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1 Introduction

The Bjorken scattering or inelastic lepton-hadron scattering at high energies has been a very
important and crucial stage in the development of modern QCD [1-3]. This well known
experimental investigation in high energy physics is very actual and has now a modern
continuation, being part of lepton-hadron experimental research [4, 5]. The essential point
in these studies is the behavior of the structure functions of the hadrons [3]. They describe
the parton (quark) structure of the hadrons and the nature of the interaction between
the quarks inside of the hadrons. The amplitude of the lepton-hadron interaction consists
of two parts, where the lepton part is well known. The hadron part, whose invariant
decomposition provides the hadron form factors or structure functions [3], is not known.
In QCD the calculation of the structure function for all values of the Bjorken variable x is
still an open problem.

On the other side, the existence of exact integrable models in 141 dimensional asymp-
totically free theories may be relevant, providing valuable insights into this discussion.
Remarkably, due to integrability, it is possible to obtain exact form factors of local op-
erators [6-9].! In the remarkable papers [19-21] Balog and Weisz define analogs of the
structure functions in two-dimensional integrable quantum field theories. In particular,
they consider form factors of the current operator (related to the structure-function) of
the O(3) sigma model, which are accurately computed over the whole x range; in addition,
the structure functions and some moments are compared with renormalized perturbation
theory. They also calculate structure functions in the O(N) sigma model using 1/N ex-
pansion and make some conjectures on possible universal formulae in 4 dimensional QCD
for small . Interestingly, in [21] the authors employ the so called cluster behavior of the
form factors to calculate the same structure functions. Here we mention that in all of the
previously cited papers the authors use only 2,3 and 4 particle form factors in O(3) or in
O(N) sigma models.

In this article we will start an investigation of the above mentioned problems in an
opposite order: we will analyze the cluster behavior of the SU(N) chiral Gross-Neveu
model,? which is an asymptotically free theory. For this, we do not only use the 2,3 and
4 particle form factors, but also the general n -particle form factors. We should point out
that the first investigation of the cluster behavior of the exact form factors was performed
by Smirnov [7] in the case of the sine-Gordon, the SU(2) Thirring model and the O(3)
sigma model. He also applied these results to the current algebra [7]. For the sinh-Gordon
model the cluster property of form factors was investigated in [22]. Here we will consider
the high energy behavior of the exact form factors in 14+1 dimensional asymptotically
free quantum field theories [7, 23], with connection to the factorization property and the
Bjorken scattering.

The paper is organized as follows: in section 2 we recall some known formulae, which
will be used in the following. In particular we present the SU(N) S-matrix and construct
the form factors which are n-particle matrix elements of local operators. In section 3 we

!Other approaches to form factors in integrable quantum field theories can be found in [10-18].
*For N = 2 also called SU(2) Thirring model.



investigate the “rapidity space clustering” of form factors, which describes the behavior of
form factors, if a group of rapitities is shifted to infinity. Several examples of operators are
considered, as the Noether current, the energy-momentum tensor, the fundamental field of
the SU(NN) chiral Gross-Neveu model, etc. In section 4 we present the proofs. Some more
technical details are delegated to the appendices.

2 Generalities

2.1 SU(N) S-matrix
The two particle S-matrix is S(0) = 1b(0) +Pc(0) or in terms of matrix elements [9, 24-26]

Soh(0) = 6205 b(6) + 6557 c(0) (2.1)
where «, 8,7,6 = 1,..., N denote fundamental particles. We introduce also
Son(8) = S2j(6)/a(8) = 53550(6) + 55532(6) (2.2)

where

) P r(-de )
a() = b(0) + c(0) = P(2)r(1-4 - %)
. _@_ 0 : _@_ —in :21
5(9)—a()_0—in’ ) a(0) 6 —in’ N

2.2 SU(N) form factors

Minimal form factor function F(0), ¢- and 7-function. To construct the form
factors we need the “minimal form factor function F'(6)” for two particles [9, 26]

F(0) = cexp/ tSIZitheN sinht (1 —1/N) (1 —cosht(1—6/(ir))) (2.3)
el L e
G-k E0)G(-F-E0) Te(i-1)

where G(z) is Barnes G-function. It is the minimal solution of the equations
F(0) = F(—0)a(0), F(im —0)=F(ir+0)

where a(f) is the highest weight amplitude of the corresponding channel of the S-
matrix (2.1).
The ¢-function satisfies [9, 26]

N-1
HQS —0 — kin) HF(G—i—kin):l
k=0



with the solution

6(0) = (F (~0) F(im + 9))_1 =T (—me) r (1 - % + 297”> (2.4)
where
F(0) = Eexp/ PN te% sinh¢/N (1 — cosht (1 — 6/(im))) (2.5)

1 3_ 1 _ 186
_G(i N+2m>G(§_W_§E) a1 L
- 10 16 , e=F(im)= N
G( +§E)G(§_§E)
is the minimal F-function for a particle and an anti-particle satisfying

F(0)=—F (—=0)b(im —0). (2.6)
The 7-function is
1 z sinh %z
(- )t (-4 - 5)

n particle form factors. The matrix element of a local operator O(z) for a state of n

r(2) = ($(2)6(~2) " = (27)

particles of kind «; with rapidities 6;

(0]O(@) |61, ..., 00)0 = emizlert=+pa) £O (g (2.8)

3

defines the generalized form factor FC , (), which is a co-vector valued function with com-
ponents F(0) . The form factors satisfy the form factor equations (i)-(v) (see appendix D).
Solutions of these equations can be written as follows:

As usual we split off the minimal part [6]

FP(0) = NoF(O)Ka(0), F(O)= [ F(6y) (2.9)
o 1<i<j<n
where a = (ai,...,ay), 8 = (01,...,0,) and F(0) is defined by (2.3). The K-function is
given by an ‘off-shell’ Bethe ansatz in terms of the multiple contour integral

KQ0) = | dzh(8,2)p°(0,2) Va9, 2) (2.10)

o Co

with 2 = (21,..., %) and [o, dz = L Je, dz1- -+ Jo, dzm. The integration contour Cp (see
figure 1) and the scalar function h(6, z) depend only on the S-matrix and not on the specific
operator O(x)

n m 1
= E 1;[ o(0; — 2 1<i1<_][§m7(21 —zj), 7(2) = et (2.11)

The dependence on the specific operator O(z) is encoded in the scalar p-function p© (6, 2)
which is in general a simple function of ¢’ and e%.
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Figure 1. The integration contour Cy. The bullets refer to poles of the integrand in (2.10).

Bethe state. The state \TJQ in (2.10) is a linear combination of the basic Bethe ansatz
co-vectors

Uo(0,2) = Ly(2)Ba(0, 2), with 1< 8, <N. (2.12)

As usual in the context of the algebraic Bethe ansatz [27, 28] the basic Bethe ansatz
co-vectors are obtained from the monodromy matrix

Ti.no(0,2) = S10(61 — 2) -+ Spo(0 — 2) = 0 (2.13)
1 n
(Al Buas@9
Cl n(Qv z) Dl An,,B(Qa Z)

where the S-matrix Sy is given by (2.2). The matrices A1, Bl...n,,@a C’f/n and Df./..n,ﬁ
act in the N™-dimensional “quantum space” denoted by the indices 1...7n and in the N-
dimensional “auxiliary space” [27, 28]. The indices 5’ and § with 2 < 8/, 8 < N correspond
to an N — 1-dimensional sub-space of the “auxiliary space” and in that space Bl...n,ﬂ is a
co-vector, C’lﬁ ln a vector and Efl”ny 5 & matrix.

The reference co-vector is defined as usual by Ql...nBL..n,B =0 (for 8 =2,...,N)
which implies for the components of €1,

It is an eigenstate of Ay ,, and f)ff._n 3

Veom Aron(0,2) = Qs QDY 5(0,2) =05 [[ 00 — 2)Q.m -
=1



The basic Bethe ansatz co-vectors in (2.12) are defined as
Bl Bm 1 1
~é _ ~Bm . ~B1 — Zm . 1
B20.2) = (Q.n G, (0 2m) -+ O (8,21)) = L ol ol: @1

a1 (7%

where 1 < 8; < N.

The technique of the ‘nested Bethe ansatz’ means that for the coefficients Lg(z)
n (2.12) one makes the analogous construction as for K,(f) in (2.10), where now the
indices 3 take only the values 2 < 8; < N. This nesting is repeated until the space of the
coefficients becomes one dimensional. The final result is

= [dzh(0.21°(0.2) 8a(0.2 (2.15)

with the complete h-function

(5~

N-—
H (2j:2j41) 20 =

Jj=0

(2.16)

and the complete Bethe ansatz state
0o (0, 2) = (@M1 (W72 VD) (@W)g2 (2, 2 g (0, 2V) (2.17)

where z = (z(1),...,2(N=D), 20) = (zgj), cee 27(%)) and ay_; = (N,...,N).

It is well known (see [29]) that the ‘off-shell’ Bethe ansatz states are highest weight
states if they satisfy certain matrix difference equations. If there are n particles the SU(N)
weights are [26]

w=(n—ny,n; —N2,...,AN—-2 — NN—_1,AN—1) (2.18)
=w® +L(1,...,1)

where ni = m,ne, ... are the numbers of C' operators in the various levels of the nesting,
is the weight vector of the operator @ and L = 0,1,2,...; note that w = (1,...,1)

Correspond to the vacuum sector. The number of particles n depend on the charge Q

of operator O, i.e. n = Q9 mod N, the other numbers n; depend on the weights ’w](-9

expressed by (2.18). For some examples of operators these numbers are given explicitly

as
below in section 3.

3 Rapidity space clustering

We shift k& of the n rapidities in the form factor Fg (@) (2.9) to co and define
Ow = (O + W, .. 0+ W, 0hp1, ..., Opit) = (0 + W, 0).
We investigate the behavior of F; O(@y) for W — oo : The result is of the form

FS (0w) "3 Qo k1, W) FS () FE (0) (3.1)
where a = (a1,...,ap), & = (a1,...,qf) and & = (ag41,...,05). We calculate the

(@]

functions ¢z (W) for several operators.



3.1 Examples of local fields

In this article we consider the following fields:
The SU(IN) Noether current.
i =y (Ta) 3 0

transforms as the adjoint representation with highest weights w’/ = (2,1,...,1,0). The
N? — 1 generators of SU(N) satisfy

[To, Ty) = ifapcTe, TrT, =0, Tr(T,Tp) = 30a-

The conservation law 0,J%(x) = 0 implies that J¥(x) may be written in terms of the
pseudo potential J,(x) as
JH(x) = "0, Ju(x) (3.2)

with the quantum numbers

charge Q=0
weight vector w’ =(2,1,...,1,0)
statistics factor o’/ =1

(3.3)
spin s? =0.

Due the Swieca et al. [30] the bound state of N — 1 particles is to be identified with the
anti-particle. This means that the anti-particle a of a fundamental particle o of rank 1 is
a bound state of rank N — 1

a=(p)=(p1--.pn-1), With p; <--- <pn_1, pi # . (3.4)
The charge conjugation matrix is given by
CB& = CB(PI---PNfl) Caﬁ €Bp1...oN—1 (3'5)

with CzC* = 5;3’. In terms of fields this means @/;/3 = Cﬁ(p)&(f’) = Cy(p) PPt .. . pPN-1.
For the Bethe ansatz the formulation of the Noether current given by

T ®) = Py, — C*C g g7 0P /N
with Cgp)Ju (P) — () is more convenient, which means for the pseudo potentials
Ja = Cp(p) (To)? T, (3.6)

Because the Bethe ansatz yields highest weight states we obtain the matrix elements of
the highest weight component J(z) = J'V(z) = J'(12-N=1(g) . The form factor is given
by (2.9) and (2.10) with the p-function for the operator J(z) [9]

p(0,2) = i (e (e ) (e ™)/ (Sime ™) 3)



for n = Omod N. The general weight formula of the Bethe states (2.18) implies that the
numbers of integrations in (2.15) satisfy

nj=n(l—j/N)—1,j=1,...,N—1. (3.8)

In particular the one particle and one anti-particle form factor is [9]

1 — =
F(;]B(Q,w) = (Ta)ap WF(Q —w)/F(im) (3.9)

F&],;S(G’W) = (5252: — CVSCBQ/N) F(0 — w)/F(ir)

cosh 2 (6 — w)

where (T),5 = Csp (Ta)i and F(0) defined in (2.5) is the “minimal form factor function”
for one particle and one anti-particle.

Energy momentum T#”. We write the energy momentum tensor in terms of an energy
momentum potential

TH (z) = R (i0,)T(z), RM(P)= —P"PY 4 g"’ P> (3.10)
with
charge QT =0
weight vector  w! = (0,...,0)
3.11
statistics factor ¢! =1 ( )

spin sT =0.
We propose the p-function of the potential
_.m

(1)
T ey e
p (Q7 é) - Eeaj Ze_ej

The general weight formula of Bethe states (2.18) implies that the numbers of integrations
in (2.15) satisfy

=p"(0,2) +p" (0, 2).

nj=n(l-j/N), j=1,...,N—1. (3.12)
The one particle and one anti-particle form factors are [9]
=i 1
aﬁcosh%(@—w)ﬁ—w—iw

. hl . ~ ~
by 020 =) £ o)) F(im), po =+

Fgﬁ-(e, w)=C F(0 —w)/F(ir) (3.13)

Tro — 4 2C - p3(pto)(0Fwti
Fi (0,0) = dm* O et e g

The iso-scalar field ¢(x): with the quantum numbers
charge Q® =0
weight vector w? = (0,...,0)

statistics factor o? = e~™
spin s? =0,



and the p-function
p(8.2) = e F (ITime 0730 (112,62 (3.14)

for n = Omod N. The general weight formula of Bethe states (2.18) implies that the
numbers of integrations in (2.15) satisfy

nj=n(l-j/N), j=1,...,N -1 (3.15)
The one particle and one anti-particle form factor is

e_(%_%)(e_w_m) F(@ - w)
0 —w—im F(iTr)

FP(0,w) = Co52i (1-0?)

if we normalize the field by (0|¢(x)|0) = 1.

The fundamental field ¥*(x): of the chiral SU(N) Gross-Neveu model with the quan-
tum numbers

charge QY =1
weight vector w¥ = (1,0,...,0)
.. " (1,L)iﬂ- (316)
statistics factor o%¥ =e\"" N
spin s¥ = —% (1 — %)
The p-function of the highest weight component 1 = ¢! for n = 1mod N is [9]
1)
pw(g, Z) _ 62mm ( ?:16—%(1—%)91-) <Hn1162 11 ) (3.17)
and the 1-particle matrix element is
FY0) = gte2(1-n)0 (3.18)

The general weight formula of Bethe states (2.18) with w?¥ = (1,0,...,0) implies that the
numbers of integrations in (2.15) satisfy

nj=(n-1)(1-j/N),j=1,....N-1L (3.19)
The field x*(xz): with the quantum numbers

charge QX=N-1
weight vector wX = (1,1,...1,0)
statistics factor of = (V=)
spin SX:%<1—%).
The p-function of the highest weight component y = XN forn = (N —1)mod N is

pX(Q, é) — e(m—i—%nN,l)in( ;‘1:18—(1—ﬁ)0j) (H;ulezj( )) (H?Nl 1elz§ —1)> /28791' (320)
with n; = (n+1) (1 — j/N) — 1 and the 1-anti-particle matrix element is (see [26])

Fczfg( )_5562( N )W (3.21)



3.2 Results

As examples of the general formula (3.1) we obtain:

1. Particle number n = Omod N and k& = Omod N

F (0y) "3 —2qW T fu F (O FL(0), see Theorem 1 (3.22)
F2(0w) "3 FLO)FL0), see Theorem 2 (3.23)
FX(0y) "3 2w 2 F{ (D) F{=(6) , see Theorem 3. (3.24)

2. Particle number n = O0mod N and k = 1 mod N

F(0w) W3eo e (K, L, W)YFL (@) FX(8), see Theorem 4 (3.25)

=
T
z|=
~—
S

e (ke LW) = ™ d Wz e
P\ ¥y
Fl(0w) Weo e (K, 1, W)CQBFga O)FX (8), see Conjecture 2 (3.26)
cix(k:,l,W) = —iem™ g W e s (1o n)W
with the constant d = 2 (277)_11%\] e_i“(N+ﬁ)/F(i7r).
3. Particle number n = 1mod N and k£ = Omod N
FY Ow) V3w € sFL T () FY (6) (3.27)
= 21'77W71Fé]“ (Q) (Ta)g Fgé (é) , see Theorem 5.

4. Particle number n = 1mod N and kK = 1mod N

Fga Ow) Weo ei”lle*%(lfﬁ)WFga (0) i(é) , see Theorem 6. (3.28)
4 Proofs
We use the short notation 0y, of section 3 and in addition z,,, = (g%,), cees ;g,{,v _1)) where
we shift &; of the z) and define
W= @ WD W) = B9 W), (=1, N - 1),

The choice of the k; integrations out of the n; ones in (2.10) is arbitrary therefore there is

a factor of (Zj ) such that (Zj )n%, = %#, (I; = nj — k;) and there is the replacement

The asymptotic behavior of the form factors given by (2.9) and (2.10) with # = 6y for
W — oo is obtained from the asymptotic behavior of F'(fy), E(Qw,éw), \i/(QW,éw) and
the p-functions (see appendix E). In the following, some equations are written for simplicity
up to constant factors. Constant factors in eq. (3.1) are finally obtained by form factor
equation (iii) of appendix D.

~10 -



4.1 Theorem 1

Theorem 1 The form factor of the pseudo-potential of the current for particle number
n=0mod N and k = 0mod N shows the cluster behavior

B(o) Wooo . 1 BN, 4 (@) % (@) Ay B
FL 0w) "2 ing:Coon (BT @OF @) - BT @O F (0)
which is equivalent to®

W—oo 1 A M
Fle(Ow) "= =207 fane P (0) Fi (6)
Proof. We use the short notations of (2.9)... (2.17) and investigate (for J = JIN)

F(Ow) = NYF(@w) [ dzh @ 200" O 2)BalO0r 23,
From the asymptotic behavior of F'(8y;,)h (8yy, 2zy,,) and p’ Oy, gg,ll,), gg,f,v_l)) in (E.18), (E.7)
and (F.3) we derive for W — oo the exponential behavior

. B4R+ 5N 2 (Ry—ki)”

PO ) O 23 )0 Oy 23y) ox (e W) TR = (570m) (41)
7 0

where kj = kj — k(1 —j/N). For k = 0mod N the leading behavior (6_%W> is obtained

for l;:j = 0, therefore
ki=k(1—-j/N), ;=1l(1-4j/N)—-1,j=1,...,N—1.

For these values of k; and [; we obtain, more precisely, with (E.18), (E.7) and (E.22) in
leading order the asymptotic behavior (up to a constant factor)

F(QW)B (QW7 éw)pJ(QWa éw)(i)g(QW7 éw)

V3 (FO)R (0, 2)8a(0, 2)) (FO)h (0,207 (0, 2)Pa(0, 2)) (42)
The Z-integral vanishes because of Lemma 1 and therefore in leading order
F(0w) — 0.

Order %: we have to apply the asymptotic behavior of the h-function (E.12), (E.13)
and (E.14) and the Bethe state (E.23) and (E.20).

We present a complete proof of this %—term for SU(2) and for general N the example
of appendix B for one particle and one anti-particle. In addition we show consistency of
the general clustering formula with the form factor equation (iii) (see Remark 1).

We have to consider the 2 contributions:

3For SU(2) this result (3.22) was obtained previously by Smirnov [7].

- 11 -



A)

From the h-function: Note that because of Lemma 1 in hi(6,z) of (E.14) only the
%j-dependent terms contribute. Therefore we get on the r.h.s. of (4.2) from Ay for
ki=k(1-1/N), L =1(1-1/N)—-1

v

(F@)R0,2) (-322)) @a(, 2)) (FO)R(E, 2)p” (6, 2)84 (0. 2))
and (up to a constant factor)
FOw)a— 5 (F/@03) | (FLO) (43

where (A.2) and the definition (2.10) for O = J have been used.

From the Bethe state: Again because of Lemma 1 we may take in (E.20) only the
first term and write with égj 0,2) = (QC(Q, 2)...D(0,3)...0(0, 21)) .

a1(0,0,2,2) = 3 (837(0,2)) (®(6, 2)M7)

and we get

and (up to a constant factor)

Flw)s - o (F/®),

o3

(F7@)M2) . (4.4)
where (A.3) has been used. The final result is

1 ~ o ~ <

J ~ J 2 J J J 2

Fl(ow) — ing ((F/@02) (FL@) - (FL@) (F@7),)

which is for SU(2) the component (3, (o)) = (1,1) of (3.22) because FJ (8) = F" ()
and (FJ(Q)M12> = Fé]m (Q)+Fé]21 (0). The other components are obtained by SU(2)-
transformations. The constant factor is calculated below and the minus sign is due to

SU(2) invariance. In terms of the components J, (3.6) this can be written as in (3.22)
(see (4.11)).

Calculation of the functions ¢ ;(k,I,W) : defined by

B(o) W—o0 BN A (o) (@) A BN
F7 0w) "3 ¢k, L W) (Coon B O (0) — CoonF T O (0)

for general N. Here and in the following we use the short notation

S22(9,0) = S (0~ 0,) ... Sad* (0 — 1) (4.5)

- 12 —



, which is related to the “physical” statistics by*

We also use the satistics factor a
da(? — gg)(_1)(N—1)+(1—1/N)(H—QO) (4.6)

where Q9 is the charge of O.
We apply the general procedure of appendix C: using a(W) — e in(1-%) of (E.1) and

o0f{ =1, Q7 =0 we check (C.4) and (C.7) for this case

O+ W, 0) W00 (_1>(N—1)+(1—1/N)(k+l)(a(W»llg _ di](k)lé

G R H O

di’(n)S%g
oy (n)Si% (9 + W, w) W30 (_1)(N—1)+(1—1/N)(k+l) (a(W))"’(N 1)1:

Therefore, as proofed in appendix C, c:} s(k,1,W) is independent of k and [, because
(=1)V=DF = 1 for k = Omod N. Tt is convenient to consider the special case ¢ ;(N, N, W):

1) We take the bound states 1 = (dg...an) and N = (& ...cxN_1) and calculate for
O = 0+ W, &+ W,@,6)
: Noo g N1,1, . 5
Res FLY () = 2iCy; F1Y (6, 0) (1-6f(2n)s) Lo+ w; @,0))

f=im+&
(4.7)

% Ci1 mWFJlN (@,6).

It was used that (2.1), (B.1), (E.1) including 1/W terms and a(f)a(—6) = 1 imply

(2N)S{V}V;(w + W;d,6)
(=)D (a)B)) ()N a(=I)) = 1+ g

W—oo
% —

) Taking first W — oo and then the Res means

W—oo N, A N N, x
(0w) 3] (N, NW)Co o) (FE Y O FL 0) - FEY 0 R ()

J
Res <F11N1
(4.8)

O=in+w
JlN ( é)

= CjJ(N7N’W) ( 2’5) Cll
4.8)

where (3.9) was used. As result we obtain from (4.7) and (
J 1
C,]J(ky l, W) = ZT]W
Remark 1 Note that this also proves consistency of the clustering formula (3.22) for gen-

eral N with the form factor equation (iii)

“See egs. (27) and (28) in [9)].
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Fquivalence. We prove that
Fie(bw) — —203 fachJ (O)Fg*(0) (4.9)
is equivalent to
é [0

« 1 oo (o
F “ (0y) — Wmcv(a) (FJ ( >(9)FJ'Y(p) (i) - Fjwm(g)FJ ( >(9)) '

We have the general relations [31, 32]

. 1 1
(T T} = ihe (T (BT =5 (200 - oded) . (@a0)
By (3.6) and (4.9) we obtain for W — oo
FJ*(0w) = o) (T)L F™ (0w) (4.11)

1 A «
= =207 fane " (O)F (0)

1 Ja) g7 e 77 @) Jalo)
= 37 Cyp) (Ta)a (Cw'(p)’ <Fa > <Fd ) — Gy (Fa > (Fa

where the relations (4.10) have been used. This proves the equivalency.

4.2 Theorem 2

Theorem 2 The form factor of the field ¢p(x) for particle number n = 0mod N and k =
Omod N shows the cluster behavior

FS(0w) S FLO)FL0).

Remark 2 Note that this is the typical behavior of an exponential of a bosonic field

(see [33]).

Proof. We investigate

Fg(Ow) = NEF(y) [ dzh (O, 20)0° Oow, ) a0 24

From the asymptotic behavior of F(Qw)ﬁ(ﬁw,gw) and p?(Oy,zy) in (E.18), (E.9)
and (F.2) we derive for W — oo the exponential behavior

1w) B4R 430 (Ry—ksan)

F(Ow)h (0w, 2 )0 Oy, 24y,) o (€7 (4.12)

- 0
where kj = kj — k(1 —j/N). For k = 0mod N the leading behavior (e_%w) is obtained

fOl"];‘j:O:>
kj=k(L—j/N), =1(1—j/N), j=1,....N—1
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For these values of k; and [; we obtain, more precisely, with (E.18), (E.9) and (E.22) in
leading order the asymptotic behavior (up to a constant factor)

F(Ow)p? (0w, 25y)Pa (O, 2,y)
= (FORO, 2)p° (8, 2)8a(6. 2)) (FO)R(D, 2)p° (0, )P40, 2))

such that
FS(0w) — FL(O)FL(0)

The constant factor is again calculated using the form factor equation (iii). m

Calculation of the function cid)(k:, [,W): defined by
EQ(8w) — ¢y (kLW FL(B)FZ (6)

We apply the general procedure of appendix C: using a(W) — e~ m(1-%) of (E.1) and
0% = e, Q% =0 we check (C.4) and (C.7) for this case

59 (n)SEH (0 + W, 0) = (~1)N=DHA-UNEH (W) 1S 5 67 (k)1S

& (QA-F W,w) = ein(_1)(N71)+(171/N)(k+l)(a(W))(Nfl)klg N é,izﬁ(l)lg

Therefore, as proofed in appendix C, cz¢(k,l,W) is independent of k£ and [, because
(=1)N=DF =1 for k = 0mod N. The special case cﬁd)(k,(), W) is obtained by the form
factor equation (v) with s? = 0 and (3.23) for & = ()

2y (Ow) — VT FL(0) = F2(9)
FSy(Ow) = ¢y (k, 0, W) FE(0) FY

which implies
Gk, 1LW) =1

if we normalize the field ¢(x) by F@ (0lp(x)]0) = 1.

4.3 Theorem 3

Theorem 3 The form factor of the energy momentum potential for particle number n =
Omod N and k = Omod N satisfies

FQT(QW) = O(W™2) for W — c. (4.13)
More precisely

Conjecture 1 The cluster behavior of form factor of T for k = 0mod N reads as

FL(0y) V3™ 2qW 2FJ2(0)F{= () = yW>C 5Cs5 FL™ (0)F{™ (0) (4.14)
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We have no general proof of this conjecture. The problem is that the expansion for
large W of the integrand in the contour integral representation in (2.10) must not be
interchanged with the integration, this is only allowed up to the 1/W-term.

However, we have checked consistency with the form factor equation (iii), which also
yields the function ¢l ;(k, I, W) = nW 2.

Proof. To prove (4.13) we investigate for n =k +1, m =k +1;, m =n/2

FE Ow) = NI [ dzF @) k@ 2w)” O 20) BBy 2)

From the asymptotic behavior of F(QW)B(QW,gw) and p (B, zy) in (E.18), (E.8)
and (F.2) we derive for W — oo the exponential behavior

)’5?+’5?v1+z;v—12(’5j—’5j+1)2

F(Ow)h (O 200 )07 (O 2) ¢ (737 (4.15)

- 0
where kj = kj — k(1 — j/N). For k = 0mod N the leading behavior (e_%w) is obtained
for k; = 0. Therefore by (3.12)

kj=k(1—j/N), §j=1(1—j/N), j=1,..,N -1

For these values of k; and I; we obtain, more precisely, with (E.18), (E.8) and (E.22) in
leading order the asymptotic behavior (up to a constant factor)

F(QW>B (QW, éw)pT(QW7 éw)(i)g<QW7 éw)

A~

VI (PO (0.294(0.2) (FOR 0.2)¥a(0.2) (p™(0.2) +p"(0.2)

However, this means that in leading order
Fl(Ow) =0
because of Lemma 1.

Order %: similarly, as in the proof of Theorem 1 we discuss the contribution from
hi(0, z) of (E.14), however, for ky = k(1 —1/N), Il = 1(1 —1/N) there are no the %;-
dependent terms and therefore this contribution vanishes by Lemma 1.
From the Bethe state W,i(8,6,2,%) of (E.20) and (E.8) we obtain contributions of
the type
[dzhi.z) (9@ 20F) and [ dzhie.2)p™ (0.2) (90, 2)M)

o3

where both are = 0, the first one because of Lemma 1 and the second one because T'(x) is
an iso-scalar operator. Therefore there are no contributions of order W' and

FQT(QW) — O(W™2) for W — oo.
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Calculation of the functions & ;(k,1,W) : defined by
FL(0w) "5 55, LW)CosCs FL T FY (0).

We apply the general procedure of appendix C: using a(W) — e~ m(1=%) of (E.1) and
ol =1, QT = 0 we check (C.4) and (C.7) for this case

5T (n)SE(,8) V3 (—1)(NOHOUNED (g ()1 s 6T (k)12
6T (n)SLE (0 + W,w) "3 (— 1) (N=DHA=UMUHD (o () MV-D18 (1) (VDR (114

Therefore, as proofed in appendix C, ¢%;(k,l,W) is independent of k and I, because
(=1)V=Dk = 1 for k = 0mod N. Tt is convenient to consider the special case ¢& ;(N, N, W):

1) We take the bound states 1 = (dg...4y) and 1 = (& ...dx—_1) and calculate for
O = 0+ W, &+ W,@,0)

JRes Fliy (0w) = 2i Cyp F (@,0) (1 - o] (2N)S1 5 (@ + W3.0,0) )
W3 2 WRin (1 - 1/N) (6 - & +in ) Pl (@, 0)
It was used that C;7; = 1 and that (2.1), (B.1) and (E.1) imply

z;iT(QN)Sillll( + W;,6)
= (~)NDHOVNEN (o 4 W — @) (~D)Nalim — (@ + W = 0)))
W00 exp< in(l—1/N) <(w+W—cZz)_1 + (iw— (@—I—W—é )_1>>

W~>oo

L+ W 2in (1= 1/N) (6 - @+ ir)
2) Taking first W — oo and then the Res means

W—oo A B, . X
éﬁej (FlTih(QW) =% (N, N,W)C 5Cy Y (0,0)FF (&, 9))
= —2ic% (N, N, W)F/ (&,6)

where (3.9) has been used. The particle anti-particle form factors (3.9) and (3.13)
satisfy applying the form factor equation (ii)

FU0,0) = (1 - 1/N)i (0 — w + im) FL (0,w) (4.16)

therefore
Lk, L, W) = W2

which supports (3.24).
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Remark 3 Repeating the last discussion for the more general case k = N, | = LN, Oy =
(d)—i—W,GA—i-VV,QV,Q) and & = (a...aa...a) for a fited a = 1,...,N we obtain as an
generalization of (4.16) the interesting relation of energy momentum and current form
factors

(1 — ]17> 3 i (éj —w; — iw) FT (é, w) = Caa (FJQ& 7“.7@, Q)) (4.17)
=1

a..aa..a
J

FEquivalence. Using the general relations (4.10), (3.6) and CO@FQ’M = 0 we obtain

2FJ (D) FL*(0) = 2 (Tu) oy FL™ (0) (T) 55 FY™ (8) = CsyC o5 L Q)L™ (6).
. )
with (Ta)aB = C(SB (Ta) .

4.4 Theorem 4

Theorem 4 The cluster behavior of the form factor of the pseudo-potential of the current
for particle number n = O0mod N and k = 1mod N reads as

withly =(1+1)(1-1/N)—1.
Proof. We investigate

F(0w) = NIF@w) [ dzh O, 200" (O 20) 80O )

The exponential behavior of the integrand is again given by (4.1). For k = 1mod N the
1-+ -
leading asymptotic behavior (e_%w) ™ is obtained for kj = j/N — 1 which implies

By = (k= 1) (1= j/N), bi=(1+1)(1—j/N)=1, j=1,..,N 1
For these values of k; and [; we obtain, more precisely

F(Ow)h (8w, 2, )07 (O 20) B0 (O, 2,y)
1

— Wz s (FO)RO, 2p* (0, 2)04(0.2)) (FORE 2p* (0, 2)%4(0. 2))

which implies (up to const.)
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Calculation of the function cix(k, [,W): defined by
J W—=oo g YA\ X (D

We apply the procedure of appendix C: using a(W) — e=m(1=%) of (E.1) we check (C.4)
. 1 - 1

and (C.7) with o/ =1, Q7 =0, 0¥ = e”(lfﬁ), QY =1and oy = e”(N*W), QX=N-1

5 ()ST5 (0 + W.0) 3% (- N IHENED (W) 1T - 6 (15

7 (n) S (8 + W,w) "3 (—1)N=DHO=INEHD (o (7)) (N-DRE s (1) (N=DkgX ()14

Therefore cix(k, [,W) is independent of k and for k¥ = 1mod N (see C)
el (kW) = e (Ko, lo, W) (—1) D=0/
The special case c;ix(l, N — 1, W) is calculated by the following example, which implies
¢ (e, L, W) = €12 (27) 782 e (Nrak) F(im) Waze s (0R)W (418)
because l; = (I +1)(1 —1/N) — 1.

Example. The particle anti-particle of (3.9) and asymptotic behavior of the particle
anti-particle minimal form factor function (E.5) imply

Fly () "3 27307 (2m) 8 wv edWed O—omm) ¥ F ().

2|~

The asymptotic relation (3.25), (3.18) and (3.21) give

W00 _1(1—1)g 1(1—-1)y,
Flg(0w) "3 ¢l (LN = 1L,W)FL(0)FX(0) = ¢, (1L,N — 1, W)ez(1-7)0e3(1-%)

which means
i _
Cix(l’N -1, W)= 2e72W ((277)_1_% W%eéwe_%”) N JF(ir)
and (4.18).

4.5 Conjecture 2

Conjecture 2 The form factor of the energy momentum potential for particle number
n=0mod N and k = 1mod N shows the cluster behavior (5.26)

FL(0w) "= L (k, 1, W)C 5 (é)Fg’B

(©).

We have no general proof of this conjecture. The problem is the same as in Conjec-
ture 1, that the expansion for large W of the integrand in the multiple contour integral
representation in (2.10) must not be interchanged with the integration. However, the rela-
tion (4.17) implies the cluster relation (3.26) and we have again checked consistency with
the form factor equation (iii), which also yields the function ch(k:, [,W) of (3.26).
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Calculation of the function ch(k, [,W). In the same way as above for c;ix we prove that
cix(k, [,W) is independent of k and for k = 1 mod N

Cix(ka l7 W) = Cix(kh’ lOa W)(_l)(N_l)(l_lO)/N
The special case ch(l, N — 1, W) is calculated by the following example, which implies
L (1, W) = iei™ Wz~ tems ()W (27) =32 ¢ (Nraw) ) F(im) (4.19)

Ezample. The particle anti-particle of (3.13) and asymptotic behavior of the particle anti-
particle minimal form factor function (E.5) imply

1 N
FTN(QW) W= 930~ w+W)7,W ((27'()_1_% W%eéwe%w_w_mv N JF(im).
The asymptotic relation (3.26), (3.18) and (3.21) give
W00 “1(1-1)0 1(1-1)w
FIs(0w) "3 (LN — 1L, W)EL () FX(w) = ¢ (LN — 1,W)e 3(1-%)0e3(1-%)

which means
1
crix(l,N -1, W) = W?e_%w ((27r)_1_% W%eéwe_%m) N JF(in)
and (4.19).

4.6 Theorem 5

Theorem 5 The cluster behavior of form factor of the fundamental field for the number
particles n = 1mod N and k = 0mod N reads as

(o0} 1 . 1 . A v
Y (0w) "3 winC B Q)Y (0) = -2 0) (T)] Y (0). (4.20)
Proof. We investigate
FY 0y) = NYF(Ow) [ dzh O 24 )" @ow )b 2,

From the asymptotic behavior of F(8y,wy)h (Ow,ww,2,,) and Y Oy, zw)
n (E.18), (E.10) and (F.4) we derive for W — oo the exponential behavior

R24k2 ki—ki)? -
A N S e
(4.21)
0
For k = O0mod N and [ = 1 mod N the leading asymptotic behavior o (eféw) is obtained
for kj = 0 ie. kj = k(1 —j/N)and I; = (I — 1) (1 — 5/N) by (3.19), which implies (up to
const.)

F () (O 200" (O 2) < (73

F(Ow)h(Ow, 2y, )0 O, 2w) a0, 2y,)

(Ow
— (F @h(e £)®a(0,2)) (FO)R(, ;)p (6,2)84(0,2)) (4.22)
However, this means that in leading order
FY(0w) — 0

because of Lemma 1. The proof of the % contribution is similar to that one of Theorem 1.
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Order %: we have to apply the asymptotic behavior of the h-function (E.12) and the
Bethe state (E.21).
The result for the contribution of h; is (up to a constant)

FY Ow) = inW = (CuF{" (0) FY (0) (4.23)
and the result for the contribution of ®q is
FY g, Ow) — i (CH R (O FY (0)
Because C( ) 0115151 C.; the claim (3.27) is proved. m
Calculation of the function cffw(k:, [,W): defined by
FY (0) "3 ¢y (k, 1L, W)C, 6FJ’”(9)FW(5)

We apply the procedure of appendix C: using a(W) — e —in(1-%) of (E.1) we check (C.4)
1\-
and (C.7) with sz = e(=%)i and 0f{ =1 for k=0mod N

ot (ST 0+ W,6) "3 el -x)im(— R CUE

— (—=1)N=D+=1/N)ky

X/

=7 (k)1

\Q<\Q<
=1

’

~—

+(1—1/N)(k+1) (a(W))(N—l)klg

(0 +W,w) 3> (1 xJim(p) (V-
B G Ul

7 (n)S

[=3) »—AI

=31~

Therefore czﬁw(k, [,W) is independent of k and [. It is convenient to consider the special

case cfﬁw(N, LW):
1) We take the bound states 1 = (Ay and calculate for Oy = (0 + W, & + W, 0)

an)
Res F% (0w) =2iCy F (é) (1—&3”(N+1)S-1’i(@+Wé))
it 111 \=W 1141 1 1,1 )

W3 95 Cyrin (1 — 1/N) — F¥(6). (4.24)
It was used that o! = ei”(l_%), 071/}0% = (=)D (see [9]), (B.1), (E.1) and
a(f)a(—0) = 1 imply

SN +1)SPH @ + W, 6) V3% e m(1=3) (1) I-VNIN () V=D (—w)

_iw(l—ﬁ)(il)(l—l/N) (71)(N—1)€7,7r(1—%)6i77(1—%)% S 7;,,7 (1 o 1/N) i

— € W

2) Taking first W — oo and then the Res means
W—oo 18 v, v
JRes. (Ff Ow) 3 5, (N1, W) (C B (w0, 0)F (0)))
. YN
= ¢, (N, 1,W) (1= 1/N) (=23) Ci Y (4).

As result we obtain clﬁw(k, I,W) = ing> which proves (3.27).
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Equivalence. Using the general relations (4.10) and (3.6) we obtain

é

0) (T.); FL (0)

—2C.c (1 (6203 —1/N 535?)) F{"(0)F )

because of CagFé]aE(QA) =0.

4.7 Theorem 6

Theorem 6 The cluster behavior of form factor of the fundamental field for particle num-
bern =1mod N and k = 1mod N reads as

FY (6w) "3 (<1 e OV ) FL)
Proof. We investigate

Fg(QW) = N#F(QW)/déiL (QI/Vaéw)pw(QW7éw)\ilg(QW7éw)

1—L
and obtain as above the exponential behavior (4.21). The leading behavior o (e_%w) N
is obtained for kj = j/N — 1 which means
ki=(k-1)(1-j/N), lj=1(1-j/N), for j=1,...,N—1
and (up to const.)
F (Qw)p¢ (Ow, éw)‘i’g(ﬁvva éw)
1-+ A~ A N A “ o~y =
= (e2") Y (P@RO,2)p"(0,2) 540, 2)) (FOR(E, 2)p°(0, 2)F4(0, 2) ) .
proving (3.28). m
Calculation of the function c$¢(k, [,W): defined by
W —o0 A 3
FY(0w) "3 b, (k, 1, W)FY () FS(6). (4.25)

We apply the procedure of appendix C: using a(W) W0 o—im(1-7) of (E.1) we check (C.4)
; 1 .
and (C.7) with aqf’ = e”(l_ﬁ), Q¥ =1 and g(f —e M Q=0

</

&Y (n)S (0 + W, 8) — (%) (1) (N=DHO=UNGH=D () 67 (k)15
(é+W,w) N eiw(lf%)(_1)(N—1)+(1—1/N)(k+l—1)(a(W))(N_l)klgl
= (=) k(1]
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Therefore (C.3) and (C.5) imply that cqu(k:, [,W) is independent of k and (C.6) and (C.8)
that for k = 1mod N

sk, L, W) = ¢4 (ko, Lo, W) (—1) (V=D (l0)/N

W) is obtained by (4.25) for & = () and the form factor equation

V)

The special case wa(l 0,
(v) with spin s¥ = —% (

2\

FY(Ow) — ¢ (1,0, W)FY (B)Fy
FY () = e = e =RV L (G)

if we normalize the field ¢(x) by FQ) (0]¢p(x)]0) = 1, this gives the result
bk L) = (—1)lre” s(1-%)w

because Iy = (1 —1/N).

5 Summary

In this article we investigate the rapidity clustering of exact multi-particle form factors
of the SU(N) chiral Gross-Neveu model. For some examples of local fields, in particular,
the Noether current, the energy momentum tensor, the fundamental spinor field etc, we
explicitly demonstrate the clustering or factorization phenomena. In a forthcoming paper
we will consider the form factor of the Noether current in a special form, in order to connect
the asymptotic clustering with Bjorken scattering.
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A Some lemmata

Lemma 1 Forn = Omod N, n; = n (1 — %) and p(0,z) = independent of zl-(j) the K-

function vanishes

= [dzh 0. 28a(0.0 = 0 (A1)

For SU(2) the proof of this lemma is quite analog to that for the Sine-Gordon model
in [34]. For general N we present an example (see Proposition 1).
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Lemma 2 For SU(2) and m = n/2

Ka(0) =~ [ dzy - /C dz (0, 2) (-i%) o (0, 2) = (~1)" 8% (K (0)M7)
(A i=1

= m)! Co

which is a non-highest weight K-function and

K,(9) :m% ., dzl---/cg dzm ﬁ(g,;)i bo(0,2) = — (~1)"87%KJ ()  (A.3)

where 857 (0, 2) = (200, 2) ... D(0, %) ... C(0, 7)) .

&

For SU(2) the proofs are similar to the one of Lemma 1. For general N see the proofs
of Propositions 2 and 3.

B Examples of particle anti-particle form factors

B.1 Bound states — anti-particles

The following is taken from [9, 25, 26].

B.1.1 Bound state S-matrix
The S-matrix of a particle and an anti-particle (which is a bound state of N — 1 parti-

cles (3.4) [30]) is

SoH(0) = (=1)N=1 (6765 b(mi — 0) + C* Cqp o(mi - 0)) (B.1)

«

where the charge conjugation matrices are given by (3.5).

B.1.2 Bound state form factors

The general form factor formula for n particles o and 7 anti-particles 0 is

where
F(QM)—( H F(%‘)) ( H HF(9z‘—wy‘)) ( H F(wz‘j))

K 5(0,w) = /C dzh(0, 2)p(0,w, 2)¥ 56, w, 2)
0w

®See also [29] for U(N) Bethe ansatz.
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with ng,ﬂ dz =% f(327g dzy- - fCQ,g dzy,. The minimal F-function for a particle and an anti-

particle F' (0) is defined in (2.5) and satisfies (2.6) and the asymptotic behavior (E.5). The
0-level Bethe ansatz state writes in terms of the basic states as

\ifj(Q,g, z) = Lge(z,w) %(9 w, 2)

The function Lg,)(z,w), (0) = (1,02,...,0n-1) is given by the 1-level off-shell Bethe
ansatz, etc. The final formula is

KG0w) = [dzr [y (0w 2000 2)B,5(0.0.2) (B.2)
N— n MN-1

h(8,w,z) H h( (2j:2j+1) H H X(w 1)) (B.3)
j=0 i=1 j=1

2(w)=F<;+;i>F(;—]§—2‘:ﬂ). (B.4)

The complete Bethe ansatz state is

N Py - 1) and -8
Bo(Bow,z) = BN DIy ) B )80 (0,0, 2) (BS)

an_o0n_o @59y

where ay_; = (N,...,N) and §5_; = (N,..., N) consists of highest weight bound states
N =(1,2,...,N —1). The state of level j is given by monodromy matrices as

Qjt1 941
= Q0 J+18 j4+1
HU) Lit1%+1 7(5) Eit1 j+1
gjéj (Z]7w z]—i—l) . 6J7J+1 (z],w Zj+1) Zj11 z; w
jt+1
Q; éj

If there are n particles and 7 anti-particles the SU(N) weights are [26, 29]

w=(n-—ny,ny—ng,...,AN—2 —NUN_1,IN—1 — 7_1) —i—ﬁ(l,...,l) (B.G)
=w+L(1,...,1)

where n1 = m,ng, ... are the numbers of C' operators in the various levels of the nesting,
0 is the weight vector of the operator @ and L =0,1,2,....

B.2 Lemma 1 for general N and n=n=1

Proposition 1 The K-function given by (2.10) with p-function = 1
5(0,w) /dzh 0,w,2)®,5(0,w,2) =0 (B.7)

forn=n=1.
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Proof. The weight formula (B.6) implies that n; = 1 for j = 1,..., N —1 and the L-function
of level j is

1)
L) = [ dud (=) LGED (ww) (507 Goww) = CRLE) )

where (B.20)—(B.29) have been used. For j =0
KaS(Q;Q) = CaSLg?z)(evw) =
by (B.21). m

B.3 Theorem 1 for general N and n=n=2, k=k=1

We consider form factors of the pseudo potential J(z) for particles and anti-particles.
Formula (B.6) means, generalizing (3.8)

=n(l-j/N)+nj/N—1. (B.8)

and the p-function is [26]

N-1)) = (He (1)) (H 65251\/1)) (H 6_%@) (H e-%w)

- SIS = (B.9)

P’ (0,w, z, 2

with the asymptotic behavior

pJ(QW7QW7éW) N ef%W(kflﬂka_ﬂ (H *% ) (H672(1>) (H —z(N—l)) (HeflA) (é é)
B.10)

—~

In particular for n =7 = 2 and k = k = 1 we prove the proposition:

Proposition 2 The form factor of the current forn =7 =2 and k = k = 1 satisfies the
clustering formula (3.22) in the form

BE w BE , ~ €N o
Fl 0w, ww) "3 W (Cow L (0,0)F25(0,0) — CopF
= —29W " fapeF 2 (6, 0) F (6, 0).

Proof. The exponential behavior (4.1) implies for n =7 = 2 and k = k=1 that kj = 1
and l; =0 for j = 1,..., N —1. We investigate for J = J*V (N = bound state (1...N —1))

9 w) /dzh 0,w,2)p’ (0,w,2)®,5(0,w, 2) (B.12)

We have proved in theorem 1 that in leading order

Fl(Ow) —0
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Order %: we have to apply the asymptotic behavior of the h-function (E.12) and the

Bethe state (E.21).
The result for the contribution of hy is

1N . _ 11,4 NN A~ 1IN x|
Bl O ww) —» W (CuFL (0,0) — CyyFLT (0,0)) FL7 (0,5)
and the result for the contribution of ®1 is
1N . _ 1 1R A SN x| SN A 1R, x
s, Owoww) = igW T (CRIFL"(0,6)F:" (0,6) - Cw P2 (0,0)FL" (6, @)
B JNN A JIN X oo
+ CynFL7 (0,0)F77 (0,9)).

Because Cg? + 0115(%6,% = Csi (see (B.30)) the relation (B.11) is proved. m

B.4 Theorem 5 for general N and n=2, n=1, k=k=1

We consider form factors of the fundamental field v (z) for particles and anti-particles.
Formula (B.6) means, generalizing (3.19)

nj=Mm-1)(1-j/N)+nj/N, j=1,...,N —1. (B.13)
and the p-function is
PP (0,1, 2) = e O) ([, 0400 [T, (o 48) (T ed™)  (Bag)
with the asymptotic behavior
P’ O ww, zw) — e 2R G 0 (0.2 (BA5)

In particular for n = 7 = 2 and k = k = 1 we prove the proposition:

Proposition 3 The form factor of the current forn =2, i =1 and k = k = 1 satisfies
the clustering formula (3.27) in the form

EY Oy, wow) = inW = (CoaF22" (0,0)FY (6)) (B.16)

Proof. The exponential behavior (4.21) implies for n = 7 = 2 and k = k = 1 that ki =1
and [; =0 for j =1,..., N — 1. We investigate for ¢ = P!

K35(0.0) = [ dzh (8,0, 29" 0.0, 28450, 0.2) (B.17)
We have proved in theorem 5 that in leading order
FY(Ow) =0

Order %: we have to apply the asymptotic behavior of the h-function (E.12) and the

Bethe state (E.21).
The result for the contribution of hi is

L . — 11, A~ 1, x
Fzzim (Ow,ww) — ipW (CHFO;% (Oaw)> Ff (0)

and the result for the contribution of from ®q is

! o D) g% A .
FY o O sww) — W (CULFLS(0,0)) FY (6)

Because ng + 0115(%6; = Csi (see (B.30)) the relation (B.16) is proved. m
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B.5 Formulas

Definition 1 We define (for 0 < j < N — 2) iteratively
, - - R 3
LY () = [ dudlz =)L (w,w)a(z — u)i(w - 2)
LY (z,w) = /dqu(z — ) LYY (u, w)ui(z — u)j(w — z)

with
Pe)ge) =a=1,8(e) = = de) = o () =
LV (zw) = ()N v (w - 2)

ca

Proposition 4

1. If x\N-1(w) = x(w) =T (% + 2%”) r (% — % - 2%@) then

with

2.
L) (z,w) = LY (z,w) /(N = j — 1)
L9)(z,w) = L9 (2,w) (1 + N (2 —w — im) /(2i75))
Kual0,) = L(0.0) = (<1 ey -ver oL
aall, aa \V» - sin%cosh%(ﬁ—w).
3.
LU (zw) = = (14 ) 2 — w — im) L) (2 )
J
LY (z,w) = — <1 (z —w—im) + o (im — w)> LD (z,w)
ubd\~» ] N — ] -1 ca )

in particular
9
LO),(6,w) = %Kaa(G,w)

uca

LQ(L%)d(é?, w) = —%Kaa(ﬁ, w).
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(B.18)

(B.19)

(B.20)

(B.21)

(B.22)
(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)



4 I LGN (2w) = CHL VL8 (2,0) = 0560 V(= D)N T (w — 2) then

LY (z.w) = /Cdué (= = u) LG {0 (u,w) (Th ) H0 (2, w,0)) = O L8 (2, w)

Bu),i+1
(B.29)
where
Cg(L) = Cp(y) for B> j else =0. (B.30)
.
L9) ) (zw) = / dud (= — u) LIED, (u,ou (T30 (2, 0,0)) (B.31)
= ((Néévé(u) Cg&») 2L (z,w) + const. LY (z,w)
in particular
L(];( ;)(z w) = 55 5(#) LNV (2, w).
6. forj+1<a <N
/ dud (= — u) LG (u,w) (TS5 (,0,0)) = 63 00 L) (z0). (B3

Proof. We use

% (/ +/Cb) dzT'(a — 2)I'(b— 2)['(c+ 2)['(d + 2)
T(c+a)T(d+a)T(c+b)T'(d+Db)
F'(c+d+a+b)

where C, encircles the poles of I'(a — z) clockwise.

1. With ¢(2)é(2) = —£T (—=55) T ( ~ + 27”) and x;+1(w) of (B.20) follows

dud(z — u)e(z — u) X1 (w — u)

Co

== | CET (k)T (b - )T (b )
4 11%ﬁ% 1 1z-— 1 1. 1z-

v () ey G E )t e )

= ¢X;j(w —u)

and iterating this result = 1.
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2. With §(2)b(2) = —T(1 = %) T (=% + 5% ) and d(w)X;41 (@) =

21 T

Ar(4+ 8- )T+ )

211

dud(z — u)b(z — w)d(w — u) ¥y (w — )

Co
1 - - , _ -
== fo AT CEOT ()T (3 B - T (s )
1

and

[ dud(z Wil =)

-y R (4 ) () ()

CQ 21 21

= ¢jXj(w —u) <1+
. — 1 1 _ —92 2
ande(w)—T(—i—zim)F(iﬂim) = o To = 2
3. Withé(z—u)u:%_}_(}(z_u) (2_%) N

§5%))

uca

(z,w) = 2im /N L) (z,w) + (2 — 2im /N) LY (z,w)
= (2im (1 + N (z —w —im) /(2im)) /N + (z — 2in/N)) LY (2, w)
= ((1+4)z —w—im) /j L) (z,w).

and using b =1 — ¢, J(w—u)u:—%—d(w—u)(iﬂ—w)i

L9 (2, w) = —2im /N L)) — (im — w) L{)
= — (2in/N LG) = L)) = (im — w) /(N = j — 1) L)
= —((z —w—im) /j + (im —w) /(N — j = 1)) L) (z,w).

By (B.23)
7 (1 +]) 2 —w—im) i
Lo z,w) = lim 2 Lo z,w) = —Kuo(z,w
uca( ) ]%0 1+2fij (Z—w—lﬂ') aa( ) N (la( )
1 ; 1 ; ,
©) - (; (z —w—im) + NI (im — w)) © 2%
L, (z,w) = lim Ly (z,w) = ———Kua(2,w).
= 3.
4.
CU+D) B +1(k)

B ()" B(r),j+1

i1 ~ / . / - / / ~~ 4 10,1 -7 . ’

= ) (0073057000 + a0 603 + 885 C7 WG + 285 TN )
_ isitl (1) ~~(j+1) 7 5~ ~i+1 () ~ e+l ~(G+1)

= 005 C 1) +ECH | +bdC L CTHIC 5+ edsyT O
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Cyh =0 and C) CITIIC 00 = (N = j = )85 Clpa =

L)y 20 = [ dud (z =) LG (w,o) G 1) (155714 os0v0)

— L(J)C(j(:)l) + LI (N —j - 165 C i

) (D) | it ()
= LG (Cyl) +8571Ca) = LR CY),

: . N-1 Vo (N-1
5. By induction: let Liﬁ(u))(z,w) = 5}5\75%ng(1 )(z,w) and

(4+1) Y Ns(L.N=1)  ~(+1) (G+1)
Luﬁl(ﬂ/) (u7 U.)) - m ( Naﬁlé(ﬂl) Cﬁ/(rul))) LCCL =

B(n).j+1
_ 1 7 (1.N=1) _ ~G+D)Y 7(G+1)
_ jH/Cducz) (z — )((N5 o0 —CB,(u,)>Lca (u,w))
S8 (W) T TciHl
u (@0 8(s) + bdo5 CT U C )
1 ; N— j .
= —— (202 w) (N oL = ) + Lz, )05 (41) Cria)

L'(u]ﬁ)(#) (Za w) = /C dué (Z - u) Lq(jg/_(ll) (u7 w) (Tﬁ I )(Z, w, u)

Jj+1
L(J)(z w)( (1 . N o(1..N—1) G+ L,

Tt ((g (1+4) (Voo™ — e )) - 705 (]+1)Cj+1(u))z
+const>

= (Ndévéé;')"N_l) B(u ) /5 2L9)(z,w) + constLY).

= 5. because

N (l..N—
(Voo

Do) — Cin CP N C i = (NChaagy — (N =3 = 1DCian) =

6. Ta([’f)jﬁv = 653‘,6% holds for j +1 < &/ < N and with (B.23) for j + 1 follows

/dué (z—u)é(z —u) LI (u, w)
—/du¢ (2= w) & (2 — w) LI (u,w) (14 N (1 — w — im) /(2 (j + 1))
=LY (z,w) (1 + N (~w —im) /(2im (j + 1)) + LY), N/ (2im (j + 1))

N (~w — i) N 1 o
2im (j+ 1) 2im (j+1) j - (1 +j)z—w—z7r)> = L) (z,w)

= LY (z,w) (1 +

by (B.23) = 6. m
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C The functions c(k,l, W)

The functions ¢ (k, [,W)in (3.1)
EQ (Ow) — cgo (k. L. W)ES O)FE (@)

are calculated using the form factor equation (iii) (see (D.3)), by taking for Fg (Byy) first
the Res and then the limit W — oo or exchanging the procedures. We use two special
cases of the form factor equation (iii):

I As in (3.4) we take the bound state (a;...ay_1) = (2...N) = 1 with rapidity w
and (iii) reads as

(w,0,0,0) = 2 Cy F9(0,0) (158 — 60 (n)S5,1(6,0)S5(6.0)) (C.1)

aa 1a

Res FY
w=in+0 11aa

where we use the short notation of (4.5) and (4.6) for the statistics factor ¢’ (n).

IT The form factor equation (i)

(0,0.0.0) = FY,_, . (w.0.0.0)S]2" (0.6)S7 (0,w)

ocﬂwa 5% &’ &

implies that
Reie FAHO[(H w,0,0) = 21011F9é/(é,é) (C.2)
< ()N IRMEE 605, (0.0)S1 (0.0)

aa

where k = |&|. It has been used that crossing [9] Si@(H) = (~1)N-D g8 (ir — g)

al
implies

Saft ()82 (0 — im) = ()N VS (9) 55,1 (=0) = (=) N D1g”.

We consider 4 procedures:

1. Let Oy = (w+W,0+W,0+W,4), k:N+@\ > N, | = |d| then by (0.1) and (3.1)

_Res  Ff4(0w) = 20C1, Fgy (0+ W, 6) ( —60(n)S5(0,0)S% (0 + W, 0)
(C.3)
W32 915 (k — N,LWIES(D) (15 — 6F (k) S5 (0,0)) FE (6)
00 b 8 \ta — o1 1a \9:0)) &6 (€

if
60 (n) S8 (0 + W, 0) V32 60 (k1%

[Q<1R¢
—
a
=
N—

2. Inverting the procedures

Res {F—O

wiato U ad

@) "5 Gy (k, L W) FS 4 (w,0,0) g@}
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3. Let Oy = (0 +W,w,0,6), k=|a|, | = N +|d| > N then by (C.2) and (3.1)

Res Fa(0w) = 20 C1 94 (6+ W, 6)

x ((—1><N >’“13 18— 60 >sm 0+ W,w)S2(0.0)

W3 2iC1, 5 (kL — N,W)ES () FS (8) (—1) -1k ( s, 0)) (C.6)
if . ) )

o ()SI 0+ W,w) "3 ()N VRGP (17 (C.7)

4. Taking first W — oo and then the Res means
W—oo A pe
Res {FG14(0w) "3 B (kL W)EL () 5 (.0.0)}
= ok, 1, W) FQ (0)2iC1, FO(0) (15 — 69 ()57 (6.0)) -

1. and 2. prove that cg@ (k,l,W) is independent of k
(k N, I, W) = c o (k. LW).
3. and 4. imply that cg@ (k,1,W) depends on [ as
Qsle,l = N, W) = 5 (k, 1, W) (—1) NV —DF
which means that c (k:, [,WW) is independent of [ if kK = 0mod N and in general
Sk LW) = e85 (o, Lo, W) (= 1) ¥~ DHI/N

where (I —ly) = Omod N and cg@(ko, lo, W) is obtained by a simple example.

D Form factor equations

The co-vector valued function FC  (6) is meromorphic in all variables 6y, ...,60, and sat-
isfies the following relations [6, 7]:

(i) The Watson’s equations describe the symmetry property under the permutation of
both, the variables 6;,0; and the spaces i, j =4+ 1 at the same time

FO. (.,0:,05,...) =F%, (...,0;,0:,...)Si;(0;) (D.1)

LA

for all possible arrangements of the 6’s.

(ii) The crossing relation implies a periodicity property under the cyclic permutation of
the rapidity variables and spaces

ULy [O(0) [ pay- ., pp Yoo
=FP (01 +im, 0, ...,0,)69CH = FP (6s,...,0,,6, —ir)CH. (D.2)
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The components of the vector 5 are given by 60 = ¢ (—1)V-D+1-1/N)(n=Q?) [g]
where the statistics factor ¢ is determined by the space-like commutation rule of
the operator O and the field which creates the particle «. The charge conjugation
matrix CH is given by (3.5).

(iii) There are poles determined by one-particle states in each sub-channel given by a
subset of particles of the state. In particular the function Fg (#) has a pole at
015 = im such that

Res Flon(gl, .. ,9n) =21 Clg F??n(eg, e ,Hn) (1 - é’OSQn .. .Sgg) . (D3)

Oro=1im

(iv) If there are also bound states in the model the function Fg (#) has additional poles. If
for instance the particles 1 and 2 form a bound state (12), there is a pole at 12 = in
such that

Res FQ ,(01,0,...,00) = FSy (019, -, 00) V2L (D.4)

012=in

where the bound state intertwiner F%Q) and the values of 0y, 03, 612y are given in

general in [34-36].
(v) Naturally, since we are dealing with relativistic quantum field theories we finally have
FP 0+, 0n +p) = e FP L (61,...,0,) (D.5)

if the local operator transforms under Lorentz transformations as O — e*#QO where
s is the “spin” of O.

There exist bound states of r fundamental particles (p; ... p,) (with py < --- < p,) which
transform as the anti-symmetric SU(N) tensor representation of rank r, (0 < r < N).

E Asymptotic behavior for W — oo

We use the short notations of section 4.

S-matrix. For W — oo (up to higher order)
a(@+W)— e~ im(1-%) e=n(1=% ) 73w

- 1 1
b(9+W)—>1+2176+W—772(9+W)2

(E.1)
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Minimal form factor function F and ¢-, 7-function. The functions defined
n (2.3)-(2.7) satisfy the asymptotic behavior for W — oo (up to higher order)

1 1 . 1—L
FO+W)—xw) (0-w) (eawﬂﬂ) N (E.2)
3O £ W) - X(W)eFleFims(1-w) (1 ¥ ﬁ (0 +im (1 - ;f))) (E.3)
(0 4+ W) = X (W) 20 <1 + N2194/> (E.4)
FO+W)— X(W)™~ (e%w—m)) N ((2w)—1—% W%eéwe%w—”)) ~ (E.5)
X(W) = (2r)t v e 3V, (E.6)

p-functions. The asymptotic behavior for W — oo of the p-functions (3.7), (3.14)
and (3.17) are given by

P! (O 2yy) — €73V ERIZR) (070 7 (9, 2)p7 (0, 2) (E.7)
DD S T S

pT(QWaEW) Zee Ze—éi :pT (Q,E) +pT (Q,&) (ES)

PP G, zw) — e V- R)=k) 09 2)p9 (4, 2) (E.9)

Y O, 2w) — e V= RER) 0 250 (4, 2). (E.10)

F-function. Using (E.2) we calculate for F(f) defined in (2.9) for W — oo (up to a
constant factor)

F(Ow) = Fo(0, W) = X(W)~ (=M F@)F(f) (TTh, 3 3)%) (T e 2h0- 7))

with X (W) defined in (E.6).

The h-funktion: defined in (2.11) satisfies for W — oo (up to a constant factor)
5 ~ 1.
By 2w) > Bo@, W) 1+ 71 (6.2) + O(W ) (E.12)

where

ho(0, 2, W) = X (W) =2t p (9, 2)h(d, 2) (E.13)
X (Hf:le_%lléi> (Hé:ﬁ%kléi) (Hflle(ll_%l)éi) (Hil 1€ Uﬁ_ék)éi)

and (up to a constant® which will not contribute to our results)

ﬁl(g,g)zjlv( SO0 > 0= (1= 20) Y A+ (k= 2k) Y F). (E.14)

S rim (1— %) (k1 + kly).
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The complete h-function: defined by (2.16) satisfies

N-— 2

B (0w, 2,,) RED, 2G) g (9,2, W) (1 + %/}1 (0,2) +O(W‘2)> (E.15)
7=0
N—-2

ho (0,2, W) = T ho(z"9), 297D, W) (E.16)
z 11
N-2

h(0,2) =Y M (;(j),;(j“)) (E.17)
=0

where hg and h; given by (E.13) and (E.14) (with 2 = 0 and k, ky — k;, kj41 etc.). This

means that in leading order

h(Ow,zy) — h(0.2)h (0. 2)
% X(W)Zy:BQ(ljkj+1+kjlj+1*2kj+1lj+1) (kale—%lléi) (Htle%kléi)

N-2
ki 1 59 L 3@
X H ((Hiﬂle 2 (-1 =2l 41)% )(Hijl 5 (kj—1—2k;j+kj11)Z;
k _1 s(N—1) Inv_ 1 1 _ L(N—1)
X (HzN1 tema(iva—2no1)Z ) (Hz‘N11€2(kN—2 2kN—1)%; )
Function F * h: in leading order

F(Ow)h (0w zy) (E.18)
F — (1= VR P Uyl 41 =2k 411 41)

6—%(’6(1—%)—’61)91')
N—2
k; (12l +11)5; 209) b g (kj—1—2kj+kjt1)%; 79
X [[;iZe72 [IL.e
1

kno1 —Lla 2 s (N=1) Ino1 Lk 2% s(N-1)
X(HzleQ(Nz N-1)%; HlleQ(NQ N-1)%; _

Bethe state. By the asymptotic expansion of the S-matrix (2.2)

X
=
—

Q)
SIS
—

—~
—~

—

|

Z\H

,_‘.\
\/
~——

—

52(6) = 15360)+ P10 = b(6) (13- ™M + 067 )
6 ) 6 & 6
177, = 6705, M), =P = 8567
we obtain [37] for the monodromy matrix (2.13)7
TOX O +W,2) =1 - Wi M)B'ﬂ’ +O(W™2) (E.19)
TOX 0,2+ W) =1+ W LinM)2§ + 0(W~2).

"Up to % terms from b, which will not contribute to our calculations, so we will skip them in the

following.
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The matrix elements of MB o _ >t 1-Pye )gﬁ*,, as a matrix in the auxiliary space,
/a/

yields the su(N) Lie algebra generators
~ ~ B'a
More general, the product Tc?ﬁi 0,2) = ( @, zm). .. T(8, zl))*ﬁ satisfies
af aB
Tﬁg, 0 1. M ﬁlgl Nélgl 9 1. M ﬁ/g/
B O@+W,z) = (1—W "in )gﬁ’ w (Gz+W) = (1+Win )gﬁ
8o m 8o
Q,BT = Z(1+...+Mi,+...+1)&ﬁ* .
b = B

The basic Bethe ansatz state (2.14) for level 0 may be written as

B5(60,2) = (67 (0. 2) - €7 (0,21)) | = T31(6,2)

and
_ -3, . 1 .
q’g(ewa Zw) = T’l(QW&W) — @ g(@ z) + W@lg(ﬁ, z)
where
Bo2(0, 2) = Do(0, 2)B5(0, 2)
. _Ba s, ;N R . 1 ~ 01 =Ba s P
O, 5(0,2) = z77< T;,@' (9,2)) (Toé,71 (Q,g)Mévi ) — (Ma’,B’T&,i (9,2)) (Tal (H,z)))
(E.20)

Similarly, for the higher levels of the Bethe ansatz. The complete Bethe ansatz state (2.17)
(E.21)

satisfies ) )
B (B 2) = Bo(6.2) + 7
where
B0a(0.2) = Bs(0.2)85(6.2) (E:22)
Bra(02) = 3 B DE VD) G0 o (29, 20) By & (0, 2)
- (E.23)
F Exponential behavior
Iso-scalar. Let O be an iso-scalar operator, then (2.18) implies (3.15)
nj=n(l—j/N)=1=n(l-j/N)-
The asymptotic relation (E.18) gives the exponential behavior
(F.1)

O )b Oy, 2..,) o< X (W)~ (1= D32 byl 1 —2hj 411 1)
=
with X (W) given in (E.6). By elementary calculations one shows that the exponent of
X (W) can be written as
N—2 oy
ki) (F2)

N-2
2k]+1)lj+1) kN 1t ( J+1

—(L=1/N)kl+ > (Likjs1 + (kj —
Jj=0 i=1

.

where kj = k; — k(1 — j/N).
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Adjoint representation. Let O transform as the adjoint representation, then (2.18) im-
plies (3.8)
’I’Lj:’I’L(l—j/N)—1:>lj:’I’L(l—j/N)—k‘j—l

Therefore in (F.2) there is in addition

N-2
—k+2ki — > (=kjp1+ k) =—k+k +kyo1 =k + kv
j=1

and the exponent of X(W) in (F.1) is

N-2
(1 — 1/N k‘l + Z l ki1 + kil — 2kj+1lj+1)
7=0
N=2 SN2 - -
=B+ B+ Y (R — k) R+ v (F.3)
j=1
Iso-vector. Let O be an iso-vector operator, then (2.18) implies (3.19)
ng=n-1)Q0=j/N)=l=nl~-j/N)=kj—(1-7j/N).

Therefore in (F.2) there is in addition

N-2

—(k—=2k1) (1= 1/N) = > (1= j/N) kjs1 + (kj — 2kj41) (1 — (j + 1) /N))
7=1

=k —k(1—1/N)=k

and the exponent of X(W) in (F.1) is

N—
—(1—1/N)kl + Z (Likjs1 + kjlis1 — 2kj1li41)
]:
~ N—2 ~\2 ~
ey Z( — k) + k. (F.4)
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