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Abstract

We develop simple rules for performing integrals over products of distributions in coordinate space. Such products occur
in perturbation expansions of path integrals in curvilinear coordinates, where the interactions contain terms of the form
§°g", which give rise to highly singular Feynman integrals. The new rules ensure the invariance of perturbatively defined
path integrals under coordinate transformations. © 2000 Published by Elsevier Science B.V.

1. Introduction

In the previous Letters [1;2], we have presented a
diagrammatic proof of reparametrization invariance
of perturbatively defined quantum-mechanical path
integrals. The proper perturbative definition of path
integrals was shown to require an extension to a
functional integral in D spacetime, and a subsequent
analytic continuation to D = 1. In Ref. [1] the pertur-
bative calculations were performed in momentum
space, where Feynman integrals in a continuous
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number of dimensions D are known from the pre-
scriptions of 't Hooft and M. Veltman [3]. In Ref. [2]
we have found the same results directly from the
Feynman integrals in the 1 — e-dimensiona time
space with the help of the Bessel representation of
Green functions. The coordinate space calculation is
interesting for many applications, for instance, if one
wants to obtain the effective action of afield system
in curvilinear coordinates, where the kinetic term
depends on the dynamic variable. Then one needs
rules for performing temporal integrals over Wick
contractions of local fields.

In this Letter we want to show that the
reparametrization invariance of perturbatively de-
fined quantum-mechanical path integrals can be ob-
tained in the coordinate space with the help of a
simple but quite general arguments based on the
inhomogeneous field equation for the Green func-
tion, and rules of the partial integration. The prove
does not require the calculation of the Feynman
integrals separately and remains valid for the func-
tional integrals in an arbitrary space-time dimension
D.
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2. Problem with coordinate transfor mations

Recall the origin of the difficulties with coordi-
nate transformations in path integrals. Let x(7) be
the euclidean coordinates of a quantum-mechanical
point particle of unit mass in a harmonic potential
0?x?/2 asafunction of the imaginary time r= —it.
Under a coordinate transformation x(7) — q(7) de-
fined by x(7)=f(q(v))=q(v) + X7_,a,9"(7), the
kinetic term %2(7) /2 goes over into

g3 () f"*(a(r)) /2.

If the path integral over q(7) is performed perturba-
tively, the expansion terms contains tempora inte-
grals over Wick contractions which, after suitable
partial integrations, are products of the following
basic correlation functions

A(r=r") =<a(r)a(')) = —, (1)
dA(T—1)={q(r)a(r")) =--—, (2)
9.0, A(t—7) ={q(7)4(v)) =----. (3)

The right-hand sides define the line symbols to be
used in Feynman diagrams for the interaction terms.
Explicitly, the first correlation function reads

’ —ow|t—1'|
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and an interacting part, which reads to second order
in g:

Anlal =%fdr{—g 29*(7)q*(7)

2w? 4
+—a'()

+9%(1+23)G*(7)q*(7)

1 2a
+0?[ =+ —
(9 5

qﬁ(f)]}- (12)

The exponent in (10) contains an additional effective
action Aj[q] coming from the Jacobian of the coor-
dinate transformation:

8f(q(7))
da(r)
This has the power series expansion

Ala] = —5(0) [dr[ —ga*(r)

+g°(a—3)a*(n)]. (14)
For g =0, the transformed partition function (10)
coincides with (8). When expanding Z of Eg. (10) in
powers of g, we obtain a sum of Wick contractions
with associated Feynman diagrams contributing to
each order g". This sum must vanish to ensure
coordinate invariance of the path integral.
By considering only connected Feynman dia

Ala] = -38(0) [dr log (13)
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possible combinations of the three line types (1)—(3).
The former are

2 N, o, oon o=
~FP =51 O3+ 2 QIO + 2 OO
+ 8200 +8° 000 +8* G001,

(19

and the latter:
—F® :_92_2! 4 [+ 1 + O+’ @ﬂ%w“@] .

(20)

Since the equal-time expectation value {{(r) (1))
vanishes by Eqg. (5), diagrams with a local contrac-
tion of a mixed line (2) are trivially zero, and have
been omitted.

In our previous Letters [1;2], al integrals were
caculated individualy in D=1—¢ dimensions,
taking the limit £ — 0 at the end. Here we set up
simple rules for finding the same results, which
make the sum of al Feynman diagrams contributing
to each order g" vanish.

5. Basic properties of dimensionally regularized
distributions

The path integral (10) is extended to an associated
functional integra in a D-dimensional coordinate
space X, with coordinates xﬂz(r,xz,xy...), by
replacing () in the kinetic term by (d,q(x))?,
where 9, = d/dx,. The Jacobian action term (13) is
omitted in dimensional regularization because of
Veltman's rule [3]:

dPk 0
(2m)®

5®(0) = [ (21)

In our calculations, we shall encounter generalized
é-functions, which are multiple derivatives of the
ordinary é-function:

S;A(LD)- Mn( X) = aﬂl---una(m( X)

1--

= [dPk(ik),, .. (i), €, (22)
with 4, =4d, ...4, ad with d°k=
dPk/(27)P. In dimensional regularization, alle these
vanish at the origin as well:

8 ,.(0) = [d°Kk(iK) ., .. (1K), = O, (23)

which isamore general way of expressing Veltman's
rule. In the extended coordinate space, the correla
tion function (1) becomes

4 de eikx o
(X)_f(ZW)D K2t w2’ (24)

At the origin, it has the value

A0 dPk wP? 1 D 1
( )_fk2+w2_ (41) P72 ( _E)Dtlﬂ'

(25)

The extension of the time derivative (2),

4,(x) = [d°k LI (26)
13 k2+w2

vanishes at the origin, AM(O) = 0. This follows di-
rectly from a Taylor series expansion of 1/(k? + w?)
in powers of k2, together with Eq. (23).

The second derivative of A(x) has the Fourier
representation

4

k. k
= — [dPk LY _@ikx
A4,,(x) fd kk2 5 e, (27)

Contracting the indices yields

de k2 ik x
_f k2+w2e

— 5P x) + wA(X), (28)

4,,(x)
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which follows from the definition of the correlation
function by the inhomogeneous field equation

(=92 + w®)q(x) =86 (x). (29)
From (28) we have the relation between integrals

JdPx4,,(x) = =1+ w?[d®x A(X), (30)
Inserting Veltman's rule (21) into (28), we obtain

2,,(0) =02 A(0) = .

This ensures the vanishing of the first-order contribu-
tion (16) to the free energy

—F,=—g[—4,,0) + A(0)] A(0) =0. (32)

The same Eq. (28) alows us to caculate immedi-
ately the second-order contribution (17) from the
local diagrams

(31)

—F = —39?|(% +a) 4, ,(0)

5(1 a
J— _+_
18 5

wZA(O)}AZ(O)

2 W30 o 33
== 3970 = "o (33)

The other contributions to the free energy in the
expansion (15) require rules for calculating products
of two and four distributions, which we are now
going to develop.

6. Integrals over products of two distributions

The simplest integrals of this type are
8P (k+p)
(p*+ w?)(k* + w?)

Ny d°k
(K + 0?)’

JdPx4%(x) = [d°pd°k

s
_(2-D)
2w?

A(0), (34)

and
dex AZ(x)

= — [d®x A(X) [ - 8P(%) + 0HA(X)]

D
= 4(0) — w? [d®x 4%(x) = S 40). (39

To obtain the second result we have performed a
partial integration and used (28).

In contrast to the integrals (34) and (35), the
integral

(kp)® 8 (k+ p)
(k2 + wz)( p?+ a)z)

(k)
= [Pk ——
f (kz )

= [d®x42,(x) (36)

diverges formaly in D=1 dimension. In dimen-
sional regularization, however, we may decompose
(k?)? = (K® + 0?)? - 2w?(k®* + 0?) + 0*, and use
(23) to evaluate further

/de AL (x) = depde

o ()
Jd k(|<2+(02)2

dD
__wa(k2+w)

dex AZ ()

Pk

+ ot ————
/(k2+w2)2

—20%(0) + *[d°xA%(x).
(37)

Together with (34), we obtain the finite integrals

dex AZ(X) dex AZ(x)

—20%(0) + o [d°x 4%(x)

= —(1+D/2) w%A(0) . (38)
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An alternative way of deriving the equality (36) isto
use partial integrations and the identity

8MAW( X) =4, AW( X), (39)

which follows directly from the Fourier representa-
tion (26).

Finaly, from Egs. (34), (35), and (38), we ob-
serve the useful identity

JdPx[42,(%) +2w? A2(X) + 0* 4%(x)] =0,
(40)

which together with the inhomogeneous field Eq.
(28) reduces the calculation of the second-order con-
tribution of all three-bubble diagrams (19) to zero:

—F = —g%(0) [dPx [ 47,(x) + 207 47(X)

+o0? 42(x)] =0. (41)

7. Integrals products of four distributions

More delicate integrals arise from the watermelon
diagrams in (20) which contain products of four
distributions, a nontrivial tensorial structure, and
overlapping divergences[1;2]. Consider thefirst three
diagrams:

:/dDzA2(w)Az,,(:c).

(42)
16 :4./dD:cA(z)A,,(z)A,,(:c)Au,,(:c),
(43
& = / P2 A (@) A(2)A (2) A, (),
(44)

To exhibit the subtleties with the tensorial structure,
we introduce the integral

Iy =dex A2(x)[ 42,(x) — 42,(x)]. (45)

In D=1 dimension, the bracket vanishes formally,
but the limit D — 1 of the integral is nevertheless
finite. We now decompose the Feynman diagram
(42), into the sum

JdPx42(x) A2,(x) = [dPx A2(x) A2,(X) + 1.
(46)

To obtain an analogous decompositions for the
other two diagrams (43) and (44) we derive a few
useful relations using the inhomogeneous field Eq.
(28), partia integrations, and Veltman's rule (23).
First there is the relation

— [dPx4,,(x) A%(x) = 4%(0) — w? [d°Xx A*(x).
(47)

By a partial integration, the left-hand side becomes

JdPx4,,(x) 4%(x) = =3[ dPx 42(x) A%(x),
(48)

leading to

JdPx 42(x) 42(x) = 34%(0) — $? [d®x 4%(X).
(49)

Invoking once more the inhomogeneous field Eq.
(28) and Veltman’s rule (21), we obtain the integrals

JdPx 42, (%) 4%(x)

= —20%%(0) + * [d°x 4%(x), (50)
and
JdPx4,,(x) 42(x) A(x)

= ? [dPx 42(x) 42(X). (51)
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Due to Eq. (49), the integral (51) takes the form
JdPx4,,(x) 42(x) A(X)
= ;0%%(0) — Jo* [d°x 4%(X). (52)

Partial integration, together with Egs. (50) and (52),
leads to

JdPx3,4,,() 4,(x) 42(x)

= — [d®x 42,(x) 42(x)

—2[d°x 4,,(X) 42(x) A(X)
= §0%%(0) - Jo* [d°x 4%(x), (53)
A further partia integration, and use of Egs. (39),

(51), and (53), produces the decompositions of the
second and third Feynman diagrams (43) and (44):

4 [dPx A(X) 4,(x) A,(X) 4,,(%)

= —21p + 402 [dPx 4%(x) 42(X), (54)
and
JdPx A2(x) AZ(%)

= Ip = 302 [dPX A%(X) AZ(%). (55)

We now make the important observation that the
subtle integral 1, of Eq. (45) appears in Eqgs. (46),
(54) and (55) in such away that it drops out from the
sum of the watermelon diagrams in (20):

S o+ O

= ]de Az(z)Afm(x)+w2/dD$ A%(2)A%(2).

(56)

Using (49) and (50), the right-hand side becomes a
sum of completely regular expressions. Moreover,

adding to this sum the last two watermelon-like
diagrams in Eq. (20):

4w? @ = 4u? /dDa: A (z)A%(z),

(57)

and
24 _24 D 4
v @_gw /d z AY(z),

(58)

we obtain for the contribution of all watermelon-like
diagrams (20) the simple expression

CFW = _zngde A%(x)[ A2,(%)
+50% A3(X) + 0t A%(X)]

1
_ 2 243 _

S04 (O)D—>l Do (59)
This cancels the finite contribution (33), thus making
also the second-order free energy in (15) vanish, and
confirming the invariance of the perturbatively de-
fined path integral under coordinate transformations
up to this order.

8. Summary

In this Letter we have set up simple rules for
calculating integrals over products of distributionsin
configuration space which produce the same results
as dimensiona regularization in momentum space.
For a path integral of a quantum-mechanical point
particle in a harmonic potential, we have shown that
these rules lead to a reparametrization-invariant per-
turbation expansions of path integral.

Let us end with the remark that in the time-sliced
definition of path integrals, reparametrization invari-
ance has been established as long time ago in the
textbook [4].
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