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We construct exact eigenvectors and eigenvalues of O(2N) symmetric two-dimensional 
theories (vertex models and quantum field theories) by means of a generalization of the nested 
Bethe ansatz method. The spectrum of the physical states as well as the structure of the 
eigenvectors are expficitly derived. Their group theoretical properties are investigated, the free 
energy of the vertex model is given and its properties analysed. 

1. Introduction 

Since the exact solution of the eight-vertex model [1] considerable progress has 
been made on integrable multistate vertex models [2, 3]. By multistate we mean 
models where each link in the two-dimensional lattice can be in q different states 
with q > 2. 

Although the transfer matrix eigenvalues were derived for a large class of models 
by  the "uni tar i ty  method" and by the analytic Bethe ansatz the construction of 
exact eigenvectors has been done only for the Z N symmetric [2,4] and U ( N )  
symmetric  models [5, 6] and recently for the Sp(2N) symmetric model [7]. 

The pu rpose 'o f  this paper is to present the explicit construction of eigenvectors 

and eigenvalues for the O(2N)  symmetric vertex model. This is done using a 
generalization of the nested Bethe ansatz method [2]. The construction of the exact 

eigenvectors besides their own interest is an important  step in the program of the 
exact resolution of these models. The calculation of form factors and correlation 
functions will benefit from the knowledge of the eigenvectors constructed in the 
present  paper.  

We present our construction in the language of two-dimensional vertex models. 
So, we give the eigenvectors and eigenvalues of the O(2N)  multistate vertex model 
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Fig. 1. The four allowed configurations at one site of  a square lattice of the O(2N)  vertex model. 

where the statistical weights are depicted in fig. 1 and given by the matrix 

where 

2 2 
S ( O )  = 1  - - ~ P -  2 N _ 2 _ 0  K ,  (1.1) 

Pa b, cd = ~ad~bc' gab ,  cd = 8abScd " 

Our results can be easily translated to fermionic quantum field theories with O(2N)  
symmetry. More precisely, the model defined by [8, 9] 

.~= i~a ~ a _  ( ~aT~c)  -- aY--'( (1.2) 

is directly related to the vertex model of fig. 1. Here ~a (a = 1 . . . . .  2N)  is a Dirac 
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field and V = g(1 + P - K).  The eigenstates and eigenvalues of the hamiltonian of 
the model (1.2) can be written in terms of the eigenstates of the transfer matrix 
corresponding to the vertex model defined by (1.1) or fig. 1. 

The construction presented here is purely algebraic and is based on the Yang- 
Baxter algebra of monodromy matrices [2,10]. A monodromy matrix TA~(O) is 
associated with a horizontal line of n sites of the two-dimensional lattice (eq. (2.4)). 
T f  acts in two spaces: A and ~2. A is a 2N-dimensional space for the O(2N)  model 
and I2 a tensor product of n 2N-dimensional spaces. The basic algebraic properties 
of the operators and their submatrices Aa ~, Ba ~, Ca ~ and D~ are summarized by the 
Yang-Baxter algebra (for details, see sect. 2) 

SAB(O -- O')Tf(O)Ts (O ') = Ts (O')Tf(O)SAs(O - 0 ' ) ,  (1.3) 

( A a(o) Bff(O) ) (1.4) 
rf(o)= c y ( o )  b y ( O )  

The operators B a (Ca) play the role of creation (annihilation) operators of inter- 
acting excitations (pseudoparticles). Hence the bare vacuum or reference state is 
defined by 

C~¢p a = O. 

Eigenvectors '/'~ of the transfer matrix 

(1.5) 

follow by filling the reference state with pseudoparticles 

N 

= Bi,j,(o,)cp(i,j) (1.6) 
r = l  i t , j =  1 

(it, Jr are the indices of Bff as an operator on the space a). The eigenvalue problem 
for ~'u(8) is solved in a recurrent way (nested Bethe ansatz method). The require- 
ment that ~Pa({ v}) is an eigenvector of ~a(0) leads to another eigenvalue problem 
for a new family of commuting transfer matrices @1(0) and @1(0) (cf. (2.29) and 
(2.32)). Writing an ansatz analogous to (1.6), this eigenvalue problem leads to 
another eigenvalue problem for a new transfer matrix ~-~2(8) and so on. The process 
stops at the ( N  + 1) step since @,'(0) is a number. At each step parameters { u~ k), 
1 ~< r ~< n k } are introduced as arguments of the creation operators Ba~. When these 
numbers obey a set of algebraic equations derived in sect. 2, ~ will be an 
eigenvector of ~'a(O). It turns out that the arguments u~ N-l) (1 <~ i <~ m <~ nN_l)  in 
the last step must coincide with the v i of the first step. This would in general imply 
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the vanishing of the eigenvector. We overcome this problem by introducing a more 
general set of intermediate monodromy matrices 

Tak(O,(v,w}), k =  1 ,2 , . . . ,  N -  1 

that reduce to the usual ones when the new parameters wr coincide with the or. 
Then, it is possible to construct non-vanishing eigenvectors of ra(0)  by using the 
creation operators 

BJak(u}k),(O,O-'ka~}) for k =  1,2 . . . . .  N - 1  

and letting e ~ 0 while the parameters a r are defined by a set of algebraic equations 
(eqs. (2.75)). 

The parameters u~ k) (i = 1 . . . . .  nk; 1 ~< k ~< N -  1) must fulfill eqs. (2.70) and 
(2.74). These equations have many sets of solutions describing the different eigen- 
states and eigenvalues of ra(B). The maximum eigenvalue provides the free energy 
of the vertex model. This is computed in sects. 3 and 4. In sect. 3 the excitation 
spectrum is analyzed. Particular attention is paid to the group theoretical properties 
of the physical states formed by holes and strings. It is proved that all states 
constructed by the generalized Bethe ansatz (1.6) are of maximal weight. A complete 
catalog of excitations is found: antisymmetric tensors of rank k with 1 ~< k ~< N - 2 
and spinors of chirality _ 1. A natural understanding of the bound states is derived 
in the context of the Bethe ansatz construction of the states. 

The free energy of the vertex model as well as its symmetries are investigated in 
sect. 4. The free energy does not reduce in general to the free energy of other models 
except in the particular cases N = 2, 1 and 0, where it can be related to the free 
energy of the SU(2) symmetric vertex model. 

2. Construction of Bethe eigenvectors 

We construct in this section the eigenvectors and eigenvalues of the transfer 
matrix for the O(2N) symmetric vertex model. This model is defined by the 
following solution of the Yang-Baxter equations [11] 

2 2 
SAB(O)=IAB-- -~PAB-- -~KAB; ~=-2N-2-0.  (2.1) 

Here, and in the following, a subscript like A of an operator means that it acts on a 
vector space V A. If there are more subscripts it acts on the corresponding tensor 
product space. Here the operator SAn acts in the tensor product of real spaces 
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V~N® V~ N where dimV~ N= dimV~ N= 2N. The operator PAB exchanges both 
spaces and KAB = PJB is the transposed operator of PAB with respect to one of the 
spaces. 

p JA.JB = 8JBSJA K jMB = 8 i A i ~  j A j B  , (2.2) 
IAI B i,~ i B ~ iA i  B 

where 1 <~ iA, iB, A ,  JB ~< 2N. The matrix SAB fulfils the crossing and reality proper- 
ties 

SAn(O) = S,~s( O) = S gs(O*).  (2.3) 

The matrix elements of SAn ESJ"A/8~ define the statistical weights of the vertex 
\ IAI B J 

configurations in an n × n square lattice. So each link can be in 2 N different states. 
The four allowed vertex configurations are depicted in fig. 1. The monodromy 
matrix of the model reads 

Tff(  O, ( a } )  = SA,( O -- a , )  ... SAI( O - -  ~1)" (2.4) 

On the r.h.s, we have a matrix product in the space VA 2u and a tensor product with 
respect to the spaces V~ 2N (i = n . . . . .  1). So, Tff is an operator acting both in the 
"auxiliary" space V 2u  and in the tensor product "quantum" space. 

= V, ~ ® . . -  ®V U .  (2.5) 

The ai, (1 < i ~< n) are given parameters that describe possible inhomogenities of the 
lattice. The transfer matrix writes as usual 

tO(O, { a})  = trA [Tff(0, { a } ) ] .  (2.6) 

It is directly connected with the partition function through 

Z(O, ( a } ) =  Tra[~'o(0, { a } ) " ] .  (2.7) 

Our main task is to solve the eigenvalue problem of the transfer matrix 

• ~(0, { a } ) * ~  = ~ ,  (2.8) 

where ~/'u is a state in the tensor product space f2. In order to construct the 
eigenvectors it is convenient to introduce instead of the real basis ]A)r the complex 
basis 

la) = f~-~ (12a - 1)r + i l2a)r  ) ~ VaN, 

I ~ )  = ~/-~-(12a -- 1 ) r -  i [2a) , )  ~ Vjff. (2.9) 

We identify the spaces VA 2u = VaN * Vff where dimVff = dimVff = N 0. 
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The S-matrix (2.1) reads in this complex basis 

where 

sAn(o) = 

0 

2 
Sab = "dab-- o eab , 

,bo oi) 
0 Qab Uab 

0 Uab Qab 

0 0 Sab 

2 2 
v.~ = - ~ ea~ - ~ Ko~ , 

(2.10) 

2 
Q,b = lab ~Kab, 0 = 2 N -  2 -- 0. (2.11) 

Here, the operators Sab (Qab) act in the tensor product of complex spaces V f  ® Vb N 
or VCf @ V~v (VaN @ V~ or Vff ® V~) and U~b maps VaN @ V¢~ onto Vff ® V~ or 
V f  ® Vff onto VaN ® VCbN. In order to apply the matrix Bethe ansatz method of refs. 
[2, 4, 5, 7,11] we need some additional properties of the matrices S~b, Qab' and Uab. 
From eqs. (2.11) we derive 

2 
Q~bt( O ) = lab -- 0 dv'----~ Kab ' (2.12) 

1 
Res [ Sab( O ' ) Q [ l (  O')] PabPcdUcd(O)Q21(O) = O 0 '=0  (2.13) 

The Yang-Baxter algebra for the monodromy matrix T f  follows from the Yang- 
Baxter algebra fulfilled by the S-matrix 

SAo(O -- O ' )Sac(O)Ssc(O' )  = SBc(O')SAc(O)SAs(O - 0 ' ) .  (2.14) 

One finds from eqs. (2.4) and (2.11) and the properties of tensor products 

S,~n(O - O ' ) T f ( O ) T ~ ( O ' )  = T ~ ( O ' ) T f ( O ) S A s ( O  - 0 ' ) .  (2.15) 

The monodromy matrix naturally decomposes in the complex basis (2.9) as 

SO 

(A~(O) B~(O) ) (2.16) 
T2(0)= / Cy(O) &(O) ' 

ca(0)  = tra[ A~(0)] + tra[ D~Q(0)]. (2.17) 
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The commutation relations for the submatrices A~, Bff, Ca ~ and Da ~ of Tfi follow 
from the Yang-Baxter algebra. Inserting eqs. (2.10) and (2.16) in eq. (2.15) yields: 

f~ ~ t Aa(O)B b (0) = Sba(O'-- O)B~b(O')A~(O)Q;)(O '- O) 

-B~(O)A~b(O')U6~(O ' -  O ) Q ; ) ( O ' -  0) ,  (2.18) 

D~( O )B~(  O ') = Q;~( O - e ' ) B ~ (  e')Da~( O)Sab( O - 0')  

--Q~b~(O--O')Uab(O--O')B~a(O)D~b(O'). (2.19) 

We will not need the other commutation rules, so we do not write them down. By 
means of eq. (2.13) the second terms in eqs. (2.18) and (2.19) can be rewritten as 

1 
Res ( S b , , ( O " - O ' ) B s ] ( O ) A ~ ( O " ) Q ~ ( O " - O ' ) }  (2.18a) 

0 '  - 0 0, '=0'  

1 
Res ( Q : i ( O ' - O " ) B g ( O ) D f f ( O " ) S a b ( O ' - O " ) } .  (2.19a) 

0"-0o,,=o, 

We have now enough machinery to start the construction of the eigenvectors of 
• ~(0, (a)). We seek for an eigenvector with an algebraic Bethe ansatz structure 

m 

= H Birjr(Or)~{i,j} ( 2 . 2 0 )  
r = l  

(summation over the indices it, Jl = 1,2 . . . . .  N is assumed). We denote by a sub- 
script ~ vectors and operators of the space ~ (c.f. (2.5)). In eq. (2.20) the 
parameters Vl, . . . ,  v m are arbitrary for the moment and we require the vectors cp{i,j} 
for each set of the indices i 1 . . . . .  im; J l , " ' ,  Jm to verify 

~ (2.21) Ckt(O)~{i,j} = 0 

for all k, l = 1 , . . . ,  N. It can be checked from eqs. (2.4), (2.10) and (2.16) that eq. 
(2.21) holds if all "bar"  components of ~p{~,j}a vanish. That means the vectors qo{~,j} 
lie in a subspace f2 (°) of fl called "reference space" where 

~(o)  = V U ® . . .  ® V : ,  ( 2 . 2 2 )  

while 

= ( v "  V: ' ) .  ® . . .  ( v "  ® VNh.  

Now we start to solve the eigenvalue problem eq. (2.8) and, following the general 
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strategy of the algebraic Bethe ansatz [2, 4,12] we apply the transfer matrix ~ ( 0 )  in 
terms of the decomposition (2.17) to the state given by eq. (2.20). We begin by 
acting with A~a(O) on ~t~ and we push it to the right through the Bi~/,(v~) using the 
commutations rule (2.18). Then we shall do the same for D~(O). 

Finally taking trace over V~ we will relate in this way the action of T°(0) on P a  
to the action of two new transfer matrices ~.t~l and ~al (corresponding to A ~ and 
D ~) on a new state Pa~. 

Two types of terms arise when Aa ~ passes through B~/,(v~) (see eq. (2.18)). The 
first type comes from the first terln in eq. (2.18) and As~(O) and Bi~(or) keep their 
original arguments unchanged. They are "wanted" terms, and they will finally give 
a vector proportional to '/'a. 

The terms arising from the second term in eq. (2.18) are called "unwanted" since 
they contain BQ(O) and so they can never give a vector proportional to ~a.  One 
gets from eq. (2.20), after repeated use of eq. (2.18), 

m 
~2 ~2 A~a(O)~ ¢~= [Sl,a(Vl-O)...Sm,a(Om-O)](i,k }r~ IBkrl,(Ur)Aa(O) 

x[Q~,I~(o., O) -1 - ...Qv,~(vx-O)] f/,j)q0(~,j} + unwanted terms. (2.23) 

The indices {i, k} and ( j ,  l} refer here to the auxiliary spaces V~ u and V~ u 
(1 ~< r ' ,  r "  ~< m), respectively. Taking the trace w.r.t. V~, eq. (2.23) yields: 

m 
t r~[A~(0)]  * ~ =  I-'I B~,t,(or)tr~([St'o(o1-O)...St~,o(v~-O)](k,i} 

r=l 

×A~(O)[Q~,~(v~-O)... - 1  Q l , , a ( V l _ O ) ] ( l , j } )  I2 qo(~,j) 

+ unwanted terms. (2.24) 

The superscript t means transposition w.r.t, to Vr, u (1 ~< r '  ~< m). Since here Aaa(O) 
acts on the vectors qo a in the reference state space, i.e. obeying the constraint (2.21) 
it can be replaced by 

A~a(O) ~ San(O - Oln)..  " Sal(O - o~1) , (2.25) 

It is convenient to enlarge the space I2 (°) such that the "auxiliary" indices (i, j )  
also become "quantum" ones 

~-~1 = (v1N® " ' "  ®VmN,)® ( V : ® - ' '  ® v N ) ®  (gmNp,® " ' "  ®giN,,). (2 .26)  

I2(0) The set of vectors {~){i,j} E is reinterpreted as one-vector qnl  ~ i2 a where 

[ ~/'nl]fi,j} = qofi,j}~ (2.27) 
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are the components of ,/,t~, with respect to the subspace defined by the first and 
third group of factors in eq. (2.26). In order to rewrite e% (2.24) in the space/21 we 
define a new monodromy operator Ta~(O) acting in I21 and Va and the correspond- 
ing transfer matrix by 

r2,(O, w })= 

X [Q~nl, a(W m - O) . . .  Q~;,1 (wl  _ o ) ] ,  (2.28) 

z~'(0,  { a, v, w }) = tr~ [Tff~(0, { a,v, w})] .  (2.29) 

For later convenience we have introduced the parameters w 1 . . . . .  w,,; finally they 
have to be identified with the v 1 . . . . .  o,,. So we can rewrite eq. (2.24) as 

m 
tra [A~(O, { o t ) ) ]*  ~=  r~=lBi~j,(Vr)[Vt2'(O, { et, O,V))~s2'](i,j) 

+ unwanted terms, (2.30) 

where the notation (2.27) has been used. 
The unwanted terms can be worked out in an analogous way. One finds from eqs. 

(2.18a) and (2.25) for the unwanted term containing A~a(Vl) analogously to eq. 
(2.30) 

{ tra[ A~(O)] 9"~ "1, (1) 
J Ul : lW 

m 

- - B i~l jl ( O ) r~2 B i~jr ( ur ) -O ] Res [T~'(O',{ot, v,o})el~x](i,j}. (2.31) 
V 10'=v 1 

Analogous expressions follow for the remaining m -  1 unwanted terms. They can 
explicitly be derived as in ref. [2]. We interrupt the analysis of the first term in the 
decomposition (2.27), the A-term. Using eqs. (2.19) and (2.19a) instead of eqs. (2.18) 
and (2.18a) completely analogous results will be obtained for the second, the 
D-term. In eqs. (2.30) and (2.31) A has to be replaced by D and • by another 
transfer matrix ~ defined by: 

~*~1(0, { a ,V,  W } ) =  tro [T~I(O, ( a , v ,  w })], (2.32) 

~a~( O, { a, v, w }) = [ Qax~,t( 0 - vx)... Q,,~( o - l)m)] [ Qan( 0 -- Oln) ... Qal( 0 -- O~l)] 

X [Sam, , (O- w m ) . . . a a l , , ( ~ -  Wl) ] . (2.33) 

The Yang-Baxter algebra for the monodromy matrices T al and ~'ax can be obtained 
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from the Yang-Baxter algebra of the matrices S and Q which follow from eqs. 
(2.10) and (2.15) 

Sab(O-Ot)Ta~l(O)Tb~l(O ') Tb~l(Ot)Ta$21(O)Sab(O-O'), 

Qab(O -- O')~'afa'(O)T~'(O ') = Tb~'(O')~ax(O)Qab(O -- O'), 

where eq. (2.34) also holds for ~ .  
transfer matrices commute. 

(2.34) 

(2.35) 

From these equations we conclude that the 

[:,(o),:,(o,)]=[:,(o),:,(o,)]=[:,(o),:l(o,)]=o (2.36) 

Hence ~.ta~ and ~al can be diagonalized simultaneously. Eqs. (2.30) and (2.31) tell us 
that the eigenvalue problem 

rSa( O, { a } ) g'ta( ( a, v ) ) = Xg'ta( ( a, v ) ) 

has been transformed to two eigenvalue problems 

"~" (O, {0{, U, U})'~ "¢~1 = X1'~/-r121 , (2.37) 

to be solved simultaneously with the following constraints that eliminate the 
unwanted terms 

ReS(Xl+ Xl)=0; j = l  . . . .  ,n .  (2.38) 
O=vj 

For all solutions (v} of these equations the unwanted 
corresponding eigenvalue and eigenvector of r a are 

terms cancel and the 

= h 1 + Xl, (2.39) 

't "~= ~ Bi~,(Vr)[~t'Sa~l{i,j}. (2.40) 
r=l  

As we will see later the eqs. (2.37)-(2.40) will not always give the correct result. The 
reason is that for certain solutions of the Bethe ansatz equation the vector ~ 
(given by eq. (2.40)) vanishes if the parameters o r and w r are taken to be equal (as 
in eq. (2.37)). We overcome this problem by taking the limit w r ~ v r in a specified 
way (see below). Let us now consider the generalized eigenvalue problem 

zta~(O, {a, v, w})~/'ta~ = 2qg "& . (2.41) 
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From the explicit expressions (2.11) for S~b we see that eq. (2.34) defines an SU(N) 
symmetric Yang-Baxter algebra for T at. This implies that the diagonalization of "r at 
should be possible by means of the nested Bethe ansatz known for the SU(N) case 
[4-6]. But since T at also contains K operators, there are new features and therefore 
we will explain the procedure in more detail. We split from the N-dimensional space 
Va N a one-dimensional one 

Va u = V ~ V N-1  (2 .42 )  
a t • 

The corresponding decomposition of the monodromy matrix Tfa(O, (a, v, w }) reads 

( A °~ B~' ) 
7"2 = ca I D t' (2.43) 

where A at, Bat, C at, D ~ are with respect to the "auxiliary" space 1 × 1,1 × 
( N -  1 ) , ( N -  1) × 1 , ( N -  1) × ( N -  1) matrices, respectively. Their commutation 
rules follow from the Yang-Baxter algebra (2.34) 

0 ' - 0 - 2  2 
A~t(O)B~t(O') = 0 ' - 0  B~t(O')A~(O) + 07"f-O B~t(O)Aat(O')' (2.44) 

2 
D 2 ( 0 ) s g t ( 0 ' )  = Bat b~ (O')D~'(O)Satb~(O-O') + ~ _ o B ~ ' ( O ) D ~ ( O ' ) ,  (2.45) 

where Sbtat is the restriction of Sb~ (given by eq. (2.11)) to the space V~ -x ® vN-lst 
of dimension ( N -  1) 2. The algebraic Bethe ansatz for the eigenvectors of T at writes 

Catq~/x} = 0. (2.47) 

From the definition of T s~t, (eqs. (2.28) and (2.11)) it follows that the subspace of 
I21 defined by this condition is 

. .  N-1 (v.  ® ® v l )  ® ( v S :  1 ® O~°)=(Vff-l® • ®Vm ~, )® . . . . . .  ®vI,N,-1). (2.48) 

We again follow the general strategy of the algebraic Bethe ansatz. We apply A at 
and Trax[D~t ] to ~p~ and push them through all the B at using the commutation 
rules ((2.44) and (2.45)). From the first terms of eqs. (2.44) and (2.45) we get the 

where the (level 1) reference states fulfil 

n l  

~k a~= 1"-I ~ati''(x)]'~a~ (0~<il, " ~ < N - 1 ) ,  (2.46) r f l " ' i r  \"*r ]5v{i} " ' ' ,  In 1 
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"wanted"  contributions 

"~ u} 1) - 0 - 2 
A'~(o)¢ '~= FI  . . . .  

~=1 u} t ~ - 0  

n 1 
~= ~ Bg' ( u(~l' ) A& ( O )~p~l, + unwanted terms, 

nl 
Tro~[D~'(O)]~P a~= H B.~x(uO)][~'~=(O)~paq{,},, , ~ , + unwanted terms. 

r ~ l  

(2.49) 

(2.50) 

In the second equation we have introduced the new transfer matrix za: as the a t 
trace of the new monodromy matrix 

Ta~12(O,{U,W,U(1)}) = (S~,al (ot -O) . . .St ,a l (Om-O))  

×(o;g,o,(w,~-o)...or,,'o~(w,-O)) 

X(Salnl(O--U(nll))..,Sall(O-- U~I))) (2.51) 

acting in the ( N -  1)-dimensional "auxiliary" space V N - t  and the tensor product al 
space 

a== a~o~® t v , , - , , ,  ., . . .  ®v#-*)  

= ( v t N - l *  . . .  ~ V N - 1 ) *  (V~NTI* . . .  ~ v I N - 1 ) *  ( x ~ N - 1 . . . .  ~ V #  -1) \ n I 

(2.521 

This means that the auxiliary indices i, introduced by the B-operators in eq. (2.50) 
have been reinterpreted as additional quantum indices for the r~xt Bethe ansatz 
step. The set of reference vectors ~o~]} ~ I2~ °) has been reinterpreted as one-vector 
q32 ~ t22 

[~pa=]{i} = ~p~l} . (2.53) 

By [. ] (i} we denote the components of a vector in ~22 with respect to the third group 
of spaces in eq. (2.52). Note that the reference states ~0 a, are eigenstates of the 
operator A s~,. If the unwanted terms of eqs. (2.45) and (2.50) cancel we therefore 
obtain for the eigenvalue of z ~, 

~I(O,{O/,~'W,U(1)}) = f i  O--~ i - -2  /11 O_u}t,+2 
+ ~'2, (2.54) 
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where h 2 is defined by the eigenvalue problem of the next step 

¢ ~ q , ~  = x2~  ~ . (2.55) 

The unwanted terms of eqs. (2.49) and (2.50) can be written analogously to eq. 
(2.31) in terms of residues of the wanted ones. Those which contain the operator 
Bi~( O ) are 

?/1 

[A~,(O),,,,I¢" ' e  J u n w a n t e d  = -Wi~1(O) H Bir(U~ 1)) 
r = 2  

1 nl u } 1 ) _ 0 , _ 2  
× ~ Res ~ -(~-- ; - ;  AS~'(e')(p~l,, 

0 ' = U t  1) " =  U i -- 0 

- -  .I u n w a n t e d  

n 1 

= - , , ~ , ( o )  l q , , , ( u p ) )  
r = 2  

1 

× 0 u~ 1--------~ Res [ra~(0')~a~](,) .  (2.56) 
- -  O'  = up) 

Analogous expressions follow for the remaining nl - 1 unwanted terms. Therefore 
the eigenvalue conditions for the parameters u} 1) read 

Res h l ( O , ( a , v , w , u ° ) } ) = O ;  j =  1 . . . . .  nx. (2.57) 
O = u~ 1) 

(These analyticity requirements are of course necessary since in eq. (2.41) the 
operator ~.s~l does not depend on the u~ 1) and the state ~k ~1 is independent of 0.) 

In order to continue the nested Bethe ansatz procedure we note that the 
eigenvalue problems step 1 (c.f. eqs. (2.41), (2.28), (2.29)) and step 2 (c.f. eqs. (2.55), 
(2.51)) are completely analogous, (VN,~21,;kl,(a},n,{u(1)},nl) correspond to 
(V N-1 f~ h2,{uO)},nl,{u(2)},n2) where the new parameters u~ 2), u (2) are , 2 ,  • • • ~ n 2 

introduced analogously to the u~ 1) in eq. (2.46). Therefore the solution of step 2 is 
obtained from that of step 1 eq. (2.54) and the conditions (2.57), replacing in 
addition ~2 by ~3. (The different order of two groups of factors in eq. (2.28) 
compared to eq. (2.51) will not affect this statement.) Hence the recursion relation 
(2.54) solves the diagonalization problem of z al completely. The dimension of the 
V-space decreases in each step by one which means that ~.~N reduces to a number 

°~-, o -_ u~ ~ - 1 ) _ -  2 i~i 0 - o / +  2 0 - w, . (2.58) 
~aN=hN= i=11"-[ O--u} N-l) i=1 O--v i O--w i - 2  
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The final result for the eigenvalue of ~s~l(0, {a, v, w}) reads 

where 

N-1 
~,I(O,{OI,U,W,U(1) . . . . .  u(N-1)}) = Y~, F,(O), (2.59) 

k=0 

, ,  0 - u} k) - 2 "~_~1 0 - u} ~+a/+ 2 
I I  F k ( 0 ) =  i=ll--I 0 --~u/(k-~ i=1 O_u}k+l) , k < N - 1 ,  

Fu_a(O ) =~tu,  {u (°) } = {a} ,  no=n. (2.60) 

The parameters u} k~ are the roots of the "Bethe ansatz equations" which follow 
from the cancellation conditions of the unwanted terms 

Res ) tx=0 ;  j = l  . . . . .  nk, k = l  . . . . .  N - 1  
O~u} k) 

or 

i .~ .}k~_ .~k~ + 2 °, . y ~ -  u~'~ ~ + t -  1 
Fk-1 =I-IuJk)__u}k)-- 2 I"I I - Iu}* ) u ~ , ) _ k + l + l  = - 1 .  (2.61) 

Fk O_u},',) i=1 l=k+_ l i=1 

For k = N - 1, the factor corresponding to l = k + 1 has to be replaced by 

lq v, u k, w, 2 
i = i  uJ k---S- w~ u} k----) - 0-7+ 2 " (2.61a) 

We now come to the diagonalization problem of the transfer matrix ~sh. We do not 
need to perform long calculations since the eigenvalues ~1 of ~*al follow from those 
of r al using the crossing andreali ty properties of the matrix SaB, eq. (2.3). For the 
monodromy matrix defined by eq. (2.4) we obtain from eq. (2.3) 

r f ( O ,  {a})  = r ~ ' ( 0 ,  { - a } )  = r~ ' (O*,  {a* }), (2.62) 

where ~ = 2 N  - 2 - 0 and t means transposition with respect to the space 12. These 
relations imply for the eigenvalues of the transfer matrix r ~ 

)k( O, ( a, v, u (k) } ) = ~*(0", ( - a * ,  v, u (k) } ) .  (2.63) 

Moreover we find from the explicit expressions (2.11) and (2.12) 

Q~b(O) = Stb(~), 

Q~(O) = Stb(O + 2). (2.64) 



H.J. de Vega, M. Karowski / O(2N) symmetric theories 

So the monodromy matrix ~.aa can be expressed in terms of T ax 
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i 'a ' (o,  (,,,, o, w} )  = ra"(O, ( -~,. ~,, ~}) ,  (2.65) 

where 6i = 2 N - v i  and ~ = 2 N - 4 - w  i. Therefore the eigenvalues ~1 of ~r ~'  

obtained by those of 'r a '  are 

X,(0, (~, o, w, ~'~}) = x1(0*, ( -~* ,  e*, ~*, ~'~}) 

(2.66) 

for sets of parameters fi}k) fulfilling Bethe ansatz equations. The last equality in eq. 
(2.66) follows from the explicit expression for ~k I given by eqs. (2.58)-(2.60). The 
eigenvalue of the transfer matrix ~,a 

X ( O , { a , V , u ( k ) } ) = X x ( O , ( e t ,  V , V , u ( k ) } ) + • , ( O , ( a , V , V ,  f i ( k ) } )  (2.67) 

fulfils the crossing relation (2.63) provided that the following relations hold 

= = f i (k)-  u (g)" i = 1 . . . . .  n k ,  k = 1, , N -  1. (2.68) V~ Oi 2 N -  2 -  v i ,  i - - i  . . . .  

On the r.h.s, of eq. (2.67) the limit w~ ~ vi  has been assumed. As we will discuss 
now this has to be done in a very specific way. 

If we proceeded naively we would set w i = v~ and try to calculate the roots v i 
from the Bethe ansatz equations (2.38). But eq. (2.58) shows that the poles at 0 = w~ 
are cancelled by zeros at 0 = v~ and we would not get any equations for the 
parameters v v On the other hand, there are poles at 0 = v~ + 2 (0 = v~- 2) in Xl 
(~1) which are not related to any unwanted terms. These singularities must of course 
be absent in the eigenvalue h = hi +~1 since in eq. (2.8) the operator ca(0, {a}) 
does not depend on the v~ and the state q~a({a, v}) is independent of 0. The 
solution of this puzzle is that the state qJa constructed in this naive way would be (in 
general) identical to zero. We overcome these problems by writing the state +a as a 
limit 

m 

~,,((~, o,,,.o}) = l ~  I-IB"(o,) 
e 0 i = 1  

X 1-I l - IB~ ' (u }k ) , {v ,o  +ae ~paN-,. 
k = l  i= l  

(2.69) 

We have introduced the parameters a 1 . . . .  , a m which have to be determined 
together with the roots vi, u~ ~) from the analyticity condition of ~ as a function of 
8. Details are given in appendix A. The result can be formulated as follows. 
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The  poles at  0 = v i 5- 2 are cancelled by zeros at 0 = u} N-l) + 2. This means each 
vi coincides with a u~ u -  ~). Introducing a new notat ion we write (after reordering the 
u}N-l ) 

u} u - l ) =  v i=iq} + ) + N -  1, i=  1 . . . .  , n+ = m,  

U<N-1) = iq}-) + N - 1 i = 1, n_ - m.  (2.70) i+m ~ "' '~ = n N - 1  

Then  after  the substitutions 

a i = iq }  °) , i = 1 . . . . .  n o ~ n ,  

u}/') = iq[ k) + k ,  i = 1 . . . . .  n i , k = 1 , . . . ,  N - 2,  (2.71) 

the eigenvalue of  the transfer matrix q'~(0, ( iq  ~°) )) reads 

2 N - 1  

A ( O , ( q ( k ) } )  = E Gk(O),  (2.72) 
k~O 

where the functions G k follow from the F k defined by eqs. (2.60) and (2.58) and eqs. 

(2.70)-(2.71) 

nk O _ i q } k ) _ k ~  2 nfi~ O _ i q ( k + l ) _ k  + l 
Gk(O) = I-I ~ -  k = O , .  N -  3, 

i-1 -O-~iq} k ) -  k i=1 O -  iq} k + l ) - k -  1 '  ""  

',N-2 8 - i q } : V - Z ) - N  "- # - i q ~ - ) - N +  3 "+ 8 - i q [ + ) - N +  3 

Gw-2(0)= l"Ii-1 0-"~q~N--+2i~=10-iq} -) N + l i~=l O-iq} +,-N + I ' 

n_ O - i q : - ) - N - 1  "+ O - i q :  + ) - N + 3  

= FI H , i=x O i q f ~ - ) - N +  l "= O - i q } + ) - N +  l 

Gk( O ) = G~N_I_k(ZN--  2 -- 0 ) .  (2.73) 

The  last equat ion follows from eqs. (2.66)-(2.67). The  Bethe ansatz equations which 
de termine  the parameters  qff),  j = 1 . . . . .  n k, k = 1 . . . .  , N -  2, - ,  + are 

n, i ( q f f ) _ q ( i k , ) + 2  ,, i ( q f f ) _ q f f ) ) _ l  
I I  1--I 1--I . . . .  1 (2.74) 
i=1 i ( q ~ k ) _ q ( i k ) ) _ _ 2  i ~ L , i = l i ( q ~ k ) _ q ( i l ) ) + l  ' 

where  L k = { k - l , k + l ) , ( N - 3 , - , + } , { N - 2 )  for  l ~ k < ~ N - 3 ,  k = N - 2 ,  
k = -T-, respectively. The parameters a j  needed for the limit in eq. (2.69) are given 

by 
/ ' /_ 

i-I i ( q : + ) - q } - ) )  + "+ i ( q ~ + ) _ q [ + ) ) _ 2  I-I ': . ( z . 7 5 )  aj=1 - 
i ( q f + ) - q [ - ) ) - ' 2  F=2= i ( q : + ) - q } + ) )  + 2  i = 1  
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They vanish for the ground state and all antisymmetric tensor excitations of rank 
N -  2. They do not vanish only for excitations which are non-symmetric with 

respect to + and - chirality spinors. 
The eigenvalues of the O(2N) transfer matrix given by eqs. (2.72)-(2.73) and the 

Bethe ansatz equations (2.74) coincide with the corresponding expressions obtained 
by the "analytic Bethe ansatz" in ref. [7]. Our derivation provides a rigorous proof 
of these equations. 

3. Solution of the eigenvalue equations 

In this section we present solutions of the O(2N) Bethe ansatz equations. We 
discuss the ground state of the O(2N) transfer matrix, the one-particle excitations 
and their quantum numbers. The well known [2,4, 5,10] procedure to solve Bethe 
ansatz equations was applied in refs. [8, 9] to the O(2N) case. Here, we report some 
results and then analyse the spectrum. 

Taking the logarithm of eqs. (2.74) 

nk n I 

2~Jj '~)+ E eP((qJk)--q~i*))/2) - E E q~(q)k)--qtiO)=O, 
i = l  I ~ L  k i = 1  

k = l  . . . . .  N - 2 , - , +  (3.1) 

(where O(q )=  2arctg(q)+ ~r) the roots q~*) are given by sets of numbers jtk) 
(integers or half odd integers). The density of real roots (for n --* oo) defined by 

d j(k) 
- -  = p~)(q)  + ~"~8(q -h )  (3.2) 

dq h 

(where h are "holes") fulfil the system of integral equations 

p(q )  + fdq'K(q- q ' )p (q ' )  = a0(q) + oh(q) + oe(q) , (3.3) 

which is derived from eq. (3.1) by taking the derivative d / d q  and substituting 
nk 

)'~'i=1 "'* fdqp(k) (q)  • The inhomogenities are due to the interaction with the external 

a i = iqi 
1 

~'(q q~) (3,4) °tot)( q ) = - ~  ~n - , 
i=1 

the holes o h and complex roots o c (see below). The system (3.3) can be solved in 
Fourier space 

~(x )  = f dqeiqXp(q), (3.5) 
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where the integral kernel is given by 

The solution 

gk+(x) = 8k+e -21xl- ~ 8,+e -Ixl. 
I ~ L  k 

~(x) =,~(x)[So(X) + S~(x) + Sc(X)] 

is expressed in terms of the (symmetric) resolvent 

~l , t (x)=elx lCh(N-  1 - k ) x s h l , ,  
c h ( N - 1 ) x s h x  ' 

l ~ l < k < N - 2 ,  

sh kx 
k (x) ½el~l l<~k<~N-2  
--k + ch(N - 1)x sh x '  

sh(N - 2) x 
k_+(x) Xer~l c h ( N -  1)x s h 2 x '  

(3.6) 

(3.7) 

sh Nx 
k [ \ lelXl (3.8) ±±~x) = c h ( U -  1)x sh2x 

The (antiferromagnetic) ground state is 
complex roots o h = % = 0 

obtained for absence of holes and 

This is a simple case of complex roots. (Similar expressions hold for longer strings, 
quartets etc. They will not be used in this paper.) The solution of Bethe ansatz 
equations are additive with respect to holes and complex roots in the sense that 
Oh. h, = O h + o h, and oc. c, = oc + %, The locations of holes are free parameters, but 
the centers of strings fulfil "higher level" [14] Bethe ansatz equations expressing 
interactions with each other and the holes. These equations are derived from eq. 
(2.74) eliminating the ground st~lte contributions. For holes h~k);..., h (k) and /xk 

An excitation corresponding to a k-level hole is obtained from eq. (3.7) with 

S(ht) ( x ) = -- 8kt eihx . (3.10) 

A k-level two-string q(k) = c _+ i with real center c is given by 

ffc(l) ( X ) = --  R i k  1 e - l X l e  icx . (3.11) 

p(I)(x) = .Rn(x)e -Ixl ~ e iqix . (3.9) 
i = 1  
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two-string centers c~ k), c (k) they read 
• . . ~  v k 

~k ~, i ( c } k ) - c } t ) ) - X  f i  i (c}k)--h~k))- - I  
I-'I i(#k)-c}k))+2(e( ~. ] I"I I-I i (c~ lO_c} t ) )+l  i ( c ~ k ) _ h } k , ) + l  = --1 , - 1 / ,  j k , _ c  k, _ 2  t L,,-1 ,-1 

o 

(3.12) 

The same type of equation holds for other complex roots as "quartets" and "wide 
pairs" [14]. 

There are two further constraints for Bethe states: 
(i) The states have maximal weights [15]. 
(ii) The numbers of roots n k are integers. 

The latter will be considered at the end of this section. Appendix B contains an 
analysis of group theoretic properties of Bethe states. The results are the following. 
The "weights" of the states defined by eqs. (2.69)-(2.75) are given by 

(Wl, W 2 . . . .  ,wN_ 1 , w N ) = ( n - n  l , n  1 - n 2 , . . . , n N _  2 - n  - n+, n _ -  n+) . (3.13) 

They have to fulfil the "maximality" condition 

w I >1 w 2 ~ • • • >.~ W N _  1 > i  IwNI. (3.14) 

In order to find allowed states, i.e. those which fulfil the constraints (i) and (ii) we 
determine the weights of the ground state, holes and two-strings. 

The numbers of roots n t (1= 1 . . . . .  N -  2, - ,  + )  are calculated by the formula 

n I = f dqp(t)(q) = if(0(0). (3.15) 

From eqs. (3.8)-(3.9) we obtain for the ground state 

n~°)= n; l = 1  . . . . .  N - 2 ;  n ~ ) = l n .  (3.16) 

These numbers change for excitations byAn t = n t - n~ °). For a k-hole (1 ~< k ~< N - 2) 
we find 

Ant= - n f i n ( l , k ) ,  l ~ N - 2 ,  

An += -- ~k; (3.17) 

for o-holes (o = + )  

Ant= - 1 l ,  l < N - 2 ,  

Zln~ = - ¼(N - 1 + o~') ~- = +_ ; (3.18) 
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and for a k two-string 

a n / =  (3.19) 

By means of eq. (3.16) we obtain the weights for the ground state 

a k-hole 

(0 . . . .  ,0 ) ,  (3.20) 

(1 . . . . .  w k = 1,0 . . . .  ,0) ,  l < k < N - 2 ,  

(½ . . . . .  1, ½), k = - ,  

and a k two-string 

(½ . . . .  ,½,½), k =  + ,  (3.21) 

(0 . . . . .  W k = l , - - 1 , O  . . . .  0),  k = l  . . . .  , N - 2 , - ,  

(0 . . . . .  0 , - 1 , - 1 ) ,  k =  + .  (3.22) 

It  follows that the ground state is an O(2N) scalar and a k-hole an antisymmetric 
tensor of rank k for k ~< N - 2 and a spinor of O(2N)  chirality + 1 for k = + .  

As opposed to these states the two strings have not maximal weights in the sense 
of eq. (3.14). So they can exist only in combination with holes. By the principle of 
maximal weights we get then one particle spectrum as follows. Let h tk) and c ~k) 

denote k-holes and k two-strings, respectively. Then 

( k , r ) = h ~ h ) c ~ r + l ) ( 2 c ~ r + E ) ) . . . ( ( k - r ) c ~ k ) ) . . . ( ( k - r ) c ~ N - 2 ) )  

× ½(k - r ) c ( - ) ½ ( k  - r ) c  (+) , 

r = k - 2 ,  k - 4  . . . .  >~0, k = 1 , 2  . . . . .  N - 2 ,  (3.23) 

characterize a k-hole decorated with two-strings. It  is a one-particle antisymmetric 
tensor state of rank r. The string centers have to fulfil eq. (3.12). As a simple 
example we find for the state (2, 0) 

c (1) = h (1) + ~ ( N -  1 - l ) ( l -  1) ; l =  2 . . . . .  N - 2, c (1) = c (-)  = c (+) = h (1) . 

The tensor states (k, r )  give exactly that spectrum obtained by semi-classical 
methods [16] for the O(2N)  Gross-Neveu (GN) model. In addition we have the + 
spinor states which correspond to the G N  kinks [7,18]. 

Finally we remark that the bound state picture discussed in [18] for the G N  
model can also be understood in terms of the Bethe ansatz equations. As an 
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example we consider the antisymmetric two-vector particle scattering state h~l)h ~1)c°) 

where the string center is given by c = ½(h 1 + h2). For  the complex values of the 
hole positions hi, 2 = h +__ i this state can be identified with the one-particle state h (2). 
This follows directly from the Bethe ansatz equations (2.74) if we write the holes 
h~l~ 2 in eql (2.74) as the inverse factors ( i ( q J  1) - h0)1,2, ~ - 2),(/i(_,jaO) - h~l~,~) + 2) and 
( i  l ,,~k~ - h 0~ ~ + 1 ) / ( i ( q J  k~ - h ~1~ ~ - 1) and take the limit h (1) ~ h + (1 - e)i .  Then ~ j  1,2, 1,2/ 1,2 - 
the holes h~l,) 2 cancel the string c O) and in O(2)(q) appears a hole at q = h. 

Let  us consider the selection rules which follow from the condition that the 
numbers of roots n t (cf. eq. (3.15)) have to be integers. From eq. (3.16) we conclude 
that for the ground state the number of sites n has to be even. For a k-hole, eq. 
(3.17) yields the constraint ( n -  k) even. From eq. (3.18), it follows that spin0r 
excitations can appear only by pairs. In general one can have an arbitrary number 
of even k-holes and even spinor pairs but n + # odd k-holes + # odd spinor pairs 
has to be even. An even spinor pair means for even N a ( + ,  + )  or ( - ,  - )  spinor 
pair and for odd N a (+ ,  - )  spinor pair and vice versa for an odd spinor pair. 

It must be stressed that the classification of states and their quantum numbers 
given here hold for three theories associated with the R-matrix (2.1): the vertex 
model (fig. 1), the QFT (eq. (1.2)) and the magnetic chain discussed in ref. [9]. 

4. Vertex model and free energy 

We investigate in this section the thermodynamical properties of the O(2N)  
symmetric vertex model. The three allowed vertex configurations are depicted in 
fig. 1 as well as their respective weights. These weights are not positive definite so 
one cannot give a direct statistical interpretation to them. However, it is possible to 
relate them to a set of positive definite weights using the symmetries of the model. 
Let us write as usual the partition functions as 

Z ( w l ,  w 2, w3 ,  w , )  = ~_, 1"-1 w i ,  (4.1) 
config sites 

where the product  is over all sites of an n × n square lattice with even n. Under 
these conditions 

Z ( w  1, w 2, w 3, w4) --- Z ( - W l ,  -14)2, - w 3 ,  - w 4 )  , (4.2) 

since the total number of sites is even. 
It must be noticed that the lines of each "color" A (1 ~< A ~< 2N)  are continuous 

on the lattice for all allowed configurations of vertices wl, w2, w3, w 4. Assuming 
periodic boundary conditions, as in sect. 2, implies that the number of intersections 
of lines of different color is even. So, the number of vertices w 1 is even for any 
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allowed configuration. We then have 

Z(Wl, w2, w3, w 4) = Z( -Wl ,  w2, w3, w 4) , 

and combining eqs. (4.2) and (4.3) 

Z(W1, W2, W3, W4) = Z(W1, --W2, --W3, --W4). 

So we can take as vertex weights for the model 

2 
I ~  1 ----- W 1 = 1, ff3 = - ws = 2 N - 0 - 2  ' 

2 2 ( N -  1 ) ( 0  - 2)  - 02 
w2= - w 2 = 0  ' w4=  - w 4 =  0 ( 0 + 2 - 2 N )  

keeping the same partition function. 

Z(l~l,  ~2, 1~3, 1~4) = Z(wI,  w2, w3, w4)- 

The weights ~j  are positive definite in the domain 

0 < 0 < 2 ( N - I )  forN~< 5 

and 

O < O < N - I - i ( N - 1 ) ( N - 5 )  or 

(4.3) 

, ( 4 .4 )  

(4.5) 

N - I + ¢ ( N - 1 ) ( N - 5 )  < 0 < 2 ( N - I )  

This will be our physical domain. The free energy is defined as usual as 

Now, the 

(a  i - 0) 

for N > 5. 

1 
f (  O, N ) = - limo~ -~21og Z( O, N ) . (4.6) 

use of eqs. (2.4), (2.6) and (2.72) yields for the homogeneous model 

n 
Z(O,N)=Tr~[(¢  (0 ,0))  ] (4.7) 

and 

1 [ 2N-I ] 
f(O, N )  = - lim - l o g [  • Gk(8) [ ,  (4.8) 

,--,~ n L ~=o J 

where the Gk(O ) correspond to the maximum eigenvalue 2~0(0, (q(k)}) or ~-s~(0,0). 
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So, we find in the limit n -~ oo that one must pick in (4.8) the maximum Gk(O ) 
among the set Go(O ) . . . . .  GEN_I(O ) associated to the maximum eigenvalue ~0. ~'0 
corresponds to the antiferromagnetic ground state. It can be computed (for n = oo) 
with the help of the density of roots (3.9). 

For 0 < 0 < 1, explicit calculations show that the term Go(O ) dominates in 
eq. (4.8). One finally finds from eqs. (2.73) 

0 - 2 i -~ j  
f(O, N )  = - l o g - - - ~  + - ~  dh  pO)(~)q~(~ + iO). (4.9) 

This integral can be easily evaluated with the help of the Fourier representation 
(3.9) and 

O( z ) = ~r + 2 fo~ d~Pp sin( pz )e -p , 

one finds for 0 < 0 < 1 

f(O, N )  = log a2(0, N ) ,  

o2(0 , N )  = 

where 

Jim z I < 1, (4.10) 

r(q0 + o ) r ( 1  - q0) r(qo + ½ ) r ( o  + ~ - cp) 
I ' (a  + 1 + 1 +  , 

0 1 

~ =  4 ( N - l ) '  ~ =  2 ( N - l ) "  

(4.11) 

(4.12) 

(4.13) 

It must be noticed that O2(0, N )  exactly coincide with the S-matrix in the transmis- 
sion channel for the O(2N)  invariant non-linear sigma model if one identifies qo 
with the rapidity divided by 2~ri. So, if we normalize our weights by o2(O, N)  = Wl 
the partition function per site becomes unity. This proves that the unitarity method 
holds for the present vertex model. 

In the physical region (4.5) we have from eq. (4.13) for N > 1 

0 < cp < ½, 0 < o < oo. (4.14) 

So, the free energy (4.12) has no singularities in the physical domain. This is related 
to the fact that the eigenstates of the transfer matrix do not depend on O. No phase 
transitions are expected when O varies. Phase transitions appear in integrable 
statistical models when parameters other than the spectral one change. Since the 
present model is gapless it is probably the critical regime of a more general one. The 
O ( 2 N )  asymmetric model of the last reference in [3] could be a candidate. 

The vertex weights (4.4) possess the following symmetry linked to crossing 

~i (O)=~i (O) ,  i = 1 , 4 ,  

fiE(O) = # 3 ( 0 ) ,  (4.15) 
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where t~ = 2 N - 2 -  0 (see eq. (2.1)). The exchange w2 ~ W3 amounts to a 90 ° 
rotation of the lattice. This rotation leaves the free energy unchanged since eqs. 
(4.11)-(4.12) yield 

f(O, N)  =f(t~,  N ) .  (4.16) 

It must be noticed that the physical domain (4.5) is crossing invariant. 
We would like to conclude this section by considering two special cases: N = 2, 

N = 1 and N = 0. Let us first recall the isotropic SU(2) symmetric model defined by 

1 
S,,6(~) = l~b - ~-~P~b. (4.17) 

The free energy of this model reads 

, 

• (4.18) 

This is the isotropic limit of the six-vertex model. Now, setting N = 2 in eqs. 
(4.11)-(4.12) yields 

(2q~ + 1) 2 
f(O, 2) = log 2qo( 1 _ 2ep) + 2fsu~z)(q°)" (4.19) 

So, the free energy of the 0(4) symmetric model relates to twice the free energy of 
the SU(2) symmetric one as it can be expected from 0 ( 4 ) =  SU(2)× SU(2). 
Although the limits N = 1 and N = 0 are singular in the sense that the construction 
of sects. 2 and 3 only holds for N >/2 it is interesting to analyse them. It follows 
from eqs. (4.11)-(4.12) that 

f(O, N)  u=-'l log2(N - 1) + log(rp + ½) + fsu~2)(~0) + O ( N  - 1), (4.20) 

1 - 2 t p  
f(O, N)  U~°log + 2fsu{2)(~ ) + O ( N ) .  (4.21) 

2~0 

In the N---, 1 limit we get a singular term since the weights (4.4) blow up when 
N---, 1 at fixed q0. The rest is the free energy of the SU(2) symmetric model. The 
result for N = 0 resembles that for N--- 2. This can be traced back to the following 
symmetry property. 

tg ~r(q0 + a)  
02( % - o )  = tg or(q0 - o)  %(q0, o ) .  
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So, N = 2 relates to N = 0 

o2(~, --~) = o2(~, ~). 
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The free energy in the infinite volume limit follows from the eigenvalue of T(0) 
with largest module (see eqs. (4.6)-(4.7)). In the SU(N) and Z u symmetric models 
[2,4] N eigenvalues of "r(0) 1/" have the same modules for infinite volume (n = ~ )  
whereas their arguments differ in multiples of 2rr/N. One gets these states from 
each other by shifting all integers jj(k) in the Bethe ansatz equation by one [4]. Let 
us investigate this question for the O(2N) symmetric model (2.1). It follows that a 
shift on jj(k) does not affect the eigenvalue of "r(0) for 1 ~< k ~< N - 2. Only when 
the Jj~+) or the Jj(-) are shifted by one does the eigenvalue ~(0) change sign. 

Appendix A 

EIGENSTATES OF THE O(2N) TRANSFER MATRIX 

In this appendix we analyse the eigenvalue equation for "r a (eq. (2.8)) where the 
state ~k s~ is defined as an e-limit given by eq. (2.69). Eq. (2.30) and the correspond- 
ing one for D ~ and ~1 yield 

m 

rt~(O)~k ~ =  lim V I B ~ ( v i ) ( ( r ~ , ( O , ( v , v } ) + r r ~ l ( o , { v , v } ) ) ~ k ~ ( ( v , v + a e ) ) }  
e--*O i = l  

+ unwanted terms. (A.1) 

Using the explicit expressions for T a~ (eq. (2.28)) and ~-al (eq. (2.33)) we can 
replace the terms in the curled bracket by 

(I"u1(0, ( v,o + ae})q;~((  v ,v  + ae}) 

+rrax(O, { v + be, v )) ~ka~({ v + be, v}) + O(e)} (A.2) 

if the parameters bi fulfil 1 - b i = 1/(1 - ai), i = 1, . . . ,  m. We introduce 

X ~ ( O , ( v , u ( k ) } ) = X I ( O , { v , o + a e ,  u ( k ) } ) + X l ( O , ( v + b e ,  o,u(k)}) ,  (A.3) 

which approaches the eigenvalue h of "r ~ for e-> 0. From the explicit expressions 
for h 1 and X 1 given by eqs. (2.58)-(2.60), (2.63) it can be seen that in the limit 
e ~ 0 the poles of h = h 1 + ~1 at 0 = v~ + 2, (i = 1 , . . . ,  m) can only disappear if they 
are cancelled by zeroes at O=u}U-1)+2 ( - 2 )  in h i (hi)- Therefore each vi, 
i = 1 . . . . .  m must coincide with a u) u-l)  (for e = 0). Introducing a new notation 
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(after reordering the u} N-l)) we write for e > 0 

u}~C-1)=u}+)=vi+e, i=  l , . . . , n + = m ,  

u}+Nm 1) = U} -) , i "~" 1 . . . . .  n_ = nlv_ 1 -- m. (A.4) 

The pole cancellations in X, at 0 =vj  and 0 = u} +), j = 1 . . . . .  m imply (up to 
corrections of order e) 

nN_~Vj_u}N--1)_2( _ V i + 2  

i=1 i=X V i-- Vi-- 2 

2 b, 
aj 

nN-2 Vj-- U} N - 2 ) -  2 n f i  1 Uj-- U} N-1)-{- 2 f i  Vj-- U,-- 2 - - ( 1  -- aj) (A .5 )  
1-I -~j--_ U}N""'~-2"y Oj_ U}N-1) _ 2 Oj_ O --~ 2 = • i=1 i=1 i=1 

These equations determine the parameters aj (using bj = 1 - 1/(1 - %)) and give 
the Bethe ansatz equation for the u} +) 

°- u 5 + , _ . ~ - ~ + =  .+ uS+~_u~._2 
a j=  1 - i-lI-I u(+) u~-)-- i~=l'= u}+) u~+)+ 2 '  j =  1 , . . . , n + ,  

"+  u(+)  - u~ +) + 2 .N-2 ,.(+~ _ , . (u -2 )  _ 2 - j  --i 
FI u.(+,-.~+,-2' ' FI 7 ~ r _ - ~  = - 1 ,  i=1 i=1 

j = l  . . . . .  n+ .  (A.6) 

The parameters aj which determine the e-limit in the definition of the state ~pa (c.f. 
(2.69)) vanish for the ground state and all antisymmetric tensor (rank ~< N - 2 )  
excitations. They are non-vanishing only for excitations which are not symmetric 
w.r.t. + and - chirality spinors. The Bethe ansatz equations for the parameters 
u} -) and u! k), k = 1 . . . .  , N - 2 are directly obtained from the cancellation condi- 
tion of the corresponding poles in 2,1. 

Appendix B 

GROUP THEORETIC PROPERTIES OF BETHE STATES 

In this appendix we analyse some group theoretic properties of Bethe states. By 
asymptotic expansion (8 ~ oe) of the matrix SAB and the monodromy matrix T~ 
(c.f. eqs. (2.1) and (2.4)) we define the matrices MAB and M~ 

2 
s ~ (  e ) = 1A~ - -d M ~  + O( e -  2 ) , 

2 t2 
r ~ ( e )  = 1~ - a M ~  + o ( e - ~ ) .  (B.1) 
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The Yang-Baxter algebra (2.15) yields for 0' ~ oo 

[Tfi(0), Mff + Man ] = 0 ,  (B.2) 

and if additionally 0 ~ oo 

[M2, Mff + Ma,] = 0 (B.3) 

(where MA a and Man act as unit operators in the spaces B and ~2, respectively). This 
commutator represents the structure relations of a O(2N) Lie algebra. This becomes 
obvious if we note that 

M A B = ( P - K ) A n .  (B.4) 

Then (omitting the subscript ~2) eq. (B.3) assumes the more familiar form 

[M if,, Mj,] = -Mi tSk j  + MijSkt + 8itMjk -- 8ijMtk. 

Therefore exp[~i tra(aaMa) ], (aik = --aki ) represents an O(2N) rotation and eq. 
(B.2) expresses the O(2N) invariance of Tfi. 

In the complex basis defined by eq. (2.9) (V 2N= v N ~  ~¢N) the matrix M a 
(=  Man or M~) has the form analogous to eqs. (2.10) or (2.16) 

Ma(-) ]. 
Ma= -W:] 

The diagonal elements of W a the Wkk generate the Cartan subalgebra. Their 
eigenvalues are the "weights" 

Wkk~k = W k~ . (B.6) 

For the fundamental vector representation MAn eqs. (2.10), (2.11) yield 

which means that the complex basis vectors Ib) and Ib) (defined by eq. (2.9)) have 
the weights ± 1, or more precisely 

Wkknlb) =~kblb) ,  

Wk.,,nlb) = - -akblb) -  (B.8) 
For a basis vector I(b)x, . . . ,(b),) of ~2 we have 

n 

w/,= • (--)Skb," (B.9) 
i = l  
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Now we calculate the weights of the Bethe states constructed in sect. 2. Taking 
the O(0 -x) terms of eq. (2.30) (notice that the unwanted terms are O(O-:)) we 
obtain with eqs. (2.41) and (B.5), (B.6) 

2 N 
•1 = 1 -- -~ Z Wk + O ( 0 - 2 )  • (B.10)  

k=l  

From the explicit expressions (2.48)-(2.60) we find for the sum of all weights 

N 

2~ w k = n -  2m. (B.11) 
k=l  

Correspondingly, we obtain for the Bethe ansatz step k (k = 1, . . . ,  N -  1) from eqs. 
(2.49), (2.54) 

w k = n ~ _ l - - n k ,  l < ~ k < ~ N - 1 .  (B.12) 

The interpretation of the relations (B.11), (B.12) is that in eq. (2.69) each operator 
B a reduces two weights say w k and w t by one and B eak reduces w k and lifts a w 1 
(l > k) by one. These properties are obvious from the construction of the B's by the 
decomposition of the spaces I2 and I2 k. Of course they can also be derived formally 
from the general commutation rules (B.2). Combining eqs. (B.11) and (B.12) we 
obtain for a Bethe state given by eqs. (2.69)-(2.75) the weights 

(W1, W 2 . . . .  , W N _ I ,  W N )  = ( i i  -- h i ,  111 -- "2  . . . .  , n l v - 2  - n _  - n+ ,  n - n + ) .  

(B.13) 

Next we show that the cancellations of the unwanted terms in eqs. (2.38) and 
(2.57) are equivalent to the maximality of the weights [15]. Using the commutation 
rules (B.2) for Bff(v) and -'-a~lar(+)ta, the unwanted terms of eqs. (2.18) and (2.19) 
become 

2 
[T$2( 0 )Bbl2( V)] unwanted ----- 0 - - -~  traBa~( 0 )[ llft...(+)g~, B~b( V)] .  (B.14) 

Therefore we obtain from eqs. (2.31), (2.38), (2.39) 

Res ~.(0) = 0 ; j  = 1 . . . . .  m ~ M~ +)~t//a = 0. 
O=vj 

(B.15) 

From M (-) = M (+)+ and the commutation rule 

[M~k +~, M~[ )] = Wk~ + W.,  k =~ l (B.16) 
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follows the positivity condition 

0 ~< 2 M ~ - ) M  ¢ + ) l k  kl -Jr- Wkk -I- l/Vii, 

which yields for the weights of a Bethe state 

k--/: l,  
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O~Wk+Wi, l < k ~ l < N .  (B.17) 

This condition means that at most one weight can be negative. The analogous 
equations for ~-ak and W~ k are 

2 
[T~k(O)nl~k(U)]unwanted-- o_unl~ , ,k (O)[W,~,  nll2k(u)], l, l t > k ,  , 

0 ~ 2WktIVtk + Wk~ - W , ,  k < l, 

0 <~ w k - w I , k < 1 .  (B.18) 

Together with the relation (B.17) we conclude for the weights of O(2N) Bethe states 
the "maximali ty" condition 

W1>IW2 >j "'" ~ W N - I ~  IwNI. (B.19) 

At the end of this investigation we remark that for the pole cancellation discussed 
before eq. (2.70), n_ = n N-1 - rn has necessarily to be positive. This follows from 
eq. (B.9), which yields N Ek=xlwkl --< n, and eqs. (B.11) and (B.19). 
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