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Abstract. A ten-vertex model, which is a multi-state generalisation of the six-vertex 
model, is formulated on a square lattice and solved exactly in the thermodynamic limit 
using the inverse scattering method. It is found that this system undergoes a first-order 
phase transition into a ‘frozen’ ferroelectric state. 

After the pioneering solution of the six-vertex model (Lieb 1967) all the results were 
re-obtained using the quantum inverse scattering method (Takhtadzhan and Faddeev 
1979, Thacker 1980). This model has only two states on the links. Lattice statistical 
models, with links carrying more than two states (or colours), have been solved by 
making use of the only two techniques available presently: functional relations (Pok- 
rowsky and Bashilov 1982) which come from the so called inversion relation (Stroganov 
1979, Baxter 1982) or using the bridge to some equivalent staggered six-vertex model 
(Baxter 1973). It is not known whether there is a generalisation of the inverse 
scattering method or of the Bethe-type hypothesis for these models. It is for this 
reason that we have constructed a model which has two and three colours on the 
horizontal and vertical links, respectively, and which is a generalisation of the six-vertex 
model in the sense of colour conservation. This model can be solved by means of the 
quantum inverse scattering method. 

We start by assuming toroidal boundary conditions for a square lattice on N rows 
and N columns. At each site we have a vertex such that the horizontal links have 
one arrow to the right or to the left and the vertical links have two arrows up or down 
or none. If we also assume colour conservation and invariance of the system by 
reverting all arrows, then this leads to a ten-vertex model with five distinct vertices 
shown in figure 1. 

The row to row transfer matrix can be written as 

N 
T = T r  n L, 

“ = l  

where 
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Figure 1. Five distinct reversal-symmetric vertex configurations and the vertex activities 
a, b, c, d, e. 
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Guidec by the standard procedure (Baxter 1972), we consider L..e commutation 
of two transfer matrices given by (l), but with different Boltzman weights. This means 
that it is necessary to find a non-singular four by four matrix U which satisfies the 
star-triangle relation: 

A solution of this equation exists, but it is temperature dependent, i.e. there are 
relations between the activities. The conditions are 

d = e  d 2 = ( a  + c ) ( b 2 - a c ) / b .  (3) 

Because of these conditions, our model has only two free parameters. We parametrise 
the activities in terms of new variables q, v such that 

1 a = exp(-Pcl) = -cos(v)/cos(q - v )  
c = exp(-Pc2) = -cos(v)/cos(q + v )  

- zx < Re v < kx 

i x  < R e  77 < x 

b = e x p [ - P ( ~ ~ + ~ ~ ) ] = c o ~ ~ ( v ) / c o ~ ( v + q )  cos(v-q) 

d = exp(-Pc3) = cos(v) s i n ( q ) w / c o s ( v  + q )  cos(v -7) 

(4) 

where c1  and c 2  are the given energies, c3 is the energy which depends on c1, c 2  and 
p, and we have chosen the normalisation of the activities such that b = ac. 

Returning now to equation (2), we find that the matrix U has the form 

/ l  0 0 o \  

with 

x 2  = sin(v - v')/sin(q +v'- v). x 1  = sin(q)/sin(q + v' - v )  and 
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Next we apply the quantum inverse scattering method. Noting that the monodromy 
matrix r = llf;’=l L, also satisfies equation (2) and writing 

we arrive at commutation relations which resemble the ones found for the six-vertex 
model (Takhtadzhan and Faddeev 1979, Thacker 1980) (for q = q‘): 

sin(q) B ( v ) A  (v’) 
sin( v - v’) 

M q )  
sin(v - v’) 

y ) ~ ( v ~ ) ~ ( v )  - sin(q + v’- 
sin(v - v’) 
sin(q + v - v‘) 

sin( v - v’) 

A(v)B(v ‘ )  = 

D(v)B(v ’ )  = - B (v )D (v ’). B (v‘)D (v ) + 

Let us call the state 1flo)=e10ezO. . .OeN where 

the pseudo-vacuum state. Applying the operators A(v) and D ( v )  separately to the 
state Ino), we conclude that it is an eigenstate: 

A(v)Do)= aNlflo> 

D(v)l&J =cNIi-lZO). 

Using equations (6) we obtain eigenstates of T ( v )  of the form 

with eigenvalues 

A ( v ;  vl.. . v , ) = a N  fi A i + c N  fi pi 
i - 1  i = l  

where 

sin(q + vi - v )  
sin( v - v i )  

A .  = 

The following conditions on 
of T ( v ) :  

the vi emerge by requiring 

N sin(q + vi - vi) 
i = l  sin(q + vi - v i ) ’  
j # i  

(7) 

(9) 

that (8) is an eigenstate 

(10) 

If q and U are real and inside the triangle shown in figure 2(6), all activities are 
non-negative. Following Lieb (1967) and Yang and Yang (1966) we obtain from (10) 
in the thermodynamic limit an integral equation which can be solved. The free energy 
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Figure 2. ( a )  Scaled (e1, e l )  plane (Ki = @ E ~ ) .  Phase transitions occur at the critical curve 
q = T.  (6) Corresponding figure in the plane (v, 9) for q < T.  

in the disordered state is given by 

dx sinh[2x(.rr -q)]sinh[x(q -2u)] 
x sinh(.nx) cosh(qx) -pF = In a +$ u > o  

I .  .\ 
O0 dx sinh[2x(.rr-q)]sinh[x(q +2u)] I, sinh(.rrx) cosh (qx) -pF = In c + f 

Now consider the regime such that U = f &T + io, q = .rr + i s  with Io/ > 161, 6 < 0, 
U I O  respectively; then laAi/cpil B 1, \Ail I 1 and lpil S 1, leading to a ‘frozen’ ferroelec- 
tric state with free energy 

1 -pF = In a u = q . r r + i o  

-@F = In c 1 u = -q.rr +io. 

We see from figure 2(a) that models lying in region I do not exhibit a phase 
transition but in regions I1 and I11 (or 11* and III*) the models exhibit one phase 
transition at 77 = T. As a consequence of equation (3), region IV is unphysical with 

There exists a correspondence between two-dimensional vertex models and fac- 
torising S matrices (Zamolodchikov 1979). From the S-matrix point of view we have 
shown, using a method developed previously (Karowski 1979), that our model corres- 
ponds to the scattering of one soliton and one triplet bound state (for a non-minimal 
sine-Gordon S matrix). The general case for the scattering of an m-tuplet and an 
n-tuplet is known (Kulish 1981). As a consequence (Zamolodchikov 1979) we 
conclude that the free energy of the corresponding multi-state vertex model is a 
function of the six-vertex free energy F6y[q, U] and is given by 

d eo. 
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which can easily be verified using the connections with Baxter’s (1972) parameters 
27fB  = 7~ - q, V B  = v + t 7 ~  and equation (11). 

One of us (RNO) would like to thank T T Truong for stimulating discussions. 
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