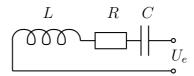
Übungen zur Vorlesung "Theoretische Physik 3"

Blatt 6 24.11.2010 WS 10/11

15. Dielektrische Kugel im homogennen Feld

2 Punkte

Eine ungeladene Kugel mit Radius R und Materialkonstante ϵ befinde sich im Vakuum in einem elektrischen Feld, das für $r\gg R$ homogen $=\vec{E}_{\infty}=E_{\infty}\vec{e}_z$ ist. Man zeige, daß das Potential


$$\varphi(\vec{r}) = \begin{cases} \varphi_a = -E_{\infty}z + \frac{\epsilon - 1}{\epsilon + 2} \frac{R^3}{r^3} E_{\infty}z & \text{für } r > R \\ \varphi_i = -\frac{3}{\epsilon + 2} E_{\infty}z & \text{für } r < R \end{cases}$$

die Differentialgleichung $\Delta \varphi = 0$ und die Randbedingungen $(\varphi_i - \varphi_a)_{r=R} = 0$ und $\left(\epsilon \frac{\partial \varphi_i}{\partial r} - \frac{\partial \varphi_a}{\partial r}\right)_{r=R} = 0$ erfüllt.

16. RLC-Kreis 3 Punkte

Wie lautet die allgemeine Lösung der Differentialgleichung

$$L\ddot{I} + R\dot{I} + \frac{1}{C}I = \dot{U}_e$$

für den RLC-Kreis mit der eingeprägten Spannung $U_e = U_0 \cos \Omega t$?

Wie lautet die Lösung für große Zeiten?

Man diskutiere das Verhältnis der Amplituden I_0/U_0 für diese Lösung als Funktion von Ω . Plotten Sie die Funktion $I_0(\Omega)/U_0(\Omega)$ und Phasenverschiebung $\phi(\Omega)$ zwischen der eingeprägten Spannung und dem Strom.

Anleitung: Siehe Vorlesung Theoretische Physik I (Mechanik, Schwingungen). Man zeige: mit dem Ansatz $I(t) = I_0 \cos(\Omega t - \phi)$ ergibt sich aus der Differentialgleichung

$$I_0(-L\Omega^2 + 1/C) = -U_0\Omega \sin \phi$$
$$I_0(-R\Omega) = -U_0\Omega \cos \phi$$

Für die Plotts verwende man Mathematica:

Plot[
$$1/Sqrt[1+(x-1/x)^2]$$
,{x,0,5}];
Plot[$ArcTan[x-1/x]$,{x,0,5}];

17. Dosselspule 1 Punkt

Eine Drosselspule mit L=1 H und R=1 Ω wird zur Zeit t=0 an eine Batterie mit der konstanten Spannung U_0 angeschlossen. Gesucht ist der zeitliche Verlauf des Stromes. Wie lange dauert es, bis sich der stationäre Strom bis auf 1/1000 eingestellt hat?

Abgabetermin: Mi den 1.12. 2010 in der Vorlesung

Siehe auch: http://users.physik.fu-berlin.de/~kamecke/lehre.html