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Conformal invariance and unitarity severely limit the possible values of critical exponents

in two-dimensional systems.
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One of the most intriguing features of statistical
mechanical systems is the existence of scale-
invariant critical points. Polyakov! has shown that
local scale invariance, i.e., conformal invariance,
can be used to construct critical theories. In two
dimensions the group of conformal transformations
is exceptionally large (infinite dimensional) since
any analytic function mapping the complex plane to
itself is conformal. Belavin, Polyakov, and Zamo-
lodchikov (BPZ)? have shown how the rich struc-
ture of the conformal group in two dimensions can
be used to analyze conformally invariant field
theories.

Many two-dimensional statistical mechanical sys-
tems can also be interpreted as (1+ 1)-dimensional
quantum field theories. The distinguishing feature
of the quantum theories is unitarity, equivalent to
reflection positivity in the statistical systems. We
point out here that unitarity, in the presence of the
large conformal transformation group, puts a
powerful constraint on the allowed physical sys-
tems.

Conformally invariant systems are described by
correlation functions of a collection of conformal
fields ¢(zz). The fields can be interpreted as
operators and the correlation functions as vacuum
expectation values. The infinitesimal conformal
transformations z— z+ez"*!, 7— z+€z"*! are
generated by operators L,, L,:

(L, ¢1=z"*19,0+ h(n+1)z",

(1)
(L, ¢]1=2""'8.0+ h(n+1)z".

The correlation functions are invariant under the
global conformal transformations generated by L,,
L,, for n=—1,0,1. In particular,

<¢(re10)¢(0)>=r—2(h+l7)e—2i0(h—7l)' 2)
and so ¢ has scaling dimension x=#h + h and spin
h—h.

We are using here a nonstandard operator inter-
pretation in which radial ordering takes the place of

time ordering. Reflection positivity in the radial
and time directions are equivalent by global confor-
mal invariance. In terms of coordinates z=e"* ¥
the radial quantization gives quantum field theory
in imaginary ‘‘time’’ 7 and periodic one-dimension-
al “‘space’’ 9.

Local scale invariance is equivalent to the ex-
istence of a conserved traceless stress energy tensor
T(z)dz*+ T(Z)dz? which acts as the generator of
conformal transformations:

T(z)= E z7" 2L,
n=—oo

3)
T(z)= 3 77" 'L,
n= —oo
It satisfies the self-adjointness condition [7(1/z)
x d(1/2)21" = T(2)dz2. Equivalently,

Li=L_,. @)
The L, obey the commutation relations
(Lp,L,J=(m—n)Lys,
+cl(m®—m)/1215,, _,. (5)

The L, commute with all the L’s and satisfy the
same Hermiticity and commutation relations (with
the same ¢, under the assumption that the theory is
z+ Z invariant). The algebra (5) is the Virasoro
algebra® The central term with coefficient ¢
describes the particular realization of conformal
symmetry. It appears in a quantum theory because
the composition law for transformations need only
be satisfied by the operator representation up to a
phase. The central term also measures the response
of the ground-state energy to curving the underly-
ing space—the trace anomaly.*

Our result is that unitarity restricts the allowed
values of ¢, for ¢ < 1, to

c=1-6/m(m+1), (6a)
m=2,3,4,. ... (6b)
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For a model in which ¢ takes one of these values,
the scaling dimensions x=#h+h are rational
numbers with 4 and A limited to the values

[(m+1)p—mgl*—1
dm(m+1) ’

q=1)2""’p‘ (7b)

This follows from a study of the representations of
the Virasoro algebra. _

_The lowering operators for Ly (L) are the L,
(L,), n>0. A state annihilated by all the lower-
ing operators is called a highest-weight vector
(HWV). The vacuum |0) is a HWV because it has
the lowest eigenvalue of the ‘‘Hamiltonian”
Lo+ Ly. More generally, there is a one-to-one
correspondence between the conformal fields and
the HWV’s, the field ¢ corresponding to ¢(0)|0),
which is a HWV by Eq. (1). The invariance of the
correlation functions under global conformal trans-
formations implies that the vacuum is also annihi-
lated by Lo, Lo, L_;, and L_,. It follows that
$(0)|0) is an eigenstate of Ly (Ly) with eigen-
value h (h). The space of states is a sum of ir-
reducible representations of the product algebra (of
L’s and L’s), each generated from one of the
HWV’s. _

The L’s and L’s form identical commuting
Virasoro algebras and so we can restrict our atten-
tion to representations of the L’s. A representation
of the Virasoro algebra is built from a HWV by ap-
plying the L_,, n=1. A state is in the nth level if
its L, eigenvalue is h + n. The nth level is spanned
by the vectors

L_ g+ Loy $(0)[0), ®)

for kK,=...=k, >0 and 3 k;=n. There are
P(n) such states, where P(n) is the number of
ways of writing » as a sum of positive integers. The
higher-level states correspond to operators of
higher scaling dimension obtained by applying prod-
ucts of stress-energy tensors to ¢.

Unitarity means that the inner product in the
space of states is positive definite. The inner prod-
uct of any two of the states (8) can be computed
from Egs. (4) and (5). A state |¢) with (y|y)
negative is called a “‘ghost.”” If a ghost is found on
any level the representation cannot occur in a uni-
tary theory.

Kac® has given a formula for the determinant of
the matrix of inner products of the states (8):

detM(, (c,h) = C TT [h— by, () 1Pn=p0)  (9)

Mg=n

where p,q range over the positive integers, #,,(c) is
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(7a)

hpq(0) =

p=12,...,m—1,

given by Eqgs. (6a) and (7a), and C'is a positive con-
stant. The matrix of inner products is manifestly
positive definite for 1 < ¢, 0< A.

We immediately eliminate all regions where the
determinant is negative because they necessarily
contain an odd number of ghosts. A straightfor-
ward examination of the determinant formula
shows that any point ¢/ in the half-plane ¢ < 1
which is not on an h,, curve will have a negative
determinant at some level.

In fact the unitary theories are far more limited.
All points on vanishing curves have ghosts except
possibly the ‘‘first intersections.”” A first intersec-
tion is an intersection of vanishing curves that on
some level is the intersection closest to c=1 on a
given curve A, ,. These are exactly the points listed
in Egs. (6a)-(7b). The proof® that there is a ghost
in every open interval bounded by first intersec-
tions on a vanishing curve £, , is based on the fol-
lowing observations: (1) When h = h,,(c) there is
a null HWV at level pg which generates a
subrepresentation, and (2) whenever a first inter-
section appears on £, , (at level n) the determinant

detM (,— pq)(c,h + pq) for the subrepresentation is
nonzero, so that there can be no HWV inside the
subrepresentation at level n — pg.

All unitary representations for ¢ <1 are con-
tained in the list, Egs. (6a)~(7b), but we have not
proved that all representations on the list are in fact
unitary. We have verified numerically that they are
through level 12 and we have a heuristic argument
that they remain ghost-free to all levels. The argu-
ment is based on the structure of subrepresenta-
tions on the ¢ =1 line’ and the assumed existence
of an analytic diagonalization of the matrix in the
whole region of interest. Such a diagonalization
might be provided by techniques® which give ana-
lytic deformations of correlation functions away
from c=1.

Models with Hermitian transfer matrices provide
concrete examples of reflection-positive systems.
Systems with continuously variable critical ex-
ponents like the Gaussian model have ¢ = 1 where
unitarity allows all #=0. In the range ¢ <1 we
find by matching scaling dimensions that the m =3
representations describe the Ising model, m =4 the
tricritical Ising, m =35 the three-state Potts, and
m =6 the tricritical three-state Potts.? Table I com-
pares the known scaling dimensions for these
models'? with the allowed values of 4. All of the
known exponents are accounted for. We know of
no models with m = 7. The fact that 4 =1 is never
unitary for ¢ < 1 rules out marginal operators as
well as continuous internal symmetries generated
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TABLE 1. Comparison with known scaling dimensions. The #,, from Eqgs. (6a)-(7b) are listed with p running hor-
izontally from 1 to m — 1 and ¢ running vertically from 1 to p. The spins 4 — h are consistent with what is known. Some

operators have alternative interpretations as derivatives.

model z h h hp,q( c) model z h h A o, q( c)
r 1 1 S s 3
8 16 16 m=3 1 40 80 80 m=4
Ising 1 1 1 16 tri l 1 1 1
2 2 1 5 10 10 10
1 1 o = - 7 7 7
- el 0 2 critical - -_— — 3 3
Ising _ - - 7 3
5 o 8 ° % z
2 1 1 3 3 3
21 21 21 2 )
2 1 1 m=6 1
T 7T 7 7
tri- 20 10 10 s 5 2 1 1
21 21 21 56 7 15 15 15 m=35 1
critical 2 8 5 1 8 12 2 2 8
77 7 21 56 71 5 5 5 L 2
Tstate - 2 2 110 8 2 g, 4002002 153
7 7 7 56 21 66 1 3 3 3 1 a0
Potts <+ 4 4 s 4 23 Potts <+ I 2 0 40 3
33 s 0 5 3 07 ° 5 5 3 2 1
3 22 1 u o oz f° 7 g °
7 7 7 5 5 5
5 5 0 s 3 0o

by local currents. The possibility of large discrete-
symmetry groups seems worth exploring.

Although unitarity provides strong constraints on
possible representations of conformal invariance, a
sensible theory also requires closure of the
operator-product expansion and crossing symmetry
of correlation functions.!"’? BPZ? have shown how
to implement crossing symmetry when the space of
states is made up of representations with null states,
using the fact that such states give rise to linear dif-
ferential equations on the correlation functions. It
follows from our result that the differential equa-
tion technique applies to all unitary models with
c < 1. BPZ! have found finite sets of conformal
fields that must close under the operator-product
expansion for the special values of ¢ corresponding
to m rational, m=r/(s—r), r<s, 3r=2s. The
scaling dimensions are given by h=h,,(c),
1=<p<r 1=<g < s Note that the unitary repre-
sentations correspond to s=r+1 . Dotsenko!? has
used the differential equation technique to find a
closed operator algebra for the three-state Potts
model and to construct some of its correlation func-
tions. The representations which actually appear in
the tricritical Potts model form a similar closed
algebra by Dotsenko’s argument.

Kac® has also written a determinant formula for

the supersymmetric extension of the Virasoro alge-
bra, the Ramond-Neveu-Schwarz algebra.!> Only
first intersections can be ghost-free. The allowed
representations, for 2¢/3 < 1, are

2¢/3=1-8/m(m+2),

L=+ 2p1—4 (10)
8m(m+2) ’
for m=2,3,4,. .. and p,q integers, both even or

both odd, 0< p<m, 0< g<p. Note that h=+
does not occur, so that there are no internal super-
currents. The representations ¢ = {5, h =0,y are
composed of the Virasoro representations ¢ = 17—0
h=0,%+7,%. These are the representations occur-
ing in the Z, invariant subalgebra of the tricritical
Ising model. It seems that this subalgebra is super-
symmetric./* Supersymmetric models at m =4,
c=1 using h=0,%,1 or h=0,%,1 can be identi-
fied with special points in the Gaussian model.'*
The representations of the superalgebra might also
be of interest in superstring theory.!®

It should now be straightforward to sort out all
possible unitary conformally invariant models with
¢ <1 (2¢/3< 1 in the super case). The differen-
tial equation techniques of BPZ always apply be-
cause the only allowed representations have null
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states, and the problem is finite because only a fi-
nite number of representations are allowed for each
possible m. Such a systematic construction of con-
formally invariant models would partially realize the
bootstrap program initiated by Kadanoff'® and Po-
lyakov.!” The extreme rigidity of the conformal
bootstrap in two dimensions is a striking feature of
the present result. It seems that unitarity is the cru-
cial constraint for ¢ < 1. For ¢ =1 crossing sym-
metry would have to limit the possible realizations
of conformal invariance.
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Note added—D. A. Huse has informed us that
G. E. Andrews, R. J. Baxter, and P. J. Forrester
have solved two new infinite sets of two-
dimensional models. The critical exponents in one
of the sets suggest that the corresponding models
provide examples for each value of ¢ in Egs.
(6a)-(6b). The supersymmetry which we have not-
ed at ¢=0.7 has also been described by A. M. Za-
molodchikov, Yad Fiz. (to be published).
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