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Summary. — An S-matrix defined by Feynman diagrams in a state space
with indefinite norm is considered. The propagators may have, in addition
to simple poles, also double poles in momentum space. A unitarization
procedure is derived which projects the S-matrix on the physical subspace.

1. — Introduction.

An S-matrix may be given by a set of Feynman diagrams. The propagator
can have, in addition to simple poles, also double poles. These double poles
are connected with ghost and dipole ghost states of norm zero. As a consequence
of this indefinite norm in the state space the S-matrix is not unnitary in the
usual sense, although pseudounitarity S'S= SS8"=1 is supposed. There is
no physical interpretation of the S-matrix elements, sinece negative « proba-
bilities » can appear. We construct a positive-definite physical subspace H
of the given indefinite state space /. ## consists of all states containing no
dipole ghosts both before and after scattering (*) (+2). The S-operator projected
on this subspace §= PSP is unitary in the usual sense: S'S—8§8"=P.
This unitarization method is unique, produces no new divergences as well as
no nonanalytic points in the physical range (excepting of course the physical
thresholds) (*).

(*) This definition is exact only for simple cases (Sect. 3,4,5,7 and ref. (2)), for the
general case see Sect. 6,8.

(1) W. HrrsENBERG: Introduction to the Unified Field Theory of Elementary Particles
(London, 1967).

() M. Karowski: Zeils. Naturforsch., 24 a, 510 (1967) and MPI preprint (1972).

(**) This unitarization prescription is more general than that of AscorLi and Mi-
NARDI (*) which only works for the very special case that the eigenstates of the Hamil-
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States containing only one ghost are considered in Sect. 3 and 4 for elastic
scattering. Section 5 contains some remarks on bound states. In (%) the more
complicated case is treated where the states contain two ghosts.

2. — The propagator.

Let us consider a real scalar field ¢(x) and the propagator

(2.1) O0[To(z)p(y)|0> = fd‘p exp [—ip(z —y)]14(p)

)
(27)*
(Feynman integration is always used at the singularities of A(p)). As is well
known, a particle n(p) with mass m is associated with a pole of A(p) at
pr=m?:

R m(P?)

m2

(2.2) 4(p)=

This can be seen by the following consideration:
For z,> 1y, we have

(2.3)  Olp@)g)|0> = n )4fd4p exp [—zp(a:—y)] (p;)z =
_ __ﬁ)_(
= @) ‘fd pj;dpo exp [—ip(z—Y)] (Po— ©)(po + @) +

+ contribution from other singularities —

dp
=f 5 Ole@)in(p)><n(p)lp@)l0> + ...,
with the wave function for the particle n(p)

@ Q@ne) =g )iexp[ ipr], Po=o=Vmi+p?,

tonian belonging to real positive eigenvalues form a positive semi-definite subspace.
This is in general not true ().

(®) R. Ascorr and E. MinarDI: Nuovo Cimenio, 8, 951 (1958); Nucl. Phys., 9, 242
(1958).

(*) N. Naxaxisai: Phys. Rev. D, 3, 1343 (1971).

() K. L. Nagy: preprint ITP-Budapest Report No. 302 (1971).

(%) Detailed version of this paper: MPI preprint January 1973, Munich.
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if by a suitable normalization R (m?) = 1. From the weak asymptotic condition

(2.5) [n(f), )%= w-lim (@0 g (@) af@)y)*

we get the reduction formula for the S-matrix

2.8) (o, nlf)p)t =i f s (@) (O + m*) ' g (@) >+ =

= —ifap w4

1) @ fd“w exp [ipz] ~(y'lp(@) )+

with f(p)~ 8(p*— m?), if |p)+ contains no particle n(f).
To a double pole of A(p) at p*= A2

Ei(p*)
2.7 A(p)= 4
( ) (p) (pz /'12)2

there belong two states: a « good » ghost g(p) and a «bad» or dipole ghost
d(p) with

{glg>=dld>=0,

(2.8) <g(pHla(p)> = 2¢6(p'—p) ,
e=Vi*+p?.

As expected, the double pole implies that there should be states with non-
positive norm. This follows from considerations analogous to the above. For
T, >y, we have again (%)

(2.9)  Olp@e®)i0>=

(29 cpimins]_+-

d
f d*pexp [ip(x—y)]5 -

1 .
(27)3 dp,

= [ 52 (olpto i) <ap)pwlo) + Ole@atp)> o) p) 0] + -

with
1 .
Olp@)lglp)> = G P [~ ipz],
(2.10) L RGN RGE RS
Qlptoatp)y = oo [PV T T exp .

The wave function of g fulfils the Klein-Gordon equation (i.e. |g(p yo* are eigen-
states of the Hamiltonian); this is not true for d. The dipole ghost d continuously
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produces good ghosts g because of the z, term in (2.10). This is the reason for
the notation good and bad ghosts.

The formula for g analogous to formula (2.5) is, as one can show by (2.7)
and (2.10),

A
(2.11) lg(f), v>+= w-lim @fd%[ D;(AZ qo(m)]aof(w)[zp>i

For the reduction formula we get

22)7]_
(2.12) Ly gDyt =i f diz f*(w)[%] y'lpl@)lp>t =

) 1
=—1 f a*p f(p) 7 A(p) @n )Jd“w exp [ip2] (p'|p(@)|p>+

with f*(p)~ d(p2— A?), if |p)>* contains no d(f).
Because of the nondiagonal metric (2.8) eq. (2.12) determines the proba-
bility that p, after scattering, is a product of y' and the dipole ghost d(f).
There are corresponding but more complicated formulae for d. Since we
define « physical states » by the condition that they contain no dipole ghosts
before and after scattering, we do not need these formulae.

3. — Elastic scattering in an external field.

The S-matrix may be given by the diagram

p' P

with the propagator A(p) as external lines. A(p) may have the properties
of Sect. 2: a pole at p*= m? with the state » and a double pole at p>*= 1% to
which the ghosts g and d belong. The S-matrix may be pseudounitary, .e. St8=
= 88'=1 in the state space with indefinite norm. Conservation of proba-
bility does not follow from this property, if there are transitions from « to g and d.

We get a unitary S-matrix if we construct « physical » states 7 with the
condition that there are no dipole ghosts both before and after scattering.
The unitarization method is uniquely defined by this condition. The physical
states are superpositions of » and g. Since we must superimpose eigenstates
of the S-operator, we first diagonalize the §-matrix. Formally we write

(3.1) ~{n(p")in(p >+-Z<% Nn "8z {n, n(p))

9 — Il Nuovo Cimento A.
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with ~(n,|n,>*="8F. Later we will perform the diagonalization explicitly.
The variable r remains fixed in the following considerations and will be omitted.
The index # denotes the in- (respectively out-) going state n. Correspondingly
for ¢

iyt =8, Anjgyt =87,

(3.2)
gyt =198,  HKglgT =187

In the (one-particle) space

(3.3) H=HrDH DN

the metric tensor has the form

1 0 0
(3.4) 0 0 1,
0 1 0

where the rows and columns refer respectively to )+, |g>*, [d>+. The pseudo-
unitarity means

(3.5) [n>++n] + g+ +d| + |d)r g = 1.

Similarly for out states | >-.
We now define « physical » states 7 as a superposition of n and g¢:

(3.6) [+ = |n>* 4+ olg>*

with the condition that no dipole ghosts are emitted:
(3.7) ~(glmyr=0.

Hence the space of physical in states is

(3.8) Hr=(HTDAH) A
The norm of |#)* is one by (3.3) and (3.5)

(3.9) tmyt=1.

The out states |») are defined correspondingly. Therefore we get the physical

S-matrix

ngQn  nQg
o879 89

——V‘Sﬂ

(3.10) ~(afEyt =8 =
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It is easy to prove the unitarity of S by using (3.5), (3.6), (3.7) and (3.9)
(3.11)  |nSr|2 = Km[my-~(n[myt = H@m|nd>-~(nj>t =
= *G@|[jn)~~<n| 4 |g>~ <] + | gl ]t = r@mmyt = 1.
If 2 were positive definite, the unitarity (3.11) would imply
(3.12) H =

This is not true in general if 5 is indefinite as in our case. But because of the
special metrie (3.4) and the special unitarization this equation holds here too.
From (3.4) and (3.8) it follows that

(3.13) = (O OHE = A O H = =8
If
(3.14) P = [my++m| = [ny~—(7|

is the projector on 3, we get for the physical S-matrix

(3.15) S = PSP
and
(3.16) 8'S=388'=P.

However, s is generally not an invariant subspace under 8. But the proportion
of good ghosts in |%)* is the same before and after scattering up to a phase factor,
if time inversion invariance is assumed:

(B.17) Ryt = Hdmyr <w|dyr = Kdmy <@ld)t = |~n|d)*] = [<d[ny*|*.

Hence *(d[n)* and ~(d[7)* only differ by a phase factor which is generally
different from one.

4. — Elastic scattering of two particles.

4'1. Partial-wave expansion. — Let us consider two real scalar fields ¢(x) and
¢(y) with the propagators 4,(p) respectively 4,(q). A,(p) may have the same
properties as in Sect. 3, 7.e. a pole at p®— m? with the state n and a double
pole at p* = A* with the ghosts g and d. 4,(g) may have a simple pole at
q® = M? associated with the particle N. We consider the elastic scattering

n(p) + N(g) > n(p’) + N(q')
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and the diagram

q! q

with the total momentum P=p 4 g=p'+ ¢ (P2=3s).
From (2.6) and (2.12) we get for the scattering amplitude

’ 1 1
(4.1) oTao )= 4 o dn TP PO T @

7 is the time-ordered 4-point function in momentum space. 7 is a function
of p’2, ¢'2, p? ¢%, s, t. To diagonalize T we take the centre-of-mass system
P=0. Then

t =(p'—p)=p"+p*—2p,p,+2|p'|Ipl?'D,
(4'2) — 1 2 2 __1_ e 12 a2}
Po= 556+ =), lpl=g Vs P ¢)

(with A, ¥, 2) = a2+ y2 -+ 22 — 22y — 202 — 2yz); P is the unit vector parallel
to p. The partial wave expansion for T’ is

(4.3) PT2(s, t) = 4 3 228, ) V(D) T, (D) -
m
The partial-wave amplitude ¢ is a function of the masses of the external lines
and the conserved quantities s and I. The different matrix elements are anal-
ogous to (3.2)
;t:' ! ;tfv ’ gvtyv ! NN

if the indices denote the respective states n, g and N.

The « physical » partial-wave amplitude  is corresponding to (3.10)
f

ngn n 49
Nt.N Iv'tN

gtn gtn
(4.4) nl o X NN

g 49
wly

and the « physical » scattering amplitude 7 is given by (4.3), substituting
T->T and t—1%. § is unitary according to Sect. 3.
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A local coupling as for example £, ~ ¢2¢? implies that '.’,:Tap: congt in
first order. Hence { and 7 vanish by (4.4) in first order. In general  vanishes
if % is a product f(p®, ¢'%)-f(p* ¢*).

This fact means that, in a certain manner, the «local part » of the interac-
tion does not contribute to 7'.

4'2. « Wrong cuts». — We consider a perturbation expansion for T

o —”F”+fd‘k VF A, (k) Ay () F? +

with 1= P — k. T is singular, if two singularities of 4, and A, coincide and
the integration path runs between both. Hence T has a physical branch cut
at 8> (m-+ M) arising from the poles of A, and 4, at k2= m? respectively,
2= M? according to the intermediate states nN and a «wrong cut» at
$>(A-+ M)? arising from the double pole of 4,, at k2= A% and the pole of 4, at
1= M?* according to the ghost intermediate states g¥ and dN. This cut con-
tradicts unitarity, therefore it drops out if we adopt the unitarization as in (4.4).
That shall be shown for (4.5), to get a deeper insight as to how this unitarization
method actually works.

We put into (4.5) a partial-wave expansion for F analogous to (4.3). In
the centre-of-mass system (P —= 0) I2= (P — k)? does not depend on £. Hence
we can perform the f-integration and obtain for the partial-wave expansion
by means of the orthogonality of the spherical functions

(1.6) op_ o) 47zfdko k2 Ak Zfy A, (k) A, (1) 32+

We now put this equation into the determinant formula (4.4) and get
for the physical partial-wave amplitude after some calculations and neglecting
terms of higher order

(4.7) 2= [AU ke 4,00 4,0+

The functions *f* etc. are defined by the continuation of (4.4):
N1

i i '
(4.8) g,’f‘z;: vag fvfzav .

fw
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We again use the following notation: if f# is a function of p2, we write f»=
= [*|pames = f*| .1 (similarly for the other variables).

The « physical vertex functions » 3f* and {7 vanish for k*= 2* and 2= M?,
since both columns (respectively rows) of the determinants become equal.
These two zeros removes the « wrong cut » which arises from the double pole of
Ak} at k*= A* at the simple poles of 4,(l) at [2= M2, as was expected by
unitarity arguments.

5. — Bound states.

The same assumptions as in Sect. 4 are assumed to hold. Let ¥ be a bound
state with the Bethe-Salpeter amplitude

(5.1) {0|Tp(x)d(y) I‘P>— 5n)i fd“p deq' exp [—ixp'—iyq' 12V .

»¥ is to fulfil the Bethe-Salpeter equation
(5.2) W= A,(p) A, () [k T W

with =P —Fk, P=p'+ ¢q'. There arise analogously to (4£.5) at s> (m + M)?
a physical and at s> (42 + M)* a wrong cut. If the mass v/s of ¥ is below both
thresholds, then (5.2) may be solved in the usual manner.

But there also should exist bound states with A4+ M <+vs<m + M,
sinee they cannot decay into physical particles nN, but only into ghosts which
cannot be detected experimentally. In this case ¥ contains a part ¥, of «free»
good ghosts ¢gN, i.e. according to (2.4) and (2.10)

(5.3)  TWr =W = 009 (p'—p)6@g'—g)  with p>= A2, ¢*— M=.

Hence we obtain in place of (5.2) for A+ M < 4/s < m -+ M after transition
to partial waves analogous to (4.6) the integral equation

(5.4) 3:1/’:4‘7"(27')4‘ (¢ fd4kpfz 11/)"’ 1/)01\7

(The energy and spin variables are suppressed.)

Usually such an inhomogeneous equation has no normalizable solutions
belonging to discrete eigenvalues, but there are for all energies improper, non-
normalizable, scattering states. However, to get a « physical » state ¢, we
must respect the conditions (3.7) that no dipole ghosts dN are emitted:

(5.5) It =0,
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By means of the reduction formulae (2.6) and (2.12) and eq. (5.4) we obtain
(5.6) fd"k; BEG — (),

Under these conditions the integral equation (5.4) can have a normalizable
solution to a discrete eigenvalue for 1+ M <<V's <m -+ M, since from (5.4)
and (5.6) we get the homogeneous equation for y =1 — y,

(5.7) 27=A4,(p) AM(q’)fd“kl’:—’Z -

For 2f:*p, vanishes because of (5.3) and (4.8). The state |> is normalizable,
although it contains the «free » ghost part |y,>. The factor ¢ in (5.3) can be
calculated by the normalization condition ($|p> =1 and (5.6).

6. — Generalization and discussion,

We obtained for a given pseudounitary S-matrix 8 in a state space 5 with
indefinite metric by means of a unique unitarization procedure an & in a de-
finite state space 2 (). The methods of this paper can be generalized to par-
ticles with spin and other internal degrees of freedom. But the diagonalization
of the S-matrix is more complicated. The unitarization is always applicable,
if the metric is indefinite due only to dipole ghosts.

The general formulation of this unitarization method is:

Let o, #, and 2, be the Fock spaces of the states with positive norm
respectively ghost respectively dipole ghost states associated with the simple
respectively double poles of the propagators. Let #, be equal to J£,/{|0>}.
Then the space of physical incoming N-states is

K= (HEDH D) (D).

This is an implicit equation for &, which can be solved in certain approxima-
tions. If the states contain at most one ghost s} = #, = #. In general,
however, there are transitions to new states with positive norm (¢) associated
with the double poles.

% %k %

I wish to thank Prof. H. P. DURR for useful discussions and for the kind
hospitality at the Max-Planck-Institut fiir Physik und Astrophysik.

(*y 1f this space still contains zero vectors, one must take the factor space over the
radical, as e.g. in QED.
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® RIASSUNTO (%

Si considera una matrice S definita da diagrammi di Feynman in uno spazio degli stati
con norma indefinita. I propagatori possono avere, oltre che poli semplici, anche poli
doppi nello spazio degli impulsi. Si deduce un procedimento di unitarizzazione che
proietta la matrice § nel sottospazio fisico.

(*) Traduzione a cura della Redazione.

JIMno/ibHLIE « AYXM » H YHHTADHOCTD.

Pesome (*). — PaccMmaTtpuBaetca S-MaTpuna, onperencHHas nuarpaMmamu @eiinmana
B TIPOCTPAHCTBE COCTOSHUN C WBACGMHHTHOM HopMmoii. Ilpomaratopsl MOrYT HMETh,
NOMAMO TPOCTHIX TOJFOCOB, Taloke ABOWHDBIE TOJIIOCA B HMIYJIBECHOM IIPOCTPAHCTBE.
BrBoauTcs OpoLenypa YHHTAPH3AUMH, KOTOpasl IPOEKTupyeT S-MaTpully Ha (H3AYECKOES
MOANPOCTPAHCTBO.

(") Ilepesedeno pedaxyueil.



