19.120) is replaced by K ≡ k/a2. For k = −1 and 0, the
space has an open topology and an infinite total volume.

The Ricci tensor and curvature scalar are in these three cases [compare (10.163)
and (10.156)]

(3)Ril = k
2

a2
gil(x),

(3)R = k
6

a2
. (19.122)

By construction it is obvious that for k = 1, the three-dimensional space has a
closed topology and a finite spatial volume which is equal to the surface of a sphere
of radius a in four dimensions

4Sa = 2π2a3. (19.123)

A circle in this space has maximal radius a and a maximal circumference 2πa. A
sphere with radius r0 < a has a volume

(3)V a
r0

=
∫ 2π

0
dϕ

∫ π

0
dθ sin θ

∫ r

0
dr

r2
√

1− r2/a2
(19.124)

= 4π





a3

2
arcsin

r0
a
− a2r0

2

√

1− r02

a2



 .

For small r0, the curvature is irrelevant and the volume depends on r0 like the usual
volume of a sphere in three dimensions:

(3)V a
r0
≈ Vr0 =

4π

3
r0

2. (19.125)

For r0 → a, however, (3)V a
r0

approaches a saturation volume 2πa3.
The analogous expressions for negative and zero curvature are obvious.
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Robertson-Walker Metric

In spherical coordinates, the four-dimensional invariant distance (19.118) defines the
Robertson-Walker metric.

ds2 = c2dt2 − dl2 (19.126)

dl2 =
dr2

1− kr2/a2
+ r2(dθ2 + sin2 θdϕ2). (19.127)

It will be convenient to introduce, instead of r, the angle α on the surface of the
four-sphere, such that

r = a sinα. (19.128)

Then the metric has the four-dimensional angular form

ds2 = c2dt2 − a2(t)[dα2 + f 2(α)(dθ2 + sin2 θdϕ2)], (19.129)

where for spherical, parabolic, and hyperbolic spaces, f(α) is equal to

f(α) =











sinα k = 1,
α k = 0,
sinhα k = −1.

(19.130)

In order to have maximal symmetry, it is useful to absorb a(t) into the time and
define a new timelike variable η by

c dt = a(η) dη, (19.131)

so that the invariant distance is measured by

ds2 = a2(η)[dη2 − dα2 − f 2(α)(dθ2 + sin2 θdϕ2)]. (19.132)

Then the metric is simply

gµν = a2(η)











1
−1

−f 2(α)
−f 2(α) sin2 θ,











(19.133)

and the Christoffel symbols become

Γ00
0 =

aη
a
, Γ00

i = 0, Γ0i
0 = 0, Γ0i

j =
aη
a
δi

j, Γij
0 = −aη

a3
gij, Γij

k = 0, (19.134)

where the subscripts denote derivatives with respect to the corresponding variables:

aη ≡
da

dη
=
a

c

da

dt
≡ a

c
at. (19.135)
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We now calculate the 00-component of the Ricci tensor:

R00 = ∂µΓ00
µ − ∂0Γµ0

µ − Γµ0
νΓ0ν

µ + Γ00
µΓνµ

ν . (19.136)

Inserting the Christoffel symbols (19.134) we find

∂µΓ00
µ − ∂0Γµ0

µ = −∂0Γi0
i = −3

d

dη

aη
a

= −3
1

a2

(

aηηa− a2η
)

, (19.137)

Γµ0
νΓ0ν

µ = Γ00
0Γ00

0 + Γ00
iΓ0i

0 + Γi0
0Γ00

i + Γi0
jΓ0j

i =
(

aη
a

)2

+ 3
(

aη
a

)2

, (19.138)

Γ00
µΓνµ

ν = Γ00
0Γ00

0 + Γ00
0Γi0

i + Γ00
iΓ0i

0 + Γ00
iΓki

k =
(

aη
a

)2

+ 3
(

aη
a

)2

, (19.139)

so that

R00 = − 3

a2
(aaηη − a2η), R0

0 = g00R00 = − 3

a4
(aaηη − a2η). (19.140)

The other components can be determined by relating them to the three-dimensional
curvature tensor (3)Rij which has the simple form (19.120). So we calculate

Rij = Rµij
µ = Rkij

k +R0ij
0 (19.141)

= (3)Rij − Γkj
0Γi0

k + Γij
0Γk0

k +R0ij
0.

Inserting

R0ij
0 = ∂0Γij

0 − ∂iΓ0j
0 − Γ0j

lΓil
0 − Γ0j

0Γi0
0 + Γij

lΓ0l
0 + Γij

0Γ00
0, (19.142)

(3)Rij = k
2

a2
gij (19.143)

and the above Christoffel symbols (19.134) gives

Rij = − 1

a4
(2ka2 + a2η + aaηη)gij (19.144)

and thus a curvature scalar

R = g00R00 + gijRij = − 1

a2

[

3

a2
(aaηη − a2η)

]

− 3

a4
(2ka2 + a2η + aaηη)

= − 6

a3
(aηη + ka). (19.145)

Action and Field Equation

In the absence of matter, the Einstein-Hilbert action of the gravitational field is

f

A=
∫

d4x
√−g

f

L= − 1

2κ

∫

d4x
√−g(R + 2λ), (19.146)
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were κ is related to Newton’s gravitational constant

GN ≈ 6.673 · 10−8 cm3g−1s−2 (19.147)

by

1

κ
=

c3

8πGN

. (19.148)

A natural length scale of gravitational physics is the Planck length, which can
be formed from a combination of Newton’s gravitational constant (19.147), the light
velocity c ≈ 3× 1010 cm/s, and Planck’s constant h̄ ≈ 1.05459× 10−27:

lP =

(

c3

GN h̄

)−1/2

≈ 1.615× 10−33 cm. (19.149)

It is the Compton wavelength lP ≡ h̄/mPc associated with the Planck mass

mP =

(

ch̄

GN

)1/2

≈ 2.177× 10−5 g = 1.22× 1022MeV/c2. (19.150)

The constant 1/κ in the action (19.146) can be expressed in terms of the Planck
length as

1

κ
=

h̄

8πl2P
. (19.151)

If we add to (19.146) a matter action and vary to combined action with respect
to the metric gµν , we obtain the Einstein equation

1

κ

(

Rµν −
1

2
gµνR− λgµν

)

= Tµν , (19.152)

where Tµν is the energy-momentum tensor of matter. The constant λ is called the
cosmological constant . It is believed to arise from the zero-point oscillations of all
quantum fields in the universe.

A single field contributes to the Lagrangian density
f

L in (19.146) a term −Λ ≡
−λ/κ which is typically of the order of h̄/l4P. For bosons, the sign is positive, for
fermions negative, reflecting the filling of all negative-energy in the vacuum. A
constant of this size is much larger than the present experimental estimate. In the
literature one usually finds estimates for the dimensionless quantity

Ωλ0 ≡
λ c2

3H2
0

. (19.153)

where H0 is the Hubble constant , whose inverse is roughly the lifetime of the universe

H−1
0 ≈ 14× 109 years. (19.154)
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Present fits to distant supernovae and other cosmological data yield the estimate
[11]

Ωλ0 ≈ 0.68± 0.10. (19.155)

The associated cosmological constant λ has the value

λ = Ωλ0
3H2

0

c2
≈ Ωλ0

(6.55× 1027 cm)2
≈ Ωλ0

(6.93× 109 ly)2
≈ Ωλ0

(2.14Runiverse)2
. (19.156)

Note that in the presence of λ, the Schwarzschild solution around a mass M has the
metric

ds2 = B(r)c2dt2 −B−1dr2 − r2dθ2 − r2 sin2 θdφ2, (19.157)

with

B(r) = 1− 2MGN

c2r
− 2

3
λ r2 = 1− M

mP

lP
r
− 2

3
Ωλ0

r2

(2.14Runiverse)2
. (19.158)

The λ-term adds a small repulsion to Newton’s force between mass points. if the
distances are the order of the radius of the universe.

The value of the constant Λ associated with (19.155) is

Λ =
λ

κ
= Ωλ0

3H2
0

c2
l2P
8π

≈ 10−122 h̄

l4P
. (19.159)

Such a small prefactor can only arise from an almost perfect cancellation of the
contributions of boson and fermion fields. This cancellation is the main reason for
postulating a broken supersymmetry in the universe, in which every boson has a
fermionic counterpart. So far, the known particle spectra show no trace of such
a symmetry. Thus there is need to explain it by some other not yet understood
mechanism.

The simplest model of the universe governed by the action (19.146) is called
Friedmann model or Friedmann universe.

19.2.3 Friedmann Model

Inserting (19.140) and (19.145) into the 00-component of the Einstein equation
(19.152), we obtain the equation for the energy

3

a4

(

a2η + ka2
)

− λ = κT0
0. (19.160)

In terms of the cosmic standard time t, the general equation reads

3

[

(

at
a

)2

+ k
c2

a2

]

− λc2 = c2κT0
0. (19.161)
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The simplest Friedmann model is based on an energy-momentum tensor T0
0 of

an ideal pressure-less gas of mass density ρ:

Tµ
ν = cρuµu

ν , (19.162)

where uµ are the velocity four-vectors uµ = (γ, γv/c) of the particles whose compo-

nents are uµ = (γ, γv/c) with γ ≡ 1/
√

1− v2/c2 if the four components transform

like (dx0 = cdt, dx). The gas is assumed to be at rest in our comoving coordinates.
so that only the T0

0-component is nonzero:

T0
0 = cρ. (19.163)

This component is invariant under the time transformation (19.131).
As a fortunate accident, this component of the Einstein equation has no aηηa

term. Thus we may simply study the first-order differential equation

3

a4

(

a2η + ka2
)

− λ = cκρ. (19.164)

Since the total volume of the universe is 2πa3, we can express ρ in terms of the total
mass M as follows

ρ =
M

2π2a3
. (19.165)

In this way we arrive at the differential equation

3

a4
(a2η + ka2)− λ =

κMc

2π2a3
=

4GNM

πc2a3
. (19.166)

This equation of motion can also be obtained in another way. We express the
action (19.146) in terms of a(η) using the equation (19.180) for R. We use the
volume (19.123) and the relation (19.131) to rewrite the integration measure as

∫

d4x
√−g =

∫

dt (4)Sa = 2π2
∫

dη a4(η), (19.167)

so that

f

A =
2π2

2κ

∫

dη
[

6a(aηη + ka)− 2λa4
]

=̂
2π2

κ

∫

dη
[

−3a2η + 3ka2 − λa4
]

.(19.168)

The second expression arises from the first by a partial integration and ignoring the
boundary terms which do not influence the equation of motion. The above matter
is described by the action

m

A = −
∫

d4x
√−gcρ = −2π2

∫

dη
Mc

2π2
a(η). (19.169)

Variation with respect to a yields the Euler-Lagrange equation

6(aηη + ka)− 4λa3 − κMc

2π2
= 0. (19.170)
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Note that in terms of the Robertson-Walker time t [recall (19.131)], the equation of
motion reads

ä =
λ

3
a− 1

6

κMc

2π2a2
. (19.171)

As one should expect, the cosmological expansion is slowed down by matter, due to
the gravitational attraction. A positive cosmological constant, on the other hand,
accelerates the expansion. At the special value

λ = λEinstein ≡ κMc

2π2a3
=

4GNM

πc2a3
=

4πGNρ

c
, (19.172)

the two effects cancel each other and there exist a time-independent solution at a
radius a and a density ρ. This is the cosmological constant which Einstein chose
before Hubble’s discovery of the expanding universe to agree with Hoyle’s steady-
state model of the universe (a choice which he later called the biggest blunder of his
life).

Multiplying (19.170) by aη and integration over η yields the pseudo-energy con-
servation law

3(a2η + ka2)− λa4 − κMc

2π2
a = const, (19.173)

in agreement with (19.166) for a vanishing pseudo-energy.
This equation may also be written as

a2η + ka2 − amaxa−
λ

3
a4 = 0, (19.174)

where

amax ≡
κMc

6π2
=

4GNM

3πc2
. (19.175)

This looks like the energy conservation law for a point particle of mass 2 in an
effective potential of the universe

V univ(a) = ka2 − amaxa−
λ

3
a4, (19.176)

at zero total energy. The potential is plotted for the spherical case k = 1 in Fig. 19.2.

Friedmann neglects the cosmological constant and considers the equation

a2η + ka2 − amaxa = 0. (19.177)

The solution of the differential equation for this trajectory is found by direct inte-
gration. Assuming k = 1 we obtain

η =
∫

da
√

−V univ(a)
=
∫

da
√

−(a− amax/2)2 + a2max/4
= − arccos

2a

amax

. (19.178)
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1 2 3 4 5 6

-6

-4

-2

2

4

a

amax

V univ(a)/a2max

a0
amax

✻

Figure 19.2 Potential of closed Friedman universe as a function of the reduced radius

a/amax for λa2max = 0.1. Note the metastable minimum which leads to a possible solution

a ≡ a0. A tunneling process to the right leads to an expanding universe.

With the initial condition a(0) = 0, this implies

a(η) =
amax

2
(1− cos η). (19.179)

Integrating Eq. (19.131), we find the relation between η and the physical (=proper)
time

t =
1

c

∫

dη a(η) =
amax

2c

∫

dη (1− cos η) =
amax

2c
(η − sin η). (19.180)

The solution a(t) is the cycloid pictured in Fig. 19.3. The radius of the universe
bounces periodically with period t0 = πamax/c from zero to amax. Thus it emerges
from a big bang, expands with a decreasing expansion velocity due to the gravita-
tional attraction, and recontracts to a point.

0.2 0.4 0.6 0.8 1 1.2

0.5

1

1.5

2

2.5

t/t0

a

amax

Figure 19.3 Radius of universe as a function of time in Friedman universe, measured in

terms of the period t0 ≡ πamax/c. (solid curve=closed, dashed curve=hyperbolic, dotted

curve =parabolic). The curve for the closed universe is a cycloid.

Certainly, for high densities the solution is inapplicable since the pressure-less
ideal gas approximation (19.163) breaks down.
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Consider now the case of negative curvature with k = −1. Then the differential
equation (19.177) reads

a2η − a2 − amaxa−
λ

3
a4 = 0. (19.181)

In order to compare the curves we shall again introduce a mass parameter M and
rewrite the density as in (19.165), although M has no longer the meaning of the
total mass of the universe (which is now infinite). The solution for λ = 0 is now

a(η) =
amax

2
(cosh η − 1), (19.182)

t =
amax

2c
(sinh η − η). (19.183)

The solution is again depicted in Fig. 19.3. After a big bang, the universe expands
forever, although with decreasing speed, due to the gravitational pull. The quantity
amax is no longer the maximal radius nor is t0 the period.

Consider finally the parabolic case k = 0, where the equation of motion (19.177)
reads

a2η − amaxa−
λ

3
a4 = 0, (19.184)

where M is a mass parameter defined as before in the negative curvature case. Now
the solution for λ = 0 is simply

η = 2

√

a

amax
, (19.185)

which is inverted to

a(η) = amax
η2

4
. (19.186)

Now we solve (19.131) with

t =
amax

12c
η3, (19.187)

so that

a(t) =
(

9

4
amax

)1/3

(ct)2/3. (19.188)

This solution is simply the continuation of leading term in the previous two solutions
to large t.
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19.2.4 Tunneling of Expanding Universe

It is now interesting to observe that the potential for the spherical universe in
Fig. 19.2 allows for a time-independent solution in which the radius lies at the
metastable minimum which we may call a0. The solution a ≡ a0 is a time-
independent universe. We may now imagine that the expanding universe arises
from this by a tunneling process towards the abyss on the right of the potential
[10]. Its rate can be calculated from the Euclidean action of the associated classical
solution in imaginary time corresponding to the motion from a0 towards the right
in the inverted potential −V univ(a).

Observe that this birth can only lead to universe of positive curvature. For a neg-
ative curvature, where the a2-term in (19.176) has the opposite sign, the metastable
minimum is absent.

19.3 Relativistic Coulomb System

An external time-independent potential V (x) is introduced into the path integral
(19.48) by substituting the energy E by E − V (x). In the case of an attractive
Coulomb potential, the second term in the action (19.49) becomes

Aint = −
∫ λb

λa

dλ h(λ)
(E + e2/r)2

2Mc3
, (19.189)

where r = |x|. The associated path integral is calculated via a Duru-Kleinert
transformation as follows [12].

Consider the three-dimensional Coulomb system where the spacetime dimension
is D = 4. Then we increase the three-dimensional space in a trivial way by a dummy
fourth component x4, just as in the nonrelativistic treatment in Section 13.4. The
additional variable x4 is eliminated at the end by an integral

∫

dx4a/ra =
∫

dγa, as
in (13.120) and (13.127). Then we perform a Kustaanheimo-Stiefel transformation ref(13.120)

lab(13.re)
est(13.114)
ref(13.127)
lab(13.3d)
est(13.121)

(13.106) dxµ = 2A(u)µνdu
ν. This changes x′µ2 into 4~u2~u′ 2, with the vector symbol

ref(13.106)
lab(13.diffe)
est(13.101)

indicating the four-vector nature. The transformed action reads:

Ãe,E =
∫ λb

λa

dλ
{

4Mc~u2

2h(λ)
~u ′ 2(λ) +

h(λ)

2Mc3~u2

[

(M2c4− E2)~u2 −2Ee2− e4

~u2

]

}

. (19.190)

We now choose the gauge h(λ) = 1, and go from λ to a new dimensionless parameter
s via the path-dependent time transformation dλ = fds with f = ~u2. Result is the
DK-transformed action

ĀDK
e,E =

∫ sb

sa

ds

c

{

4Mc2

2
~u ′ 2(s) +

1

2Mc2

[

(

M2c4 −E2
)

~u2 − 2Ee2 − e4

~u2

]

}

. (19.191)

It describes a particle of mass µ = 4M moving as a function of the “pseudotime” s
in a harmonic oscillator potential of dimensionless “frequency”

ω =
1

2Mc2

√
M2c4 − E2. (19.192)
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The oscillator possesses an additional attractive potential −e4/2Mc2~u2, which is
conveniently parametrized in the form of a centrifugal barrier

Vextra = h̄2
l2extra
2µ~u2

, (19.193)

whose squared angular momentum has the negative value

l2extra ≡ −4α2. (19.194)

Here α denotes the fine-structure constant α ≡ e2/h̄c ≈ 1/137. In addition, there is
also a trivial constant potential

Vconst = − E

Mc2
e2. (19.195)

If we ignore, for the moment, the centrifugal barrier Vextra, the solution of the path
integral can immediately be written down [see (13.127)]:ref(13.127)

lab(13.3d)
est(13.121)

(xb|xa)E = −i h̄

2Mc

1

16

∫ ∞

0
dS ee

2ES/Mc2h̄
∫ 4π

0
dγa (~ubS|~ua0) , (19.196)

where (~ubS|~ua0) is the pseudotime evolution amplitude of the four-dimensional har-
monic oscillator.

There are no time slicing corrections for the same reason as in the three-
dimensional case. This is ensured by the affine connection of the Kustaanheimo-
Stiefel transformation satisfying

Γµ
µλ = gµνei

λ∂µe
i
ν = 0 (19.197)

(see the discussion in Section 13.6).
Performing the integral over γa in (19.196), we obtain

(xb|xa)E = −i h̄

2Mc

Mκ

πh̄

∫ 1

0
d̺

̺−ν

(1− ̺)2
I0

(

2κ
2
√
̺

1− ̺

√

(rbra + xbxa)/2

)

× exp

[

−κ1 + ̺

1− ̺
(rb + ra)

]

, (19.198)

with the variable

h ≡ e−2ωS , (19.199)

and the parameters

ν =
e2

2ωh̄

E

Mc2
=

α
√

M2c4/E2 − 1
, (19.200)

κ =
µω

2h̄
=

1

h̄c

√
M2c4 −E2 =

E

h̄c

α

ν
. (19.201)
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As in the further treatment of (13.203), the use of formula (13.207)ref(13.203)
lab(13.n1)
est(13.192)
ref(13.207)
lab(13.n5)
est(13.197)

I0(z cos(θ/2)) =
2

z

∞
∑

l=0

(2l + 1)Pl(cos θ)I2l+1(z) (19.202)

provides us with a partial wave decomposition

(xb|xa)E =
1

rbra

∞
∑

l=0

(rb|ra)E,l
2l + 1

4π
Pl(cos θ)

=
1

rbra

∞
∑

l=0

(rb|ra)E,l

l
∑

m=−l

Ylm(x̂b)Y
∗
lm(x̂a). (19.203)

The radial amplitude is normalized slightly differently from (13.210): ref(13.210)
lab(13.n9)
est(13.201)

(rb|ra)E,l = −i h̄

2Mc

√
rbra

2M

h̄

∫ ∞

0
dy

1

sinh y
e2νy (19.204)

× exp [−κ coth y(rb + ra)] I2l+1

(

2κ
√
rbra

1

sinh y

)

.

At this place, we incorporate the additional centrifugal barrier via the replace-
ment

2l + 1 → 2l̃ + 1 ≡
√

(2l + 1)2 + l2extra, (19.205)

as in Eqs. (8.146) and (14.223). The integration over y according to (9.29) yields ref(8.146)
lab(x8.146)
est(19@8.146)
ref(14.223)
lab(14.239)
est(14.239)
ref(9.29)
lab(intf3)
est(9.52)

(rb|ra)E,l = −i h̄

2Mc

M

h̄κ

Γ(−ν + l̃ + 1)

(2l̃ + 1)!
Wν,l̃+1/2 (2κrb)Mν,l̃+1/2 (2κra) . (19.206)

This expression possesses poles in the Gamma function whose positions satisfy
the equations ν − l̃ − 1 = 0, 1, 2, . . . . These determine the bound states of the
Coulomb system. To simplify subsequent expressions, we introduce the small posi-
tive l-dependent parameter

δl ≡ l − l̃ = l + 1/2−
√

(l + 1/2)2 − α2 ≈ α2

2l + 1
+O(α4). (19.207)

Then the pole positions satisfy ν = ñl ≡ n − δl, with n = l + 1, l + 2, l + 3, . . . .
Using the relation (19.200), we obtain the bound-state energies:

Enl = ±Mc2
[

1 +
α2

(n− δl)2

]−1/2

≈ ±Mc2
[

1− α2

2n2
− α4

n3

(

1

2l + 1
− 3

8n

)

+O(α6)

]

. (19.208)

Note the appearance of the plus-minus sign as a characteristic property of energies in
relativistic quantum mechanics. A correct interpretation of the negative energies as
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positive energies of antiparticles is straightforward only within quantum field theory,
and will not be discussed here. Even if we ignore the negative energies, there is poor
agreement with the experimental spectrum of the hydrogen atom. The spin of the
electron must be included to get more satisfactory results.

To find the wave functions, we approximate near the poles ν ≈ ñl:

Γ(−ν + l̃ + 1) ≈ −(−)nr

nr!

1

ν − ñl

,

1

ν − ñl
≈ 2

ñl

h̄2κ2

2M

(

E

Mc2

)2 2Mc2

E2 − E2
nl

,

κ ≈ E

Mc2
1

aH

1

ñl
, (19.209)

with the radial quantum number nr = n− l−1. By analogy with the nonrelativistic
equation (13.213), the last equation can be rewritten asref(13.213)

lab(13.n11)
est(13.203) κ =

1

ãH

1

ν
, (19.210)

where

ãH ≡ aH
Mc2

E
(19.211)

denotes a modified energy-dependent Bohr radius [compare (4.376)]. It sets the
length scale of relativistic bound states in terms of the energy E. Instead of being
1/α ≈ 137 times the Compton wavelength of the electron h̄/Mc, the modified Bohr
radius is equal to 1/α times h̄c/E.

Near the positive-energy poles, we now approximate

−iΓ(−ν + l̃ + 1)
M

h̄κ
≈ (−)nr

ñ2
l nr!

1

ãH

(

E

Mc2

)2 2Mc2ih̄

E2 − E2
nl

. (19.212)

Using this behavior and formula (9.48) for the Whittaker functions [together withref(9.48)
lab(9.for)
est(9.73)

(9.50)] we write the contribution of the bound states to the spectral representation

ref(9.50)
lab(x9.75)
est(9.75)

of the fixed-energy amplitude as

(rb|ra)E,l =
h̄

Mc

∞
∑

n=l+1

(

E

Mc2

)2 2Mc2ih̄

E2 − E2
nl

Rnl(rb)Rnl(ra) + . . . . (19.213)

A comparison between the pole terms in (19.206) and (19.213) renders the radial
wave functions

Rnl(r) =
1

ã
1/2
H ñl

1

(2l̃ + 1)!

√

√

√

√

(ñl + l̃)!

(n− l − 1)!

×(2r/ñlãH)
l̃+1e−r/ñlãHM(−n + l + 1, 2l̃ + 2, 2r/ñlãH) (19.214)

=
1

ã
1/2
H ñl

√

√

√

√

(n− l − 1)!

(ñ+ l̃)!
e−r/ñãH (2r/ñlãH)

l̃+1L2l̃+1
ñl−l−1(2r/ñlãH).
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The properly normalized total wave functions are

ψnlm(x) =
1

r
Rnl(r)Ylm(x̂). (19.215)

The continuous wave functions are obtained in the same way as from the non-
relativistic amplitude in formulas (13.221)–(13.229). ref(13.221)

lab(x13.210)
est(13.210)
ref(13.229)
lab(x13.218)
est(13.218)

19.4 Relativistic Particle in Electromagnetic Field

Consider now the relativistic particle in a general spacetime-dependent electromag-
netic vector field Aµ(x).

19.4.1 Action and Partition Function

An electromagnetic field Aµ(x) is included into the canonical action (19.14) in the
usual way by the minimal substitution (2.644):

Āe[p, x] =
∫ λb

λa

dλ

{

−ipẋ+ h(λ)

2Mc

[

(

p− e

c
A
)2

+M2c2
]}

, (19.216)

and the amplitude (19.22):

(xb|xa) =
h̄

2Mc

∫ ∞

0
dS

∫

DhΦ[h]
∫

DDx e−Āe/h̄, (19.217)

with the minimally coupled action [compare (2.706)]

Āe =
∫ λb

λa

dλ

[

Mc

2h(λ)
ẋ2(λ) + i

e

c
ẋ(λ)A(x(λ)) + h(λ)

Mc

2

]

, (19.218)

which reduces in the simplest gauge (19.23) to the obvious extension of (19.26):

(xb|xa) =
h̄2

2M

∫ ∞

0
dβ e−βMc2/2

∫

D4x e−Ae , (19.219)

with the action

Ae = Ae,0 +Ae,int ≡
∫ h̄β

0
dτ
[

M

2
ẋ2(τ) + i

e

c
ẋ(τ)A(x(τ))

]

. (19.220)

The partition function of a single closed particle loop of all shapes and lengths in
an external electromagnetic field is from (19.37)

Z1 =
∫ ∞

0

dβ

β
e−βMc2/2

∫

DDx e−Ae/h̄. (19.221)

As in (19.45) and (19.46) this yields, up to a factor 1/h̄ the effective action of an
ensemble of closed particle loops in an external electromagnetic field.
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19.4.2 Perturbation Expansion

Since the electromagnetic coupling is rather small, we can split the exponent e−A/h̄

into e−A0/h̄e−Aint/h̄ and expand the second factor in powers of Aint:

e−Aint/h̄ =
∞
∑

n=0

(−ie/h̄c)n
n!

n
∏

i=1

[ ∫ h̄β

0
dτi ẋ(τi)A(x(τi))

]

. (19.222)

If the noninteracting effective action implied by Eqs. (19.39), (19.37), and (19.46) is
denoted by

Γe,0

h̄
≡−Z1=−

∫ ∞

0

dβ

β
e−βMc2/2 VD

√

2πh̄2β/M
D = − VD

λCM
D

1

(4π)D/2
Γ(1−D/2), (19.223)

with the Compton wavelength λCM of Eq. (19.31), we obtain the perturbation ex-
pansion

Γe

h̄
=
Γe,0

h̄
−
∫ ∞

0

dβ

β
e−βMc2/2 VD

√

2πh̄2β/M
D

∞
∑

n=1

(−ie/c)n
n!

〈

n
∏

i=1

[ ∫ h̄β

0
dτi ẋ(τi)A(x(τi))

]

〉

0

,

(19.224)

where 〈 . . . 〉0 denotes the free-particle expectation values [compare (3.483)–(3.486)]
taken in the free path integral with periodic paths with a fixed β [compare (19.38)
and (19.41)]:

〈O[x]〉0 ≡
∫ DDxO[x] e−Ae,0/h̄

∫ DDx e−Ae,0/h̄
. (19.225)

The denominator is equal to VD/
√

2πh̄2β/M
D

.
The free effective action in the expansion (19.224) can be omitted by letting the

sum start with n = 0.
The evaluation of the cumulants proceeds by Fourier decomposing the vector

fields as

A(x) =
∫

dDk

(2π)D
eikxA(k), (19.226)

and rewriting (19.224) as

Γe

h̄
=

Γe,0

h̄
−
∫ ∞

0

dβ

β
e−βMc2/2 VD

√

2πh̄2β/M
D

×
∞
∑

n=1

(−ie/h̄c)n
n!

n
∏

i=1

[

∫

dDki
(2π)D

Aµi(ki)

]〈

n
∏

i=1

[ ∫ h̄β

0
dτi ẋ

µi(τi)e
ikix(τi)

]

〉

0

.(19.227)

First we evaluate the expectation values
〈

ẋ(τ1)e
ik1x(τ1) · · · ẋ(τn)eiknx(τn)

〉

0
. (19.228)
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Due to the periodic boundary conditions, we separate, as in Section 3.25, the path
average x0 = x̄(τ) [recall (3.807)], writing

x(τ) = x0 + δx(τ), (19.229)

and factorize (19.228) as
〈

ei(k1+...+kn)x0

〉

0

〈

δẋ(τ1)e
ik1δx(τ1) · · · δẋ(τn)eiknδx(τn)

〉

0
. (19.230)

The first average can be found as an average with respect to the x0-part of the path
integral whose measure was given in Eq. (3.811). It yields a δ function ensuring the
conservation of the total energy and momenta of the n photons involved:

〈

ei(k1+...+kn)x0

〉

0
=

1

VD
(2π)Dδ(D)(k1 + . . .+ kn). (19.231)

The denominator comes from the normalization of the expectation value which has
an integral

∫

dDx0 in the denominator.
The second average is obtained using Wick’s theorem. The correlation function

〈δxµ(τ1)δxν(τ2)〉0, is obtained from Eq. (3.842) in the limit Ω → 0 for τ1, τ2 ∈ (0, β).
It is the periodic propagator with subtracted zero mode:

〈δxµ(τ1)δxν(τ2)〉0 = δµνG(τ1, τ2) = δµν
h̄

M
∆̄(τ1, τ2), (19.232)

where ∆̄(τ1 − τ2) is the subtracted periodic Green function Ga
ω,e(τ − τ ′) of the

differential operator−∂2τ calculated in Eq. (3.254) in the short notation of Subsection
10.12.1 [see Eq. (10.565)]. In the presently used physical units it reads:

∆̄(τ, τ ′) ≡ ∆̄(τ − τ ′) =
(τ − τ ′)2

2h̄β
− τ − τ ′

2
+
h̄β

12
, τ ∈ [0, h̄β]. (19.233)

The time derivatives of (19.233) are from (10.566):

˙∆̄(τ, τ ′) = −∆̄̇ (τ, τ ′) ≡ τ − τ ′

h̄β
− ǫ(τ − τ ′)

2
, τ, τ ′ ∈ [0, h̄β]. (19.234)

With these functions it is straightforward to calculate the expectation value using
the Wick rule (3.310) for j(τ) =

∑n
i kiδ(τ − τi):

〈

eik1δx(τ1) · · · eiknδx(τn)
〉

0
= e

− 1
2

∑n

i,j=1
kikjG(τi,τj). (19.235)

By rewriting the right-hand side as

e
− 1

2

∑n

i,j=1
kikjG(τi,τj) = e

− 1
2

∑n

i,j=1
kikj [G(τi,τj)−G(τi,τi)]−

1
2(
∑n

i=1
ki)

2
G(τi,τi), (19.236)

we see that if the momenta ki add up to zero,
∑n

i=1 ki = 0, we can replace (19.235)
by

〈

eik1δx(τ1) · · · eiknδx(τn)
〉

0
= exp







−
n
∑

i<j

kikj[G(τi, τj)−G(τi, τi)]







. (19.237)
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It is therefore useful to introduce the subtracted Green function

G′(τi, τj) ≡ G(τi, τj)−G(τi, τi). (19.238)

Recall the similar situation in the evaluation (5.377).
An obvious extension of (19.235) is

〈

ei[k1δx(τ1)+q1ẋ(τ1)] · · · ei[knδx(τn)+qnẋ(τn)]
〉

0
(19.239)

= e
− 1

2

∑n

i,j=1
kikjG(τi,τj)−

1
2

∑n

i,j=1
qikj Ġ (τi,τj)−

1
2

∑n

i,j=1
kiqj G˙(τi,τj)−

1
2

∑n

i,j=1
qiqj Ġ˙(τi,τj),

where the dots have the same meaning as in (10.395).

19.4.3 Lowest-Order Vacuum Polarization

Consider the lowest nontrivial case n = 2. By differentiating (19.237) with respect
to iq1 and iq2, and setting qi = 0, we obtain for k2 = −k1 = −k:
〈

ẋ(τ1)e
ikδx(τ1)ẋ(τ2)e

−ikδx(τ2)
〉

0
=
[

Ġ˙(τ1, τ2)+k
2 Ġ (τ1, τ2)G˙(τ1, τ2)

]

ek
2[G(τ1,τ2)−G(τ1,τ1)].

(19.240)

Inserting this into (19.227) after factorization according to (19.230), we obtain the
lowest correction to the effective action

∆Γe=− e2

2h̄c2

∫ ∞

0

dβ

β
e−βMc2/2 1

√

2πh̄2β/M
D

2
∏

i=1

[

∫

dDki
(2π)D

]

(2π)Dδ(D)(k1+k2)A
µ(k1)A

ν(k2)

×
∫ h̄β

0
dτ1

∫ h̄β

0
dτ2 [ Ġ˙(τ1, τ2)δ

µν+ kµ1k
ν
1 Ġ (τ1, τ2)G˙(τ1, τ2)] e

k21G
′(τ1,τ2), (19.241)

where we have displayed the proper vector indices. A partial integration over τ1
brings the second line to the form

−
∫ h̄β

0
dτ1

∫ h̄β

0
dτ2

(

k21δ
µν − kµ1k

ν
1

)

Ġ (τ1, τ2)G˙(τ1, τ2) e
k21G

′(τ1,τ2). (19.242)

Expressing G′(τ1, τ2) as (h̄/M)
[

∆̄(τ1 − τ2)− ∆̄(0)
]

and using the periodicity in τ2,
we calculate the integral

h̄2

M2

(

k21δ
µν − kµ1k

ν
1

)

h̄β
∫ h̄β

0
dτ ∆̇′

p
2(τ)eh̄k

2
1M[∆′

p(τ)−∆′

p(0)]. (19.243)

We now introduce reduced times u ≡ τ/h̄β and rewrite the Green functions for
τ ∈ (0, h̄β), u ∈ (0, 1) as

∆̄(τ1 − τ2) = − h̄β
2

[

u(1− u)− 1

6

]

, (19.244)

˙̄∆(τ1 − τ2) = u− 1

2
, (19.245)
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such that the integral in (19.243) becomes

1

4

∫ 1

0
du (2u− 1)2e−βh̄2k21u(1−u)/2M . (19.246)

Inserting this into (19.241) and dropping the irrelevant subscript of k1 we arrive at

∆Γe=
e2

2h̄c2

∫ ∞

0

dβ

β
e−βMc2/2 1

√

2πh̄2β/M
D

∫

dDk

(2π)D
Aµ(k)Aν(−k)

×
(

k2δµν − kµkν
) h̄4β2

4M2

∫ 1

0
du (2u− 1)2e−βh̄2k22Mu(1−u)/2M . (19.247)

After replacing h̄2β/2M → β, the integral over β can easily be performed using the
formula (2.498) with the result

∆Γe =
e2h̄

c2
1

(4π)D/2

1

2c

∫

dDk

(2π)D
Aµ(k)Aν(−k)

(

k2δµν − kµkν
)

× Γ (2−D/2)
∫ 1

0
du (2u− 1)2

[

u(1− u)k2 +M2c2/h̄2
]D/2−2

. (19.248)

In the prefactor we recognize the fine structure constant α = e2/h̄c [recall (1.505)].
The momentum integral can be rewritten as

1

2

∫ dDk

(2π)D
Aµ(k)Aν(−k)

(

k2δµν − kµkν
)

=
1

4

∫ dDk

(2π)D
Fµν(−k)Fµν(k), (19.249)

where

Fµν(x) = ∂µAν(x)− ∂νAµ(x) (19.250)

is the tensor of electromagnetic field strengths. We now abbreviate the integral over
u as follows:

Π(k2) ≡ α
4π

(4π)D/2
Γ (2−D/2)

∫ 1

0
du (2u− 1)2

[

u(1− u)k2 +M2c2/h̄2
]D/2−2

.(19.251)

This allows us to re-express (19.248) in configuration space:

∆Γe =
1

16πc

∫

d4xFµν(x)Π(−∂2)Fµν(x), (19.252)

where Fµν(x) is the Euclidean version of the gauge-invariant 4-dimensional curl of
the vector potential:

Fµν(x) = ∂µAν(x)− ∂νAµ(x). (19.253)

In Minkowski space, the components of Fµν are the electric and magnetic fields:

F0i = −F 0i = −∂0Ai + ∂iA0 = −∂0Ai − ∂iA
0 = −Ei, (19.254)

Fij = F ij = ∂iAj + ∂jAi = −∂iAj + ∂jA
i = −ǫijkBk. (19.255)
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This is in accordance with the electrodynamic definitions

E ≡ −1

c
Ȧ−∇φ, B ≡ ∇×A, (19.256)

where A0(x) is identified with the electric potential φ(x).
In terms of Fµν(x), the Maxwell action in the presence of a charge density ρ(x)

and a electric current density j(x)

Aem =
∫

dt d3x
{

1

4π

[

E2(x)−B2(x)
]

−
[

ρ(x)φ(x)− 1

c
j(x) ·A(x)

]}

, (19.257)

can be written covariantly as

Aem = −
∫

d4x
[

1

8πc
F 2
µν(x) +

1

c2
jµ(x)Aµ(x)

]

, (19.258)

where

jµ(x) = (cρ(x), j(x)) (19.259)

is the four-vector formed by charge density and electric current.
By extremizing the action (19.258) in the vector field Aµ(x) we find the Maxwell

equations in the covariant form

∂νF
νµ(x) =

1

c
jµ(x), (19.260)

whose zeroth and spatial components reduce to the time-honored laws of Gauss and
Ampère:

∇ ·E = 4πρ (Gauss′s law), (19.261)

∇×B =
4π

c
j (Ampère’s law). (19.262)

Expressing E(x) in terms of the potential using Eq. (19.256) and inserting this into
Gauss’s law, we obtain for a static point charge e at the origin the Poisson equation

−∇
2φ(x) = 4πeδ(3)(x). (19.263)

An electron of charge −e experiences an attractive mechanical potential V (x) =
−eφ(x). In momentum space this satisfies the equation reads

k2V (k) = −4πe2. (19.264)

From this we find directly the Coulomb potential of a hydrogen atom

V (x) = (∇2)−14πeδ(3)(x) = −
∫

d3k

(2π)3
4πe2

k2
= −e

2

r
, r ≡ |x|, (19.265)
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where e2 can be expressed in terms of the fine-structure constant α as e2 = h̄c α.
(1.505).

The Euclidean result (19.252) implies that a fluctuating closed particle orbit
changes the first term in the Maxwell action (19.258) to

Aeff
em = −

∫

dDx
1

16πc
Fµν(x)

[

1 + Π(−∂2)
]

Fµν(x). (19.266)

The quantity Π(−∂2) is the self-energy of the electromagnetic field caused by the
fluctuating closed particle orbit.

The self-energy changes the Maxwell equations (19.261) and (19.262) into

[

1 + Π(−∂2)
]

∇ · E = 4πρ,
[

1 + Π(−∂2)
]

∇×B =
4π

c
j. (19.267)

The static equation (19.264) for the atomic potential changes therefore into

[

1 + Π(k2)
]

k2V (k) = −4πe2. (19.268)

Since Π(k2) is of order α ≈ 1/137, this can be solved approximately by

V (k) ≡ −4πe2
[

1−Π(k2)
] 1

k2
. (19.269)

In real space, the attractive atomic potential is changed to lowest order in α as

−α
r
→ −

[

1− Π(∇2)
] α

r
. (19.270)

Set us calculate this change explicitly. For small ǫ and k2, we expand the self-
energy (19.251) in D = 4− ǫ dimensions as

Π(k2) =
α

24π

[

−2

ǫ
+ log

M2c2eγ

4πh̄2

]

− αh̄2k2

160πM2c2
+O

(

ǫ,
k2

M2c2/h̄2

)

. (19.271)

Inserting this into (19.269), or into (19.269) and using the Poisson equation −∇
2 ×

1/r = 4πδ(3)(x), we see that the self energy changes the Coulomb potential as
follows:

−α
r
→ −

[

1−Π(∇2)
] α

r
≈ −

{

1− α

24π2

[

−2

ǫ
+log

M2c2eγ

4πh̄2

]}

α

r
− α2h̄2

40M2c2
δ(3)(x).

(19.272)

The first term amounts to a small renormalization of the electromagnetic coupling
by the factor in curly brackets, which is close to unity for finite ǫ since α is small. We
are, however, interested in the result inD = 4 spacetime dimensions where ǫ→ 0 and
(19.272) diverges. The physical resolution of this divergence problem is to assume
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the initial point charge e0 in the electromagnetic interaction to be different from the
experimentally observed e to precisely compensate the renormalization factor, i.e.,

e20 = e2
{

1 +
α

24π2

[

−2

ǫ
+log

M2c2eγ

4πh̄2

]}

. (19.273)

Thus, the result Eq. (19.272) is really obtained in terms of e0, i.e., with α replaced
by α0. Then, using (19.273), we find that up to order α2, the atomic potential is

V eff(x) = −α
r
− α2h̄2

40M2c2
δ(3)(x). (19.274)

The second is an additional attractive contact interaction. It shifts the energies of
the s-wave bound states in Eq. (19.208) slightly downwards.

19.5 Path Integral for Spin-1/2 Particle

For particles of spin 1/2 the path integral formulation becomes algebraically more
involved. Let us first recall a few facts from Dirac’s theory of the electron.

19.5.1 Dirac Theory

In the Dirac theory, electrons are described by a four-component field ψα(x) in
spacetime parametrized by xµ = (ct,x) with µ = 0, 1, 2, 3. The field satisfies the
wave equation

(ih̄/∂ −Mc)ψ(x) = 0, (19.275)

where /∂ is a short notation for γµ∂µ and γµ are 4× 4 Dirac matrices satisfying the
anticommutation rules

{γµ, γν} = 2gµν, (19.276)

where gµν is now the Minkowski metric

gµν =











1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1











. (19.277)

An explicit representation of these rules is most easily written in terms of the
Pauli matrices (1.448):

γ0 =

(

σ0 0
0 −σ0

)

, γi =

(

0 σi

− σi 0

)

, (19.278)

where σ0 is a 2× 2 unit matrix. The anticommutation rules (19.276) follow directly
from the multiplication rules for the Pauli matrices:

σiσj = δij + iǫijkσk. (19.279)
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The action of the Dirac field is

A =
∫

d4x ψ̄(x) (ih̄/∂ −Mc)ψ(x), (19.280)

where the conjugate field ψ̄(x) is defined as

ψ̄(x) ≡ ψ†(x)γ0. (19.281)

It can be shown that this makes ψ̄(x)ψ(x) a scalar field under Lorentz transforma-
tions, ψ̄(x)γµψ(x) a vector field, and A an invariant. If we decompose ψ(x) into its
Fourier components

ψ(x) =
∑

k

1√
V
eikxψk(t), (19.282)

where V is the spatial volume, the action reads

A =
∫ tb

ta
dt
∑

k

ψ†
k
(t) [ih̄∂t −H(h̄k)]ψk(t), (19.283)

with the 4× 4 Hamiltonian matrix

H(p) ≡ γ0p c+ γ0Mc2. (19.284)

This can be rewritten in terms of 2× 2-submatrices as

H(p) =

(

Mc p�

− p� −Mc

)

c. (19.285)

Since the matrix is Hermitian, it can be diagonalized by a unitary transformation
to

Hd(p) =

(

εk 0
0 −εk

)

, (19.286)

where

εk ≡ c
√

p2 +M2c2 (19.287)

are energies of the relativistic particles of mass M and momentum p. Each entry in
(19.286) is a 2× 2-submatrix.

This is achieved by the Foldy-Wouthuysen transformation

Hd = eiSHe−iS, (19.288)

where

S = −i · �/2, � ≡ arctan (v/c), v ≡ p/M = velocity. (19.289)
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The vector � points in the direction of the velocity v and has the length ζ =
arctan (v/c), such that

cos ζ =
Mc√

p2 +M2c2
, sin ζ =

|p|√
p2 +M2c2

. (19.290)

A function of a vector v is defined by its Taylor series where even powers of v are
scalars v2n = v2n and odd powers are vectors v2n+1 = v2nv. If v̂ denotes as usual
the direction vector v̂ ≡ v/|v|, the matrix  · v̂ has the property that all even powers
of it are equal to a 4× 4 unity matrix up to an alternating sign: ( · v̂)2n = (−1)n.
Thus S = −i · v̂ζ and the Taylor series of eiS reads explictly

eiS=
∑

n=0,2,4,...

(−1)n

n!

(

ζ

2

)n

+ ( · v̂)
∑

n=1,3,5,...

(−1)n−1

n!

(

ζ

2

)n

= cos
ζ

2
+  · v̂ sin

ζ

2
. (19.291)

Now, S commutes trivially with  · p =  · �̂ |p|, while anticommuting with γ0

due to the anticommutation rules (19.276). Hence we can move the right-hand
transformation in (19.288) simply to the left-hand side with a sign change of S, and
obtain

Hd = e2iSH. (19.292)

It is easy to calculate e2iS: we merely have to double the rapidity in (19.291) and
obtain

e2iS = cos ζ +  · v̂ sin ζ =
Mc√

p2 +M2c2
(1 +  · p/Mc) . (19.293)

Hence we obtain

Hd = e2iSH =
Mc√

p2 +M2c2
(1 +  · p/Mc)Mc2γ0 (1 +  · p/Mc) . (19.294)

Taking the right-hand parentheses to the left of γ0 changes the sign of . The
product (1 +  · p/Mc) (1−  · p/Mc) is simply 1 + p2/M2c2, such that

Hd = c
√

p2 +M2c2 γ0 = εk γ
0 = h̄ωk γ

0. (19.295)

Remembering γ0 from Eq. (19.278) shows that Hd has indeed the diagonal form
(19.286).

Going to the diagonal fields ψd
k
(t) = eiSψk(t), the action becomes

A =
∫ tb

ta
dt
∑

k

ψd†
k
(t)
[

ih̄∂t −Hd(h̄k)
]

ψd
k
(t). (19.296)

Thus a Dirac field is equivalent to a sum of infinitely many momentum states, each
being associated with four harmonic oscillators of the Fermi type. The path integral
is a product of independent harmonic path integrals of frequencies ±ωk.
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It is then easy to calculate the quantum-mechanical partition function using the
result (7.419) for each oscillator, continued to real times:

ZQM =
∏

k

{

2 cosh4[ωk(tb − ta)/2]
}

. (19.297)

This can also be written as

ZQM = exp

(

4
∑

k

log {2 cosh[ωk(tb − ta)/2]}
)

, (19.298)

or as

ZQM = exp

[

4
∑

k

Tr log (ih̄∂t − h̄ωk)

]

= exp

{

∑

k

Tr log
[

ih̄∂t −Hd(h̄k)
]

}

. (19.299)

Since the trace is invariant under unitary transformations, we can rewrite this as

ZQM = exp

{

∑

k

Tr log [ih̄∂t −H(h̄k)]

}

, (19.300)

or, since the determinant of γ0 is unity, as

ZQM=exp

{

∑

k

Tr log
[

ih̄γ0∂t−γ0Hd(h̄k)
]

}

=exp

{

∑

k

Tr log
[

ih̄γ0∂t−h̄ck−Mc2
]

}

.

If we include the spatial coordinates into the functional trace, this can also be written
as

ZQM= exp
[

Tr log
(

ih̄γ0∂t − ih̄c∇−Mc2
)]

= exp {Tr log [c (ih̄/∂ −Mc)]} .

In analytic regularization of Section 2.15, the factor c in the tracelog can be dropped.
Moreover, there exists a simple algebraic identity

(ih̄/∂ +Mc)(ih̄/∂ −Mc) = −h̄2∂2 −M2c2. (19.301)

The factors on the left-hand side have the same functional determinant since [com-
pare (7.338) and (7.420)]

Det(ih̄/∂ −Mc) = eTr log(ih̄/∂−Mc) = e
V4

∫

d4p

(2π)4
Tr log(h̄ /p−Mc)

= e
V4

∫

d4p

(2π)4
Tr log(−h̄ /p−Mc)

= Det(−ih̄/∂ −Mc). (19.302)

This allows us, as a generalization of (7.420), to write

Det(ih̄/∂ −Mc) = Det(ih̄/∂ +Mc) =
√

Det(−h̄2∂2 −M2c2)14×4, (19.303)

where 14×4 is a 4× 4 unit matrix. In this way we arrive at the quantum-mechanical
partition function

ZQM = exp
[

4× 1

2
Tr log(−h̄2∂2 −M2c2)

]

≡ eiΓ
f
0/h̄. (19.304)
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The factor 4 comes from the trace in the 4 × 4 matrix space, whose indices have
disappeared in the formula. The exponent determines the effective action Γ of the
quantum system by analogy with the Euclidean relation Eq. (19.46).

The Green function of the Dirac equation (19.275) is a 4× 4 -matrix defined by

(ih̄/∂ −Mc)αβ (x|xa)βγ = ih̄δ(D)(x− xa)δαγ . (19.305)

Suppressing the Dirac indices, it has the spectral representation

(xb|xa) =
∫

d4p

(2πh̄)4
ih̄

/p −Mc + iη
e−ip(xb−xa)/h̄. (19.306)

This can be written more formally as a functional matrix

(xb|xa) = 〈xb|
ih̄

ih̄/∂ −Mc
|xa〉, (19.307)

which obviously satisfies the differential equation (19.305).

19.5.2 Path Integral

It is straightforward to write down a path integral representation for the amplitude
(19.307):

(xb|xa) =
∫ ∞

0
dS

∫ xb=x(λb)

xa=x(λa)
D4x

∫ D4p

(2πh̄)4
eiA/h̄, (19.308)

with the action

A[x, p] =
∫ S

0
dλ [−pẋ+ (/p −Mc)] . (19.309)

As in Section 19.1, the parameter λ is a lengthalong the orbits, but in contrast to
that section we shall work here with real time t, and λ is related t by λ = ct. and
S is the total reparametrization-invariant length. The dot denotes the derivative
ẋ ≡ dx(λ)/dλ. The path integral over x(λ) ensures that the momentum is λ-
independent, so that the path integral over p(λ) reduces to an ordinary Fourier
integral [compare Eq. (2.41)]:

∫ xb=x(λb)

xa=x(λa)
D4x

∫ D4p

(2πh̄)4
=
∫

d4p

(2πh̄)4
eip(xb−xa)+iS(/p−Mc)/h̄ (19.310)

Performing the integral over S in (19.308) leads to

(xb|xa) =
∫

d4p

(2πh̄)4
eip(xb−xa)

ih̄

/p −Mc
, (19.311)

in agrrement with the amplitude (19.307). The minus sign in front of pẋ is necessary
to have the positive sign for the spatial part pẋ in the Minkowski metric (19.277).

H. Kleinert, PATH INTEGRALS



19.5 Path Integral for Spin-1/2 Particle 1425

The action (19.309) can immediately be generalized to

Ā[x, p] =
∫ S

0
dλ [−pẋ+ h(λ) (/p −Mc)] , (19.312)

with any function h(λ) > 0. This makes it invariant under the reparametrization

λ→ f(λ), h(λ) → h(λ)/f(λ). (19.313)

The path integral (19.308) contains then an extra functional integration over h(λ)
with some gauge-fixing functional Φ[h], as in (19.22), which has been chosen in
(19.309) as Φ[h] = δ[h− 1].

The path integral alone yields an amplitude

〈x|eiS(ih̄/∂−Mc)/h̄|xa〉, (19.314)

and the integral over S in (19.308) produces indeed the propagator (19.307). In
evaluating this we must assume, as usual, that the mass carries an infinitesimal
negative imaginary part iη. This is also necessary to guarantee the convergence of
the path integral (19.308).

Electromagnetism is introduced as usual by the minimal substitution (2.644). In
the operator version, we have to substitute

∂µ −−−→ ∂µ + i
e

h̄c
Aµ. (19.315)

Thus we obtain the gauge-invariant action

Ā[x, p] =
∫ S

0
dλ

[

−pẋ+ h(λ)

(

/p − eh̄

c
/A −Mc

)]

. (19.316)

Another path integral representation which is closer to the spinless case is ob-
tained by rewriting (19.307) as

(x|xa) = (ih̄/∂ +Mc) 〈x| ih̄

−h̄2∂2 −M2c2
|xa〉, (19.317)

where we have omitted the negative infinitesimal imaginary part −ih̄ of the mass,
for brevity, and used the fact that

(ih̄/∂ +Mc)(ih̄/∂ −Mc) = −h̄2∂2 −M2c2, (19.318)

on account of the anticommutation relation (19.276). By rewriting (19.317) as a
proper-time integral

(x|xa) =
1

2Mc
(ih̄/∂ +Mc)

∫ ∞

0
dS〈x|eiS(−h̄2∂2−M2c2)/2Mch̄|xa〉, (19.319)

we find immediately the canonical path integral

(x|xa) =
1

2Mc
(ih̄/∂ +Mc)

∫ ∞

0
dS

∫ x=x(λb)

xa=x(λa)
D4x

∫ D4p

(2πh̄)4
eiA/h̄, (19.320)
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with the action

A[x, p] =
∫ S

0
dλ
[

−pẋ+ 1

2Mc

(

p2 −M2c2
)

]

. (19.321)

The suppressed Dirac indices of the 4×4 -amplitude on the left-hand side, (x|xa)αβ,
are entirely due to the prefactor (ih̄/∂ +Mc)αβ on the right-hand side.

As in the generalization of (19.309) to (19.309), this action can be generalized to

Ā[x, p] =
∫ S

0
dλ

[

−pẋ+ h(λ)

2Mc

(

p2 −M2c2
)

]

, (19.322)

with any function h(λ) > 0, thus becoming invariant under the reparametrization
(19.313), and the path integral (19.308) contains then an extra functional integration
∫ Dh(λ) Φ[h]. The action (19.322), is precisely the Minkowski version of the path
integral of a spinless particle of the previous section [see Eq. (19.14)].

Introducing here electromagnetism by the minimal substitution (19.315) in the
prefactor of (19.317) and on the left-hand side of (19.318), the latter becomes then

(

ih̄/∂ − e

c
/A +Mc

)(

ih̄/∂ − e

c
/A −Mc

)

= h̄2
[

(

i∂ − e

h̄c
A
)2

− e

h̄c
ΣµνFµν

]

−M2c2,

(19.323)
where

Σµν ≡ i

4
[γµ, γν ] = −Σνµ (19.324)

are the generators of Lorentz transformations in the space of Dirac spinors. For any
fixed index µ, they satisfy the commutation rules:

[Σµν ,Σµκ] = igµµΣνκ. (19.325)

Due to the antisymmetry in the two indices, this determines all nonzero commutators
of the Lorentz group.

Using Eqs. (19.254), we can write the last interaction term in (19.323) as

ΣµνFµν = −2ΣiBi + 2Σ0iEi, (19.326)

where Σi are the generators of rotation

Σi ≡ 1

2
ǫijkΣ

jk =
1

2

(

σi 0
0 σi

)

, (19.327)

and

Σ0i ≡ iαi ≡ iγ0γi = i

(

−σi 0
0 σi

)

(19.328)

are the generators of rotation-free Lorentz transformations. Thus

ΣµνFµν = −
(

�(B+ iE) 0
0 �(B− iE)

)

. (19.329)
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19.5.3 Amplitude with Electromagnetic Interaction

The obvious generalization of the path integral (19.320) which includes minimal
electromagnetic interactions is then

(x|xa)=
1

2M

[(

ih̄/∂ − e

c
/A
)

+Mc
]∫ ∞

0
dS
∫

Dh(λ) Φ[h]
∫ x=x(λb)

xa=x(λa)
D4x

∫ D4p

(2πh̄)4
T̂ eiA/h̄,

(19.330)
with the action

Ā[x, p] =
∫ S

0
dλ

{

−pẋ+ h(λ)

2Mc

[

(

p− e

c
A
)2

− h̄e

c
ΣµνFµν −M2c2

]}

. (19.331)

The symbol T̂ is the time-ordering operator defined in (1.241), now with respect to
the proper time λ, which has to be present to account for the possible noncommu-
tativity of FµνΣ

µν/2 at different λ. Integrating out the momentum variables yields
the configuration-space path integral

(x|xa) =
1

2M

[(

ih̄/∂ − e

c
/A
)

+Mc
] ∫ ∞

0
dS
∫

Dh(λ) Φ[h]
∫ x=x(λb)

xa=x(λa)
D4x T̂eiA/h̄,(19.332)

with the action

Ā[x] =
∫ S

0
dλ

[

− Mc

2h(λ)
ẋ2 − e

c
ẋA− h(λ)

h̄e

2Mc2
ΣµνFµν − h(λ)

Mc

2

]

. (19.333)

The coupling to the magnetic field adds to the rest energyMc2 an interaction energy

Hint = − h̄e

Mc
� ·B. (19.334)

From this we extract the magnetic moment of the electron. We compare (19.334)
with the general interaction energy (8.316), and identify the magnetic moment as

� =
h̄e

Mc
�. (19.335)

Recall that in 1926, Uhlenbeck and Goudsmit explained the observed Zeeman split-
ting of atomic levels by attributing to an electron a half-integer spin. However, the
magnetic moment of the electron turned out to be roughly twice as large as what
one would expect from a charged rotating sphere of angular momentum L, whose
magnetic moment is

� = µB
L

h̄
, (19.336)

where µB ≡ h̄e/Mc is the Bohr magneton (2.649). On account of this relation, it is
customary to parametrize the magnetic moment of an elementary particle of spin S

as follows:

� = gµB
S

h̄
. (19.337)
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The dimensionless ratio g with respect to (19.336) is called the gyromagnetic ratio

or Landé factor . For a spin-1/2 particle, S is equal to �/2, and comparison with
(19.335) yields the gyromagnetic ratio

g = 2, (19.338)

the famous result found first by Dirac, predicting the intrinsic magnetic moment µ
of an electron to be equal to the Bohr magneton µB, thus being twice as large as
expected from the relation (19.336), if we insert there the spin 1/2 for the orbital
angular momentum.

In quantum electrodynamics one can calculate further corrections to this Dirac
result as a perturbation expansion in powers of the fine-structure constant α [recall
(1.505)]. The first correction to g due to one-loop Feynman diagrams was found by
Schwinger:

g = 2×
(

1 +
α

2π

)

≈ 2× 1.001161, (19.339)

where α is the fine-structure constant (1.505). Experimentally, the gyromagnetic
ratio has been measured to an incredible accuracy:

g = 2× 1.001 159 652 193(10), (19.340)

in excellent agreement with (19.339). If the perturbation expansion is carried to
higher orders, one is able to reach agreement up to the last experimentally known
digits [14].

In the literature, there exist other representations of path integrals for Dirac
particles involving Grassmann variables. For this we recall the discussion in Sub-
section 7.11.3 that a path integral over four real Grassmann fields θµ, µ = 0, 1, 2, 3

∫

D4θ exp

[

i

h̄

∫

dt

(

−ih̄
4
θµθ̇

µ

)]

, (19.341)

generates a matrix space corresponding to operators θ̂µ with the anticommutation
rules

{

θ̂µ, θ̂ν
}

= 2gµν , (19.342)

and the matrix elements

〈β|θ̂µ|α〉 = (γ5γ
µ)βα , β, α = 1, 2, 3, 4. (19.343)

It is then possible to replace path integral (19.332) by

(x|xa) =
1

2M

∫ ∞

0
dS

∫

DhΦ[h]

×
∫

DχΦ[χ]
∫

D4θ
∫

Dx
∫ Dp

(2πh̄)4
ei(Ā[x]+AG[θµ,A])/h̄, (19.344)
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with the action of a relativistic spinless particle [the action (19.333) without the
spin coupling]

Ā[x, p] =
∫ S

0
dλ

{

−pẋ+ h(λ)

2Mc

[

(

p− e

c
A
)2

−M2c2
]}

, (19.345)

and an action involving the Grassmann fields θµ:

AG[θ
µ, A] =

∫ S

0
dλ

{

−ih̄
4
θµ(λ)θ̇

µ(λ) + h(λ)
ih̄e

4Mc2
Fµν(x(λ))θ

µ(λ)θν(λ)

}

. (19.346)

This follows directly from Eq. (7.513). The function h(λ) is the same as in the
bosonic actions (19.14) and the path integral (19.22) guaranteeing the reparametriza-
tion invariance (19.13).

After integrating out the momentum variables in the path integral (19.344), the
canonical action is of course replaced by the configuration space action (19.218). In
the simplest gauge (19.23), the total action reads

Ā[x, θµ] =
∫ S

0
dλ

[

−Mc

2
ẋ2 − e

c

(

ẋA− i
h̄

4Mc
Fµνθ

µθν
)

− Mc

2
+
ih̄

4
θµ(τ)θ̇

µ(τ)

]

.

(19.347)

The Grassmann variables can be integrated out using formula (19.103), which reads
here [compare (7.501)]:

∫

D4θ e
i
4

∫

dt[−iθµ(t)θ̇µ(t)+(ie/4Mc)Fµνθµθν] = 4Det1/2
[

−iδµν ∂t+
ie

Mc
Fµν(x(λ))

]

. (19.348)

For a constant field tensor Fµν and with the usual antiperiodic boundary condi-
tions in the interval ct = λ ∈ (0, S), the right-hand side has been given before in
Eq. (19.103). In the present case it reads:

4Det1/2
(

−igµν ∂λ + i
e

Mc2
Fµν

)

= 4 cos
(

e

Mc2
BS
2

)

cosh
(

e

Mc2
E S
2

)

. (19.349)

19.5.4 Effective Action in Electromagnetic Field

In the absence of electromagnetism, the effective action of the fermion orbits is
given by (19.304). Its Euclidean version differs from the Klein-Gordon expression
in (19.38) only by a factor −2:

Γf
e,0

h̄
= −2Tr log

[

−h̄2∂2 +M2c2
]

. (19.350)

Explicitly we have from (19.39), (19.41), and (19.46):

Γf
e,0

h̄
= 2VD

∫ ∞

0

dβ

β
e−βMc2/2 1

√

2πh̄2β/M
D = 2

VD

λCM
D

1

(4π)D/2
Γ(1−D/2). (19.351)
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The factor 2 may be thought of as 4 × 1/2 where the factor 4 comes from the free
path integral over the Grassmann field,

∫

DDθ e−Ae,0[θ]/h̄ = 4. (19.352)

counts the four components of the Dirac field. Recall that by (19.286), the Dirac field
carries four modes, one of energy h̄ωk, with two spin degrees of freedom, the other
of energy −h̄ωk with two spin degrees. The latter are shown in quantum field theory
to correspond to an antiparticle with spin 1/2. The path integral over x (λ) which
counts paths in opposite directions with the ground state energy (19.39) describes
particles and antiparticles [recall the remarks after Eq. 19.45]. This explains why
only the spin factor 2 remains in (19.351).

By including the vector potential via the minimal substitution p̂→ p̂−(e/c)A, we
obtain the Euclidean effective action from Eq. (19.221), and thus obtain immediately
the path integral representation

Γ̃f
e

h̄
= 2

∫ ∞

0

dβ

β
e−βMc2/2

∫

DDx e−Ae/h̄, (19.353)

with the Euclidean action (19.220).
This is not yet the true partition function Γe of the spin-1/2 particle, since the

proper path integral contains the additional Grassmann terms of the action (19.347).
In the Euclidean version, the full interaction is

Ae,int[x, θ] =
∫ h̄β

0
dλ

e

c

[

i ẋµ(λ)Aµ(x(λ))−
i

4M
Fµν(x(λ))θ

µ(λ)θν(λ)
]

. (19.354)

Thus we obtain the path integral representation

Γf
e

h̄
= 2

∫ ∞

0

dβ

β
e−βMc2/2

∫

DDx
∫

DDθ e−{Ae,0[x,θ]+Ae,int[x,θ]}/h̄, (19.355)

where the free part of the Euclidean action is

Ae,0[x, θ] = Ae,0[x] +Ae,0[θ] ≡
∫ h̄β

0
dτ
M

2
ẋ2(τ) +

∫ h̄β

0
dτ

h̄

4
θµ(τ)θ̇µ(τ). (19.356)

19.5.5 Perturbation Expansion

The perturbation expansion is a straightforward generalization of the expansion
(19.224):

Γf
e

h̄
=

Γf
e,0

h̄
+
∫ ∞

0

dβ

β
e−βMc2/2 2VD

√

2πh̄2β/M
D

∞
∑

n=1

(−ie/c)n
n!

(19.357)

×
〈

n
∏

i=1

{

∫ h̄β

0
dτi

[

ẋµ(τi)Aµ(x(τi))−
h̄

4Mc
Fµν(x(τi))θ

µ(τi)θ
ν(τi)

]}

]

〉

0

.
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The leading free effective action coincides, of course, with the n = 0 -term of the
sum [compare (19.351)].

The expectation values are now defined by the Grassmann extension of the Gaus-
sian path integral (19.225):

〈O[x, θ]〉0 ≡
∫ DDx

∫ DDθO[x, θ] e−Ae,0[x,θ]/h̄

∫ DDx e−Ae,0[x]/h̄
∫ DDθ e−Ae,0[θ]/h̄

. (19.358)

where the denominator is equal to (1/2)VD/
√

2πh̄2β/M
D

× 4.
There exists also an expansion analogous to (19.227), where the vector potentials

have been Fourier decomposed according to (19.226). Then we obtain an expansion
just like (19.227), except for a factor −2 and with the expectation values replaced
as follows:

〈

n
∏

i=1

[ ∫ h̄β

0
dτi ẋ

µi(τi)e
ikix(τi)

]

〉

0

→
〈

n
∏

i=1

{ ∫ h̄β

0
dτi

[

ẋµi(τi) +
ih̄

2Mc
kνii θ

νi(τi)θ
µi(τi)

]

eikix(τi)
]

〉

0

. (19.359)

The evaluation of these expectation values proceeds as in Eqs. (19.228)–(19.239),
except that we also have to form Wick contractions of Grassmann variables which
have the free correlation functions

〈θµ(τ)θν(τ ′)〉 = 2δµνGa
ω,e(τ − τ ′), (19.360)

where

Ga
ω,e(τ − τ ′) =

1

2
ǫ(τ), τ ∈ [−h̄β, h̄β) (19.361)

is the Euclidean version of the antiperiodic Green function (3.109) solving the inho-
mogeneous equation

∂τG
a
ω,e(τ) = δ(τ). (19.362)

Outside the basic interval [−h̄β, h̄β) the function is to be continued antiperiodically.
in accordance with the fermionic nature of the Grassmann variables.

In operator language, the correlation function (19.360) is the time-ordered ex-
pectation value 〈T̂ θ̂(τ)θ̂(τ ′)〉0 [recall (3.299)]. By letting τ → τ ′ once from above
and once from below, the correlation function shows agreement with the anticom-
mutation rule (19.342). In verifying this we must use the fact that the time ordered
product of fermion operators is defined by the following modification of the bosonic
definition in Eq. (1.241):

T̂ (Ôn(tn) · · · Ô1(t1)) ≡ ǫP Ôin(tin) · · · Ôi1(ti1), (19.363)

where tin , . . . , ti1 are the times tn, . . . , t1 relabeled in the causal order, so that

tin > tin−1 > . . . > ti1 . (19.364)

The difference lies in the sign factor ǫP which is equal to 1 for an even and −1 for
an odd number of permutations of fermion variables.
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19.5.6 Vacuum Polarization

Let us see how the fluctuations of an electron loop change the electromagnetic field
action. To lowest order, we must form the expectation value (19.359) for n = 0 and
k1 = −k2 ≡ k:

〈[

ẋµ1(τ1)+
ih̄

2Mc
kν1θν1(τ1)θ

µ1(τ1)

]

eikδx(τ1)
[

ẋµ2(τ2)−
ih̄

2Mc
kν2θν2(τ2)θ

µ2(τ2)

]

e−ikδx(τ2)

〉

0

.

(19.365)

From the contraction of the velocities ẋµ1(τ1) and ẋ
µ2(τ2) we obtain again the spinless

result (19.240) leading in (19.242) to the integrand

(

k21δ
µ1ν2 − kµ1

1 k
µ2
1

)

Ġ 2(τ1, τ2) =
(

k21δ
µ1ν2 − kµ1

1 k
µ2
1

) h̄2

M2c2
(u− 1/2)2. (19.366)

In addition, there are the Wick contractions of the Grassmann variables:

〈[

h̄

2Mc
kν1θν1(τ1)θ

µ1(τ1)

]

eikδx(τ1)
[

ih̄

2Mc
kν2θν2(τ2)θ

µ2(τ2)

]

e−ikδx(τ2)

〉

0

= −
(

k21δ
µ1ν2 − kµ1

1 k
µ2
1

) h̄2

M2c2
1

4
ǫ2(τ1 − τ2). (19.367)

Since ǫ2(τ1 − τ2) = 1, this changes the spinless result (19.366) to

(

k21δ
µ1ν2 − kµ1

1 k
µ2
1

)

Ġ 2(τ1, τ2) =
(

k21δ
µ1ν2 − kµ1

1 k
µ2
1

) h̄2

M2c2
[(u−1/2)2−1/4]. (19.368)

Remembering the factor −2 in the expansion (19.358) with respect to the spinless
one, we find that the vacuum polarization due to fluctuating spin-1/2 orbits is
obtained from the spinless result (19.251) by changing the factor 4(u − 1/2)2 =
(2u − 1)2 in the integrand to −2 × 4u(u − 1) = 8u(1 − u). The resulting function
Π(k2) has the expansion

Π(k2) =
1

3π

[

2

ǫ
− log

M2c2eγ

4πh̄2

]

− h̄2k2

15πM2c2
+O

(

ǫ,
k2

M2c2/h̄2

)

. (19.369)

The first term produces a renormalization of the charge which is treated as in the
bosonic case [recall (19.271)–(19.274)], which causes an additional contact interac-
tion

−α
r
→ −α

r
− 4α2h̄2

15M2c2
δ(3)(x). (19.370)

There, the vacuum polarization has the effect of lowering the state 2S1/2, which is
the s-state of principal quantum number n = 2, against the p-state 2P1/2 by 27.3
MHz. The experimental frequency shift is positive ≈ 1057MHz [recall Eq. (18.600)],

H. Kleinert, PATH INTEGRALS



19.6 Supersymmetry 1433

and is mainly due to the effect of the electron moving through a bath of photons as
calculated in Eq. (18.599).

The effect of vacuum polarization was first calculated by Uehling [13], who as-
sumed it to be the main cause for the Lamb shift. He was disappointed to find only
3% of the experimental result, and a wrong sign.

The situation in muonic atoms is different. There the vacuum polarization does

produce the dominant contribution to the Lamb shift for a simple reason: The other
effects contain in a factor M/M2

µ, where M
2
µ is the mass of the muon, whereas the

vacuum polarization still involves an electron loop containing only the electron mass
M , thus being enhanced by a factor (Mµ/M)2 ≈ 2102 over the others.

The calculations for the electron in an atom have been performed to quite high
orders [14] within quantum electrodynamics. We have gone through the above
calculation only to show that it is possible to re-obtain quantum field-theoretic
result within the path integral formalism. More details are given in the review
article [5],

As mentioned in the beginning, the above calculations are greatly simplified
version of analogous calculations within superstring theory, which so far have not
produced any physical results. If this ever happens, one should expect that also
in this field a second-quantized field theory would be extremely useful to extract
efficiently observable consequences. Such a theory still need development [15].

19.6 Supersymmetry

It is noteworthy that the various actions for a spin-1/2 particle is invariant under
certain supersymmetry transformations.

19.6.1 Global Invariance

Consider first the fixed-gauge action (19.347). Its appearance can be made somewhat

more symmetric by absorbing a factor
√

h̄/2M into the Grassmann variables θµ(τ),
so that it reads

Ā[x, θµ]=
∫

dτ

[

−M
2
ẋ2 − e

c

(

ẋA +
i

2
Fµνθ

µθν
)

− Mc2

2
+
M

2
iθµ(τ)θ̇

µ(τ)

]

. (19.371)

The correlation functions (19.360) of the θ-variables are now

〈θµ(τ)θν(τ ′)〉 = δµνGf(τ, τ ′) ≡ δµν
h̄

M
∆f

0(τ − τ ′), (19.372)

with ∆f
0(τ − τ ′) = ǫ(τ − τ ′)/2. In this normalization, Gf(τ, τ ′) coincides, up to a

sign, with the first term in the derivative ˙G(τ, τ ′) of the bosonic correlation function
[recall (19.232) and the first term in (19.234)].

Let us apply to the variables the infinitesimal transformations

δxµ(τ) = iαθµ(τ), δθµ(τ) = αẋµ(τ). (19.373)
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where α is an arbitrary Grassmann parameter. For the free terms this is obvious.
The interacting terms change by

−iα
∫

d4x
e

c

(

θ̇µAµ + Fµν ẋ
µθν

)

. (19.374)

Inserting Fµν ẋ
µ(τ) = dAν(x(τ))/dτ − ∂ν [A

µ(x(τ))ẋµ(τ)], the first term cancels and
the second is a pure surface term, such that the action is indeed invariant.

Supersymmetric theories have a compact representation in an extended space
called superspace. This space is formed by pairs (τ, ζ), where ζ is a Grassmann
variable playing the role of a supersymmetric partner of the time parameter τ . The
coordinates xµ(τ) are extended likewise by defining

Xµ(τ) ≡ xµ(τ) + iζθµ(τ). (19.375)

A supersymmetric derivative is defined by

DXµ(τ) ≡
(

∂

∂ζ
+ iζ

∂

∂τ

)

Xµ(τ) = iθµ(τ) + iζẋµ(τ). (19.376)

If we now form the integral, using the Grassmann formula (7.379),
∫

dτ
dζ

2π
iẊµ(τ)DX

µ(τ) =
∫

dτ
dζ

2π
i
[

ẋ(τ)+iζθ̇µ(τ)
]

[iθµ(τ) + iζẋµ(τ)] , (19.377)

we find
∫

dτ
(

−ẋ2 + iθµθ̇
µ
)

, (19.378)

which proportional to the free part of the action (19.347). As a curious property of
differentiations in superspace we note that

D2Xµ(τ) = iẋµ(τ)− ζθ̇µ(τ), D3Xµ(τ) = −θ̇µ(τ)− ζẍ(τ), (19.379)

such that the kinetic term (19.377) can also be written as

−
∫

dτ
dζ

2π
Xµ(τ)D

3Xµ(τ). (19.380)

The interaction is found from the integral in superspace

i
∫

dτ
dζ

2π
Aµ(X(τ))DX(τ)

= i
∫

dτ
dζ

2π
[Aµ(x(τ)) + i∂νA

µ(x(τ))θν(τ)] [iθµ(τ) + iζẋµ(τ)] , (19.381)

which is equal to

−
∫

dτ
[

Aµ (τ) ẋ(τ) +
i

2
Fµνθ

µ(τ)θν(τ)
]

,

thus reproducing the interaction in (19.347). The action in superspace can therefore
be written in the simple form

A[X ] = i
∫

dτ
dζ

2π

[

−M
2
Xµ(τ)D

3Xµ(τ) +
e

c
Aµ(X(τ))DX(τ)

]

. (19.382)
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19.6.2 Local Invariance

A larger class of supersymmetry transformations exists for the action without gauge
fixing which is the sum of the free part (19.345) and the interacting part (19.346).

Absorbing again the factor
√

h̄/2M into the Grassmann variable θµ(τ), and rescaling

in addition h(τ) by a factor 1/c, the reparametrization-invariant action reads

Ā[x, p, θ, h] =
∫

dτ

{

−pẋ +
h(τ)

2M

[

(

p− e

c
A
)2

−M2c2
]

+
M

2
iθµ(τ)θ̇

µ(τ)− ih(τ)
e

c
Fµν(x(τ))θ

µ(τ)θν(τ)
}

. (19.383)

Let us now compose the action from invariant building blocks. For simplicity, we
ignore the electromagnetic interaction. In a first step we also omit the mass term.
The extra variable h(τ) requires an extra Grassmann partner χ(τ) for symmetry,
and we form the action

Ā1[x, p, θ, h, χ]=
∫

dτ

{

−pẋ+h(τ)
2M

p2+
M

2
iθµ(τ)θ̇

µ(τ)+
i

2
χ(τ)θµ(τ)pµ(τ)

}

. (19.384)

This action possesses a local supersymmetry. If we now perform τ -dependent versions
of the supersymmetry transformations (19.373)

δxµ = iα(τ)θµ, δθµ = α(τ)p, δp = 0,

δh = iα(τ)χ, δχ = 2α̇(τ). (19.385)

If we integrate out the momenta in the path integral, the action (19.384) goes over
into

Ā1[x, θ, h, χ]=
∫

dτ

{

− ẋ2

2h(τ)
+
M

2
iθµ(τ)θ̇

µ(τ) +
i

2h(τ)
χ(τ)θµ(τ)ẋµ(τ)

}

, (19.386)

where a term proportional to χ2(τ) has been omitted since it vanishes due to the
nilpotency (7.375). This action is locally supersymmetric under the transformations

δxµ = iα(τ)θµ, δθµ =
α(τ)

h(τ)

[

ẋ− i

2
χ θµ

]

,

δh = iα(τ)χ, δχ = 2α̇(τ). (19.387)

We now add the mass term

AM = −1

2

∫

dτ h(τ)Mc2. (19.388)

This needs a supersymmetric partner to compensate the variation of Am under
(19.387).

A5 =
i

2

∫

dτ
[

θ5(τ)θ̇5(τ) +Mcχ(τ)θ5(τ)
]

. (19.389)



1436 19 Relativistic Particle Orbits

Indeed, add to (19.387) the transformation

δθ5 =Mcα(τ), (19.390)

we see that the sum AM +A5 is invariant. Adding this to (19.384), we obtain the
locally invariant canonical action

Ā[x, p, θ, θ5, h, χ] =
∫

dτ

{

−pẋ+ h(τ)

2M
p2− h(τ)

2
Mc +

M

2
i
[

θµ(τ)θ̇
µ(τ) + θ5(τ)θ̇5(τ)

]

+
i

2
χ(τ) [θµ(τ)pµ(τ) +Mcθ5(τ)]

}

. (19.391)

Appendix 19A Proof of Same Quantum Physics of
Modified Action

Consider the sliced path integral for a relativistic point particle associated with the original action
(19.12). If we set the initial and final paramters λa and λb equal to λ0 and λN+1, and slice the
λ-axis at the places λn (n = 1, 2, . . . , N), the action becomes

Acl,e = Mc

N+1
∑

n=1

|xn − xn−1|, (19A.1)

where |xn − xn−1| =
√

(xn − xn−1)2 are the Euclidean distances [recall (19.2)]. The Euclidean
amplitude for the particle to run from xa = x0 to xb = xN+1 is therefore given by the product of
integrals in D spacetime dimensions

(xb|xa) = N
N
∏

n=1

[
∫

dDxn

]

e−Mc
∑

N+1

n=1
|xn−xn−1|/h̄. (19A.2)

As a consequence of the reparamterization invariance of (19.12), this expression is independent of
the thickness λn − λn−1 of the slices, which we shall denote by rename as ≡ hnǫ, where ǫ is some
fixed small number.

We now factorize the exponential of the sum into a product of N+1 exponentials and represent
each factor as an integral [using Formulas (1.347) and (1.349)]

e−Mc|xn−xn−1|/h̄ =

√

ǫMc

2πh̄

∫ ∞

0

dhnh
−1/2
n e−ǫhnMc/2h̄−Mc(xn−xn−1)

2/2hnǫh̄. (19A.3)

Absorbing constants in the normalization factor N , we arrive at

(xb|xa) = N
N+1
∏

n=1

[∫ ∞

0

dhnh
(D−1)/2
n

]

e−McǫΣN+1

n=1
hn/2

× 1
√

2πǫhN+1/Mc
D

N
∏

n=1

[

∫

dDxn
√

2πǫhn/Mc
D

]

e−McΣN+1

n=1
(xn−xn−1)

2/2hnǫ, (19A.4)

The second line contains only harmonic integrals over xn, which can all be done with the help of
the formulas of Appendix 2B, with the result

(xbS|xa0) =
1

√

2πSh̄/Mc
D
e−Mc(xb−xa)

2/2Sh̄, (19A.5)
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where S is the total parameter length

S ≡
N+1
∑

n=1

ǫhn, (19A.6)

Replacing (19A.5) by its Fourier representation [compare with (1.333) and (1.341)], we can rewrite
(19A.4) as

(xb|xa) = N
N+1
∏

n=1

[∫ ∞

0

dhnh
(D−1)/2
n

]

e−McS/2h̄

∫

dDp

(2πh̄)D
e−Sp2/2Mc+ip(xb−xa)/h̄. (19A.7)

Thus we are left with the product of integrals over hn. Before we can perform these, we must
make sure to respect the sum (19A.6). This is done by inserting an auxiliary unit integral that
separates out an integral over the total length S:

1 =

∫ ∞

0

dS δ(ΣN+1
n=1 ǫhn − S) =

∫ ∞

0

dS

2λC

∫ ∞

−i∞

dσ

2πi
e−σ(ΣN+1

n=1
ǫhn−S)/2λC , (19A.8)

where λC is the Compton wavelength (19.31). Then the product of integrals over hn in the brackets
of (19A.7) can be rewritten as follows:

∫ ∞

0

dS

2λC

{

∫ i∞

−i∞

dσ

2πi
eσS/2λC

N+1
∏

n=1

[∫ ∞

0

dhnh
(D−1)/2
n e−σǫhn/2λC

]

}

e−S/2λC (19A.9)

Setting hn = r2n, we treat the curly backets as

∫ i∞

−i∞

dσ

2πi
eσS/2λC

N+1
∏

n=1

[∫ ∞

−∞

drnr
D
n e−σǫr2

n
/2λC

]

=

[

2πλC

Γ(D+1)ǫ

]N+1∫ i∞

−i∞

dσ

2πi
eσS/2λCσ−(N+1)(D+1)/2. (19A.10)

For large N , the integral over σ can be approximated by the Gaussian integral around the neigh-
borhood of the saddle point at σ = (N + 1)(D + 1)λC/S:

∫ i∞

−i∞

dσ

2πi
eσS/2λCσ−(N+1)(D+1)/2 ≈

large N

1√
2π

[

S

(N + 1)(D + 1)λC

](N+1)(D+1)/2

. (19A.11)

While letting N tend to infinity, we keep S/(N + 1) ≡ ǭ fixed. Then we may write the right-hand
side as an exponential

1√
2π

[

(D + 1)λC

ǭ

]−S(D+1)/2ǭ

=
1√
2π

e−zS/2λC , (19A.12)

where

z ≡ ν log ν with ν ≡ (D + 1)λC/ǭ (19A.13)

is a large number. Inserting (20.246) back into the curly brackets of (19A.9), the constant z can be
absorbed into the mass of the particle by replacing M by the renormalized quantity M1 = M(1+z).
With this, (19A.9) becomes

∫ ∞

0

dS

2λC
e−SM1c/2h̄, (19A.14)
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and the path integral (19A.4) reduces to

(xb|xa) = N ′′

∫ ∞

0

dS

2λC
e−M1cS/2h̄

∫

dDp

(2πh̄)D
e−Sp2/2Mc+ip(xb−xa)/h̄, (19A.15)

where all irrelevant factors are contained in the normalization factor N ′′. The remaining integral
over S can now be done and yields

(xb|xa) = N ′′

∫

dDk

(2π)D
1

k2 + M2
Rc

2/h̄2 e
ik(xb−xa),

where MR is the renomalized mass

MR = M(1 + z)1/2. (19A.16)

If we choose the normalization factor N ′′ = 1, this is exactly the same result as that obtained
before in Eq. (19.30) from the modified action (19.10), if we use in the original action (19.12) the
mass M/(1 + z)1/2 rather than M for the calculation.
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Quandoquidem inter nos sanctissima divitiarum maiestas

Since the majesty of wealth is most sacred with us
Juvenal (55–120), Sat. 1, 113

20
Path Integrals and Financial Markets

An important field of applications for path integrals are financial markets. The
prices of assets fluctuate as a function of time and, if the number of participants
in the market is large, the fluctuations are pretty much random. Then the time
dependence of prices can be modeled by fluctuating paths.

20.1 Fluctuation Properties of Financial Assets

Let S(t) denote the price of a stock or another financial asset. Over long time
spans, i.e., if data recording frequency is low, the average over many stock prices
has a time behavior that can be approximated by pieces of exponentials. This is
why they are usually plotted on a logarithmic scale. This is best illustrated by a
plot of the Dow-Jones industrial index over 60 years in Fig. 20.1. The fluctuations
of the index have a certain average width called the volatility of the market. Over
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Figure 20.1 Logarithmic plot of Dow Jones industrial index over 80 years. There are

four roughly linear regimes, two of exponential growth, two of stagnation [1].
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Figure 20.2 (a) Index S&P 500 for 13-year period Jan. 1, 1984 —Dec. 14, 1996, recorded

every minute, and (b) volatility in time intervals 30 min (from Ref. [2]).

long times, the volatility is not constant but changes stochastically, as illustrated by
the data of the S&P 500 index over the years 1984-1997, as shown in Fig. 20.2 [3].
In particular, there are strong increases shortly before a market crash.

The theory to be developed will at first ignore these fluctuations and assume
a constant volatility. Attempts to include them have been made in the literature
[3]–[79] and a promising version will be described in Section 20.4.

The volatilities follow approximately a Gamma distribution, as illustrated in
Fig. 20.3.
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Figure 20.3 Comparison of best Gaussian, log-normal, and Gamma distribution fits

to volatilities over 300 min (from Ref. [80]). The normalized log-normal distribution has

the form Dlog−normal(z) = (2πσ2z2)−1/2e−(log z−µ)2/2σ2
. The Gamma distribution will be

discussed further in Subsection 20.1.5.
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An individual stock will in general be more volatile than an averge market index,
especially when the associated company is small and only few shares are traded per
day.

20.1.1 Harmonic Approximation to Fluctuations

To lowest approximation, the stock price S(t) satisfies a stochastic differential equa-
tion for exponential growth

Ṡ(t)

S(t)
= rS + η(t), (20.1)

where rS is the growth rate, and η(t) is a white noise variable defined by the corre-
lation functions

〈η(t)〉 = 0, 〈η(t)η(t′)〉 = σ2δ(t− t′). (20.2)

The standard deviation σ is a precise measure for the volatility of the stock price.
The squared volatility v ≡ σ2 is called the variance.

The quantity dS(t)/S(t) is called the return of the asset. From financial data, the
return is usually extracted for finite time intervals ∆t rather than the infinitesimal
dt since prices S(t) are listed for certain discrete times tn = t0 + n∆t. There are,
for instance, abundant tables of daily closing prices of the market S(tn), from which
one obtains the daily returns ∆S(tn)/S(tn) = [S(tn+1) − S(tn)]/S(tn). The set of
available S(tn) is called the time series of prices.

For a suitable choice of the time scales to be studied, the assumption of a white
noise is fulfilled quite well by actual fluctuations of asset prices, as illustrated in
Fig. 20.4.

ω [sec−1]

S(ω)

Figure 20.4 Fluctuation spectrum of exchange rate DM/US$ as function of frequency

in units 1/sec, showing that the noise driving the stochastic differential equation (20.1) is

approximately white (from [13]).
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For the logarithm of the stock or asset price1

x(t) ≡ log S(t) (20.3)

this implies a stochastic differential equation for linear growth [14, 15, 16, 17]

ẋ(t) =
Ṡ

S
− 1

2
σ2 = rx + η(t), (20.4)

where

rx ≡ rS − 1

2
σ2 (20.5)

is the drift of the process [compare (18.405)]. A typical set of solutions of (20.4) is
shown in Fig. 20.5.

x(t) ≡ logS(t)

t
2 4 6 8 10
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6

Figure 20.5 Behavior of logarithmic stock price following the stochastic differential

equation (20.3).

The finite differences ∆x(tn) = x(tn+1)−x(tn) and the corresponding differentials
dx are called log-returns .

The extra term σ2/2 in (20.5) is due to Itō’s Lemma (18.413) for functions of a
stochastic variable x(t). Recall that the formal expansion in powers of dt:

dx(t) =
dx

dS
dS(t) +

1

2

d2x

dS2
dS2(t) + . . .

=
Ṡ(t)

S(t)
dt− 1

2

[

Ṡ(t)

S(t)

]2

dt2 + . . . (20.6)

may be treated in the same way as the expansion (18.426) using the mnemonic rule
(18.429), according to which we may substitute ẋ2dt→ 〈ẋ2〉dt = σ2, and thus

[

Ṡ(t)

S(t)

]2

dt→ ẋ2(t)dt = σ2. (20.7)

The higher powers in dt do not contribute for Gaussian fluctuations since they carry
higher powers of dt. For the same reason the constant rates rS and rx in Ṡ(t)/S(t)
and ẋ(t) do not show up in [Ṡ(t)/S(t)]2 dt= ẋ2(t)dt.

1To form the logarithm, the stock or asset price S(t) is assumed to be dimensionless, i.e. the
numeric value of the price in the relevant currency.
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In charts of stock prices, relation (20.5) implies that if we fit a straight line
through a plot of the logarithms of the prices with slope rx, the stock price itself
grows on the average like

〈S(t)〉 = S(0) erSt = S(0)〈erxt+
∫ t

0
dt′ η(t′)〉 = S(0) e(rx+σ2/2)t. (20.8)

This result is, of course, a direct consequence of Eq. (18.425).
The description of the logarithms of the stock prices by Gaussian fluctuations

around a linear trend is only a rough approximation to the real stock prices. The
volatilities depend on time. If observed at small time intervals, for instance every
minute or hour, they have distributions in which frequent events have an exponen-
tial distribution [see Subsection 20.1.6]. Rare events, on the other hand, have a
much higher probability than in Gaussian distributions. The observed probabil-
ity distributions possess heavy tails in comparison with the extremely light tails of
Gaussian distributions. This was first noted by Pareto in the 19th century [18],
reemphasized by Mandelbrot in the 1960s [19], and investigated recently by several
authors [20, 22]. The theory needs therefore considerable refinement. As an inter-
mediate generalization we shall introduce, beside the heavy power-like tails, also
the so-called semi-heavy tails, which drop off faster than any power, such as e−xa

xb

with arbitrarily small a > 0 and any b > 0. We shall see later in Section 20.4 that
semi-heavy tails of financial distribution may be viewed as a consequence of Gaus-
sian fluctuations with fluctuating volatilities. Before we come to these we may fit
the data phenomenologically with various non-Gaussian distributions and explore
the consequences.

20.1.2 Lévy Distributions

Following Pareto and Mandelbrot we may attempt to approximately fit the distri-
butions of the price changes ∆Sn = S(tn+1)−S(tn), the returns ∆Sn/S(tn), and the
log-returns ∆xn = x(tn+1) − x(tn) for a certain time difference ∆t = tn+1 − tn with
the help of Lévy distributions [19, 22, 24, 23]. For brevity we shall, from now on, use
the generic variable z to denote any of the above differences. The Lévy distributions
are defined by the Fourier transform

L̃λ
σ2(z) ≡

∫ ∞

−∞

dp

2π
eipz Lλ

σ2(p), (20.9)

with

Lλ
σ2(p) ≡ exp

[

−(σ2p2)λ/2/2
]

. (20.10)

For an arbitrary distribution D̃(z), we shall write the Fourier decomposition as

D̃(z) =
∫

dp

2π
eipzD(p) (20.11)
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and the Fourier components D(p) as an exponential

D(p) ≡ e−H(p), (20.12)

where H(p) plays a similar role as the Hamiltonian in quantum statistical path
integrals. By analogy with this we shall also define H̃(z) so that

D̃(z) = e−H̃(z). (20.13)

An equivalent definition of the Hamiltonian is

z/σ

1/x1+λ

z/σ

P (z)

P (z)
1 + λ ≈ 2.7

1 + λ ≈ 4

Figure 20.6 Left: Lévy tails of the S&P 500 index (1 minute log-returns) plotted

against z/δ. Right: Double-logarithmic plot exhibiting power-like tail regions of the S&P

500 index (1 minute log-returns) (after Ref. [23])

e−H(p) ≡ 〈e−ipz〉. (20.14)

For the Lévy distributions (20.9), the Hamiltonian is

H(p) =
1

2
(σ2p2)λ/2. (20.15)

The Gaussian distribution is recovered in the limit λ → 2 where the Hamiltonian
simply becomes σ2p2/2.

For large z, the Lévy distribution (20.9) falls off with the characteristic power-law

L̃λ
σ2(z) → Aλ

σ2

λ

|z|1+λ
. (20.16)

This power falloff is the heavy tail of the distribution discussed above. It is also
called power tail , Paretian tail , or Lévy tail). The size of the tails is found by
approximating the integral (20.9) for large z, where only small momenta contribute,
as follows:

L̃λ
σ2(z) ≈

∫ ∞

−∞

dp

2π
eipz

[

1 − 1

2
(σ2p2)λ/2

]

→
z→∞

Aλ
σ2

λ

|z|1+λ
, (20.17)
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with

Aλ
σ2 = −σ

λ

2λ

∫ ∞

0

dp′

π
p′λ cos p′ =

σλ

2πλ
sin(πλ/2) Γ(1 + λ). (20.18)

The stock market data are fitted best with λ between 1.2 and 1.5 [13], and we
shall use λ = 3/2 most of the time, for simplicity, where one has

A
3/2
σ2 =

1

4

σ3/2

√
2π
. (20.19)

The full Taylor expansion of the Fourier transform (20.10) yields the asymptotic
series

L̃λ
σ2(z) =

∞
∑

n=0

(−1)n

n!

∫ ∞

0

dp

π

σλnpλn

2n
cos pz =

∞
∑

n=0

(−1)n+1

n!

σλn

2nπ
Γ(1 + nλ)

sin πλ
2

|z|1+λ
. (20.20)

This series is not useful for practical calculations since it diverges. In particular, it
is unable to reproduce the pure Gaussian distribution in the limit λ→ 2.

There also exists an asymmetric Lévy distribution whose Hamiltonian is

Hλ,σ,β(p) =
1

2
|σp|λ [1 − iβǫ(p)Fλ,σ(p)], (20.21)

where ǫ(p) is the step function (1.316), and

Fλ,σ(p) =

{

tan(πλ/2) for λ 6= 1,
−(1/π) log p2 for λ = 1.

(20.22)

The large-|z| behavior of this distribution is again given by (20.17), except that the
prefactor (20.18) is multiplied by a factor (1 + β).

20.1.3 Truncated Lévy Distributions

Mathematically, an undesirable property of the Lévy distributions is that their fluc-
tuation width diverges for λ < 2, since the second moment

σ2 = 〈z2〉 ≡
∫ ∞

−∞
dz z2 L̃λ

σ2(z) = − d2

dp2
Lλ
σ2(p)

∣

∣

∣

∣

∣

p=0

(20.23)

is infinite. If one wants to describe data which show heavy tails for large log-returns
but have finite widths one must make them fall off at least with semi-heavy tails
at very large returns. Examples are the so-called truncated Lévy distributions [22].
They are defined by

L̃
(λ,α)
σ2 (z) ≡

∫ ∞

−∞

dp

2π
eipz L

(λ,α)
σ2 (p) =

∫ ∞

−∞

dp

2π
eipz−H(p) , (20.24)
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with a Hamiltonian which generalizes the Lévy Hamiltonian (20.15) to

H(p) ≡ σ2

2

α2−λ

λ(1 − λ)

[

(α + ip)λ + (α− ip)λ − 2αλ
]

= σ2 (α2 + p2)λ/2 cos[λ arctan(p/α)] − αλ

αλ−2λ(1 − λ)
. (20.25)

The asymptotic behavior of the truncated Lévy distributions differs from the
power behavior of the Lévy distribution in Eq. (20.17) by an exponential factor e−αz

which guarantees the finiteness of the width σ and of all higher moments. A rough
estimate of the leading term is again obtained from the Fourier transform of the
lowest expansion term of the exponential function e−H(p):

L̃
(λ,α)
σ2 (z) ≈ e2sα

λ
∫ ∞

−∞

dp

2π
eipz

{

1 − s
[

(α + ip)λ + (α− ip)λ
]}

→
z→∞

e2sα
λ

Γ(1 + λ)
sin(πλ)

π
s
e−α|z|

|z|1+λ
, (20.26)

where

s ≡ σ2

2

α2−λ

λ(1 − λ)
. (20.27)

The integral follows directly from the formulas [25]

∫ ∞

−∞

dp

2π
eipz (α+ ip)λ =

Θ(z)

Γ(−λ)

e−αz

z1+λ
,
∫ ∞

−∞

dp

2π
eipz (α− ip)λ =

Θ(−z)
Γ(−λ)

e−α|z|

|z|1+λ
,(20.28)

and the identity for Gamma functions2

1

Γ(−z) = −Γ(1 + z) sin(πz)/π. (20.29)

The full expansion is integrated with the help of the formula [26]
∫ ∞

−∞

dp

2π
eipz (α + ip)λ(α− ip)ν

= (2α)λ/2+ν/2 1

|z|1+λ/2+ν/2



















1

Γ(−λ)
W(ν−λ)/2,(1+λ+ν)/2(2αz)

1

Γ(−ν)
W(λ−ν)/2,(1+λ+ν)/2(2αz)

for
z > 0,

z < 0,
(20.30)

where the Whittaker functions W(ν−λ)/2,(1+λ+ν)/2(2αz) can be expressed in terms of
Kummer’s confluent hypergeometric function 1F1(a; b; x) of Eq. (9.45) as

Wδ,κ(x) =
Γ(−2κ)

Γ(1/2 − κ− δ)
xκ+1/2e−x/2

1F1(1/2 + κ− δ; 2κ+ 1; x)

+
Γ(2κ)

Γ(1/2 + κ− δ)
x−κ+1/2e−x/2

1F1(1/2 − κ− δ;−2κ+ 1; x), (20.31)

2M. Abramowitz and I. Stegun, op. cit., Formula 6.1.17.
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as can be seen from (9.39), (9.46) and Ref. [27]. For ν = 0, only z > 0 gives a
nonzero integral (20.30), which reduces, with W−λ/2,1/2+λ/2(z) = z−λ/2e−z/2, to the
left equation in (20.28). Setting λ = ν we find

∫ ∞

−∞

dp

2π
eipz (α2 + p2)ν = (2α)ν/2

1

|z|1+ν

1

Γ(−ν)
W0,1/2+ν(2α|z|). (20.32)

Inserting

W0,1/2+ν(x) =

√

2z

π
K1/2+ν(x/2), (20.33)

we may write

∫ ∞

−∞

dp

2π
eipz (α2 + p2)ν =

(

2α

|z|

)1/2+ν
1√

πΓ(−ν)
K1/2+ν(α|z|). (20.34)

For ν = −1 where K−1/2(x) = K1/2(x) =
√

π/2xe−x, this reduces to

∫ ∞

−∞

dp

2π
eipz

1

α2 + p2
=

1

2α
e−α|z|. (20.35)

Summing up all terms in the expansion of the exponential function e−H(p):

L̃
(λ,α)
σ2 (z) ≈ e2sα

λ
∫ ∞

−∞

dp

2π

{

1 +
∞
∑

n=1

(−s)n
n!

[

(α + ip)λ + (α− ip)λ
]n
}

eipz (20.36)

yields the true asymptotic behavior

L̃
(λ,α)
σ2 (z) →

z→∞
e(2−2λ)sαλ

Γ(1 + λ)
sin(πλ)

π
s
e−α|z|

|z|1+λ
, (20.37)

which differs from the estimate (20.26) by a constant factor (see Appendix 20A for
details) [28]. Hence the tails are semi-heavy.

In contrast to Gaussian distributions which are characterized completely by their
width σ, the truncated Lévy distributions contain three parameters σ, λ, and α. Best
fits to two sets of fluctuating market prices are shown in Fig. 20.7. For the S&P 500
index we plot the cumulative distributions

P<(z) =
∫ z

−∞
dz′ L̃

(λ,α)
σ2 (z′), P>(z) =

∫ ∞

z
dz′ L̃

(λ,α)
σ2 (z′) = 1 − P<(z), (20.38)

for the price differences z = ∆S over ∆t = 15 minutes. For the ratios of the changes
of the currency rates DM/$ we plot the returns z = ∆S/S with the same ∆t. The
plot shows the negative and positive branches P<(−z), and P>(z) both plotted on
the positive z axis. By definition:

P<(−∞) = 0, P<(0) = 1/2, P<(∞) = 1,

P>(−∞) = 1, P>(0) = 1/2, P>(∞) = 0. (20.39)
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z z

P>
<

(±z)P>
<

(±z)

Figure 20.7 Best fit of cumulative versions (20.38) of truncated Lévy distribution to

financial data. For the S&P 500 index, the fluctuating variable z is directly the index

change ∆S every ∆t=15 minutes (fit with σ2 = 0.280 and κ = 12.7). For the DM/US$

exchange ratio, the variable z is equal to 100∆S/S every fifteen minutes (fit with σ2 =

0.0163 and κ = 20.5). The negative fluctuations lie on a slightly higher curve than the

positive ones. The difference is often neglected. The parameters A and α are the size

and truncation parameters of the distribution. The best value of λ is 3/2 (from [13]).

The dashed curves show the best fits of generalized hyperbolic functions (20.117) (l.h.s.

λ = 1.46, α = 4.93, β = 0, δ = 0.52; r.h.s. λ = 1.59, α = 32.1, β = 0, δ = 0.221).

The fits are also compared with those by other distributions explained in the figure
captions. A fit to most data sequences is possible with a rather universal parameter
λ close to λ = 3/2. The remaining two parameters fix all expansion coefficients of
Hamiltonian (20.25):

H(p) =
1

2
c2 p

2 − 1

4!
c4 p

4 +
1

6!
c6 p

6 − 1

8!
c8 p

8 + . . . . (20.40)

The numbers c2n = −(−1)nH(2n)(0) are the cumulants of the truncated Lévy dis-
tribution [compare (3.587)], also denoted by 〈zn〉c. Here they are equal to

〈z2〉c = c2 = σ2,

〈z4〉c = c4 = σ2(2 − λ)(3 − λ)α−2,

〈z6〉c = c6 = σ2(2 − λ)(3 − λ)(4 − λ)(5 − λ)α−4,
...

〈z2n〉c = c2n = σ2Γ(2n− λ)

Γ(2 − λ)
α2−2n. (20.41)
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The first cumulant c2 determines the quadratic fluctuation width

〈z2〉 ≡
∫ ∞

−∞
dz z2 L̃

(λ,α)
σ2 (z) = − d2

dp2
e−H(p)

∣

∣

∣

∣

∣

p=0

= c2 = σ2, (20.42)

the second the expectation of the fourth power of z

〈z4〉 ≡
∫ ∞

−∞
dz z4 L̃

(λ,α)
σ2 (z) =

d4

dp4
e−H(p)

∣

∣

∣

∣

∣

p=0

= c4 + 3c22, (20.43)

and so on:

〈z6〉 = c6 + 15c4c2 + 15c32, 〈z8〉 = c8 + 28c6c2 + 35c24 + 210c4c
2
2 + 105c42, . . . . (20.44)

In a first analysis of the data, one usually determines the so-called kurtosis , which
is the normalized fourth-order cumulant

κ ≡ c̄4 ≡
c4
c22

=
〈z4〉c
〈z2〉2c

=
〈z4〉c
σ4

. (20.45)

It depends on the parameters σ, λ, α as follows

κ =
(2 − λ)(3 − λ)

σ2α2
. (20.46)

Given the volatility σ and the kurtosis κ, we extract the Lévy parameter α from the
equation

α =
1

σ

√

(2 − λ)(3 − λ)

κ
. (20.47)

In terms of κ and λ, the normalized expansion coefficients are

-3 -2 -1 0 1 2 3

0.1

0.2

0.3 L̃µ,α
σ2 (z)

z

Figure 20.8 Change in shape of truncated Lévy distributions of width σ = 1 with

increasing kurtoses κ = 0 (Gaussian, solid curve), 1, 2 , 5, 10.
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c̄4 = κ, c̄6 = κ2
(5 − λ)(4 − λ)

(3 − λ)(2 − λ)
, c̄8 = κ2

(7 − λ)(6 − λ)(5 − λ)(4 − λ)

(3 − λ)2(2 − λ)2
,

...

c̄n = κn/2−1 Γ(n− λ)/Γ(4 − λ)

(3 − λ)n/2−2(2 − λ)n/2−2
. (20.48)

For λ = 3/2, the second equation in (20.47) becomes simply

α =
1

2

√

3

σ2κ
, (20.49)

and the coefficients (20.50):

c̄4 = κ, c̄6 =
5 · 7

3
κ2, c̄8 = 5 · 7 · 11 κ2,

...

c̄n =
Γ(n− 3/2)/Γ(5/2)

3n/2−2/2n−4
κn/2−1. (20.50)

At zero kurtosis, the truncated Lévy distribution reduces to a Gaussian distribution
of width σ. The change in shape for a fixed width and increasing kurtosis is shown
in Fig. 20.8.

From the S&P and DM/US$ data with time intervals ∆t = 15 min one extracts
σ2 = 0.280 and 0.0163, and the kurtoses κ = 12.7 and 20.5, respectively. This implies
α ≈ 0.46 and α ≈ 1.50, respectively. The other normalized cumulants (c̄6, c̄8, . . .)
are then all determined to be (1881.72, 788627.46, . . .) and (−4902.92, 3.3168 × 106

, . . .), respectively. The cumulants increase rapidly showing that the expansion needs
resummation.

The higher normalized cumulants are given by the following ratios of expectation
values

c̄6 =
〈z6〉
〈z2〉3 − 15

〈z4〉
〈z2〉2 + 30,

c̄8 =
〈z8〉
〈z2〉4 − 28

〈z6〉
〈z2〉3 − 35

〈z4〉2
〈z2〉4 + 420

〈z4〉
〈z2〉2 − 630, . . . . (20.51)

In praxis, the high-order cumulants cannot be extracted from the data since they
are sensitive to the extremely rare events for which the statistics is too low to fit a
distribution function.

20.1.4 Asymmetric Truncated Lévy Distributions

We have seen in the data of Fig. 20.7 that the price fluctuations have a slight
asymmetry: Price drops are slightly larger than rises. This is accounted for by an
asymmetric truncated Lévy distribution. It has the general form [24]

L
(λ,α,β)
σ2 (p) ≡ e−H(p), (20.52)
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with a Hamiltonian function

H(p) ≡ σ2

2

α2−λ

λ(1 − λ)

[

(α + ip)λ(1 + β) + (α− ip)λ(1 − β) − 2αλ
]

= σ2 (α2 + p2)λ/2 {cos[λ arctan(p/α)] + iβ sin[λ arctan(p/α)]} − αλ

αλ−2λ(1 − λ)
. (20.53)

This has a power series expansion

H(p) = ic1p+
1

2
c2 p

2 − i
1

3!
c3p

3 − 1

4!
c4 p

4 + i
1

5!
c5p

5 + . . . . (20.54)

There are now even and odd cumulants cn = −inH(n)(0) with the values

cn = σ2Γ(n− λ)

Γ(2 − λ)
α2−n

{

1

β
for

n = even,

n = odd.
(20.55)

The even cumulants are the same as before in (20.41). Similarly, the even expecta-
tion values (20.42)–(20.44) are extended by the odd expectation values:

〈z〉≡
∫ ∞

−∞
dz z L̃

(λ,α,β)
σ2 (z) = i

d

dp
e−H(p)

∣

∣

∣

∣

∣

p=0

= c1,

〈z2〉≡
∫ ∞

−∞
dz z2 L̃

(λ,α,β)
σ2 (z) = − d2

d2p
e−H(p)

∣

∣

∣

∣

∣

p=0

= c2 + c21,

〈z3〉≡
∫ ∞

−∞
dz z3 L̃

(λ,α,β)
σ2 (z) = −i d

3

d3p
e−H(p)

∣

∣

∣

∣

∣

p=0

= c3 + 3c2c1 + c31,

〈z4〉≡
∫ ∞

−∞
dz z4 L̃

(λ,α,β)
σ2 (z) =

d4

d4p
e−H(p)

∣

∣

∣

∣

∣

p=0

=c4 + 4c3c1 + 3c22 + 6c2c
2
1 + c41,

... . (20.56)

The inverse relations are

c1 = 〈z〉c = 〈z〉,
c2 = 〈z2〉c = 〈z2〉 − 〈z〉2 = 〈(z − 〈z〉c)〉2,
c3 = 〈z3〉c = 〈z3〉 − 3〈z〉〈z2〉 + 2〈z〉3 = 〈(z − 〈z〉c)〉3,
c4 = 〈z4〉c = 〈z4〉 − 3〈z2〉2 − 4〈z〉〈z3〉 + 12〈z〉2〈z2〉 − 6〈z〉4

= 〈(z − 〈z〉c)〉4 − 3〈z2 − 〈z〉2c〉2 = 〈(z − 〈z〉c)〉4 − 3c22. (20.57)

These are, of course, just simple versions of the cumulant expansions (3.585) and
(3.587).

The distribution is now centered around a nonzero average value:

µ ≡ 〈z〉 = c1. (20.58)
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The fluctuation width is given by

σ2 ≡ 〈z2〉 − 〈z〉2 = 〈(z − 〈z〉)2 〉 = c2. (20.59)

For large z, the asymmetric truncated Lévy distributions exhibit semi-heavy
tails, obtained by a straightforward modification of (20.28):

L̃
(λ,α)
σ2 (z) ≈

∫ ∞

−∞

dp

2π
eipz

{

1−σ2

2

α2−λ

λ(1−λ)

[

(α+ ip)λ(1+β) + (α− ip)λ(1−β) − 2αλ
]

}

→
z→∞

σ2 e2sα
λ

Γ(1 + λ)
sin(πλ)

π
s
e−α|z|

|z|1+λ
[1 + β sgn(z)]. (20.60)

In analyzing the data, one uses the skewness

s ≡ 〈(z − 〈z〉)3〉
σ3

= c̄3 =
c3

c
3/2
2

. (20.61)

It depends on the parameters σ, λ, β, and α or κ as follows

-4 -2 2 4

0.1

L̃µ,α,β
σ2 (z)

z − 〈z〉

Figure 20.9 Change in shape of truncated Lévy distributions of width σ = 1 and

kurtosis κ = 1 with increasing skewness s = 0 (solid curve), 0.4, 0.8 . The curves are

centered around 〈z〉.

s =
(2 − λ)β

σα
. (20.62)

The kurtosis can also be defined by [compare (20.45)]3

κ ≡ c̄4 ≡
c4
c22

=
〈z4〉c
〈z2〉2c

=
〈z4〉c
σ4

=
〈(z − 〈z〉)4〉

σ4
− 3. (20.63)

From the data one extracts the three parameters volatility σ, skewness s, and kur-
tosis κ, which completely determine the asymmetric truncated Lévy distribution.

3Some authors call the ratio 〈(z − 〈z〉)〉4/σ4 in (20.63) kurtosis and the quantity κ the excess

kurtosis . Their kurtosis is equal to 3 for a Gaussian distribution, ours vanishes.
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The data are then plotted against z − 〈z〉 = z − µ, so that they are centered at the

average position. This centered distribution will be denoted by L̄
(λ,α,β)
σ2 (z), i.e.

L̄
(λ,α,β)
σ2 (z) ≡ L̃

(λ,α,β)
σ2 (z − µ). (20.64)

The Hamiltonian associated with this zero-average distribution is

H̄(p) ≡ H(p) −H ′(0)p, (20.65)

and its expansion in power of the momenta starts out with p2, i.e. the first term in
(20.54) is subtracted.

In terms of σ, s, and κ, the normalized expansion coefficients are

c̄n =κn/2−1 Γ(n− λ)/Γ(4 − λ)

(3 − λ)n/2−2(2 − λ)n/2−2











1

√

(3 − λ)/(2 − λ)κ s
for

n = even,

n = odd.
(20.66)

The change in shape of the distributions of a fixed width and kurtosis with increasing
skewness is shown in Fig. 20.9. We have plotted the distributions centered around
the average position z = 〈c1〉 which means that we have removed the linear term
ic1p from H(p) in (20.52), (20.53), and (20.54). This subtracted Hamiltonian whose
power series expansion begins with the term c2p

2/2 will be denoted by

H̄(p) ≡ H(p) −H ′(0)p =
1

2
c2 p

2 − i
1

3!
c3p

3 − 1

4!
c4 p

4 + i
1

5!
c5p

5 + . . . . (20.67)

20.1.5 Gamma Distribution

For a Hamiltonian
H+(p) = ν log (1 − ip/µ) (20.68)

one obtains the normalized Gamma distribution of mathematical statistics:

D̃Gamma
µ,ν (z) =

1

Γ(ν)
µνzν−1e−µz ,

∫ ∞

0
dz D̃Gamma

µ,ν (z) = 1, (20.69)

which is restricted to positive variables z.
Expanding H+(p) in a power series −∑∞

n=1 i
nνµ−npn/n = −∑∞

n=1 i
ncnp

n/n!, we
identify the cumulants

cn = (n− 1)! ν/µn, (20.70)

so that the lowest moments are

z̄ = ν/µ, σ2 = ν/µ2, s = 2/
√
ν, κ = 6/ν. (20.71)

The maximum of the distribution lies slightly below the average value z̄ at

zmax = (ν − 1)/µ = z̄ − 1/µ. (20.72)
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The Gamma distribution was seen in Fig. 20.3 to yield an optimal fit to the
fluctuating volatilities when is it is plotted as a distribution of the volatility σ =

√
z:

D̃Chi
µ,ν (σ) ≡ 2σD̃Gamma

µ,ν (σ2) ,
∫ ∞

0
dσ D̃Chi

µ,ν (σ) = 1. (20.73)

As a normalized distribution of the volatility σ rather than the variance v = σ2, one
calls this function a Chi distribution.

In the limit ν → ∞ at fixed z̄ = ν/µ, the Gamma distribution becomes a Dirac
δ-function:

D̃Gamma
µ,ν (z) → δ

(

z − ν

µ

)

. (20.74)

If we add to H+(p) the Hamiltonian

H−(p) = ν log(1 + ip/µ) (20.75)

we obtain the distribution of negative z-values:

D̃Gamma
µ,ν (z) =

1

Γ(ν)
µ−ν |z|ν−1e−µ|z|, z ≤ 0. (20.76)

By combining the two Hamiltonians with different parameters µ one can set up a
skewed two-sided distribution.

20.1.6 Boltzmann Distribution

The highest-frequency returns ∆S of NASDAQ 100 and S&P 500 indices have a
special property: they display a purely exponential behavior for positive as well as
negative z, as long as the probability is rather large [32]. The data are fitted by the
Boltzmann distribution

-1 -0.5 0 0.5 1
-5

-4

-3

-2

-1

-4 -2 0 2 4
-5

-4

-3

-2

-1

z in % z in %

logP (z)logP (z)

NASDAQ100 2001-02 (1min)S&P500 2004-05 (1min)

Figure 20.10 Boltzmann distribution of S&P 500 and NASDAQ 100 high-frequency

log-returns recorded by the minute.

B̃(z) =
1

2T
e−|z|/T . (20.77)
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We can see in Fig. 20.10, that only a very small set of rare events of large |z| does
not follow the Boltzmann law, but displays heavy tails. This allows us to assign
a temperature to the stock markets [33]. The temperature depends on the volatil-
ity of the selected stocks and changes only very slowly with the general economic
and political environment. Near a crash it reaches maximal values, as shown in
Fig. 20.11.

It is interesting to observe the historic development of Dow Jones temperature
over the last 78 years (1929-2006) in Fig. 20.12. Although the world went through
a lot of turmoil and economic development in the 20th century, the temperature
remained almost a constant except for short heat bursts. The hottest temperatures
occurred in the 1930’s, the time of the great depression. These temperatures were
never reached again. An especially hot burst occurred during the crash year 1987.
Thus, in the long run, the market temperature is not related to the value of the
index but indicates the riskiness of the market. Only in bubbles, high temperatures
go along with high stock prices. An extraordinary increase in market temperature
before a crash may be useful to investors as a signal to go short.

The Fourier transform of the Boltzmann distribution is

B(p) =
∫ ∞

−∞
dz eipz

1

2T
e−|z|/T =

1

1 + (Tp)2
= e−H(p), (20.78)

so that we identify the Hamiltonian as

H(p) = log[1 + (Tp)2]. (20.79)

This has only even cumulants:

c2n = −(−1)nH(2n)(0) = 2(2n− 1)!T 2n, n = 1, 2, . . . . (20.80)
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year year

Figure 20.11 Market temperatures of S&P 500 and NASDAQ 100 indices from 1990 to

2006. The crash in the year 2000 occurred at the maximal temperatures TS&P500 ≈ 2×10−4

and TNASDAQ ≈ 4 × 10−4.
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Figure 20.12 Dow Jones index over 78 years (1929-2006) and the annual market tem-

perature, which is remarkably uniform, except in the 1930’s, in the beginning of the great

depression. An other high extreme temperature occurred in the crash year 1987.

The Boltzmann distribution is a special case of a two-sided Gamma distribution
discussed in the previous subsection. It has semi-heavy tails.

We now observe that the Fourier transform can be rewritten as an integral [recall
(2.499)]

B(p) = e−H(p) =
1

1 + (Tp)2
=
∫ ∞

0
dτ e−τ(1+T 2p2). (20.81)

This implies that Boltzmann distribution can be obtained from a superposition of
Gaussian distributions. Indeed, the prefactor of p2 is equal to twice the variance
v = σ2 of the Gaussian distribution. Hence we change the variable of integration
from τ to σ2, substituting τ = σ2/2T 2, and obtain

B(p) = e−H(p) =
1

2T 2

∫ ∞

0
dσ2 e−σ2/2T 2

e−σ2p2/2. (20.82)
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The Fourier transform of this is the desired representation of the Boltzmann distri-
bution as a volatility integral over Gaussian distributions of different widths:

B̃(z) =
1

2T 2

∫ ∞

0
dσ2 e−σ2/2T 2 1√

2πσ2
e−z2/2σ2

. (20.83)

The volatility distribution function is recognized to be a special case of the Gamma
distribution (20.69) for µ = 1/2T 2, ν = 1.

20.1.7 Student or Tsallis Distribution

Recently, another non-Gaussian distribution has become quite popular through work
of Tsallis [58, 59, 60]. It has been proposed as a good candidate for describing heavy
tails a long time ago under the name Student distribution by Praetz [61] and by
Blattberg and Gonedes [62]. This distribution can be written as

D̃δ(z) = Nδ
1

√

2πσ2
δ

e
−z2/2σ2

δ
δ , (20.84)

where Nδ is a normalization factor

Nδ =

√
δΓ(1/δ)

Γ(1/δ − 1/2)
, (20.85)

and σK ≡ σ
√

1 − 3δ/2, where σ is the volatility of the distribution. The function

eδ(z) is an approximation of the exponential function called δ-exponential:

ezδ ≡ (1 − δz)−1/δ . (20.86)

In the limit δ → 0, this reduces to the ordinary exponential function ez.
Remarkably, the distribution of a fixed total amount of money W between N

persons of equal earning talents follows such a distribution. The partition functions
is given by

ZN(W ) =

[

N
∏

n=1

∫ W

0
dwn

]

δ(w1+. . .+wN −W ). (20.87)

After rewriting this as

ZN(W ) =
∫ ∞

−∞

dλ

2π

[

N
∏

n=1

∫ W

0
dwn

]

e−iλ(w1+...+wN )eiλW =
∫ ∞

−∞

dλ

2π

(e−iλW − 1)NeiλW

(−iλ+ ǫ)N
,

(20.88)

where ǫ is an infinitesimal positive number, and a binomial expansion of (e−iλW −
1)NeiλW , we can perform the integral over λ, using the formula4

∫ ∞

−∞

dλ

2π

1

(−iλ + ǫ)ν
e−ipx =

pν−1

Γ(ν)
e−ǫp Θ(p), (20.89)

4See I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 3.382.7.
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where Θ(z) is the Heaviside function (1.304), we obtain

ZN(W ) =
WN−1

Γ(N)

N−1
∑

k=0

(−1)k
(

N

N − k

)

(N − k − 1)N−1 (20.90)

The sum over binomial coefficients adds up to unity, due to a well-known identity
for binomial coefficients5, so that

ZN(W ) =
WN−1

Γ(N)
. (20.91)

If we replace W by W − wn, this partition function gives us the unnormalized
probability that an individual owns the part wn of total wealth. The normalized
probability is then

PN(wn) = Z−1
N

(W − wn)N−2

Γ(N − 1)
=
N − 1

W

(

1 − wn

E

)N−2

. (20.92)

Defining w ≡W/(N−2), which for large N is the average wealth per person, PN(wn)
can be expressed in terms of the δ-exponential (20.86) as

PN(wn) =
N − 1

W

[

1 − wn

(N − 2)w

]N−2

=
N − 1

W
e
−wn/w
−1/(N−2). (20.93)

In the limit of infinitely many individuals, this turns into the normalized Boltzmann
distribution w−1e−wn/w.

The Student-Tsallis distribution (20.84) is simply a normalized δ-exponential.
Instead of the parameter δ one often uses the Tsallis parameter q = δ+ 1. A plot of
these functions for different δ-values is shown on the left hand of Fig. 20.13. From
Eq. (20.86) we see that the Student-Tsallis distribution with δ > 0 has heavy tails
with a power behavior 1/z1/δ = 1/z1/(q−1). A fit of the log-returns of 10 NYSE
top-volume stocks is shown in Fig. 20.13.

Remarkably, the δ-exponential in (20.84) can be written as a superposition of
Gaussian distributions. With the help of the integral formula (2.499) we find

e
−z2/2σ2

δ
δ =

1

Γ(1/δ)

∫ ∞

0

ds

s
s1/δe−se−sδ z2/2σ2

δ . (20.94)

After a change of variables this can be rewritten as

e
−z2/2σ2

δ
δ =

µ1/δ

Γ (1/δ)

∫ ∞

0

dv

v
v1/δe−µve−vz2/2 , µ = σ2

δ/δ. (20.95)

This is a superposition of Gaussian functions e−vz2/2 whose inverse variances v =
1/σ2 occur with a weight that is precisely the Gamma distribution of the variable v
with ν = 1/δ:

D̃Gamma
µ,1/δ (v) =

1

Γ (1/δ)
µ1/δvνe−µv. (20.96)

5See I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 0.154.6.
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Figure 20.13 Left: Logarithmic plot of the normalized δ-exponential (20.84) (Student-

Tsallis distribution) for δ = 0 (Gaussian), 0.2, 0.4, 0.6, all for σ = 1. Right: Fit of the

log-returns of 20 NYSE top-volume stocks over short time scales from 1 to 3 minutes by

this distribution (after Ref. [60]). Dotted line is Gaussian distribution.

20.1.8 Tsallis Distribution in Momentum Space

When fitting the volatility distributions of the S&P 500 index in Fig. 20.3, we
observed that the best fit was obtained by a Gamma distribution. Inspired by the
discussion in the last section we observe that the δ-exponential (20.86) in momentum
space

e−Hδ,β(p) ≡ e
−βp2/2
δ =

(

1 + βδ p2/2
)−1/δ

, (20.97)

has precisely such a decomposition. We simply rewrite it by analogy with (20.94)
as

e
−βp2/2
δ =

1

Γ(1/δ)

∫ ∞

0

ds

s
s1/δe−se−sβδ p2/2 , β ≡ ν/µ = 1/µδ, (20.98)

and change the variable of integration to obtain

e
−βp2/2
δ =

µν

Γ (ν)

∫ ∞

0

dv

v
vνe−µve−vp2/2, ν = 1/δ, µ = ν/β = 1/βδ. (20.99)

This is a superposition of Gaussian distributions whose variances v = σ2 are
weighted by the Gamma distribution (20.69):

e
−βp2/2
δ =

∫ ∞

0
dv DGamma

µ,ν (v)e−vp2/2, ν = 1/δ, µ = ν/β = 1/βδ. (20.100)

The average of the Gamma distribution is v̄ = ν/µ = β [recall (20.71)], so that the

left-hand side can also be written as e
−v̄p2/2
δ .

The lowest cumulants in the Hamiltonian Hδ,β(p) = 1
2!
c2 p

2 − 1
4!
c4 p

4 + . . . are

c2=
ν

µ
, c4 =3

ν

µ2
, c6=

5!!

µ3

(

2+3ν−2ν2−ν3
)

, c8=
7!!

µ3

(

2+ν−3ν2+ν3+nu4
)

.(20.101)
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For µ = 1/2T 2 and ν = 1, these reduce to those of the Boltzmann distribution in
Eq. (20.80).

The superposition (20.99) can immediately be Fourier transformed to

D̃δ,β(z) =
µ1/δ

Γ (1/δ)

∫ ∞

0

dv

v
v1/δe−µv 1√

2πv
e−z2/2v , µ = 1/βδ. (20.102)

which is a superposition of Gaussians whose variances v = σ2 follow a Gamma
distribution (20.69) centered around v̄ = 1/δµ of width (v − v̄)2 = 1/δµ2. Hence δ
is given by the ratio δ = (v − v̄)2/v̄2. Recalling Eq. (20.71) we see that δ determines
the kurtosis of the distribution to be κ = 6δ.

The integral over v in (20.102) can be done using Formula (2.559), yielding

D̃δ,β(z) =

√
µ

Γ (1/δ)

1√
2π

(

µz2

2

)1/2δ−1/4

2K1/δ−1/2(
√

2µz), µ = 1/βδ.(20.103)

For δ = 1 and µ = 1/2T 2, we use (1.349) and recover the Boltzmann distribution
(20.83)

The small-z behavior of Kν(z) is (1/2)Γ(ν) (z/2)−ν for Re ν > 0 [recall
Eq. (1.351)]. If we assume δ < 2, we obtain from (20.103) the value of the dis-
tribution function at the origin:

D̃δ,β(0) =

√
µΓ(1/δ − 1/2)

Γ(1/δ)
. (20.104)

The same result can, of course, be found directly from Eq. (20.102). This value
diverges at δ = 2/(1 − 2n) (n = 0, 1, 2, . . .).

20.1.9 Relativistic Particle Boltzmann Distribution

A physically important distribution in momentum space is the Boltzmann distri-
bution e−βE(p) of relativistic particle energies E(p) =

√
p2 +M2 , where β is the

inverse temperature 1/kBT . The exponential can be expressed as a superposition of
Gaussian distributions

e−β
√

p2+M2
=
∫ ∞

0
dv ωβ(v)e−βv(p2+M2)/2 (20.105)

with a weight function

ωβ(v) ≡
√

β

2πv3
e−β/2v. (20.106)

This is a special case of a Weibull distribution

D̃W(x) =
b

Γ(a/b)
xa−1e−xb

, (20.107)

which has the simple moments

〈xn〉 = Γ((a+ n)/b)/Γ(a/b). (20.108)
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20.1.10 Meixner Distributions

Quite reasonable fits to financial data are provided by the Meixner distributions [34, 35] which
read in configuration and momentum space:

M̃(z) =
[2 cos(b/2)]

2d

2aπΓ(2d)
|Γ (d+ iz/a) |2 exp [bz/a] , (20.109)

M(p) =

{

cos(b/2)

cosh [(ap− ib)/2]

}2d

. (20.110)

They have the same semi-heavy tail behavior as the truncated Lévy distributions

M̃(z) → C±|z|ρe−σ±|z| for z → ±∞, (20.111)

with

C± =
[2 cos(b/2)]

2d

2aπΓ(2d)

2π

a2d−1
e±2πd tan(b/2), ρ = 2d− 1, σ± ≡ (π ± b)/a. (20.112)

The moments are

µ = ad tan(b/2), σ2 = a2d/2 cos2(b/2), s =
√

2 sin(b/2)/
√
d, κ = [2 − cos b]/d, (20.113)

such that we can calculate the parameters from the moments as follows:

a2 = σ2
(

2κ− 3s2
)

, d =
1

κ− s2
, b = 2 arcsin

(

s
√

d/2
)

. (20.114)

As an example for the parameters of the distribution, a good fit of the daily Nikkei-225 index
is possible with

a = 0.029828, b = 0.12716, d = 0.57295, 〈z〉 = −0.0011243. (20.115)

The curve has to be shifted in z by ∆z to make ∆z + µ equal to 〈z〉. Such a Meixner distribution
has been used for option pricing in Ref. [35].

The Meixner distributions can be fitted quite well to the truncated Lévy distribution in the
regime of large probability. In doing so we observe that the variance σ2 and the kurtosis κ are
not the best parameters to match the two distributions. The large-probability regime of the
distributions can be matched perfectly by choosing, in the symmetric case, the value and the
curvature at the origin to be the same in both curves. This is seen in Fig. 20.14.

In the asymmetric case we have to match also the first and third derivatives. The derivatives
of the Meixner distribution are:

M̃(0) =
22d−1Γ2(d)

πaΓ(2d)
,

M̃ ′(0) = b
22d−1Γ2(d) [1 − dψ(d)]

πa2Γ(2d)
,

M̃ ′′(0) = −22dΓ2(d)ψ(d)

πa3Γ(2d)
,

M̃ (3)(0) = − b

2

22dΓ2(d)
[

6ψ(d) − 6dψ2(d) − dψ(3)(d)
]

πa4Γ(2d)
,

M̃ (4)(0) =
22dΓ2(d)

[

6ψ2(d) + ψ(3)(d)
]

πa5Γ(2d)
, (20.116)

where ψ(n)(z) ≡ dn+1 log Γ(z)/dzn+1 are the Polygamma functions.
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Figure 20.14 Comparison of best fit of Meixner distribution to truncated Lévy distri-

butions. One of them (short dashed) has the same volatility σ and kurtosis κ. The other

(long-dashed) has the same size and curvature at the origin. The parameters are σ2 = 0.280

and κ = 12.7 as in the left-hand cumulative distribution in Fig. 20.7. The Meixner distri-

bution with the same σ2 and κ has parameters a = 2.666, d = 0.079, b = 0, the distribution

with the same value and curvature at the origin has a = 0.6145, d = 1.059, b = 0. The very

large σ-regime, however, is not fitted well as can be seen in the cumulative distributions

which reach out to z of the order of 10σ in Fig. 20.7.

20.1.11 Generalized Hyperbolic Distributions

Another non-Gaussian distributions proposed in the literature is the so-called generalized hyperbolic

distributions ..6 As the truncated Lévy and Meixner distributions, these have simple analytic forms
both in z- and p-space:

H̃G(z) =

(

γ2− β2
)λ/2

eβ z

γλ−1/2δλ
√

2 π

[

δ2+ z2
]λ/2−1/4Kλ−1/2

(

γ
√
δ2+ z2

)

Kλ

(

δ
√

γ2 − β2
) (20.117)

and

G(p) =

(

δ
√

γ2 − β2
)λ

Kλ

(

δ
√

γ2 − β2
)

Kλ

(

δ

√

γ2 − (β + ip)
2

)

[

δ

√

γ2 − (β + ip)
2

]λ
, (20.118)

the latter defining another Hamiltonian

HG(p) ≡ − logG(p). (20.119)

But in contrast to the former, this set of functions is not closed under time evolution. The
distributions at a later time t are obtained from the Fourier transforms e−H(p)t. For truncated Lévy
distributions and the Meixner distributions the factor t can simply be absorbed in the parameters
of the functions (σ2 → tσ2 in the first and d → td in the second case). For the generalized

6See the publications [36]–[74].
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hyperbolic distributions, this is no longer true since e−HG(p)t = [G(p)]t involves higher powers of
Bessel functions whose analytic Fourier transform cannot be found. In order to describe a complete
temporal evolution we must therefore close the set of functions by adding all Fourier transforms
of e−HG(p)t. In praxis, this is not a serious problem — it merely leads to a slowdown of numeric
calculations which always involve a numeric Fourier transformation.

The asymptotic behavior of the generalized hyperbolic distributions has semi-heavy tails. From
the large-z behavior of the Bessel function Kν(z) →

√

π/2ze−z we find

H̃G(z) →
√

π

2γ

(

γ2− β2
)λ/2

eβ z

γλ−1/2δλ
√

2 π

1

Kλ

(

δ
√

γ2 − β2
)zλ−1e−γz. (20.120)

Introducing the variable ζ ≡ δ
√

γ2 − β2, this can again be expanded in powers of p as in
Eq. (20.54), yielding the first two cumulants:

c1 = β
δ2

ζ

K1+λ(ζ)

Kλ(ζ)
; (20.121)

c2 =
δ2

ζ

K1+λ(ζ)

Kλ(ζ)
+
β2δ4

ζ2

{

K2+λ(ζ)

Kλ(ζ)
−
[

K1+λ(ζ)

Kλ(ζ)

]2
}

. (20.122)

Using the identity [50]

Kν+1(z) −Kν−1(z) =
2ν

z
Kν(z), (20.123)

the latter equation can be expressed entirely in terms of

ρ = ρ(ζ) =
K1+λ(ζ)

Kλ(ζ)
(20.124)

as

c2 =
δ2

ζ
ρ+

β2δ4

ζ3
[

ζ + 2 (1 + λ) ρ− ζρ2
]

. (20.125)

Usually, the asymmetry of the distribution is small implying that c1 is small, implying a small β.
It is then useful to introduce the symmetric variance

σ2
s ≡ δ2ρ/ζ, (20.126)

and write

c1 = βσs, c2 = σ2 = σ2
s + β2

[

δ4

ζ2
+ 2 (1 + λ)

δ2

ζ2
σs − σ2

s

]

. (20.127)

The cumulants c3 and c4 are most compactly written as

c3 = β

[

3δ4

ζ2
+ 6 (1 + λ)

δ2

ζ2
σ2
s − 3σ4

s

]

+ β3

{

2 (2+λ)
δ6

ζ4
+
[

4 (1+λ) (2+λ)− 2ζ2
] δ4

ζ4
σ2
s − 6 (1 + λ)

δ2

ζ2
σ4
s + 2σ6

s

}

(20.128)

and

c4 = κσ4 =
3δ4

ζ2
+

6δ2

ζ2
(1 + λ) σ2

s − 3σ4
s

+ 6β2

{

2 (2+λ)
δ6

ζ4
+
[

4 (1+λ) (2+λ) − 2ζ2
] δ4

ζ4
σ2
s − 6 (1 + λ)

δ2

ζ2
σ4
s + 2σ6

s

}

+ β4

{

[

4 (2+λ) (3 + λ) − ζ2
] δ8

ζ6
+
[

4 (1+λ) (2+λ) (3 + λ) − 2 (5 + 4λ) ζ2
] δ6

ζ6
σ2
s

− 2
[

(1 + λ) (11 + 7λ) − 2ζ2
] δ4

ζ4
σ4
s + 12 (1 + λ)

δ2

ζ2
σ6
s − 3σ8

s

}

. (20.129)
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The first term in c4 is equal to σ4
s times the kurtosis of the symmetric distribution

κs ≡
3δ4

ζ2σ4
s

+
6δ2

ζ2σ2
s

(1 + λ) − 3. (20.130)

Inserting here σ2
s from (20.126), we find

κs ≡
3

r2(ζ)
+ (1 + λ)

6

ζ r(ζ)
− 3. (20.131)

Since all Bessel functions Kν(z) have the same large-z behavior Kν(z) →
√

π/2ze−z and the
small-z behavior Kν(z) → Γ(ν)/2(z/2)ν, the kurtosis starts out at 3/λ for ζ = 0 and decreases
monotonously to 0 for ζ → ∞. Thus a high kurtosis can be reached only with a small parameter
λ.

The first term in c3 is βκsσ
4
s , and the first two terms in c4 are κsσ

4
s + 6

(

c3/β − κsσ
4
s

)

. For a
symmetric distribution with certain variance σ2

s and kurtosis κs we select some parameter λ < 3/κs,
and solve the Eq. (20.131) to find ζ. This is inserted into Eq. (20.126) to determine

δ2 =
σ2
s ζ

ρ(ζ)
. (20.132)

If the kurtosis is larger, it is not an optimal parameter to determine generalized hyperbolic dis-
tributions. A better fit to the data is reached by reproducing correctly the size and shape of the
distribution near the peak and allow for some deviations in the tails of the distribution, on which
the kurtosis depends quite sensitively.

For distributions which are only slightly asymmetric, which is usually the case, it is sufficient
to solve the above symmetric equations and determine the small parameter β approximately by
the skew s = c3/σ

3 from the first line in (20.128) as

β ≈ s

κsσs
. (20.133)

This approximation can be improved iteratively by reinserting β into the second equation in
(20.127) to determine, from the variance σ2 of the data, an improved value of σ2

s . Then Eq. (20.129)
is used to determine from the kurtosis κ of the data an improved value of κs, and so on.

For the best fit near the origin where probabilities are large we use the derivatives

G(0) =

(

δ

γ

)λ−1/2

ζ−λk−, (20.134)

G′(0) = βG(0), (20.135)

G′′(0) = −
(

δ

γ

)λ−3/2

ζ−λk+ +

(

δ

γ

)λ−1/2

δ−2ζ−λ
(

1 − 2λ− β2δ2
)

k−,

G(3)(0) = −β
2

[

3

(

δ

γ

)λ−3/2

ζ−λk+ +

(

δ

γ

)λ−1/2

δ−2ζ−λ
(

3 − 6λ− β2δ2
)

]

k−, (20.136)

where we have abbreviated

k± ≡ 1√
2π

Kλ±1/2(δγ)

Kλ(δγ)
. (20.137)

The generalized hyperbolic distributions with λ = 1 are called hyperbolic distributions . The
option prices following from these can be calculated by inserting the appropriate parameters into
an interactive internet page (see Ref. [51]). Another special case used frequently in the literature
is λ = −1/2 in which case one speaks of a normal inverse Gaussian distributions also abbreviated
as NIGs.
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20.1.12 Debye-Waller Factor for Non-Gaussian Fluctuations

At the end of Section 3.10 we calculated the expectation value of an exponential
function 〈ePz〉 of a Gaussian variable which led to the Debye-Waller factor of Bragg
scattering (3.311). This factor was introduced in solid state physics to describe the
reduction of intensity of Bragg peaks due to the thermal fluctuations of the atomic
positions. It is derivable from the Fourier representation

〈ePz〉 ≡
∫

dz
1√

2πσ2
e−z2/2σ2

ePz =
∫

dz
∫

dp

2π
e−σ2p2/2eipz+Pz = eσ

2P 2/2.(20.138)

There exists a simple generalization of this relation to non-Gaussian distributions,
which is

〈ePz〉 ≡
∫

dz
∫ dp

2π
e−H(p)eipz+Pz = e−H(iP ). (20.139)

20.1.13 Path Integral for Non-Gaussian Distribution

Let us calculate the properties of the simplest process whose fluctuations are dis-
tributed according to any of the general non-Gaussian distributions. We consider
the stochastic differential equation for the logarithms of the asset prices

ẋ(t) = rx + η(t), (20.140)

where the noise variable η(t) is distributed according to an arbitrary distribution.
The constant drift rx in (20.140) is uniquely defined only if the average of the noise
variable vanishes: 〈η(t)〉 = 0. The general distributions discussed above can have a
nonzero average 〈x〉 = c1 which has to be subtracted from η(t) to identify rx. The
subsequent discussion will be simplest if we imagine rx to have replaced c1 in the
above distributions, i.e. if the power series expansion of the Hamiltonian (20.54) is
replaced as follows:

H(p) → Hrx(p) ≡ H(p) −H ′(0)p+ irxp ≡ H̄(p) + irxp

≡ irx p +
1

2
c2 p

2 − i
1

3!
c3p

3 − 1

4!
c4 p

4 + i
1

5!
c5p

5 + . . . . (20.141)

Thus we may simply work with the original expansion (20.54) and replace at the
end

c1 → rx. (20.142)

The stochastic differential equation (20.140) can be assumed to read simply

ẋ(t) = η(t). (20.143)

With the ultimate replacement (20.142) in mind, the probability distribution of the
endpoints xb = x(tb) for the paths starting at a certain initial point xa = x(ta) is
given by a path integral of the form (18.342):

P (xbtb|xata) =
∫

Dη
∫ x(tb)=xb

x(ta)=xa

Dx exp
[

−
∫ tb

ta
dt H̃(η(t))

]

δ[ẋ− η]. (20.144)

H. Kleinert, PATH INTEGRALS
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The function H̃(η) is the negative logarithm of the chosen distribution of log-returns
[recall (20.13)]

H̃(η) = − log D̃(η). (20.145)

For example, H̃(η) is given by − log L̃
(λ,α)
σ2 (η) of Eq. (20.24) for the truncated Lévy

distribution or by − log B̃(η) of Eq. (20.77) or the Boltzmann distributions.
In the mathematical literature, the measure in the path integral over the noise

Dµ ≡ Dη P [η] = Dη e−
∫ tb
ta

dt H̃(η(t))
(20.146)

of the probability distribution (20.144) is called the measure of the process ẋ(t) =
η(t). The path integral

∫ x(tb)=xb

x(ta)=xa

Dx δ[ẋ− η] (20.147)

is called the filter which determines the distribution of xb at time tb for all paths
x(t) starting out at xa at time ta.

A measure differing from (20.146) only by the drift

Dµ′ = Dη P [η − r] = Dη e−
∫ tb
ta

dt H̃(η(t)−r)
(20.148)

is called equivalent measure. The ratio

Dµ′/Dµ = e
−
∫ tb
ta

[H̃(η−r)−H̃(η)] (20.149)

is called the Radon-Nikodym derivative. For a Gaussian noise, this is simply

Dµ′/Dµ = e
∫ tb
ta

[rη(t)−r2t/2]. (20.150)

If one wants to calculate the expectation value of any function f(x(t)), one has
to split the filter into a product

[

∫ x(tb)=xb

x(t)=x
Dx δ[ẋ− η]

]

×
[

∫ x(t)=x

x(ta)=xa

Dx δ[ẋ− η]

]

, (20.151)

and perform an integral over f(x) with this filter in the path integral (20.146). Going
over to the probabilities P (xbtb|xata), we obtain the integral

〈f(x(t))〉 =
∫

dxP (xbtb|x t)f(x)P (x t|xata). (20.152)

The correlation functions of the noise variable η(t) in the path integral (20.144)
are given by a straightforward functional generalization of formulas (20.56). For this

purpose, we express the noise distribution P [η] ≡ exp
[

− ∫ tbta dt H̃(η(t))
]

in (20.144)
as a Fourier path integral

P [η] =
∫ Dp

2π
exp

{
∫ tb

ta
dt [ip(t)η(t) −H(p(t))]

}

, (20.153)
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and note that the correlation functions can be obtained from the functional deriva-
tives

〈η(t1) · · ·η(tn)〉 = (−i)n
∫

Dη
∫ Dp

2π

[

δ

δp(t1)
· · · δ

δp(tn)
e
i
∫ tb
ta

dt p(t)η(t)

]

e
−
∫ tb
ta

dtH(p(t))
.

After n partial integrations, this becomes

〈η(t1) · · ·η(tn)〉 = in
∫

Dη
∫ Dp

2π
e
i
∫ tb
ta

dt p(t)η(t) δ

δp(t1)
· · · δ

δp(tn)
e
−
∫ tb
ta

dtH(p(t))

= in
[

δ

δp(t1)
· · · δ

δp(tn)
e
−
∫ tb
ta

dtH(p(t))

]

p(t)≡0

. (20.154)

By expanding the exponential e
−
∫ tb
ta

dtH(p(t))
in a power series (20.54) we find imme-

diately the lowest correlation functions

〈η(t1)〉 ≡ Z−1
∫

Dη η(t1) exp
[

−
∫ tb

ta
dt H̃(η(t))

]

= 0, (20.155)

〈η(t1)η(t2)〉 ≡ Z−1
∫

Dη η(t1)η(t2) exp
[

−
∫ tb

ta
dt H̃(η(t))

]

= c2δ(t1 − t2) + c21, (20.156)

〈η(t1)η(t2)η(t3)〉 ≡ Z−1
∫

Dη η(t1)η(t2)η(t3) exp
[

−
∫ tb

ta
dt H̃(η(t))

]

= c3δ(t1−t2)δ(t1−t3)
+ c2c1[δ(t1−t2) + δ(t2−t3)+δ(t1−t3)] + c31, (20.157)

〈η(t1)η(t2)η(t3)η(t4)〉 ≡ Z−1
∫

Dη η(t1)η(t2)η(t3)η(t4) exp
[

−
∫ tb

ta
dt H̃(η(t))

]

= c4δ(t1−t2)δ(t1−t3)δ(t1−t4)
+ c3c1[δ(t1−t2)δ(t1−t3) + 3 cyclic perms]

+ c22[δ(t1−t2)δ(t3−t4)+δ(t1−t3)δ(t2−t4)+δ(t1−t4)δ(t2−t3)]
+ c2c

2
1[δ(t1−t2) + 5 pair terms] + c41, (20.158)

where

Z ≡
∫

Dη exp
[

−
∫ tb

ta
dt H̃(η(t))

]

. (20.159)

The higher correlation functions are obvious generalizations of (20.44). The different
contributions on the right-hand side of (20.156)–(20.262) are distinguishable by their
connectedness structure.

Note that the term proportional to c3 in the three-point correlation function
(20.158) and the terms proportional to c3 and to c4 in the four-point correlation
function (20.262) do not obey Wick’s rule (3.305) since they contain contributions
caused by the non-Gaussian terms −ic3p3/3! −c4p4/4! in the Hamiltonian (20.141).
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20.1.14 Time Evolution of Distribution

The δ-functional in Eq. (20.144) may be represented by a Fourier integral leading
to the path integral

P (xbtb|xata)=
∫

Dη
∫

Dx
∫ Dp

2π
exp

{
∫ tb

ta
dt
[

ip(t)ẋ(t)−ip(t)η(t)−H̃(η(t))
]

}

. (20.160)

Integrating out the noise variable η(t) amounts to performing the inverse Fourier
transform of the type (20.24) at each instant of time. Then we obtain

P (xbtb|xata) =
∫

Dx
∫ Dp

2π
exp

{
∫ tb

ta
dt [ip(t)ẋ(t) −H(p(t))]

}

. (20.161)

Integrating over all x(t) with fixed endpoints enforces a constant momentum along
the path, and we remain with the single momentum integral

P (xbtb|xata) =
∫ ∞

−∞

dp

2π
exp [ip(xb − xa) − (tb − ta)H(p)] . (20.162)

Given an arbitrary noise distribution D̃(z) extracted from the data of a given fre-
quency 1/∆t, we simply identify the Hamiltonian H(p) from the Fourier represen-
tation

D̃(z) =
∫ ∞

−∞

dp

2π
eikz−H(p), (20.163)

and insert H(p) into (20.170) to find the time dependence of the distribution. The
time is then measured in units of the time interval ∆t.

For a truncated Lévy distribution, the result is

P (xbtb|xata) = L̃
(λ,α)
σ2(tb−ta)

(xb − xa). (20.164)

This is a truncated Lévy distribution of increasing width. The result for other
distributions is analogous.

Since the distribution (20.170) depends only on t = tb − ta and x = xb − xa, we
shall write it shorter as

P (x, t) =
∫ ∞

−∞

dp

2π
exp [ipx− tH(p)] . (20.165)

20.1.15 Central Limit Theorem

For large t, the distribution P (x, t) becomes more and more Gaussian (see Fig. 20.18
for the Boltzmann distribution). This is a manifestation of the central limit theorem

of statistical mechanics which states that the convolution of infinitely many arbitrary
distribution functions of finite width always approaches a Gaussian distribution.
This is easily proved. We simply note that after an integer number t of convolutions,
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a probability distribution D̃(z) with Hamiltonian H(p) has the Fourier components
[D(p)]t = e−tH(p), so that it is given by the integral

D̃(z, t) =
∫

dp

2π
eipze−tH(p). (20.166)

For large t, the integral can be evaluated in the saddle point approximation (4.51).
Denoting the momentum at extremum of the exponent by pz, which is determined
implicitly by tH ′(pz) = iz, and setting σ2 = H ′′(pz), we obtain the Gaussian distri-
bution

D̃(z, t) →
t large

eipzz−tH(pz)
∫

dp

2π
ei(p−pz)z−tσ2(p−pz)2/2=

eipzz−tH(pz)

√
2πσ2

e−z2/2tσ2

=
eσ

2p2z/2−tH(pz)

√
2πσ2

e−(z−tσ2pz)2/2tσ2

. (20.167)

The same procedure can be applied to the integral (20.165).
The transition from Boltzmann to Gaussian distributions is shown for the S&P

500 index in Fig. 20.15.
If a distribution has a heavy power tail ∝ |z|−λ−1 with λ < 2, so that the volatility

σ is infinite, the Hamiltonian starts out for small p like |p|λ, and the saddle point
approximation is governed by this term rather than the quadratic term p2. For
an asymmetric distribution, the leading terms in the Hamiltonian are those of the
asymmetric Lévy distribution (20.21) plus a possible linear term irp accounting for
a drift, and the asymptotic z-behavior will be given by Eq. (20.17) with an extra
factor (1 + β) [21].
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Figure 20.15 Fits of Gaussian distribution to S&P 500 log-returns recorded in intervals

of 60 min, 240 min, and 1 day.

If a distribution has no second moments, the central limit theorem does not
apply. Such distributions tend to another limit, the so-called Pareto-Lévy-stable

distribution. Their Hamiltonian has precisely the generic form (20.21), except for a
possible additional linear drift term [21]:

H(p) = −irp+Hλ,σ,β(p). (20.168)
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In this context, the Lévy parameter λ is also called the stability parameter . The
parameter α has to be in the interval (0, 2]. The parameter β is called skewness

parameter . For plots of D̃(z, 1) see Ref. [75].
The convergence of variable with heavy-tail distributions is the content of the

generalized central limit theorem.

20.1.16 Additivity Property of Noises and Hamiltonians

At this point we make the useful observation that each term in the Hamiltonian
(20.141) can be attributed to an independent noise term in the stochastic differential
equation (20.140). Indeed, if this differential equation has two noise terms

ẋ(t) = rx + η1(t) + η2(t) (20.169)

whose fluctuations are governed by two different Hamiltonians, the probability dis-
tribution (20.144) is replaced by

P (xbtb|xata)=
∫

Dη1
∫

Dη2
∫

Dx exp
[

−
∫ tb

ta
dt[H̃1(η1(t))+H̃2(η2(t))

]

δ[ẋ−rx−η1−η2].

After a Fourier decomposition of the δ-functional, this becomes

P (xbtb|xata) =
∫

Dp1
∫

Dp2
∫

Dη1
∫

Dη2
∫

Dx
∫

Dpe−
∫ tb
ta

dt [ip(ẋ−rx−η1−η2)]

× exp
{

−
∫ tb

ta
dt [H1(p1) − ip1η1(t) +H2(p2) − ip2η2(t)]

}

,

after which the path integrals over η1(t), η2(t) lead to

P (xbtb|xata)=
∫

Dp
∫

Dx exp
{
∫ tb

ta
dt [ipẋ− irxp−H1(p)−H2(p)]

}

. (20.170)

This is the integral representation Eq. (20.161) with the combined Hamiltonian
H(p) = irxp + H1(p) + H2(p), which can be rewritten as a pure integral (20.170).
By rewriting this integral trivially as

P (xbtb|xata) =
∫ ∞

−∞

dp1
2π

dp2
2π

eip1(xb−xc)−(tb−ta)[irxp+H1(p1)]eip2(xc−xa)−(tb−ta)H2(p2),(20.171)

we see that the probability distribution associated with a sum of two Hamiltonians
is the convolution of the individual probability distributions:

P (xbtb|xata) =
∫ ∞

−∞
dxdxcP1(xbtb|xcta)P2(xctb|xata). (20.172)

Thus we may calculate the probability distributions associated with the noises η1(p)
and η2(p) separately, and combine the results at the end by a convolution.
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20.1.17 Lévy-Khintchine Formula

It is sometimes useful to represent the Hamiltonian in the form of a Fourier integral

H(p) =

∫

dz eipzF (z). (20.173)

Due to the special significance of the linear term in H(p) governing the drift, this is usually
subtracted out of the integral by rewriting (20.173) as

Hr(p) = irp+

∫

dz
(

eipz − 1 − ipz
)

F (z). (20.174)

The first subtraction ensures the property Hr(0) = 0 which guarantees the unit normalization of
the distribution. This subtracted representation is known as the Lévy-Khintchine formula, and
the function F (z) is the so-called Lévy weight of the distribution. Some people also subtract out
the quadratic term and write

Hr(p) = irp+
σ2

2
p2 +

∫

dz
(

eipz − 1
)

F̄ (z). (20.175)

They employ a weight F̄ (z) which has no first and second moment, i.e.,
∫

dz F̄ (z)z =
0,
∫

dz F̄ (z)z2 = 0, to avoid redundancy in the representation.
Note that according to the central limit theorem (20.167), the large-time probability distribu-

tion of x will become Gaussian for large t. Thus, in the Lévy-Khintchine decomposition (20.175)
of the Hamiltonian H(p), only the first two terms contribute for large t leading to the distribution:

P (x, t) →
t large

e−(x−tr)2/2tσ2

√
2πσ2

. (20.176)

The Lévy measure has been calculated explicitly for many non-Gaussian distributions. As an
example, the generalized hyperbolic case has for λ ≥ 0 a Lévy measure [76]

F (z) =
eβz

|z|

{

1

π2

∫ ∞

0

dy

y

e−
√

y+γ2|z|

J2
λ(δ

√
y) + Y 2

λ (δ
√
y)

+ λe−γ|z|

}

, (20.177)

where Jλ(z) and Yλ(z) are standard Bessel functions.
The decomposition of the Hamiltonian according the Lévy-Khintchine formula and the addi-

tivity of the associated noises form the basis of the Lv́y-Itō theorem which states that an arbitrary
stochastic differential equation with Hamiltonian (20.175) can be decomposed in the form

ẋ = rxt+ ηG + η≤1 + η>1, (20.178)

where ηG is a Gaussian noise

η≤1 =

∫

|x|≤1

dz
(

eipz − 1
)

F̄ (z) (20.179)

a superposition of discrete noises called Poisson point process with jumps smaller than or equal to
unity, and

η>1 =

∫

|x|≤1

dz
(

eipz − 1
)

F̄ (z) (20.180)

a noise with jumps larger than unity.
Consider the simplest noise of the type η≤1 arising from a Lévy weight F̄Z(z) = τZδ(z + Z)

with 0 < Z ≤ 1 in (20.179) so that the Hamiltonian is HZ(p) = τZ(e−iZp − 1). The associated
distribution function D̃Z(z) is, according to (20.11),

D̃Z(z) =

∫

dp

2π
eipzeτZ(e−ipZ−1). (20.181)
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Expanding the last exponential in powers of eipZ , we obtain

D̃Z(z) =

∫

dp

2π
eipz

∞
∑

n=0

e−τZ
τnZ
n!
τnZe

−ipnZ =

∞
∑

n=0

e−τZ
τnZ
n!
δ(z − nZ). (20.182)

This function describes jumps by nZ (n = 0, 1, 2, 3, . . .) whose probability follows a Poisson dis-

tribution

P (n, τZ) = e−τZ
τnZ
n!
, (20.183)

which is properly normalized to unity:
∑∞

n=0 P (n, τZ) = 1. The expectation values of powers of
the jump number are

〈nk〉 =

∞
∑

n=0

nkP (n, τZ) = e−τZ (τZ∂τz )
keτZ

∞
∑

n=0

P (n, τZ) = e−τZ (τZ∂τz)
keτZ =

Γ(λZ + k)

Γ(λZ)
.

(20.184)
Thus 〈n〉 = λZ , 〈n2〉 = λZ(λZ +1), 〈n3〉 = λZ(λZ +1)(λZ +2), 〈n4〉 = λZ(λZ +1)(λZ +2)(λZ +3),
so that σ2 = λZ , s = 2/

√
λZ , and κ = 6/λZ .

As typical noise curve is displayed in Fig. 20.16. An arbitrary Lévy weight F̄ (z) in η≤1 may

t

Figure 20.16 Typical Noise of Poisson Process.

always be viewed as a superposition F̄ (z) =
∫ 1

−1 dZ F (Z)δ(z−Z) so that the distribution function
becomes a superposition of Poisson noises:

D̃(z) =

∫ 1

−1

dZ F (Z)
∞
∑

n=0

e−τZ
τnZ
n!
δ(z − nZ). (20.185)

20.1.18 Semigroup Property of Asset Distributions

An important property of the probability (20.144) is that it satisfies the semigroup
equation

P (xctc|xata) =
∫ ∞

−∞
dxb P (xctc|xbtb)P (xbtb|xata). (20.186)

In the stochastic context this property is referred to as Chapman-Kolmogorov equa-

tion or Smoluchowski equation. It is a general property of processes which a without
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memory. Such processes are referred to a Markovian [12]. Note that the semigroup
property (20.186) implies the initial condition

P (xcta|xata) = δ(xb − xa). (20.187)

In Fig. 20.17 we show that the property (20.186) is satisfied reasonably well by
experimental asset distributions, except for small deviations in the low-probability
tails.

z

P>
<

(z)

Figure 20.17 Cumulative distributions obtained from repeated convolution integrals

of the 15-min distribution (from Ref. [13]). Apart from the far ends of the tails, the

semigroup property (20.186) is reasonably well satisfied.

One may verify the semigroup property also using the high-frequency distribu-
tions of S&P 500 and NASDAQ 100 indices in Fig. 20.10 recorded by the minute,
which display the Boltzmann distribution (20.77). If we convolute the minute distri-
bution an integer number t times, the result aggress very well with the distribution
of t-minute data. Only at the heavy tails of rare events do not follow this pattern

Note that due to the semigroup property (20.186) of the probabilities one has
the trivial identity

〈f(x(tb), tb)〉 =
∫

dxb f(xb, tb)P (xbtb|xata)

=
∫

dx
[
∫

dxb f(xb, tb)P (xbtb|x t)
]

P (x t|xata). (20.188)

In the mathematical literature, the expectation value on the left-hand side of
Eq. (20.188) is written as

EE[f(x(tb), tb)|xata] ≡
∫

dxb f(xb, tb)P (xbtb|xata). (20.189)
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With this notation, the second line can be re-expressed in the form
∫

dxEE[f(xb, tb)|x t]P (x t|xata) = EE[EE[f(xb, tb)|x t]|xata], (20.190)

so that we obtain the property of expectation values

EE[f(x(tb, tb))|xata] = EE[EE[f(xb, tb)|x t]|xata]. (20.191)

In mathematical finance, this complicated-looking but simple property is called the
towering property of expectation values.

Note that since P (xbtb|xata) is equal to δ(xb − xa) for ta = tb, the expectation
value (20.189) has the obvious property

EE[f(x(ta), ta)|xata] = f(xa, ta) (20.192)

20.1.19 Time Evolution of Moments of Distribution

From the time-dependent distribution (20.165) it is easy to calculate the time
dependence of the moments:

〈xn〉(t) ≡
∫ ∞

−∞
dx xn P (x, t) (20.193)

Inserting (20.165), we obtain

〈xn〉(t) =
∫ ∞

∞

dp

2π
e−tH(p)

∫ ∞

−∞
dx xneipx =

∫ ∞

∞
dpe−tH(p)(−i∂p)nδ(p). (20.194)

After n partial integrations, this becomes

〈xn〉(t) = (i∂p)
ne−tH(p)

∣

∣

∣

p=0
. (20.195)

All expansion coefficients cn of H(p) in Eq. (20.141) receive the same factor t, so
that the cumulants of the moments all grow linearly in time:

〈xn〉c(t) = −tH(n)(0) = t〈xn〉c(1) = tcn. (20.196)
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Figure 20.18 Gaussian distributions of S&P 500 and NASDAQ 100 weekly log-returns.
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20.1.20 Boltzmann Distribution

As a an example, consider the Boltzmann distribution (20.77) of the minute data.
The subsequent time-dependent variance and kurtosis are found by inserting the
cumulants Eq. (20.80) into (20.196), yielding

〈x2〉c(t) = t 2T 2, κ(t) =
c4
tc22

=
3

t
. (20.197)

The first increases linearly in time, the second decreases like one over time, which
makes the distribution more and more Gaussian, as required by the central limit
theorem (20.167). The two quantities are plotted in Figs. 20.19 and 20.20. The
agreement with the data is seen to be excellent.
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Figure 20.19 Variance of S&P 500 and NASDAQ 100 indices as a function of time.

The slopes 〈x2〉c(t)/t are roughly 1.1/20 × 1/60 min and 18.1/20 × 1/60 min, respectively,

so that Eq. (20.198) yields the temperatures TSP500 ≈ 0.075 and TNASDAQ100 ≈ 0.15. The

right-hand side shows the relative deviation from the linear shape in percent.

Note that if the minute data are not available, but only data taken with a
frequency 1/t0 (in units 1/min) and an expectation 〈x2〉c(t0), then we can find the
temperature of the minute distribution from the formula

T =
√

〈x2〉c(t0)/2t0. (20.198)

Since κ goes to zero like 1/t, the distribution becomes increasingly Gaussian as
the time grows, this being a manifestation of the central limit theorem (20.167) of
statistical mechanics according to which the convolution of infinitely many arbitrary
distribution functions of finite width always approaches a Gaussian distribution.
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Figure 20.20 Kurtosis of S&P 500 and NASDAQ 100 indices as a function of time. The

right-hand side shows the relative deviation from the 1/t behavior in percent.

This result is in contrast to the pure Lévy distribution in Subsection 20.1.2 with
λ < 2, which has no finite width and therefore maintains its power falloff at large
distances.

If we omit the time argument in the cumulants 〈xn〉c(1), for brevity, and insert
these into the decompositions (20.56) we obtain the time dependence of the mo-
ments:

〈x〉(t) = t〈x〉c,

〈x2〉(t) = t〈x2〉c + t2〈x〉2c ,

〈x3〉(t) = t〈x3〉c + 3t2〈x〉c〈x2〉c + t3〈x〉3c ,

〈x4〉(t) = t〈x4〉c + 3t2〈x2〉2c − 4t2〈x〉c〈x3〉c + 6t3〈x〉2c〈x2〉c + t4〈x〉4c , (20.199)
... .

Let us now calculate the time evolution of the Boltzmann distribution (20.77) of
the minute data. The Hamiltonian H(p) was identified in Eq. (20.79), so that

e−tH(p) =
1

[1 + (Tp)2]t
. (20.200)

The time-dependent distribution is therefore given by the Fourier integral

P (x, t) =
∫ ∞

−∞

dp

2π
eipx−tH(p) =

∫ ∞

−∞

dp

2π

1

(1 + T 2p2)t
eipx. (20.201)
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The calculation proceeds most easily rewriting (20.200), by analogy with (20.81)
and using again formula (2.499), as an integral

e−tH(p) =
1

[1 + (Tp)2]t
=

1

Γ(t)

∫ ∞

0

dτ

τ
τ te−τ(1+T 2p2). (20.202)

The prefactor of p2 is equal to tσ2 = tv a Gaussian distribution in x-space. We
therefore change the variable of integration from τ to v, substituting τ = tv/2T 2,
and obtain [compare (20.82)]

e−tH(p) =
(

t

2T 2

)t 1

Γ(t)

∫ ∞

0

dv

v
vte−tv/2T 2

e−tvp2/2. (20.203)

The Fourier transform of this yields the time evolution of the Boltzmann distribu-
tion as a time-dependent superposition of Gaussian distributions of different widths
[compare (20.83)]:

P (x, t) =
(

t

2T 2

)t 1

Γ(t)

∫ ∞

0

dv

v
vte−tv/2T 2 1√

2πtv
e−x2/2tv. (20.204)

The integral can be performed using the integral formula (2.559), and we find the
time-dependent distribution

P (x, t) =
∫ ∞

−∞

dp

2π
eipx−tH(p) =

1

T
√
πΓ(t)

(

|x|
2T

)t−1/2

Kt−1/2(|x|/T ), (20.205)

where t is measured in minutes.
For t = 1, we reobtain the fundamental distribution (20.77), recalling the explicit

form of K1/2(z) in Eq. (1.349).
In the limit of large t, the integral over v in (20.204) can be evaluated in the

saddle-point approximation of Section 4.2. We expand the weight function in the
integrand around the maximum at vm = 2T 2(1 − 1/t) as

vt−1e−tv/2T 2

=
[

2T 2(1 − 1/t)
]t−1

e−(t−1)e−tδv2/2[2T 2(1−1/t)]2
[

1 + O(δv3)
]

,(20.206)

where δv = v−vm, and O(δv3) is equal to −tδv3/3[2T 2(1−1/t)]3. Then we observe
that for large t, the Gaussian can be expanded into derivatives of δ-functions as
follows:

e−tz2/2
[

1 +
a

3
z3 + . . .

]

=
√

2π/t
[

δ(z) +
1

2t
δ′′(z) +

a

t2
δ′(z) . . .

]

. (20.207)

This can easily be verified by multiplying both sides with f(z) = f(0) + zf ′(0) +
z2f ′′(0)/2 + . . . and integrating over z. Thus we find to leading order

e−tδv2/2[2T 2(1−1/t)]2 →
√

2π

t
2T 2(1 − 1/t) δ(δv). (20.208)
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Using the large-t limit (1 − 1/t)t → e−1, and including the first correction from
(20.207), we obtain

vt−1e−tv/2T 2 →
√

2π

t
(2T 2)te−t

{

δ(δv) +
[2T 2(1 − 1/t)]2

2t
δ′′(δv) + . . .

}

. (20.209)

If we now employ Stirling’s formula (17.286) to approximate tt/Γ(t) →
√

t/2πet,

we see that the integral (20.204) converges for large t against the Gaussian distri-
bution e−x2/2tvm/

√
2πtvm with the saddle point variance vm → 2T 2.

The behavior near the peak of the distribution can be calculated from the small-z
expansion7

(

z

2

)ν

Kν(z) =
π

2 sin πν Γ(1 − ν)

[

1 +
Γ(1 − ν)

1!Γ(2 − ν)

z2

4
+ O(z4, z2ν)

]

. (20.210)

For large ν and small z, this can be approximated by [recall (20.29)]

(

z

2

)ν

Kν(z) ≈ Γ(ν)

2
e−z2/4(t−3/2). (20.211)

We now use Stirling’s formula (17.286) to find the large-t limit Γ(t− 1/2)/Γ(t) → 1,
leading to the Gaussian behavior near the peak:

P (x, t) ≈
small |x|

1√
2π 2T 2t

e−x2/2 2T 2(t−3/2). (20.212)

This corresponds to the approximation of the Fourier transform (20.200) by e−tT 2p2.
The Gaussian shape reaches out to x ≈ T

√
t. For very large t, it holds everywhere,

as it should by virtue of the central limit theorem (20.167).

20.1.21 Fourier-Transformed Tsallis Distribution

For the Hamiltonian defined in Eq. (20.97), the time evolution is given by the Fourier
transform

e−tHδ,β(p)=
[

1 − βδ p2/2
]−t/δ

=
1

Γ(t/δ)

∫ ∞

0

ds

s
st/δe−se−sβδ p2/2, β ≡ ν

µ
=

1

µδ
,(20.213)

which can be rewritten, by analogy with (20.99), as

e−tHδ,β(p) =
µt/δ

Γ (t/δ)

∫ ∞

0

dv

v
vt/δe−µve−vp2/2 , µ = 1/βδ. (20.214)

Taking the Fourier transform of this yields the time-dependent distribution function

Pδ,β(x, t) =
µt/δ

Γ (t/δ)

∫ ∞

0

dv

v
vt/δe−µv 1√

2πv
e−x2/2v , µ = 1/βδ, (20.215)

7M. Abramowitz and I. Stegun, op. cit., Formulas 9.6.2 and 9.6.10.
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which becomes with the help of Formula (2.499):

Pδ,β(x, t) =
µt/δ

Γ (t/δ)

1√
2π

(

x2

2µ

)t/2δ−1/4

2Kt/δ−1/2(
√

2µx), µ =
1

βδ
. (20.216)

For δ = 1 and µ = 1/2T 2, this reduces to the time-dependent Boltzmann distribution
(20.205). At the origin, its value is [compare (20.104)]

Pδ,β(0, t) =
√
µΓ(t/δ − 1/2)/Γ(t/δ). (20.217)

20.1.22 Superposition of Gaussian Distributions

All time-dependent distributions whose Fourier transforms have the form e−tH(p) pos-
sess a path integral representation (20.161) and which obeys the semigroup equation
(20.186). In several examples we have seen that the Fourier transforms e−H(p) can
be obtained from a superposition of Gaussian distributions of different variances
e−vp2/2 with some weight function w(v):

e−H(p) =
∫ ∞

0
dv w(v)e−vp2/2. (20.218)

This was true for the Boltzmann distribution in Eq. (20.81), for the Fourier-
transformed Tsallis distribution in Eq. (20.100), and for the Boltzmann Distribution
of a relativistic particle in Eq. (20.105). In all these cases it was possible to write a
similar superposition for the time-dependent distributions:

e−tH(p) =
∫ ∞

0
dv′wt(v

′)e−v′p2/2 =
∫ ∞

0
dv ωt(v)e−tvp2/2, (20.219)

where we have introduced the time-dependent weight function

ωt(v) ≡ t wt(vt). (20.220)

See Eqs. (20.202), (20.214), and (20.105) for the above three cases.
The question arises as to general property of the time dependence of the weight

function wt(v) which ensures that that the Fourier transform of the superposition
(20.219) obtained as in Eq. (20.164) satisfies the semigroup condition (20.186) [52].
For this, the superposition has to depend on time as

e−(t2+t1)H(p) = e−t2H(p)e−t1H(p),

or e−tH(p) = [e−H(p)]t. This implies that the weight factor wt(v) has the property
∫

dv12wt1+t2(v12)e
−v12p2/2 =

∫

dv2wt2(v2)e
−v2p2/2

∫

dv1wt1(v1)e
−v1p2/2. (20.221)

For the Laplace transforms w̃t(v) of wt(v)

w̃t(pv) ≡
∫

dv e−pvvwt(v) (20.222)
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this amounts to the factorization property

w̃t1+t2(pv) = w̃t2(pv)w̃t1(pv), (20.223)

which is fulfilled by the exponential

w̃t(pv) = e−tHv(pv), (20.224)

with some Hamiltonian Hv(pv). Since the integral over v in (20.222) runs only over
the positive v-axis, the Hamiltonian Hv(pv) is analytic in the upper half-plane of pv.

It is easy to relate Hv(pv) to H(p). For this we form the inverse Laplace trans-
formation, the so-called Bromwich integral [53]

wt(v) =
∫ γ+i∞

γ−i∞

dpv
2πi

epvv−tHv(pv), (20.225)

in which γ is some real number larger than the real parts of all singularities in
e−pvv−tHv(pv). Inserting this into (20.219) and performing the v-integral yields

e−tH(p) =
∫ γ+i∞

γ−i∞

dpv
2πi

1

p2/2 − pv
e−tHv(pv). (20.226)

Closing the integral over pv in the complex pv-plane and deforming the contour to
an anticlockwise circle around pv = p2/2 we find the desired relation:

Hv(p
2/2) = H(p). (20.227)

The time-dependent distribution associated with any Hamiltonian H(p) via the
Fourier integral (20.170) can be represented as a superposition of Gaussian distri-
butions with the help of Eq. (20.219) if we merely choose Hv(pv) = H(

√
2pv).

Recalling the derivation of the Fourier representation (20.165) from the path
integral (20.153) and the descendence of that path integral from the stochastic dif-
ferential equation (20.140) with the noise Hamiltonian H(p) we conclude that the
Hamiltonian Hv(ipv) governs the noise in a stochastic differential equation for the
volatility fluctuations.

Take, for example, the superposition of Gaussians (20.105). The Laplace trans-
form of the weight function ωβ(v) is

ω̃β(pv) =
∫

dv e−vpvωβ(v) =
∫

dv e−vpv

√

β

2πv3
e−β/2v = e−

√
2βpv . (20.228)

The Laplace transform of wβ(v) is related to this by
∫

dv′e−v′pvwβ(v′)=
∫

dv e−βvpvωβ(v) = ω̃β(βpv). (20.229)

Hence it is given by w̃β(pv)=e−β
√
2pv =e−βHv(pv), which satisfies the relation (20.223).

Moreover, Hv(p
2/2) is equal to H(p) =

√
p2, as required by Eq. (20.227) and in

accordance with Eq. (20.105) for M = 0.
Note that instead of the Bromwich integral (20.226) it is sometimes more con-

venient to use Post’s Laplace inversion formula [54]

ωt(v) = lim
k→∞

(−1)k

k!
xk+1 ∂

kω̃t(x)

∂xk

∣

∣

∣

∣

∣

x=k/v

. (20.230)
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20.1.23 Fokker-Planck-Type Equation

From the Fourier representation (20.170) it is easy to prove that the probability
satisfies a Fokker-Planck-type equation

∂tP (xbtb|xata) = −H(−i∂x)P (xbtb|xata). (20.231)

Indeed, the general solution ψ(x, t) of this differential equation with the initial con-
dition ψ(x, 0) is given by the path integral generalizing (20.144)

ψ(x, t) =
∫

Dη exp
[

−
∫ tb

ta
dt H̃(η(t))

]

ψ
(

x−
∫ t

ta
dt′η(t′)

)

. (20.232)

This satisfies the Fokker-Planck-type equation (20.231). To show this, we take
ψ(x, t) at a slightly later time t+ ǫ and expand

ψ(x, t + ǫ) =
∫

Dη exp
[

−
∫ tb

ta
dt H̃(η(t))

]

ψ
(

x−
∫ t

ta
dt′η(t′) −

∫ t+ǫ

t
dt′η(t′)

)

.

=
∫

Dη exp
[

−
∫ tb

ta
dt H̃(η(t))

] {

ψ
(

x−
∫ t

ta
dt′η(t′)

)

− ψ′
(

x−
∫ t

ta
dt′η(t′)

)
∫ t+ǫ

t
dt′η(t′)

+
1

2
ψ′′

(

x−
∫ t

ta
dt′η(t′)

)
∫ t+ǫ

t
dt1dt2 η(t1)η(t2) (20.233)

− 1

3!
ψ′′′

(

x−
∫ t

ta
dt′η(t′)

)
∫ t+ǫ

t
dt1dt2dt3 η(t1)η(t2)η(t3)

+
1

4!
ψ(4)

(

x−
∫ t

ta
dt′η(t′)

)
∫ t+ǫ

t
dt1dt2dt3dt4 η(t1)η(t2)η(t3)η(t4) + . . .

}

.

Using the correlation functions (20.155)–(20.262) we obtain

ψ(x, t+ ǫ) =
∫

Dη exp
[

−
∫ tb

ta
dt H̃(η(t))

]

×
[

−ǫc1∂x +
(

ǫc2 + ǫ2c1
) 1

2
∂2x −

(

ǫc3 + 3ǫ2c2c1
) 1

3!
∂3x (20.234)

+
(

ǫc4 + ǫ24c3c1 + ǫ23c22 + ǫ3c2c
2
1 + ǫ4c21

) 1

4!
∂4x + . . .

]

ψ
(

x−
∫ t

ta
dt′η(t′)

)

.

In the limit ǫ → 0, only the linear terms in ǫ contribute, which are all due to the
connected parts of the correlation functions of η(t). The differential operators in the
brackets can now be pulled out of the integral and we find the differential equation

∂tψ(x, t) =
[

−c1∂x +
c2
2!
∂2x −

c3
3!
∂3x +

c4
4!
∂4x + . . .

]

ψ (x, t) . (20.235)

We now replace c1 → rx and express using (20.141) the differential operators in
brackets as Hamiltonian operator −Hrx(−i∂x). This leads to the Schrödinger-like
equation [55]

∂tψ(x, t) = −Hrx(−i∂x)ψ (x, t) . (20.236)
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Due to the many derivatives in H(i∂x), this equation is in general non-local. This
can be made explicit with the help of the Lévy-Khintchine weight function F (x) in
the Fourier representation (20.173). In this case, the right-hand side

−H(−i∂x)ψ(x, t) =
∫

dx′ e−x′∂x F (x′)ψ(x, t) =
∫

dx′ F (x′)ψ(x− x′, t), (20.237)

and the Fokker-Planck-like equation (20.236) takes the form of an integro-differential
equation. Some people like to use the subtracted form (20.175) of the Lévy-
Khintchine formula and arrive at the integro-differential equation

∂tψ(x, t) =
[

−c1∂x −
c2
2
∂2x

]

ψ(x, t) +
∫

dx′ F̄ (x′)ψ(x− x′, t). (20.238)

The integral term can then be treated as a perturbation to an ordinary Fokker-
Planck equation.

The initial condition of the probability is, of course, always given by (20.187),
as a consequence of the semigroup property (20.186).

20.1.24 Kramers-Moyal Equation

The Fokker-Planck-type equation (20.231) is a special case of the most general time
evolution equation satisfied by a probability distribution P (xb, tb, |xata) which fulfills
the Chapman-Kolmogorov or Smoluchowski equation (20.186). For a short time
interval tc − tb = ǫ, that equation can be written as

P (xc tb+ǫ|xata) =
∫ ∞

−∞
dxb P (xctb + ǫ|xbtb)P (xbtb|xata). (20.239)

We now re-express P (xctb+ǫ|xbtb) as a trivial integral

P (xctb+ǫ|xbtb) =
∫

dx δ(x−xb+xb−xc)P (x tb+ǫ|xbtb), (20.240)

and expand the δ-function in powers of x− xb to obtain

P (xctb+ǫ|xbtb) =
∫

dx
∞
∑

n=0

(x− xb)
n

n!
P (x tb+ǫ|xbtb) ∂nxb

δ(xb − xc). (20.241)

Introducing the moments

Cn(xbtb) ≡
∫

dx (x− xb)
n∂tbP (x tb|xbtb), (20.242)

and inserting (20.241) into Eq. (20.239) the right-hand side reads

P (xctb|xbtb) + ǫ
∞
∑

n=1

∫

dxb
Cn(xbtb)

n!
[∂nxb

δ(xb − xc)]∂tbP (xbtb|xata) + O(ǫ2). (20.243)
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Taking the n = 0 -term to the left-hand side of (20.239) and going to the limit
ǫ→ 0, we obtain the Kramers-Moyal equation:

∂tbP (xbtb|xata) = −H(−i∂xb
, xb, tb)P (xbtb|xata). (20.244)

with the Hamiltonian operator

H(−i∂xb
, xb, tb) ≡ −

∞
∑

n=1

(−∂xb
)n
Cn(xbtb)

n!
, (20.245)

which is the generalization of the Hamiltonian operator in Eqs. (20.235) and
(20.231).

There is a simple formal solution of the time evolution equation (20.244) with
the initial condition (20.187). It can immediately be written down by recalling the
similar time evolution equation (1.233):

P (xbtb|xata) = T̂ e
−
∫ tb
ta

dtH(−i∂xb ,xb,t)δ(xb − xa), (20.246)

where T̂ is the time-ordering operator (1.241). Using Dirac bra-ket states 〈xb| and
|xa〉 with the scalar product 〈xb|xa〉 = δ(xb − xa) as in Eq. (18.462), and the rules
(18.463), we can rewrite (20.246) as

P (xbtb|xata) = 〈xb|T̂ e−
∫ tb
ta

dtH(−i∂xb ,xb,t)|xa〉. (20.247)

Due to the initial condition (20.187), the moments (20.242) can also be calculated
from the short-time limit

Cn(x t) =
ǫ→0

1

ǫ

∫

dx (x′ − x)nP (x′ t+ǫ|x t) =
ǫ→0

1

ǫ
〈[x(t+ǫ) − x(t)]n〉, n ≥ 1. (20.248)

Another way of writing the expectation value on the right-hand side is

Cn(x t) =
ǫ→0

1

ǫ

∫ t+ǫ

t
dt1 · · ·

∫ t+ǫ

t
dtn 〈ẋ(t1) · · · ẋ(tn)〉, n ≥ 1. (20.249)

If x(t) follows the Langevin equation (20.169) with the correlation functions
(20.155)–(20.262), we obtain

Cn(x t) = cn, (20.250)

and the Kramers-Moyal equation (20.248) reduces to out previous Fokker-Planck-
type equation (20.231).

For a Langevin equation

ẋ(t) = r(x, t) + σ(x, t)η(t), (20.251)

with a white noise variable η(t), we find instead

C1(x t)=a(x, t)+b′(x, t)b(x, t)=a(x, t)+
∂xC2(x t)

2
, C2(x t) = b2(x, t). (20.252)

According to a theorem due to Pawula [56], the positivity of the probability in
the Kramers-Moyal equation (20.244) requires that the expansion (20.245) can only
be truncated after the first or second terms, or must go on to infinity.
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20.2 Itō-like Formula for Non-Gaussian Distributions

By a procedure similar to that in Subsection 18.13.3 it is possible to derive a gen-
eralization of the Itō-like expansions (18.412) and (18.432) for the fluctuations of
functions containing non-Gaussian noise.

20.2.1 Continuous Time

As in (18.408) we expand f(x(t+ ǫ)):

f(x(t+ ǫ)) = f(x(t)) + f ′(x(t))∆x(t)

+
1

2
f ′′(x(t))[∆x(t)]2 +

1

3!
f (3)[∆x(t)]3 + . . . . (20.253)

where ẋ(t) = η(t) is the stochastic differential equation with a nonzero expectation
value 〈η(t)〉 = c1. In contrast to the expansion (18.426), which for ǫ → 0 had to
be carried only up to the second order in ∆x(t) ≡ ∫ t+ǫ

t dt′ ẋ(t′), we must now keep
all orders. Evaluating the noise averages of the multiple integrals on the right-
hand side with the help of the correlation functions (20.155)–(20.262), we find the
time dependence of the expectation value of an arbitrary function of the fluctuating
variable x(t)

〈f(x(t+ǫ))〉 = 〈f(x(t))〉 + 〈f ′(x(t))〉ǫc1 +
1

2
〈f ′′(x(t))〉(ǫc2+ǫ2c21)

+
1

3!
〈f (3)(x(t))〉(ǫc3 + ǫ2c2c1 + ǫ3c31) + . . . (20.254)

= 〈f(x(t))〉 + ǫ
[

c1∂x + c2
1

2
∂2x + c3

1

3!
∂3x + . . .

]

〈f(x(t))〉 + O(ǫ2).

After the replacement c1 → rx, the function f(x(t)) obeys therefore the following
equation:

〈ḟ(x(t))〉 = −Hrx(i∂x)〈f(x(t))〉. (20.255)

Separating the lowest-derivative term, this takes a form generalizing Eq. (18.412):

〈ḟ(x(t))〉 = 〈f ′(x(t))〉〈ẋ(t)〉 − H̄rx(i∂x)〈f(x(t))〉. (20.256)

This might be viewed as the expectation value of the stochastic differential equation

ḟ(x(t)) = f ′(x(t))ẋ(t) − H̄rx(i∂x)f(x(t)), (20.257)

which, if valid, would be a simple direct generalization of Itō’s Lemma (18.413).
However, this conclusion is not allowed. The reason lies in the increased size of the
fluctuations of the higher expansion terms [∆x(t)]n for n ≥ 2. In the harmonic case
of Subsection 18.13.3, these were negligible in comparison with the leading term
z1(t) in Eq. (18.413). Let us see what happens in the present case, where all higher
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cumulants cn in the Hamiltonian (20.141) may be nonzero. For the argument we
proceed as in Eq. (18.405) by working with the stochastic differential equation

ẋ(t) = 〈ẋ(t)〉 + η(t) = c1 + η(t). (20.258)

rather that (20.169). Then the correlation functions of η(t) consist only of the
connected parts of (20.155)–(20.262):

〈η(t1)〉 = c1, (20.259)

〈η(t1)η(t2)〉 = c2δ(t1 − t2) (20.260)

〈η(t1)η(t2)η(t3)〉 = c3δ(t1−t2)δ(t1−t3), (20.261)

〈η(t1)η(t2)η(t3)η(t4)〉 = c4δ(t1−t2)δ(t1−t3)δ(t1−t4) (20.262)

+ c22[δ(t1−t2)δ(t3−t4)+δ(t1−t3)δ(t2−t4)+δ(t1−t4)δ(t2−t3)].
... .

We now estimate the size of the fluctuations zn of [∆x(t)]n. The first contribution
z2,1 to z2 defined in Eq. (18.415) is still negligible since it is smaller than the leading
one z1(t) ≡ ∫ t+ǫ

t dt′ η(t′) by a factor ǫ. The second contribution z2,3 to z2 defined
in Eq. (18.415), however, has now a larger variance, due to the c4-term in (20.262),
which contains one more δ-function than the c22-term, so that

〈

[z2,2(t)]
2
〉

=
∫ t+ǫ

t
dt1

∫ t+ǫ

t
dt2

∫ t+ǫ

t
dt3

∫ t+ǫ

t
dt4 〈η(t1)η(t2)η(t3)η(t4)〉=ǫc4+ǫ2c22. (20.263)

This is larger than the harmonic estimate (18.420) by a factor 1/ǫ, which makes
z2,2(t), in general, as large as the leading fluctuation z1(t) of x1(t). It can therefore
not be ignored. The subtraction of the second term 〈z2,2(t)〉2 = ǫ2c22 in the variance
does not help since that is ignorable.

A similar estimate holds for the higher powers. Take for instance [∆x(t)]3:

[∆x(t)]3 = ǫ3c31 + 3ǫ2c21z1(t) + ǫc1[z1(t)]
2 + [z1(t)]

3, (20.264)

and calculate the variance of the strongest fluctuating last term in this:
〈{[z1(t)]

3}2〉 − 〈[z1(t)]3〉2〉. The first contribution is equal to

∫ t+ǫ

t
dt1

∫ t+ǫ

t
dt2

∫ t+ǫ

t
dt3

∫ t+ǫ

t
dt4

∫ t+ǫ

t
dt5

∫ t+ǫ

t
dt6 〈η(t1)η(t2)η(t3)η(t4)η(t5)η(t6)〉,

(20.265)
and becomes, after an obvious extension of the expectation values (20.155)–(20.262)
to the six-point function:

〈{[z1(t)]
3}2〉 = ǫc6 + O(ǫ2). (20.266)

The second contribution 〈[z1(t)]3〉2 in (20.264) is equal to ǫ2c23 and can be ignored
for ǫ → 0. Thus, due to (20.266), the size of the fluctuations [z1(t)]

3 is of the same
order as of the leading one x1(t) [compare again (18.421)].
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This is an important result which is the reason why we cannot derive a direct
generalization (20.257) of the Itō formula (18.413) to non-Gaussian fluctuations, but
only the weaker formula (20.256) for the expectation value.

For an exponential function f(x) = ePx this implies the relation

d

dt
〈ePx(t)〉 =

[

P 〈ẋ(t)〉 − H̄rx(iP )
] 〈

ePx(t)
〉

, (20.267)

and it is not allowed to drop the expectation values.
A consequence of the weaker Eq. (20.267) for P = 1 is that the rate rS with

which the average of the stock price S(t) = ex(t) grows is given by formula (20.1),
where the rate rx is related to rS by

rS = rx − H̄(i) = rx − [H(i) − iH ′(0)] = −Hrx(i), (20.268)

which replaces the simple Itō relation rS = rx + σ2/2 in Eq. (20.5). Recall the
definition of H̄(p) ≡ H(p) − H ′(0)p in Eq. (20.141). The corresponding version of
the left-hand part of Eq. (20.4) reads
〈

Ṡ

S

〉

= 〈ẋ(t)〉 − H̄(i) = 〈ẋ(t)〉 − [H(i) − iH ′(0)] = 〈ẋ(t)〉 − rx −Hrx(i). (20.269)

The forward price of a stock must therefore be calculated with the generalization of
formula (20.8), in which we assume again η(t) to fluctuate around zero rather than
rx:

〈S(t)〉 = S(0)erSt = S(0)〈erxt+
∫ t

0
dt′ η(t′)〉 = S(0)e−Hrx (i)t = S(0)e{rxt−[H(i)−iH′(0)]t}.

(20.270)
If η(t) fluctuates around rx this takes the simpler form

〈S(t)〉 = S(0)erSt = S(0)〈e
∫ t

0
dt′ η(t′)〉 = S(0)e−Hrx (i)t. (20.271)

This result may be viewed as a consequence of the following generalization of the
Gaussian Debye-Waller factor (18.425):

〈

eP
∫ t

0
dt′ η(t′)

〉

= e−Hrx (iP )t. (20.272)

Note that we may derive the differential equation (20.255) of an arbitrary func-
tion f(x(t)) from a simple mnemonic rule, expanding sloppily [similar to Eq. (18.426)
but restricted to the expectation values]

〈f(x(t+ dt))〉 = 〈f(x(t))〉 + 〈f ′(x(t))〉 〈ẋ(t)〉 dt+
1

2
〈f ′′(x(t))〉

〈

ẋ2(t)
〉

dt2

+
1

3!
〈f (3)(x(t))〉〈ẋ3(t)〉dt3 + . . . , (20.273)

and replacing

〈ẋ(t)〉dt→ c1dt, 〈ẋ2(t)〉dt2 → c2dt, 〈ẋ3(t)〉dt3 → c3dt, . . . . (20.274)

In contrast to Eq. (18.429), this replacement holds now only on the average.
For the same reason, portfolios containing assets with non-Gaussian fluctuations

cannot be made risk-free in the continuum limit ǫ→ 0, as will be seen in Section 20.7.
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20.2.2 Discrete Times

The prices of financial assets are recorded in the form of a discrete time series
x(tn) in intervals ∆t = tn+1 − tn, rather than the continuous function x(t). For
stocks with a large turnover, or for market indices, the smallest time interval is
typically ∆t = 1 minute. We have seen at the end of Section 18.13.3 that this makes
Itō’s Lemma (18.413) an approximate statement. Without the limit ∆t → 0, the
fluctuations of the higher expansion terms in (20.253) no longer disappear but are
merely suppressed by a factor σ

√
∆tn. In quiet economic periods this is usually

quite small for ∆t = 1 minute, so that the higher-order fluctuations can usually be
neglected after all.

While this approximate validity is a disadvantage of the discrete time series
over the continuous one, it is an advantage with respect to processes with non-
Gaussian noise, at least as long as the financial markets are not in turmoil. Then
the non-Gaussian higher-order fluctuations of the expansion terms in (20.253) are
suppressed by the same order σ

√
∆t as the corrections to Itō’s rule in the Gaussian

case [recall (18.432)]. As a typical example, take the Boltzmann distribution (20.77).
Its cumulants cn carry a factor T n [see Eq. (20.80)] where the market temperature T
is a small number of the order of a few percent in the natural time units of one minute
used in this context [see Fig. (20.11)]. The smallness of T is, of course, a consequence
that the minute data do not usually possess large volatility, except near a crash. In
the natural units of minutes, the time interval ǫ in the calculations after Eq. (20.257)
is unity, so that powers of ǫ can no longer be used for size estimates. This role is
now taken over by T . In fact, since cn is of order T n, the fluctuations of zn(t) are
of the order T n. Thus, in non-Gaussian fluctuations of a discrete time series, the
smallness of T leads to a suppression of the higher fluctuations after all. Moreover,
the suppression is just as good as for time series with Gaussian fluctuations, where
the corrections are of the order (σ

√
∆t)n−1 for zn(t) with n ≥ 2. These have the size

of T n−1 for the Boltzmann distribution [recall (20.198)]. A similar estimate holds
for all non-Gaussian noise distributions with semi-heavy tails as defined on at the
end of Subsection 20.1.1.

For all semi-heavy tails for which the cumulants cn decrease with power T n of a
small parameter such as the temperature T , we may drop the expectations values
of the Itō-like expansion (20.256), and remain with an approximate Itō formula for
the fluctuating difference ∆f(x(tn)) ≡ f(x(tn+1)):

∆f(x(tn)) = f ′(x(tn))∆x(tn) − H̄rx(i∂x)f(x(tn)) + O(σ
√

∆t), (20.275)

which is a direct generalization of the discrete version (18.432) of Itō’s Lemma
(18.413).

A characteristic property of the Boltzmann distribution (20.77) and others with
semi-heavy tails is that their Hamiltonian possesses a power series in p2 of the type
(20.141) with finite cumulants cn of the order of σn, where σ is the volatility of the
minute data. This property is violated only by power tails of price distributions
which do exist in the data (see Fig. 20.10). These do not go away upon multiple
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convolution which turns the Boltzmann distribution more and more into a Gaussian
as required by the central limit theorem (20.167). These heavy tails are caused by
drastic price changes in short times observed in nervous markets near a crash. If
these are taken into account, the discrete version (18.432) of Itō’s Lemma (18.413)
is no longer valid. This will be an obstacle to setting up a risk-free portfolio in
Section 20.7.

20.3 Martingales

In financial mathematics, an often-encountered concept is that of a martingale. The
name stems from a casino strategy in which a gambler doubles his stake each time a
bet is lost. A stochastic variable m(t) is called a martingale, if its expectation value
is time-independent.

A trivial martingale is provided by any noise variable m(t) = η(t).

20.3.1 Gaussian Martingales

For a harmonic noise variable, the exponential m(t) = e
∫ t

0
dt′η(t′)−σ2t/2 is a nontrivial

martingale, due to Eq. (20.8). For the same reason, a stock price S(t) = ex(t) with
x(t) obeying the stochastic differential equation (20.140) can be made a martingale
by a time-dependent multiplicative factor associated with the average growth rate
rS, i.e.,

e−rStS(t) = e−rStex(t) = e−rSterxt+
∫ t

dt′ η(t′) (20.276)

is a martingale. The prefactor e−rSt is referred to as a discount factor with the
rate rS. If we calculate the probability distribution (20.170) associated with the
stochastic differential equation (20.140), which for harmonic fluctuations of standard
deviation σ corresponds to a Hamiltonian

H(p) = irxp+
σ2

2
p2, (20.277)

The integral representation (20.170) for the probability distribution,

P rx(xbtb|xata) =
∫ ∞

−∞

dp

2π
exp

[

ip(xb − xa) − ∆t
(

irxp+ σ2p2/2
)]

(20.278)

with ∆t = tb− ta has obviously a time-independent expectation value of e−rStS(t) =
e−rStex(t). Indeed, the expectation value at the time tb is given by the integral over
xb

e−rStb

∫

dxb e
xbP rx(xbtb|xata) = e−rStb

∫

dxb e
xb

∫ ∞

−∞

dp

2π
exp

[

ip(xb− xa)−∆t σ2p2/2
]

,

which yields

e−rStb

∫ ∞

−∞

dp

2π
δ(p− i)e−ipxae∆t σ2p2/2 = e−rStexae(rx−σ2/2)∆t = e−rStaexa , (20.279)
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where we have used the Itō relation rS = rx +σ2/2 of Eq. (20.5). The result implies
that

〈e−rStbS(tb)〉rx = 〈e−rStbex(tb)〉rx = e−rStaS(ta). (20.280)

Since this holds for all tb we may drop the subscripts b, thus proving the time
independence and thus the martingale nature of e−rStS(t).

In mathematical finance, where the expectation value in Eq. (20.280) is written
according to the definition (20.189) as EE[e−rS(tb−ta)exb|xata], the martingale property
of e−rS(tb−ta)S(t) is expressed as

EE[e−rS(tb−ta)S(tb)|xata] = S(ta) (20.281)

or as EE[e−rS(tb−ta)exb |xata] = exa .
For the martingale f(xb, tb) = e−rS(tb−ta)exb , the expectation values on the right-

hand side of the towering formula (20.191) reduces with the help of (20.281) and
(20.192) to

EE[EE[f(xb, tb)|x t]|xata] = EE[EE[f(x, t)|x t]|xata] = EE[f(x, t)|xata]. (20.282)

Using once more the relations (20.281) and (20.192) to leads to

EE[EE[f(xb, tb)|x t]|xata] = f(xa, ta). (20.283)

Performing the momentum integral in (20.278) gives the explicit distribution

P rx(xbtb|xata) ≡
1

√

2πσ2(tb − ta)
exp

{

− [xb − xa − rx(tb − ta)]
2

2σ2(tb − ta)

}

. (20.284)

We may incorporate the discount factor e−rS(tb−ta) into the probability distribution
(20.284) and define a martingale distribution for the stock price

P (M,rx)(xbtb|xata) = e−rS(tb−ta)P rx(xbtb|xata), (20.285)

whose normalization falls off like e−rS(tb−ta). If we define expectation values with
respect to PM,rx(xbtb|xata) by the integral (without normalization)

〈f(xb)〉(M,rx) ≡
∫

dxb f(xb)P
(M,rx)(xbtb|xata), (20.286)

then the stock price itself is a martingale:

〈exb〉(M,rx) = exa . (20.287)

Note that there exists an entire family of equivalent martingale distributions

P (M,r)(xbtb|xata) = e−r∆t
∫ ∞

−∞

dp

2π
exp [ip(xb − xa) − ∆tHr(p)] , (20.288)

with an arbitrary rate r and rx ≡ r + H̄(i). Indeed, multiplying this with exb and
integrating over xb gives rise to a δ-function δ(p − i) and produces the same result
exa for any time difference ∆t = tb − ta. Performing the integral yields

P (M,r)(xbtb|xata) ≡
e−r(tb−ta)

√

2πσ2(tb − ta)
exp

{

− [xb − xa − r(tb − ta)]
2

2σ2(tb − ta)

}

. (20.289)

These martingale distributions are called risk-neutral.
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20.3.2 Non-Gaussian Martingale Distributions

For S(t) = ex(t) with an arbitrary non-Gaussian noise η(t), there are many ways of
constructing distributions which make the stock price a martingale.

Natural Martingale Distribution

The relation (20.268) allows us to write down immediately the simplest martingale
distribution. It is given by an obvious generalization of the Gaussian expression
(20.276):

e−rStS(t) = e−rSterxt+
∫ t

0
dt′η(t′) (20.290)

where rS and rx are related by rS = rx − H̄(i) = −Hrx(i). It is easy to prove
this. The distribution function associated with the stochastic differential equation
(20.140) with non-Gaussian fluctuations is given by

P rx(xbtb|xata) =
∫

Dη
∫

Dx exp
{

−
∫ tb

ta
dt H̃rx(η(t))

}

δ[ẋ− rx(tb − ta)η], (20.291)

where ∆t ≡ (tb − ta) and rx = rS + H̄(i). As explained in Subsection 20.1.23, the
path integral is solved by the Fourier integral [compare (20.170)]

P rx(xbtb|xata) =
∫ ∞

−∞

dp

2π
exp [ip(xb − xa) − ∆tHrx(p)] . (20.292)

Using this distribution we can again calculate the time independence of the expecta-
tion value (20.280), so that PM,rx(xbtb|xata) = e−rS(tb−ta)P rx(xbtb|xata) is a martin-
gale distribution which makes the stock price time-independent, as in Eq. (20.287).

Note that there exists an entire family of equivalent martingale distributions

P (M,r)(xbtb|xata) = e−r∆t
∫ ∞

−∞

dp

2π
exp [ip(xb − xa) − ∆tHrx(p)] , (20.293)

with an arbitrary rate r and rx ≡ r + H̄(i). Indeed, multiplying this with exb and
integrating over xb gives rise to a δ-function δ(p− i) and produces the same result
exa for any time difference ∆t = tb − ta.

For non-Gaussian fluctuations there exists an infinite set martingale distributions
for the stock price of which we are now going to dicuss the one proposed by Esscher.

Esscher Martingales

In the literature on mathematical finance, much attention is paid to another family
of equivalent martingale distributions. It has been used a long time ago to estimate
risks of actuaries [67] and introduced more recently into the theory of option prices
[68, 69] where it is now of wide use [70]–[76]. This family is constructed as follows.
Let D̃(z) be an arbitrary distribution function with a Fourier transform

D̃(z) =
∫ ∞

−∞

dp

2π
e−H(p) eipz, (20.294)
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and H(0) = 0, to guarantee a unit normalization
∫

dzD̃(z) = 1. We now introduce
an Esscher-transformed distribution function. It is obtained by slightly tilting the
initial distribution D̃(z), multiplying it with an asymmetric exponential factor eθz:

Dθ(z) ≡ eH(iθ) eθzD̃(z). (20.295)

The constant prefactor eH(iθ) is necessary to conserve the total probability. This
distribution can be written as a Fourier transform

Dθ(z) =
∫ ∞

−∞

dp

2π
e−Hθ(p) eipz, (20.296)

with the Esscher-transformed Hamiltonian

Hθ(p) ≡ H(p+ iθ) −H(iθ). (20.297)

Since Hθ(0) = 0, the transformed distribution is properly normalized:
∫

dzDθ(z) =
1. We now define the Esscher-transformed expectation value

〈F (z)〉θ ≡
∫

dzDθ(z)F (z). (20.298)

It is related to the original expectation value by

〈F (z)〉θ ≡ eH(iθ) 〈eθzF (z)〉. (20.299)

For the specific function F (z) = ez, Eq. (20.299) becomes

〈ez〉θ = e−Hθ(i) ≡ eH
θ(iθ) 〈e(θ+1)z〉 = eH

θ(iθ)−Hθ(iθ+i). (20.300)

Applying the transformation (20.296) to each time slice in the general path
integral (20.144), we obtain the Esscher-transformed path integral

P θ(xbtb|xata)=e−rS∆teHrx (iθ)∆t
∫

Dη
∫

Dx exp
{
∫ tb

ta
dt
[

θη(t)−H̃rx(η(t))
]

}

δ[ẋ− η],

(20.301)

where ∆t ≡ tb − ta is the time interval. This leads to the Fourier integral [compare
(20.293)]

P θ(xbtb|xata) = e−rS∆teHrx (iθ)∆t
∫ ∞

−∞

dp

2π
exp [ip(xb − xa) − ∆tHrx(p+ iθ)] .(20.302)

Let us denote the expectation values calculated with this probability by 〈 . . . 〉θ.
Then we find for S(t) = ex(t) the time dependence

〈S(t)〉θ = e−Hθ
rx

(i)t. (20.303)
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This equation shows that the exponential of a stochastic variable x(t) can be made
a martingale with respect to any Esscher-transformed distribution if we remove the
exponential growth factor exp(rθ∆t) with

rθ ≡ −Hθ
rx(i) = −Hrx(i+ iθ) +Hrx(iθ). (20.304)

Thus, a family of equivalent martingale distributions for the stock price S(t) = ex(t)

is

PM θ(xbtb|xata) ≡ e−rθtP θ(xbtb|xata), (20.305)

for any choice of the parameter θ.

For a harmonic distribution function (20.284), the Esscher martingales and the
previous ones are equivalent. Indeed, starting from (20.284) in which rS = rx+σ2/2,
the Esscher transform leads, after a quadratic completion, to the family of natural
martingales (20.284) with the rate parameter r = rx + θσ2.

Other Non-Gaussian Martingales

Many other non-Gaussian martingales have been discussed in the literature. Mathe-
maticians have invented various sophisticated criteria under which one would be
preferable over the others for calculating financial risks. Davis, for instance, has
introduced a so-called utility function [77] which is supposed to select optimal mar-
tingales for different purposes. There exists also a so-called minimal martingale [83],
but the mathematical setup in these discussions is hard to understand.

For the upcoming development of a theory of option pricing, only the initial
natural martingale will be relevant.

20.4 Origin of Semi-Heavy Tails

We have indicated at the end of Subsection 20.1.1 that semi-heavy tails of the type
used in the previous discussions may be viewed as a phenomenological description
of a nontrivial Gaussian process with fluctuating volatility. This has been confirmed
in Subsection 20.1.22 where we have expressed a number of non-Gaussian distribu-
tions as a superposition of Gaussian distributions. We have further seen that the
weight functions wt(v) for the superpositions can be Laplace-transformed to find a
Hamiltonian Hv(pv) from which we can derive which governs the noise distribution
a stochastic differential equation for the volatility whose noise distribution is which
governed by Hv(ipv).

There exist a simple solvable model due to Heston [78] which shows this
explicitly.8

8The discussion in this section follows a paper by Drăgulescu and Yakovenko [79].
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20.4.1 Pair of Stochastic Differential Equations

Starting point is a coupled pair of ordinary stochastic differential equations with
Gaussian noise, one for the fluctuating logarithm x(t) of the stock price, and one
for the fluctuating time-dependent variance σ2(t). Since this will appear frequently
in the upcoming discussion, we shall name it v(t). For simplicity, we remove the
growth rate of the share price. Replacing σ2 in the stochastic differential equation
(20.4) by the time-dependent variance v(t) we obtain

ẋ(t) = −v(t)

2
+
√

v(t)η(t), (20.306)

where the noise variable η(t) has zero average and unit volatility

〈η(t)〉 = 0, 〈η(t)η(t′)〉 = δ(t− t′). (20.307)

The variance is assumed to satisfy an equation with another noise variable ηv(t) [7]

v̇(t) = −γ[v(t) − v̄] + ε
√

v(t)ηv(t). (20.308)

The time in
√

v(t) is supposed to lie slightly before the time in the noise ηv(t). The
parameter ε determines the volatility of the variance. The parameter v̄ will become
the average of the variance at large times. It is proportional to the variance σ2 of
the Gaussian distribution to which the distribution converges in the long-time limit
by the central limit theorem. The precise relation will be given in Eq. (20.363).

In general, the noise variables η(t) and ηv(t) are expected to exhibit correlations
which are accounted for by introducing an independent noise variable η′(t) and
setting

ηv(t) ≡ ρ η(t) +
√

1 − ρ2η′(t). (20.309)

The pair correlation functions are then

〈η(t)η(t′)〉 = δ(t− t′), 〈η(t)ηv(t
′)〉 = ρδ(t− t′), 〈ηv(t)ηv(t′)〉 = δ(t− t′). (20.310)

20.4.2 Fokker-Planck Equation

If �(t) denotes the pair of noise variables (η(t), ηv(t)), the probability distribution
analogous to (18.324) for paths x(t), v(t) starting out at xa, va and arriving at x, v
is

P
�

(x v t |xavata) = δ(xη(t) − x)δ(vηv(t) − v). (20.311)

The time evolution of this is calculated using the differentiation rule (18.381) as

∂tP�(x v t |xavata) = − [∂xẋη(t) + ∂vv̇ηv(t)]P
�

(x v t |xavata), (20.312)
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or more explicitly

∂tP�(x v t |xavata)=
{

∂x

[

v(t)

2
−
√

v(t)η(t)

]

+ ∂v

[

γ (v(t) − v̄) − ε
√

v(t)ηv(t)
]}

P
�

(x v t |xavata). (20.313)

We now take the noise average (18.325) with the distribution

P [�]=exp
{

−1

2

∫

dt
[

η2(t)+η′2(t)
]

}

=exp

{

− 1

1−ρ2
∫

dt
[

η2(t)+η2v(t)−2ρ ηηv
]

}

.

(20.314)
Applying the rules (18.385) and (18.386), we may replace η(t) and ηv(t) on the
right-hand side of (20.313):

η(t) → −δ/δη(t) − ρ δ/δηv(t) (20.315)

ηv(t) → −ρ δ/δη(t) − δ/δηv(t). (20.316)

The functional derivatives are evaluated by analogy with (18.388) as

δ

δη(t′)
δ(xη(t) −x)δ(vηv(t) −v) = −

[

δxη(t)

δη(t′)
∂x +

δvηv(t)

δη(t′)
∂v

]

δ(xη(t) −x)δ(vηv(t) −v),

(20.317)

with a similar equation for δ/δηv(t). Under the above-made assumption that
√

v(t)

lies before ηv(t), we find the evolution equation

∂tP (x v t |xavata) = −Ĥ P (x v t |xavata), (20.318)

where Ĥ is the Hamiltonian operator

Ĥ = −1

2
∂2x v −

1

2
∂x v −

ε2

2
∂2v v − γ∂v(v − v̄) − ρε∂x∂v v. (20.319)

The probability distribution can thus be written as a path integral

P (xbvbtb|xavata) =
∫

Dx
∫ Dp

2π

∫

Dv
∫ Dpv

2π

× exp
{
∫ tb

ta
dt [i(pẋ + pvv̇) −H(p, pv, v)]

}

, (20.320)

with the Hamiltonian

H(p, pv, v)=
p2

2
v−i1

2
pv +ε2

p2v
2
v−iγpv(v − v̄)+ρε ppv v−

3ε2

4
ipv−

γ

2
− i

2
ρǫp. (20.321)

The last two terms arise from the fact that the order of the operators in Ĥ obtained
from the path integral is always symmetric in v and pv, such that the order in
Eq. (20.319) is reached only after the replacement of pvv → (1/2){p̂v, v} = p̂vv+ i/2
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in the fourth and fifth terms of (20.321). Recall the discussions in Sections 10.5,
11.3, and Subsection 18.9.2.

The third-last term in (20.321) is present to ensure the appearance of the operator
∂2v v in (20.319) with no extra ∂v due to operator ordering. The term p2vv in (20.321)
can be understood as a kinetic term gµνp

µpν in a one-dimensional Riemannian space
with a metric gµν = δµν/v. According to Subsection 11.1.1, this turns into the
Laplace-Beltrami operator ∆ =

√
v∂2v

√
v∂v= v∂2v + 1

2
∂v= ∂2vv − 3

2
∂v. The extra ∂v

is canceled by the third-last term in (20.319).
The stochastic differential equation (20.308) can, in principle, lead to negative

variances. Since this would be unphysical, we must guarantee that this does not
happen. The condition for this is that the fluctuation width of the variance is
sufficiently small, satisfying

ε2

2γv̄
≤ 1. (20.322)

Then an initially positive v(t) will always stay positive. Indeed, consider the partial
differential equation (20.318) for v = 0:

(∂t + α∂v)P (x v t |xavata) = (γ + ρε∂x)P (x v t |xavata), (20.323)

where α ≡ γv̄ − ε2/2. It is solved by some function

P (x v t |xavata) = f(v − αt, x), (20.324)

which shows that a nonvanishing f for positive v can never propagate to negative-v.9

The time dependence of the variance is given by the integral

P (v t |vata) ≡
∫

dxP (x v t |xavata). (20.325)

It satisfies the equation

∂

∂t
P (v t |vata) =

[

ε2

2
∂2vv + γ∂v(v − v̄)

]

P (v t |vata), (20.326)

which follows from (20.318) by integration over x. After a long time, the solution
becomes stationary and reads

P ∗(v) =
µν

Γ(ν)
vν−1e−µv, where µ ≡ 2γ

ε2
, ν ≡ µv̄. (20.327)

This is the Gamma distribution found in Fig. 20.3. Hence the pair of stochastic
differential equations (20.306) and (20.308) produces precisely the type of volatility
fluctuations observed in the previous financial data.

The maximum of P ∗(v) lies slightly below v̄ at vmax = (ν − 1)/µ = v̄ − ε2/2γ
[recall (20.72)]. If we define the w of P ∗(v) by the curvature at the maximum, we

9See also p. 67 in the textbook [8].
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find w =
√

vmaxε2/2γ. The shape of P ∗(v) is characterized by the dimensionless
ratio

vmax

w
=

√

2γv̄

ε2
− 1. (20.328)

The size of the fluctuations of the variance are restricted by the condition (20.322)
which guarantees positive v(t) for all times. The distribution (20.327) is plotted in
Fig. 20.21. As a cross check, we go to the limit ε2/2γv̄ → 0 where the fluctuations
of the variance are frozen out. The ratio vmax/w diverges and the distribution P ∗(v)
tends to δ(v − v̄), as expected.
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Figure 20.21 Stationary distribution (20.327) of variances for parameters of fits to the

Dow-Jones data in Fig. 20.22 listed in Table 20.1. Compare with Fig. 20.3.

20.4.3 Solution of Fokker-Planck Equation

Since the Hamiltonian operator (20.319) does not depend explicitly on x, we can
take advantage of translational invariance and write P (x v t |xavata) as a Fourier
integral

P (x v t |xavata) =
∫

dp

2π
eip(x−xa) P̄p(v t |vata). (20.329)

The fixed-momentum probability satisfies the Fokker-Planck equation

∂tP̄p(v t |vata)=

[

γ
∂

∂v
(v−v̄) − p2−ip

2
v − iρεp

∂

∂v
v − ε2

2

∂2

∂v2
v

]

P̄p(v t |vata). (20.330)

This partial differential equation is of second-order. The variable v occurs only
linearly. It is therefore convenient to go to Fourier space also in v and write

P̃p(v t |vata) =
∫

dpv
2π

eipvv P̃p(pv t |vata), (20.331)
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which solves the first-order partial differential equation
[

∂

∂t
+

(

Γpv +
iε2

2
p2v +

ip2 + p

2

)

∂

∂pv

]

P̃p(pv t |vata) = −iγv̄ pv P̃p(pv t |vata), (20.332)

where we have used the abbreviation

Γ(p) ≡ γ + iρεp. (20.333)

Since the initial condition for P̄p(v t |vata) is δ(v−va), the Fourier transform has the
initial condition

P̃p(pv ta|vata) = e−ipvva . (20.334)

The solution of the first-order partial differential equation (20.332) is found by the
method of characteristics [9]:

P̃p(pv t|vata) = exp
[

−ip̃v(ta)va − iγv̄
∫ t

ta
dt′ p̃v(t

′)
]

, (20.335)

where the function p̃v(t) is the solution of the characteristic differential equation

dp̃v(t)

dt
= Γ(p)p̃v(t) +

iε2

2
p̃2v(t) +

i

2
(p2 − ip), (20.336)

with the boundary condition p̃v(tb) = pv. The differential equation is of the Riccati
type with constant coefficients [10], and its solution is

p̃v(t) = −i2Ω(p)

ε2
1

ζ(p, pv)eΩ(p)(tb−t) − 1
+ i

Γ(p) − Ω(p)

ε2
, (20.337)

where we introduced the complex frequency

Ω(p) =
√

Γ2(p) + ε2(p2 − ip), (20.338)

and the coefficient are

ζ(p, pv) = 1 − i
2Ω(p)

ε2pv − i[Γ(p) − Ω(p)]
. (20.339)

Taking the Fourier transform we obtain the solution of the original Fokker-Planck
equation (20.318):

P (x v t |xavata) =
∫ ∫ +∞

−∞

dp

2π

dpv
2π

eipx+ipvv

× exp

{

−ip̃v(ta)va +
γv̄[Γ(p)−Ω(p)]

ε2
∆t− 2γv̄

ε2
ln
ζ(p, pv)−e−Ω(p)∆t

ζ(p, pv) − 1

}

, (20.340)

where ∆t ≡ t− ta is the time interval.
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20.4.4 Pure x-Distribution

We now show that upon averaging over the variance we obtain a non-Gaussian
distribution of x with semi-heavy tails of the type observed in actual financial data.
Thus we go over to the probability distribution

P (x t |xavata) ≡
∫ +∞

−∞
dv P (x v t |xavata), (20.341)

where the final variable v is integrated out. The integration of (20.340) over v
generates the delta-function δ(pv) which enforces pv = 0. Thus we obtain

P (x t |xavata) =
∫ +∞

−∞

dp

2π
eipx−

p2−ip
Γ+Ωcoth (Ω∆t/2)

va+
γΓv̄

ε2
∆t− 2γv̄

ε2
ln(cosh Ω∆t

2
+ Γ

Ω
sinh Ω∆t

2 ), (20.342)

where we have omitted the arguments of Γ(p) and Ω(p), for brevity. As a cross
check of this result we consider the special case ε = 0 where the time evolution of
the variance is deterministic:

v(t) = v̄ + (va − v̄)e−γ∆t. (20.343)

Performing the integral over p in Eq. (20.342) we obtain

P (x t |xatava) =
1

√

2π(t− ta)v(t)
exp

{

− [x + v(t)(t− ta)/2]2

2v(t)

}

, (20.344)

where v(t) denotes the time-averaged variance

v(t) ≡ 1

∆t

∫ t

ta
dt′ v(t′). (20.345)

The distribution becomes Gaussian in this limit. The same result could, of course,
have been obtained directly from the stochastic differential equation (20.306).

The result (20.342) cannot be compared directly with financial time series data,
because it depends on the unknown initial variance va. Let us assume that va has
initially a stationary probability distribution P ∗(va) of Eq. (20.327).10 Then we
evaluate the probability distribution P (x t |xata) by averaging (20.342) over va with
the weight P ∗(va):

P (x t |xata) =
∫ ∞

0
dva P

∗(va)P (x t |xatava). (20.346)

The final result has the Fourier representation

P (x t |xata) =
∫ +∞

−∞

dp

2π
eip∆x−∆tH(p,∆t), (20.347)

10For a determination of the empirical probability distribution of volatilities for the S&P 500
index see Ref. [2].
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where ∆x ≡ x− xa and H(p,∆t) is the Hamiltonian

H(p,∆t)=−γΓ(p)v̄

ε2
+

2γv̄

ε2∆t
ln

[

cosh
Ω(p)∆t

2
+

Ω2(p)−Γ2(p)+2γΓ(p)

2γΩ(p)
sinh

Ω(p)∆t

2

]

.

(20.348)

In the absence of correlations between the fluctuations of stock price and variance,
i.e. for ρ = 0, the second term in the right-hand side of Eq. (20.348) vanishes. The
simplified result is discussed in Appendix 20B.

The general Hamiltonian (20.348) vanishes for p = 0. This guarantees the unit
normalization of the distribution (20.347) at all times:

∫

dxP (x t |xata) = 1. The
first expansion coefficient of H(p,∆t) in powers of p is [recall the definition in
Eq. (20.54)]

c1(∆t) = − v̄
2
− ρ

ǫ∆t

(

1 − e−γ∆t
)

. (20.349)

We have added the argument ∆t to emphasize the time dependence. By adding
ic1(∆t)p to H(p,∆t), we obtain the Hamiltonian H̄(p,∆t) which starts out quadrat-
ically in p in accordance with our general definition in Eq. (20.65):

H̄(p,∆t) ≡ H(p,∆t) − ic1(∆t)p = H(p,∆t) + i
[

v̄

2
+

ρ

ǫ∆t

(

1 − e−γ∆t
)

]

p. (20.350)

The distribution P (x t |xata) is real since ReH is an even function and ImH is an
odd function of p.

In general, the integral in (20.347) must be calculated numerically. The inter-
esting limit regimes ∆t ≫ 1 and x≫ 1, however, can be understood analytically.
These will be treated in Subsections 20.4.5 and 20.4.6. In Fig. 20.22, the calcu-
lated distributions P (x t |xata) with increasing time intervals are displayed as solid
curves and compared with the corresponding Dow-Jones data indicated by dots.
The technical details of the data analysis are explained in Appendix 20C. The fig-
ure demonstrates that with a fixed set of the five parameters γ, v̄, ε, µ, and ρ, the
distribution (20.347) with (20.348) reproduce extremely well the data for all time
scales ∆t. In the logarithmic plot the far tails of the distributions fall off linearly.

20.4.5 Long-Time Behavior

According to Eq. (20.308), the variance approaches the equilibrium value v̄ within
the characteristic relaxation time 1/γ. Let us study the limit in which the time
interval ∆t is much longer than the relaxation time: γ∆t ≫ 1. According to
Eqs. (20.333) and (20.338), this condition also implies that Ω(p)∆t ≫ 1. Then
Eq. (20.348) reduces to

H(p,∆t) ≈ γv̄

ε2
[Ω(p) − Γ(p)]. (20.351)
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Figure 20.22 Probability distribution of logarithm of stock price for different time scales

(from Ref. [79]). For a better comparison of the shapes, the data points for increasing ∆t

are shifted upwards by a factor 10 each. The unshifted positions are shown in the insert.

The Fourier integral (20.347) can easily be performed after changing the variable of
integration to

p = C p̃ + ip0, (20.352)

where

C ≡ ω0

ε
√

1 − ρ2
, ω0 ≡

√

γ2 + ε2(1 − ρ2)p20, p0 ≡
ε− 2ργ

2ε(1 − ρ2)
. (20.353)

Then the integral (20.347) takes the form

P (x t |xata) =
C

π
e−p0∆x+Λ∆t

∫ ∞

0
dp̃ cos(Ap̃)e−B

√
1+p̃2, (20.354)

where

A = C
(

∆x + ρ
γv̄

ε
∆t
)

, B =
γv̄ω0

ε2
∆t, (20.355)

and

Λ =
γv̄

2ε2
2γ − ρε

1 − ρ2
. (20.356)

The integral in (20.354) is equal to11 BK1(
√
A2 +B2)/

√
A2 +B2, where K1(y) is a

modified Bessel function, such that the probability distribution (20.347) for γ∆t≫ 1
can be represented in the scaling form

P (x t |xata) = N(∆t) e−p0∆xF ∗(y), F ∗(y) = K1(y)/y, (20.357)

11See I.S. Gradshteyn and I.M. Ryzhik, op. cit., Formula 3.914.
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with the argument

y ≡
√
A2 +B2 =

ω0

ε

√

√

√

√

(∆x + ργv̄∆t/ε)2

1 − ρ2
+
(

γv̄∆t

ε

)2

, (20.358)

and the time-dependent normalization factor

N(∆t) =
ω2
0γv̄

πε3
√

1 − ρ2
∆t eΛ∆t. (20.359)

Thus, up to the factors N(∆t) and e−p0∆x, the dependence of P (x t |xata) on the
arguments ∆x and ∆t is given by the function F ∗(y) of the single scaling argument
y. When plotted as a function of y, the data for different ∆x and ∆t should collapse
on the single universal curve F ∗(y). This does indeed happen as illustrated in
Fig. 20.23, where the Dow-Jones data for different time differences ∆t follows the
curve F ∗(y) for seven decades.
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Figure 20.23 Renormalized distribution function P (x t |xata)ep0∆x/N(∆t) plotted as a

function of the scaling argument y defined in Eq. (20.358). The solid curve shows the

universal function F ∗(y) = K1(y)/y (from Ref. [79]).

In the limit y ≫ 1, we can use the asymptotic expression K1(y) ≈ e−y
√

π/2y
and find the asymptotic behavior

ln
P (x t |xata)
N(∆t)

≈ −p0∆x− y. (20.360)

Let us examine this expression for large and small |∆x|. In the first case |∆x| ≫
γv̄∆t/ε, and Eq. (20.358) shows that y ≈ ω0|∆x|/ε

√
1 − ρ2, so that (20.360) be-

comes

ln
P (x t |xata)
N(∆t)

≈ −p0∆x− c|∆x|. (20.361)
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Figure 20.24 Solid curve showing slope −d log P (x t |xata)/dx of exponential tail of

distribution as a function of time. The dots indicate the analytic short-time approximation

(20.369) to the curve (from [79]).

This shows that the probability distribution P (x t |xata) has exponential tails
(20.361) for large |∆x|. Note that in the present limit γ∆t ≫ 1 the slopes of
the exponential tails are independent of ∆t. The presence of p0 causes the slopes
for positive and negative ∆x to be different, so that the distribution P (x t |xata) is
not up-down symmetric with respect to price changes. From the definition of p0 in
Eq. (20.353) we see that this asymmetry increases for a negative correlation ρ < 0
between stock price and variance.

In the second case |∆x| ≪ γv̄∆t/ε, by Taylor-expanding y in (20.358) near its
minimum and substituting the result into (20.360), we obtain

ln
P (x t |xata)
N ′(∆t)

≈ −p0∆x−
ω0(∆x + ργv̄∆t/ε)2

2(1 − ρ2)γv̄∆t
, (20.362)

where N ′(∆t) = N(∆t) exp(−ω0γv̄∆t/ε2). Thus, for small |∆x|, the probability
distribution P (x t |xata) is a Gaussian, whose width

σ2 =
(1 − ρ2)γv̄

ω0

∆t (20.363)

grows linearly with ∆t. The maximum of P (x t |xata) lies at

∆xm(t) = ∆rS∆t, with ∆rS ≡ − γv̄

2ω0

[

1 + 2
ρ(ω0 − γ)

ε

]

. (20.364)

The position moves with a constant rate ∆rS which adds to the average growth rate
rS of S(t) removed at the beginning of the discussion. The true final growth rate of
S(t) is r̄S = rS + ∆rS.
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The above discussion explains the property of the data in Fig. 20.22 that the
logarithmic plots of P (x t |xata) are linear in the tails and quadratic near the peaks
with the parameters specified in Eqs. (20.361) and (20.362).

As time progresses, the distribution broadens in accordance with the scaling form
(20.357) and (20.358). In the limit ∆t → ∞, the asymptotic expression (20.362) is
valid for all ∆x and the distribution becomes a pure Gaussian, as required by the
central limit theorem [22].

It is interesting to quantify the fraction f(∆t) of the total probability contained in
the Gaussian portion of the curve. This fraction is plotted in Fig. 20.25. The precise
way of defining and calculating the fraction f(∆t) is explained in Appendix 20B.
The inset in Fig. 20.25 illustrates that the time dependence of the probability density
at the maximum xm approaches ∆t−1/2 for large time, a characteristic property of
evolution of Gaussian distributions.
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Figure 20.25 Fraction f(∆t) of total probability contained in Gaussian part of

P (x t |xata) as function of time interval ∆t. The inset shows the time dependence of the

probability density at maximum P (xmt |xata) (points), compared with the falloff ∝ ∆t−1/2

of a Gaussian distribution (solid curve).

20.4.6 Tail Behavior for all Times

For large |∆x|, the integrand in (20.347) oscillates rapidly as a function of p, so that
the integral can be evaluated in the saddle point approximation of Section 4.2. As
in the evaluation of the integral (17.9) we shift the contour of integration in the
complex p-plane until it passes through the leading saddle point of the exponent
ip∆x − ∆tH(p,∆t). To determine its position we note that the function H(p,∆t)
in Eq. (20.348) has singularities in the complex p-plane, where the argument of the
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dicate the limiting positions ±iq±∗ of the singularities for γ∆t ≫ 1. The cross shows the

saddle point ps located in the upper half-plane for ∆x > 0. The dashed line is the shifted

contour of integration to pass through the saddle point ps.

logarithm vanish. These points are located on the imaginary p-axis and are shown
by dots in Fig. 20.26. The relevant singularities are those lying closest to the real
axis. They are located at the points p+1 and p−1 , where the argument of the second
logarithm in (20.348) vanishes. Near these zeros, we can approximate H(p,∆t) by
the singular term:

H̄(p,∆t) ≈ 2γv̄

ε2∆t
log(p− p±1 ). (20.365)

With this approximation, the position of the saddle point ps = ps(∆x) is determined
by the equation

i∆x = ∆t
dH(p,∆t)

dp

∣

∣

∣

∣

∣

p=ps

≈ 2γv̄

ε2
×



















1

ps − p+1
, ∆x > 0,

1

ps − p−1
, ∆x < 0.

(20.366)

The solutions are indicated in Fig. 20.26 by the cross. The approximation (20.366)
is obviously applicable since for a large |∆x| satisfying the condition |∆xp±1 | ≫
γv̄/ε2, the saddle point ps is very close to one of the singularities. Inserting the
approximation (20.366) into the Fourier integral (20.347), we obtain the asymptotic
expression for the probability distribution

P (x t |xata) ∼
{

e−∆x q+t , ∆x > 0,

e−|∆x| q−t , ∆x < 0,
(20.367)
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where q±t ≡ ∓ip±1 (t) are real and positive. Thus the tails of the probability dis-
tribution P (x t |xata) for large |∆x| are exponential for all times t. The slopes of
the logarithmic plots in the tails q± ≡ ∓ d log(x t |xata)/dx are determined by the
positions p±1 of the singularities closest to the real axis.

These positions p±1 depend on the time interval ∆t. For times much shorter
than the relaxation time (γt ≪ 1), the singularities lie far away from the real axis.
As time increases, the singularities approach the real axis. For times much longer
than the relaxation time (γ∆t ≫ 1), the singularities approach the limiting points
p±1 → ±iq±∗ , marked in Fig. 20.26 by circled crosses. The limiting values are

q∗
± = ±p0 +

ω0

ε
√

1 − ρ2
for γ∆t ≫ 1. (20.368)

The slopes q±(∆t) approach these limiting slopes monotonously from above. The
behavior is shown in Fig. 20.24. The slopes (20.368) are of course in agreement with
Eq. (20.361) in the limit γ∆t ≫ 1. In the opposite limit of short time (γ∆t ≪ 1),
we find the analytic time behavior

q±(∆t) ≈ ±p0 +

√

p20 +
4γ

ε2(1 − ρ2)∆t
for γ∆t≪ 1. (20.369)

This approximation is shown in Fig. 20.24 as dots.

20.4.7 Path Integral Calculation

Instead of solving the Fokker-Planck equation (20.330) we may also study directly
the path integral for the probability distribution using the Hamiltonian (20.321).
Note the extra two terms at the end in comparison with the operator expression
(20.319). They account for the symmetric operator order implied by the path inte-
gral. The distribution P̄p(vb, tb|vata) at fixed momentum introduced in Eq. (20.329)
has the path integral representation

P̄p(vb, tb|vata) =
∫

Dv Dpv
2π

eAp[pv,v], (20.370)

with the action

Ap[pv, v] =
∫ tb

ta
dt [ipvv̇ −H (p, pv, v)] . (20.371)

The path integral (20.370) sums over all paths pv(t) and v(t) with the boundary
conditions v(ta) = va and v(tb) = vb.

It is convenient to integrate the first term in the (20.371) by parts, and to
separate H (p, pv, v) into a v-independent part iγv̄pv − iγ/2 − iρǫp/2 and a linear
term [∂H (p, pv, v) /∂v]v. Thus we write

Ap[pv, v] = i[pv(tb)vb − pv(ta)va] − iγv̄
∫ tb

ta
dt pv(t)(tb − ta)

−
∫ tb

ta
dt

[

iṗv(t) +
∂H

∂v(t)

]

v(t). (20.372)
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Since the path v(t) appears linearly in this expression, we can integrate it out to
obtain a delta-functional δ [pv(t) − p̃v(t)], where p̃v(t) is the solution of the Hamilton
equation ṗv(t) = i∂H/∂v(t). This, however, coincides exactly with the characteristic
differential equation (20.336) which was solved by Eq. (20.337) with a boundary con-
dition p̃v(tb) = pv. Taking the path integral over Dpv removes the delta-functional,
and we find

P̄p(vb, tb|vata) =

+∞
∫

−∞

dpv
2π

J ei[pvv−p̃v(ta)va]−iγθ
∫ t

0
dt p̃v(t)+(γ−iρǫp)(tb−ta)/2, (20.373)

where J denotes the Jacobian

J = Det−1

(

i∂t +
∂2H(p, pv, v)

∂pv∂v

)

. (20.374)

From (20.321) we see that

∂2H(p, pv, v)

∂pv∂v
= −iγ + ρǫp. (20.375)

According to Formula (18.254), this is equal to

J = e−(γ−iρǫp)(tb−ta)/2,, (20.376)

thus canceling the last term in the exponent of the integrand in (20.373). The result
for P̄p(vb, tb|vata) is therefore the same as the one obtained from the Fokker-Planck
equation in Eq. (20.331) with the Fourier transform (20.335).

20.4.8 Natural Martingale Distribution

Let us calculate the natural martingales associated with the Hamiltonian (20.348).
Reinserting the initially removed drift rS, the total Hamiltonian reads

Htot(p,∆t) = H(p,∆t) + irSp. (20.377)

To construct the martingale according to the rule of Subsection 20.1.11, we need to
know the value of H̄(p,∆t) at the momentum p = i. The expression is somewhat
complicated, but the analysis of the Dow-Jones data in Appendix 20C shows that
the parameter ρ determining the strength of correlations between the noise functions
η(t) and ηv(t) [see (20.310)] is small. It is therefore sufficient to find only the first
two terms of the Taylor series of H(i,∆t) in powers of ρ:

H(i,∆t) ≈ v̄

ǫ∆t

(

1−e−γ∆t
)

ρ+
v̄

4γ∆t

[

3 − 2e−γ∆t (1+2γ∆t) − e−2γ∆t
]

ρ2. (20.378)

From this we obtain

H̄(i,∆t) = H(i,∆t) + c1(∆t). (20.379)
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The analog of the martingale (20.291) is given by a Fourier integral (20.292) with
Hrx(p) replaced by Htot

rx(∆t)(p,∆t) of Eq. (20.350):

P (M,rS)(xbtb|xata) = e−r(∆t)∆t
∫ ∞

−∞

dp

2π
exp

[

ip(xb − xa) − ∆tHtot
rx(∆t)(p,∆t)

]

.(20.380)

The linear term irx(∆t)p in Htot
rx(∆t)(p,∆t) is now time-dependent:

rx(∆t) = rS + c1(∆t) + H̄(i,∆t). (20.381)

This makes the rate in the exponential prefactor, by which the distribution becomes
a martingale distribution, a time-dependent quantity:

r(∆t) = rS + c1(∆t). (20.382)

By analogy with (20.293), there exists again an entire family of natural martingales,
which is obtained by replacing rS by an arbitrary growth rate r in which case r(∆t)
becomes equal to r + c1(∆t).

20.5 Time Series

True market prices are not continuous functions of time but recorded in discrete time
intervals. For stocks which have a low turnover, only the daily prices are recorded.
For others which are traded in large amounts, the prices change by the minute.
They are listed as time series S(tn). In the year 2003, Robert Engle received the
Nobel prize for his description of time series with the help of the so called ARCH

models (autoregressive conditional heteroskedasticity model) and its generalization
proposed by Tim Bollerslev [85], the GARCH models. The first contains an inte-
ger parameter q and is defined by a discrete modification of the pair of stochastic
differential equations (20.306) and (20.308) for log-return and variance

x(tn) =
√

v(tn−1)η(tn), v(tn) = v0 +
q
∑

k=1

αk(tn−k)x2(tn−k), (20.383)

with a white noise variable η(tn). The drift is omitted so that 〈x(tn)〉 = 0. This
is called the ARCH(q) model. The second is a generalization of this in which the
equation for the variance contains extra terms involving the past p values of σ2:

v(tn) = v0 +
q
∑

k=1

αk(tn−k)x
2(tn−k) +

p
∑

k=1

βk(tn−k)v(tn−k). (20.384)

The ARCH(1) process has the time-independent expectations of variance and
kurtosis

σ2 = 〈v(tn)〉 =
v0

1 − α1
, κ =

〈x4(tn)〉c
〈x2(tn)〉2c

=
6α2

1

1 − 3α2
1

. (20.385)

For the GARCH(1,1) process, these quantities are

σ2 = 〈v(tn)〉 =
v0

1 − α1 − β1
, κ =

〈x4(tn)〉c
〈x2(tn)〉2c

=
6α2

1

1 − 3α2
1 − 2α1β1 − β2

1

. (20.386)
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Figure 20.27 Left: Comparison of GARCH(1,1) process with v0 = 2.3 × 10−5, α1 =

0.091, β = 0.9 with S&P 500 index (minute data). Right: Comparison of GARCH(1,1),

Heston model, and Gaussian of the same σ with daily market data. Parameters of GARCH

process are v0 = 7.7 × 10−6, α1 = 0.07906, β1 = 0.90501 and of Heston model γ =

4.5 × 10−2, v̄ = 8.62 × 10−8, rS = 5.67 × 10−4, ε = 10.3 × 10−3 [79, 81, 82].

20.6 Spectral Decomposition of Power Behaviors

Plots of the log return curves taken over short time intervals reveal a richer structure
than the simple model functions discussed so far. In fact, it seems reasonable to
distinguish different types of stocks according to the characters of the investors. For
instance, the bubble of the computer stocks was partly caused by quite inexperienced
people who were not investing mainly to develop an industry but who wanted to earn
fast money. There was, on the other hand also a substantial portion of institutional
investors who poured in money more steadily. It appears that one should distinguish
the sources of noise coming from the different groups of investors.

We therefore improve the stochastic differential equation (20.4) by extending it
to

ẋ(t) = rx +
∑

λ

ηλ(t), (20.387)

where the sum runs over different groups of investors, each producing a different a
noise ηλ(t) with Lévy distributions falling off with different powers |x|−1−λi . Their
probability distributions are

Pλ[ηλ] = exp
[

−
∫ tb

ta
dt H̃λ(ηλ(t))

]

=
∫ Dp

2π
exp

{
∫ tb

ta
dt [ip(t)ηλ(t) −Hλ(p(t))]

}

,

(20.388)
with a Hamiltonian [compare (20.10)]

Hλ(p) ≡ σ2
λ |p|λ
2

. (20.389)

The probability (20.144) of returns becomes now

P (xbtb|xata)=
∏

λ

{
∫

Dηλ
∫

Dx exp
[

−
∫ tb

ta
dt H̃λ(ηλ(t))

]}

δ[ẋ−
∑

λ

ηλ]. (20.390)
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If we insert here a Fourier representation of the δ-functional, we obtain

P (xbtb|xata) =
∫ ∞

−∞

Dp
2π

∏

λ

[
∫

Dηλ
]
∫

Dx e
∫ tb
ta

dt [ip(t)ẋ(t)−H̃λ(ηλ(t))]e
−i
∑

λ

∫

∞

−∞
dt p(t)ηλ(t).

(20.391)
Performing the path integrals over ηλ(t), this becomes

P (xbtb|xata) =
∫ ∞

−∞

Dp
2π

∫

Dx e
∫ tb
ta

dt [ip(t)ẋ(t)−Hλ(p)], (20.392)

where the Hamiltonian is the sum of the group Hamiltonians

H(p) ≡
∑

λ

Hλ(p). (20.393)

The continuous generalization of this is

H(p) = H(|p|) ≡
∫ ∞

0
dλσ2

λ|p|λ. (20.394)

The spectral function σ2
λ must be extracted from the data by forming the integral

σ2
λ =

∫ i∞

−i∞

d log |p|
2πi

p−λH(p). (20.395)

20.7 Option Pricing

Historically, the most important use of path integrals in financial markets was made
in the context of determining a fair price of financial derivatives, in particular
options.12Options are an ancient financial tool. They are used for speculative pur-
poses or for hedging major market transactions against unexpected changes in the
market environment. These can sometimes produce dramatic price explosions or
erosions, and options are supposed to prevent the destruction of large amounts of
capital. Ancient Romans, Grecians, and Phoenicians traded options against outgo-
ing cargos from their local seaports. In financial markets, options are contracted
between two parties in which one party has the right but not the obligation to do
something, usually to buy or sell some underlying asset. Having rights without obli-
gations has a value, so option holders must pay a price for acquiring them. The
price depends on the value of the associated asset, which is why they are also called
derivative assets or briefly derivatives . Call options are contracts giving the option
holder the right to buy something, while put options entitle the holder to sell some-
thing. The price of an option is called premium. Usually, options are associated
with stock, bonds, or commodities like oil, metals or other raw materials. In the
sequel we shall consider call options on stocks, to be specific.

Modern option pricing techniques have their roots in early work by Charles
Castelli who published in 1877 a book entitled The Theory of Options in Stocks

12An introduction is found on the site http://bradley.bradley.edu/~arr/bsm/model.html.
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and Shares . This book presented an introduction to the hedging and speculation
aspects of options. Twenty three years later, Louis Bachelier offered the earliest
known analytical valuation for options in his dissertation at the Sorbonne [86]. Re-
markably, Bachelier discovered the treatment of stochastic phenomena five years
before Einstein’s related but much more famous work on Brownian motion [87], and
twenty-three years before Wiener’s mathematical development [88]. The stochastic
differential equations considered by him still had an important defect of allowing
for negative security prices, and for option prices exceeding the price of the under-
lying asset. Bachelier’s work was continued by Paul Samuelson, who wrote in 1955
an unpublished paper entitled Brownian Motion in the Stock Market . During that
same year, Richard Kruizenga, one of Samuelson’s students, cited Bachelier’s work
in his dissertation Put and Call Options: A Theoretical and Market Analysis . In
1962, a dissertation by A. James Boness entitled A Theory and Measurement of

Stock Option Value developed a more satisfactory pricing model which was further
improved by Fischer Black and Myron Scholes. In 1973 they published their famous
Black and Scholes Model [89] which, together with the improvements introduced by
Robert Merton, earned them the Nobel prize in 1997.13

As discussed before, the Gaussian distribution severely underestimates the prob-
ability of large jumps in asset prices and this was the main reason for the catastrophic
failure in the early fall of 1998 of the hedge fund Long Term Capital Management ,
which had Scholes and Merton on the advisory board (and as shareholders). The
fund contained derivatives with a notional value of 1,250 Billion US$. The fund
collected 2% for administrative expenses and 25% of the profits, and was initially
extremely profitable. It offered its shareholders returns of 42.8% in 1995, 40.8%
in 1996, and 17.1% even in the disastrous year of the Asian crisis 1997. But in
September 1998, after mistakenly gambling on a convergence in interest rates, it
almost went bankrupt. A number of renowned international banks and Wall Street
institutions had to bail it out with 3.5 Billion US$ to avoid a chain reaction of credit
failures.

In spite of this failure, the simple model is still being used today for a rough but
fast orientation on the fairness of an option price.

20.7.1 Black-Scholes Option Pricing Model

In the early seventies, Fischer Black was working on a valuation model for stock
warrants and observed that his formulas resembled very much the well-known equa-
tions for heat transfer. Soon after this, Myron Scholes joined Black and together
they discovered an approximate option pricing model which is still of wide use.

The Black and Scholes Model is based on the following assumptions:

1. The returns are normally distributed.

The shortcomings of this assumption have been discussed above in Sec-
tion 20.1. The appropriate improvement of the model will be developed below.

13For F. Black the prize came too late — he had died two years earlier.
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2. Markets are efficient.

This assumption implies that the market operates continuously with share
prices following a continuous stochastic process without memory. It also im-
plies that different markets have the same asset prices.

This is not quite true. Different markets do in general have slightly different
prices. Their differences are kept small by the existence of arbitrage dealers.
There also exist correlations over a short time scale which make it possible, in
principle, to profit without risk from the so-called statistical arbitrage. This
possibility is, however, strongly limited by transaction fees.

3. No commissions are charged.

This assumption is not satisfied. Usually, market participants have to pay a
commission to buy or sell assets. Even floor traders pay some kind of fee,
although this is usually very small. The fees payed by individual investors is
more substantial and can distort the output of the model.

4. Interest rates remain constant and known.

The Black and Scholes model assumes the existence of a riskfree interest rate

to represent this constant and known rate. In reality there is no such thing
as the riskfree rate. As an approximation, one uses the discount rate on U.S.
Government Treasury Bills with 30 days left until maturity. During periods of
rapidly changing interest rates, these 30 day rates are often subject to change,
thereby violating one of the assumptions of the model.

5. The stock pays no dividends during the option’s life.

Most companies pay dividends to their share holders, so this is a limitation
to the model since higher dividends lead to lower call premiums. There is,
however, a simple possibility of adjusting the model to the real situation by
subtracting the discounted value of a future dividend from the stock price.

6. European exercise terms are used.

European exercise terms imply the exercise of an option only on the expiration
date. This is in contrast to the American exercise terms which allow for this
at any time during the life of the option. This greater flexibility makes an
American option more valuable than the European one.

The difference is, however, not dramatic in praxis because very few calls are
ever exercised before the last few days of their life, since an early exercise
means giving away the remaining time value on the call. Different exercise
times towards the end of the life of a call are irrelevant since the remaining
time value is very small and the intrinsic value has a small time dependence,
barring a dramatic event right before expiration date.
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Since 1973, the original Black and Scholes Option Pricing Model has been im-
proved and extended considerably. In the same year, Robert Merton [90] included
the effect of dividends. Three years later, Jonathan Ingersoll relaxed the assumption
of no taxes or transaction costs, and Merton removed the restriction of constant in-
terest rates. In recent years, the model has been generalized to determine the prices
of options with many different properties.

The relevance of path integrals to this field was recognized in 1988 by the theoret-
ical physicist J.W. Dash, who wrote two unpublished papers on the subject entitled
Path Integrals and Options I and II [91]. Since then many theoretical physicists
have entered the field, and papers on this subject have begun appearing on the Los
Alamos server [13, 92, 93].

20.7.2 Evolution Equations of Portfolios with Options

The option price O(t) has larger fluctuations than the associated stock price. It usu-
ally varies with a slope ∂O(S(t), t)/∂S(t) which is commonly denoted by ∆(S(t), t)
and called the Delta of the option. If ∆(S(t), t) depends only weakly on S(t) and
t it is possible, in the ideal case of Gaussian price fluctuations, to guarantee a
steady growth of a portfolio. One merely has to mix a suitable number NS(t)
stocks with NO(t) options and short-term bonds whose number is denoted by NB(t).
As mentioned before, these are typically U.S. Government Treasury Bills with 30
days left to maturity which have only small price fluctuations. The composition
[NS(t), NO(t), NB(t)] is referred to as the strategy of the portfolio manager. The
total wealth has the value

W (t) = NS(t)S(t) +NO(t)O(S, t) +NB(t)B(t). (20.396)

The goal is to make W (t) grow with a smooth exponential curve without fluctuations

Ẇ (t) ≈ rWW (t). (20.397)

As an idealization, the short-term bonds are assumed to grow deterministically
without any fluctuations:

Ḃ(t) ≈ rBB(t). (20.398)

The rate rB is the earlier-introduced riskfree interest rate encountered in true mar-
kets only if there are no events changing excessively the value of short-term bonds.

The existence of arbitrage dealers will ensure that the growth rate rW is equal
to that of the short-term bonds

rW ≈ rB. (20.399)

Otherwise the dealers would change from one investment to the other.
In the decomposition (20.396), the desired growth (20.397) reads

NS(t)Ṡ(t) +NO(t)Ȯ(S, t) +NB(t)Ḃ(t) + ṄS(t)S(t) + ṄO(t)O(S, t) + ṄB(t)B(t)

= rW [NS(t)S(t) +NO(t)O(S, t) +NB(t)B(t)] . (20.400)
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Due to (20.398) and (20.399), the terms containing NB(t) without a dot drop out.
Moreover, if no extra money is inserted into or taken from the system, i.e., if stocks,
options, and bonds are only traded against each other, this does not change the total
wealth, assuming the absence of commissions. This so-called self-financing strategy

is expressed in the equation

ṄS(t)S(t) + ṄO(t)O(S, t) + ṄB(t)B(t) = 0. (20.401)

Thus the growth equation (20.397) translates into

Ẇ (t) = NSṠ +NOȮ +NBḂ = rW (NSS +NOO +NBB) . (20.402)

Due to the equality of the rates rW = rB and Eq. (20.398), the entire contribution
of B(t) cancels, and we obtain

NSṠ +NOȮ = rW (NSS +NOO) . (20.403)

The important observation is now that there exists an optimal ratio between the
number of stocks NS and the number of options NO, which is equal to the negative
slope ∆(S(t), t):

NS(t)

NO(t)
= −∆(S(t), t) = −∂O(S(t), t)

∂S(t)
. (20.404)

Then Eq. (20.403) becomes

NSṠ +NOȮ = NOrW

(

−∂O
∂x

+O

)

. (20.405)

The two terms on the left-hand side are treated as follows: First we use the relation
(20.404) to rewrite

NSṠ = −NO
∂O(S, t)

∂S
Ṡ = −NO

∂O(S, t)

∂x

Ṡ

S
. (20.406)

In the second term on the left-hand side of (20.405), we expand the total time
dependence of the option price in a Taylor series

dO

dt
=

1

dt

[

O(x(t) + ẋ(t) dt, t+ dt) − O(x(t), t)
]

=
∂O

∂t
+
∂O

∂x
ẋ +

1

2

∂2O

∂x2
ẋ2 dt+

1

3!

∂3O

∂x3
ẋ3 dt2 + . . . . (20.407)

We have gone over to the logarithmic stock price variable x(t) rather than S(t)
itself. In financial mathematics, the lowest derivatives on the right-hand side are
all denoted by special Greek symbols. We have already introduced the name Delta
for the slope ∂O/∂S. The curvature Γ ≡ ∂2O/∂S2 = (∂2O/∂x2 − ∂O/∂x)/S2 is
called the Gamma of an option. Another derivative with a standard name is the
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Vega V ≡ ∂O/∂σ. The partial time derivative ∂O/∂t is denoted by Θ. The set of
these quantities is collectively called the Greeks [94].

In general, the expansion (20.407) is carried to arbitrary powers of ẋ as in
(20.273). It is, of course, only an abbreviated notation for the proper expansion
in powers of a stochastic variable to be performed as in Eq. (20.273). After insert-
ing (20.407) and (20.406) on the left-hand side of Eq. (20.405), this becomes

NSṠ +NOȮ=− NO
∂O

∂x

Ṡ

S

+ NO

(

∂O

∂t
+
∂O

∂x
ẋ+

1

2

∂2O

∂x2
ẋ2dt+

1

3!

∂O

∂x
ẋ3dt+ . . .

)

(20.408)

=NO

[

∂O

∂t
+

(

ẋ− Ṡ

S

)

∂O

∂x
+

1

2

∂2O

∂x2
ẋ2dt+

1

3!

∂3O

∂x3
ẋ3dt+ . . .

]

.

Replacing further the left-hand side by the right-hand side of (20.405) we obtain

∂O

∂t
= −rWO −

(

ẋ− Ṡ

S
+ rW

)

∂O

∂x
− 1

2

∂2O

∂x2
ẋ2dt− 1

3!

∂3O

∂x3
ẋ3dt+ . . . = 0. (20.409)

The crucial observation which earned Black and Scholes the Nobel prize is that
for Gaussian fluctuations with a Hamiltonian H(p) = σ2p2/2, the equation (20.409)
becomes very simple. First, due to the Itō relation (20.4), the prefactor of −∂O/∂x
becomes a constant

rW − σ2

2
≡ rxW

, (20.410)

where the notation rxW
is chosen by analogy with rx in the Itō relation (20.5). Thus

there are no more fluctuations in the prefactor of ∂O/∂x.
Moreover, also the fluctuations of all remaining terms

−1

2

∂2O

∂x2
ẋ2 dt− 1

6

∂3O

∂x3
ẋ3 dt2+. . . (20.411)

can be neglected due to the result (18.429) and the estimates (18.431), which make
truncate the expansion (20.411) and make it equal to −(σ2/2) ∂2O/∂x2. Thus
Eq. (20.409) loses its stochastic character, and the fair option price O(x, t) is found
to obey the Fokker-Planck-like differential equation

∂O

∂t
= rWO − rxW

∂O

∂x
− σ2

2

∂2O

∂x2
, (20.412)

At the same time, the total wealth (20.402) loses its stochastic character and
grows with the riskfree rate rW following the deterministic Eq. (20.398). The can-
cellation of the fluctuations is a consequence of choosing the ratio between options
and stocks according to Eq. (20.404). The portfolio is now hedged against fluctua-
tion.
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The Fokker-Planck equation (20.412) can be expressed completely in terms of
the Greeks of the option, using the relation (20.410):

Θ = rWO−rxW
S∆−σ2

2

(

S
∂O

∂S
+S2∂

2O

∂S2

)

= rWO−rWS∆−σ2

2
S2Γ. (20.413)

The strategy to make a portfolio riskfree by balancing the fluctuations of NS

stocks by NO options to satisfy Eq. (20.404) is called Delta-hedging. Hedging is of
course imperfect. Since ∆(S(t), t) depends on the stock price, a Delta hedge requires
frequent re-balancing of the portfolio, even several times per day. After a time span
δt, the Delta has changed by

δ∆ =
d

dt

∂2O(S(t), t)

∂S(t)
δt =

[

∂

∂t

∂O(S(t), t)

∂S(t)
+
∂2O(S(t), t)

∂S(t)2

]

δt =

[

∂Θ

∂S
+ Γ

]

δt.

(20.414)
So one has to readjust the ratio of stocks and options in Eq. (20.404) by

δ
NS

NO
= −δ∆ = −

(

∂Θ

∂S
+ Γ

)

δt. (20.415)

This procedure is called dynamical ∆-hedging . Since buying and selling costs money,
δt cannot be made too small, otherwise dynamical hedging becomes too expensive.

In principle it is possible to buy a third asset to hedge also the curvature Gamma.
This procedure is not so popular, again because of the transaction costs.

For non-Gaussian noise, the differential equation (20.409) is still stochastic due
to remaining fluctuations in the expansion terms (20.411). This is an obstacle to
building a riskfree portfolio with deterministically growing total wealth W (t). As in
Eq. (20.255) we can only derive the equation of motion for the average value

〈

1

2

∂2O

∂x2
ẋ2 dt+

1

6

∂3O

∂x3
ẋ3 dt2+. . .

〉

= −H̄(i∂x)O. (20.416)

Hence a fair option price can only be calculated on the average from the Fokker-
Planck-like differential equation

∂

∂t
〈O〉 =

[

rW − rxW

∂

∂x
+ H̄(i∂x)

]

〈O〉 , (20.417)

where we have defined, by analogy with (20.268) and (20.410), an auxiliary rate
parameter

rxW
≡ rW + H̄(i). (20.418)

However, as pointed out in Subsection 20.2.2, this limitation is not really strin-
gent for discrete short-time data if the tails of the noise distribution are non-Gaussian

H. Kleinert, PATH INTEGRALS
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with semi-heavy tails. Then the higher expansion terms in Eq. (20.411) are sup-
pressed by a small factor σ

√
∆t, and the expectation values in Eqs. (20.416) and

(20.417) can again be dropped approximately.
For Gaussian fluctuations, the Fokker-Planck equation (20.412) can easily be

solved. If we rename t→ ta, and x→ xa, for symmetry reasons, the solution which
starts out, at some time tb, like δ(xa − xb), has the Fourier representation

P (M,rx)(xbtb|xata)=e−rW (tb−ta)
∫ ∞

−∞

dp

2π
eip(xb−xa)e−(σ2p2/2+irxW p)(tb−ta). (20.419)

A convergent integral exists for tb > ta.
For non-Gaussian fluctuations with semi-heavy tails, there exists an approximate

solution whose Fourier representation is

P (M,rx)(xbtb|xata)=e−rW (tb−ta)
∫ ∞

−∞

dp

2π
eip(xb−xa)e−[H̄(p)+irxW p](tb−ta), (20.420)

with H̄(p) of Eq. (20.141).
Recalling the discussion in Section 20.3, this distribution function is recognized

as a member of the equivalent family of martingale distributions (20.293) for the
stock price S(t) = ex(t). It is the particular distribution in which the discount factor
r coincides with the riskfree interest rate rW .

20.7.3 Option Pricing for Gaussian Fluctuations

For Gaussian fluctuations where H(p) = σ2p2/2, the integral in (20.419) can easily
be performed and yields for tb > ta the martingale distribution

P (M,rx)(xbtb|xata) =
e−rW (tb−ta)

√

2πσ2(tb − ta)
exp

{

− [xb − xa− rxW
(tb − ta)]

2

2σ2(tb − ta)

}

. (20.421)

This is the risk-neutral martingale distribution of Eq. (20.289) for r = rx.
This distribution is obviously the solution of the path integral

P (M,rx)(xbtb|xata) = e−rW (tb−ta)
∫

Dx exp
{

− 1

2σ2

∫ tb

ta
[ẋ− rxW

]2
}

. (20.422)

An option is written for a certain strike price E of the stock. The value of the
option at its expiration date tb is given by the difference between the stock price on
expiration date and the strike price:

O(xb, tb) = Θ(xb − xE)(exb − exE), (20.423)

where

xE ≡ logE. (20.424)
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The Heaviside function in (20.423) accounts for the fact that only for Sb > E it is
worthwhile to execute the option.

From (20.423) we calculate the option price at an arbitrary earlier time using
the time evolution probability (20.421)

O(xa, ta) =
∫ ∞

−∞
dxbO(xb, tb)P

(M,rW )(xb tb|xata). (20.425)

Inserting (20.423) we obtain the sum of two terms

O(xa, ta) = OS(xa, ta) −OE(xa, ta), (20.426)

where

OS(xa, ta) =
e−rW (tb−ta)

√

2πσ2(tb−ta)

∫ ∞

xE

dxb e
xb exp

{

− [xb − xa − rxW
(tb − ta)]

2

2σ2(tb − ta)

}

, (20.427)

and

OE(xa, ta) = Ee−rW (tb−ta)
1

√

2πσ2(tb−ta)

∫ ∞

xE

dxb exp

{

− [xb − xa − rxW
(tb − ta)]

2

2σ2(tb − ta)

}

.

(20.428)

In the second integral we set

x− ≡ xa + rxW
(tb − ta) = xa +

(

rW − 1

2
σ2
)

(tb − ta), (20.429)

and obtain

OE(xa, ta) = E
e−rW (tb−ta)

√

2πσ2(tb − ta)

∫ ∞

xE−x−

dxb exp

{

− x2b
2σ2(tb − ta)

}

. (20.430)

After rescaling the integration variable xb → −ξσ√tb − ta, this can be rewritten as

OE(xa, ta) = e−rW (tb−ta)E N(y−), (20.431)

where N(y) is the cumulative Gaussian distribution function

N(y) ≡
∫ y

−∞

dξ√
2π
e−ξ2/2 =

1

2

[

1 + erf

(

y√
2

)]

, (20.432)

evaluated at

y− ≡ x− − xE
√

σ2(tb − ta)
=

log[S(ta)/E] + rxW
(tb − ta)

√

σ2(tb − ta)

=
log[S(ta)/E] +

(

rW − 1
2
σ2
)

(tb − ta)
√

σ2(ta − tb)
. (20.433)
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The integral in the first contribution (20.427) to the option price is found after
completing the exponent in the integrand quadratically as follows:

xb −
[xb − xa − rxW

(tb − ta)]
2

2σ2(tb − ta)

= − [xb − xa − (rxW
+ σ2)(tb − ta)]

2 − 2rWσ
2(tb − ta) − 2xaσ

2(tb − ta)

2σ2(tb − ta)
.(20.434)

Introducing now

x+ ≡ xa +
(

rxW
+ σ2

)

(tb − ta) = xa +
(

rW +
1

2
σ2
)

(tb − ta), (20.435)

and rescaling xb as before, we obtain

OS(xa, ta) = S(ta)N(y+), (20.436)

with

y+ ≡ x+ − xE
√

σ2(ta − tb)
=

log[S(ta)/E] + (rxW
+ σ2) (tb − ta)

√

σ2(ta − tb)

=
log[S(ta)/E] +

(

rW + 1
2
σ2
)

(tb − ta)
√

σ2(ta − tb)
. (20.437)

The combined result

O(xa, ta) = S(ta)N(y+) − e−rW (tb−ta)E N(y−) (20.438)

is the celebrated Black-Scholes formula of option pricing.
In Fig. 20.28 we illustrate how the dependence of the call price on the stock price

varies with different times to expiration tb − ta and with different volatilities σ.
Floor dealers of stock markets use the Black-Scholes formula to judge how ex-

pensive options are, so they can decide whether to buy or to sell them. For a given
riskfree interest rate rW and time to expiration tb − ta, and a set of option, stock,
and strike prices O, S, E, they calculate the volatility from (20.438). The result is
called the implied volatility , and denoted by Σ(x−xE). As typical plot as a function
of x− xE is shown in Fig. 20.29.

If the Black-Scholes formula were exactly valid, the data should lie on a horizontal
line Σ(x − xE) = σ. Instead, they scatter around a parabola which is called the
smile of the option. The smile indicates the presence of a nonzero kurtosis in the
distribution of the returns, as we shall see in Subsection 20.7.8.

It goes without saying that if the integral (20.427) is carried out over the entire
xb axis, it becomes independent of time, due to the martingale character of the
risk-neutral distribution P (M,rW )(xbtb|xata).



1520 20 Path Integrals and Financial Markets

O(S)

S
20 40 60 80

5

10

15

20

25

30

35

40

O(E)

E
20 40 60 80 100

5

10

15

20

25

30

35

O(S)

S
20 40 60 80

5

10

15

20

25

30

35

40

Figure 20.28 Left: Dependence of call price O on stock price S for different times

before expiration date (increasing dash length: 1, 2, 3, 4, 5 months). The parameters are

E = 50 US$, σ = 40%, rW = 6% per month. Right: Dependence on the strike price E for

fixed stock price 35 US$ and the same times to expiration (increasing with dash length).

Bottom: Dependence on the volatilities (from left to right: 80%, 60%, 20%, 10%, 1%) at a

fixed time tb − ta = 3 months before expiration.

Σ(xb − xa)

xb − xa

Figure 20.29 Smile deduced from options (see [13]).

20.7.4 Option Pricing for Asian Option

In an Asian option one does not bet on an option price at the expiration date but
on an average option price over the option life. The calculation is very simple if we
recall the time amplitude amplitude (3.200) of a particle at a fixed average x0. The
stochastic version of the quantum-mechanical expression (3.200) is

P (xbtb|xata)x0 =

√
3

πσ2(tb−ta)
exp

{

− 1

2σ2(tb−ta)

[

(xb−xa)2+12
(

x0−
xb+xa

2

)2
]}

.

(20.439)
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For the growth rate rW , the associated martingale becomes

P (M,rx)(xbtb|xata)x0 =e−rW (tb−ta)

√
3

πσ2(tb−ta)

× exp

{

− 1

2σ2(tb−ta)

[

(xb−xa − rxW
(tb − ta))

2+ 12
(

x0−
xb+xa

2

)2
]}

, (20.440)

whose integral over x0 yields back the previous martingale distribution (20.421)
∫ ∞

−∞
dx0 P

(M,rx)(xbtb|xata)x0 = P (M,rx)(xbtb|xata). (20.441)

Instead of (20.423), the option price at expiration is now

O(xb, tb) = Θ(xb − x0)(e
xb − ex0), (20.442)

so that stead of (20.426) is replaced by the difference between

OS(xa, ta) =
∫ ∞

−∞
dx0

∫ ∞

x0

dxb e
xbP (M,rx)(xbtb|xata)x0 , (20.443)

which is the same as (20.427), due to (20.441), and

Ox̄(xa, ta) =
∫ ∞

−∞
dx0 e

x0

∫ ∞

x0

dxb P
(M,rx)(xbtb|xata)x0 , (20.444)

which replaces (20.430). Since both expressions involve integrals over errorfunctions
it is useful to represent the δ-function in (20.442) as a Fourier integral and rewrite
the option price at ta as

O(xa, ta) =
∫ ∞

−∞

dt

2πi

ei(xb−x0)t

t− iη

×
∫ ∞

−∞
dx0

∫ ∞

−∞
dxb (exb − ex0)P (M,rx)(xbtb|xata)x0, (20.445)

The result of the double integral in the second line is simply

e−A(t) − e−A0(t), (20.446)

with

A(t) =−rW (tb − ta) −
i

2

(

rW +
σ2

2

)

t(tb − ta) +
σ2t2(tb − ta)

6
,

A0(t) =

(

−rW +
σ2

6

)

tb − ta
2

− i

2

(

rW−σ2

6

)

t(tb − ta) +
σ2t2(tb − ta)

6
. (20.447)

Now we use the integral formula

∫ ∞

−∞

dt

2πi

e−a2t2/2+ibt

t− iη
= N [b/a]. (20.448)
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and find [95]

O(xa, ta) = S(ta)[N(z+) − e−(rW+σ2/6)(tb−ta)/2N(z−)], (20.449)

where

z+ =

√

3(tb − ta)

4σ2

(

rW +
σ2

2

)

, z− =

√

3(tb − ta)

4σ2

(

rW − σ2

6

)

. (20.450)

20.7.5 Option Pricing for Boltzmann Distribution

The above result can easily be extended to price the options for assets whose returns
obey the Boltzmann distribution (20.204). Since this is a superposition of Gaussian
distributions, we merely have to perform the same superposition over the Black-
Scholes formula (20.438). Thus we insert (20.438) into the integral (20.204) and
obtain the option price for the Boltzmann-distributed assets of variance σ2:

OB(xa, ta)=
(

t

σ2

)t 1

Γ(t)

∫ ∞

0

dv

v
vte−tv/σ2

Ov(xa, ta), (20.451)

where Ov(xa, ta) is the Black-Scholes option price (20.438) of variance v. The super-
script indicates that the variance σ2 in the variables of y+ and y− in (20.433) and
(20.437) is now exchanged by the integration variable v.

Since the Boltzmann distribution for the minute data turns rapidly into a Gaus-
sian (recall Fig. 20.15), the price changes with respect to the Black-Scholes formula
are relevant only for short-term options running less than a week. The changes can
most easily be estimated by using the expansion (20.209) to write

OB(xa, ta)=Ov(xa, ta) +
[2T 2(1 − 1/t)]2

2t
∂2vO

v(xa, ta) + . . . . (20.452)

20.7.6 Option Pricing for General Non-Gaussian Fluctuations

For general non-Gaussian fluctuations with semi-heavy tails, the option price must
be calculated numerically from Eqs. (20.425) and (20.423). Inserting the Fourier
representation (20.419) and using the Hamiltonian

HrxW
(p) ≡ H̄(p) + irxW

p (20.453)

defined as in (20.141), this becomes

O(xa, ta) =
∫ ∞

xE

dxb (exb − exE)P (xbtb|xata)

= e−rW (tb−ta)
∫ ∞

xE

dxb (exb − exE)
∫ ∞

−∞

dp

2π
eip(xb−xa)−HrxW

(p)(tb−ta). (20.454)
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The integrand can be rearranged as follows:

O(xa, ta)=e−rW (tb−ta)
∫ ∞

xE

dxb

∫ ∞

−∞

dp

2π

[

exaei(p−i)(xb−xa)− exEeip(xb−xa)
]

e−HrxW
(p)(tb−ta).

(20.455)
Two integrations are required. This would make a numerical calculation quite time
consuming. Fortunately, one integration can be done analytically. For this purpose
we change the momentum variable in the first part of the integral from p to p + i
and rewrite the integral in the form

O(xa, ta) = e−rW (tb−ta)
∫ ∞

xE

dxb

∫ ∞

−∞

dp

2π
eip(xb−xa)f(p), (20.456)

with

f(p) ≡ exae−HrxW
(p+i)(tb−ta) − exEe−HrxW

(p)(tb−ta). (20.457)

We have suppressed the arguments xa, xE , tb − ta in f(p), for brevity. The integral
over xb in (20.456) runs over the Fourier transform

f̃(xb − xa) =
∫ ∞

−∞

dp

2π
eip(xb−xa)f(p) (20.458)

of the function f(p). It is then convenient to express the integral
∫∞
xE
dxb in terms

of the Heaviside function Θ(xb − xE) as
∫∞
−∞ dxb Θ(xb − xE) and use the Fourier

representation (1.312) of the Heaviside function to write

∫ ∞

xE

dxb f̃(xb − xa) =
∫ ∞

−∞
dxb

∫ ∞

−∞

dq

2π

i

q + iη
e−iq(xb−xE)f̃(xb − xa). (20.459)

Inserting here the Fourier representation (20.458), we can perform the integral over
xb and obtain the momentum space representation of the option price

O(xa, ta) = e−rW (tb−ta)
∫ ∞

−∞

dp

2π
eip(xE−xa)

i

p+ iη
f(p). (20.460)

For numerical integrations, the singularity at p = 0 is inconvenient. We therefore
employ the decomposition (18.54)

1

p+ iη
=

P
p
− iπδ(p), (20.461)

to write

O(xa, ta) = e−rW (tb−ta)

[

1

2
f(0) + i

∫ ∞

−∞

dp

2π

eip(xE−xa)f(p) − f(0)

p

]

. (20.462)

We have used the fact that the principal value of the integral over 1/p vanishes to
subtract the constant f(0) from eip(xE−xa)f(p). After this, the integrand is regu-
lar and does not need any more the principal-value specification, and allows for a
numerical integration.
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O(S, t) −OBS(S, t)
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Figure 20.30 Difference between call price O(S, t) obtained from truncated Lévy distri-

bution with kurtosis κ = 4 and Black-Scholes price OBS(S, t) with σ2 = v̄ as function of

stock price S for different times before expiration date (increasing dash length: 1, 2, 3, 4, 5

months). The parameters are E = 50 US$, σ = 40%, rW = 6% per month.

For xa very much different from xE , we may approximate

∫ ∞

−∞

dp

2π

eip(xE−xa)f(p) − f(0)

p
≈ 1

2
ǫ(xa − xE)f(0), (20.463)

where ǫ(x) ≡ 2Θ(x) − 1 is the step function (1.315), and obtain

O(xa, ta) ≈
e−rW (tb−ta)

2
[1 + Θ(xa − xE)] f(0). (20.464)

Using (20.418) we have e−HrxW
(i) = erW , and since e−HrxW

(0) = 1 we see that
O(xa, ta) goes to zero for xa → −∞ and has the large-xa behavior

O(xa, ta) ≈ exa − exEe−rW (tb−ta) = S(ta) − e−rW (tb−ta)E. (20.465)

This is the same behavior as in the Black-Scholes formula (20.438).
In Fig. 20.30 we display the difference between the option prices emerging from

our formula (20.462) with a truncated Lévy distribution of kurtosis κ = 4, and the
Black-Scholes formula (20.438) for the same data as in the upper left of Fig. 20.28.

For truncated Lévy distributions, the Fourier integral in Eq. (20.454) can be
expressed directly in terms of the original distribution function which is the Fourier
transform of (20.52):

L̃
(λ,α,β)
σ2 (x) =

∫ ∞

−∞

dp

2π
eipx−H(p). (20.466)

By inspecting Eq. (20.53) we see that the factor tb − ta multiplying HrxW
(p) in

(20.454) can be absorbed into the parameters σ, λ, α, β of the truncated Lévy dis-
tributions by replacing

σ2 → σ2(tb − ta), rxW
→ rxW

(tb − ta). (20.467)

Let us denote the truncated Lévy distribution with zero average by L̄
(λ,α,β))
σ2 (x). It

is the Fourier transform of e−H̄(p):

L̄
(λ,α,β)
σ2 (x) =

∫ ∞

−∞

dp

2π
eipx−H̄(p). (20.468)
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The Fourier transform of e−H̄(p)(tb−ta) is then simply given by L̄
(λ,α,β))
σ2(tb−ta)

(x). The

additional term rxW
in the exponent of the integral (20.454) via (20.453) leads to a

drift rxW
in the distribution, and we obtain
∫ ∞

−∞

dp

2π
eipx−[H̄(p)+irxW p](tb−ta) = L̃

(λ,α,β))
σ2(tb−ta)

(x− rxW
(tb − ta)). (20.469)

Inserting this into (20.419), we find the riskfree martingale distribution to be inserted
into (20.454):

P (xbtb|xata) = e−rW (tb−ta)L̄
(λ,α,β)
σ2(tb−ta)

(xb − xa − rxW
(tb − ta)). (20.470)

The result is therefore a truncated Lévy distribution of increasing width and uni-
formly moving average position. Since all expansion coefficients cn of H(p) in
Eq. (20.40) receive the same factor tb− ta, the kurtosis κ = c4/c

2
2 decreases inversely

proportional to tb − ta. As time proceeds, the distribution becomes increasingly
Gaussian, this being a manifestation of the central limit theorem of statistical me-
chanics. This is in contrast to the pure Lévy distribution which has no finite width
and therefore maintains its power falloff at large distances.

Explicitly, the formula (20.454) for the option price becomes

O(xa, ta) = e−rW (tb−ta)
∫ ∞

xE

dxb (exb − exE)L̄
(λ,α,β)
σ2(tb−ta)

(xb − xa − rxW
(tb − ta)).(20.471)

This and similar equations derived from any of the other non-Gaussian models lead
to fairer formulas for option prices.

20.7.7 Option Pricing for Fluctuating Variance

If the fluctuations of the variance are taken into account, the dependence of the price
of an option on v(t) needs to be considered in the derivation of a time evolution
equation for the option price. Instead of Eq. (20.407) we write the time evolution
as

dO

dt
=

1

dt

[

O(x(t) + ẋ(t) dt, v(t) + v̇(t) dt, t+ dt) − O(x(t), v(t), t)
]

=
∂O

∂t
+
∂O

∂x
ẋ+

∂O

∂v
v̇ +

1

2

∂2O

∂x2
ẋ2 dt+

∂2O

∂x∂v
ẋv̇ dt+

1

2

∂2O

∂v2
v̇2dt+ . . . .(20.472)

The expansion can be truncated after the second derivative due to the Gaussian
nature of the fluctuations. We use Itō’s rule to replace

ẋ2 −−−→ v(t), v̇2 −−−→ ǫ2v(t), ẋv̇ −−−→ ρǫv(t). (20.473)

These replacements follow directly from Eqs. (20.306) and (20.308) and the correla-
tion functions (20.310). Thus we obtain

dO

dt
=

1

dt

[

O(x(t) + ẋ(t) dt, v(t) + v̇(t) dt, t+ dt) − O(x(t), v(t), t)
]

=
∂O

∂t
+
∂O

∂x
ẋ +

∂O

∂v
v̇ +

1

2

∂2O

∂x2
v +

∂2O

∂x∂v
ρǫv +

1

2

∂2O

∂v2
ǫ2v. (20.474)
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This is inserted into Eq. (20.403). If we adjust the portfolio according to the rule
(20.404), and use the Itō relation Ṡ/S = ẋ + v/2, we obtain the equation [compare
(20.409)]

NOrW

(

−∂O
∂x

+O

)

= − NO
∂O

∂x

(

ẋ +
v2

2

)

+NOȮ

= NO

[

−v
2

2

∂O

∂x
+
∂O

∂v
v̇ +

∂O

∂t
+

1

2

∂2O

∂x2
v +

∂2O

∂x∂v
ρǫv +

1

2

∂2O

∂v2
ǫ2v + . . .

]

. (20.475)

As before in Eq. (20.409), the noise in ẋ has disappeared. In contrast to the single-
variable treatment, however, the noise variable ηv remains in the equation. It can
only be removed if we trade a financial asset V whose price is equal to the variance
directly on the markets. Then we can build a riskfree portfolio containing four assets

W (t) = NS(t)S(t) +NO(t)O(S, t) +NV (t)V (t) +NB(t)B(t), (20.476)

instead of (20.396). Indeed, by adjusting

NV (t)

NO(t)
= −∂O(S(t), v(t), t)

∂v(t)
, (20.477)

we could cancel the term v̇ in Eq. (20.475). There is definitely need to establish
trading in such an asset. Without this, we can only reach an approximate freedom
of risk by ignoring the noise ηv(t) in the term v̇ and replacing v̇ by the deterministic
first term in the stochastic differential equation (20.308):

v̇(t) −−−→ −γ[v(t) − v̄]. (20.478)

In addition, we can account for the fact that the option price rises with the variance
as in the Black-Scholes formula by adding on the right hand side of (20.478) a
phenomenological correction term −λv called price of volatility risk [78, 11]. Such
a term has simply the effect of renormalizing the parameters γ and v̄ to

γ∗ = γ + λ, and v̄∗ = γv̄/γ∗. (20.479)

Thus we find the Fokker-Planck-like differential equation [compare (20.417)]

∂O

∂t
= rWO −

(

rW − v

2

)

∂O

∂x
+ γ∗[v(t) − v̄∗]

∂O

∂v
− v

2

∂2O

∂x2
− ρǫv

∂2O

∂x∂v
− ǫ2v

2

∂2O

∂v2
.

(20.480)
On the right-hand side we recognize the Hamiltonian operator (20.319), with γ and
v̄ replaced by γ∗ and v̄∗, in terms of which we can write

∂O

∂t
= rW (O − ∂xO) +

(

Ĥ∗ + γ∗ + ρǫ∂x + ǫ2∂v
)

O. (20.481)

The solution of this equation can easily be expressed as a slight modification of
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the solution P (xb, vb, tb|xavata) in Eq. (20.340) of the differential equation (20.318).
Since it contains only additional first-order derivatives with respect to (20.318), we
simply find, with x ≡ xa and t ≡ ta, the solution P v(xb, vb, tb|xavata) satisfying the
initial condition

P v(xb, vb, tb|xavata) = δ(xb − xa)δ(vb − va) (20.482)

as follows:

P v(xb, vb, tb|xavata) = e−(rW+γ∗)∆tPsh(xb, vb, tb|xavata), (20.483)

where the subscript sh indicates that the arguments xb − xa and vb − va are shifted:

xb − xa → xb − xa − (rW − ρǫ), vb − va → vb − va − ǫ2. (20.484)

The distribution (20.482) may be inserted into an equation of the type (20.425)
to find the option price at the time ta from the price (20.423) at the expiration date
tb. If we assume the variance va to be equal to v̄, and the remaining parameters to
be

γ∗ = 2, v̄ = 0.01, ǫ = 0.1, rW = 0, (20.485)

the price of an option with strike price E = 100 one half year before expiration
with the stock price S = E (this is called an option at-the-money) is 2.83 US$ for
ρ = −0.5 and 2.81 US$ for ρ = 0.5. The difference with respect to the Black-Scholes
price is shown in Fig. 20.31.

S

ρ = −0.5ρ = 0.5
O(S, v, t) −OBS(S, t)

0.1

0.05

−0.05

0

−0.1

80 90 100 120 130 140

Figure 20.31 Difference between option price O(S, v, t) with fluctuating volatility and

Black-Scholes price OBS(S, t) with σ2 = v̄ for option of strike price 100 US$. The param-

eters are given in Eq. (20.485). The noise correlation parameter is once ρ = −0.5 and

once ρ = 0.5. For an at-the-money option the absolute value is 2.83 US$ for ρ = −0.5 and

2.81 US$ for ρ = 0.5 (after Ref. [78]).
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20.7.8 Perturbation Expansion and Smile

A perturbative treatment of any non-Gaussian distributions D̃(x), which we assume to be sym-
metric, for simplicity, starts from the expansion

D(p) =
[

1 +
a4
4!
p4 − a6

6!
p6 +

c8
8!
p8 − . . .− . . .

]

e−σ2p2/2, (20.486)

where

a4 = c4, a6 = c6, a8 = c8 + 35c24, a10 = c10 + 210c4c6, . . . , (20.487)

which can also be expressed as a series

D(p)=

[

1 +
a4
4!

22
(

∂

∂σ2

)2

+
a6
6!

23
(

∂

∂σ2

)3

+
a8
8!

24
(

∂

∂σ2

)4

+ . . .

]

e−σ2p2/2. (20.488)

By taking the Fourier transform we obtain the expansion of the distributions in x-space

D̃(x) =

[

1 +
a4
4!

22
(

∂

∂σ2

)2

+
a6
6!

23
(

∂

∂σ2

)3

+
a8
8!

24
(

∂

∂σ2

)4

+ . . .

]

e−x2/2σ2

√
2πσ2

=

[

1 +
c̄4
8

− c̄6
48

+
35c̄24
384

+
c̄8
384

+
x2

σ2

(

− c̄4
4

+
c̄6
16

− 35c̄24
96

− c̄8
96

)

+
x4

σ4

(

c̄4
24

− c̄6
48

+
35c̄24
192

+
c̄8
192

)

+
x6

σ6

(

c̄6
720

− 35c̄24
1440

− c̄8
1440

)

+
x8

σ8

(

35c̄24
40320

+
c̄8

40320

)

+ . . .

]

e−x2/2σ2

√
2πσ2

. (20.489)

The quantities c̄n contain the kurtosis κ, in the case of a truncated Lévy distribution with the
powers εn/2−1. If the distribution is close to a Gaussian, we may re-expand all expressions in powers
of the higher cumulants. In the case of a truncated Lévy distribution, we may keep systematically
all terms up to a certain maximal power of ε and find

D̃(x) =

{

1 − x2

2σ2

(

c̄4
2

− c̄6
8

+
2c̄24
3

+
c̄8
48

+
5c̄4c̄6
192

− 33c̄34
256

)

+
x4

σ4

(

c̄4
24

− c̄6
48

+
17c̄24
96

+
c̄8
192

+
c̄4c̄6
288

− 239c̄34
9216

)

+
x6

σ6

(

c̄6
720

− 7c̄24
288

− c̄8
1440

− c̄4c̄6
5760

+
7c̄34
2304

)

+
x8

σ8

(

c̄24
1152

+
c̄8

40320
− c̄34

9216

)

+ . . .

}

e−x2/2σ2

√

2πσ2
1

, (20.490)

where we have introduced the modified width

σ̃2
1 ≡ σ2

(

1 − c̄4
4

+
c̄6
24

− 13c̄24
96

− c̄8
192

− c̄4c̄6
64

− 31c̄34
512

+ . . .

)

. (20.491)

The prefactor can be taken into the exponent yielding

D̃(x) = exp

{

− x2

2σ2

(

1 +
c̄4
2

+
2 c̄24
3

− 33 c̄34
256

− c̄6
8

+
5 c̄4 c̄6
192

+
c̄8
48

)

+
x4

σ4

(

c̄4
24

+
7 c̄24
48

− 1007 c̄34
9216

− c̄6
48

+
11 c̄4 c̄6

576
+

c̄8
192

)

+
x6

σ6

(

− c̄24
72

+
43 c̄34
768

+
c̄6
720

− 23 c̄4 c̄6
2880

− c̄8
1440

)

+
x8

σ8

(

−101 c̄34
9216

+
7 c̄4 c̄6
5760

+
c̄8

40320

)

+ . . .

}

1
√

2πσ2
1

. (20.492)
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Introducing a second modified width

σ̃2
2 ≡ σ2

(

1 − c̄4
2

+
c̄6
8

− 5c̄24
12

− c̄8
48

− 29c̄4c̄6
192

+
515c̄34
768

+ . . .

)

, (20.493)

the exponential can be brought to the form

D̃(x) = exp

{

−x
2

σ̃2
2

+
x4

σ̃4
2

(

c̄4
24

− c̄6
48

+
5c̄24
48

+
c̄8
192

+
29c̄4c̄6
576

− 2576c̄34
9216

)

+
x6

σ̃6
2

(

c̄6
720

− c̄24
72

− 8c̄8
1440

− 29c̄4c̄6
2880

+
59c̄34
768

)

+
x8

σ̃8
2

(

c̄8
40320

+
7c̄4c̄6
5760

− 101c̄34
9216

)

+ . . .

}

1
√

2πσ̃2
1

. (20.494)

The exponential can be re-expressed compactly in the quasi-Gaussian form

D̃(x) =
1

√

2πσ̃2
1

exp

[

− x2

2Σ2(x)

]

, (20.495)

where we have defined an x-dependent width

Σ̃(x) ≡ σ2
2

[

1 +
x2

σ2
2

(

c̄4
12

+
5 c̄24
24

− 2575 c̄34
4608

− c̄6
24

+
29 c̄4 c̄6

288
+
c̄8
96

)

+
x4

σ4
2

(−c̄24
48

+
217 c̄34
1152

− 1375 c̄44
27648

+
c̄6
360

− 13 c̄4 c̄6
480

− c̄24 c̄6
1728

+
c̄26
576

− c̄8
720

+
c̄4 c̄8
576

)

+
x6

σ6
2

(

−359 c̄34
13824

+
127 c̄44
6912

+
5 c̄4 c̄6
1728

− 13 c̄24 c̄6
17280

− c̄26
4320

+
c̄8

20160
− c̄4 c̄8

4320

)

+ . . .

]

.

(20.496)

For small x the deviation of Σ2(x) from a constant σ2 is dominated by the quadratic term. If
one plots the fluctuation width Σ(x) for the logarithms of the observed option prices one finds the
smile parabola shown before in Fig. 20.29. On the basis of the expansion (20.488) it is possible to
derive an approximate option price formula for assets fluctuating according to the truncated Lévy
distribution. We simply apply the differential operator in front of the Gaussian distribution

O ≡
[

1 +
a4
4!

22
(

∂

∂σ2

)2

+
a6
6!

23
(

∂

∂σ2

)3

+
a8
8!

24
(

∂

∂σ2

)4

+ . . .

]

(20.497)

to the Gaussian distribution (20.421). For λ = 3/2, the coefficients are

a4 =
ε

M2
, a6 =

5 · 7 ε2
3M3

, a8 =
5 · 7 · 11 ε2

M4
+

5 · 7 ε2
M4

,

a10 =
52 · 7 · 11 · 13 ε4

3M5
+

22 · 5 · 7 · 17 ε4

3M5
, . . . . (20.498)

The operator O winds up in front of the Black-Scholes expression (20.438), such that we obtain
the formal result

OL(xa, ta) = OO(xa, ta) = O
[

S(ta)N(y+) − e−(rxW
+σ2/2)(tb−ta)EN(y−)

]

, (20.499)

where we have used (20.418) to exhibit the full σ-dependence on the right-hand side. This expres-
sion may now be expanded in powers of the kurtosis κ. The term proportional to a4 yields a first
correction to the Black-Scholes formula, linear in ε,

O1(xa, ta) = − ε

12M2

{

(

Se−y2
+/2 − e−rW (tb−ta)Ee−y2

−/2
) ym√

2πσ2

− e−rW (tb−ta)(tb − ta)EN(y−)

}

. (20.500)
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The term proportional to a6 adds a correction proportional to ε2:

O2(xa, ta) =
35ε2

3M3

1

23 · 32 · 5
{[

Se−y2
+/2
(

y+y
2
− − 3y+ + 4

√

σ2(tb − ta)
)

− e−rW (tb−ta)Ee−y2
−/2

(

y3− − 3y− − 2σ2(tb − ta)y−
)

] 1√
2πσ4

+ e−rW (tb−ta)(tb − ta)
2EN(y−)

}

. (20.501)

The next term proportional to a8 adds corrections proportional to ε2 and ε3:

O3(xa, ta) =
385ε3 + 35ε2

M4

1

26 · 32 · 5 · 7
×
{[

Se−y2
+/2
(

−y3−y2+ + 9y−y
2
+ + y3− − 15y+ + 18 +

√

σ2(tb − ta)(12y−y+ + 18)
)

− e−rW (tb−ta)Ee−y2
−/2

(

y5− − 10y3− + 15y− + σ2(tb − ta)(3y
3
− − 9y−)

+σ4(tb − ta)
2 3y−

)]

1√
2πσ6

+e−rW (tb−ta)(tb − ta)
3EN(y−)

}

. (20.502)

Since the expansion is asymptotic, an efficient resummation scheme will be needed for practical
applications.

Appendix 20A Large-x Behavior of Truncated
Lévy Distribution

Here we derive the divergent asymptotic expansion in the large-x regime. Using the variable
y ≡ p/α and the constant a ≡ −sαλ, we may write the Fourier integral (20.24) as

L̃
(λ,α)
σ2 (x) = αe−2a

∞
∫

−∞

dy

2π
eiαyxea[(1−iy)λ+(1+iy)λ]. (20A.1)

Expanding the last exponential in a Taylor series, we obtain

L̃
(λ,α)
σ2 (x) = αe−2a

∞
∫

−∞

dy

2π
eiyαx

∞
∑

n=0

an

n!
[(1 − iy)λ + (1 + iy)λ]n =

= αe−2a

∞
∫

−∞

dy

2π
eiαxy

∞
∑

n=0

an

n!

n
∑

m=0

( n

m

)

(1 − iy)λ(n−m)(1 + iy)λm (20A.2)

containing binominal coefficients. Changing the order of summations yields

L̃
(λ,α)
σ2 (x) = αe−2a

∞
∑

n=0

an

n!

n
∑

m=0

( n

m

)

∞
∫

−∞

dy

2π
eiαxy(1 − iy)λ(n−m)(1 + iy)λm. (20A.3)

This can be written with the help of the Whittaker functions (20.30) as

L̃
(λ,α)
σ2 (x) = αe−2a

∞
∑

n=0

an

n!

n
∑

m=0

( n

m

) (αx)−1−λn/22λn/2

Γ(−λm)
Wλn/2−λm,(λn+1)/2(2αx). (20A.4)
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After converting the Gamma functions of negative arguments into those of positive arguments,
this becomes

L̃
(λ,α)
σ2 (x) = −α

π
e−2a

∞
∑

n=1

an
n
∑

m=0

2λn/2Γ(1+λm) sin(πλm)

(αx)1+λn/2m!(n−m)!
Wλn/2−λm,(λn+1)/2(2αx).

(20A.5)

The Whittaker functions Wλ,γ(x) have the following asymptotic expansion

Wλ,γ(x) = e−x/2xλ







1 +

∞
∑

k=1

1

k!xk

k
∏

j=1

[

γ2 − (λ− j + 1/2)2
]







. (20A.6)

For γ ≡ (λn+ 1)/2 and λ ≡ λ(n− 2m)/2, the product takes the form

k
∏

j=1

[γ2 − (λ− j + 1/2)2] =

k
∏

j=1

{

(

λn+ 1

2

)2

−
[

λ(n− 2m)

2
− j +

1

2

]2
}

=

k
∏

j=1

(λm+ j)(λn+1 − λm− j). (20A.7)

Inserting this into (20A.6) and the result into (20A.5), we obtain the asymptotic expansion for
large x:

L̃
(λ,α)
σ2 (x) = − 1

π
e−2a e

−αx

x

∞
∑

n=1

an 2λn
n
∑

m=1

Γ(1 + λm) sin(πλm)

m!(n−m)!
(2αx)−λm

×
[

1 +

∞
∑

k=1

∏k
j=1(λm+ j)(λn + 1 − λm− j)

k!(2αx)k

]

. (20A.8)

We have raised the initial value of the index of summation m by one unit since sin(πλm) vanishes

for m = 0. If we define a product of the form
∏0

j=1 ... to be equal to unity, we can write the term
in the last bracket as

∞
∑

k=0

1

k!(2αx)k

k
∏

j=1

(j + λm)(1 − λm− j + λn). (20A.9)

Rearranging the double sum in (20A.8), we write L̃
(λ,α)
σ2 (x) as

L̃
(λ,α)
σ2 (x) = − 1

π
e−2a e

−αx

x

∞
∑

m=1

Γ(1 + λm) sin(πλm)

m!(2αx)λm

∞
∑

n=m

an 2λn

(n−m)!

×
∞
∑

k=0

1

k!(2αx)k

k
∏

j=1

(j + λm)(1 − λm− j + λn), (20A.10)

and further as

L̃
(λ,α)
σ2 (x) = − 1

π
e−2a e

−αx

x

∞
∑

m=1

Γ(1 + λm) sin(πλm)

m!
(2αx)−λm

×
∞
∑

n=0

(2λa)n+m 1

n!

∞
∑

k=0

1

k!(2αx)k

k
∏

j=1

(j + λm)(1 − j + λn) =
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= − 1

π
e−2a e

−αx

x

∞
∑

k=0

1

k!(2αx)k

∞
∑

m=1

Γ(1 + λm) sin(πλm)(2λa)m

(2αx)λmm!

×
k
∏

j′=1

(j′ + λm)

∞
∑

n=0

(2λa)n

n!

k
∏

j=1

(λn+ 1 − j). (20A.11)

The last sum over n in this expression can be re-expressed more efficiently with the help of a
generating function

f (k)(yλ) ≡ dk

dyk
ey

λ

, (20A.12)

whose Taylor series is

f (k)(yλ) =
dk

dyk

∞
∑

n=0

yλn

n!
=

∞
∑

n=0

1

n!

k
∏

j=1

(λn− j + 1)yλn−k, (20A.13)

leading to

L̃
(λ,α)
σ2 (x) =

1

π
e−2a e

−αx

x

∞
∑

k=0

ak/λ2kf (k)(2λa)

k!(2αx)k

×
∞
∑

m=1

Γ(1 + λm) sin(πλm)(2λa)m

m!
(2αx)−λm

k
∏

j=1

(λm+ j).

(20A.14)

This can be rearranged to

L̃
(λ,α)
σ2 (x) = −e

−2a

π
e−αx

∞
∑

k=0

(−s)k/λf (k)(−s(2α)λ)

k!

×
∞
∑

m=1

Γ(1 + λm+ k) sin(πλm)(−s)m
m!x1+λm+k

.

(20A.15)

Thus we obtain the asymptotic expansion

1 1.2 1.4 1.6 1.8 2

0.02

0.04

0.06

0.08

0.1

x

L̃
(µ,α)
σ2

(K)(x)

Figure 20.32 Comparison of large-x expansions containing different numbers of terms

(with K = 0, 1, 2, 3, 4, 5, with increasing dash length) with the tails of the truncated

Lévy distribution for λ =
√

2, σ = 0.5, α = 1.
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L̃
(λ,α)
σ2 (x) = −e

−2a

π

e−αx

x

∞
∑

k=0

Ak

∞
∑

m=1

Bkm
(−s)m
xλm+k

, (20A.16)

where

Ak =
(−s)k/λf (k)(−s(2α)λ)

k!
, Bkm =

Γ(1 + λm+ k) sin(πλm)

m!
. (20A.17)

We shall denote by L̃
(λ,α)
σ2

(K)(x) the approximants in which the sums over K are truncated after
the Kth term. To have a definite smallest power in |x|, the sum over m is truncated after the
smallest integer larger than (K − k + λ)/λ. The leading term is

L̃
(λ,α)
σ2

(0)(x) = −e
−2a

π
e−αxf (0)(−s(2α)λ)

Γ(1 + λ) sin(πλ)(−s)
x1+λ

= s
eα

λs(2−2λ)

π

Γ(1 + λ) sin(πλ)

x1+λ
e−αx. (20A.18)

The large-x approximations L̃
(λ,α)
σ2

(0)(x) are compared with the numerically calculated truncated
Lévy distribution in Fig. 20.32.

Appendix 20B Gaussian Weight

For simplicity, let us study the Gaussian content in the final distribution (20.347) only for the
simpler case ρ = 0. Then we shift the contour of integration in (20.347) to run along p+ i/2, and
we study the Fourier integral

P (x t |xata) = e−∆x/2

∫ +∞

−∞

dp

2π
eip∆x−H̄(p,∆t), (20B.1)

where

H̄(p,∆t) = −γ
2v̄t

κ2
+

2γv̄

κ2
ln

[

cosh
Ωt

2
+

Ω2 + γ2

2γΩ
sinh

Ωt

2

]

, (20B.2)

and

Ω =
√

γ2 + κ2(p2 + 1/4). (20B.3)

The function H̄(p,∆t) is real and symmetric in p. The integral (20B.1) is therefore a symmetric
function of ∆x. The only source of asymmetry of P (x t |xata) in ∆x is the exponential prefactor
in (20B.1).

Let us expand the integral in (20B.1) for small ∆x:

P (x t |xata) ≈ e−∆x/2

[

µ0 −
1

2
µ2(∆x)

2

]

≈ µ0 e
−∆x/2e−µ2(∆x)2/2µ0 , (20B.4)

where the coefficients are the first and the second moments of exp[H̄(p,∆t)]

µ0(∆t) =

+∞
∫

−∞

dp

2π
e−H̄(p,∆t), µ2(∆t) =

+∞
∫

−∞

dp

2π
p2e−H̄(p,∆t). (20B.5)

If we ignore the existence of semi-heavy tails and extrapolate the Gaussian expression on the right-
hand side to ∆x ∈ (−∞,∞), the total probability contained in such a Gaussian extrapolation will
be the fraction

f(∆t) =

+∞
∫

−∞

d∆xµ0 e
−∆x/2−µ2∆x2/2µ0 =

√

2πµ3
0

µ2
eµ0/8µ2 . (20B.6)
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This is always less than 1 since the integral (20B.6) ignores the probability contained in the semi-
heavy tails. The difference 1 − f(∆t) measures the relative contribution of the semi-heavy tails.
The parameters µ0(∆t) and µ2(∆t) are calculated numerically and the resulting fraction f(∆t)
is plotted in Fig. 20.25 as a function of ∆t. For ∆t → ∞, the distribution becomes Gaussian,
whereas for small ∆t, it becomes a broad function of p.

Appendix 20C Comparison with Dow-Jones Data

For the comparison of the theory in Section 20.4 with actual financial data shown in Fig. 20.22,
the authors of Ref. [79] downloaded the daily closing values of the Dow-Jones industrial index for
the period of 20 years from 1 January 1982 to 31 December 2001 from the Web site of Yahoo
[110]. The data set contained 5049 points S(tn), where the discrete time variable tn parametrizes
the days. Short days before holidays were ignored. For each tn, they compiled the log-returns
∆x(tn) = lnS(tn+1)/S(tn). Then they partitioned the x-axis into equally spaced intervals of
width ∆x and counted the number of log-returns ∆x(tn) falling into each interval. They omitted
all intervals with occupation numbers less than five, which they considered as too few to rely on.
Only less than 1% of the entire data set was omitted in this way. Dividing the occupation number
of each bin by ∆r and by the total occupation number of all bins, they obtained the probability
density for a given time interval ∆t = 1 day. From this they found P (DJ)(x t |xata) by replacing
∆x→ ∆x − rS∆t.

Assuming that the system is ergodic, so that ensemble averaging is equivalent to time
averaging, they compared P (DJ)(x t |xata) with the calculated P (x t |xata) in Eq. (20.347).
The parameters of the model were determined by minimizing the mean-square deviation
∑

∆x,∆t | logP (DJ)(x t |xata) − logP (x t |xata)|2, with the sum taken over all available ∆x and
over ∆t = 1, 5, 20, 40, and 250 days. These values of ∆t were selected because they represent
different regimes: γ∆t≪ 1 for t = 1 and 5 days, γ∆t ≈ 1 for t = 20 days, and γ∆t≫ 1 for t = 40
and 250 days. As Figs. 20.22 and 20.23 illustrate, the probability density P (x t |xata) calculate
from the Fourier integral (20.347) with components (20.348) agrees with the data very well, not
only for the selected five values of time t, but for the whole time interval from 1 to 250 trading
days. The comparison cannot be extended to ∆t longer than 250 days, which is approximately
1/20 of the entire range of the data set, because it is impossible to reliably extract P (DJ)(x t |xata)
from the data when ∆t is too long.

The best fits for the four parameters γ, v̄, ε, µ are given in Table 20.1. Within the scattering
of the data, there are no discernible differences between the fits with the correlation coefficient
ρ being zero or slightly different from zero. Thus the correlation parameter ρ between the noise
terms for stock price and variance in Eq. (20.310) is practically zero. This conclusion is in contrast
with the value ρ = −0.58 found in [111] by fitting the leverage correlation function introduced in
[112]. Further study is necessary to understand this discrepancy. All theoretical curves shown in
the above figures are calculated for ρ = 0, and fit the data very well.

The parameters γ, v̄, ε, µ have the dimensionality of 1/time. One row in Table 20.1 gives their
values in units of 1/day, as originally determined in our fit. The other row shows the annualized
values of the parameters in units of 1/year, where one year is here equal to the average number
of 252.5 trading days per calendar year. The relaxation time of variance is equal to 1/γ = 22.2
trading days = 4.4 weeks ≈ 1 month, where 1 week = 5 trading days. Thus one finds that the
variance has a rather long relaxation time, of the order of one month, which is in agreement with
an earlier conclusion in Ref. [111].

Using the numbers given in Table 20.1, the value of the parameter ε2/2γv̄ is ≈ 0.772 thus
satisfying the smallness condition Eq. (20.322) ensuring that v never reaches negative values.

The stock prices have an apparent growth rate determined by the position xm(t) where the
probability density is maximal. Adding this to the initially subtracted growth rate rS we find
that the apparent growth rate is r̄S = rS − γv̄/2ω0 = 13% per year. This number coincides with
the apparent average growth rate of the Dow-Jones index obtained by a simple fit of the data
points Stn with an exponential function of tn. The apparent growth rate r̄S is comparable to the

H. Kleinert, PATH INTEGRALS



Notes and References 1535

Table 20.1 Parameters of equations with fluctuating variance obtained from fits to Dow-

Jones data. The fit yields ρ ≈ 0 for the correlation coefficient and 1/γ = 22.2 trading days

for the relaxation time of variance.

Units γ v̄ ε µ
1/day 4.50 × 10−2 8.62 × 10−5 2.45 × 10−3 5.67 × 10−4

1/year 11.35 0.022 0.618 0.143

average stock volatility after one year σ =
√
v̄ = 14.7%. Moreover, the parameter (20.328) which

characterizes the width of the stationary distribution of variance is equal to vmax/w = 0.54. This
means that the distribution of variance is broad, and variance can easily fluctuate to a value twice
greater than the average value v̄. As a consequence, even though the average growth rate of the

stock index is positive, there is a substantial probability of
∫ 0

−∞ d∆xP (x t |xata) ≈ 17.7% to have
negative growth for ∆t = 1 year.

According to (20.368), the asymmetry between the slopes of exponential tails for positive
and negative ∆x is given by the parameter p0, which is equal to 1/2 when ρ = 0 [see also the
discussion of Eq. (20B.1) in Appendix 20B]. The origin of this asymmetry can be traced back
to the transformation from Ṡ(t)/S(t) to ẋ(t) using Itô’s formula. This produces a term v(t)/2 in
Eq. (20.306), which leads to the first term in the Hamiltonian operator (20.319). For ρ = 0 this
is the only source of asymmetry in ∆x of P (x t |xata). In practice, the asymmetry of the slopes
p0 = 1/2 is quite small (about 2.7%) compared to the average slope q±∗ ≈ ω0/ε = 18.4.

Notes and References
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Pöschl, G. . . . . . . . . . . . . . . . . . . 759, 1029
Pacheco, A.F. . . . . . . . . . . . . . . . . . . . . 573

packet, wave . . . . . . . . . . . . . . . . . . . . . . . . 15
Padee approximation . . . . . . . . . . . . . 1088

pair
Cooper . . . . . . . . . . . . . . . . . . . . . . . .1248
correlation function . . . . . . . .530, 531

field . . . . . . . . . . . . . . . . . . . . . . . . . . .1250
terms

in second quantization . . . . . . . 683

H. Kleinert, PATH INTEGRALS



1579

in superconductivity . . . . . . . . . 684

Wick contraction . . . . . . . . . . . . . . 251

Pak, N.K. . . . . . . . . . . . . . . . . . . 1029, 1170

Paldus, J. . . . . . . . . . . . . . . . . . . . . . . . . 573

Panigrahi, P.K. . . . . . . . . . . . . . . . . . 1173

Papadopoulos, G. . . . . . . . . . . . . . . . . 901

Papanicolaou, N. . . . . . . . . . . . . . . . . 759

parabolic

coordinates, Coulomb wave functions
967

cylinder function . . . . . . . . . . . . . . 1064

eigenvalue of stability matrix . . 404

parameter

impact . . . . . . . . . . . . . . . . . . . . . . . . . .71

order . . . . . . . . . . . . . . . . . . . .1247, 1255

Parisi, G. . . . . . . . . . . . . 1095, 1272, 1379

Parker, C.S. . . . . . . . . . . . . . . . . . . . . . 572

partial

integration . . . . . . . . . . . . . . . . 106, 112

lattice . . . . . . . . . . . . . . . . . . . . . . . .112

summation . . . . . . . . . . . . . . . .106, 112

particle

density . . . . . . . . . . . . . . . . . . . . . . . . 138

distribution . . . . . . 137, 138, 155, 182

classical . . . . . . . . . . . . . . . . . . . . . 138

Coulomb system . . . . . xxxviii, 490

free radial propagator . . . . . . . . . . 770

in a box . . . . . . . . . . . . . . 585, 587, 588

in half-space . . . . . . . . . . 581, 582, 584

in heat bath . . . . . . . . . . . . . . . . . . . 262

in heat bath of photons . . . . . . . .266

in magnetic field

action . . . . . . . . . . . . . . . . . . . 179, 181

fixed-energy amplitude . . . . . . . 773

radial wave function . . . . . 774, 777

spectral representation of ampli-
tude . . . . . . . . . . . . . . . . . . . . . . . 772,
774

time evolution amplitude 179, 181,
183

wave function . . . . . . . . . . . 771, 774

indistinguishability . . . . . . . . . . . . . 597

number, average . . . . . . . . . . . . . . . . 79

on a circle . . . . . . . . . . . . 577, 580, 587

on sphere, effective potential . . . 809

on surface of sphere . . . .57, 730, 920

orbits

ensemble of bosons . . . . . . . . . . . 598

ensemble of fermions . . . . . . . . . 598

identical . . . . . . . . . . . . . . . . . . . . . 598

relativistic . . . . . . . . . . . . . . . . . . . .1380

and stiff polymer . . . . . . . . . . . 1382

path integral . . . . . . . . 1382, 1383

particle, spinning

amplitude . . . . . . . . . . . . . . . . . . . . . . 751

particles, many at a point . . . . . . . . . . 660

partition function . . . . . . . . . . . . . . . . . . 667

Bose particles . . . . . . . . . . . . . . . . . . 653

classical . . . . . . . . . . . . . . . . . . . . . . . . .77

density . . . . . . . . . . . . . . .136, 469, 554

fermions . . . . . . . . . . . . . . . . . . . . . . . 667

grand-canonical

quantum-statistical . . . . . . . . . . . 78

local . . . . . . . . . . . . . . . . . . . . . . 465, 496

quantum-mechanical . . . . . . . . . . . . 78

relativistic . . . . . . . . . . . . . . . . . . 1423

quantum-statistical . . . . . . . . . . . . . 77

path

classical . . . . . . . . . . . . . . . . . . . . . . . . . . 2

closed, in action principle . . . . . . 792

collapse . . . .xvii, 710, 715, 735, 740,
759, 927, 928, 941, 1253

energy-entropy argument . . . . . 928

fixed average

time evolution amplitude . . . . . 237

in phase space . . . . . . . . . . . . . 97, 137

order in forward–backward path in-
tegral . . . . . . . . . . . . . . . . . . . . . 1295

path integral . . . . . . . . . . . . . . . . 89, 93–100

canonical . . . . . . . . . . . . . . . . . . . . . . . 134

classical

amplitude . . . . . . . . . . . . . . . . . . . . 384

probability . . . . . . . . . . . . . . . . . . 1344

coordinate invariance

in time-sliced formulation . . . . 808

perturbative definition . . . . . . . 817

Coulomb system . . . . . . . . . . . .xv, 940

relativistic . . . . . . . . . . . . . . xiii, 1409

equivalent representations . . . . . . 909

Feynmans time-sliced definition . 89

divergence . . . . . . . . . . . . . . . . . . . 927

for probability . . . . . . . . . . . . . . . . 1301



1580 Index

for zero Hamiltonian . . . . . . . . . . . . 91

forward–backward . . . . . . . . . . . . .1345

path order . . . . . . . . . . . . . . . . . . 1295

free particle . . . . . . . . . . 101, 104, 110

momentum space . . . . . . . . . . . . .102

freely falling particle . . . . . . . . . . . 177

in dionium atom . . . . . . . . . . . . . . 1013

measure . . . . . . . . . . . . . . . . . . . 781, 898

in space with curvature and torsion
802, 807

oscillator . . . . . . . . . . . . . . . . . . . . . . . 112

time-dependent frequency 127, 148

particle in magnetic field . . 179, 181,
183

perturbative definition . . . . . . . . .287

calculations in . . . . . . . . . . . . . . . 812

measure of path integration . . 855

quantum-statistical . . . . . . . . . . . . . 135

oscillator . . . . . . . . . . . . . . . . . . . . . 143

radial . . . . . . . . . . . . . . . . . . . . . . . . . . 709

relativistic particle . . . . . . . . . . . 1382

and stiff polymer . . . . . . . . . . . 1382

reparametrization invariance 1383

solvable . . . . . . . . . . . . . . 101, 112, 985

spinning particle . . . . . . . . . . . . . . . 751

spinning top . . . . . . . . . . . . . . . 750, 751

stable for singular potentials . . .930

time-sliced

Feynman . . . . . . . . . . . . . . . . . . . . . .91

in space with curvature and torsion
806

velocity . . . . . . . . . . . . . . . . . . .189, 192

path-dependent time transformation
(DK) 993, 995, 997, 1003, 1006,
1008, 1009, 1021, 1027

reparametrization invariance of 934

pattern, diffraction . . . . . . . . . . . . . . . . . . 29

Patton, B. . . . . . . . . . . . . . . . . . . . . . . .1376

Pauli

algebra . . . . . . . . . . . . . . . . . . . . . . . . . 674

exclusion principle . . . . . . . . . . . . . 597

spin matrices . . . . . . . . . . 63, 726, 756

Pauli vector . . . . . . . . . . . . . . . . . . . . . . . . 973

Pauli, W. . . . . . . . . . . . . . . . . . . . . . . . . . 388

Peak, D. . . . . . . . . . . . . . . . . . . . . . . . . . . 758

Pearson, K. . . . . . . . . . . . . . . . . . . . . . 1093

Pechukas, P. . . . . . . . . . . . . . . . . . . . . . 463

Peeters, B. . . . . . . . . . . . . . . . . . . . . . . . 900

Peeters, F.M. . . . . . . . . . . . . . . . . xii, 575

Pelster, A. xii, 255, 367, 368, 554, 574,
575, 596, 704, 899, 1030, 1379

Pelzer, F. . . . . . . . . . . . . . . . . . . . . . . . 1377

Pepper, M. . . . . . . . . . . . . . . . . . . . . . . 1173

Percival, I.C. . . . . . . . . . . . . . . . . . . . . 463

periodic

boundary conditions . 126, 167, 219,
222, 242, 247, 250, 256

functional determinant . . . . . . . 349

current . . . . . . . . . . . . . . . . . . . . . . . . . 247

Green function . . .220, 221, 223, 248

Euclidean . . . . . . . . . . . . . . . . . . . . 240

permutation group . . . . . . . . . . . . . . . . . 597

persistence length . . . . . . . . . . 1048, 1052

perturbation

coefficients

precocious growth . . . . . . . . . . . . 517

retarded growth . . . . . . . . . . . . . . 517

expansion

Bender-Wu . . . . . . . . . . . . . . . . . . 353

covariant . . . . . . . . . . . . . . . . . . . . . 873

large-order . . . . . . . . . . . . . . . . . . 1220

path integral with delta-function
potential . . . . . . . . . . . . . . . . . . . 778

theory . . . . . . . . . . . . . . . . . . . 272, 1289

Brillouin-Wigner . . . . . . . . . . . . .279

cumulant expansion 274, 278, 294,
499

large-order 1221, 1223, 1224, 1226,
1230

nonequilibrium Green functions
1298

Rayleigh-Schroedinger . . .xiii, 276,
276, 280

scattering amplitude . . . . . . . . .340

variational . . . . .xiii, 464, 502, 502

via Feynman diagrams . . . . . . . 276

perturbative definition of path integral
287, 812

coordinate invariance . . . . . . . . . . . 817

measure of path integration . . . . 855

phase

Berry . . . . . . . . . . . . . . . . . . . . . . . . . . 756

H. Kleinert, PATH INTEGRALS



1581

gas . . . . . . . . . . . . . . . . . . . . . . . . . . . .1259

liquid . . . . . . . . . . . . . . . . . . . . . . . . . 1259

metastable . . . . . . . . . . . . . . . . . . . . 1259

overheated . . . . . . . . . . . . . . . . . . . . 1259

shifts . . . . . . . .1187, 1189, 1193, 1196

Shubnikov . . . . . . . . . . . . . . . . . . . . 1102

slips in thin superconductor . . 1255

space . . . . . . . . . . . . . . . . . . . . . . . . . 3, 98

paths in . . . . . . . . . . . . . . . . . 97, 137

transition . . . . . . . . . . . . . . . . . . . . . 1259

Kosterlitz-Thouless . . . . . . . . . . .608

phenomena

collective . . . . . . . . . . . . . . . . . . . . . . . 690

entanglement 1096, 1100, 1113, 1139

phenomena, critical . . . . . . . . . . . . . . . 1273

Phillips, W.D. . . . . . . . . . . . . . . . . . . 1272

photoelectric-effect . . . . . . . . . . . . . . . . . . 13

photon bath

master equation . . . . . . . . . . 268, 1352

physics of defects . . . . . . . . . . . . . . 789, 791

Pi, S.-Y. . . . . . . . . . . . . . . . . . . . . .899, 1170

picture

Heisenberg . . . . . . . . .39, 40, 41, 1275

for probability evolution . . . . 1339

in nonequilibrium theory . . . 1275,
1284

interaction (Dirac) . . . . . . . . . . 42, 73

generating functional . . . . . . . .1298

time evolution operator . . . . . 1291

Schroedinger . . . . . . . . . . . . . . . . 40, 41

in nonequilibrium theory . . . . 1275

Pinto, M.B. . . . . . . . . . . . . . . . . . . .xii, 704

Pippard, A.B. . . . . . . . . . . . . . . . . . . . 1174

Pitaevski, L.P. . . . . . . . . . . . . . . . . . . . . 88

Pitman, J. . . . . . . . . . . . . . . . . . . . . . . . . 758

Planck

constant . . . . . . . . . . . . . . . . . . . . . . . . .13

length . . . . . . . . . . . . . . . . . . . . . . . . .1403

Planck, M. . . . . . . . . . . . . . . . . . . . . . . 1378

plane wave . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Plastino, A. . . . . . . . . . . . . . . . . . . . . . . 901

Plo, M. . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

Podolsky, B. . . . . . . . . . . . . . . . . . . . . . . 88

Poeschl-Teller potential . . . . . . . . . . . . .738

general . . . . . . . . . . . . . . . . . . . . . . . . . 742

Poincaré
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