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Statistical systems at second-order phase-transition points should exhibit conformal invari- 
ance at long distances. Their conformal properties can be analysed by investigating finite-size 
scaling behaviour. For integrable lattice models in two dimensions, methods are proposed to 
calculate, from the Bethe ansatz solution, the conformal anomaly c and all scaling dimensions. As 
an application results for the q-state Potts model and modified six-vertex models are presented. 

I. Introduction 

This work continues a previous one [1] written in collaboration with H. de Vega. 
Using the Bethe ansatz solution we calculated the central charges of the Virasoro 
algebra for the critical six-vertex and q-state Potts models. These results were 
obtained analysing the finite size behaviour of ground state energies. In addition a 
first a t tempt  was made to consider for the six-vertex model the lowest excitation 
and we calculated the scaling dimension of the corresponding field. The method 
used there was based on procedures developed for noncritical models [3] (see also 
refs. [4, 26]). In the present work* this method is extended in a non-trivial way to 
arbi trary excitations of the six-vertex and q-state Potts models. Similar methods 
have been applied to Heisenberg models in refs. [5, 6]. 

Conformal  invariance of two-dimensional quantum field theories has become a 
subject of main interest because of its connection to string theory. Statistical 
mechanical  systems at second-order phase-transition points (i.e. critical systems) 
should possess conformal invariance [7]. We shall use this fact to obtain information 
on conformal  quantum field theories. It would be interesting to find integrable 

lattice models which yield these conformal quantum field theories in the scaling 
limit. Since a direct calculation of the central charge of the Virasoro algebra and 
the conformal  dimensions for specific models is usually not simple, it seems 
worthwhile to determine them for integrable models from the Bethe ansatz solution. 

* Some results have been published previously without proofs [2]. 
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This will be done for the six-vertex model (the critical eight-vertex model) and for 
some modified six-vertex models related to Potts models. 

In two dimensions, conformal invariance is a rather strong restriction since the 
transformation group is infinite dimensional, in contrast to higher dimensions. It is 
related to the Virasoro algebra via [8] 

[ Z n ,  t i n ]  -- ( n  - m ) t n +  m + l~C(r/3 - r/) ~n,-m, 

c = "central charge", (1.1) 

for which a well-developed theory exists [9]. Belavin, Polyakov and Zamolodchikov 
[10] classified conformal quantum field theories in terms of the central charge 

c = 1 - 6 / i , ( I ,  - 1), (1.2) 

where v is a rational number if there exists only a finite number of "primary fields", 
i.e. fields transforming under conformal transformations 

like 

z=x+iy-,w(z), 

(1.3) 

dwl  ( dz ] ) (1.4) 

The conformal dimensions can assume values given by the Kac formula [9] 

( v p -  ( v -  1)q) 2 -  1 
A, ~ = h p q - -  4p(p - 1) ' 

1 ~< q < p  < v - 1, p,  q = integer. (1.5) 

Friedan et al. [14] have shown that unitarity restricts the number v to 

v = integer >/2 or c >/1. (1.6) 

It would be interesting to find integrable lattice models which yield, in the scaling 
limit, conformal quantum field theories corresponding to these unitary representa- 
tions of the Virasoro algebra. Therefore, it is useful to calculate the central charge 
and the conformal dimensions for integrable critical statistical models. This can be 
done by analysing finite-size effects. 
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For  a statistical system on a periodic N X M square lattice one introduces a 
transfer matrix ¢. The partition function can be written as 

Z = tr r M =  Y~)~Mi, (1.7) 
i 

where the sum extends over all eigenvalues of the transfer matrix. Cardy [12] has 
shown that conformal invariance implies for the maximal eigenvalue 

max ----" exp ( -- N f ~  + 1 for N ~ ~ ,  (1.8) 

where f~ is the free energy per site (in the thermodynamic limit) and c is the central 
charge of the Virasoro algebra (cf. eq. (1.1)). 

Introducing in addition the "crossed" transfer matrix ~ (defined on an M-chain) 
we obtain for 1 << N << M two expressions for the partition function, i.e. 

Z - exp( - N M f )  E ^ ^ N ( ~k///~k max ) , (1.9a) 
i 

Z -~ exp - N M f +  - ~  -~c , (1.9b) 

where only the "low-energy excitations" with ~, - ~m~, contribute to the sum in eq. 
(1.9a). Hence, two methods to investigate the partition function on a strip 1 << N << 
M ~ o¢ are available: 

(a) one considers the transfer matrix ~ for an infinite chain ( M ~  m) and 
calculates the large-N corrections to the sum in eq. (1.9a) or; 

(b) one considers the transfer matrix z on an N-sites chain and calculates the 
iarge-N corrections to the maximal eigenvalue hm~x according to eq. (1.9b). By both 
of these procedures one obtains the central charge of the model. 

In addition, the conformal dimensions of operators of the model can be de- 
termined if one looks for excited states with energy E = - ~  log ), and momentum 
P = - J  log )~. As is argued in ref. [12] one has for N --+ 

E i - E o = 2 r M J N ,  

Pi - Po = 2 o r s , / N ,  (1.10) 

where d i = A + ~ ( S i = A - -  "A ) is the "scaling dimension" ("spin") of the operator A 
associated to the excitation ~ki, i.e. (01A I~P,) ~ 0. 

A direct calculation of the central charge and the conformal dimensions for 
specific models is usually not simple. Therefore, it seems worthwhile to determine 
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them for integrable models from the Bethe ansatz solution. This will be done in the 
following for the six-vertex model and for some modified six-vertex models related 
to Potts models and other models of interest. Method (a) has been developed in 
sects. 3 and 4 of ref. [1], method (b) has been applied in sect. 4 of ref. [1] and will be 
extended in a non-trivial way in the following. 

2. S i x - v e r t e x  m o d e l  - B e t h e  a n s a t z  

The six-vertex model is a classical statistical lattice model in two dimensions. Its 
partit ion function on an N x M periodic square lattice L is 

Z =  E I-I ~(x), (2.1) 
conf .  x ~ L 

where the sum extends over all allowed "bond  configurations". Each bond can 
accept one of two states characterized by arrows. The configuration is allowed if at 
each vertex x there are two incoming and two outgoing arrows. The vertex weights 
00(x) are determined by the six bond configurations at the lattice site x depicted in 
fig. 1. They assume the following values [13,14] 

001 = ~0 2 = a = sin(T - 0 ) ,  

¢~d 3 = 604 = b = s i n  0, 

~05 = % = c = sin T. (2.2) 

The parametrization in terms of the "spectral parameter" 0 and the "coupling" T 
has been introduced for later convenience. A trivial overall factor is set equal to one. 

The partition function with periodic boundary conditions 

Z = t r ( , ( 0 ,  Y)) M (2.3) 

can be written in terms of a transfer matrix "r(0, T) defined on a periodic chain of 
length N. The eigenstates and eigenvalues of the transfer matrix can be calculated 

(I) (2) (:3) (4) (5) (6) 

Fig.  1. A l l o w e d  v e r t e x  c o n f i g u r a t i o n s .  
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by solving the "Bethe ansatz equations" (see, e.g. refs. [1,13,14]) 

477 

sinh ½ ( q j -  iv) ) N , sinh½(qj qi + 2iv)  
s i n h ½ ( q j + i v )  i_ISI 1 sinh½(q2 q i - 2 i v )  e '2~v= - 1 ,  

¢ 

j = l  . . . . .  n, O<,~n<<.½N. (2.4) 

The eigenvalues 2~(0, V) of the transfer matrix r(O, V) can be expressed in terms of 
the roots of these equations 

x = xA + xo ,  x A o ,  v)  = x (v - o*, v ) ,  

XA(e, v)= aNi: I ( _  1) sinh ½(qi + 2iO+__iv) 
i=a sinh ½(qi q- 2i0 iv) 

e -i~v . (2.5) 

Since [Xol < IXAI holds for 0 < 0 < ½V only Xa contributes to the partition function 
for large M. The constant phases 2~V in eq. (2.4) and -xV  in eq. (2.5) have been 
introduced for later convenience. For the ordinary six-vertex model, K = 0 holds. 
For other models, e.g. Potts models, we shall have ~ 4= 0. 

There exist detailed investigations of the Bethe ansatz equations (2.4) (see e.g. ref. 
[15]). The analysis simplifies for the discrete values of the "coupling" 

7 = I t /v ,  v = 2, 3, 4 . . . . .  (2.6) 

We are interested in these values. So we assume the validity of eq. (2.6) in the 
following. For large N the Bethe ansatz equations have solutions of "string" type 

(i) k ÷ string 

q = q ( k ) + i T ( - k + l , - k + 3  .... , k - l ) ,  k = l  . . . . .  v - l ,  (2.7) 

(ii) 1-str ing 

q = q(a) + i~. (2.8) 

The k + and 1 -  strings may be interpreted as "bound states" of k pseudoparticles 
and as an "antipseudoparticle", respectively. For simplicity, I will not consider 
antipseudoparticles in the following. (We shall see later that they do not contribute 
to the minimal energy eigenstates for the Potts model.) The Bethe ansatz equations 
can be written in terms of the real "rapidities" q(k) of these states as 

v-1  nt 
exp(iNPk(q)k))) I-I I-I exp(@kt(q)*)-- q~{t))) ei2*~v= --1,  

I = 1  i = 1  
(2.9) 
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where the "momenta"  Pk and the "scattering phase shifts" qbkt are obtained by 
taking products of the corresponding terms in eq. (2.4) (see e.g. ref. [1]). The Fourier 
transforms f ( x )  = fdq/(2rr)eiq~f(q) of their derivatives are 

sinh(~r - k v ) x  
/~ (x)  = sinh ~rx ' (2.10) 

2 cosh'/x sinh(Ir - l~[)x sinh k'lx 
~ t  (x)  = 3kt -- sinh ~rx sinh 3'x ' l < ~ k ~ l < ~ v - 1 .  (2.11) 

Note the identity which will be used later 

4;,(x) 31k - -  = 2cosh'rxff (x). (2.12) 

We introduce the phase functions appearing in eq. (2.9) (cf. ref. [3]) 

zk( q) = Npk( q) + ~-~ *kt( q -- q(i 0 ) + 2kxy .  
I,i 

(2.13) 

Then, the logarithm of the Bethe ansatz equation (2.9) yields 

2criCk) = ak( 
q~k) 

• 1~ [ j = l  . . . . .  n k . 
(2.14) 

The asymptotic values of the phase functions are 

Zk(--O0 ) = 2~rY' . (2rnin(k , l ) - -3kt)n ,+ 2k3'~ + 2kr'y, 
l 

Zk(OO ) = 2rrN - 2k'y,~ + 2kx'y, (2.15) 

1 "spin" where ~ = i N  - n is the of the Bethe state and n t is the number of/-strings. 
We observe that sets of r o o t s  (q(k), ,7(k)} are given by sets of numbers . . . ,  "-lnk 
( l(k) l(k) X . . . . . .  ~ }. For the "ground state" (corresponding to the maximal eigenvalue 
X) there are only real roots (k = 1) without holes, which means that the numbers 
I :  x) accept all possible values in an interval [ I ~ ,  I~)~]. For "excited states" there 
may be "holes" in the distribution of the I)1) and higher strings (k > 1) may appear. 

In order to solve the Bethe ansatz equations we denote the derivatives of the 
phase functions by 

d 
Ok(q) = -7-zk( q) ,  (2.16) 

ctq 
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introduce the densities of k-strings 

479 

nk 
pk(q) = 2~r E 8(q--q(ik)) ,  (2.17) 

i = 1  

and the "density of holes" 

~ ( q )  = a ( q ) - o ( q ) ,  or = (ll • (2.18) 

The latter name is motivated by the fact that 

fQQ, dq -~cp(q)  = I(X)(Q ') - I(1)(Q) _ ~ roots ~ [Q, Q'] 

is the number of possible minus the number of actual real roots in an interval 
[Q, Q']. But note that only in the limit N, n ---> oo, where the roots become dense on 
the real line, is the function cp of the form 

cp(q) = 2~r E 8 ( q -  qh)- (2.19) 
holes  

Taking the derivative d / d q  of eq. (2.13) we obtain with eqs. (2.16) 

Ok = NP'k + E ~ t  * &, (2.20) 
I 

where the convolution is defined by ( f *  g) (q)= f d q ' / ( 2 ~ ) f ( q -  q')g(q'). Since 
we are looking for the ground state and low-energy excitations which are char- 
acterized by a large number of real roots (1 ÷ strings), a few holes and complex roots 
(k-strings, k > 1) we use eq. (2.18) and write eq. (2.20) as follows 

where 

Ok = PO ~kl -- Jk * f~ or- E Jk, * Pl (2.21) 
1 > 1  

P o = N ( 1 - ~ l ) - l * p { ,  

4 = (1 - ~ 1 ) - 1  * ~ t  k l  ' 

- ' Jt  + ~ k t "  Jkl -- ~kl * (2.22) 

In deriving eq. (2.21) the identity eq. (2.12) has been used. The first term on the 
r.h.s, of eq. (2.21) represents the root density for the ground state in the thermody- 
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namic limit N ~ oc. It can be calculated by means of eqs. (2.10) and (2.11) 

l P  9 7  

m Po(q) = Ncosh ½uq y : --.~, (2.23) 

The second term in eq. (2.21) correspond to holes in the distribution of real roots 
and the third term to complex roots. The second term also contains the finite-size 
corrections which will be investigated in sect. 3. 

The eigenvalues of the transfer matrix are obtained from eqs. (2.5), (2.17), (2.18) 
and (2.22) 

dq 
log ?tA(0, 2/) = - Y'. f~-~i(pk(q+ 2iO)-k~r)pk(q)-ix3' 

k 

where 

=-Nf~ + f ~ e ( q ) c p ( q ) + i ~ E n k ( k - 1 ) - i x ' / ,  
k 

e (q )= i ( (1 -~ l ) - l * (p l ( .+  2iO)-Ir))(q) 

=/sin- l tanh(½1,q + 2i0). 

(2.24) 

(2.25) 

The first term in eq. (2.24) gives the free energy per site in the thermodynamic limit 

1 dq 
foo = - l o g a -  ~ f~-~i(p~(q+ 2iO)-~r)po(q ) 

The second term corresponds to holes and the finite-size corrections. From eqs. 
(2.12) and (2.21) it follows that the third term corresponding to the complex roots 

contributes only a constant phase. 

3. Finite-size corrections 

We are interested in the ground state and low-energy excitations with a finite 
number of holes and complex roots "near  to q = + ~ " .  Hence, we consider an 
interval [q_, q+] which does not contain any holes such that q+_~ + ~ for N ~ ~ .  
In order to discuss finite-size behaviour we have to investigate the second terms in 
eqs. (2.21) and (2.24) containing the function 

n 1 

~(q) = o(q) - 2~r E 8(q-  q,), 
i = l  
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defined by eq. (2.18). Let us first consider eq. (2.24). We have to analyse 

L ?  ~e(q)rP(q) = fqq+ ~e(q)~(q)  

(Sq += sq~) 2~ ' + + e(q)cp(q)- E e(q,) 
+ -- i 

(3.1) 

where 

1 
I(q) = -~-~zl(q), I+=I(q+), (3.2) 

where zx(q) is defined by eq. (2.13), we can apply the Euler-Maclaurin formula 
(A.5) derived in appendix A (cf. ref. [5]). The first term in eq. (3.1) then reads 

e'(q+) 
½(e(q+) + e ( q _ ) ) -  l~r o(q+) 

d(q-) ) 
o(q_) + AI' (3.3) 

A x = -- f'+ dI(d/dI)3e(q(I))g3(1), (3.4) 
I_ 

and g3(I) is a periodic function with period 1 defined by eq. (A.4). Using the 
asymptotic expansion of e(q) 

e(q) = ½i~r- 2ie-"(q+i2°)/2+ O(e-3Vq/2), for q ~  ~ ,  (3.5) 

we obtain for the second term in eq. (3.1) 

½i~'~+(O)-2ie-iVOe-'q/2+~+(½il,)+O(~+(3ii,)e-3"q+/2), (3.6) 

where the following notation has been used 

'~+(x) = f~dqeiqX'r+(q) 'r+(q) =o(q+q+). (3.7) 
do 21r 

A similar expression to eq. (3.5) where q+ is replaced by q_ is obtained for the 
third term in eq. (3.1). 

where Y' means that the sum extends only over those real roots qi which are not in 
[q-,  q+]. 

After the substitution 
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Inserting eqs. (3.3) and (3.6) in the finite-size correction term of the eigenvalue 
given by eq. (3.1) we obtain 

+oo dq 
• '-fo~ zer~-'-e(q)~(q) = IDr('F+(0) - 'F_ (0)) + 81 + 8 2 + 8~ + A 1 

where 

/p 
+ie-i'°e -'q+/2 1 - ~ r o ( q +  ) 

-iei'°e "q-/2 1 - ~ o ( q _ )  

2¢+(1;,)) 
2"7_(½iP)) -  ~i'e(q,), (3.8) 

81 = O(e -3~ lq±  I / 2 ) ,  

We will later see that the 8 's can be neglected for large N whereas A 1 gives a finite 
contribution which is, however, canceled by similar terms in rr±(liv ). 

In order to calculate rr±(liv ) we apply analogous techniques to those above to eq. 
(2.21) which for k = 1 determines o(q) as 

o=P0-J*cP+ EJk*P,, J=J1.  (3.10) 
k > l  

We first concentrate on this function at q > q+ to determine ~-+ (cf. eq. (3.7)). The 
decomposition of eq. (3.10), analogously to eq. (3.1), leads after the shift q ---> q + q+ 
to 

too dq'  . 
z+ (q )  = f ( q )  - / - : - - -J(q-  q')'r+(q'), (3.11) 

J0 

where the function f (q)  is obtained in the same way as eqs. (3.3) 

1 
1 ! ! f ( q )  = Po(q + q+) + ½J(q) - -grro-~+)J (q) + E Jk(q + q+- q(k)) 

k , i  

1 
1 p + 1j(q + q+_ q_) _ - g e r - - J  (q + q+- q_) 

o(q_) 

_ f q _  dq' J" _ - ~  ( q + q + - q ' ) ° ( q ' ) + A 2  

= f0(q)  +fl(q)  + 8, + 85 + 86 q- A 2 . (3.12) 
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The sign E' means that for k = 1 the sum extends only over those real roots qi 
which are not in [q_, q+]. The functions fo represent the asymptotic contributions 
from the first three terms and fl  those from the complex and real roots outside 
[q-,  q+] 

1 
fo(q) = Uv e -"q/2 + e -vq/2 + ½J(q) - ± ~ r - -  ' 6 o(q+) J (q) '  

fx(q) = E'Jk(q+q+--q~k)) .  (3.13) 
k,i 

The small terms to be neglected are 

~4 = O(e -3vq /2  ~1) , ~5=O(e-v(q+q+-q- ) / (v -a) ) ,  = O(  ~5 /o (  q -  ) ) ' 

(3.14) 

where the asymptotic behaviour J(q)= O ( e x p ( - v q / ( v -  1))) has been used. The 
term 

A 2 =  -- fil_ + d I ( d / d I ) 3 j (  q -  q( I))g3( I ) ,  (3.15) 

gives a finite contribution which is, however, canceled in the final result by other 
similar terms. Eq. (3.11) for the function ~'+(q) is an integral equation of 
Wiener-Hopf type similar to that considered by Yang and Yang [16]. The solution 
(see appendix B) is given by eq. (3.7) and 

where 

1._l_ f dy  G - ( y ) f ( y )  (3.16) 
7r+(x)=G+(x)2cri y - x - i e  

o~ dq 
f ( x )  = f~-oo-2-~ eiqXf(q)" 

The functions G ±(x) are uniquely defined by (cf. eqs. (2.11) and (2.22)) 

1 2 cosh3,x sinh(~r - 3')x 
G+(x)G-(x )  = 1 + J (x )  sinh~rx ' 

(3.17) 

and the conditions that G+(x) is analytic and different from zero in the upper half 
plane ,fix >~ O. 

t-(x) =c+(-x),  c±(oo), (3.18) 
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In addition to the integral equation (3.11) there are further restrictions of z+(q). 
The value of o(q+) appearing in the inhomogeneous term f ( q )  can be calculated 

from ~(x) by 

o ( q + ) = ' r + ( O + ) = - 2 ~ ' i  lim x,7+(x). (3.19) 
X ---~ O0  

From the Bethe ansatz equations (2.14) we have the conditions 

fq~ dq ? -~Ok(  q) = If f)  - lick) , 2~rIff ) = zk(oo), (3.20) 

for k = 1 and ql = q+ we have 

,F+ (0) = I~ - I f .  (3.21) 

Analogously to eqs. (3.11) and (3.19)-(3.21) we can derive equations for the 
function z_ (q )  = o ( q _ -  q). 

We are now in a position to calculate the eigenvalue of the transfer matrix by 
means of eqs. (2.24), (3.8), (3.16) and (3.19)-(3.21) up to corrections O ( 1 / N )  which 
vanish faster than 1 / N  for N ~ oo. In appendix C the general result for arbitrary 
excitations is derived. Appendix D contains a proof that all the 8 's can be neglected 
and that the contribution from the A-terms cancel in the final result, although they 
are of the same order as those we are looking for. 

Here we consider the simple case that there are no complex roots (Ok = 0 for 
k > 1) and no real roots outside the interval [q_, q+]. This means f l  = 0 in eq. 
(3.13). In the following all relations with --- are true only up to A-terms which are 
not ~vritten down in this section*. 

In the present case only f0 contributes to f .  Therefore, the integral in eq. (3.16) 
can be calculated 

where 

) :r+(x) =- G+(x)  A - -  1 B( ix  + g) + ½ + Bix,  (3.22) 
x + ½il, 2 

N 1 
A = --e-'q+/2G+(½iv)'~r B =  ~ r o ( q + ) ,  (3.23) 

and g is defined by the asymptotic expansion of G+(x) for large x which follow 
from the definition eq. (3.18) 

G+(x) = 1 + i g x - l _  ig  :~l_2. -2 + O ( x - 3 ) .  (3.24) 

* Analogous formulas in ref. [6] are not completely correct. 
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From eqs. (3.19), (3.22) and (3.24) we find 

=(½ + g B ) 2 -  vAB. (3,.25) 

The Bethe ansatz equation in the form of eq. (3.21) implies 

1 
A -- ½ + gB + G ~ - ~ ( I 0 o - I  +-  ½). (3.26) 

We now can calculate the finite-size correction to the eigenvalue of the transfer 
matrix produced by the upper bound of the "Dirac sea" of real roots. After a simple 
algebra using eqs. (3.22), (3.23), (3.25) and (3.26) we obtain 

evq+/2 (1  --  n p -  2~+(½iv)) --- ~ { ~  

where we have used 

1 -- (loo__1+__½) 2 + o ( N - X ) ,  (3.27) 2 p -  1 

(3.28) ( 1 / c + ( 0 ) ) 2  = 1 + f ( 0 )  - 1 '  

which follow from eq. (3.18). Together with an analogous expression due to the 
lower bound q_ of the real roots, we find from eqs. (2.24), (3.8) and (3.27) for the 
eigenvalue up to corrections which vanish faster than 1 / N  for large N that 

log AA(O, y) = - N f o  ~ + ½i~r(( Ioo - I+) - ( I _ -  I_0o)) - ixy 

~ ( 1  P 
+ - ~  g s i n v O - ½ i v _  1 

x ( e - i ~ ° ( I o o - I + - ½ ) 2 - e i ~ ° ( I _ 0 o - I _ - ½ ) 2 ) } .  (3.29) 

The numbers 1_+oo = (1/21r)z1(+ oo) are given by eqs. (2.15) 

Io~ = N - (Z  - x ) / v ,  I_0o = n + ( Z  + K) /v .  (3.30) 

The numbers 1_+ depend on the state under consideration 

I + = N -  ½ - h +  , h+= 0,1 . . . . .  

I _ = n + X + h _ ,  h_= 0,1 . . . . .  

where the h+ 

(3.31) 

are the number of holes "near to + ~ " .  For the ground state which 
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corresponds to the maximal eigenvalue of T, i.e. to the maximal number of real roots 
we have h = h + + h_ = 0. The "spin"  of the Bethe state 

,~= ½ N - n =  ½(h+ + h_)=O,1 .... (3.32) 

assumes integer values ( N  even). The constant K depends on the model (for the 
ordinary six-vertex model r = 0 holds). Note that there might be some restriction on 
the number  h ± if X and r are large and ~ is small. These restrictions come from 

the condition that the "last"  roots should not be shifted to _ oo. They will not 

relevant in this paper since we are interested in low-energy excitations with X = 0 
and r = 0,1. 

Inserting eqs. (3.30) and (3.31) in eq. (3.29) we obtain a formula for the 

eigenvalue of the transfer matrix in terms of the holes h ±. In appendix C the 
general formula for arbitrary strings is derived 

log XA(8,7) = -Nf~ + Xi~r(h+-h_+ 2~,nk(k-- 1)) 
k 

~" ( ,  1 (e_i~o(v/~+_ y + x)2 + ~  gs inv0-½ip(p_l )  

-ei~°( vh_-  ~ - x )2) 

where 

- 2 i ( K e  -i~°-/~ei '°)} + O ( 1 / N ) ,  (3.33) 

+_= h ±-  2 Y~n(+k)( k -- 1), (3.34) 
k 

and n ~  ) is the number of k-strings "near  to q+ "*. The integers K and K depend 
on the complex roots and the real roots outside [q_, q+]. For the case considered 

above we have/~ + = h ± and K = A" = 0. 

4. Conformal properties of six-vertex and Potts models 

The q-state Potts models are a generalizations of the Ising model where the spin 
at each site can accept q values instead of two. For q -- 2, 3, 4 the models possess a 
critical point which we consider in the following. The partition function on a 
cylinder [14] can be written in terms of a six-vertex model with a "seam" from the 

* The k-strings which do not approach + oo like the last real roots q ± as N ~ oo will not affect the 
1/ N corrections. 
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bot tom to the top of the cylinder. This seam carries extra Boltzmann weights which 
produce an extra phase factor in the Bethe ansatz equations (2.4) and the eigenvalue 
equation (2.5). These modifications are obtained for x = 1. The number q (q = 2, 3, 4) 
is related to the six-vertex coupling 3' = rr/v (v = 4,6, oo) by 

q = 4 c o s 2 y .  (4.1) 

In the following the partition function Z~ and other formulas apply for x = 0 to the 
ordinary six-vertex model and for ~ = 1 to the Potts model 

Z 0  ~_. Z 6 -  v e r t e x  Z 1 = Z P°t ts  . (4.2) 

In sect. 3 the eigenvalue of the transfer matrix has been calculated including 
finite-size corrections for a large N. Using these results for the ground state, where 
no holes and complex roots are present, we find that 

2 ) loghA,m x=-N/ +   1 v(v-1) sinvO. (4.3) 

The vertex weights (2.2) fulfil a = b for vO = lrr where we expect isotropy and 
conformal invariance in the scaling limit. Comparing eq. (4.3) and Cardy's formula 
(1.8) we conclude that the central charges of the Virasoro algebra of the six-vertex 
and the q-state Potts models are 

C 6 - v e r t e x  w 1 (4.4a) 

c v°tts = 1 - 6 / v ( v  - 1). (4.4b) 

We have obtained these results previously in ref. [1] by method (a) mentioned in 
sect. 1. These results have been expected from renormalization group arguments 
(see, e.g., ref. [17]). 

Excitations possess "holes" and complex roots. We obtain for these states by 
means of the general formula (3.33) taking Cardy's formulas (1.10) into account* 

log h A -- log hA, max . . . .  
2 ' / /  
N ( ( A + ~ ) s i n v O + i ( A - - - A ) c o s v O } .  (4.5) 

The primary fields correspond to low-energy excitations with a small number of 
holes h _+ "nea r  to the last roots" q _+ which approach ___ oo for N ---, oo. In addition, 
there may be a number n ~  ) of k-strings "near  to q +_ ". For these configurations of 

* Note that the imaginary term correspond to the momentum since r(0 = 0) = exp(- iP). 
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roots we obtain from eq. (3.33) for the six-vertex model* 

- 

4v(~, - 1) + • '  (4.6a) 

and for the Potts model 

( p f z + - 1 ; + K ) 2 - 1  (I, fl - . ~ - r ) : - I  

A = 4v(v - 1) + K, ~ = 4~,(I, - 1) + ~ '  (4.6b) 

where h + is given by eq. (3.34), ~, = l h  - ~ , k n k ( k  -- 1) is the "spin"** of the Bethe 
state and h ( n k )  is the total number of holes (k-strings). In appendix C it is shown 
that we get minimal values for A and ~ (i.e. the integers K and h" on the r.h.s, of 
eqs. (4.6) vanish) if some conditions are fulfilled. There are no holes inside [q_, q+], 
n(+ k )= 0 for all k, n(_ ~) = 1 for only one k and the number of holes have to fulfil 
h+ = h = k - 1. For the six-vertex model we obtain the conformal dimensions from 
eqs. (4.6a). These results agree with Kadanoff's work on the Gaussian model (see, 
e.g. ref. [18]). 

The extra phase factors proportional to x imply (see appendix C) that for the 
minimal A and ~ only the k-strings with 

k = 2 , 3  . . . .  , 1 , - x - 1  (4.7) 

contribute. Hence, for the q-state Potts model (x = 1) the u -  1-string does not 
contribute. A similar argument holds for the "antipseudoparticle". We consider 
fixed boundary conditions at the top and the bottom of the cylinder. Therefore, we 
have spin ~ = 0. Comparing eqs. (4.6b) for ~ = 0 with the Kac formula (1.5) we 
find for the Potts model the conformal dimensions 

A = ~ = h k ,  1 k = l , 2  . . . . .  v - 2 .  (4.8) 

These correspond to the "energy operators" of the Potts model (cf. refs. 
[12,19, 20, 261). 

The equivalence of the Potts model and a six-vertex model with "seam" for x = 1 
holds for the partition functions (cf. eq. (4.2)) but not for the operator content. The 
order parameter of the Potts model, for example, appears in a six-vertex model with 

1 (cf ,  [12]). If we consider a partition function of a generalized model 

Z = Z 1 + Y'. Z~, (4.9) 

* These formulas agree with results obtained for the Heisenberg model [5]. 
** ,~ must not be confused with the "spin" s of the field operator (cf. eq. (1.10)). 
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where the sum extends over some values of x ~ [2, I, - 1], we obtain the dimensions 

cor responding  to Bethe states with a k-string 

A = ~ = hk+~_ l , , c  , k = 1 . . . . .  p - x - 1, 1 ~ x ~< 1, - 1. (4.10) 

N o t e  that  the ground state always belongs to Z 1. The "magnet iza t ion"  operators of  

the q = 3-state Potts model  (p = 6) correspond to r = ½~, = 3 (cf. ref. [20]). Their 
d imensions  are therefore (in agreement with numerical  estimates [20] and conjec- 

tures [12,19]) 

A = ~  =hk+2,3,  k = l , 2 .  (4.11) 

The  1 /q -pa ra fe rmion  operators [21] correspond to " b o u n d a r y  condit ions" K = 

~ , / q  = 2 for q = 2, 3 [21, 20]. The Bethe states have spin ~ = 1 and a symmetric hole 

conf igura t ion  h + =  h = 1. For  Z :g 0 the integers on the r.h.s, of  eqs. (4.6) only 

vanish, if there are no higher strings. Hence we obtain f rom eqs. (4.6b) the scaling 

dimensions  and  spin 

P - -  1 1.,2 __ q 2  
= - -  

d = A + A = h21 + h23 21, + 2q21,(I, - 1) ' 

s = A - -A = h 2 1 -  h23 = 1 / q  , (4.12) 

in agreement  with refs. [20, 21, 26]. Finally, let us look for the "chiral"  operators of  

the 3-state Potts  model (cf. refs. [12,19]). Their conformal  dimensions are given by 

the " b o u n d a r y  condit ions" ~ - ½~, = 3 and Bethe states with ~ = 2 or four holes. 

Fo r  h + = 0,1,  2, 3 and h_ = 4 - h + one finds f rom eqs. (4.6b), respectively, that  

A = hll , h21, h3a , h41 = 0, ~, 7 7 , 3 ,  

= his, h25, h35 , h45 = 3, ~, g , 0 . 7  2 

A t  the end, let us consider a part i t ion funct ion given by  eq. (4.9) where the sum 

extends over all K = 2 . . . . .  v - 1. The dimension formula  (4.10) obviously describes 

the d imensional  spectrum of the RSOS models [22], in the language of  ref. [23] the 

(A~, A ,_  1) series of  conformal  quan tum field theories. For  this interpretation of  eq. 
(4.9) the n u m b e r  r is not  connected to extra weights on a " s eam"  or to " b o u n d a r y  

condi t ions" ,  but  it is related [25] to a "O-vacuum"  like angle appearing in the 
cons t ruc t ion  of  Bethe states [13]. The RSOS models of  ref. [22] can be generalized 
[24] to models  corresponding to all modular  invariant conformal  quan tum field 
theories with c < 1 [23]. All these models are related to modified six-vertex models. 
Results  for these models will be published elsewhere [25]. 
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Appendix A 

In this appendix we derive an Euler-Maclaurin like formula for the difference of 
an integral and a sum as appearing in eqs. (3.1) and (3.10) 

f/_+dlF(I)(1- ]~_,6(,-Ii) ) . (A.I) 
i 

where (Ii} = ( Z +  ½) N [1_, I+] and the integration bounds 1±~ Z +  ½ are under- 
stood as I±  + 0. By means of partial integrations we obtain 

fl+dlF(I)go(I) = ~ [(-l)rF(r)(I)g,+i(I)] '+l_ 
I_ r=O 

+(-1)~ftI_+dlF('+l'(l)g,+l(I), (A.2) 

where go(I) = 1 - ~iB(I - Ii) and g~'+l = gr are periodic functions with period 1. A 
convenient normalization for the functions gr is 

fl_ 1/~2dI g r ( I  ) = 0. (A.3) 

The first three functions for 111 < ½ and their values at + ½, +0  are given by 

gl ( i )=i ,  g l ( +  ½) = _yx 

g 2 ( i ) = 1  2 ± (A.4) 31 -- 2~ '  g 2 ( " ~ - l )  ~-" 12' 

- ± I  g 3 ( i )  = 2 ,  , 

For s = 2 we obtain the formula used in sect. 3 

f t~÷dlF( l ) (a-Y ' , ' ( I - I i ) )  
i 

= -½(F(I+)+ F(I ) ) - ~ ( F ' ( I + ) - F ' ( I _ ) ) -  f I+dlF" (I)g3(I). (A.5) 
I_ 

Appendix B 

In this appendix we prove that the solution of the Wiener-Hopf integral equation 
(3.11) 

~.+(q)=f(q)- fo°°~ff~J(q-q').c+(q'), (B.1) 
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for the function f(q) defined by eqs. (3.12) is given by eq. (3.16) 

491 

1 dz 
.7+(y)=G+(Yl2----if z Y i e G - ( z l f ( z ) .  (B.2) 

Writing f and J as Fourier transformations we transform eq. (B.1) to 

~+(x)= fo~-~eiqx'r+(q) 

1 dy 
- 2 ~ i f y _ x - _ i e ( f ( y ) - f ( y ) ~ + ( y ) ) .  (B.3) 

Using eq. (B.2) the second term on the r.h.s, of eq. (B.3) becomes after interchang- 
ing of the integrations 

1 ~ 1 dz 
2~ri fd G-(z)I(z)  f ( y _  x - i e ) ( z - y - i e )  G+(y)J(y)  

1 dz 
2~.i f z _ x _ i  G - ( z ) f ( z ) ( X / G - ( z ) - G + ( x ) ) ,  (B.4) 

where G+(y)f(y)  = l / G - ( y )  - G+(y) has been used and the fact that G+-(++_y) 4: 
0 and is analytic in the upper half plane, and G -+(oo) = 1. Inserting eq. (B.4) in eq. 
(B.3) one finds that eq. (B.2) solves the Wiener-Hopf equation (B.1). 

Appendix C 

The eigenvalues of the transfer matrix including 1/N corrections are determined 
for arbitrary low-energy Bethe states. 

In this appendix we neglect the 8-terms which are of higher order. Further, we do 
not write the A-terms which cancel in the final result. A justification for both of 
these procedures is given in appendix D. We calculate the eigenvalue given by eq. 
(2.24) 

dq 
log)tA(0, y) = - N f ~  + f--e(q)w(q)+i~rEnk(k-1)-ixv, 

2~r k 
(C.1) 

by means of the Bethe ansatz equations in the form of eq. (3.20) 

, ~  dq 
Jq!k,~-~ok(q)-- i(k) Ilk), 2~rI~ (k) = zk(~  ) , (C.2) 
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where ok(q) fulfills eq. (2.21) 

ok = PoSkl - Jk * • + E Jk, * Or. (C.3) 
I>1 

We consider an interval [q_, q+] which does not contain any holes and which grows 
such that q_+---, +oo for N---, oo. The Euler-Maclaurin formula applied to eqs. 
(C.1) and (C.3) gives, respectively 

f ~ t 1 • +~ e ( q ) ~ ( q )  =- ½i~r'~+(O) - ~ (Tt~r-i2e-i~°e -~q*/2) 
--oo d. ql" i 

+ie-i~Oe-'q+/2(1 - B y -  2~+(½iv)) + "q_-terms", (C.4) 

ok(q) ~ ~kl Np e-vq/2 + ½Jk( q -- q+ ) -- BJ;( q - q+ ) 

- f o ° ° ~ J k ( q - q + - q ' ) r + ( q ' ) +  ~_, 'Jkt(q-q}O). (C.5) 
l , j  

The symbol E' means that for k = 1 the sum extends only over those real roots qi 
which are not in [q_, q+]. Relations with --- are true only up to A-terms. For k = 1, 
eq. (C.5) gives a Wiener-Hopf integral equation for r+(q) = a(q + q+) 

dq' J 
~ ' + ( q ) = f ( q ) -  fo ~ ( q - q ' ) ' r + ( q ' ) ,  (C.6) 

where f is given by eq. (3.13) 

f ( q )  =fo(q)  + f l ( q ) ,  

fo( q) = Nve-Pq+/2e-vq/2 + ½J( q) - BJ'( q),  

f l (q )  = E ' J k ( q  + q+-  q}k)). (C.7) 
k , i  

An analogous integral equation as for ,+ holds for r_. The solution of the 
Wiener-Hopf equation (C.2) is given by eqs. (3.16) or (B.2). The contribution from 
fo to ~+ has been calculated in eq. (3.22) 

½iv ) 1 + Bix, (C.8) :o+(X)--G*(x) a B(ix+g) x + ½iv 2 
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where 

N 
A = --e-vq'/2G+(½iv), B= l~r-- 

or(q+)" 
(C.9) 

The contribution from fl is 

t k e~+(x) = g ,~, (x)  
k , i  

aki(x)=G+(x)  l__~_f dy _ " , - 
2rri y -  x -  ie G (y)e  'y(q'~' q+)Jk(Y)" (C.10) 

From eqs. (3.19) and (3.21) 

a(q+) = -2~ri lim x~+(x), ?+(0) =I~-I+, (C.11) 
X---~ O0 

we derive the formulas analogous to eqs. (3.26) and (3.25) 

~ = ( ½ + g B ) Z - v A B + 2 e ,  A = l + g B + d - c ,  (C.12) 

where the following abbreviations have been introduced 

a=~+(o)/a+(o) = (z~ - i + -  ~ ) / a + ( o ) ,  

' k c= E c,, c ~ = ~ ( 0 ) ,  
k , i  

' k e = E e,, e~ = iB lim xa~(O). (C.13) 
k , i  x ~ o c  

Hence, we find, as a generalization of eq. (3.27), that 

e'q+/2(1-Bv-2gr+(½iu))-~ - ~ ( ~ 2 - ( c - d ) 2 - 2 e - 2 f } ,  (C.14) 

where 

A 
f= E'fi k , fi k= G+(½iv ) otf(liv). (C.15) 

ki 

In order to apply the Bethe ansatz equations in the form of eq. (C.2) we use eq. 
(C.3) and express the function %(q) for large q in terms of %(q) .  By means of 
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Fourier transformation the three terms in eq. (C.5) involving Jk we write 

L ~ d x , J k ( x ) e - i X ( q - q + ' ( 1  "b B i x - - ~ + ( X ) ) .  (C.16) 

Inserting the solution for ~-+ given by eqs. (C.8) and (C.10) we obtain from eqs. 
(C.2), (C.5) and (C.16) after some computations 

where 

~o~ dq 
I f f ) -  I f f ) =  ~q/?, 2--~-~ ak(q) 

N 
= 8k1--I' e - ' q j 2  -- a~(0) G + (O)d -- ei k -- fi k -- ~_,'( g~t + akiJ), 

'1"1" l , j  
(C.17) 

kl i.oo dq J . gq = 2~ril f xdX- i~ e ix(q+-qf f ' )° t~(x)  ' akiJ= Jqff, 2-~ k t ( q - q Y ) )  (C.18) 

One finds using eq. (C.10) and symmetry with respect to x and y and the symmetry 
of Jkt (q), respectively that 

l ~ _  k t ( C . 1 9 )  gi~ t q- gji -- -- c ic  j ,  

akiJ + a~ = ,~1(0) = 8kl-- 2min(k,  l)  - 2kl  + 2k  + 2 l -  k8 n - l~kl 

+ (G+(0))E(k + L(0 ) ) ( I  + f ( 0 ) ) .  (C.20) 

Summing eq. (C.17) over all complex roots and real roots above q+ we find after 
some algebra 

N 
1(c - d) 2 + e + f -  - -  Y'.'e -~q'/2 = I d2 + K, (C.21) 

i 

where (with /~+ defined by eq. (3.34)) 

d = d -  G+(O) E n ( f ) ( k  + 3~ (0)) 
k 

= l ( v h + -  Z + r ) / G + ( O ) .  (C.22) 

The integer K can be expressed in terms of n~+ k), the number of k-strings "near to 
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q+"  (for k = 1 only those above q+ contribute) and h+, the number of holes above 

q+,  

r =  , + I ) -  
k i 

+n(+k)k(h+ - En(+t)(l- 1)) + ~.,n(+k)n(t+)(l--k)). 
I l>k 

(C.23) 

For the derivation of eqs. (C.21)-(C.23) the following have been used (cf. eqs. (3.30 
and 31) 

1 
I (~k)=N - - k ( Z - t ¢ ) ,  I i ( k ) = N - - ½ - - 1 }  k) , l(ik)>~O (C.24) 

p 

I + = N -  ½ - h + - n ~  ). (C.25) 

Inserting eqs. (C.14) and (C.21) in eq. (C.4) we obtain 

f_+oo°° ~ e (  q)~p( q) --- ½irr( loo - I + -  n(l+ )) 

+ - -  i e -i~°{ ± - d 2 - 2K } + "q_-terms" (C.26) N t 12 

Together with the corresponding contributions from q_ and eq. (C.1) one derives 
the final result eq. (3.33). The integer K" is given by eq. (C.23) where n~+ k), h~+ k), l~ k) 
are replaced by n~_ k), h (k), ]~k), respectively. 

At the end of this appendix we investigate conditions which select states with 
K = K" = 0, i.e. excitations corresponding to primary fields. One can separate in eq. 
(C.23) contributions from the real roots and find 

h+ 

K (1)= £ i j - l h + ( h + + l ) ,  (C.27) 
j = l  

if the holes are located at 

I = N - ½ - i j ,  ij >i O. (C.28) 

Obviously, K (1) >/0 and K (x) = 0 if there are only holes outside the bunch of real 
roots. Discussing K (k) for k > 1 one must take into account the restriction 

i~k) + j~k) < i(k) _ i(k~. (C.29) 
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After inspection one finds that K and h" only vanish if there is, at most, one 
k-string (k > 1). If we assume 

n (~) = a ~ ,  ( C . 3 0 )  

the following relations in addition must hold for x > 0 

h + = h  = k - l ,  n ?  ) = 0 ,  n(_ k ) = l .  (C.31) 

Note that for x > 0 the extra phase in eq. (2.13) shifts the string near to q_. For 
x = 0 because of symmetry the string will be at 0 which means n ~  )= 0. 

If x > 0 not all strings are allowed, too large ones are shifted to - o ¢ .  For spin 
Z = 0 states the argument is as follows. In the situation characterized by eqs. (C.30) 
and (C.31) one has 

I(lk)= g -1~. (C.32) 

But there is a lower bound for this number given by 

rnin Zk( q(k) ) = Zk( - -  00) + dPkk(O ) -- Okk(-- 00) = 2~r(N - ½ - ( k / v ) ( v  - x - k ) ) . 

(C.33) 

Therefore we have the condition 

k < v - x. (C.34) 

This means that for x = 1 the v -  1-strings are excluded. An analogous argument 
excludes the "antipseudoparticles". 

Appendix D 

In this appendix we prove that the g-terms given by eqs. (3.9) and (3.14) can be 
neglected in eqs. (3.8) and (3.12). In addition, we show that the contributions from 
the A-terms defined by eqs. (3.4) and (3.15) cancel in the final formulas (3.29) and 
(3.33) for the finite size corrections of the eigenvalue of the transfer matrix. 

In order to apply the Euler-Maclaurin formula we have chosen the bounds 
I_+ = I (q  _+) arbitrarily, only fulfilling the conditions 

holes~ [ q _ , q + ] ,  q_+~ +oo for N ~  oo. 

The maximal possible I+ are of order O(N)  for large N. But since the formula for 
the eigenvalue (3.33) does not depend on the bounds I_+ used in the derivation, we 
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may also take smaller ones. In the following it is shown that all 8-terms can be 

neglected if the I_+ are large enough. 
For  large N and q << q+,max we have o(q)  = Po(q). This implies that for 2 /v  << q 

1 << q÷ or ~N << I << N the following asymptotic behaviour holds 

dq 

d I  

o(q)=O(N-I(q))] 
2v N1---~ +O((N-I)-2)I 

Ne -~q(1)/a = O ( N  - 1 ) ]  

for N -  I--* oo. (D.1) 

Hence, we can estimate the 8-terms for large N and large N - I 

81 = N -  30( (  N - I )4),  82 = N -  30((  N - I )3 ) ,  83 = N -  30((  N - I )2 ) ,  

(D.2) 

and for q > 0 

84, 85 = N -  2/(~-1)O(( N - I)2/(~-1)), 86 = N_z/(~_I)O((N_ I)1+2/( .-1)) .  

(D.3) 

If we take N - I+ = O ( N - " )  with 0 < a < 1 /v  we find that N81,2, 3 and 
( N - 1 + ) 8 4 , 5 ,  6 vanish for large N. Therefore, we can neglect 81,2, 3 in eq. (3.8) 
compared with the terms O(N -1) we are interested in. The largest contribution 

from 84,5, 6 appears in eq. (C.21). It is of the order (N  - 1+)81,5, 6 which also can be 
neglected. Altogether, we have found that the &terms do not contribute if I+ is 
large enough, e.g., if 

N - I + =  O ( N - " ) ,  0 < a < 1 /v .  (D.4) 

Now follows the proof that the A-terms cancel in the final formula. We have 
observed that the formula for the eigenvalue (3.33) (where K is given by eqs. (C.23) 
and (C.27)) does not depend on the bounds I_+, but it depends only on the 
"physical"  quantities as locations of holes and strings and their numbers. This is 
obviously a trivial result, since the bounds where choosen arbitrarily. Therefore, if 
the 1_+ are large enough such that the &terms can be neglected, the sum of the 
A-terms is a constant as a function of I_+*. In the following we show that this 
constant vanishes. 

* This argument is due to Woynarovich. 
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There is no reason that the A-terms for I + =  O ( N )  do not contribute. In fact 
numerical calculations suggest that they give finite contributions to eqs. (3.22), 
(3.25), (3.26) and (3.27). In the following I will show that the A-terms vanish if I+ is 
small enough, e.g. if eq. (D.4) holds for a > 0. This means the sum of the A-terms in 
the final formulas, eqs. (3.29) and (3.33) is zero independently of I+.  

I t  is easy to see that the contributions to the integrals defining A1, 2 from 
integration regions corresponding to finite q are of order O(N-3) .  Therefore, we 

have to investigate for q0 >> 2/v 

where 

Z~l, 2 = fl+ dI  (d/dI)3F1,2(q(I))g3(I), 
"l(qo) 

Fa(q(I)) = e ( q ( I ) ) ,  

(D.5) 

F 2 ( q ( I ) ) = J ( q + q + - q ( I ) ) ,  q > 0 .  (D.6) 

Since g3 is bounded we find 

• 4x,2=O((d/dI)ZFx,z(q(I+)))=O((N-I+)-2Fl,z(q(I+))) ,  (D.7) 

where eq. (D.1) has been used. With Ft(q(I))~x e x p ( - ½ v q ( I ) ) = N - 1 0 ( N  - I )  

and F2(q(1)) = O(1) we find that 

A I = N - I O ( ( N - I + ) - x ) ,  A 2 = O ( ( N - I + ) - 2 ) .  (O.8) 

Similar arguments as above imply that the A terms in the final formulas (3.29) and 
(3.33) are arbitrarily small if I+ is taken small enough, e.g. eq. (D.4) with a > 0. But 
since the final formula does not depend on the choice of I ±  the A-terms must 

cancel. 
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