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Abstract
A system of O(N)-matrix difference equations is solved by means of the off-
shell version of the nested algebraic Bethe ansatz. In the nesting process, a
new object, the �-matrix, is introduced to overcome the complexities of the
O(N)-group structure. The highest weight property of the solutions is proved
and some explicit examples are discussed.

PACS numbers: 11.10.−z, 11.10.Kk, 11.55.Ds

1. Introduction

O(N) Gross–Neveu and O(N) σ -models are asymptotically free quantum field theories which
attract high interest, since they share some common features with QCD. Since perturbation
theory fails for these models, exact results, such as exact generalized form factors, are desirable
and welcome. The concept of a generalized form factor was introduced in [1, 2], where several
consistency equations were formulated. Subsequently, this approach was developed further and
investigated in different models by Smirnov [3]. Generalized form factors are matrix elements
of fields with many particle states. To construct these objects explicitly, one has to solve
generalized Watson’s equations that are matrix difference equations. To solve these equations,
the so-called off-shell Bethe ansatz is applied [4–6]. The conventional Bethe ansatz introduced
by Bethe [7] is used to solve eigenvalue problems and its algebraic formulation was developed
by Faddeev and co-workers (see e.g. [8]). The off-shell Bethe ansatz has been introduced
in [9] to solve the Knizhnik–Zamolodchikov equations that are differential equations. In
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[10], a variant of this technique has been formulated to solve matrix difference equations of
the form

K(u1, . . . , ui + κ, . . . , un) = K(u1, . . . , ui, . . . , un)Q(u1, . . . , un, ; i), (i = 1, . . . , n),

where K(u) is a co-vector-valued function, Q(u, i) are matrix valued functions and κ is a
constant to be specified. We use here a co-vector formulation because this is more convenient
for its application to the form factor program. For higher rank internal symmetry groups,
the nested version of this Bethe ansatz has to be applied. The nested Bethe ansatz as a
method to solve eigenvalue problems was introduced by Yang [11] and further developed by
Sutherland [12, 13].

In this paper, we will solve the O(N)-difference equations combining the nested Bethe
ansatz with the off-shell Bethe ansatz. This procedure is similar to the SU (N) [14] case, where
also a nesting procedure is used. However, the algebraic formulation for O(N) is much more
intricate because the R-matrix exhibits an extra new term. In addition, for SU (N) we can use
the same R-matrix at every level, while for the group O(N) the R-matrix changes after each
level. Therefore, in our construction a new object, called �-matrix, is introduced in order to
overcome these difficulties. This provides a systematic formulation of techniques introduced
by Tarasov [15] and also used in [16]. In [17], a different procedure was used to solve the
O(N) on-shell Bethe ansatz for even N.

The results of this paper will be applied in [18] to calculate exact form factors of the O(N)

σ -models and Gross–Neveu models. We should mention that the first computation of form
factors for O(3) σ -model is due to [3] (see also [19, 20]). There are also new developments
concerning the connection between 2D conformal field theory (CFT) and integrable models
with N = 2 super Yang–Mills (SYM) theories in different higher dimensions. First, there
is a surprising relation between 2D conformal blocks and the instanton partition function
in N = 2, 4D SYM theory [21] (Alday, Gaiotto, Tachikawa—AGT relation) and this is
a particular version of the AdS/CFT correspondence, which is a more general part of the
gauge/string duality. There is also a q-deformation of the AGT relation which connects
the N = 2 5D SYM theory and the q-deformed conformal blocks [22]. This last relation
offers new insights and gives the intriguing hope that the form factor program can be
used to obtain a deeper understanding of this connection. The solution of the difference
equations is the first step to obtain the exact form factors and therefore important physical
relations and correlation functions for integrable models. In fact, difference equations play
a significant role in various contexts of mathematical physics (see e.g. [23] and references
therein).

The paper is organized as follows. In section 2, we recall some results and fix the
notation concerning the O(N) R-matrix, the monodromy matrix and some commutation
rules. We also introduce a new object, which we call the �-matrix and which is a central
element in our construction of the nested off-shell Bethe vector. In section 3, we introduce the
nested generalized Bethe ansatz to solve a system of O(N)-difference equations and present
the solutions in terms of ‘Jackson-type integrals’. We introduce a new type of monodromy
matrix fulfilling a new type of Yang–Baxter relation and which is adapted to the difference
problem. In particular, this yields a relatively simple proof of our main result, which is
theorem 3.4. In section 4, we prove the highest weight property of the solutions and calculate
the weights. Section 5 contains some examples of solutions of the O(N)-difference equations.
The appendices provide the more complicated proofs of additional results we have obtained.
In particular, in appendix B we prove that all seven types of ‘unwanted terms’ in the Bethe
ansatz cancel.
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2. General setting and notion of the �-matrix

2.1. The O(N) R-matrix

Let V 1,...,n be the tensor product space,

V 1,...,n = V1 ⊗ · · · ⊗ Vn, (1)

where the vector spaces Vi
∼= CN, (i = 1, . . . , n) are copies of the fundamental vector

representation space of O(N) with the (real) basis vectors

|α〉r ∈ V, (α = 1, . . . , N).

It is straightforward to generalize the results of this paper to the case where the Vi are vector
spaces for other representations. We denote the canonical basis vectors of V 1,...,n by

| α1, . . . , αn 〉 ∈ V 1,...,n, (αi = 1, . . . , N) . (2)

A vector v1,...,n ∈ V 1,...,n is given in terms of its components by

v1,...,n =
∑

α

| α1, . . . , αn 〉r vα1,...,αn . (3)

A matrix acting on V 1,...,n is denoted by

A1,...,n : V 1,...,n → V 1,...,n. (4)

We will also use the dual space V1,...,n = (V 1,...,n)†.
The O(N) spectral parameter-dependent R-matrix was found by Zamolodchikov–

Zamolodchikov [24].4 It acts on the tensor product of two (fundamental) representation spaces
of O(N). It may be written as

R12(u12) = (112 + c(u12) P12 + d(u12) K12) : V 12 → V 21 , (5)

where P12 is the permutation operator, K12 is the annihilation-creation operator and u12 =
u1 − u2. Here and in the following, we associate with each space Vi a variable (spectral
parameter) ui ∈ C. The components of the R-matrix are

Rδγ

αβ (u12) = δγ
α δδ

β + δδ
α δ

γ

β c(u12) + δγ δδαβ d(u12) (6)

from which P12 and K12 can be read off. The functions

c(u) = −1

u
, d(u) = 1

u − 1/ν
, ν = 2

N − 2
(7)

are obtained as the rational solution of the Yang–Baxter equation

R12(u12) R13(u13) R23(u23) = R23(u23) R13(u13) R12(u12) , (8)

where we have employed the usual notation [11]. We will also use

R̃(u) = R(u)/a(u)

with

a(u) = 1 + c(u) = u − 1

u
.

The ‘unitarity’ of the R-matrix reads as

R̃21(u21)R̃12(u12) = 1

4 We use here the normalization R = S/σ2 and the parameterization u = θ/iπν, which is more convenient for our
purpose.
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and the three eigenvalues of the R-matrix are

R±(u) = 1 ± c(u) = u ∓ 1

u
, R0 = 1 + c(u) + Nd(u) . (9)

The crossing relation may be written as

R12(u12) = C22̄ R2̄1(û12) C2̄2 = C11̄ R21̄(û12) C1̄1 , (10)

where û = 1/ν − u. Here, C11̄ and C11̄ are the charge conjugation matrices. Their matrix
elements are Cαβ̄ = Cαβ̄ = δαβ , where β̄ denotes the anti-particle of β. In the real basis used
up to now the particles are chargeless, which means that β̄ = β and C is diagonal.

In the following, we will use instead of the real basis |α〉r , (α = 1, 2, . . . , N) the complex
basis given by

|α〉 = 1√
2
(|2α − 1〉r + i|2α〉r)

|ᾱ〉 = 1√
2
(|2α − 1〉r − i|2α〉r)

for α = 1, 2, . . . , [N/2]. If N is odd, there is in addition |0〉 = |0̄〉 = |N〉r. The weight vector
w = (

w1, . . . , w[N/2]
)

and the charges of the one-particle states are given by

for |α〉 : wk = δkα, Q = 1

for |ᾱ〉 : wk = −δkα, Q = −1

for |0〉 : wk = 0, Q = 0.

Remark 2.1. For even N, this means that we consider O(N) as a subgroup of U (N/2) and the
charge Q is its U (1) charge. For N = 3, we may identify the particles 1, 1̄, 0 with the pions
π±, π0.

The highest weight eigenvalue of the R-matrix is

R11
11(u) = R+(u) = a(u).

We order the states as 1, 2, . . . , (0), . . . , 2̄, 1̄ (0 only for N odd). Then the charge conjugation
matrix in the complex basis is of the form

Cδγ = δδγ̄ , Cαβ = δαβ̄

C=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 · · · 1
...

. . .
... · ...

0 · · · 1 · · · 0
... · ...

. . .
...

1 · · · 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.
(11)

The annihilation-creation matrix in (5) may be written as

Kδγ

αβ = Cδγ Cαβ.

2.2. The monodromy matrix

We consider a state with n particles and as is usual in the context of the algebraic Bethe ansatz
we define [25, 8] the monodromy matrix by

T1,...,n,0(u, u0) = R10(u10) · · · Rn0(un0) (12)

4
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with u = u1, . . . , un. It is a matrix acting on the tensor product of the ‘quantum space’
V 1,...,n = V1 ⊗ · · · ⊗ Vn and the ‘auxiliary space’ V0. All vector spaces Vi are isomorphic to
a space V whose basis vectors label all kinds of particles. Here, V ∼= C

N is the space of the
vector representation of O(N).

Suppressing the indices 1, . . . , n, we write the monodromy matrix as (following the
notation of Tarasov [15])

T α′
α =

⎛
⎝ A1 (B1)α̊ B2

(C1)
α̊′

(A2)
α̊′
α̊

(B3)
α̊′

C2 (C3)α̊ A3

⎞
⎠ , (13)

where α, α′ assume the values 1, 2, . . . , (0), . . . , 2̄, 1̄ corresponding to the basis vectors of
the auxiliary space V ∼= C

N and α̊, α̊′ assume the values 2, . . . , (0), . . . , 2̄ corresponding to
the basis vectors of V̊ ∼= C

N−2. We will also use the notation A = A1, B = B1,C = C1 and
D = A2, which is an (N − 2) × (N − 2) matrix in the auxiliary space. The Yang–Baxter
algebra relation for the R-matrix (8) yields

T1,...,n,a(u, ua) T1,...,n,b(u, ub) Rab(uab) = Rab(uab) T1,...,n,b(u, ub) T1,...,n,a(u, ua) . (14)

2.3. A lemma

In our approach of the algebraic Bethe ansatz, the following lemma replaces commutation
rules of the entries of the monodromy matrix. In the conventional approach one derives them
from the Yang–Baxter algebra relations (14) and uses them for the algebraic Bethe ansatz.

Lemma 2.2. For the monodromy matrix the following identity holds:

T1,...,n,a(u, v) = 11, . . . , 1n1a +
n∑

i=1

c(ui − v)R1a(u1i) · · · Pia · · · Rna(uni)

+
n∑

j=1

d(ui − v)R1a(ûi1) · · · Kia · · · Rna(ûin) (15)

with û = 1/ν − u .

Proof. The R-matrix R(u) (see (6) and (7)) is meromorphic and has simple poles at u = 0 and
u = 1/ν due to the form of c(u) and d(u) such that

Re sv=ui T1,...,n,a(u, v) = Re sv=ui c(ui − v)R1a(u1i) · · · Pia · · · Rna(uni)

Re sv=ui−1/νT1,...,n,a(u, v) = Re sv=ui−1/νd(u j − v)R1a(ûi1) · · · Kia · · · Rma(ûin)

holds. The claim follows by Liouville’s theorem because limv→∞ T1,...,n,a(u, v) =
11, . . . , 1n1a. �

Similarly, we have for the crossed monodromy matrix,

Ta,1,...,n(v, u) = Ran(v − un) · · · Ra1(v − u1),

the relation

Ta,1,...,n(v, u) = 1a11, . . . , 1n +
n∑

i=1

c(v − ui)Ran(uin) · · · Pai · · · Ra1(ui1)

+
n∑

i=1

d(v − ui)Ram(ûmi) · · · Kai · · · Ra1(û1i). (16)

Note that the crossing relation (10) implies

Ta,1,...,n(va, u) = CbaT1,...,n,b(u, vb)Cab (17)

with vb = va − 1/ν.
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2.4. The matrix �

The nested Bethe ansatz relies on the principle that after each level, the rank of the group (or
quantum group) is reduced by 1. For SU (N) the rank is N − 1 and for O(N) it is [N/2]. This
means that the dimension of the vector representation (where the R-matrix usually acts) is
reduced by 1 for the case of SU (N) and by 2 for the case of O(N). A more essential difference
is that for SU (N) one can use at every level the same R-matrix, because (with a suitable
normalization and parameterization) the SU (N) R-matrix does not depend on N. In contrast
for O(N), the R-matrix changes after each level, because it depends on N. Therefore, we need
a new object called matrix �, which maps the O(N) R-matrix to the O(N − 2) one. We use
the notation

R̊(u) = R(u, N − 2) = 1 + Pc(u) + Kd̊(u)

d̊(u) = 1

u − 1/ν̊

(18)

with ν̊ = 2/(N − 4). The components of the R-matrix R̊(u) will be denoted by

R̊δ̊γ̊

α̊β̊
(u), α̊, β̊, γ̊ , δ̊ = 2, 3, . . . , (0), . . . , 3̄, 2̄.

In addition to V 1,...,m = V1 ⊗ . . . ⊗ Vm (1), we introduce

V̊ 1,...,m = V̊1 ⊗ . . . ⊗ V̊m , (19)

where the vector spaces V̊i
∼= CN−2, (i = 1, . . . , m) are considered as fundamental (vector)

representation spaces of O(N − 2). The space Vi is spanned by the complex basis vectors
|1〉, |2〉, . . . , |2̄〉, |1̄〉 and V̊i by |2〉, . . . , |2̄〉 .

Definition 2.3. We define the map

�1,...,m : V 1,...,m → V̊ 1,...,m

recursively by �1 = π1 and

�1,...,m(u) = (π1�2,...,m)ēaT1,...,m,a(u, ua)ē
a (20)

with the projector π : V → V̊ ⊂ V , the monodromy matrix (12) and ua = u1 − 1. The vector
ēa ∈ Va (acting in the auxiliary space of T1,...,m,a) and the co-vector ēa ∈ (Va)

† correspond to
the state 1̄ and have the components ēα = δα

1̄
and ēα = δ1̄

α .

Lemma 2.4. In particular for m = 2, the matrix �12(u1, u2) may be written as

�12(u) = π1π2 + f (u12)C̊12ē1e2 (21)

with e2 = C2aēa and f (u) = −d(1 − u). It satisfies the fundamental relation

R̊12(u12)�12(u1, u2) = �21(u2, u1)R12(u12) , (22)

where R̊12 is the O(N − 2) R-matrix.

Proof. Equation (21) can be easily derived

�12(u) = π1π2ēaT12,a(u, ua)ē
a

= π1π2ēaR1a(u1 − ua)R2a(u2 − ua)ē
a

= π1π2ēa (111a + c(1)P1a) (121a + d(u21 + 1)K2a) ēa

= π1π2 + c(1)d(u21 + 1)C̊12ē1e2.

6
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Use has been made of c(1) = −1 and π1π2ēaP1aK2aēa = C̊12ē1e2. Equation (22) is derived
for all components. Obviously,

R̊β̊ ′α̊′

α̊β̊
(u)C̊α̊β̊ = R̊0(u)C̊β̊ ′α̊′

holds, where the scalar R-matrix eigenvalue is (see (9))

R̊0(u) = a(u) + (N − 2) d̊(u).

Therefore, the relations

(R̊12(u12)�12)
β̊ ′α̊′
αβ = R̊β̊ ′α̊′

α̊β̊
(u12)π

α̊
α π

β̊

β + f (u12)R̊0(u12)C̊β̊ ′α̊′
δ1̄
αδ1

β

and

(�21R12(u12))
β̊ ′α̊′
αβ = π

β̊ ′
β ′ π

α̊′
α′ R

β ′α′
αβ (u12) + f (u21)C̊β̊ ′α̊′

R1̄1
αβ (u12)

are valid. The claim of the lemma is then equivalent to

(i) : d̊(u) = d(u) + f (−u)d(u) for α or β �= 1, 1̄
(ii) : 0 = d(u) + f (−u) (1 + d(u)) for α = 1, β = 1̄
(iii) : f (u)R̊0(u) = d(u) + f (−u) (c(u) + d(u)) for α = 1̄, β = 1.

These equations may be easily checked with the amplitudes (7). �
These results can be extended to general m, as presented below.

Lemma 2.5. The matrix �1,...,m(u) satisfies

(a) in addition to (20) the recursion relation

�1,...,m(u) = (�1,...,m−1πm)ēbT1,...,m,b(u, ub)ē
b (23)

with ub = um − 1/ν + 1, and
(b) the fundamental relation

R̊i j(ui j)�...i j...(u) = �... ji...(u)Ri j(ui j) . (24)

(c) The matrix ē0T1,...,m,0(u, u0)ē0 acts on �1,...,m(u) as the unit matrix for arbitrary u0

�1,...,m(u)ē0T1,...,m,0(u, u0)ē
0 = �1,...,m(u) . (25)

(d) Special components of � satisfy

�
α̊1,...,α̊m
1α2,...,αm

(u1, . . . , um) = 0 (26)

�
α̊1,...,α̊m
α̊α2,...,αm

(u1, . . . , um) = δ
α̊1
α̊

�α̊2,...,α̊m
α2,...,αm

(u2, . . . , um) (27)

�
α̊1,...,α̊m

α1,...,αm−11̄
(u1, . . . , um) = 0 (28)

�
α̊1,...,α̊m
α1,...,αm−1α̊

(u1, . . . , um) = �α̊1,...,α̊m−1
α1,...,αm−1

(u1, . . . , um−1)δ
α̊m
α̊

. (29)

with α̊ �= 1, 1̄.

The proof of this lemma is presented in appendix A.
Definitions (20) and (23) can be rewritten as (see also lemma 2.4 for m = 2)

�1,...,m(u) = π1�2,...,m +
m∑

j=2

f (u1 j)R̊ j j−1 · · · R̊ j2C̊1 j�2,...,ĵ,...,mē1e jR jm · · · Rj j+1 (30)

= �1,...,m−1πm +
m−1∑
j=1

f (u jm)R̊ j+1 j · · · R̊m−1 jC̊ jm�1,...,ĵ,...,m−1ē jR1 j · · · Rj−1 jem. (31)

7
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3. The O(N)-difference equation

Let K1,...,n(u) ∈ V1,...,n be a co-vector-valued function of u = u1, . . . , un with values in V1,...,n .
The components of this vector are denoted by

Kα1,...,αn (u), (αi = 1, 2, . . . , (0), . . . , 2̄, 1̄).

The following symmetry and periodicity properties of this function are supposed to be valid.
Conditions 3.1.
(i) The symmetry property under the exchange of two neighboring spaces Vi and Vj and the

variables ui and u j, at the same time, is given by

K...i j...(. . . , ui, u j, . . .) = K... ji...(. . . , u j, ui, . . .)R̃i j(ui j), (32)

where R̃(u) = R(u)/a(u) and R(u) is the O(N) R-matrix.
(ii) The system of matrix difference equations holds

K1,...,n(. . . , u′
i, . . .) = K1,...,n(. . . , ui, . . .)Q1,...,n(u; i), (i = 1, . . . , n) (33)

with u′
i = ui + 2/ν. The matrix Q1,...,n(u; i) ∈ End(V 1,...,n) is defined as the trace

Q1,...,n(u; i) = tr0T̃Q,1,...,n,0(u, i) (34)

of a modified monodromy matrix

T̃Q,1,...,n,0(u, i) = R̃10(u1 − u′
i) · · · Pi0 · · · R̃n0(un − ui).

The Yang–Baxter equations for the R-matrix guarantee that these properties are
compatible. The shift of 2/ν in equation (33) could be replaced by an arbitrary κ . For the
application to the form factor problem, however, it is fixed to be equal to 2/ν in order to be
compatible with crossing symmetry. Instead of the Yang–Baxter relation (14), the modified
monodromy matrix T̃Q satisfies the Zapletal rules [14, 4]. We have for i = 1, . . . , n,

T̃Q(u; i) T0(u
′, v) Ri0(ui − v) = Ri0

(
u′

i − v
)

T0(u, v) T̃Q(u; i) (35)

with u′ = u1, . . . , u′
i, . . . , un and u′

i = ui +2/ν. The Q1,...,n(u; i) satisfy the commutation rules

Q1,...,n(. . . ui . . . u j . . . ; i)Q1,...,n
(
. . . u′

i . . . u j . . . ; j
)

= Q1,...,n(. . . ui . . . u j . . . ; j)Q1,...,n
(
. . . ui . . . u′

j . . . ; i
)
. (36)

The following proposition is obvious.

Proposition 3.2. Let the vector valued function K1,...,n(u) ∈ V1,...,n satisfy (i). Then for all
i = 1, . . . , n, the relations (3.2) are equivalent to each other and also equivalent to the
following periodicity property under cyclic permutation of the spaces and the variables

Kα1α2,...,αn (u
′
1, u2, . . . , un) = Kα2,...,αnα1 (u2, . . . , un, u1). (37)

Remark 3.3. Equations (32) and (37) imply Watson’s equations for the form factors [26].

Because of proposition 3.2, we mainly consider Q1,...,n(u, i) for i = 1:

Q1,...,n(u) = tr0T̃Q,1,...,n,0(u) =
n∏

k=2

1

a(vki)
tr0TQ,1,...,n,0(u) (38)

with TQ,1,...,n,0(u) = TQ,1,...,n,0(u, 1). In analogy to equation (13), we introduce (suppressing
the indices 1, . . . , n)

TQ(u) ≡
⎛
⎝ AQ(u) BQ(u) BQ,2(u)

CQ(u) DQ(u) BQ,3(u)

CQ,2(u) CQ,3(u) AQ,3(u)

⎞
⎠. (39)

8
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3.1. The off-shell Bethe ansatz

We will express the co-vector-valued function Kα(u) in terms of the co-vectors

�α(u, v) = Lβ̊ (v)

β̊

α (u, v) = (
L(v)
(u, v)

)
α

, (40)

where summation over β̊1, . . . , β̊m, β̊i = 2, . . . , 0, . . . , 2̄, is assumed and Lβ̊ (v) is a co-vector-

valued function with values in V̊1,...,m � C
N−2 ⊗ · · · ⊗ C

N−2. We assume that for Lβ̊ (v), the
higher level conditions of 3.1 hold with R and Q replaced by R̊ and Q̊ (which means N is
replaced by N − 2):

(i)(1) : L...i j...(. . . , vi, v j, . . .) = L... ji...(. . . , v j, vi, . . .)
˜̊Ri j(vi j) (41)

(ii)(1) : L1,...,m(. . . , v′
i, . . .) = L1,...,n(. . . , vi, . . .)Q̊1,...,m(v, i). (42)

The Bethe ansatz states are5



β̊

α(u, v) = �
β̊

β(v)
(
�T βm

1 (u, vm) · · · T β1

1 (u, v1)
)

α
. (43)

The reference state � (pseudo-vacuum) is the highest weight co-vector (with weights
w = (n, 0, . . . , 0))

�α = δ1
α1

· · · δ1
αn

. (44)

It satisfies

�T (u, v) = �

⎛
⎝a1(u, v) 0 0

∗ a2(u, v) 0
∗ ∗ a3(u, v)

⎞
⎠ , (45)

a1(u, v) =
n∏

k=1

a(uk − v), a2(u, v) = 1, a3(u, v) =
n∏

k=1

(1 + d(uk − v)) .

We also have for TQ(u) = TQ(u, 1),

�TQ(u) = �

n∏
k=2

a(uk1)

⎛
⎝1 0 0

∗ 0 0
∗ 0 0

⎞
⎠ . (46)

The system of difference equations (33) can be solved by means of a nested ‘off-shell’ Bethe
ansatz. The first level is given by the following Bethe ansatz.

Bethe ansatz 1.

Kα(u) =
∑

v

g(u, v)�α(u, v) , (47)

where � is given by (40) and

g(u, v) =
n∏

i=1

m∏
j=1

ψ(ui − v j)
∏

1�i< j�m

τ (vi − v j) . (48)

The functions ψ(u) and τ (v) satisfy the functional equations

ψ(u′) = a(u)ψ(u), τ (v′)a(v′) = a(−v)τ (v), (49)

5 The 

β̊
α are generalizations of the states introduced by Tarasov in [15].
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with u′ = u + 2/ν. The summation over v is specified by

v = (v1, . . . , vm) = (ṽ1 − 2l1/ν, . . . , ṽm − 2lm/ν), li ∈ Z , (50)

where ṽi are arbitrary constants.
The sums (47) are also called the ‘Jackson-type integrals’ (see e.g. [10] and references

therein). The solutions of (49) are

ψ(u) = �
(− 1

2ν + u
2ν

)
�

(
u
2ν

) (51)

τ (v) = v
�

(
1
2ν + v

2 ν
)

�
(
1 − 1

2ν + v
2 ν

) . (52)

We are now in a position to formulate the main result of this paper.

Theorem 3.4. Let the co-vector-valued function K1,...,n(u) ∈ V1,...,n be given by the Bethe
ansatz 1 and let g(x, u) be of the form (48). If in addition the co-vector-valued function
L1,...,m(v ) ∈ V̊1,...,m satisfies the properties (i)(1) and (ii)(1), i.e. equations (32) and (33) for
O(N −2), then K1,...,n(u) satisfies equations (32) and (33) for O(N), i.e. K1,...,n(u) is a solution
of the set of difference equations.

The proof of this theorem can be found in appendix B.
Iterating (47), (40) and theorem 3.4, we obtain the nested off-shell Bethe ansatz with

levels k = 1, . . . , [(N − 1) /2]. The ansatz for level k reads

K(k−1)

1,...,nk−1
(u(k−1)) =

∑
u(k)

g(k−1)
(
u(k−1), u(k)

)
�

(k−1)

1,...,nk−1

(
u(k−1), u(k)

)
(53)

�
(k−1)

1,...,nk−1
(u(k−1), u(k)) = (K(k)(u(k))
(k−1)(u(k−1), u(k)))1,...,nk−1 , (54)

where 
(k) is the Bethe ansatz state (43) and g(k) is the function (48) for O(N − 2k). The start
of the iteration is given by a 1 � kmax < [(N + 1) /2] with

�(kmax−1)
α1...αnk−1

= δkmax
α1

. . . δkmax
αnk−1

, and nk = 0 for k � kmax (55)

which is the reference state of level kmax − 1 and trivially fulfils conditions 3.1. The start of
the iteration for kmax = [(N + 1) /2] is given by the solution for O(3) for N odd and O(4) for
N even. These two cases are investigated below.

Corollary 3.5. The system of O(N)-matrix difference equations (33) is solved by the nested
Bethe ansatz (53) with (55) and K1,...,n(u) = K(0)

1,...,n(u) .

3.1.1. The off-shell Bethe ansatz for O(3). The R-matrix is given by (5) and (7) for ν = 2 :

R(u) = 1 + c(u)P + d(u)K, c(u) = −1

u
, d(u) = 1

u − 1/2
.

The solution of the difference equations is given by the off-shell Bethe ansatz (47) with

ψ(u) = 1

u − 1
, τ (v) = v2.

The Bethe vector � is expressed in terms of the co-vectors (43)

�α(u, v) = L(v)
α(u, v),

10
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where the scalar function L(v) has to satisfy

L(. . . , vi, v j, . . .) = L(. . . , v j, vi, . . .)
˜̊R(vi j)

L(v′
1, v2, . . . , vm) = L(v2, . . . , vm, v1)

with ˜̊R(v) = (v+1)(v−1/2)

(v−1)(v+1/2)
and v′ = v + 1. The minimal solution of these equations is

L(v) =
∏

1�i< j�m

L(vi j)

L(v) = π

4

(v − 1/2)

v (v − 1)
tan πv.

The O(3) weight of the state is

w = n − m . (56)

3.1.2. The off-shell Bethe ansatz for O(4). The R-matrix is given by (5) and (7) for ν = 1 :

R(u) = 1 + c(u)P + d(u)K, c(u) = −1

u
, d(u) = 1

u − 1
.

We could apply theorem 3.4 and write the off-shell Bethe ansatz for O(4) in terms of an O(2)

problem. However, the latter cannot be solved by the Bethe ansatz because the R-matrix is
diagonal (note that R11̄

11̄
= 0). But there is another way to solve the O(4) problem. The group

isomorphism O(4) � SU (2) ⊗ SU (2) reflects itself in terms of the corresponding R-matrices.
Indeed, the O(4) R-matrix can be written as a tensor product of two SU (2) R-matrices, or
more precisely

(R̃O(4))
δγ

αβ�α
AB�

β

CD = �δ
C′D′�

γ

A′B′
(
R̃SU (2)

+
)C′A′

AC (R̃SU (2)
− )D′B′

BD .

The SU (2) R-matrices R̃SU (2)
± (u) = RSU (2)

± (u)/a(u) correspond to the spinor representations
of O(4) with positive (negative) chirality

RSU (2)
± = 1 + c(u)P,

where the amplitude c(u) is given by (7). The relative R-matrix for states of different chirality
is trivial R̃ = 1. The intertwiners are

�α
AB = (γ+γ αC)AB

with the O(4) gamma matrices γ α , γ+ = 1
2 (1 + γ 5) and the charge conjugation matrix C. For

more details, see [27, 28]. In the complex basis of the O(4) and the fundamental representations
of the SU (2), the states have the O(4) weights

vector states O(4) weights
1 (1, 0)
2 (0, 1)
2̄ (0,−1)
1̄ (−1, 0)

spinor states O(4) weights
↑+ (1

2
, 1

2
)

↓+ (−1
2
,−1

2
)

↑− (1
2
,−1

2
)

↓− (−1
2
, 1

2
) .

(57)

Because of weight conservation the intertwiner matrix is diagonal in this basis and is
calculated to be

�α
AB =

⎛
⎜⎜⎜⎝

�1
↑+↑− 0 0 0
0 �2

↑+↓− 0 0

0 0 �2̄
↓+↑− 0

0 0 0 �1̄
↓+↓−

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (58)

11
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We also use the dual intertwiner �AB
α with∑

A,B

�α′
AB�AB

α = δα′
α ,

∑
α

�A′B′
α �α

AB = δA′
A δB′

B . (59)

We write the co-vector-valued function Kα(u) as

Kα(u) = K(+)
A (u)K(−)

B (u)�A B
α , (60)

where �
A B
α = ∏n

i=1 �AiBi
αi

. The transfer matrix trT̃ O(4)(u, v) can also be decomposed such that

Kα(u)(T̃ O(4))γγ (u, v) = Kα(u)�
γ

A′B′
(
T̃ SU (2)

+
)A′

A (u, v)
(
T̃ SU (2)

−
)B′

B (u, v)�AB
γ

= (
K(+)

A (u)
(
T̃ SU (2)

+
)A

A(u, v)
)(

K(−)
B (u)

(
T̃ SU (2)

−
)B

B(u, v)
)
�AB

α ,

where (59) has been used. Therefore, Kα(u) satisfies the O(4) symmetry relation (32) and the
difference equation (33) if the K(±)

A (u) satisfy the corresponding SU (2) relations.
The SU (2) on-shell Bethe ansatz is well known and the off-shell case has been solved in

[14, 6, 29]:

KA(u) =
∑

v

g(u, v)�A(u, v) (61)

�(u, v) = �C(u, vm) · · ·C(u, v1), (62)

where g(u, v) is given by (48) and

ψ(u) = �
( − 1

2 + u
2

)
�

(
u
2

) , τ (v) = v.

The summation over v is specified by

v = (v1, . . . , vm) = (ṽ1 − 2l1, . . . , ṽm − 2lm), li ∈ Z , (63)

where the ṽi are arbitrary constants. The SU (2) weights of the state (62) are w = (n − m, m)

and due to (57) the O(4) weights are

w =
{
(n − m,−m) for positive chirality spinors
(n − m, m) for negative chirality spinors.

Therefore, the O(4) weights of (60) are

w = (n − n− − n+, n− − n+) , (64)

where n± are the numbers of positive (negative) chirality C-operators.

4. Weights of off-shell O(N) Bethe vectors

In this section, we analyze some group theoretical properties of off-shell Bethe states. We
show that they are highest weight states and we calculate the weights. The first result is not
only true for the conventional Bethe ansatz, which solves an eigenvalue problem and which is
well known, but it is also true, as we will show, for the off-shell one which solves a difference
equation (or a differential equation).

By the asymptotic expansion of the R-matrix (5) and the monodromy matrix (12), we
obtain for u → ∞:

Rab(u) = 1ab − 1

u
Mab + O(u−2) (65)

Mab = Pab − Kab. (66)

12
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More explicitly, equation (12) gives

T1,...,n,a(u, u) = 11,...,n,a + 1

u
M1,...,n,a + O(u−2) (67)

M1,...,n,a = (P1a − K1a) + · · · + (Pna − Kna) . (68)

The matrix elements of M1,...,n,a, as a matrix in the auxiliary space, are the O(N) Lie algebra
generators. In the following, we will consider only operators acting in the fixed tensor product
space V = V 1,...,n of (1). Therefore, we will omit the indices 1, . . . , n. In terms of the matrix
elements in the auxiliary space Va, the generators act on the basis states as

〈α1, . . . , αi, . . . , αn |Mα′
α =

n∑
i=1

(δααi 〈α1, . . . , α
′, . . . , αn | − δα′ᾱi 〈α1, . . . , ᾱ, . . . , αn |).

(69)

The diagonal elements of Mα′
α are the weight operators Wα with

〈α1, . . . , αi, . . . , αn|Wα = wα〈α1, . . . , αi, . . . , αn|
wα = nα − nᾱ,

where nα is the number of particles α in the state. It is sufficient to consider only the weights

w = (w1, . . . , w[N/2]) (70)

because of Wα = −Wᾱ and 〈α |W0 = 0 for N odd.
The Yang–Baxter relations (14) yield for ua → ∞,

[Ma + Mab, Tb(ub)] = 0 (71)

and if additionally ub → ∞, we obtain

[Ma + Mab, Mb] = 0, (72)

or for the matrix elements (in the real basis)[
Mα′

α , T β ′
β (u)

] = −δβ ′
α T α′

β (u) + δα′β ′
T α

β (u) + T β ′
α (u)δα′

β − T β ′
α′ (u)δαβ (73)

[
Mα′

α , Mβ ′
β

] = −δβ ′
α Mα′

β + δα′β ′
Mα

β + Mβ ′
α δα′

β − Mβ ′
α′ δαβ. (74)

Equation (74) represents the structure relations of the O(N) Lie algebra and (73) the O(N)-
covariance of T . In particular, the transfer matrix is invariant

[Mα′
α , trT (u)] = 0. (75)

Theorem 4.1.

1. If the co-vector-valued function

Kα(u) =
∑

v

g(u, v)Lβ̊ (v)

β̊

α (u, v)

is given by the nested off-shell Bethe ansatz (53), then the weights (70) are w

= (w1, . . . , w[N/2]) =
{(

n − n1, . . . , n[N/2]−1 − n[N/2]
)

for N odd(
n − n1, . . . , n[N/2]−2 − n− − n+, n− − n+

)
for N even .
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2. If Kα(u) satisfies the conditions of theorem 3.4 and if Lβ̊ (v) is a highest weight state, then
Kα(u) is a highest weight state:

K(u)Mα′
α = 0 for α′ < α.

(Recall that α′ < α is to be understood corresponding to the ordering
1, 2, . . . , [N/2] , (0), [N/2], . . . , 2̄, 1̄ .)

3. The weights satisfy the highest weight condition{
w1 � w2 � . . . � w[N/2] � 0 for N odd
w1 � w2 � . . . � |w[N/2]| for N even.

The proof of this theorem can be found in appendix C. We mention that for N even, the
highest weight property was already discussed in appendix B of [17].

5. Examples

In this section, we present some explicit examples of the solutions of the O(N)-difference
equations.

Example 5.1. The simplest example is obtained for kmax = 1, which means the trivial solution
of the difference equations

Kα = �α = δ1
α1

, . . . , δ1
αn

.

The weights of Kα are w = (n, 0, . . . , 0). In the language of spin chains this case corresponds
to the ferromagnetic ground state.

Example 5.2. For N �= 4, kmax = 2 and n(1) = 1, the solution reads

Kα(u) =
∑

v

g(u, v)Lβ̊ (v)(�Cβ̊ (u, v))α,

with v = ṽ − 2l/ν(l ∈ Z, ṽ an arbitrary constant) and

g(u, v) =
n∏

i=1

ψ(ui − v), ψ(u) = �
( − 1

2ν + u
2ν

)
�

(
u
2ν

)
Lβ̊ (v) = δ2

β̊
for N > 4 and = δ0

β̊
for N = 3.

The weights of this co-vector Kα(u) are w = (n − 1, 1, 0, . . . , 0). The action of the operator
Cβ̊ (u, v) on the reference state is easily calculated with the help of equations (6), (12)
and (13).

As a particular case of this example, we determine explicitly the solution for the following.

Example 5.3. The action of the C-operator on the reference state for the case of n = 2 and
N > 4 of example 5.2 yields(

�C2(u, v)
)
α
=δ2

α1
δ1
α2

c(u1 − v)a(u2 − v) + δ1
α1

δ2
α2

c(u2 − v).

Therefore, we obtain (with the help of Dougall’s formula)

Kα(u) =
∑

v

ψ(u1 − v)ψ(u2 − v)
(
δ2
α1

δ1
α2

c(u1 − v)a(u2 − v) + δ1
α1

δ2
α2

c(u2 − v)
)

= π2� (ν)/
(
�

(
1
2ν

))2

sin 1
2πν (1 − u1 + ṽ) sin 1

2πν (1 − u2 + ṽ)

δβ̊
α1

δ1
α2

− δ1
α1

δβ̊
α2

�
(
1 + 1

2ν (u21 + 1)
)
�

(− 1
2ν (u21 − 1)

) .

The weights are w = (1, 1, 0, . . . , 0).
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Example 5.4. The special case N = 3 gives

Kα(u) = −π

sin π (−u1 + ṽ) sin π (−u2 + ṽ)

sin πu12

u12 (u12 − 1)

(
δ0
α1

δ1
α2

− δ1
α1

δ0
α2

)
and weight w = (1).

Example 5.5. To obtain the results in examples 5.2 and 5.3 for N = 4, we have to use the
corresponding SU (2) formulas with ψ(u) = �(− 1

2 + u
2 )/�( u

2 ) :

K(±)
A (u) =

∑
v

g(u, v)
(
�C(u, v)

)
A .

For n = 2,

K(±)
A (u) =

∑
v

ψ(u1 − v)ψ(u2 − v)
(
δ

↓
A1

δ
↑
A2

c(u1 − v)a(u2 − v) + δ
↑
A1

δ
↓
A2

c(u2 − v)
)

= K(±)(u)
(
δ

↓
A1

δ
↑
A2

− δ
↑
A1

δ
↓
A2

)
,

K(±)(u) = π
1

sin 1
2π(1 − u1 + ṽ(±)) sin 1

2π(1 − u2 + ṽ(±))

× 1

�
(
1 + 1

2 (u21 + 1)
)
�

(− 1
2 (u21 − 1)

) .

There are three possibilities: using the intertwiners (58), we find

Kα(u) = K(+)
A (u)�

(−)
B �AB

α = K(+)(u)
(
δ

↓
A1

δ
↑
A2

− δ
↑
A1

δ
↓
A2

)(
δ

↑
B1

δ
↑
B2

)
�AB

α

= K(+)(u)
( − δ2̄

α1
δ1
α2

+ δ1
α1

δ2̄
α1

)
with weights w = (1,−1), and

Kα(u) = �
(+)
A (u)K(−)

B (u)�AB
α = (

δ
↑
A1

δ
↑
A2

)(
δ

↓
B1

δ
↑
B2

− δ
↑
B1

δ
↓
B2

)
K(−)(u)�AB

α

= K(−)(u)
( − δ2

α1
δ1
α2

+ δ1
α1

δ2
α2

)
with weights w = (1, 1) and

Kα(u) = K(+)
A (u)K(−)

B �AB
α

= K(+)(u)K(−)(u)
(
δ

↓
A1

δ
↑
A2

− δ
↑
A1

δ
↓
A2

)(
δ

↓
B1

δ
↑
B2

− δ
↑
B1

δ
↓
B2

)
�AB

α

= K(+)(u)K(−)(u)
( − δ1̄

α1
δ1
α2

− δ2
α1

δ2̄
α2

− δ2̄
α1

δ2
α2

− δ1
α1

δ1̄
α2

)
with weights w = (0, 0).

6. Conclusion

In this paper, we solved the O(N)-matrix difference equations by means of the off-shell
algebraic nested Bethe ansatz. We introduced a new object called �-matrix to overcome the
difficulties connected to the special peculiarities of the O(N) symmetric R-matrix structure.
The highest weight properties of the solutions were analyzed. We believe that our construction
can also be applied to the cases with similar group theoretical complexities, such as Bn, Cn,
Dn Lie algebras and superalgebra Osp(n|2m) (see [16]).
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Appendix A. Proof of lemma 2.5

Proof (a) We prove (23) by induction: it is true for m = 2, because similar to (21)

π1π2ēbT12,b(u, ub)ē
b = π1π2 + f (u12)C̊12ē1e2.

We assume (23) for m − 1 and replace in definition (20) �2,...,m as given by (23)

�1,...,m = π1�2,...,mēaT1,...,m,aēa

= π1(�2,...,m−1πmēbT2...m,bēb)ēaT1,...,m,aēa

= (π1�2,...,m−1πm)ēbT1,...,m,bēbēaT1,...,m,aēa

= (π1�2,...,m−1πm)ēaT1,...,m,aēaēbT1,...,m,bēb

= (π1�2,...,m−1πm)ēaT1,...,m−1,aēaēbT1,...,m,bēb

= (�1,...,m−1πm)ēbT1,...,m,bēb.

In equality 3, we have T2,...,m,b replaced by T1,...,m,b, because

ēbR1b(u1b)ēaR1a(u1a) = ēbēaR1a(1) + c(u1b)ē1ēaR1a(1) = ēbēaR1a(1)

holds, where ē1ēaR1a(1) = ē1ēaa(1) = 0 has been used. Similarly, equality 5 holds. Equality
4 holds because the Yang–Baxter equation for R implies that ēaT1,...,m,aēa and ēbT1,...,m,bēb

commute.
(b) Again we prove (24) by induction. For m = 2, the claim was proved in section 2.4,

for m > 2 it follows for 1 < i < j from (20) and for i < j < m from (23).
(c) The proof of equation (25) is similar to that of (a). We commute T (ua) and T (u0), use

ē0π1R10(u10)R1a(1) = ē0π1 and apply induction:

�1,...,mē0T1,...,m,0(u0)ē
0 = (π1�2,...,m)ēaT1,...,m,aēaē0T1,...,m,0(u0)ē

0

= (π1�2,...,m)ē0T1,...,m,0(u0)ē
0ēaT1,...,m,aēa

= π1(�2,...,m)ē0T2,...,m,0(u0)ē
0ēaT1,...,m,aēa

= (π1�2,...,m)ēaT1,...,m,aēa = �1,...,m.

(d) Equations (26) and (27) follow from (20) and R1̄α̊1
1α

(1) = 0, R1̄α̊1
α̊α

(1) = δ
α̊1
α̊

δ1̄
α and

analogously (28) and (29).

Appendix B. Proof of the main theorem 3.4

In the following, we use the convention that α etc take the values 1, 2, . . . , (0), . . . , 2̄, 1̄ and
α̊ etc take the values 2, . . . , (0), . . . , 2̄:

Kα(u) =
∑

v

g(u, v)Lβ̊ (v)�
β̊

β (v)
(
�T βm

1 (u, vm) · · · T β1

1 (u, v1)
)
α
.

(i) Proof. Property (i) in the form of (32) follows directly from the Yang–Baxter equations
and the action of the R-matrix on the pseudo-ground state � :

(T... ji... )
β

1 (. . . u j, ui . . .)Ri j(ui j) = Ri j(ui j)(T...i j... )
β

1 (. . . ui, u j . . .)

�...i j...Ri j(ui j) = a(ui j)�...i j....

�

(ii) Proof. We prove

K1,...,n(u
′) = K1,...,n(u) Q1,...,n(u), (B.1)
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where u′ = (u1 + 2/ν, u2, . . . , un). The matrix Q(u) = Q(u, 1) is given by (38). Note that
we assign to the auxiliary space of T̃Q(u) the spectral parameter u1 on the right-hand side and
u′

1 = u1 + 2/ν on the left-hand side. In the following, we will suppress the indices 1, . . . , n.
We are now going to prove (B.1) in the form

K(u)
(
AQ(u) + DQ

β̊

β̊
(u) + A3,Q(u)

) =
n∏

k=2

a(uk1)K(u′) , (B.2)

where K(u) is a co-vector-valued function as given by equation (47) and the Bethe ansatz state
(40). To analyze the left-hand side of equation (B.2), we proceed as usual in the algebraic
Bethe ansatz and push AQ(u), DQ

β̊

β̊
(u) and A3,Q(u) through all the T βi

1 -operators. As usual,
we obtain wanted and unwanted terms. We first find that the wanted contribution from AQ(u)

already gives the result we are looking for. Secondly, the wanted contributions from DQ
β̊

β̊
(u)

and A3,Q(u) applied to � give zero because of (46). Thirdly, the unwanted contributions from

AQ(u), DQ
β̊

β̊
(u) and A3,Q(u) can be written as differences which cancel after summation over

the v j. All these three facts can be seen as follows.
The ‘wanted terms’ from AQ are obtained if one writes the Zapletal commutations rule

(35) as

T βk

1 (u, vk)AQ(u) = AQ(u)T βi

1 (u′, vk)a(u1 − vk) + uw.

Therefore, we obtain(
L(v)�(u, v)

)
β
�T βm

1 (u, vm) · · · T β1
1 (u, v1)AQ(u) = wA + uwA,

with

wA(u, v) = (
L(v)�(u, v)

)
β
�AQ(u)T βm

1 (u′, vm) · · · T β1
1 (u′, v1)

m∏
k=1

a(u1 − vk)

=
n∏

k=2

a(uk1)

m∏
k=1

a(u1 − vk)Lβ̊ (v)φβ̊ (u′, v) (B.3)

and similarly wD = wA3 = 0 because of (46). Inserted into (47), this yields

(
K(u)Q

)wanted
(u) =

∑
u

g(u, v)

m∏
k=1

a(u1 − vk)Lβ̊ (v)φβ̊ (u′, v)

=
∑

u

g(u′, v)Lβ̊ (v)φβ̊ (u′, v) = K(u′)

because

g(u, v)

m∏
k=1

a(u1 − vk) = g(u′, v),

where (49) has been used. Therefore, it remains to prove that the unwanted terms cancel. This
will follow from the lemma below. �

We apply Q1,...,n(u) to the state �1,...,n(u, v) (suppressing the quantum space indices)

�(u, v)
(
AQ(u) + DQ

β̊

β̊
(u) + A3,Q(u)

) = wanted + unwanted.

17
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The wanted contribution has been calculated above and the unwanted terms may be written as
(see appendix B.1)

unwanted = uwA + uwD + uwA3

uwA =
m∑

i=1

(
uwA,i

C

)
γ̊
Cγ̊

Q +
m∑

i=1

m∑
j=1
j �=i

uw
A,i j
C2

C2,Q

uwD =
m∑

i=1

(
uwD,i

C

)
γ̊
Cγ̊

Q +
m∑

i=1

m∑
j=1
j �=i

uw
D,i j
C2

C2,Q +
m∑

i=1

(
uwD,i

C3

)
γ̊

(
C3,Q

)
γ̊ ′C̊

γ̊ ′γ̊

uwA3 =
m∑

i=1

m∑
j=1
j �=i

uw
A3,i j
C2

C2,Q +
m∑

i=1

(
uw

A3,i
C3

)
γ̊

(
C3,Q

)
γ̊ ′C̊

γ̊ ′γ̊ .

Lemma B.1. The unwanted terms satisfy the relations(
uwD,i

C

)
γ̊
(u, v)g(u, v) = −(

uwA,i
C

)
γ̊
(u, v(i))g(u, v(i)) (B.4)

(
uw

A3,i
C3

)
γ̊
(u, v)g(u, v) = −(

uwD,i
C3

)
γ̊
(u, v(i))g(u, v(i)) (B.5)

uw
D,i j
C2

(u, v( j))g(u, v( j)) = −uw
A,i j
C2

(u, v(i j))g(u, v(i j)) − uw
A3,i j
C2

(u, v)g(u, v) (B.6)

with the notation

v = v1, . . . , vm

v(i) = v1, . . . , v
′
i, . . . , vm

v(i j) = v1, . . . , v
′
i, . . . , v

′
j, . . . , vm

v′ = v + 2/ν.

Equations (B.4)–(B.6) imply that all unwanted terms cancel after summation over the v in the
Jackson-type integral (47).

Proof. We can calculate the following unwanted contributions explicitly (see appendix B.1):(
uwA,i

C

)
γ̊
(u, v) = −c(u′

1 − vi)X
(i)
γ̊

(u, v)(
uwD,i

C

)
γ̊
(u, v) = −c(vi − u1)X

(i)
γ̊

(u, v(i))χi(u, v)(
uwD,i

C3

)
γ̊
(u, v) = − f (u′

1 − vi)X
(i)
γ̊

(u, v)(
uw

A3,i
C3

)
γ̊
(u, v) = f (u1 − vi)X

(i)
γ̊

(u, v(i))χi(u, v)

(B.7)

with

X (i)
γ̊

(u, v) = L(vi, vi)γ̊ β̊
i

β̊

i (u, vi)

m∏
k=1
k �=i

a(vik)a1(u, vi) (B.8)

and

χi(u, v) = a2(u, vi)

a1(u, v′
i )

m∏
k=1
k �=i

a(vki)

a(v′
ik)

, (B.9)
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where a1 and a2 are defined in (45). The remaining unwanted terms are

uw
A,i j
C2

(u, v) = −c(u′
1 − vi)X

(i j)(v)

uw
D,i j
C2

(u, v) = (
c(u1 − vi) + f (u′

1 − v j)
)
X (i j)(v(i))χi(u, v) (B.10)

uw
A3,i j
C2

(u, v) = − f (u1 − v j)X
(i j)(v′

i, v
′
j, vi j)χi(u, v( j))χ j(u, v)

with

X (i j)(u, v) = f (vi j)a(vi j)L(vi, v j, vi j)C̊
i j
(u, vi j)

m∏
k=1,k �=i, j

(a(vik)a(v jk))a1(vi)a1(v j).

(B.11)

The claims (B.4)–(B.6) follow from the shift property of the function g(u, v) defined in (48):

χi(u, v)g(u, v) = g(u, v(i))

which is due to the shift properties (49) of the functions ψ(v) and τ (v). �

Note that for the on-shell Bethe ansatz, the equations for the unwanted terms are quite
similar (apart from the fact that there are no shifts) and their cancellation is equivalent to the
Bethe ansatz equations

χi(u, v) = a2(u, vi)

a1(u, vi)

m∏
k=1
k �=i

a(vki)

a(vik)
= 1.

Appendix B.1. The unwanted terms

The unwanted terms are derived using lemma 2.2. Here we only sketch the derivation of
uwA as an example (more details will be published elsewhere [30]). We start with (B.3), use
Yang–Baxter relations

wA = (L�)β �AQT βm

1 (u′, vm) · · · T β1

1 (u′, v1)a(u1 − vm) · · · a(u1 − v1)

= (L�)β �
(
R0m(u′

1 − vm) · · · R01(u
′
1 − v1)

)β,1

γ ,β ′ T β ′
m

1 (u, vm) · · · T
β ′

1
1 (u, v1)(TQ)

γ

1

and lemma 2.2 in the form of (16)

wA = (L�)β �T βm

1 (zm) · · · T β1

1 (z1)AQ +
m∑

i=1

c(u′
1 − vi)

× (L�)β � (R0m(vim) · · · P0i · · · R01(vi1))
β,1

γ ,β ′ T β ′
m

1 (u, vm) · · · T
β ′

1
1 (u, v1)(TQ)

γ

1

= (L�)β �T βm

1 (vm) · · · T β1
1 (v1)AQ − uwA.

Note that the d(u′
1 − vi) contributions vanish because they produce terms like �...

...1̄
= 0 (see

(28)). We commute the Ri j(vi j) (for j < i) with � using (24) and apply the R̊i j(vi j) to L using
(41). Using further Yang–Baxter relations to the Ri j(vi j) (for j > i) the unwanted terms write
as

uwA = −
m∑

i=1

c(u′
1 − vi)

(
L(vi, vi)�(vi, vi)

)
γ β

i

×
m∏

k=1,k �=i

a(vik)a1(u, vi)�
[
T βm

1 (vm) · · · T β1

1 (v1)
]

i(TQ)
γ

1 ,
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where we use the short notations vi, β i
and

[
T βm

1 (vm) · · · T β1
1 (v1)

]
i
which means that vi, βi and

T βi

1 (vi) are missing, respectively. For γ = 1, this vanishes because of �...
1... = 0 (see (26)), for

γ = γ̊ �= 1, 1̄ this gives uwA
C and for γ = 1̄ this gives uwA

C2
in the form of (B.7) and (B.10)

where (27) and (30) are used.

Appendix C. Proof of theorem 4.1

Proof. 1. The weights (70) of the reference state � (44) are

w = (n = n0, 0, . . . , 0) .

In level k = 1, . . . , [(N − 3) /2] of the Bethe ansatz the weights are changed as

wk → wk − nk, wk+1 → wk+1 + nk.

This means the states 

β̊

α(u, v) of (43) are eigenvectors of the weights. Using in addition (56)
for O(3) and (64) for O(4), we obtain w

= (w1, . . . , w[N/2]) =
{(

n − n1, . . . , n[N/2]−1 − n[N/2], n[N/2]
)

for N odd(
n − n1, . . . , n[N/2]−2 − n− − n+, n− − n+

)
for N even.

2. The proof of the highest weight property

�(v)M1
γ̊ = �(v)Mγ̊

1̄
= �(v)M1

1̄
= 0

uses similar techniques as the derivation of the unwanted terms.
(i) We consider

0 = (
L(v)�(v)

)
β
�Bγ̊ (v)T β ′

m
1 (vm) · · · T

β ′
1

1 (v1)

= (
L(v)�(v)

)
β
� (R0m(v − vm) · · · R01(v − v1))

β,1

γ ,β ′ T β ′′
m

1 (vm) · · · T
β ′′

1
1 (v1)T

γ

γ ′ (v)

× (R01(v1 − v) · · · R0m(vm − v))
γβ ′′

1...1,γ̊
+ O(v−2).

For v → ∞, applying lemma 2.2, equations (65) and (67), we obtain

0 = �(v)M1
γ̊ −

m∑
i=1

X (i)
γ̊

(u, v) +
m∑

i=1

X (i)
γ̊

(u, v(i))χi(u, v),

with X (i)
γ̊

and χi defined in (B.8) and (B.9). After multiplication with g(u, v) and summation
over the v the terms cancel each other because of χi(u, v)g(u, v) = g(u, v(i)).

(ii) We consider(
L(v)�(v)

)
β

(R10(v1 − v) · · · Rm0(vm − v))
γ̊ β

β ′,γ �T γ

1̄
(v)T β ′

m
1 (vm) · · · T

β ′
1

1 (v1)

= (
L(v)�(v)

)
β

(R10(v1 − v) · · · Rm0(vm − v))
γ̊ β

1̄,β ′ �T β ′
m

1 (vm) · · · T
β ′

1
1 (v1) + O(v−2)

= �(v)T γ̊

1̄
(v) + O(v−2)

+ (
L(v)�(v)

)
β
�T βm

β ′
m

(vm) · · · T β1

β ′
1
(v1) (R10(v1 − v) · · · Rm0(vm − v))

γ̊ β ′

1,...,1,1̄
.

It has been used that only γ = 1̄ contributes because of �B2 = �B3 = 0.
For v → ∞, applying lemma 2.2, equations (65) and (67), we obtain

0 = �(v)Mγ̊

1̄
− Cγ̊ γ̊ ′

m∑
i=1

X (i)
γ̊ ′ (u, v) + Cγ̊ γ̊ ′

m∑
i=1

X (i)
γ̊ ′ (u, v(i))χi(u, v).
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Again after multiplication with g(u, v) and summation over the v the terms cancel each other
because of χi(u, v)g(u, v) = g(u, v(i)).

(iii) We consider

0 = �M1
1̄
· · ·

= (
L(v)�(v)

)
β

(R(v − vm) · · · R(v − v1))
β,1

γ ,β ′ �T β ′
m

β ′′
m

(vm) · · · T
β ′

1
β ′′

1
(v1)T

γ

γ ′ (v)

× (R(v1 − v) · · · R(vm − v))
γ ′,β ′′

1,...,1,1̄
.

For v → ∞, we apply lemma 2.2, equations (64) and (66), and obtain

0 = �(v)M1
1̄
−

m∑
i=1

X (i j)(v) +
m∑

i=1

X (i j)(v′
i, v

′
j, vi j)χi(u, v)χ j(u, v).

Again after multiplication with g(u, v) and summation over the v the terms cancel each other
because of χi(u, v)χ j(u, v)g(u, v) = g(u, v(i j)).

(iv) Next we prove

�(w)Mγ̊ ′
γ̊

= 0, 1 < γ̊ ′ < γ̊ < 1̄.

We consider

Lβ ′ (w)�
γ̊ ′β ′

γ β (v,w)�T βm

1 (wm) · · · T β1

1 (w1)T
γ

γ̊
(v) + O(v−2)

= (
L(w)

(
T (1)

)γ̊ ′

γ̊
(v)

)
β ′�

β ′

β (w)�T γ̊

γ̊
(v)T βm

1 (wm) · · · T β1

1 (w1) + O(v−2),

where the Yang–Baxter rules and (24) have been used. We have also used that by (30)
and (15),

�
γ̊ ′β ′

γ β (v,w) = δγ̊ ′
γ �

β ′

β (w) + O(v−1)

(R(w1 − v) · · · R(wm − v))1,...,m,0 = 11,...,m10 + O(v−1).

For v → ∞, the highest weight condition L(w)
(
M(1)

)γ̊ ′

γ̊
= 0 implies the claim.

3. The highest weight properties of the weights are obtained as follows. In the complex basis,
relation (73) reads as[

Mα′
α , Mβ ′

β

] = −δβ ′
α Mα′

β + Cα′β ′
(CM)αβ + Mβ ′

α δα′
β − (MC)β

′α′
Cαβ.

In particular for β �= α, ᾱ,

[Mβ
α , Mα

β ] = Mα
α − Mβ

β = Mα
α + Mβ̄

β̄
.

Because of
(
Mβ

α

)† = Mα
β

0 � Mβ
α

(
Mβ

α

)† = Mβ
α Mα

β = Mα
β Mβ

α + Mα
α − Mβ

β .

For highest weight co-vectors,

0 = �Mα
β for α < β

which implies for the weights (70)

0 � wα − wβ for α < β � N/2.

In addition, if N is even, then

0 � wα + wβ̄ for α � N/2 < β �= ᾱ

⇒ w1 � w2 � . . . � wN/2−1 � |wN/2|
and if N is odd, then

0 � wα for α � N/2 because �M0
0 = 0

⇒ w1 � w2 � . . . � wN/2 � 0.
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