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We computed pair-production and nontrivial three-particle-scattering amplitudes of the massive Thirring model in 
tree approximation. They are found to be zero. 

Recently interesting relations between the Sine- 
Gordon equation and the massive Thirring model have 
been established [1 ]. On a classical level the Sine- 
Gordon equation can be treated by means of the 
inverse scattering method [2]. There exist infinitely 
many conversation laws [3], which apparently imply 
the conservation of particle number and of the set of 
their momenta [4]. This should carry over to the 
massive Thirring model, provided there are no ano- 
malies in the currents. We compute the pair-production 
(2 "+ 4) in tree approximation, this is by a simple sub- 
stitution law related to the scattering (3 -+ 3), which 
can be easier calculated. The former vanishes identi- 
cally and the latter has only trivial contributions. 

For further use we first consider the connected part 
of the matrix element for two-particle-scattering 

/~2~ nn'= °ut(p2', Pl'I in Pl,  P2)conn 

= (2rr) 2 6(2)(pl + P2 - P l '  - P 2 ' )  (21r) -2 A 22" 

Using Klaiber's [5] 7-matrices and light-cone variables 

p+ =pO + p l  =ma, p -  = p O _ p l  =ma-1 ,  

we choose the spinors to be of the form 

[a-1/2 ~ , 

u(p) = u(a) = x~m \ a 1/2 I 

_ a-l~2 
o(P) -- o(a) = exp ( - i  rr/2)x/m (_a l /2  ) , 

normalized such that 

u(p)ff(p) =~  + m, o(p)Y(p) =~ - m. (1) 

The relative phases of the spinors u, v are choosen 
such that the replacement of  an ingoing particle by an 
outgoing antiparticle corresponds to the simple substi- 

tution law 

a -+ exp(i ~r)h-, u(a) ~ u(exp(iu)a--) = 0(3). (2) 

In the tree approximation (cf. fig. I) we have 

A~r2 = - i g 2 m  2 (al'--a2')"-(-a1:--~-22 (3) 
(ala2)l/2 (ala2) 1/2" 

In two space-time dimensions energy-momentum con- 
servation admits only two discrete solutions 

a l , = a  I ,  a2,=a2, or a l , = a 2 ,  a 2 , = a  1. (4) 

Secondly we compute the connected part of  the 
matrix element for three-particle:scattering 

/~3~ nn" = (270 2 6(2)(/°1 +P2 +P3 --Pl '  --P2' --P3') 

X (27r)-3 A 33. 

In the tree approximation A33 is determined by essen- 
tially one graph (cf. fig. 2) 

= 

OfF,Or 

where the summation corresponds to different assign- 
ments of the labels to the external lines c~ = (1,2, 3), 
(2, 3, 1) and (3, I, 2) and similarly for a'. 

Using ( I )  the principal value part of the internal 
propagator is seen to be 

i 

~1 +~3 - ~ 3 '  - m 

i ~ eiu(Pi) ff(pi) 
(P l+P2- -P3 ' )  2 - m 2  i=1,2,3' 

e I =e  2 = - - e y  = 1 

where in terms ofa 's :  
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tY A22 Pl, P l  

P2' / ~ " x P  2 

Fig. 1. 

(t91 +P2 --P3')  2 - m 2  

m2 al +a 2 a 1 - a  3, a 2 - a  3, = - (6) 
(ala2) 1/2 (ala3,) 1/2 (a2a3,) 1/2 

From (3), (5) and (6) we have 

B( I ' ,  2 ' ,3  ;3, 1 ,2) = ig 2 4m2(ala2a3al,a2,a3,) -1/2 

X (al '  - a 2 ' ) ( a l  - a 2 ) a y  a 2 - -  +.a 1 - -  . 
a 1 +a  2 a2-a  3, al ---a 3, 

After some algebra we find 

At3r ~ = ig 2 8m2(ala2a3al,a2,a3,) -1/2 

X (a 1, -a2,) (a  2, -a3,)(a 3, - a l ,  ) • Z 

(a3a 1 - a  2) (a 3 -- a 1 ) 
Z= 

N2 

( a l a 2 - a 2 ) ( a l - a 2 )  (a2a3-a21)(a2-a3)  + _ _  + 
N 3 N 1 

where 

N1 = 1 (a a~ 2 +a3) (a3 + a l ) ' ( a l  -ar)(al-az)(al--a3'), 

etc. At this stage it is convenient to make use of  energy- 
momentum conservation: 

a I +a 2 +a 3 = a  1, + a  2, +a3 , ,  

ai  -1 + a~ -1 +a~ -1 = ai; 1 +a~; 1 + a~; 1. 

The easily derived identity 

a l (a  2 +a 3) 
(a 1 - a t , )  (a 1 -a2,) (a  1 --a3,) - 

a2a3 

X (al,a2,a 3, -a la2a3)  

(7) 

implies 

N 1 = N 2 = N 3 = N. 

B(I',2',3',3,1,2) 
PI' ~ P 3  

P2' ~ " ~ P  1 

Fig. 2. 

We obtain for all momenta  subject to the energy- 
momentum restrictions (7) 

Z ' N  = [(a3a 1 - a 2 ) ( a 3 - a l )  

+ (a la  2 - a ] ) ( a l  - a 2 )  + (a2a 3 -a21)(a2 - a 3 )  l = 0. 

Therefore the matrix element for three-particle-scat- 
tering vanishes identically in tree approximation for 
generic momenta  ((Pi'} =~ {P/}): 

/1~3~ nn = 0. (8) 

The 5-function term in the propagator (5) which has 
been neglected so far gives a contribution to M33 when 
the sets of  incoming and outgoing momenta  are equal. 
It is a sum of  products of  two particle scattering terms 
given by (3). 

M~3~ a n =  ~ M(E,  c0 

dpl 
M(I' ,  2' ,3'  ; 3 , 1 , : )  = 

2P00 

× M(I ' ,  2 ' ; 3 , 0 )M(0 ,3 ' ;  1,2). 

The matrix element for pair production (2 ~ 4) 

M42 = °Ut(p3', P2', P l ' ;  fliP1, P2 ~n 

is obtained from h~3~ nn by the substitution law (2). 
Since there are no contributions from the 5-function 
part: 

M42 ~ O. (9) 

As already mentioned recent progress on the Sine- 
Gordon theory and on its connection with the massive 
Thirring model leads to the conjecture that particle 
number and set of  their momenta  are conserved even 
in the Thirring model. The results of this short note 
show the tree approximation to be in agreement with 
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this conjecture. From (9) we see no pair-production 
in the considered case and (8) together with (4) implies 
the conservation of  the set of  particle momenta  in 
three particle scattering. Even more we suspect the 
vanishing of  the connected part of  (n ~ n)-l~article- 
scattering, implying no pair product ion at all in this 
approximation.  

In a forthcoming paper we will consider the one 
loop approximation.  This is interesting because of  
the possibility of  anomalies [6]. 

This work has been suggested to us by B. Schroer. 
We thank S. Meyer, R. Seiler and E. Tr~'nkle for dis- 
cussions. 
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