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Abstract

It is shown that torsion can be moved partially or totally into the

curvature n a new kind of gauge transformation without changing the

physical content of Einstein’s theory of gravitation. This explains its

invisibility in any gravitational experiment.

The question why torsion does not show up in gravity has plagued many

researchers and has been discussed controversially in the literature [1]. Last

year. Hammond won a prize from the Gravity Research Foundation for an

essay arguing for the necessity of torsion in gravity [2]. The purpose of this

note is to hold against it and to show that his arguments are invalid.

1. The second of Hammond’s arguments states that torsion is necessary

to absorb the gradient of the phase arising if the chiral transformation of

the Dirac field ψ(x) → eiαγ5ψ(x). However, this transformation is already

local symmetry due to the presence of the vector bosons of weak interactions.

These easily absorb the gradient α(x).
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2. The first of Hammond’s arguments is that torsion is necessary to derive

the conservation of total angular momentum

d

dτ
Jµν = 0. (1)

However, this law follows directly from the fact that the symmetric energy-

momentum tensor of Einstein’s theory Gµν = Rµν − 1

2
gµνR, and that the

total angular momentum is given by the integral

Jµν =
∫
d3x

√
g(xµTν0 − xνTµ0). (2)

The conservation law is a direct consequence of the local conservation law (1)

DνTµν = 0, which implies that Dλ(xµTνλ−xνTµλ) = 0, whose spatial integral

yields (1).

It is useful to elaborate this issue a little further to better understand

Hammond’s mistake. We re-express Einstein’s gravity in Cartan’s spacetime

in terms of two gauge fields, one of translations, the vierbein field hαµ, and

one of local Lorentz transformations, the spin connection Aµα
β [3, 4, 5]. The

metric is related to these by gµν = hαmΛα
aΛa

βhβν where Λa
β is an arbitrary

local Lorentz transformation and Λα
a its inverse. There is a pure gauge field

associated with Λa
β:

Aµα
β = Λα

a∂µΛa
β, (3)

and we can form a covariant derivative of any vector vα

DL
αvβ = ∂αvβ −Aµα

βvβ, (4)

which transforms like a tensor under local Lorentz transformations Λa
β. The

affine connection of the Cartan spacetime is given by

ΓC
µα

β = hβλD
L
µhα

λ = hβλ(∂µ − Aµα
β)hβ

λ. (5)
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By converting the indices α and β to ν and λ by contracting with hα
λ or hα

λ ,

we can create from this the affine Cartan connection ΓC
µν

λ = hανΓ
C
µα

βhβ
λ. Its

antisymmetric part is defined as the torsion tensor of the Cartan spacetime:

Sµν
λ ≡ 1

2
(Γµν

λ−Γνµ
λ). The Christoffel connection is now obtained by forming

Γµν
λ = ΓC

µν
λ − Kµν

λ, where Kµνλ ≡ hανh
β
λKµαβ ≡ Sµνλ − Sνλµ + Sλµν is

the contortion field. The relation between the Cartan and the Christoffel

connection is ΓC
µν

λ = Γµν
λ +Kµν

λ.

The Cartan connection written as a matrix ΓC
µν

λ ≡ (ΓC
µ )α

β has a covariant

curl

RC
µνλ

κ ≡ {∂µΓC
ν − ∂νΓ

C
ν − [ΓC

µ ,Γ
C
ν ]}λκ, (6)

which is the Cartan curvature tensor. The same expression without super-

script C is the Riemannian curvature tensor Rµνλ
κ. The two are related

by

Rµνλ
κ = RC

µνλ
κ − (DµKνλ

κ −DνKµλ
κ − [Kµ, Kν ]λ

κ). (7)

So far, the vector field arising from the local Lorentz-transformation Λa
β

is a pure gauge field (3). If we form the covariant curl of the matrix Aµα
β ≡

(Aµ)α
β we obtain a vanishing field strength

Fµνβ
γ ≡ {∂µAν − ∂νAν − [Aµ, Aν ]}λκ. (8)

As a consequence, also the Cartan curvature tensor vanishes, which is re-

lated to this by RC

µνλ
κ ≡ hβλhγ

κFµνβ
γ. Then we see from Eq. (7) that the

Riemannian curvature scalar is expressible entirely in terms of the tensor as

R = Rµν
νµ = −4DµS

µ + SµνλS
µνλ + 2SµνλS

µλν − 4SµSµ, (9)

If we form the Einstein-Hilbert action AEH = −1/(2κ)
∫
dx

√
gR, we obtain

the famous teleparallel formulation of Einstein’s theory [6, 7], which is thus
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completely equivalent to Einstein’s theory, which is a field theory only of the

metric gµν(x). This observation has led to the conclusion that torsion is just

another language for expressing the laws of gravity in Einstein’s theory [8, 9].

The important point of this essay is to go beyond this well-known equiv-

alence and exhibit a new type of gauge symmetry which emphasizes even

more the unobservability of torsion [10]. We realize that the decomposition

(7) of the Riemannian curvature tensor is not only valid for any local Lorentz

transformation Λa
β where Aµνα

β is a pure gauge (3) and RC
µνα

β ≡ 0, but it

is an invariant under arbitrary multivalued Lorentz transformations Λa
β, i.e.,

those which have noncommuting derivatives [∂µ, ∂ν ]Λa
β 6= 0 [11]. Then the

curl (8) is no longer zero and we can shuffle part or all of the torsion into

the Cartan curvature without changing a given Einstein tensor. The other

extreme of this procedure is the choice of zero torsion, Sµν
λ ≡ 0, from which

we find

Aµα
β = Āµα

β ≡ hα
νhβλ(Ωµνλ − Ωνλµ + Ωλµν), (10)

where Ωµνλ are the objects of anholonomity : Ωµνλ = (1/2)[hαλ∂µh
α
ν − (µ↔

ν)]. The choice of a multivalued function Λa
β in Eq. (3) which leads to a

nonzero gauge field Aµα
β may be called hypergauge transformation.

The invariance of the Riemann tensor under this new type of gauge trans-

formations is the key to understanding the invisibility of torsion in a phys-

ical experiment. Any expression containing torsion is noninvariant under

hypergauge transformation since torsion can be hypergauged away into the

curvature of the gravitational field.

How about the coupling of matter in such a reformulation of gravity?

Since the contortion is a tensor, we can multiply it by any coupling constant

q to form an infinity of q-dependent connection Γq
µν

λ = ΓC
µν

λ − qKµν
λ, and
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thus an infinity of covariant derivatives. For a vector field Aµ, these are

Dq
µAν ≡ ∂µAν − Γq

µν
λAλ. (11)

Experiment must tell which of these is physically correct. Thus we consider

the electromagnetic field strength F q
µν ≡ Dq

µAν − Dq
νAµ, and find F q

µν =

∂µAν − ∂νAµ − 2(1 − q)Sµν
λAλ. This shows the well-known fact that the

electromagnetic action − 1

4
F q
µνF

q µν has a mass term unless we choose the

coupling strength q = 1.

A little algebra shows us that Γq
µν

λ for q = 1 is simply the good-old

Fock-Ivanenko spin connection used in Einstein’s theory. Multiplication by

vierbein fields produces the corresponding Aµα
β-field, which is simply the

S ≡ 0-gauge field (10):

hα
νhβλΓ

1

µν
λ ≡ Āµα

β. (12)

If we want to avoid that the photon acquires a mass by virtual pro-

cesses in which it goes over into a ρ-meson and further into barions, we must

couple also all other fields in the same way, i.e., via the covariant deriva-

tive D̄µψ ≡ (∂µ − i

2
Āµα

βΣα
β)ψ where Σβ

α are the generators of Lorentz

transformations with the commutation rules [Σαβ ,Σαγ ] = −iηααΣβγ (no

sum over α). For Dirac fields Σαβ = i
3
[γα, γβ], whereas for vector fields vβ :

(Σαβ)α′β′ = i(δαα′δββ′ − δαβ′δβα′), and D̄µvβ ≡ ∂µvβ − Āµα
βvβ, corresponding

to (11) for q = 1.

In Cartan spacetime, the Einstein tensor is related to its Cartan version

by the identity:

Gµν = GC

µν − 1

2
D∗λ (Sµν,λ − Sνλ,µ + Sλµ,ν) , (13)

where where the covarinant derivative is defined by D∗

λvµ ≡ ∂λvµ −ΓC
λµ

κvκ +

2Sλκ
κvµ. This is precisely the Belinfante relation [12] between canonical
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energy-momentum tensor and spin density. Thus the total angular momen-

tum (2) becomes the sum of an orbital part Lµν =
∫
d3x

√
g(xµG

C
ν0
− xνG

C
µ0

)

and spin Sµν =
∫
d3x

√
gSµν,0, where Sµν,0 is the spin current density intro-

duced by Palatini: Sµκ
,τ ≡ 2(Sµκ

τ + δµ
τSκ − δκ

τSµ). From the hypergauge

invariance of the Riemann curvature we may now conclude there is no sense

in trying to distinguish between orbital and spin angular momentum of the

gravitational field. They can be hypergauged into each other at any fixed

total angular momentum, which is a hypergauge-invariant quantity. This

invariance is physically necessary to give the orbital angular momentum of a

planet and the sum of all spins of the elementary particles the same frame-

dragging effect [13] measured in Gravity Probe B [14]. For as long as we

do not know what are the true elementary particles of matter (only string

theorists do, but they have even more severe problems with nature), the

distinction between orbital rotation and intrinsic spin is fundamentally im-

possible, as explained in Ref. [10].

What we have done can be understood very easily by considering an anal-

ogous field-theoretical model of a real field ρ with an Euclidean Lagrangian

L = (∂µρ)
2 − ρ2 + ρ4, and a partition function Z =

∫ DψDψ∗ e−
∫

dxL. We

may trivially introduce an extra gauge structure by re-expressing the La-

grangian in terms of a complex field ψ = ρeiθ and a gauge field Aµ as

L̄ = |(∂µ − iAµ)ψ|2 − |ψ|2 + |ψ|4. Now we form the partition function

Z̄ =
∫ DψDψ∗DAµΦ e

−

∫
dxL̄, where Φ is an arbitrary gauge-fixing functional,

multiplied by the associated Faddeev-Popov determinant. The new Z̄ is com-

pletely equivalent to the original Z. There is no way of observing Aµ. The

partition function Z plays the role of Einstein’s theory, whereas Z̄ is its re-

formulation in terms of a gauge fields, which does not change the physical

content of the theory.

6



Acknowledgment: I thank J.G. Pereira, J.P.S. Lemos, and R.T. Hammond

for useful discussions.

References

[1] See the letter exchanges in Physics Today, 60, 10, 16 (2006) following

S. Weinberg’s article in Vol. 58, 31 (2005).

[2] R.T. Hammond, The Necessity of Torsion in Gravity . prized in 2010 by

the Gravity Research Foundation (gravityresearchfoundation.org),

GRG (to be published) (until then read it at physik.fu-berlin.de

/~kleinert/papers/necessity-of-torsion.pdf)

[3] R. Utiyama, Phys. Rev. 101, 1597 (1956); T.W.B. Kibble, J. Math.

Phys. 2, 212 (1961); D.W. Sciama, Rev. Mod. Phys. 36, 463 (1964);

F.W. Hehl, P. von der Heyde G.D. Kerlick, and J.M. Nester, Rev. Mod.

Phys. 48, 393 (1976); F.W. Hehl, J.D. McCrea, E.W. Mielke, and Y.

Neemann, Phys. Rep. 258, 1 (1995); R.T. Hammond, Rep. Prog. Phys.

65, 599 (2002).

[4] H. Kleinert, Gauge Fields in Condensed Matter , Vol. II Stresses and De-

fects, World Scientific, Singapore 1989, pp. 744-1443 (physik.fu-ber-

lin.de/~kleinert/b2)

[5] H. Kleinert, Multivalued Fields in Condensed Matter, Electromagnetism,

and Gravitation, World Scientific, Singapore 2008, pp. 1-497 (phy-

sik.fu-berlin.de/~kleinert/b11)

[6] R. Debever (ed.), Elie Cartan–Albert Einstein, Letters on Absolute Par-

allelism 1929-1932 , Princeton University Press, Princeton 1979.

7



[7] K. Hayashi and T. Shirafuji, Phys. Rev. D 19, 3524 (1979).

[8] H.I. Arcos, and J.G. Pereira, (gr-qc/0408096v2); Int. J. Mod. Phys. D

13, 2193 (2004) (gr-qc/0501017v1); V.C. de Andrade, H.I. Arcos, and

J.G. Pereira, (gr-qc/0412034);

[9] V.C. de Andrade and J.G. Pereira, Int. J. Mod. Phys. D 8, 141 (1999)

(gr-qc/9708051).

[10] H. Kleinert, (arxiv:1005.1460).

[11] The new freedom brought about by multivalued gauge transformations

in many areas of physics is explained in the textbook [5]. For instance,

we can derive the physical laws with magnetism from those without it,

in particlular the minimal coupling law. Similarly, we can derive the

physical laws in curved space from those in flat space.

[12] F.J. Belinfante, Physica 6, 887 (1939). For more details see Sect. 17.7

in the textbook [5].

[13] H. Kleinert, Gen. Rel. Grav. 32, 1271 (2000) (physik.fu-berlin.de/

~kleinert/271/271j.pdf).

[14] See einstein.stanford.edu.

8


