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Integrable theories on the lattice having zero energy gap exhibit conformal invariance for 
long distances. It is shown here how to extract its conformal properties (central charge e and 
scaling dimensions) from the Bethe ansatz equations. The methods here exposed are applied to the 
six-vertex model and to the critical Potts model. 

1. Introduction 

Conformal invariance is a powerful concept in several regions of mathematical 
physics. Statistical mechanical systems at second-order phase transition points 
possess scale and conformal invariance [1]. For conformal quantum field theories 
Polyakov [2] proposed a "bootstrap" approach for constructing a complete set of 
local fields. In two dimensions conformal invariance is a rather strong restriction 
since the transformation group is infinite dimensional. It is related to the Virasoro 
algebra [3] 

[ L,, ,  Lm] = ( n -  m ) L n +  m + - ~ c n ( n  2 -  1 ) 3 , , _ m  

(e = "central charge") (1.1) 

for which a well developed theory exists [4]. This formalism is also useful for string 
theories [3]. Belavin, Polyakov and Zamolodchikov [5] have solved the conformal 
"bootstrap" problem in two dimensions for many cases. Under a conformal 
transformation (in complex coordinates) 

Z = X 1 -}- ix  2 --~ W ( Z ) ,  

= X  1 - i X  1 ~ W ( Z )  (1.2) 
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(where w and ~ are analytic functions) primary fields transform like 

d z  ] ~ d f  A ( w , ~ ) ,  (1.3) 

where d A = A + A and S A = A - -A are the "scaling dimension" and "spin" of the 
field A, respectively. In ref. [5] it was shown that for a finite set of primary fields the 
solution of the conformal "bootstrap" corresponds to an irreducible representation 
of the Virasoro algebra with central charge 

c =  1 m ( m  + 1 ) '  (1.4) 

where m is a rational number. Moreover, Friedan, Qiu and Shenker [6] have shown 
that unitarity in quantum field theory (equivalent to reflection positivity [7] in 
statistical systems) restrict the number m to 

m =  integer ~ 2 or c > 1. (1.5) 

In addition the authors of [6] compared the critical exponents for some new 
statistical models with the scaling dimension A + A appearing in representations of 
the Virasoro algebra for m = 3, 4, 5, 6. They proposed in this way for the critical 
q-state Potts model 

6 { v = 4 for q = 2 (Ising). (1.6) 
C P ° t t s  = 1 r ( v  - 1) r = 6 for q = 3 

With analogous arguments Huse [8] suggested for the "restricted solid on solid" 
models [9] 

6 
c Rs°s= 1 v ( v -  1 ) '  (1.7) 

where the "heights" l of the model are restricted to 0 < l < r. By means of 
renormalization group arguments BliSte, Cardy and Nightingale [10] argued eq. (1.6) 
for the q-state Potts models with 

q = 4cos2(~r/r) for q = 1,2,3,4;  v = 3 , 4 , 6 , ~  (1.S) 

and for the six-vertex model 

C 6-vertex = 1 .  (1.9) 

For other investigations of unitary conformal invariant models see also ref. [11]. 
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Since a direct calculation of the central charge c and conformal dimensions of the 
field for specific models is usually not simple, it seems worthwhile to determine 
them for integrable models from the Bethe ansatz solution. In this paper a general 
method to compute the conformal properties of an integrable theory is presented. 
As concrete applications we obtain explicit results for the six-vertex and q-state 
Potts models. 

For  a statistical system on an M x N lattice in the x-y plane one can introduce a 
transfer matrix ~- (defined on an M-chain) running in y-direction or another one 
(defined on an N-chain) running in x-direction. The partition function can be 
written as 

ZMN= t r~ M= F ~ , ~ ,  (1.10) 

7 

where the sums extend over all eigenvalues of the transfer matrices 

~'g, = Xq , ,  

(1.11) 

For  a conformal invariant model with periodic boundary condition Cardy [12] has 
found for M, N >> 1 

XUm~x = exp - NMf+ --~ -~c , (1.12a) 

M~r ~ 
XMm~ = exp -- NMf + -ff -6 c ], (1.12b) 

where f is the free energy per site ahd c is the central charge of the Virasoro 
algebra. For  M >> N >> 1 it follows 

e x p ( -  NMf ) ~i ( )k i / /~ max ) N 

ZMN= Iexp ( -NMf  +-~ 6c ). 

(1.13a) 

(1.13b) 

For  an integrable theory two methods to calculate ZMN on a strip M >> N >> 1 for 
large but finite values of N are available: 

(a) one considers the transfer matrix r on an infinite chain (M---} ~ )  and 
calculates the large N corrections (due to "low energy" excitations) to the sum in eq. 
(1.13a), or 
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(b) one considers the transfer matrix ~ on an N-sites chain and calculates the 
large N corrections to the maximal eigenvalue ~ma~ according to eq. (1.13b). 

In addition to the "central charge" c also the conformal dimensions of operators 
of the theory can be determined if one looks for excited states. As it is argued in ref. 
[12] one has 

2 7rx n 
E , - E  0= N f o r N ~ o ¢ ,  (1.14) 

where x,, is the conformal dimension of the operator associated to the excitation. 
This formula applies to energy eigenvalues, so in our context we should consider 
eigenvalues of - I n  ~ in order to use eq. (1.14). 

We briefly review in sect. 2 the Bethe ansatz solution for the six-vertex model. 
The method (a) (to calculate the central charge c) is applied in sect. 3 to the 
six-vertex model and in sect. 4 to the q-state Potts model. For the six-vertex model 
also method (b) will be used. This is realized in sect. 5. Conformal dimensions are 
also calculated in sect. 5. 

2. S i x - v e r t e x  m o d e l  - B e t h e  a n s a t z  

The six-vertex model on an L = M × N square lattice is defined by the partition 
function 

ZMN = E I--1%(x), (2.1) 
c o n f  x ~ la t t ice  

where the sum extends over all "bond  configurations". Each bond can accept one of 
two states characterized by arrows. The six allowed configurations at a vertex are 
depicted in fig. I and the corresponding weights are 

o91 = o ~ 2 =  1 ,  

0)  3 = 0 )  4 ~-- t = sin 0 / s i n ( ` / -  0 ) ,  

095 ~--- LO 6 = r = sin , / / s i n ( , / -  0 ) ,  (2.2) 

depending on the "anisotropy" or "spectral parameter" 0 and the "coupling" ,/. 

+ + +  
{1} (21 t3} 

+ + +  
I~,) 15} {6} 

Fig ,  1. A l l o w e d  v e r t e x  c o n f i g u r a t i o n s .  
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The partition function with periodic boundary conditions 

ZMN = tr[ ~(0, 3') N] (2.3) 

can be written in terms of a transfer matrix r(O, 3") defined on a periodic chain of 
length M. By means of the Bethe ansatz method (see e.g. [13]) one obtains the 
eigenvalues of the transfer matrix 

X(q)~-x(4q)-[-~k(Dq) , X D ( O , 3" ) = t M ( o , 3" ) X *A ( 3' --  O * , 3' ) , 

~,(q)(0, 3') = f i e x p [ - i ( p ( q i +  2i0) - 7r)], (2.4) 
i = 1  

where the numbers ql . . . .  , qm (m = 1 . . . .  ~< 1M) are roots of the "Bethe ansatz 
equations" 

e iMp(qj) f i e  ick(qj-qi) = 1 ; j = 1 . . . . .  m .  (2.5) 
iffi l  
i :~j 

These equations are quite general. They express the condition that the total phase 
factor around a period M for "pseudoparticles" of momentum p(q / )  has to be 
equal to one. This factor consists of the free part e iMp(qj) and the scattering parts 
with respect to all the others e iq'(%-qD. For the six-vertex model the "momentum" 
and the "phase shifts" are given by 

e ip(q) = f ( - q ,  3"), e i~(q) = f ( q , 2 3 ' ) ,  (2.6) 

sh½(q + ia) 
/ ( q ,  a) = shl(  q _ ia) " (2.7) 

There exist detailed investigations of the Bethe ansatz equations (2.5) (see e.g. ref. 
[14]). The analysis simplifies for the discrete values of the "coupling" 

3' = ~r/v, v = 2, 3, 4 . . . . .  (2.8) 

We are interested in these values. So we assume eq. (2.8) in the following. For 
M >> 1 the Bethe ansatz equations have solutions of string type: 

(i) k + string 

q = q ~ k ) + i 3 " ( - k + l , - k + 3  . . . . .  k - l ) ,  k = l , 2 , . . . , v - 1 .  (2.9) 

(i 0 1 - string 

q = i~r + q~a). (2.10) 

The k + and 1-  strings may be interpreted as "bound states" of k pseudoparticles 
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and as an "antipseudoparticle", respectively. The Bethe ansatz equations (18) can be 
rewritten in terms of the real "rapidities" q(k) and q(a) of these states 

u - l , a  m! 

e 'O*'(qj - q '  ) - - 1  (2.11) eiMPt'(qJJ") H H ~t,, ~t, = , 

/=1  i = 1  

where the momenta Pk are given by 

k 

eiP'~(q) ~ ] - I f ( - q - i y ( 2 r -  k -  1) ,y)  = f ( - q ,  k y ) ;  
r = l  

k = l , 2  . . . . .  u - l ,  

e ip°(q) = f ( - q  - i~r, y) = - f ( - q ,  ~ + y) ,  (2.12) 

and the phase shifts q~kz by 

e iq'k'(q) =f(q ,  (k + l)y)f2(q,  (k + l -  2 ) 3 ' ) " "  f2(q, (I k _ ii + 2 ) 7 ) f ( q ,  Ik - liT), 

e iq'~,~(q) =f (q l ( k  + 1)y + ~) f (q l (k  - 1)'y + It) ,  

e i*""(q) = e i't'(q) . (2.13) 

Taking the logarithm of eq. (2.11) 

2~rI)~)=Mpk(q} k)) + ~ k t ( q ~ k ) - -  q}l)), 
I , i  

(2.14) 

we observe that the roots q = { q)k)) are given by sets of numbers ( I  ~k) ) c Z, or 
Z + ½. For the "ground state" (corresponding to the maximal eigenvalue X ~q)) there 
are only real roots (k = 1) without holes, which means that the numbers I y  ) accept 
all possible values in an interval *rainl(1) "~ I(1) ~ I(1)~a~" For "excited states" there may be 
"holes" in the distribution of the 1) 1) and higher strings (k > 1) may appear. For 
large lattices M >> 1 and many roots m >> 1 it is natural to introduce densities of 
k-strings ok(q) defined by 

di  ~k) 
2¢r dq =o,[ok(q)+P,(q)];  k = l  . . . . .  u - l , a ,  (2.15) 

where Pk(q) are the densities of holes and o k = sgn p~(q) = 1 for k = 1 . . . . .  v - 1 
and - 1  f o r k = a .  

Taking the derivative d/dq of eq. (2.14) the Bethe ansatz equations can be 
written as a system of integral equations 

Ok(Ok + ~k) = Mp'~ + eO'~l * Or, (2.16) 

where the convolution is defined by ( f *  g)(q)= ](dq'/2~r)f(q-q')g(q'). The 
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eigenvalues of the transfer matrix eq. (2.4) are given by 

{ dq / ;~A(0 , - r )=exp  --i~ f g--ok(q)[pk(q+ 2iO)--~rk] , (2.17) 
k ,t / ~  

where ~r k = ~r for k odd or k = a and ~r k = 0 for k even. 
For  the ground state in the limit M ~ oo we obtain from eq. (2.16) by means of 

Fourier  transformation the root density 

M v 
Pk(q) = 8k1 2 cosh ( rq /2 )  " (2.18) 

Since in the region 0 < 0 < _1,/ 2 

[XA[ > [Xo[ (2.19) 

the parti t ion function in the thermodynamic limit M, N ~ oo is 

Z M ,  N ~ ~kN,max ~- e- MNf°° , 

where the "free  energy" per site follows from eqs. (2.17), (2.18) 

fo~dx sh(2Ox)sh[x(er- 3,)1 
fo~ = Jo ~ ch(yx)sh(Trx) = log sS°(i~rO/y) (2.20) 

where S s~ is the sine-Gordon soliton-soliton S-matrix. 

3. Six-vertex model - finite size corrections (method (a)) 

Since the six-vertex model is a critical eight-vertex model we expect in the scaling 
limit conformal  invariance. We shall calculate the conformal anomaly number  or 
the central charge c by method (a) explained in the introduction. 

The parti t ion function for a two dimensional classical statistical model (c.f. eq. 
(1.10)) on a strip of width N with periodic boundary conditions 

Z = tr[0 -N] = t re  - ' / r  (3.1) 

can be reinterpreted as the partition function of a one-dimensional quantum 
statistical model with finite temperature T = l/N, where the "hamil tonian" is given 
by 

H = - In ~. (3.2) 

The eigenvalues of the six-vertex model are real for the isotropic case 0 = iV (c.f. eq. 2 

(2.4)) which means that H is hermitian. Because of technical reasons we consider 
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first 0 < 0 < ½,/. The value 0 = !y2 is obtained as a limiting case. We introduce the 
auxiliary system 

Z(/~) = Tre -H(")/r,  T =  I / N ,  (3.3) 

where the "hamiltonian" 

H(bt) = H(0) + #~ (3.4) 

is defined by its eigenvalues (see eq. (2.17)). 

E( / t )  = - Relog X A - ~t Imlog XA 

dq 
= ~ f~-~ok(q)ek(q), 

k 

e k ( q ) = R e i p k ( q +  2 i O ) + ~ t I m i ( p k ( q +  2iO)--~rk) .  (3.5) 

Because of [X~I > IXD[ for 0 < 0 < !,[ (cf. eq. (2.19)) we have from eqs. (1.10), (2.4) 2 

Z = ~2 [X~ } + X(~ )] = Z(/~ = i)[1 + O(e-SN)]. (3.6) 
q 

We consider first Z(~) for real # (1#1 < tg0,0)) and take finally the analytic 
continuation/~ ~ i having in mind the identity Z~, = Z0(exp(N/~¢)). 

We borrow now from thermodynamics the method to calculate the free energy of 
a statistical system for finite temperature 

F =  - - T l n t r e - H ( " ) / T = E  - TS  with 8 ( F )  = 0 ,  (3.7) 

where S is the entropy. Following Yang and Yang [15] we write 

dq 
S= ~ f ~-'~[(pk+~)ln(ok+£}k)--oklnok--~kln~k]. (3.8) 

k 

Minimizing the free energy using the Bethe ansatz equations (2.16) we obtain 
another set of integral equations for the densities of strings Oh and holes t3 k 

Ne w - ln(1 + pk//Ok) t- (1 -- *9 kl * ollog(1 + 0l/£},) = 0 (3.9) 

Inverting the Bethe ansatz equations (2.16) we obtain 

P~ + Pk = 8klMc + c * (Pk-x  + Pk+t) + C * p,Sk,~_ 2 , 

k = l , 2  . . . .  , v - 1  

(3,10) 
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and correspondingly we derive from eq. (3.9) 

Xk + f(k = - S k l N d '  + c * ( f(k-1 + f(k + l) + C * XaSk,,_ 2 , 

627 

k =  1 , . . . , ~ , -  1, 

(3.11) Xa'4- f(a = - c *  Xl ,_2 ,  

where Xk = [ln(1 + k/Pk)] ~(k = XkPk/Pk and 

1 1, 
c ( q ) -  2 cosh(½pq) ' (3.12) 

d ' ( q )  = ½i[c(q+ 2 i 0 ) -  c ( q -  2i0)] + ½/~[c(q+ 2iO) + c ( q -  2i0) ] ,  

p~,= (1 - ~ ')kl* C, e k = ( 1 - - d ? ' ) k l * d .  (3.13) 

has been used. Since the low temperature (large N)  corrections to the sum in eq. 
(1.13a) are due to low energy excitations (q---> + oo) it is sufficient to solve eqs. 
(3.10) and (3.11) asymptotically. Similar equations have been solved for Heisenberg 
models [16]. Since c( q) and d( q) decay exponentially c( q) -~ l,e ~:~q/2 and d'( q) = 
c(q)  (+ sin p0 + # cos i,0) for q ~ _ oo one finds from eqs. (3.10) and (3.11) 

N 
x k ( q )  = - ~ ° k ( - -  sin ~,0 +/~ cos pO)pk(q) .  (3.14) 

In addition, from eq. (3.11) follows that the functions 

Y ~ ( q )  - Pk(q ' ) /P~(q ' )  = f ( k ( q ' ) / X k ( q ' ) ,  

2 
q'--= q :L (q, N )  = q + --[log 2N(sin 1,0 _ cos p8)] (3.15) 

P 

are independent of N for large N since they fulfill the system of integral equations 

In y ~  = -/Jkle ;:~q/2 + C * ln[(1 + y~_ 1)(1 + Y~+ 1)] 

+Sk.~_EC*log[1 + 1 / y ~ ] ,  

log y +  = -- c * ln(1 + Y~-+-2)- (3.16) 

The low temperature (large N)  corrections to the entropy S = S+ + S_ + O(N -2) 
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(note that S ( N  = ~ )  = 0) are given by the integrals eq. (3.8) at q --+ _+ 

de 
S+ = >> 127~ [ok(q)ln(1 + ~ , ( q ) / o , ( q ) )  

+ t~k(q)ln( 1 + P k ( q ) / o k ( q ) ) ]  (3.17) 

and correspondingly for S .  We substitute 

x k ( q )  = 1/(1 + y ; ( q ) )  (3.18) 

which implies using eqs. (3.14) and (3.15) 

( l n x  l n ( 1 - x ) ]  M 1 1 ~ fx,(oo, dx + -- . (3.19) 
S+ = ~ 2~r sin vO + 1, cos v0 axk(q+l(Q, N)) 1 -- X X 

For large N, xk(q+l(Q, N) )  can be replaced by x k ( -  oo). The integration bounds 
xk(+_ oo) can be obtained from the asymptotic solutions of eq. (3.16) 

x ~ ( m )  = 1 / ( k  + 1) 2 , x k ( -  m) = 1 / k  2, k =  1 . . . . .  v -  2, 

x ,_ l (oo  ) = 1 - xa(oo ) = 1 / v ,  x ,_ , (oo)  = 1 - x,,(oo) = l l ( v  - 1). (3.20) 

Inserting these values in eq. (3.19) we obtain for the sum 

[ ,~2 f f ] [ l nx  I n ( i - x ) ]  rr 2 _ 1 J ' k + " 2 + 2 1 J "  + - - (3.21) 
k k = l  "11/k2 1/(v-1)J  [ 1 - x x 3 

independent of v. Together with analogous results for S_ we obtain for the entropy 
for large N 

M rr sin vO 
S = N 3 sin2v0-/*2cos2v0 + O(N-2)"  (3.22) 

The large N correction for the free energy a t / ,  = i (cf. eq. (3.6)) follow from eq. (3.7) 
and S = - OF/aT 

N F = - l n Z ~ = i  = N  F~ - -  + O ( N  -3) 

M~r 
. . . .  NF~ N 6  sin vO + O ( N - 2 ) .  (3.23) 

For 0--½~, = ~r/(2v) the vertex weights ~1 = $°2 and % = ~04 are equal (of., eq. 
(2.2)). So we expect the model to be isotropic and conformal invariant in the scaling 
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limit. Comparing eq. (3.23) for 0 = ~y with the finite size correction formulas 2 
(1.13a, b) we conclude for the six-vertex model (in the scaling limit) the central 
charge of the Virasoro algebra 

c 6-vertex = 1. (3.24) 

For general O, 0 < 0 < 3' the model is not isotropic. But the lattice may be deformed 
in order to recover rotational symmetry. The resulting volume renormalization 
cancels the factor sin p0 in eq. (3.23) such that eq. (3.24) also hold for the general 
six-vertex model. 

4. The critical q-state Potts model 

The q-state Potts model is defined by the partition function 

zP°tts(fl) ~-" ~ exp(fl ~ ~o(x),o(y)), l<~o<~q. (4.1) 
{o} (xy) 

It was shown [17] to be at the critical point tic = ln(~/~ + 1) equivalent to a 
six-vertex model with 

q = 4cos2y, , /=  ~r/1,. (4.2) 

Baxter, Kelland, and Wu [18] showed that for cylindric boundary conditions one 
has to introduce a "seam" from the bottom to the top of the cylinder which has to 
carry extra weights. This can be written in terms of the six-vertex transfer matrix as 

z P o t t s ( f l c )  =. tr[.rUeZ*iS3/~], (4.3) 

where S 3 is the "total  spin" counting the number of "up"  minus "down" arrows on 
the seam 

M 

$3= E ½(1 ® - . .  ®o(3i)® . . .  ®1). (4.4) 
i = 1  

Eq. (4.3) means we have to calculate 

Z~°~ts = z~rteX(exp(2~riS3/e)), (4.5) 

where ( . )  may be understood in terms of the quantum partition function (3.1). We 
calculate the expectation value in eq. (4.5) introducing a "magnetic field" by the 
following substitution in eq. (3.3) 

H(#)  --* H(#)  - S3Th, T= 1 /N.  (4.6) 
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The eigenvalue s 3 of S 3 corresponding to a state given by eq. (2.16) 

s 3 ½M m ½ M - [ d q [  ~-1 ] = - = Y'. kPk(q) + p,,(q) 
J2~r Lk=l 

= "~ [ P v - l ( q ) - - P a ( q ) ] "  (4.7) 

The last equality follows from the Bethe ansatz equations (2.16). The low tempera- 
ture (large N) expectation value of S 3 for the quantum statistical problem (3.1) with 
magnetic field is analogously to eq. (3.17) is given by 

v ~ d f  
($3) += ~/>>1~-~ [~.-~(q)~Q - P~(q)] (4.8) 

due to large q ~ o0 excitations (and correspondingly for q ~ - oo). The computa- 
tion of ($3) is similar to that one for Heisenberg models in ref. [16]. From eqs. 
(3.14) and (3.15) one obtains 

V M 1 oodq 

($3)+=  2 N sinv0+/~cosv0 fo ~-~ [ - X , - l ( q )  - x ~ ( q ) ]  

v M 1 1 +y,_~(o¢) 1 +y.-l(oo) 
In + O(N-2) .  (4.9) 

2 N sinvO+t~cosvO l + y , _ ~ ( - o o )  l+ya~(- -O0)  

The values Yk( + 00) can be obtained analogously to eqs. (3.20) with the extra terms 
in eq. (3.16) hPSkl(~_X)/2 and ½hp on the r.h.s., respectively. The result is 

sh2(- h (k + 1)) 
Yk(°°) = sh2( 1 "  "~ - -  1, yk(- -oo)= 

1)) 
sh2(½hv/(v - 1)) ' 

k--- 1,. . . ,  v -  2, 

e h~ sh½h (p - 1) 
y v _ l ( O O )  = - -  = e - h ~ / 2  

ya(oc) sh½h 

e h~ sh(½hv(u- 2 ) / ( v -  1)) 
Y ~ - x ( - ~ )  = y a ( -  ~ - - - - ~  = sh(½hv/(v-  1)) (4.10) 

Inserting these values in eq. (4.9) and the corresponding ones for ($3)-  one obtains 
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(for g = i) the average "magnetization" 

( $ 3 )  - 

M hr 

N 21r(u - 1) 
sin vO + O ( N - 2 ) .  (4.11) 

This implies for any a 

[ a  2 M  u sinp0] 
(exp(aS3))h= o = exp U p - 1 2~r for U--* oo. (4.12) 

Comparing eqs. (1.13), (4.5), (4.12) we conclude that the conformal invariant q-state 
Potts model in the scaling limit correspond to a representation of the Virasoro 
algebra with central charge 

cP°ttS=l P(P-- 1) '  (4.13) 

where q = 4cos2(~r/~,). 

5. Six-vertex model - finite size corrections (method (b)) 

We compute in this section the finite size correction to the largest eigenvalue of 
the six-vertex model transfer matrix. This provides the dominant finite size correc- 
tions to the free energy. We do that for periodic boundary conditions in the gapless 
regime. In the antiferromagnetic domain with non-zero gap these corrections were 
calculated in ref. [19] and they turned out to be exponentially small in N. 

It is useful to consider the function [19] 

1 ~ q~(q- q,). 
tN(q) = P ( q )  + N i = 1  

(5.1) 

This function is continuous and monotonically increasing for real q. At the real 
roots of the BAE (2.14) where M is now replaced by N, 

We define the function 

237 
tN( qJk) ) = --~-I) k) . (5.2) 

1 dt s 
° N ( q ) -  2~r dq (5.3) 

We can limit ourselves here to consider only real roots qj since the complex roots 
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and holes do not contribute to the dominant finite size corrections as will be 
discussed later on. In this case oN(q) tends to the density of real roots Pl(q) for 
N---~ ~ 

P,(q) 
o~(q) = lira ON(q)- - -  (5.4) 

N--* c~ N 

as it follows from eq. (5.2), (5.3). The difference between eqs. (5.1), (5.2) for k = j  
and j + 1 yields in the N = ~ limit an integral equations for o~(q) 

1 +oo dq'  ,, 
ooo(q) = ~.,,g-ZP'(q) + f (q-  q')ooo(q'), (5.5) 

- -  0 0  

with the solution already given in (2.18) 

f0 ~ dk  cos kq 1 
o~(q) = 4~r ch ky 4Vcosh(rrq/Zy) " 

(5 .6 )  

Now, it is possible to compute hA and ~o in the N = ~ limit. The free energy will 
be given by the largest number between them. Since [>'A[ > 1~'o1 for 1 ~ y > 0 > 0  

1 
F ~ = -  lim ~ l o g ~ A ( 0 ,  V). (5.7) 

N~,oo 

So, the term ~o  gives exponentially small contributions to F N. Since, we are 
interested in the power corrections to F~ we concentrate on h A. Higher eigenvalues 
of ~'(0) give subdominant corrections for large N. 

Define the function 

1 1 
Lu(O )=-~log~A(O,v)+ lim ~ log%A(0,  y ) .  (5.8) 

N-"~ ~ 

It can be reexpressed as follows with the help of eq. (2.4) 

LN(0)=-if dqp(q+2iO) ~ ~(q-qj)-oN(q)  

+if_+ ~ dqp(q+ 2iO)[oN(q)- o~(q)]. (5.9) 

As in ref. [19], oN(q) - %(q) can be expressed as 

( 1  ~ ~(q, qj)_oN(q,) } (5.10) oN(q)-o=(q) = f+~dq'J(q-q ' )  -; 
- oo j = l  
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Here the function J(q) reads 
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= _ (oo dx cos(qx)sh(~r- 2"y)x 

J(q)  "1o ~ sh[(~r- y)xlcosh(yx)  " 
(5.11) 

Its properties are summarized in the appendix. 
Inserting eq. (4.10) in eq. (5.9) and using eq. (A.5) yields 

LN(O ) = --i f_o ° dq 2(~r- y) + 2arctge~(q/2-i°)/v 

1 ~ 8 ( q _ q j ) _ o N ( q ) }  (5.12) x ~ 
j = l  

Eq. (5.12) has the appropriate structure in order to study its large N behaviour 
following the method used in ref. [19] for models with non-zero gap. As in ref. [19] 
any expression of the form 

+~ ( 1  ~ 8 ( q - q j ) - o ~ ( q ) }  
I N= f d q f ( q )  -~ 

- o o  j = l  
(5.13) 

has a Fourier expansion 

where 

+oo 

IN= E ( -1)"TN, ,  (5.14) 

ot~0 

T, = J_oo f (  q)oN( q)ei"tN(q) d q. (5.15) 

In the present case one cannot use the saddle point method as in ref. [19] to evaluate 
T, for large n. One can still approximate o N and t N by ooo and too where oo~ is given 
by eq. (5.6) and 

too (q) = 2 arctg(e ~q/2Y). (5.16) 

So, we set 

o r  

f +c~ T, = T ~  = dqf(q)ooo(q)e i~'=(q) , 
-- 00 

~ dt , . t  " 

T ~  = Jo -~--~ e " f ( q ( t ) ) , (5.17) 
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2y .  , I 
q( t ) = - - l o g t t g s t  ) . (5.18) 

In eq. (5.14) we need TN~ where N is a large even number. In this case TN~ = T~r~ is 
dominated by the end points of the integral (5.17), namely t = 0 and ~r provided 
f ( q ( t ) )  is smooth. For a typical exponentially decreasing function 

f ( q )  = f+_ + g_+e -~lqt + smaller terms (5.19) 
q--~ + oo 

one finds from eq. (5.17) 

f + - f _  r(1 + 2ay/~r)  g+e - i ~ Y - g _ e  iaY 
T as - + + higher order. (5.20) 

.>>1 2rrni ilr (2rl) l+2av/n 

The first term vanishes upon summation on a (eq. (5.14)) and the second term yields 

F ( l + 2 a y / ~ r )  ( 2aY)~r 
IN= i~r (2N) l+z , r /~(q+e- iav-q_e iav) ;  1 + (2 - 2 ~ v / ' -  1) 

X (1 - e -2~iv) + higher orders in 1 / U .  (5.21) 

Here ~(z) is the Riemann zeta function. 
Let us apply this method to Lu(O ) (eq. (5.12)). One has 

f ( q )  = - i  2 ( I r -  y) + 2arctge~(q/2-i°)/" " (5.22) 

So, 

irr'¢ irr (2~" - 3') 
f - =  2 ( ~ r - y ) '  f+ 2 ( r r - y )  ' g + =  +-2ie+-i~°/~ 

and a = ~r/27. Eq. (5.21) simplifies considerably yielding for this case 

(1) 
L N ( O ) =  - 6N2sin-  7 -  + O  . (5.23) 

This exactly coincides with the expression obtained by method (a) (eq. (3.23)). Let 
us now analyze it in the light of conformal invariant theories. 

Unless O = 1y the six-vertex model is not rotationally invariant as one sees from 2 

the values of the vertex weights. Moreover, for long distances one expects to find 
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rotational invariance after length rescaling in one direction, since the model is in its 

critical regime. This can be investigated studying the excitation spectrum. The 
eigenvalue for ~-(0) reads for a hole located at q = qo 

~t( O, ep ) = - 2i arctge "(~/2-i°) /v .  (5.24) 

Since the momentum operator reads here 

9 ~ = i log • (0) 

the momentum of the hole equals to 

p = 2 arctg e "~°/2v . 

In this context the "hamiltonian" is 

H = - Relog ~-(0). 

So, for low "energy", q0 ~ - m, we have 

p = 2 e "~/2v + O(e '~ /v ) ,  

~r0 
e = p  s i n - -  + O ( p 2 ) .  

Y 

Hence, we have to 
ultrarelativistic 

renormalization 

(5.25) 

(5.26) 

(5.27) 

redefine H by a factor (cosec(~rO/7)) in order to have an 

dispersion law and then rotational invariance. After this finite 

, (1)  
L u ( 0 )  - sin(~r0/7) L N ( O )  = 6N 2 + O ~-~ (5.28) 

and we find c = 1 for the six-vertex model for all values of O in the gapless regime. 

Let us now consider excited states of the six-vertex model in the critical regime. 

Finite size corrections to their energies give the conformal dimensions of the 

operators associated to them [12]. 

Let us consider a state where m = ½N - 1. For large N one can build a state like 
that, assuming that the roots of the BAE are real and restricted to a finite but large 

interval ( -  b, + b) [20]. In this way one can take N = oo and finds for the density of 
roots [20] 

1 ~b dr  
o(q ,  y )  = -~--~p'(q) + J_b~go(r, Y)eO'(q - r ) ,  (5.29) 

where y is the magnetization 

2m 
y = l - - -  

N 
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and b = b(y). For m = ½N - 1 one finds y = 2/N << 1, so eq. (5.29) can be solved 
approximately using Wiener-Hopf techniques. Define 

1 
Ly(O)=-  lim ~[logA+(O,y)-logA+(O,O)]. (5.30) 

N---~ ~ 

Subtracting eq. (5.29) from eq. (5.5) one derives that 

fb t Or ! Or(q, y)-Or(q,O)= dq 'J (q -q  ) (q, y) 
(y)< ItLI < 

(5.31) 

where o ( q , 0 ) =  %(q) .  Moreover, it can be shown from eqs. (5.29)-(5.31) that 

Lv(O)=½i~/y+ifq dqo(q,y)to~(q-2iO), 
" I > b(y)  

(5.32) 

where eq. (A.5) was used and to(q) is given by eq. (5.16). Using the perturbative 
solution of eq. (5.21) given in ref. [20] one finds from eq. (5.32) 

90 O(y4v/0r  v) ) ] .  Ly(0)  = ¼y2(rr- " / ) s in - -  [1 + O(y  2) + 
g 

(5.33) 

In the calculation we drop a term - ½iYrr since this represents a contribution to the 
partition function equal to one. Now, setting y = 2/N and renormalizing Ly(O) 
according to eq. (5.28) yields 

= N----- 5- + 0 N4, N2+4T/(,_v) . (5.34) 

According to conformal field theory arguments (eq. (1.14)) this corresponds to an 
operator of conformal dimension 

x=½(1- - t rY) .  (5.35) 

It can be identified with an "electric field" [21]. 
Let us finally indicate how the properties for the XXZ Heisenberg chain follow 

from the previous results. The XXZ hamiltonian is related to the transfer matrix of 
the six-vertex model by 

0 ) 0=0" Hxx z = - sin V ~ log • (0 (5.36) 

So one finds for the ground state energy of the XXZ chain from eqs. (5.8), (5.23) 
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and (5.30) [22, 23] 

sin7 ~2 
E N - Eoo = - -  + higher orders (5.37) 

7 6 N2 

In the same way the expression (5.35) for the conformal dimension of an electric 
operator holds in the XXZ model [23]. 

Appendix 

The function J(q) is an even meromorphic function of q defined by eq. (5.11) 
(see also ref. [19] and [20]). It fulfils the properties 

J(q) = J ( - q ) ,  (A.1) 

J ( q - i T ) + J ( q + i 7 )  = 1 O ( q 7 ) (A.2) 
2~ri ~ q l o g f  1 - 7 / r r '  1 - 7/~r 

1 ( 7 ) e- Iql/(1-y/~r) 
1 _ 7 /  tg 

1 [~r2~ 
+-~tg l  ~--~y )e-~lql/2V + smaller terms. (A.3) 

This last equation holds when ~r/(~r - V) is not a rational number. 

f 1 ~ r _ _ -  27 , (A.4) 
+°¢dqJ(q) 2 7r-7 

- - 0 0  

d. J(• - /~ )p( /x )  + p ( X )  - 2(1 - 7/~r) + 2 arctg(e'~X/2v)" (A.5) 

When 3' = ½~r 

J(q) = 
q q 

2qr 2 sh3q " 

J(q) is analytic for Ilmq[ < 2"/. 
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