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The sine-Gordon equation is the theory of a massless scalar field in one space and one time

dimension with interaction density proportional to cosB¢, where B is a real parameter. I show that if

B? exceeds 87, the energy density of the theory is unbounded below; if B? equals 47, the theory is
equivalent to the zero-charge sector of the theory of a free massive Fermi field; for other values of 8,

the theory is equivalent to the zero-charge sector of the massive Thirring model. The sine-Gordon soliton
is identified with the fundamental fermion of the Thirring model.

I. INTRODUCTION

The sine-Gordon equation is the sophomoric but
unfortunately standard name for the theory of a
single scalar field in one space and one time di-
mension, with dynamics determined by the La-
grangian density?!

£=%a“¢a“cp+%§cosﬁ¢+yo. (1.1)
Here the sum over repeated indices is implied,
and o, B, andy,are real parameters. Since we
are free to redefine the sign of ¢, we can always
take B to be positive. Likewise, since we are
free to shift ¢ by 7/8, we can always take @, to be
positive. We can gain some rough insight into the
physical meaning of these parameters if, in the
classical theory, we expand about the configura-
tion of minimum energy (¢ =0):
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From this we see that if we wish to adjust our
zero of energy density so that the minimum energy
is zero we must choose

(1.2)
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Also, @, is the “squared mass” (actually, since
we are discussing a classical theory, squared in-
verse wavelength) associated with the spectrum
of small oscillations about the minimum, and g8 is
a parameter that measures the strength of the in-
teractions between these small oscillations.

Of course, this is just a linearized analysis.
The exact classical sine-Gordon equation has been
extensively studied, and there exists an enormous
literature concerning it.> Recently, some at-
tempts have been made to use the known proper-
ties of the classical theory as a starting point for
the investigation of the quantum theory.® This
paper is a report on an attempt to investigate the
properties of the quantum theory directly, without
reference to the classical theory. The main re-
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sults of the investigation are the following:

(1) As for any theory of a scalar field in two di-
mensions with nonderivative interactions, all
divergences that occur in any order of perturba-
tion theory can be removed by normal-ordering
the Hamiltonian. For the sine-Gordon equation,
this normal-ordering is equivalent to a multi-
plicative renormalization of o, and an additive re-
normalization of y,; B is not renormalized.*

(2) If B* exceeds 87, the energy per unit volume
is unbounded below, and the theory has no ground
state.

(8) If & is less than 87, the theory is equivalent
to the charge-zero sector of the massive Thirring
model. This is a surprise, since the Thirring
model is a canonical field theory whose Hamil -
tonian is expressed in terms of fundamental Fermi
fields only.®

(4) In the special case & =4m, the sine-Gordon
equation describes the charge-zero sector of a
free massive Dirac field theory.

Further explanation of the last two points may
be helpful to the reader.

The (massless) Thirring model® is a theory of a
single Dirac field in one space and one time di-
mension, with dynamics determined by the La-
grangian density

L=yiyd*y-1gitia, (1.4)
where
it=vrty, (1.5)

and g is a free parameter, the coupling constant.
The formal definition of j, as a product of Dirac
fields is plagued with ambiguities, just as in
four-dimensional theories, but, again just as in
four-dimensional theories, these ambiguities can
be resolved by demanding thatj, obey the proper
Ward identities.” Once this has been done, the
Hamiltonian derived from Eq. (1.4) requires no
further renormalizations. The model is exactly
soluble and is sensible for g greater than minus
m.

Within the massless Thirring model, it is pos-
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sible to define a renormalized scalar density
o=Zyy, (1.6)

where Z is a cutoff-dependent constant. The mas-
sive Thirring model is formally defined by adding
a term proportional to o to the Lagrangian density
(1.4):

L~L-mlo. (1.7

Here m’ is simply a real parameter; it is not to
be identified with the mass of any presumed one-
particle state. The massive Thirring model is not
exactly soluble, and, to my knowledge, it is un-
known whether (1.7) defines a physically sensible
theory for any value of g. However, it is certainly
true that every term in the perturbation series for
the Green’'s functions of the theory in powers of
m' is well defined, except for the trivial infrared
problems associated with performing a mass per-
turbation expansion about a massless theory.
These can be circumvented by a standard trick.
Instead of (1.7), we consider the theory defined by

L=yir*o, -5 ¥, - miof(x), (1.8)

where f is some function of space-time with com-
pact support. The infrared divergences now dis-
appear. A (probably unworkable) prescription for
solving the theory would be to first sum up the
perturbation series in m’ with fixed f, and only
then go to the limit f=1.

I can now explain more clearly results (3) and
(4) above. The perturbation series described
above for the massive Thirring model is term-by-
term identical with a perturbation series (in a,)
for the sine-Gordon equation, if the following
identifications are made between the two theories:

dn/F=1+g/m, (1.9)
_ﬁewaw:ﬂ, (1.10)

%élcosﬁzp=—m’a . (1.11)

Of course, this analysis does not show that either
the massive Thirring model or the sine-Gordon
equation exists, in the strict sense of constructive
field theory. I believe it is fair to say, though,
that it does show that if either theory exists, it is
equivalent to the other. Please note that Eq. (1.9)
implies that if g =4m, then g=0. This is result
(4).

The analysis that leads to these results is ex-
plained in Secs. II, III, and IV below. Section V
contains some remarks about the meaning of the
results, and some conjectures.

II. THE HAMILTONIAN

For any scalar field theory in two dimensions
with nonderivative interactions, the only ultra-
violet divergences that occur in any order of per-
turbation theory come from graphs that contain
a closed loop consisting of a single internal line,
that is to say, graphs in which two fields at the
same vertex are contracted with each other. Thus,
for example, the graph of Fig. 1(a) is ultraviolet-
divergent, while that of Fig. 1(b) is not. Thus,
all ultraviolet divergences can be removed by
normal -ordering the interaction Hamiltonian in
the interaction picture.

However (at least for the moment), we are not
interested in the interaction picture but in the
Schrodinger picture. It is easy to see what the
normal-ordering prescription corresponds to in
this picture. Schroédinger-picture operators are
given as functions of the field ¢(x) and the canon-
ical momentum density 7(x), where x is the spatial
coordinate. If we define operators a(k, m) by

dk 1 1/2 . .
o= [ Gl zatirm] e me al me™]

(2.1)
and
r0=i [ [ s, et at(h, miet]
(2.2)
where
w(k, m)= (B +m?V?, (2.3)

then the normal-ordered Schrodinger operator cor-

responds to the operator rearranged with all the

@’s on the right and all the a'’s on the left.
However, this prescription is ambiguous, be-

cause it does not tell us what m is. Of course,

if we are really doing interaction-picture pertur-

bation theory, it would be senseless to choose m

to be other than that mass which occurs in the

(a)

>O€ (b)

FIG. 1. Two typical graphs in a scalar field theory in
two dimensions with nonderivative interactions; (a) is
logarithmically divergent; (b) is convergent.
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free Hamiltonian. However, for the sine-Gordon

equation, it is not clear what is the most profitable

way to divide the Hamiltonian into a free and an
interaction part, or, indeed, whether any such
division is profitable. Therefore, for the mo-
ment at least, we will not specify m, and we will
denote by N, the normal-ordering operation de-
fined by the mass m.

[This is off the main line of the argument, but
it is amusing to consider what would happen, in
perturbation theory, if we chose m to be different
from p, the mass in the free Hamiltonian. In this
case, it is easy to see that the divergent loop in-
tegral of Fig. 1(a) is replaced by a convergent in-
tegral according to the following prescription:

J

d%k 2 1 1
k2+u2~fd k(m—kz+n12> ) (2.4)
Note that if m = (conventional normal-ordering),
the graph is canceled completely (the usual re-
sult). ]

So much for generalities. We now turn to the
sine-Gordon Hamiltonian density,

, s\ _a
3L=_§n2+§<5;> —?Qcos&p—yo. (2.5)
Let us begin with the cosine term. Wick’s theorem

tells us that, for a free field of mass m, and for
any space-time function J(x),

exp [z fJ(x)w(x)dzx]=Nmexp [i fJ(x)go(x)dzx] exp [—% fJ(x)A(x—y;m)J(y)dzxdzyJ , (2.6)

where A is the free-field two-point Wightman
function. [If we replace the unordered exponential
in Eq. (2.5) by a time-ordered exponential, the
Wightman function is replaced by the Feynman
propagator.] For small spacelike separation

Alx; m)=—21; Incm®x? +0(x2) (2.7)
where ¢ is a numerical constant (related to Euler’s
constant) and

x2=—xyx", (2.8)

and is positive for spacelike separation. We cut
off the theory by replacing A(x; m) by

Ax; m) -A(x; A)=A(x;m; A) (2.9)
where A is a large mass, the cutoff. This is non-
singular at the origin,

1 m?
A0; m; A) = —Elnxr . (2.10)
We can now use Eq. (2.6) for J a 6 function. We

find

2\ B8
i m i
gtﬂw:Nm< 2) elBQ’

This has been derived in the interaction picture,
but must also be true in the Schrddinger picture,
since it only involves fields at the same time.
Thus, if we define, for some arbitrarily chosen
mass m,

(2.11)

2\ B%sm
a:ao(%) . (2.12)
then
a,cosBe=aN,cosBy . (2.13)

Of course, if we had chosen a different mass

(call it ) to define the theory, this would just have
led to a finite multiplicative redefinition of @. In-
deed, from Eq. (2.11),

“2 B gn

N,cosB¢= <;1—2> N,cosBe . (2.14)
This identity will be very important to us shortly.

Much less care needs to be taken in normal-
ordering the remainder of the Hamiltonian density,
since this is just a quadratic form in the funda-
mental fields, and therefore the only effect of
normal-ordering is to add a constant. For brevity
of subsequent notation, we define

o de\?
£0=§n2+%(d—;> . (2.15)
Then, from Egs. (2.1) and (2.2),
Ho= N3+ Ey(m) , (2.186)
where
rdk 2k + m?
Eo(nz)—j 8 o) (2.17)
Thus, if we define
Y =Yoo+ Eqm) , (2.18)
then
Ho=vo= Ny =7 - (2.19)
Parallel to Eq. (2.14) we have
N, 3= N3y + Eo(1) — Eo(m)
1
=Nu3Go+ g (12— m?) . (2.20)

Assembling all this, we find the cutoff-inde-
pendent form of the Hamiltonian density:
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a

5=N, (3(:0 -7 cosBcp—y) . @.21)

where o, B, and y are finite parameters. This is
result (1) of the Introduction.

1II. A VARIATIONAL COMPUTATION

Considerable insight into the physical import
of the reordering equations, (2.14) and (2.20), can
be obtained by considering the following trivial
problem. Suppose we are given the Hamiltonian
density

=N, (3¢ +382¢7) . (3.1)

This is a free-field Hamiltonian density, normal-
ordered with a perverse mass; that is to say, m
is not necessarily equal to j.

Let us attempt to find the ground state of this
theory by the Rayleigh-Ritz variational method.
For our trial states we will use the vacuum states
appropriate to a free field of mass y. These
states are defined by

a(k, w)|0, u)=0. (3.2)

The computation is made trivial by reordering.
Expanding Eq. (2.14) in powers of g%, we find

L2 2 . g, u

Nm(§ﬁ2¢)=Nu(§l32<p2)—§T-lnE-2 . (3.3)

Thus, from this and Eq. (2.20),
, 12 1 w?
J=Nyu(3 + 28 <p2)+§r-<u2—m2-—321n W) ,
(3.4)

whence

(0, u J3c|o >=—1-< 2-m? -1 ﬁ) (3.5)

» K y K gr \ L —m n-s) - .

As a function of p, the right-hand side of this
equation assumes its minimum value when u is 8.
This is, of course, the correct result.

Now let us perform exactly the same computa-
tion for the sine-Gordon equation:

%:Nm(ﬁgo-ﬁaz-cosﬁw—y> . (2.21)
From Egs. (2.14) and (2.20) we find

2 \ B%/gr
R ]
(3.6)

whence

o 2 B%/gnm 1
<0,ul3t|0,u>=—-—<7&n—2> + g Wr-m? -y .

=

3.7

In contrast to Eq. (3.5), the right-hand side of this
equation is unbounded below, as p goes to infinity,
if ® exceeds 87. Thus, in this case, the energy
of the theory (even if we restrict it to a box of
finite volume) is unbounded below. The theory has
no ground state, and is physically nonsensical.
This is result (2) of the Introduction.

IV. PERTURBATION THEORY

Following the plan set forth in Sec. I, we will
now construct a perturbation series (in @) for the
Green’s functions of the quantum sine-Gordon
equation. The Green's functions we will choose
to compute will be those corresponding to the
vacuum expectation value of the time-ordered
product of a string of interaction Hamiltonian den-
sities. The interaction density is a somewhat
unconventional choice for the local field that char-
acterizes the theory, but, in principle, there is
no reason to prefer any local field to any other
for this purpose, and by choosing the interaction
density we will be able to shorten our labors
significantly.

Before beginning the computation, we will have
to straighten out the problems associated with the
infrared divergences which plague all perturba-
tive calculations about a massless field theory.
These problems are notoriously acute for a mass-
less scalar field theory in two dimensions. For
example, the veryexpression for the field in terms
of annihilation and creation operators, Eq. (2.2),
is infrared-divergent; as a consequence of this,
it is not possible to define ¢(x) as a Wightman
field in the conventional sense.® (This does not
mean that the theory of a free massless scalar
meson in two dimensions is nonsense. For ex-
ample, 9,¢ is perfectly well defined—the extra
power of momentum brought in by differentiation
eliminates the infrared divergence—and can be
used as the Wightman field.)

The simplest way to circumvent these problems
is to give the scalar meson a small mass u. This
will enable us to compute the terms in the pertur-
bation expansion by conventional techniques (e.g.,
Wick’s theorem). We will then send u to zero.
Of course, this will still leave us with the usual
infrared problems, just like those which arise
for the Thirring model, discussed in Sec. 1. We
will handle these by the method described previously,
i.e., by multiplying the interaction by a space-
time function of compact support, f(x).

Thus, we are led to the Hamiltonian density

3 :Nm[sco+ 2% +f(x) <— % cosB¢ —y)] .

(4.1)



2092 SIDNEY COLEMAN 11

To find the desired Green’s functions we must (1)
compute the vacuum persistence amplitude to all
orders in perturbation theory; (2) send u to zero,
keeping f fixed; (3) sum up the series; (4) send f
to one; and (5) compute appropriate variational
derivatives with respect to f about f=1. The last
three steps are beyond my analytic ability; fortu-
nately, they are not necessary for our purposes,
for we will establish the identity with the pertur-
bation series (in m’) for the massive Thirring
model at the end of step (2).

It is instructive to compute a slightly more gen-
eral object than is needed for our immediate pur-
poses. Consider

740, WIT Nne'Pi?010, 1) (4.2)

where ¢ is a free field of mass u, the 8’'s are
real parameters, and the x’s are space-time
points (within the support of f). Because the x’s
are restricted to a finite region, we can uniformly
apply the short-distance approximation for the
Feynman propagator. This is identical to Eq.
(2.7), except for factors of i€, which I will sup-
press anyway, for notational simplicity:

Ag(x)=- é Incu?x? . (4.3)

If we use the identity
X 2 Bz/aw .
N,et8o= (%) Nye'® (4.4)

we can compute (4.2) directly, using Wick’s the-
orem, Eq. (2.6), and ignoring all terms involving
contractions of fields at the same point. The re-
sult is easily seen to be

2 \(ZB;2/8m)
<#—2) I [en2(x - x,P1%5747 . (4.5)
m i>j

The critical point is that this expression is pro-
portional to

“(Eﬂi)z/qn . (4.6)

Thus, if the 8’s sum to zero, (4.5) is independent
of u; if they do not sum to zero, (4.5) vanishes
as U goes to zero. This result is an important
consistency check on our computation, for it is
just what we should expect in a massless free
scalar field theory in two dimensions. The La-
grangian for such a theory is invariant under the
transformation

Q= @+r, (4.7)

where A is a real parameter. Formally, this im-
plies

eiBe piBA, iBe , (4.8)

which in turn implies that the vacuum expectation

values vanish unless the sum of the §’s is zero—
exactly what we have found. This argument breaks
down in greater than two dimensions because the
symmetry (4.7) is spontaneously broken. How -
ever, in two dimensions there is no spontaneous
breakdown of continuous symmetries,® so the argu-
ment should be valid—and it is.

Now let us specialize these results to the sine-
Gordon equation. The object of interest is

a o
E&‘chosﬁ‘/’=ﬁ(A+ +A]), (4.9)
where
A,=N,e*t8 (4.10)

In the limit of vanishing 1, the only nonzero terms
in the perturbation expansion are those with equal
numbers of A,’s and A_’s. These terms are given
by

7¢0] T A. (x)A-(3 IO
= ILs (% = %, Py —3’1)25'27’”4]52/“
I, jlem®(x; —y )?]8%47

Now let us construct the corresponding pertur-
bation series (in m) for the massive Thirring
model. Here the object of interest is

(4.11)

m'c=m'(0,+0_), (4.12)
where
0,=3ZP(Lty )y, (4.13)

and Z is the (cutoff -dependent) multiplicative re-
normalization constant referred to in Sec. I. Be-
cause the massless Thirring model is chirally
invariant, the only nonzero terms in the pertur-
bation expansion are those with equal mimber of
0.’s and 0_’s. These are best calculated in a
basis in which

Yo=0x, 71=i0y9 Ys=-0, . (4.14)
In this basis
O+=Z¢1Tl[)2, O_=Z¢2szl, (415)

where the subscripts indicate the components of
the Dirac spinor.

The expressions we need for the computation
can be found in the beautiful paper of Klaiber,®
which contains closed forms for the vacuum ex-
pectation values of arbitrary strings of ¢,’s and
¥;1’s. Klaiber’s formulas are lengthy, and I will
not reproduce them here, but merely state the
consequences of them that are relevant to our
purposes. All of these can be obtained from
Klaiber’s work by trivial manipulations; for the
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skeptical reader who wishes to verify that I have
made no algebraic errors, I will adhere as closely
as possible to Klaiber’s notation.

In an arbitrary Green’s function, if we bring a
¢," and a y, to the same space-time point, the
Green’s function becomes singular. However, if
we define,

o (x) lim (x =y 9, ()9, (3)

y>x

(4.16)

then o0, has finite matrix elements. Here Klaiber’s
parameter § is given by

g 2n+g

- e, (4.17)

where g is the coupling constant as defined in Sec.
I, and the proportionality sign is to indicate that
0, is defined only up to a finite multiplicative re-
normalization. The local field o_ is defined by the
adjoint equation.

With this definition, it follows from Klaiber’s
formulas that

<01T_f_I 0. (x)o _(y,)|0

- (%)znni>j[(x,- - xj)z(yi —yj)2M4](1+b/") , (4.18)

IL, ;a2 x, =y Yo/

i,J

where Mis an arbitrary mass, the reflection of
the arbitrary finite renormalization in the defini-
tion of the ¢’s, and Klaiber’s parameter b is given
by

g

b=-Tig/m

(4.19)

This equation is identical with Eq. (4.7) if we
make the identifications

-0, =34, , (4.20)
M?=cm?, (4.21)
and
1 _F
1+g/n1 4 ° (4.22)

Thus, the two perturbation theories are identical
if we choose

m'=a/F,

whence

(4.23)

-m'o = _@% N, cosBe .

(4.24)
Equations (4.22) and (4.24) are Eqgs. (1.9) and
(1.11) of the introduction. These equations do not
depend on properly matching the renormalization

conventions in the two theories, Eq. (4.21). In
contrast, Egs. (4.20) and (4.23) do depend on pro-

per matching, and therefore have no convention-
independent meaning.

Now let us turn to the current. In the Thirring
model, Klaiber has shown that

[50), ()] = =[&" + (L+g/m) ey ]

XP(y)Dy(x-y) , (4.25)

where D, is the gradient of the massless free
scalar commutator. At equal times,

Dy(0, x*)=gyed(x1) . (4.26)

Thus, the current is properly normalized; that is
to say, if we identify the conserved charge as-
sociated with the current as fermion number, the
field carries fermion number minus one. From
Eq. (4.21) and the definition of the ¢’s, Eq. (4.12),
it follows that

#0041 =32 (1 £) e D=y, (3)

(4.27)

This equation completely definesj" in the sector
in which we are interested, the set of all states
that can be created from the vacuum by applica-
tion of the o’s in the massless Thirring model.

In the massless scalar theory defined in the first
part of this section, 8, ¢ is a free field. Thus, it
is trivial to compute its commutators with the A’s;
we find

[0, (x), A, (»)]=£BDy(x = y)A, () . (4.28)

Since the A’s are identified with the ¢’s, it follows
that

- U 2 Hv

1= G e

=—£e‘“’8,,<p. (4.29)
This is the last of the results announced in the
Introduction and completes the aregument.

V. PUZZLING QUESTIONS, BUT NOT
BEYOND ALL CONJECTURE

A. Bounds on coupling constants

We have seen that the sine-Gordon equation is
physically nonsensical if 82 exceeds 87. I have
not been able to show that it is physically sensible
for any & less than 87, except for two points:
zero, where the theory is a free massive Bose
field theory, and 4w, where the theory is a free
massive Fermi field theory. The natural conjec-
ture is that the theory is sensible for & less than
some upper bound lying somewhere between 47
and 87, but I know of no evidence to support this
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conjecture.
In the language of the Thirring model, Ff<8n
corresponds to

g>-m/2 . (5.1)

From the viewpoint of the Thirring model, this is
a surprising result, for this bound is stronger than
the corresponding one for the massless model,
g>-n. Thus, there is a whole range of coupling
constants for which the massless Thirring model
is perfectly sensible, but for which the addition of
a mass term, no matter how small its coefficient,
causes the bottom to drop out of the energy spec-
trum. Is it possible to understand this phenomenon
purely in Thirring-model language? Yes, it is;
here is the argument:

The massless Thirring model is exactly scale-
invariant; there is a conserved scale current and
a unitary dilatation operator. This implies that
the Hamiltonian density of the massless model
must transform under dilatations according to

A 39 (x) = Ad O x) (5.2)

where A is the dilatation parameter. As can be
seen from Eq. (4.16), the field 0 has anomalous di-
mension b/m; thus,

A o(x) =AY/ Mo x) | (5.3)

Now let us imagine performing a variational esti-
mate of the ground-state energy of the massive
model, using as our trial states a family of trans-
lation-invariant states which are dilatation trans-
forms of each other. If we label these states by
the dilatation parameter A, then

3 =xx1 39|
emAMTE/ T (1o |1) . (5.4)

If g is less than -7/2, the second term dominates
as A goes to infinity. Thus, we are in trouble if
the second term is negative. But since 0 can be
turned into —o by a chiral rotation, we can always
find a state such that the expectation value of o is
negative. Q.E.D.

B. Metamorphosis of fermions into bosons

One of the most striking features of the results
established here is that a theory which is “ob-
viously” a theory of fermions is equivalent to a
theory which is “obviously” a theory of bosons.'®
This peculiar result should seem even more pecu-
liar to you if you have followed the proof of it in
Sec. IV, for the proof rested on identifying a cer-
tain sector of the massless Thirring model with
a certain sector of massless free scalar theory.
That these theories are equivalent in any sense

seems too preposterous to believe. Is there no
way of telling fermions from bosons? The answer
is no, there is not—if one can measure only a
restricted set of local fields, and if the particles
are massless, and if the world is two-dimensional.
This can most easily be seen by a simpler and
less singular theory than either of the two at hand:
the theory of a free massless Dirac field. Let us
suppose that, in such a theory, we can only mea-
sure the Green’'s functions associated with local
operators of charge zero. That is to say, we can
only make particle-antiparticle pairs out of the
vacuum, not single particles. This is not an un-
realistic restriction; it is precisely that restric-
tion which we face in the real four-dimensional
world, where we can only measure charge-zero
observables. Nevertheless, in the real world, we
have no difficulty in determining that electrons are
fermions and charged pions are bosons. The rea-
son is that after we create a pair in the real
world, the components of the pair separate; thus,
if we wait long enough, we can arrange matters
so one of the components of the pair is in our
laboratory and the other is at the orbit of Pluto
and traveling outward. However, for massless
particles in two dimensions, it is quite possible
to make a pair that never separates. Such a pair
consists of two particles moving in the same di-
rection. The wave functions do not spread; they
just move on steadily at the speed of light, and
the particles never get away from each other. If
the particles had a mass, or if the world were of
greater than two dimensions, this would not be
possible.

Another way of seeing the same thing is to study
the charge-zero sector of the Fock space of the
massless Dirac theory. This contains states cor-
responding to a fermion and antifermion, each in
a normalizable state with spatial momentum sup-
port restricted to the positive axis. Even though
this is a normalizable state, it is still an eigen-
state of PuP“, with eigenvalue zero; all of the
two-momenta in the supports of the individual
particle states are aligned null vectors. Thus, if
we adopt the usual definition of a particle, a
normalizable eigenstate of P?, we must say that
the Fock space of a massless Dirac field contains
massless Bose particles. Again, this is only pos-
sible for mass zero and dimension two.

However, all this pathology disappears, even in
two dimensions, if the particles are massive.
Then pairs will separate, and there are no two-
particle normalizable mass eigenstates. Thus,
the problems of interpretation discussed above
are not really relevant to the theories considered
here, theories of massive particles. Here the
same kind of experiments that tell us unambig-



11 QUANTUM SINE-GORDON EQUATION AS THE MASSIVE... 2095

uously in four dimensions that electrons are ferm-
ions should tell us unambiguously that, for example,
the only particles in the sine-Gordon equation with
B?=4m are free massive fermions.!!

C. Classical theory, quantum solitons, and a conjecture

To obtain insight into the connection between
the quantum sine-Gordon equation and its classical
limit, let us introduce the rescaled variables

@'=By, vo=vo/F . (5.5)
In terms of these variables, the Lagrangian den-
sity is

1
L= ?[é(au<p’)2+aocos<p’+7{,] . (5.6)

Since, in classical physics, multiplying the La-
grangian density by a constant has no effect on the
physics (other than trivially redefining the scale
of energy), B is an irrelevant parameter in the
classical sine-Gordon equation. In the quantum
theory, as we have seen, this is not so; this is
because the relevant object for quantum physics
is £/, and rescaling the Lagrangian is equivalent
to rescaling #Z. (We have obscured this until now
by choosing our units so Z=1.) Thus, in the quan-
tum theory, the relevant parameter is g%. There-
fore, semiclassical approximation schemes,
such as the expansion of Goldstone and Jackiw,?
or the modified WKB approximation of Dashen,
Hasslacher, and Neveu,® being small-# approxi-
mations, are necessarily also small-8 approxima-
tions.”? Since small g is large g, these methods
give us information about the Thirring model for
lavge coupling constants. What is this informa-
tion?

The classical equation possesses a time-inde-
pendent solution of finite energy, the famous
soliton

@'(x)=4tan"t exp(x Vag)= f(x) . (5.7)

Of course, spatial translations and Lorentz trans-
formations of this solution are also solutions.

The semiclassical analyses show that these solu-
tions correspond to a particle in the quantum the-
ory, the quantum soliton. In the leading approxi-
mation, the mass of the quantum soliton is pro-
portional to 1/, and the states of the quantum
soliton correspond to certain superpositions of
coherent states of the ¢ field, such that for a one-
soliton state approximately localized at the point
a

(@' (x)=f(x-a) . (5.8)

All one-soliton states are orthogonal to states
made by applying local polynomials in ¢ to the

vacuum state. [This is because all such states
have the property that the expectation value of ¢’
goes to zero as x goes to plus or minus infinity,
while (5.8) goes to zero at minus infinity but goes
to 2w for plus infinity.] However, states contain-
ing equal numbers of solitons and antisolitons do
not have this property. For a state consisting of
a widely separated soliton-antisoliton pair

(@' (%)= f(x - a) -f(x+a), (5.9)

where the approximation sign indicates that, even
in the leading semiclassical approximation, this
formula is valid only for large a. It is not known
whether the quantum soliton is a fermion or a
boson.

(This last remark probably requires amplifica-
tion. The spin-statistics theorem is useless, be-
cause there is no spin in two dimensions, since
there is no little group. Of course, even in two
dimensions there is a connection between the
statistics of a particle and the Lorentz-transfor-
mation properties of the local field that creates
the particle from the vacuum, but since the soli-
ton is not created by a local field, this is also of
no help. The semiclassical methods are in
principle capable of answering the question (for
example, by studying the symmetry of soliton-
soliton scattering), but the necessary computa-
tions have not yet been done.)

I conjecture that the quantum soliton is a fer-
mion, and is, in fact, the fundamental fermion
of the massive Thirring model. Here are my
reasons:

(1) A similar time-independent solution of
finite energy exists for classical two-dimensional
¢* theory. Goldstone and Jackiw® have shown
that this particle is a fermion. Unfortunately,
their argument depends on the identification of
particle and antiparticle, possible for ¢* but not
for the sine-Gordon equation.

(2) Equation (1.10) is an exact result. I we
apply it to a widely separated soliton-antisoliton
pair, we find

ol = 5 (8,0 (1)

1 d

S [f(x —a)-f(x+a)] .

The right-hand side of this expression is peaked
about the points —a and a, the locations of the
soliton and antisoliton. The integrated charge
over the soliton peak is +1; that over the anti-
soliton peak is —1. Since the charge in question
is fermion mumber for the Thirring model, this
is evidence for the conjecture.

(3) In the massive Thirring model, we have de-
fined the coupling constant such that positive g

(5.10)
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corresponds to an attractive force between fer-
mions and antifermions. In the nonrelativistic
limit, the attractive interaction is a 6-function
potential; in one spatial dimension, such a poten-
tial produces a bound state for arbitrarily small
g. As we increase g, we would expect the mass
of this bound state to decrease, becoming as
small as possible (zero) as g goes to infinity.
This bound state is the obvious candidate for the
fundamental meson of the sine-Gordon equation.
Thus, I am led to conjecture a form of duality,
or nuclear democracy in the sense of Chew, for
this two-dimensional theory. A single theory has
two equally valid descriptions in terms of La-
grangian field theory: the massive Thirring model
and the quantum sine-Gordon equation. The par-
ticles which are fundamental in one description
are composite in the other: In the Thirring model,
the fermion is fundamental and the boson a fer-
mion-antifermion bound state; in the sine-Gordon
equation, the boson is fundamental and the fermion
a coherent bound state. In the Thirring-model
description, as the coupling constant goes to in-
finity, the bound-state mass goes to zero; in the
sine-Gordon description, as the coupling constant
vanishes, the coherent-bound-state mass goes to
infinity; these are just two ways of describing the
behavior of a single mass ratio in a single limit.
Speculation on extending these ideas to four di-
mensions is left as an excercise for the reader.
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APPENDIX (ADDED IN PROOF)

Since this paper was accepted for publication,
there have been several new developments:

1. Ihave learned from Schroer?!? that he has
independently obtained many of the results in this
paper. Schroer has also pointed out that many of
the results obtained here are in close correspon-
dence with the results of the studies of one-dimen-
sional electron gasses by Luther and collabora-
tors.'? Luther and I are in total agreement with
Schroer on this point; we are also united in our
embarrassment that we were incapable of reach-
ing this conclusion unprompted. (Our offices are
on the same corridor.)

2. Mandelstam®® has been able to construct the
Fermi field operators as (nonlocal) functions of
the canonical Bose field, following the methods of
Dell’ Antonio et al.'®

3. Frohlich has been able to rigorously prove
that the sine-Gordon Hamiltonian defines a physi-
cally sensible theory for #<16/7m. (The restric-
tion on B is connected only with certain technical
details of the proof, not with any obvious pathology
of the physics.) He has also been able to establish
similar results for the sine-Gordon Hamiltonian
with a mass term (the massive Thirring-Schwinger
model).
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