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The #-function of pure Yang-Mills theory is gauge independent for linear non-singular 
renormalizable gauges in lowest order. The vertex functions scale gauge independently 
in the ultraviolet region for this general class of gauges 

1. Introduction 

The interest in perturbation expansion for pure Yang-Mills theory results mainly 
from the fact, that the large momentum behavior of the Green functions in the 
deep Ettclidean region can be computed reliably using renormalization group argu- 
ments [1 ]. 

In the quantization procedure of a gauge field theory one has to add a gauge 
fixing term to the gauge-invariant Lagrangian in order to obtain the Feynman 
rules [2]. The resulting gauge dependence of the renormalization group parame- 
ters [3] leads to the question of gauge dependence of the ~-function and the 
anomalous dimensions of formally gauge-invariant composite operators [4]. 

In this note a general class of gauge conditions, which are linear, non-singular [5] 
and renormalizable, are considered *. The well-known classes of  covariant gauges 
like the Feynman and Landau gauge and non-covariant gauges like the Coulomb 
gauge are included. 

In sect. 2 the Feynman rules for the Yang-MiUs theory in a general gauge are 
given and the renormalization is discussed. 

In sect. 3 the renormalization group parameters in the one-loop approximation 
are calculated. The gauge independence of the/~-function for linear non-singular 
and renormalizable gauges [5] in/a-normalized pure Yang-Mills theory follows ex- 
plicitly in this approximation. 

* In quantum electrodynamics similar gauge conditions are discussed by Tatur and 
Bialynicki-Birula [ 12]. The authors thank Professor B. Schroer for bringing these papers to 
their attention. 
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In sect. 4 the ultra violet limit for the effective gauge parameters is analysed. 
The Coulomb gauge is approached for a two-parameter subclass of gauges. The 
asymptotic behavior of vertex functions with insertions of composite operators 
is discussed in sect. 5. 

2. Yang-Mills theory in a general class of gauges 

The Lagrangian for the interaction of massless vector mesons with massless 
fermions is given by 

~ . ~  - 2,~'O~B. "2 caMaO c b + 

+ i ~ ( ~  8 6 - igra~a)$a + c.t. ,  

with 

a+ a b c  G~v = auBav- avB ~ ~ beB~Bv . (1) 

The structure constants fab c of the gauge group obey f~dfbcd = 2 ClSab and ~ao~ 
are representation matrices for the fermions. The f ield/~ in the gauge fixing term 
is defined by ~ = ~'~B~ with ~'~a positive symmetric 4 X 4 matrix such as to 
desribe linear renormalizable non-singular gauges [5]. For special gauges we write 
the matrix ~'~ in the following way: ~'uv = dg~, - al?u~ v where 77u is a fixed vector. 
The Landau, Feynman, Coulomb, and axial gauge [7] are obtained for the values 
of the parameters (~, d, a) = (0, 1, 0), (1, 1,0), (0, 1, I) resp. (0, O, -1).  In the 
sequel we do not consider the axial gauge since it is singular. 7" has to be normal- 
ized, e.g. one can set the biggest eigenvalue ofl '~  equal to 1. C a and C a are the 
Faddeev-Popov ghost fields and 

Mab U ab = a / ~ ,  with/~7,bc b -- (~)~ ,C a +~ab¢(/ 'Bb)~,C~. 

The general gauge fixing term in the Lagrangian (1) gives rise to modified 
Feynman rules. The vector-meson propagator, the Faddeev-Popov propagator and 
the Faddeev-Popov vertex read 

ab iSab { fi2+O~ 02 P ~ ~v + ~upv } 
Du~(P)- p2 +ie guy ~ (p:-fi--~ PuPv p : ~  ' 

Gab(p)_ iSab 
p . f i + i e  ' 

bc ' ^ ' = ~ P v  ~a~ (q)= _igfabcqu with /3~ . (2) 
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If  ~uv is guy, then the vector meson propagator is simply 

D uv( P)  - - p2 + ie g ~  - (1 - ~t) 

Fermions have been added to the pure Yang-Mills Lagrangian in order to simplify 
perturbation calculation. Since the renormalized charges of the Yang-Mills and the 
fermion fields are equal [6], the fermion-vector three-point vertex can be used to 
define the coupling constant g. Pure Yang-MiUs theory is formally obtained in the 
case c 2 = 0 [8] where tr(rar b) = 2C28ab for the fermion representation matrices. 

As usually the renormalized theory is obtained by specifying the subtraction 
constants by means of normalizing vertex functions at an arbitrary Euclidean 
point. The divergences are determined in the one-loop approximation by calculating 
the self-energy and the vertex diagrams (figs. 1 and 2). These divergences can be 
absorbed by multiplicative counterterms in the Lagrangian (appendix A) which 
are obtained as usual by introducing wave function, vertex and gauge parameter 
renormalization constants. The explicit calculation (appendix B) shows that in 
the case of the general gauge fixing term in the Lagrangian (1) the renormalization 
constants turn out to be matrices, 

for the vector-meson field, 

~ = ( ~  ~p)t+v, t~ u = Yt~.  (4 )  

for the gauge parameters, and for the fermion-vector three-point vertex: 

. ( s )  

Eq. (5) is the result of the one-loop approximation given by eqs. (14) and (17'), 
which shows the multiplicative counterterm structure (see (A. I)). The coupling re- 
normalization can also be determined by the three-meson vertex: 

gu ~ '33  uvZ  3 +oo = g Z l uv+oo (6) 

or by the ghost vertex: 

 u,/zL  (7) 
The Ward-Slavnov identities guarantee the equality of the renormalized coupling 

constants [6]. The wave function renormalization constants for the Fermi field 
and the ghost field are defined by 

=qz , (8) 

C~ = V~3 Ca • (9) 

The renormalized one-particle irreducible (1PI) Green functions 
F~),...  un ( P l  . . . .  Pn , tl, g, 7') are functions of the ratio ~/ ' f f  a = T only, since the 
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gauge fixing term in the Lagrangian only depends on T and a factor x/a can be 
absorbed in the ghost field renormalization constant. 

The renormalization group equation for the general class of gauges for pure 
Yang-Mills theory is 

/~ +3 +? .v  vx aTX~ n.V l-,(n)(p 1 .... Pn;la, g. T ) = O ,  

where 

=gzfv s-l (zlf)-l. (zf)- v szf 

(lO) 

(11) 

v 

(12) 

'Y# t'~'(Hbtpl'~(n)~//'tl "'" ~ ---- ~1P(~n22 "'" bt~ + "vv'bt2 p(n)__/Z 1 ,I",~3 ... ~tl + . . . .  

The renormalization group eq. (10) is a generalisation of 

( ~ + 3 a _ ~ _ n , / + 6  0 ~F(n) t . ,  or) 0 u ~  "Ud] m...un t e l  ...pn;u.,g, = , 

which is valid for covariant gauges. The well-known relation 5 = -2a,7 is given in 
the general case by 

/a ~-~ Tuv = ( T ~ 3 - 1 / a  b-~-x/~3)ttv =(TT)uv' (13) 

as a consequence of (see appendix A) 

The solution of the renormalization group equation (10) is expressed in terms of 
effective parameters for the coupling constant and the gauge parameters in sect. 4. 

3. Renormalization group parameters in the one-loop approximation 

For computational purposes it is useful to calculate the logarithmically divergent 
terms in the charge- and wave-function renormalization constants of order g2 in 
order to determine the renormalization group parameters using eqs. (11) and (12). 
Explicite calculation shows the logarithmically divergent part of the second-order 
self-energy diagrams in the general gauge is equal to 

8ab ((Z 3 - 1)uvq 2 - ~(Z 3 - 1)uhqXqv - ~(Z 3 - 1)uxqXqt~ } (14) 

with 
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g2C 1 A2 
(Z 3 - 1)uv- ln-~2 Cu~, 

16 7r 2 /z 

(A is a ultra violet cut-of0. The elements Cur depend only on the gauge parameters. 
The result for the general class of gauges and further details are given in appendix B. 

If ~ e  matrix Tis diagonal and has the elements TOO = (1 - a)/x/r,, Tll  = T22 = 
/'33 = -1/x/t~ one gets rotational invariant gaUges. The gauge-fixing term in the 
Lagrangian (1) then reads 

1 {auBau_aaV,Tv(rl~Bau))2 with,Tv = (1,0)  ~Og- 2or (15) 

For a = 1, a = 0 this gives the Coulomb gauge and for a = 0 the covariant gauges 
like the Landau gauge and Feynman gauge are obtained. Cvo now has non-vanishing 
elements. 

- C o o  =T25 _ 3 Ix/i' -a a 
lx/i--  ' 

1 ( a--16 ~ a (16) 
Cll =C22 =C33 =-~ 21 + 1 + lx/]"-~] Ix/]'-~" " 

If in addition a = 0, the known expression for covariant gauges follows [4]. 
The charge renormalization constant is calculated in second order by means of  

the logarithmic divergent part of the fermion.vector three-point vertex 

g ::A,.(A/u) = g (17) 

which is calculated in appendix B. The result is 

g2 C1 A2 
( z M -  1)uv = 16 7r 2 ln--~ ½(Ctw + ~ guy) , (17') 

where only the pure Yang-Mills contribution proportional to C 1 is written down. 
The renormalization group parameters follow from eqs. (11) and (12) 

g2C1 22 
= - g 1 6 r r  ~ 3 - bOg3' (18) 

g2C1 Cur. (19) 
7m, - 16 zr 2 

This shows the gauge independence of the fl-function for the general class of re- 
normalizable gauges in lowest order of perturbation theory in a o-normalized 
theory. 
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4. Ultraviolet behavior of vertex functions in the general gauge 

The gauge independence of the/3-function eq. (18) confirms pure Yang-Mills 
theory to be "asymptotically free" in all non-singular renormalizable gauges. The 
solution of the renormalization group equation (10) is expressed in terms of effec- 
tive coupling constant g-(L g) and effective gauge parameters 7'(~, g, T) using the 
method of characteristics with the scaling parameter 3 .̀ This determines the ultra. 
violet behaviour of the vertex functions. 

For covariant gauges it is known that the effective gauge parameter ~ tends to 
the finite value ~ as 3, ~ ~ [3], while for a class of rotational invariant gauges 
with a = 0 the Coulomb gauge is approached [9]. 

The differential equations for the effective parameters are in the general case 

~ - 3 `  dTuu g2C 1 
- 3(g-), d in ) ,  = 161r2 (TC(T) )uv '  (20) 

with boundary conditions g(1) = g; T(1) = T The solution for the effective coupling 
constant is always given by 

g2(3`) =g2(1 + 2bog2 In 3`)-1 , 

while the effective gauge parameters in general obey a system of coupled differen- 
tial equations. 

As a first step we state the solution for the two-parameter family of gauges 
where the gauge fixing term is given by eq. (15). The functions which appear in 
the two coupled differential equations are then given by eqs. (16) and their behav- 
iour show that the point (a*, t~*) --- (1, 0) is approached for positive values a > 0, 
a > 0 in the limit 3  ̀--> 0% i.e. the Coulomb gauge is the stagnant point for this sub- 
class of gauges. 

By expanding the coefficients CO0 and Cll  of eq. (16) around a = 1, the dif- 
ferential equations may be solved analytically: 

e-!~x+3xl 
TO0(x) = x / s  + exp(-~q x + x2) = 1 - a- 

= 1 (21) _TII(X) =e 4x-xl X/l~ +exp(-'~x+x 2) ~ ' 

with 

x = ~ l n ( l n k +  1 ) 
2b0g2 

and Xl,X 2 being constants fLxed by the boundary conditions. In the limit 3  ̀-> oo 
the vertex functions therefore behave like: 
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I"(nrrnT) (~'Pl .... ~'Pn ; t t, g, T) ~'-¢'''~ ~.4-nrl-nT 

with 

X (In X) (%c~°-nrcTOI2b P (n'rnr) (Pl ..... Pn ;l a, g T(~)) (22) 

lim C00(T(X)) = C~0 = - 4 "  lim C11(T(X)) = C~' 1 = - 3 ,  b = 22~ 

In addition the Coulomb gauge (a = 0, a = 1) has file property that there is no con- 
tribution to the "longitudinal part" of the charge renormalization constant as fol- 
lows from eqs. (16) and (17'). 

Next we consider the general case when all the eigenvalues of T are different. 
The differential equation for the effective gauge parameters eq. (10) is now 

given by a system of four coupled differential equations. This case is much more 
involved, but it can be shown that there exists a stagnant point T* (see appendix B). 

The coefficients Cz~, of the anomalous dimension matrix (19) vanish: 

lim Cav(T(X)) = 0 (23) 
~--}oo 

and therefore in the limit X --} ~ the two-point function has a power behavior. The 
logarithmic factors only occur for subclasses of gauges, namely when the Landau 
gauge is chosen initially or in the subclass considered above (see eq. (22)). 

5. Example of a composite operator 

We now determine the asymptotic behavior of the vertex functions with inser- 
tions of composite operators. 

As an example the composite operators (G~v) 2 and g(822/gg) are considered 
and the anomalous dimension matrix is calculated for linear non-singular renormal- 
izable gauges. 

The insertion of the operators 01 = -¼ f d4x(Ga~v(x)) 2 and 0 2 = f d4xg 5~(x) /gg 
can be defined by using the expression for the tree approximation and imposing 
suitable renormalization conditions [10]. 

For the pure Yang-Mills Lagrangian and Green functions with n external vector 
meson legs we define 

a p(n) (24) , 

#g 

with 
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a o 

Then the counting identity [11] for the vector field leads to 

Let D denote the operator 

O = I~ + :3-~g + 7pv Tvx aTux - n~V . 

Calculating the commutators [g a/ag, D] and [(T a/aT - n)v v, D] gives 

Dr  (n) 
o2 

(26) 

(27a) 

T a Dr(~Pa = (T a~-T) pa ( ~)  r(n) - "fiT)pa (Tuv) r(n)o'2~ v • (27b) 

The anomalous dimension matrix 2[ii in the renormalization group equation 

reads explicitly in the basis O 1 and 0 2 

a a 1 a a 

÷,.;-- 
a a x ~ 2 g ~ 7  "v g ~~ ( '  X - g )  

(28) 
with i = 1,2 andj = 1,2. The matrix ;tii is not diagonal, showing that the operators 
01 and 02 defined by eqs. (24)-(26) are not multiplicatively renormalizable. 

The composite operator for the gauge fixing term, eq. (A.4) is multiplicatively 
renormalizable and there is no mixing. The mixing with Faddeev-Popov ghosts has 
to be considered for the renormalization of the operators 01 and 02 [10]. We only 
take into account vertex functions with 01 resp. 02 insertions defined by eqs. 
(24)-(26), without external ghost legs. Therefore insertions of ghost operators do 
not appear [10]. Furthermore we obtain from eqs. (27a) and (27b) or alternatively 
from the commutators [tt a/a/z, D] = 0 and [cUV(T a/aT- n)u~, D] = 0 two  linear 
combinations which are diagonal under renormalization with 7 = 0: 

t \ 

[/~ r (n) - 7uvr~, ) } -- 0 (29a) D [ff O2 O2 tw. ' 

D { c twr~#v ) = 0,  (29b) 
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if we only take the second-order contribution eq. (19). The solutions of eqs. (29a) 
and (29b) give the asymptotic behavior of the vertex functions with a composite 
operator inserted: With the help of eq. (26) we have 

(Xpi, g lT  ) ~ x4-nTUV(g , r)r~l~v(pi,  ~ 7') 
g 02 

lnh 
f dt ~uv(g (t),T(t)) 

X exp 0 J 

Tuvr(~Ip, v()~pi, g, T) ~ ~4-nTU~(g,T)(1-~h~)romP~(Pi, g , T )  
lnx 

-nuv f d t 3'W'fff(0' T (t)) 
X exp 0 

For the various gauges the asymptotic behavior of the coefficients Cuv(T ) have 
been calculated in sect. 4: constant values for the Landau gauge and the generalized 
Coulomb gauges eq. (22) and powers of(In X)Y withy = la for the covariant 
gauges (a ~ O) and y - 21 for the general case. 

6. Conclusion 

Massiess Yang-Mills theory is multiplicatively renormalizable in the one loop 
approximation for the general class of linear non-singular renormalizable gauges. 
The/~-function is then gauge independent for this class of gauges. 

For the two-dimensional subclass of all rotational invariant gauges the effective 
gauge parameter approaches the Coulomb gauge in the ultraviolet limit. The non- 
covariance of these gauges remains in the logarithmic factors of the asymptotic 
expression of the vertex functions. In the general case the vertex functions have a 
power behavior. 

The vertex function with insertion of ¼ f d4x (G~(x)) 2 has asymptotic be- 
havior with logarithmic deviation from scaling in all gauges coming either from the 
Yang-Mills fields or from the insertion. The composite operator (G~v)2 is not 
multiplicatively renormalizable. 

Appendix A 

Renormalization of  the Yang-Mills theory with non-covariant gauge conditions 

Introducing the various renormalized quantities defined by eqs. (3)-(9) in the 
Lagrangian (1) leads to the counter terms 
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c.t. = -½ ((Z 3 - 1)Ba)~KI B~ + {- { (a,(x/z 3 Ba)u)2 - (BUB~) 2 } 

-- lgfabc {((Z 1 1)aBa)tw - ((Z 1 - 1)aBa).  v )Bb"B cv 

1 2 2 - 1  - -~g  fabcfade((ZiZ3 - 1)BbBC)uvBdUB ev 

1 (au(Y_½,~x/Z 3 _ 1) ~ ) 2  + caau((~,3. ~ - 1 ) ~ u c a  
2a 

with 

+ gfabc c au( (~Z  1 - 1)l~b)uc c 

+ i i~ ~ ~(Z M - 1) +g i~ "/u((ZM1 - 1)Ba)Ura~b 

(A.1) 

(ZlOBa)#v - oo a 2 -1 b c _ oo uk -1 6 b c - Z I ~  BoBo,  (Z1Z 3 B B )uv-Z luv  Zloo (Z  3 )xBKB6 . 

The generalized Ward identity [ 13] for the vector-meson two-point function 
reads 

L (TJ~,B~(x)a, 'Bb(y)) = ~ , , b a (  x _ y ) .  (A.2) 

As a consequence the renormalization constants of the gauge fixing term in eq. (A.1) 
are given by 

1 
( Y -  2"~x/Z3 )uv = guy" (k.3) 

The gauge fixing term for non-covariant gauges is not renormalized 

1 ( a ~ a u ) 2  = 2~(a#Ba#)2 (g.4) 
2% 

In momentum space the first and second term in eq. (A.1) give (Z 3 - 1)~,q 2 and 
(( Zx~3q)#( Zx~3q)v - qgqv) and formula (14) for the two-point function follows. 
The last term of eq. (A. 1) corresponds to the fermion-vector three-point vertex 
g(Z M - 1)uv',/Uq v given in eq. (17). The other terms contribute to the renormaliza- 
tion constants of eqs. (5)-(9). 

Appendix B 

Details o f  the one-loop approximation 

The vector-meson propagator eq. (2), which can be written as 

i~ab+ ie { (p.p)2P.P  j' 
~ p 2 

(B.1) 



168 M. Karowski. S. Meyer/Yang.Mills theory 

with pp = (Tp)w T = ~/X/a, produces additional terms in the one-loop calculation 
of the renormalization group parameters. 

The integrals occurring are typically of the form 

( Poly (q,p) ~ ( p )  = lira . p2)n(p.~)m with P A "+- (4ff)2 i2--~-~ f d ~ . A / e A ( p ) l  ~A 2 (2if) 4 , (B.2) 

which gives the logarithmically divergent part. 
All contributions can be reduced to the three integrals 

1 
1 

I I ( T ) = / p 2 ( ; . , )  = :  d~x/i i :=0(fl+(l_iff)TsS ) ' 

( 1 _ 1 ( B . 3 )  
12(/') = p./~)2 x/det T ' 

J: cr) = f Prf 1 1 l -- l~ 
p p2(p. i~)2 = 2 ! d8 V I]~=O~ + (I - ~) TsS (/3 + (I - ~)Trr) ' 

with 

I 
ro° o ], 

r : =  rl' r2 2 
0 T33 

r = 0, 1, 2, 3 (no summation over r). 

The second order self-energy graphs (fig. 1) 

/ /  L.~% 

Fig. 1. 

give eq. (14) and the vertex correction diagrams (fig. 2) 

Fig. 2. 
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lead to eq. (17) with 

-C#z , = ( ~  - I2)g~v + 4(JT2)u v - (JT)g v tr T - 3 I  1T~v. (B .4) 
For special values o f  T the integration of  eq. (B.3) may be carried out,  e.g. if T is 
diagonal and T l l  = T22 = / '33  the result is eq. (16). 

The system of  coupled differential equations (20) is in general 

__d (In Crr( ) 
dx 

(B.s) 
with x given in eq. (21). From the integrals (B.3) it is obvious that the functions 
Crr(T ) are not  single valued. Let the matrix ~ = x/r~T be normalized 

f' = [ t'°°o ~1 1 
~2 2 

w i t h ~ r r <  1. If  now all 1'r r are different it can be shown that in the second sheet 
for ), -~ oo ~'(X) and ~(X) approach the values 

! 0 4 

! 
4 

0 1 

and a* = - {  respectively. The Crr(J~(X)) all vanish at this point. 
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