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We present the complete S-matrix of the O(2N) Gross-Neveu model including kinks, 
elementary fermions, and higher bound states. In addition to the S-matrix factorization, unitarity, 
and crossing conditions we make essential use of constraints which follow from the fact that 
particles in the spectrum are bound states of each other. A consistent solution can only be 
obtained if the kinks obey generalized statistics. Remarkably, some quantities related to this, such 
as "spins" and Klein factors, show Bott periodicity. 

I. Introduction 

In 1974 Gross  and  Neveu  ( G N )  invest igated a two-d imens iona l  model  of  U ( N )  

sp inor  fields which d i sp lays  dynamica l  symmet ry  b reak ing  and asympto t i c  f reedom 

[1]. In  terms of  M a j o r a n a  fields one ob ta ins  a lagrangian  which actual ly  has i sotopic  

O ( 2 N )  s y m m e t r y  [2] 

2N t2N)2  
~GN = 2 t~ai~a -~ l g 2 2 ~a~a • (1) 

a= l  a= l  

The  spec t rum of  the O ( 2 N )  G N  model  has been analyzed with semiclassical  

methods  [2]. It con ta ins  e l emen ta ry  fermions  and m a n y  b o u n d  states of  them. 

Moreover ,  there  are also kinks  [3], whose existence is re la ted to the spontaneous  

chiral  symmet ry  breaking .  

Amazing ly ,  the G N  mode l  also showed o ther  unan t i c ipa ted  proper t ies .  I t  was 

found  in 1 / N  expans ion  that  there  is no par t ic le  p roduc t ion  [4]. This  is re la ted to the 

existence of  inf in i te ly  m a n y  (non- local )  conserva t ion  laws which imply  sol i ton 

behaviour ,  an essential  p rope r ty  for the de t e rmina t ion  of  the scat ter ing matr ix  [5]. 

i On leave of absence from Institut far Theoretische Physik, Freie Universit~t Berlin. 
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The S-matrix of the elementary fermions and their lowest bound states has been 
found by A. and A1. Zamolodchikov [4]. They used the procedure which is generally 

applicable to models with soliton behaviour. Factorization, unitarity, and crossing 
together with some minimafity assumptions allow one to derive the S-matrix 
explicitly. 

Witten proposed that the kinks are isospinors [6]. The factorization equations have 
been derived by Shankar and Witten for the kink-fermion and kink-kink scattering 
amplitudes [7]. But since the number  of amplitudes grows with N and because of 
complicated unitarity and crossing relations they did not calculate the S-matrix. 

In this paper we take advantage of additional constraints, which arise from the 
fact that particles in the spectrum are bound states of each other, to determine the 
complete S-matrix of the G N  model. Some of our results have been reported 
previously [8]. 

We shall show in this paper that the elementary fermions and all their bound 

states may also be considered as kink-kink bound states. Their spectrum is depicted 
in fig. 1 which is taken from ref. [2]. We denote these bound states collectively by 
b~ r). Here n = 1,2 . . . . .  N - 2  is the "principle quantum number" which determines 

the mass: 

Try/ 
m.  = 2 m s i n ( ~ ) ,  (2) 

where 

X = N - 1, (3) 

and m is the mass of the kinks. Furthermore, r = n, n - 2, n - 4 . . . . .  /> 0 is the rank, 
i.e. these bound states are antisymmetric tensors which transform according to the 
r th fundamental representation of the isospin group. The odd-rank tensors corre- 
spond to fermions while the even-rank tensors correspond to bosons. In particular, 
the lightest of these bound states are identical to the elementary fermions of the G N  

model. 
Note that the mass formula (2) is identical to that in the sine-Gordon (SG) theory, 

alias the massive Thirring (MT) model [9]. In contrast to the SG theory, however, 
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Fig. 1. Kink-kink bound states b~, r) for N = 7. 
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where the parameter X is a function of the coupling constant and varies continu- 
ously, in the GN model ~, takes only integer values, cf. eq. (3). Despite this difference 
there exists a striking similarity between these models [2]. We shall see below that, 
apart from the statistics, the kinks of the GN model play the role of the solitons of 
the SG theory (or the elementary fermions in the MT model). Similarly, the bound 
states (both fermions and bosons) of the GN model correspond to the breathers of 
the SG theory. These connections will become evident from the fact that the 
S-matrix elements of the GN model can be conveniently written as a product of two 
terms. One factor (which contains the necessary bound states poles) is the corre- 
sponding SG S-matrix, while the other incorporates the dependence on the symme- 
try group. 

This paper is organized as follows. In sect. 2 we recollect some well-known facts 
about the groups 0(2  N)  which determine the algebraic properties of the particles in 
the spectrum of the GN model. As a result we obtain algebraic rules, which particles 
may be considered as bound states of others. In sect. 3 we explain the concept of 
generalized statistics [10] and make a proposal for the "spins" of the kinks. At the 
cost of introducing certain Klein factors, the required ordinary statistics is obtained 
for the kink-kink bound states. The S-matrix of particles with generalized statistics 
contains, however, non-analytic phase factors. Following Krberle, Kurak and Swieca 
[11], we therefore introduce for all "physical" particles, corresponding auxiliary 
particles which have an S-matrix with the usual analytic behaviour. In sect. 4 we 
present our proposal for the kink-kink S-matrix and show its consistency with 
factorization, unitarity, crossing and bound-state relations and the assumed statis- 
tics. At this point it becomes clear that we had to pay special attention to the signs 
due to Klein factors since they crucially enter into the self-consistency conditions. 
Several technical details including the determination of the complete S-matrix from 
some of the consistency relations are relegated to the appendix. In sect. 5 we discuss 
some examples in more detail. The S-matrices of the GN models with 0(4) and 0(6) 
symmetry are shown to be related to the chiral SU(N)  theories and the 0(8) model 
displays an extra symmetry (triality) between the kinks and elementary fermions. 
Finally, in sect. 6 we summarize our conclusions. 

2. Group theoretical facts about O(2N)  

In this section we recollect some well-known facts about the fundamental repre- 
sentations of the orthogonal groups O(2N) for N ~> 2 [12]. We want to clarify some 
group theoretical aspects and fix the terminology before we plunge into the discus- 
sion of dynamical properties of the GN model*. 

* This section may be omitted provided the reader is willing to accept statements (i)-(iii) at its very 
end. 
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01 0-...2 N~- 2 -1. 
Fig. 2. Dynkin diagram for O(2N). 

The group O(2N) has rank N, i.e., its Lie algebra has N simple roots. The Dynkin 
diagram is given in fig. 2. To every simple root there corresponds a fundamental 
representation. The group O(2N) has N -  2 fundamental tensor representations Pr, 
i.e. representations by antisymmetric tensors of rank r ( r =  1,2 . . . . .  N - 2 ) .  In 
addition it has two fundamental spinor representations 0+ and p_.  The representa- 
tions corresponding to the endpoints of the branches of the Dynkin diagram, i.e. the 
vector representation Pl and the fundamental spinor representations p+ and to_, are 
also called elementary representations. We shall see below that all other representa- 
tions can be constructed from them. This fact will be very important for the 
determination of the S-matrix of the GN model. For convenience we denote the 
trivial (scalar) representation of O(2N) by Po. It does not correspond to a simple 
root and is therefore not drawn in the Dynkin diagram. 

Note the intimate connection between the spectrum of the GN model, fig. 1, and 
the Dynkin diagram fig. 2. In the GN model there exist exclusively such one-particle 
states which transform according to one of the fundamental (or the trivial) represen- 
tations of O(2N). 

2.1. SPINOR REPRESENTATIONS 

In the following we want to discuss the elementary spinor representations in some 
detail. Although their properties can be derived from general considerations we 
prefer to think in terms of explicit matrix representations. This is not only for the 
sake of clarity, but these representations have a direct interpretation in the bosonized 
version of the GN model [7] as will become clear soon. 

Explicit matrix representations of the spinor representations of O(2N) can be 
conveniently obtained from tensor products of the two-dimensional representation 
of SU(2). Let, for n = 1,2 . . . . .  N, 

be SU(2) generators which act on different two-dimensional spaces 

o;1 , "" = . . . . .  , 

where (o~)~ are the Pauli matrices. The 2 N linearly independent states of the tensor 
product space may then be labelled by weight vectors 

N 

Ot = Z O;nen 
i 

n--1 



M. Karowski, H.J. Thun / Complete S-matrix 65 

with components a ,  = ~ ½ with respect to N orthogonal unit vectors %. The weight 
vectors a characterize the kinks of the G N  model in the following sense [7]. In the 
bosonized version of the G N  model the 2N Majorana fields are replaced by N Bose 

fields ¢p, . . . . .  ¢PN" Then a static kink corresponds to a configuration with 

~ , (x  = + ~ )  - ~ , (x  = - ~ )  = ad~ ,  (4) 

for n = 1,2 . . . . .  N. 
We now consider the following 2N hermitian operators: 

n - - I  

Vz,-,  1-[ 3 , (5a) O k - O  n , 
k = |  

n - - |  

3"02, (5b) "/2n z ]'~ Ok 
k = l  

which are, respectively, real and symmetric or imaginary and antisymmetric. These 
operators form a Clifford algebra 

{Y,,Yb} = 28~b, (a,b = i ,2  . . . . .  2 N ) .  (6) 

It is well known that these products of Pauli matrices (generalized y-matrices) form 
an irreducible representation of the Clifford algebra. It is also well known that the 

commutators of Clifford operators are generators of orthogonal groups 

(7) 

This representation of O(2N)  in terms of y-matrices, however, is reducible, which is 
seen as follows. There exists a hermitian operator 

2 N  N 

r - ( - i t  II = II (8) 
a = l  n = l  

which anticommutes with all generators of the Clifford algebra 

{F,y~} = 0 ,  ( a =  1,2 . . . . .  2 N ) .  (9) 

It therefore commutes with all generators M~h of O(2N).  Since 

F 2 = 1, (lO) 

its eigenvalues are -+- 1. In fact, in our representation F is already diagonal, cf. eq. 
(8). Let a + (a  ) be a weight vector with an even (odd) number of negative 
components,  then 

FI -+ ) =  ) ,  (11) 
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r_+ =½(1 r )  = (r_+)" (12) 

are projection operators onto the subspaces of states with positive or negative 
(isotopic) chirality. Because of the existence of the operator F the group O(2N) has 
two irreducible fundamental spinor representations, p_ which acts on the states 
] a -  ) with negative chirality and P+ which acts on the states [a + ) with positive 
chirality. The dimension of O _+ is 2 N- I. In the O(2N) GN model the weight vectors 
a + ( a - )  with an even (odd) number of negative components correspond to 
right-handed (left-handed) kinks. 

Next we want to determine whether the spinor representations are real or 
complex. To this end we consider the unitary charge conjugation operator C with the 
property 

CyaC -1 =~,f  =~'*, (13) 

which implies 

C M a b C - I = M ~ .  (14) 

In our representation C is given by 

N N/2 

C~'nlI=l( i '~2n)~-k!  ' ( --/0"I k__ 10"22k ) (15a) 

for even N a n d  

C =  
N (N-- 1)/2 
I ol I ( 2 ,  = -t o2,o2 k + )) (15b) 

n=l k=l 

for odd N. One easily proves that 

C y • ( - -  1)[u/2]C (16) 

([a] is the largest integer contained in a). Therefore C is antisymmetric if N is equal 
to 2 or 3 mod 4, and C is symmetric for N equal to 0 or 1 mod 4 (recall that we are 
considering only N >/2). From eqs. (15a, b) it is also evident that in our representa- 
tion the operator C, being a tensor product of antidiagonal operators, is antidiago- 
nal, too. It maps a state ]c 0 onto a state with the opposite weight vector ] - a ) .  This 
means in particular that for even (odd) N the charge conjugation operator C does 
not change (changes) the chirality of a state 

I 'c= (-1)NcF. (17) 
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TABLE I 
Periodicity of "spins" ,  Klein factors, etc. in the O ( 2 N )  G N  models for N t> 2 
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N m o d  8 s + + = s _ _ s + _ s + v s F K '+  K "  K - -  eodd, N E . . . . .  N I 0 

0, 4 0, ½ ] ,  ] ] ] K + K _  K w - + orthogonal  

1,5 s, x l  5 s, s 3  7 41 43 K 1 K - -- complex 

2,6 ~ 3 I 3 3 a, a ~, 0 4 ~ K _  K + K + + - symplectic 

3, 7 3s, 7 8 8 , 8 5  I 43 41 1 K 1 + + complex 

Now eq. (14) states that our (reducible) representation of the group O(2N)  is 

equivalent to its complex conjugate. If we project this equation with F_+ onto the 
irreducible subspaces, it implies in view of eq. (17) the following reality properties of 
the elementary spinor representations P+ and 0 - .  Since for odd N the charge 
conjugation operator C changes the chirality of the states, p+ is equivalent to P* ,  
P+ ~ P* and vice versa. Therefore P+ and p_ are complex for odd N/> 3. On the 
other hand, for even N the operator C does not change the chirality, p+ and p are 

real, p_+--~ p * .  More precisely, p+ and p are real-orthogonal for N = 0 mod 4 
(with C symmetric) but they are real-symplectic for N = 2 mod 4 (with C antisym- 
metric). 

We shall see in sects. 3 and 4 that this pattern (Bott periodicity) is reflected in the 
S-matrices of the O(2N)  GN models, cf. table 1. 

In the context of the G N  model, the above statements about the elementary spinor 
representations may be rephrased as follows. For odd N, the antiparticles of 
right-handed kinks are left-handed kinks and vice versa. Therefore for odd N it 
makes sense to call, e.g. the right-handed kinks simply kinks and the left-handed 
ones antikinks. On the other hand, for even N the antiparticles of right-handed kinks 
are again right-handed kinks and similarly for left-handed ones. Therefore in this 
case the chirality cannot distinguish kinks from antikinks; they are in the same 
representation. 

2.2. C L E B S C H - G O R D A N  SERIES 

We want to recall some facts about the Clebsch-Gordan series of the Kronecker 
product of fundamental representations of O(2N)  [12]. We are interested to know 
which fundamental representations occur in the product of two fundamental repre- 
sentations. This knowledge will provide for the group theoretical basis of the various 
schemes in which the particles of the G N  model may be considered as bound states 
of each other. 

Obviously, the product of antisymmetric tensors of rank r and rank s contains an 
antisymmetric tensor of rank r + s ,  

Pr Q Ps ~ Pr+', • ( 1 8 )  



68 M. Karowski, H.J. Thun / Complete S-matrix 

In particular, the rank-r tensor representation is contained in the r-fold Kronecker 
product of the vector representation 

Pr C ( P , )  r- (19) 

Next, the product of an elementary spinor representation and an even (odd)-rank 
tensor representation contains a spinor representation of the same (opposite) chiral- 
ity, 

P ± ® P2k D p -4-, (20a) 

P --+ ® Pzk+l D p ~ .  (20b) 

In particular, a spinor representation of given chirality is contained in the product of 
the spinor representation of opposite chirality and a vector representation, 

p +  C p ~ ® p l .  (21) 

Thirdly, the product of two elementary spinor representations of the same (opposite) 
chirality contains every other fundamental tensor representation; more precisely, 

iO ~ GO_ +_ ~D P N -  2k, (22a) 

p +_ ® p~ D P u -  t-Zk" (22b) 

This implies for even N that the even-rank tensor representations are contained in 
the products P_+ ® P _+ but the odd-rank tensors are in the mixed product P+ ® P - ,  
and vice versa for odd N. Now for even N the spinor representations are real, 
O ÷ ~  P * ,  while for odd N they are complex, P_+ ~ P*- Therefore, the above 
statements can be reformulated in a more concise way which holds for any N; 

P2k C P+ ® 0 " ,  (23a) 

Pzk+l Cp_+ ® p * ,  (23b) 

in particular, 

P, Cp+_®p*. (24) 

We note in passing that eqs. (19) and (22) convincingly justify why Pi, P+, and p_ 
are called elementary representations. 

We already mentioned in subsect. 2.1 that in weight space the kinks of the O(2N) 
GN model are represented by weight vectors with components ___½. In the same 
sense, the elementary fermions correspond to the unit vectors -+-e n. This means that 
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in the bosonic representation the elementary fermions are in configurations whose 
asymptotic values differ by ± err in exactly one component [7]. Obviously the weight 
vector of an elementary fermion may be obtained by the superposition of the weight 
vectors of two kinks which cancel in all but one component. Similarly the rank-r 
tensor states b ~r) are represented by weight vectors with exactly r components equal 
to -4-1. 

In sects. 3 and 4 we shall make particular use of eqs. (19), (24) and (21). They 
suggest the following properties of the O(2N) GN model. 

(i) The tensor states may be considered as bound states of elementary fermions. 
(ii) The elementary fermions are kink-kink bound states. More precisely, for odd 

N they are bound states of two right-handed or two left-handed kinks, but for even 
N they are obtained from a right-handed and a left-handed kink. 

(iii) A kink may be regarded as a bound state of a kink with opposite chirality and 

an elementary fermion. 
Property (i) has already been used for the determination of the S-matrix of the 

elementary fermions and their lowest bound states [4], and (ii) has been discussed in 
ref. [7]. The third property is the essential new ingredient which enables us to 
calculate the kink-kink S-matrix [8]. 

3. Statistics 

The kinks are the fundamental particles of the GN model in the same sense as the 
solitons are the fundamental particles of the SG theory. The elementary fermions in 
terms of which the GN model was originally formulated [1,2] are O(2N) isovectors. 
They are kink-kink bound states quite analogously as the lowest SG breather (the 
elementary SG field) is a soliton-antisoliton bound state. It follows from property 
(ii) that for odd N the fermions are bound states of two right-handed or of two 
left-handed kinks. This implies that, at least for odd N, the kinks can be neither 
bosons nor fermions. They must obey generalized statistics [10]. 

3.1. GENERALIZED STATISTICS 

In contrast to higher dimensions it is possible in two space-time dimensions that 
quantum fields have generalized bilinear commutation relations [10] 

qh( t ,x  )ep2( t ,y  ) -- epz( t,y )4,1( t ,x  )eZ,is,2E~x-y), (25) 

where the generalized "spin" s12 = S21 is a parameter (defined only modulo 1) which 
can be an arbitrary real number. Obviously, the usual commutation relations for 
bosons or fermions are obtained for s = 0 and s =½ (mod 1), respectively, and the 
"relative spin" for particles of different types may be changed by units of ½ by 
application of a Klein factor. 
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We propose the following values for the "spins" of the right-handed ( + )  and 
left-handed ( - )  kinks, 

s++=s__--½N, (26a) 

=' ' (26b) s+ _ ~ N + z .  

This choice is motivated by four conditions: 

(a) Kink-kink bound states corresponding to the fundamental representations g 
with odd (even) rank r are fermions (bosons), as required by the known particle 
spectrum [2]. 

(b) For N = 2 , 3 , 4  the "spins" s + + = s _ _  can be determined from the local 
isomorphisms 0(4) "~ SU(2) ® SU(2), 0(6) "~ SU(4), and the triality in O(8), cf. fig. 
3. We show in sect. 5 that the isomorphisms correspond to model identities: the 0(4) 
GN S-matrix is equal to a product of two chiral SU(2) S-matrices and the 0(6) GN 
S-matrix is equal to the S-matrix of the chiral SU(4) model [11]. In the chiral SU(N)  
model, the "spin" of the fundamental particles is s = ½ ( l -  1/N). Therefore, the 
"spins" are ¼ and 3 for 0(4) and 0(6), respectively. On the other hand, for 0(8) 
there exists a triality symmetry between the three elementary representations [12] 
and correspondingly between the fermions, the right-handed and the left-handed 
kinks [13]. This suggests for O(8), SFF = s++ = S_ =½. 

(C) We want a "smooth" N-behaviour of the "spin". 

(d) The complete S-matrix of the O(2N) GN model which we derive below is 
consistent with the assignments of eq. (26). 

Since the "spins" are defined only modulo 1, eq. (26) implies a similar cyclic 
pattern as the Bott periodicity, cf. table 1. We shall see in sect. 4 that this periodicity 
shows up in the explicit S-matrix, too. The above choice of the "spins" turns out to 
be crucial for the self-consistency of our proposal. 

Let us now give an algebraic formulation of the fact that elementary fermions are 
bound states of kinks. To this end we introduce fermion fields ~a (a = 1,2 . . . . .  2N)  
and "kink fields" ~,, (a = 1,2 . . . . .  2N).  We do not pretend to have a well defined 
quantum field theoretic description of the kinks. This, however, is also not necessary 
for our purpose. We need the kink operators only "on the mass shell". We may write 

4o(x) = voc)o.,  (27a) 

O 

ctl bl el 

Fig. 3. Dynkin diagrams for (a) 0(4) ~ SU(2) ® SU(2), (b) 0(6) ~ SU(4), (c) 0(8). 



M. Karowski, H.J. Thun / Complete S-matrix 71 

where ~ is a suitable normal product prescription. The projection operator F+ in 

the Clebsch-Gordan coefficient implies, as required by property (ii) stated at the end 
of sect. 2, that for odd N the elementary fermion is a bound state of two 
right-handed kinks whereas for even N it is a bound state of a right-handed and a 
left-handed kink. Alternatively, we may also express the fermions in terms of kinks 

with the opposite chiralities, 

¢~(x) = KU%[~(.~](x)(r_~,oC).~. (27b) 

Here K is a Klein factor for kink fields, 

K ~ K =  -~( ,  K 2 = K + K  = 1, (28) 

which is necessary in order to have the same commutat ion relations of 5( with ~ as 
defined by eq. (27a) and by eq. (27b). For even N eqs. (27a) and (27b) are identical. 
One easily checks that with the choice (26) the q~, are indeed fermion fields which 
anticommute with each other, and the commutat ion relations between kinks and 

ferrnions are given by eq. (25) with 

s+F =~+~ 

s_F (29) 

modulo 1. Note that s F -~-S+F for even N, but s_  v =S+F  +½ for odd N, cf. table 
1. 

In the SG theory, the soliton can be understood in the semiclassical limit as a 
coherent state of lowest breathers. In the quantum model this means that the soliton 
is a bound state of itself and a breather [8]. It is also known that in the semiclassical 

approximation a kink of the G N  model may have a fermion " t rapped" in it [2]. That 
is why we assume that a kink is a bound state of a kink and an elementary fermion, 

and in agreement with property (iii) there must be a relation of the form 

(30) 

where j(~ ~ (F±5(),~. The Klein factors K ~  can be determined from the require- 
ment that both sides of eq. (30) have the same commutat ion relations with ~(~ (y) .  
One obtains, cf. table 1, 

K'+ = KK'_  = K~N+ Z)/eIK~ N+ 1)/21, (31) 
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where 

~-'- = Kw_~ +-Kw_ = -K+_Sc+- K+_, (32) 

K = K + K _ .  (33) 

So far we have obtained an admittedly formal version of the bound-state condi- 
tions which, however, respects the generalized commutation relations (25). In order 
to be able to derive the dynamical content of these equations (which is done in sect. 
4) it is essential to disentangle the questions of particle statistics from the dynamical 
problems. 

3.2. A U X I L I A R Y  P A R T I C L E S  

Following ref. [11] we consider the asymptotic creation operators aA+in(0) and 
a~-°ut(0) of the physical particles (the index A may be a for kinks and a for 
fermions, and 0 is the usual rapidity variable: pl = mA sh0). Then the commutation 
relations (25) imply 

+ i n  - - + i n  t -  + i n  - t -  + i n  - - - 
aA °ut(O)aB°ut(O ) : a n  o u t ( O  )aA °"t(O)exp{7-Z~risAne(O--O')} .  ( 3 4 )  

A solution of eq. (34) may be obtained in terms of auxiliary bosonic creation 
+ in 

operators a A out (0), namely 

[l+in(O)=a~in(O)exp{2qTifo~dO'SABN~n(o')}, 

[t~°ut(O)=a+°Ut(O)exp{2~if°_ dO'sAoN~t(O' )} ,  (35) 

where N A = a + a A. 
We now assume, again following ref. [11], that the S-matrix of the auxiliary 

particles has the usual analytic behaviour. It follows from eqs. (35) that it coincides 
with that of the physical particles for a particular ordering of the creation and 
annihilation operators, namely 

(Ola,~U,( O~) . . . .  .a,, '~'~"t tTn )a,+in~ Ot) " "a,+i"( O,,)l 

= 

i f O ~ > O ~ > . . . > O "  and 0 1 > 0 2 > . . . > O n .  (36) 
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This implies for the two-particle S-matrix elements which are defined by 

73 

S I A (  O,)B( 02) ) ~ = JC( O,)D( Oz) ) ~" cogAB( O~ -- Oz) , 

the relation 

SI .4 (0 , )~ (02) )  i" : 1~(0,)/~(02)) i" cDSAB(O~ -- 02) , 

coSAB( O ) = cDSAB( O )exp{ 21riScDe( O ) } . 

(37) 

(38) 

Therefore, the physical S-matrix, S, has a non-analytic dependence on the rapidity 
difference unless the "spin" Scn is integer or half integer. In particular, we obtain for 
the scattering matrix of physical fermions cdSab calculated in ref. [4] and the 
corresponding one for the auxiliary particles the relation 

c d a a b  : - -  c d S a b  . (39) 

It is important to notice that the GN model in terms of the physical particles differs 
in some aspects from the model in terms of the auxiliary particles. Of course, in 
contrast to the physical particles, the auxiliary particles by definition have Bose 
statistics throughout. But there is also a higher degeneracy in the spectrum of the 
auxiliary particles than for the physical particles, cf. fig. 1. Let us give an example: 
for odd N, the bound state of two left-handed auxiliary kinks is not identical to that 
of two right-handed ones since their S-r~z,trix elements for the scattering with other 
auxiliary particles differ in some cases by a sign. This is due to the Klein factor in 
eq. (27b) which may change the "spin" in eq. (38) by ½. This extra degeneracy is 
discussed in more detail in appendix A. 

4. Two-particle S-matrix 

In this section we first present our proposal for the kink-kink S-matrix. The 
S-matrices for fermion-kink and for fermion-fermion scattering can be derived from 
it by the usual bound-state method [9, 14]. Then we show the consistency of these 
S-matrices with the factorization, unitarity, crossing and bound-state conditions. 
Finally, we also give the two-particle S-matrix for the scattering of higher bound 
states with elementary fermions. 

4.1. KINKS AND ELEMENTARY FERMIONS 

The two-particle S-matrix for auxiliary kinks has the following decomposition into 
invariant amplitudes [7] 

2N 

v8S~t3( 0) = 2 - u  ]~ l u r (  O]a(r)a(r),vVa vs . .  (40) 
r ~  0 • 
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where 

O(a~) ~ o a,.. .¢t r 1 . .  a$ =r-~. E s i gn (q r ) ( y a " ' ' ' ]  ' ' )aS 

is an antisymmetric rank-r O(2N) tensor, and by "~r)~') " ~  "Sa we mean the contraction 
for fixed r, o.~/J "a'o~'" "% 

There exists a "conservation law for (isotopic) chirality" [6] which forbids the 
reflection of chirality, e.g. 

( r ) , ,  = o 

This implies the relations [7] 

U N + r ( O ) = ( - - 1 ) r u N - - r ( O ) .  (41) 

Moreover, the amplitudes u r with even (odd) index r contribute only to the scattering 
of kinks with the same (opposite) chirality. 

We propose the invariant amplitudes to be given by 

__ SO" " ~ f ~ d x  e -x(l+l/x) 
u, (O)- -  u ( 0 ) e x p l J  ° x s h ( x / ) , )  ( 1 - e X r / X )  

e-X°+'/2X)sh½x(1 + l /X)  

ch~xsh( x / h  ) 
- i--~ ) (42a) 

for r ~< N, and those for N < r ~< 2N are obtained by eq. (41). For convenience we 
have in eq. (42a) split off the SG amplitude for the scattering of two solitons [9]: 

u S ° ( 0 ) = e x p  x sh  x , (42b) 

for the special value of the coupling constant, X = N - 1 .  Note that the above 
exponential representations are valid only for values of 0 such that the integrands do 
not increase exponentially for x --* ~ .  In other regions of the complex 0-plane, the 
functions are defined by analytic continuation. The functions u s° and u r may be 
expressed in terms of (infinite) products of F-functions. 

Since the elementary fermions may be considered as kink-kink bound states we 
can derive the S-matrices for fermion-kink and for fermion-fermion scattering from 
eqs. (40)-(42), cf. fig. 4. This is done explicitly in appendix B. We here only give the 
final results. The two-particle S-matrix for auxiliary fermions and kinks has the form 

b/~S~(O) = (FN)t~,~ah'~t,(0) + (rNob")a~tz(O), (43) 
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a) b} 

Fig. 4. Fermion as kink-kink bound state in (a) fermion-kink scattering, (b) fermion-fermion scattering. 

where the scattering amplitudes are given by 

and 

0-½i l r (1  + l / X ) &  (44a) 
S, ~ t, - t 2 = 0-½irr(1  -- l /X )  

S 2 ~ t  I + ( 2 N - -  1)t 2 

: t ° t  sh x ,44b) 

The SG amplitude for the scattering of a soliton and a lowest breather is [9] 

sh0 + isin(½~r(1 + l /X ) )  
sG (44c) 

S s ° l ' b ( 0 )  = s h 0 -  isin(½rr(1 + l /X ) )  ' 

and the sign el, N is a special case of the general expression, cf. table 1, 

e,,N = ( -- 1){U/Z+r}(N+l). (44d) 

Note that for odd N the S-matrices (43) for the interaction of auxiliary fermions 
with right-handed or left-handed auxiliary kinks differ by an overall sign. In the 
physical S-matrices, however, this sign difference is compensated, cf. eq. (38), since 
in this case the "spins" S+F and s F differ by 2, as was remarked after eq. (29). 

The two-particle S-matrix for auxiliary fermions is 

~s.b(o) --  - {aoba ,~o , (0 )  + ~ . c&~o2(0 )  + a o A c O , ( 0 ) } ,  

where the scattering amplitudes are given by 

(So,S + ,S_)  ~ ( 2 N o ,  + 02 + a3,02 + o3,02 - o3) 

_(e-i~ xe-i~ 1)s (e) 8Ti~ '  X S T i ~ '  

(45) 

(46a) 
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with 

M. Karowski, H.J. Thun / Complete S-matrix 

S_(O)=SSbC(O)expl-2f  ~ 
t o 

dxsh(x/2X)-x(l/2+l/2X)sh(x'-~)}x ch½x e , (46b) 

and again we have extracted the SG amplitude for the scattering of two lowest 
breathers [9]: 

sh 0 + i sin( Ir/Tt ) 
SSb°(O) = s h 0 - / s i n ( q / X )  " (46c) 

Obviously, because of eq. (39), one obtains for the scattering of physical elementary 
fermions the S-matrix of ref. [4]. 

4.2. CONSISTENCY CONDITIONS 

Now that we have listed the various two-particle amplitudes let us turn to the 
consistency relations which they have to fulfill. The factorization equations for 
kink-kink and kink-fermion [7] or fermion-fermion [4] scattering are easily checked: 

(1 -- r/X) -- (1 -- O/irr) 
u'+2(O)=u'(O)(1 r /X)  T ( 1 0 / i r r ) '  (47a) 

t,(O) = 2X i~r t2(O) (47b) 

o2(0 ) = - - x O o 3 ( O ) .  (47c) 
l ' / r  

Similarly, unitarity for fermion-kink, fermion-fermion, and u-channel kink-kink 
scattering is obvious, since 

IS,(O)l = Igz (o) l  = ISo(O)l 

= ]S+ (O)] = [S_ (O)] = [Ur(i~r-O)[ = 1 (48) 

for real 0. The s-channel unitarity condition for kink-kink scattering is more 
cumbersome, 

r , s  

( t = 0 , 1  . . . . .  2N) .  (48a) 

We have no general proof that eq. (42a) fulfills this relation, but we have verified it 
for special values of N and t, e.g. N- -2 ,3  and t = 0 , 1 , 2 N - 1 , 2 N .  In order to 
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formulate the crossing relations, we have to be careful with the definition of 
antiparticles. First notice that with the shorthand notation 

la)  - I ~ ) c o ~ ,  

where C is the charge conjugation matrix defined in eqs. (15a, b), the S-matrix fulfills 
the following relations: 

anS, t~(i~r - O) = r~S'~(O) =~ 2 - N ~ ,  ~ t ' t ~ ,  (r)o~a(r), (49a) 
r 

abS[~a(i~r -- 0) = -- (-- 1) N t~bS~a(O), (49b) 

#aS.b( i~r -- O) = -- t~bS,~( e ), (49c) 

aaScb( i~r -- O) = caS~b( O ), (49d) 

where er, N was defined previously (44d). Then eqs. (49) are the crossing relations 
provided we identify up to Klein factors the physical antiparticles d and & with 5 

~ 

and &, respectively. More precisely, we must have 

g;~(x ) = ~: g:a (x ) ,  (50a) 

2 + ( x ) =  K ' 2  + (x ) ,  (50b) 

where K is given by eqs. (32) and (33) and 

K'= = ( K +  )~N+')/2~( K :)~(N+2)/2J, (51) 

cf. table 1. 
In the derivation of eq. (49a) we have used the identity 

Z L s u , ( O )  = ( -  l ' tr/:l '~ " Us( i .  - 0 ) ,  (52) ) ,~a ~s, NJrs 
S S 

where the coefficients frs arise in the Fierz transformation 

1 (r)~(r) = ~ r lo(s) , , ( s )  (53) 
l ~ ! w a f t  u y ~  ~ Jrs  S T ot~ uy f l  

s 

and are explicitly given by [15] 

£,  =(-1)[(~+')/ :12 N Z ( - - 1 ) t ( : ) ( 2 N _ ~ r  ) . (54) 
l 
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We have no general proof of eq. (52), but it has been verified for N = 2,3 with 
arbitrary 0 and for general N with particular values of 0 such as 0 = O, i~r, i~r/X, etc. 

Additional constraints on the two-particle S-matrix come from the bound-state 
relations. In the SG theory the soliton-antisoliton S-matrix has poles in the complex 
0-plane which correspond to bound states, the breathers bn, and there exist relations 
between various scattering amplitudes [9]. 

Similarly, the GN model has kink-kink bound states b~ r) which transform accord- 
ing to the fundamental representations Or of O(2N) with the spectrum (2), cf. fig. I. 
This implies that the amplitudes Ur(O ) have poles at 

n 
On = iTr~, for 0 < n = r, r + 2 . . . .  < )k. (55a) 

In particular, the pole of ul(O ) at irr/X corresponds to the elementary fermion as a 
kink-kink bound state as predicted by eq. (27). The condition (30) that a kink is a 
kink-fermion bound state requires a pole in the amplitude $2(0), cf. eq. (44), at 

0 =½iTr(l + l /X) ,  (55b) 

and the poles in the amplitudes S o and S , cf. eq. (46), at 

0 = i~/X (55c) 

describe the two-fermion bound states b~2 °) and b(2 2). The general bound-state scatter- 
ing formula [14] (cf. appendix B) then gives relations between the scattering 
amplitudes. From the scattering of a fermion as a kink-kink bound state with a kink 
or a fermion, cf. fig. 4, we obtain, respectively, the conditions 

t,(O)=el. N2 2N 'x(2NZ1)ur(O13)ur+.(i~r-O23) 
r 

(56a) 

and 

S ( O ) - - 4 X ( 1 - O ) ( l + ~ O ) t 2 ( O , 3 ) t 2 ( 0 2 3 ) ,  (56b) 

with 

1 0|3 =0+½i7r(1--~),  

1 
023 = 0-½iw(1 --~-) .  (56c) 
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a) b) 

Fig. 5. Kink as kink-fermion bound state in (a) kink-kink scattering, (b) kink-fermion scattering. 

79 

Analogously, from the scattering of a kink as a kink-fermion bound state with a kink 

or a fermion, cf. fig. 5, we obtain, respectively, 

/'/r( 0 ) ---~ /dr+ 1( 013 )El, N S 2 (  i'lr - -  023 ) 2 - r/X - O / i ~ r  
2 -- O/i~r 

and 

with 

, O/iTr 
= Ur+ 1( 023 )El, N S 2 (  iqT - -  ~13 ) 0 / i~ -  ~ F/)k 

s2(o) = s 2 ( 0 ; 3 ) ,  s _  (023) 
O/iv + ½ -  1/2X 

O/iqr + ½ + 1/2X 

O' = O + i  ~r 13 ~ '  

(57a) 

(57b) 

' (57c)  023 = 0 - t~. 

In the derivation of eqs. (56a) and (57a) the crossing relations (49a, b) and the 
factorization equations (47a, b) have been used. It can be verified that the relations 

(56) and (57) hold for the proposed S-matrices given by eqs. (40)-(46). In fact, eqs. 
(57) have been used to determine the amplitude S 2 from Zamolodchikovs'  S and 
then ur from S 2. These more lengthy calculations are relegated to appendix C. 

4.3. H I G H E R  BOUND STATES 

It is remarkable that in the GN model there exist exclusively such one-particle 
states which transform according to one of the fundamental (or the trivial) represen- 
tations of O(2N),  cf. fig. 1. The higher bound states b~ (r) with rank r <  X = N - 1 are 
described by relations which generalize eqs. (27). For odd r, we obtain fermions 

(58a) 
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~(r)( X ) : K u + ,o3L [ X J(t~] (x)( F+ ff(r)c )et~ 

= KU+ '~rC[5(.~/~] (x)(F_ o(r)C)./~ 

= ~[~o, ...<](x~ 
Then 
ourselves to the scattering of a higher bound state b(. r) with an elementary fermion 
L =bT, 

b~r) + f~ --+ b~S) + fb. 

Upon application of the general bound-state formula (B1) of appendix B, from eqs. 
(58) and by properly taking into account the Klein factors we obtain the relation 

(s)bg(r)a(O):(--]) (N+l)(r+l)O-N['(s,f~'*l. \v "~]a'fl' a'bXan(O-[-liq'r( ] --~")) 

(r) Ur 

and finally after some algebra 

,.,~s,.,o, 0, _-,_, ;+, ( . j , . , , . ,[ .~ ( 0~ .~" )(0~ - ' + ~"/- 2~ - ,  + ~.] 

+ (6(t,,)~.r)- 6at,6(,)(r))[--4~.( 1 -  ~ ) -  2 + 2r] 

+ (8(a,)(b~)- 6~t,~,.)~))[--4)~ ~ -- 2 +  2r] 

-- 28(h.s)~,[(n -- s)(2)~-- s -- n)] '/z 

- -  28,,)6~b..,[ (n -- r)(2)~ -- r -  n )] ,/2} 

SG s~,,~,(0) 
x 

4?tz(O/i~r+ 1 - (n - 1)/22,)(0 + (n + 1)/22t) 

×exp{fo°°dx e-X('/2 ("+')/2X)+e-X(3/2+(~-')/zx) ( O ) } x  ch½x sh x ' (59) 

(58b) 

the S-matrix for the higher bound states may be determined. We restrict 
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where 

~(s)(r) : 2 - u  tr(oCs)o ~ r ) ) .  

For n = 2 and r, s = 0, 2, these S-matrices agree with those of ref. [4] which in view of 
the last equality in (58b) and eq. (55c) may also be calculated from the two-fermion 

S-matrix, 

(s)bS(r)a( O ) ~)* c, bSca,( O 
i~r 

cd P(r)l/I s--SS, I I ' 

where 

~bepca = 2 - i / 2 ( 8 , ~ 8 b a  - 8~aSb~ ) , 

S o> = So, s 2> = s _ .  

By means of eqs. (B.1) and (40) one can in principle also calculate the general 
kink-bound state S-matrix (s)¢S(r), and the general bound state-bound state S-matrix 
(,)(,)S(rx,), but the expressions get even more complicated than eq. (59). 

5. Examples 

In this section we discuss in more detail the S-matrices of the GN model for 0(4), 
O(6), and 0(8). We demonstrate that they are consistent with the local isomorphisms 
0(4) ~ SU(2)® SU(2) and 0(6)--~ SU(4), cf. figs. 3a, b, and with the triality for 
0(8) which is obvious from fig. 3c. 

5. I. 0(4)  

Let us briefly recapitulate some properties of the chiral SU(N) model which is 
defined by the lagrangian [1] 

a = [  

The "spin" of the physical particles is [11] 

1 
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and the S-matrix of the auxiliary bosons is given by 

v8 ss~(N)(0) = u SU(N)(0)Sv,~88p + uSU(N)(0)SV/j88, ~ , (62a) 

where 

F(1 - O / 2 7 r i ) F ( O / 2 ~ r i -  1 / N )  
uSUCN)(o) = F(1 -- O/2~ri -- 1 / N ) F ( O / Z w i )  ' (628) 

uSU~N)( o ) _ 27ri uSU~U)( O ) (62C) 
NO 

(note that in ref. [11] the auxiliary particles are taken to be fermions; therefore their 
S-matrix differs from eq. (62) by a sign). 

In the chiral SU(N)  model there exist antisymmetric bound states b ~') of r 
fundamental particles for r =  1 , 2 , . . . , N -  1. The states b ~r) and b (N r) are antipar- 
ticles of each other. In particular, in the chiral SU(2) model there exists only one 

doublet with [ 11 ] 

Xa "* (63) = X~, = Kto,~)¢~, 

where K is a Klein factor 

K~( K = - ~  

and by eq. (61) the "spin" equals 

s = J .  (64) 

On the other hand, in the 0(4) GN model there are doublets of right-handed and 
left-handed kinks but no bound states, cf. fig. 3a. For N = 2 the particle-antiparticle 
relation given by eq. (50b) coincides with eq. (63). According to eq. (26a) the "spins" 

are 

s + + = s  _1  ( 6 5 )  -- - - 4 ,  a 

which agrees with eq. (64). Really, this identify served to motivate formula (26a). 
For the scattering of two auxiliary kinks of the same chirality one obtains from 

eqs. (40) and (41) 

r ! eCrUy/~ u s a  
r e v e n  

= --u28~,,~8~ + ½(u o + u2)Sv/38~,~, (66a) 
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and from eqs. (42a, b) 

F(1 - O/2~ri )F( O/2rri - ½) 

u2 = F(½-0/2~r i )F(O/2rr i )  ' (66b) 

iTr 
½(.o(O) + = (66c) 

which agrees with eqs. (62a, b,c) for N = 2. Similarly, for the scattering of two kinks 
of opposite chirality one obtains, with 

s + _ = ½ ,  (65b) 

the physical S-matrix 

Z,, ~ ( r ) o ( r )  = - ¼  Y 
r odd " 

= 8v~,8~a, (67) 

i.e. kinks of different chirality decouple. 

Note that the amplitude 132(0 ) given by eq. (65b) also coincides with the SG 
soliton-antisoliton transmission amplitude t s ° ( 0 ) =  uS°(i~r-  0), cf. eq. (42b) at the 
critical value X = 0 o r  j~2 = 8,/r [9 ] .  However, because of the anomalous statistics 
(65a, b) and, related to this, the anomalous crossing relation (49a), our proposed 
0(4) GN S-matrix cannot be consistently understood as a product of two SG 
S-matrices, as was argued in ref. [6]. 

5.2. 0(6) 

Similar to the previous example, we now show that the isomorphism 0(6) ~ SU(4), 
cf. fig. 3b, leads to an identity between the 0(6) GN model and the chiral SU(4) 
model. The four right-handed (left-handed) GN kinks correspond to the four 
fundamental SU(4) particles (antiparticles). The kinks have "spin" s = ~ .  The 
S-matrix for the scattering of two kinks of the same chirality follows from eqs. (40) 
and (41): 

r e v e n  r !  r t V J  ~,fl vSa  

= - u2(O)8r.88¢ +¼(uo(O)+ u2(O))8r~8~., (68a) 
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r(1 - O/2rri)F( O/2rri - k) 

u 2 ( ° ) =  F(3 -o /2~r i )F (o /2 r r i )  ' (68b) 

¼(u0(O) + u2(O)) = ~ u 2 ( o ) ,  (68c) 

which agrees with eqs. (62a, b, c) for N = 4. 
The other scattering amplitudes follow for both models analogously by using the 

crossing relation and the bound-state formula (B.1). 

5.3. 0(8) 

We terminate our presentation of examples with the group 0(8). This turns out to 
be a particularly beautiful case, a fact which is also suggested by the Dynkin 
diagram fig. 3c. There exists an extra symmetry (triality) between the three elemen- 
tary representations [12]. In the GN model this implies a degeneracy between the 
two types of kinks and fermions not only for their masses [13] 

but also for their "spins" 

m I = 2msin ~ r  = m, 

SFF ~-S++~-S__ ~-1. 

In the S-matrix this symmetry shows up in the identity of the unitary u-channel 
amplitudes for scattering of kinks with equal chirality and for fermion-fermion 
scattering. From eqs. (40)-(42) and (45), (46) we obtain 

uo( O ) = So( irr - O ) ,  

u2(O ) = --S ( i~- -  O), 

u , ( O )  = S+( i r r  - 0 ) .  (69) 

Correspondingly, for the scattering of kinks with different chiralities and for 
fermion-kink scattering we obtain from eqs. (40)-(44) 

u , (0)  = S2(;~ - 0) ,  

u3( O ) = - S , (  irr - 0 ) .  (70) 

We finally remark that the 0(8) GN model realizes a "perfect bootstrap" [13] in 
the sense that any of the elementary particles is a bound state of particles of the two 
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other representations. And the boson (in the center of the Dynkin diagram) may be 
considered as a bound state of two particles of the same elementary representation. 

6. Conclusions 

Since we now have determined its total S-matrix, we have gained a rather 
complete knowledge of the O(2N)  Gross-Neveu model. Many properties of the 
particles in the spectrum are known: their masses, their behaviour under internal 
symmetry transformations, their statistics, and their scattering amplitudes. This 
brings the GN model almost to the same state as the sine-Gordon theory (alias 
massive Thirring model). Indeed, there is a close analogy between them. The GN 
kinks correspond to the SG solitons, the elementary GN fermions to the lowest 
breather (the SG field), and the higher bound states to the higher breathers. What 
makes the GN model a more interesting testing ground (from the point of view of 
elementary particle physics in four dimensions) are its additional properties such as 
dynamical symmetry breaking and asymptotic freedom. 

What is still missing for the GN model is an analog to Coleman's correspondence 
between the SG theory and the MT model. This, of course, is related to the fact that, 
at this time, we do not have a satisfactory field theory of the kinks. We would like to 
remark that the perturbation expansion in the SG theory around fl -- 0 corresponds 
to the 1 / N  expansion in the GN model. Hence the kink S-matrix has no simple 
N ~ oo limit, as the soliton S-matrix has a non-trivial /3-~ 0 limit which is the 
classical expression. On the other hand, in the MT model the perturbation expansion 
around g = 0 ()~ = l) corresponds to N = 2 in the GN model which is, of course, not 
a good expansion point. Also, the super-selection rules implied by topologically 
non-trivial configurations are quite different for theories with solitons or kinks. 

It is interesting also to consider the O(2N + l) models. These, however, are not 
related to Gross and Neveu's original U(N)  models. They also cannot be completely 
bosonized. The determination of their S-matrix is in progress. 

We thank B. Schroer for discussions. One of us (H.J.T,) gratefully acknowledges 
the kind hospitality extended to him at the II. Institut for Theoretische Physik der 
Universit~t Hamburg where part of this work was performed. He also thanks 
P. Weisz for useful discussions and for a critical reading of the manuscript. 

Appendix 

(A) AUXILIARY FIELDS 

In subsect. 3.2 we have introduced auxiliary particles (bosons) corresponding to 
the elementary physical particles. We have already pointed out that the auxiliary 
particle spectrum has a higher degeneracy. Indeed, we have to distinguish between 
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different types of auxiliary elementary fermions and kinks, i.e. ~b(x), ~(x)  and X(X), 
X(X), 2(x) .  The bound-state relations for the auxiliary model which correspond to 
eqs. (27a, b) and (30) read in terms of auxiliary kink and fermion fields 

~o( ~ ) = ~ C [ x o x . l (  x )( r + voc)°,, (A.la)  

for N even (odd). 
We also obtain 

bBS,,~ = _ ( -  1) N hBS~,~, 

and similarly for the scattering of auxiliary fermions 

(A.3b) 

(A.4) 

~a(x ) = c~C[X~XI~](x )( F_ y~C )~B, (A.lb)  

j( -+ (x)  = o'~..[ ~ba X ~] (x)(ya)~,,, (A.2a) 

-+ (x)  = 6"~,[ ~,, X 7-](x)(y,)/~,~. (A.Zb) 

The S-matrix elements for the scattering of particles and their dotted partners with 
another particle differ at most by a sign due to the Klein factors in eqs. (27b) and 
(30). This can be seen as follows for the scattering of bound states a and d with a 
kink a using eq. (38): 

t;BSa,~(0) = exp{2~risbBe(O)} l;~,~a,,(0) 

= exp{Z~ri(saB -- sb~)e(O)} h~S~ 

= ( -  1) N broS,,,, (A.3a) 

where the particles a, /~ are given by eq. (27b) without the Klein factor KN. In the 
second equation of (A.3) the identity K + K =  1 has been used in deriving the 
relation 

(Ol ~ou,(0~)~;ou,(0;)a?n (0,),~ (02)10) = (01/~ou,(0~)~ou,(0~)'~i+n (0,)a~ (02)10), 

and for the third equation we inserted 
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and for kink-kink scattering 

vsSa B = - -  ( - - 1 )  IN/z] . ~ s S i ~ ( F ) ~ , , ( F l + U ) , t ~  , (a .5a)  

= ( - 1 )  IN/21 ?~S~(F)ea((-F)I+N)~ B. (a .5b)  

All these relations are consistent with the bound state S-matrices derived in 

appendix B and the S-matrix proposed by eqs. (40)-(42). 

(B) BOUND-STATE RELATIONS 

In this appendix we derive the consistency conditions (56) and (57) which follow 
from the assumption that the elementary fermion is a kink-kink bound state and the 
kink is a kink-fermion bound state as expressed by eqs. (A.1) and (A.2). 

The general bound-state formula [14] reads 

~'+b',~.'S~+b,c( Pl +P2,P3) 

= Res * ,hq%'+ h' ,'h'l S( p, ,P2)[ ,/2 a"b" 
(Pl +P2) 2 =m~+h 

× ~,,c,S,,,,c,,( p~,p3) h,,c,,Sb,,'c( P2,P3) a'"h'"IS( p,,P2)[2b '/2 ~b%+b, 

(B.1) 

if a + b is a bound state of a and b with mass m~+ h described by a normal-product 

relation like 

~ + b ( x )  = ~'~[~5,~hl(x) ~,b%+b, (B.2) 

with 

[~,b%+hl 2 = 1. 
a,b 

Eqs. (A.la, b) and (A.2a, b) are special cases of this general relation. 
The relation (A.la) which expresses the auxiliary fermion as a bound state of 

auxiliary kinks together with eq. (B.1) imply, in view of fig. 4a, 

b#S~,,~(0) = 2~ N(c+yb)a,  v, v,#Sr~(O,3) a, Sa,(O23)(r+yaC)v a, (B.3) 

with 013 and 023 as defined by eq. (56c). 
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From the representation of the kink-kink S-matrix (40) together with (41), the 
crossing relation (49a), and the identity 

2-Utr(~bo(r)o(s))(o(OF+ ~,"o('))t~, 

=½[1 + ( - 1 ) r F ] e v ( -  l )5 ! s !  

v \ ,  r _  1 ) - -  1))]8. ,~+, 

- ( r - - +  2 N - r , s - - +  2 N - - s ) } ,  (B.4) 

we obtain 

b#S~,~(e) = 2 ' -  2N E (-- 1)r[1 + (-- 1)rF] Bver+,.u 
r 

× [ 8 v " a b ~ ( 2 N r l ) + ° f ~ [ 2 1 v ,  \ r - 1 2 N - 2 t - - ( 2 N - ' ) ) ]  

(u.s) 

which leads to eq. (56a). 
Using the factorization equations (47a) and the representations (42) and (44) of 

the amplitudes u r and t, we find consistency of eq. (B.5) with the proposed S-matrix 
(40)-(44). If we perform the same calculation for the ~ as given by eq. (A.lb) we 
have to replace F and F+ by - F  and F_ ,  respectively, in eqs. (B.3)-(B.5) and also 
in (43) which is consistent with eq. (A.3a). 

Analogously to eq. (B.3) we obtain from fig. 4b for fermion-fermion scattering 

~.a S.h ( 0 ) = 21 - N( C + Yc )/~'~' ~'a S~b' ( 013 )/3'b'SBb( 023 )( I'+ "~a C ) et,8 

= 6ob6..a[tlt 2 + t2t , + (2N -- 2)t2t2] 

+ 6a,aha[t,t , -- (2N -- 3)t2t2] 

4- a a d a b , . [ - - t l t  2 --  12l I q-- ( 2 N -  2) t2 t2 ]  , (B.6) 

where the arguments 013 and 023 of the t-amplitudes have been suppressed. Using the 
factorization equation (47b), we obtain eq. (56b), and with the representations (44), 
(46) of the amplitudes t i and a i we find consistency of eq. (B.6) with the proposed 
S-matrix (43)-(46). Again the same statement holds for ~, in agreement with eq. 
(A.4). 
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Let us now turn to eq. (A2a) which expresses the dotted auxiliary kink as a bound 
state of an auxiliary kink and an auxiliary elementary fermion. From fig. 5a we 

obtain [with 0~3 given by eq. (57c)] 

1 
o ) = ) )( vo )o,. 

Ur_i } X ( r - -_ - f ) ! [ t t+(2N- -2r+l ) t2 ]  u,+, (r-T i)! [tl -- (2N -- 2r -- 1)t2] 

= ( - 1 )  ' - 1  

r r! Ur+'(OI3)Sz(i~r--O23)2--r/X-O/icr 

(B.V) 

where again the factorization equations (47a, b) and the crossing relation (49b) have 
been used. Since the amplitudes u, for even (odd) r contribute only to the scattering 
of kinks with equal (opposite) chirality, eq. (B.7) together with (A.5a) imply the first 
part of eq. (57a). The second part of eq. (54a) follows from an interchange of the 
role of the particles with rapidity 01 and 02 in eq. (B.7). If we perform the same 
calculation for 2 as defined by eq. (A.2b) we obtain from eq. (A.3a) on the r.h.s, an 
extra factor ( -  1) N which is in agreement with eq. (A.5b). 

Finally, from fig. 5b we obtain 

t ~. 

2N--1  ] 
1 t , ( o , + Z U o  2 + o 3 ) + ~ t 2 ( o  3 o,) = -  

N ba l 

-- (2N-- 1)(o, + o3) ], (B.8) 

which leads to eq. (57b). Again one can verify that these equations are consistent 
with the proposed S-matrix, and the same statement is true for analogous relations 
involving :~. We have thus demonstrated that the proposed S-matrix is consistent 
with all bound-state conditions concerning elementary fermions and kinks. 
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(C) DERIVATION OF THE S-MATRIX 

In the previous appendix we have shown how eqs. (56) and (57) follow from the 
bound-state relations (A.1) and (A.2) and the factorization and crossing relations. 
Let us now demonstrate how for N~> 3 one can derive the kink-fermion and 
kink-kink S-matrices from the known fermion-fermion S-matrix (for N = 2 there are 
no fermions). This method is similar to that used in ref. [5]. 

We make the minimality assumption that the amplitudes Ur(O ) and $2(0 ) are 
analytic in the physical strip 0 ~< Ira0 ~< ¢r except for possible poles at 

O=i~rn/X, (n = 1,2 ..... X -  1), 

and 

O =½i~r(1 -+- l /A) ,  

respectively, which may either directly correspond to bound states, cf. eqs. (55a, b), 
or are implied by crossing symmetry. We consider the functions 

.;(0)=u.(0)/.s°(0), (C.la) 

t ; ( o )  = (C.lb) 

o/( o ) = o,( o ) / s ¢ p (  o ). (C.lc) 

They also satisfy eqs. (56) and (57) since the SG amplitudes fulfill the corresponding 
bound-state relations [9]. Moreover, the function S~(O), which is defined from t; as 
in eq. (44b), is analytic in the strip 0 ~< Im0 ~<~  for X ~> 2. The further minimality 
assumption that S~(O) does not vanish in this region and the unitarity equation (48) 
imply that lnS~(0) is analytic for Jim01 ~<l~r [note that a zero at 0 =½i~r(1 - l /X) 
which would be introduced into S~ by s~S~b if S 2 did not have a pole there, is 
excluded by eq. (57b)]. Therefore, we may apply Cauchy's theorem and obtain the 
representation valid for [Im0[ ~< Tr/2X: 

o ) { ~ i  f dz shXg In S~(z/X)} 
exp "c sh(z---X0) shz s;(o) 

=exp  f ~ c h ( z - X O )  chz lns~(z/X+i~r/2X) ' (C.2) 

where the contour C encloses the strip Jim z] ~<½~r counterclockwise. Using eq. (57b) 
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we may now replace the ratio of S~ functions at different arguments on the r.h.s, of 

eq. (C.2) by the known function S ' ,  

c h ( z - ; k O  ~ ( - 2 ) j o  ch½x s h Z c h  x ~  . 

(c.3) 

After some algebra we obtain eq. (44b) up to an undetermined sign, since I S~(0)] = 1 

by unitarity. 
Analogously we argue that the function In u ' l ( icr -  O) is analytic for IIm01 ~ < ~r/)t, 

since again a possible zero of u'l(iw - O) at 0 = irr/X is ruled out by eq. (57a). Then 

Cauchy's theorem gives the representation 

S ~ ( 2 z / X - i T r ( ½ - 1 / 2 ~ ) )  u' l( iv - O) i ~c d z  shX0 In 
u' , ( iw) - e x p  2-~ f ~ - ~ c h ( z - ½ X O )  ch----~ S ~ ( 2 z / X + i c r ( ½ - 1 / 2 X ) )  

(C.4) 

Since S~ has already been determined, we obtain after some algebra eq. (42a) for 
u~(O), again up to an open sign. Next the function uo(O ) is determined again from 
eq. (57a), and the remaining ones may be derived recursively from the factorization 

equation (47a). 
So far we have determined the amplitudes u r and t i only up to a sign. It can be 

verified that the general "minimal" solution of eqs. (57a, b) is obtained from ours by 

the substitutions 

l,----~ ( E " )  N + I t¢i, 

with e, e ' -  ± I. There exists only one alternative choice of phase factors which 
matches all other conditions, too. It is obtained by e = e' = 1, but it also requires 

the substitutions 

I 
S +  ~ S +  2 , 

K'__~ K N K  ' ' 

K "  ~ K'VK '' . 

This, however, means that there are no changes in the physical S-matrix, S. 
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