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Abstract

For a number of field theoretic models with soliton behaviour the on-shell solutions
have been obtained in the last few years. In this paper it is shown how to calculate off-
shell quantities like form factors and Green’s functions by means of the knows S-matrices,
general properties of quantum field theory and minimality assumptions.
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1 Introduction

Various 1+1 dimensional field theoretic models with soliton behaviour have been investigated

recently, e.g. the sine-Gordon alias the massive Thirring model [1], the O(N) nonlinear σ-model

and the Gross-Neveu model [2], the chiral SU(N) model [3] and a Z(N)-Ising model in the

scaling limit [4]. The later will be used in this paper to demonstrate the bootstrap program for
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the construction of off-shell quantities like form factors and Green’s functions from the known

exact S-matrix, general properties of quantum field theory and some minimality assumptions.

A Z(N)-Ising model in the scaling limit is defined by taking the correlation functions of a

Z(N)-Ising model on a 2-dimensional lattice in the limit

lim
T→Tc

|1− T/Tc|−nβ⟨ σR1 · · ·σRn ⟩ = S(r1, . . . , rn)

with Ri → ∞ and ri = Ri|1 − T/Tc|ν fixed. By analytic continuation one obtains from the

Schwinger functions the Green’s functions in Minkowski space. For N > 2 there exist several

Z(N)-invariant nearest neighbor interactions. Let us make the assumption that one of these

interactions enforces soliton behaviour for the model in the scaling limit.

For field theories with soliton behaviour the dynamics is governed by an infinite number

of higher conservation law. In particular for scattering processes they imply the absence of

particle production and factorization of the n-particle S-matrix [5]

S(n)(p1, . . . , pn) =
n−1∏
i=1

n∏
j=i+1

S(2)(pi, pj) (1)

where the two-particle S-matrix S(2)(pi, pj) applied to an n-particle state act on the particles

with momenta pi and pj

S(2)(pi, pj) | . . . , αi(pi), . . . , αj(pj), . . . ⟩in = | . . . , α′
i(pi), . . . , α

′
j(pj), . . . ⟩in α′

iα
′
j
Sαiαj

(pi, pj) . (2)

The α’s label the kinds of particles. Together with unitarity, crossing and minimality assump-

tions this property allows the exact calculation of the S-matrix [1, 2, 3, 4]. Let us repeat briefly

the arguments for the Z(N)-Ising model with soliton behaviour [4]. Assume the existence of an

elementary boson b1 corresponding to the order variable σ(x) and the existence of a two-particle

bound state b2 = (b1b1). Then [6] we get the series of bound states bk with masses

mk = m1
sin ak

sin a
. (3)

Since the order variable σ assumes the values – the N -th roots of one – we have

σ† = σN−1 (4)

which suggests the assumption that the anti-particle b̄1 is identical to the bound state bN−1.

Then from m1 = mN−1 we get for the parameter a the value

a = π/N . (5)
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Minimality means that the transmission amplitude for the scattering of two particles b1 has

only the pole corresponding to the bound state b2. This implies uniquely [4]

S11(θ) =
sinh 1

2
(θ + 2πi/N)

sinh 1
2
(θ − 2πi/N)

(6)

where θ is the rapidity difference defined by

p1p2 = m2 cosh θ . (7)

From eq. (6) we obtain for the scattering of the bound state bj and bk

Sjk(θ) = exp 4

∫ ∞

0

dx

x

coshx(1− |j − k|/N)− coshx(1− (j + k)/N)

sinhx tanh(x/N)
sinhx

θ

iπ
. (8)

This formula is consistent with crossing, the above assumption b̄1 = bN−1 and more general

even with b̄k = bN−k since

Sjk̄(θ) = Sjk(iπ − θ) = Sj N−k(θ) . (9)

This model is simple because of the absence of backward scattering which is a consequence of

b̄1 = bN−1 [4].

For N = 2 the model is much more simple since there is only one kind of particles b = b̄

and the two-particle S-matrix is

S(2) = −1 . (10)

Because of this simplification the bootstrap program has been carried though for this model

[8].

2 Watson’s Theorem

For form factors, i.e. matrix elements of local operators, we derive a set of equations which

follow from general principles of quantum field theory, ’maximal analyticity’, and the S-matrix

factorization. For simplicity we first consider the case where we have only one kind of bosons

in the model and a hermitian operator O(x). If we define the function F (θ) (for θ c.f. eq. (??))

by

F (θ) = ⟨ 0 | O(0) | p1, p2 ⟩in

it follows from CPT-invariance that F (−θ) = ⟨ 0 | O(0) | p1, p2 ⟩out, unitarity and factorization

that F (θ) = ⟨ 0 | O(0) | p1, p2 ⟩out S(θ), and crossing that F (iπ − θ) = ⟨ p1 | O(0) | p2⟩in. Hence

we have Watson’s equations:

F (θ) = F (−θ)S(θ)
F (iπ − θ) = F (iπ + θ) .

(11)
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The corresponding equations for the general case where the α’s denote the different kinds of

particles read [7]

Fα1...αn(θij, iπ − θrs, θkl) = out⟨α1(p1), . . . , αm(pm) | O(0) | . . . , αn(pn) ⟩in

= α1...αmS
(m)

α′
1...α

′
m
(θij)Fα′

1...α
′
n
(−θij, iπ + θrs,−θkl) α′

m+1...α
′
n
S
(n−m)
αm+1...αn(θkl)

(12)

where 1 ≤ i < j ≤ m, 1 ≤ r ≤ m < s ≤ n, m < k < l ≤ n and 0 ≤ m ≤ n. Solutions of these

equations are only known for simple cases.

3 Construction of form factors

The construction of form factors has been performed for models with arbitrary number of kinds

of particles for the case n = 2. Hence one particle expectation values of local operators, the

usual form factors are known for various models [7]. Absence of backward scattering enables

us to make proposals for more general form factors with n > 2, e.g. for the sine-Gordon [7]

and the Z(N)-Ising model. Furthermore arbitrary n-particle matrix elements are known for

the Z(2)-Ising model in the scaling limit [8].

There are two distinct problems in this procedure:

a) The “matrix problem”: The set of equations (12) has not been solved for the general

case. For n = 2 we diagonalize the two-particle S-matrix and get for each eigenvalue the

simple equation (11).

Theorem [7]

An analytic function F (θ) fulfilling eqs. (11) is (up to a normalization) uniquely deter-

mined by the positions of poles (and zeros) at θ = iak in the physical strip 0 < ℑθ < π:

F (θ) = K(θ)Fmin(θ) (13)

where

K(θ) = const

(∏
k

sinh
1

2
(θ − iak) sinh

1

2
(θ + iak)

)−1

(13a)

is a solution of eqs. (11) with S = 1 and

Fmin(θ) = exp
1

4πi

∫ ∞

−∞

dz

sinh 1
2
(z − θ)

cosh 1
2
θ

cosh 1
2
z
lnS(z) . (13b)
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For vanishing reflection S(n) is diagonal and a solution of the general equation (12) is

Fα1...αn(θ12 . . . ) = Kα1...αn(θ12 . . . )
∏
i<j

Fmin
αiαj

(θij) (14)

where the function K is a solution of eqs. (12) with S = 1, this means it has no branch

cuts in terms of the variables pipj.

b) The “pole problem”: The poles in the physical region of the function

Fα1...αn(θ12 . . . ) = ⟨ 0 | O(0) |α1(p1), . . . , αn(pn) ⟩in

which are contained in the function K, are determined by one-particle states in all sub-

channels αi1 , . . . , αij . If we make the minimality assumption that there are no further

so-called redundant poles and no zeros in the physical region, we can make proposals for

exact form factors, which can be checked by perturbation theory.

4 Examples

a) The Z(N)-Ising model in the scaling limit with soliton behaviour

The minimal form factor function corresponding to the external legs bj and bk for the Z(N)-Ising

model follows from eqs. (8,13b):

Fmin
jk (iπ − θ) = exp

∫ ∞

0

dx

x

coshx(1− |j−k|
N

)− coshx(1− j+k
N

)

sinh2 x tanh(x/N)

(
1− coshx

θ

iπ

)
. (15)

Since there is no backward scattering in this model, the general form factor is given by eq. (14).

The determination of K as a rational function of pipj is in general a complicated problem. Let

us consider in more detail the case N = 3. Then we have two particles b1, b2 = b̄1 with mass

m and the two-particle S-matrix

S11(θ) = S12(iπ − θ) =
sinh 1

2
(θ + 2πi/3)

sinh 1
2
(θ − 2πi/3)

(16)

The minimal form factor functions are

Fmin
11 (iπ − θ) = cosh 1

2
θ exp

∫ ∞

0

dx

x

sinh(x/3)

sinh2 x

(
1− coshx

θ

iπ

)
,

Fmin
12 (iπ − θ) = exp

∫ ∞

0

dx

x

sinh(2x/3)

sinh2 x

(
1− coshx

θ

iπ

)
.

(17)
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The matrix elements of the order variable σ(x) must have poles corresponding to the bound

state b2 = b̄1 of two particles b1. Hence we make the proposals:

⟨ 0 |σ(0) | b2(p1), b2(p2) ⟩in = const
1

(p1 + p2)2 −m2
Fmin
11 (θ12) (18a)

⟨ 0 | σ(0) | b1(p1), b1(p2), b2(p3) ⟩in =
const′

(p1 + p2 + p3)2 −m2

(p1 + p2)
2

(p1 + p2)2 −m2

∏
i<j

Fmin
αiαj

(θij) (18b)

⟨ 0 | σ(0) | b1(p1), b1(p2), b1(p3), b1(p4) ⟩in

= const′′
(
(p1 + p2 + p3 + p4)

2 −m2
)∏

i<j

Fmin
αiαj

(θij)

(pi + pj)2 −m2

(18c)

The numerators in eqs. (18b,c) prevent reflection in two particle scattering and particle pro-

duction 2 → 3, respectively. The proposals (18) fulfill the consistency conditions

Res
θ12=2πi/3

⟨ 0 |σ(0) | b1(p1), b1(p2), b2(p3) ⟩in = const⟨ 0 | O(0) | b2(p1 + p2), b2(p3) ⟩in (19a)

Res
θ12=2πi/3

⟨ 0 | σ(0) | b1(p1), b1(p2), b1(p3), b1(p4) ⟩in

= const⟨ 0 | O(0) | b2(p1 + p2), b1(p3), b1(p4) ⟩in
(19b)

Furthermore from the four point function (18b) one gets the two-particle S-matrix eq. (16):

S11(θ12) = 1 +
1

4m2i sinh θ12
×
[(

(p1 + p2 + p3)
2 −m2

)
⟨ b1(p2) |σ(0) | b1(p1), b1(p2) ⟩in

]
(p1+p2+p3)2=m2

.
(20)

We have, up to now, no other possibilities to check these results, because we do not know,

as mentioned in the introduction, which interaction is that one which enforces the soliton

behaviour for the Z(3)-Ising model in the scaling limit.

b) The Z(2)-Ising model

For the Z(2)-Ising model in the scaling limit the problem of calculating arbitrary matrix ele-

ments of the order variable σ

⟨ 0 |σ(0) | p1, . . . , pn ⟩in = F (n)(θ12, . . . ) (21)

has been solved completely [8]. The minimal solutions of Watson’s equations (11) with S(2) =

−1 is obtained from eq. (15).

Fmin(θ) = −i sinh
θ

2
. (22)
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Since there is no reflection we can use formula (14). The function K(n) contains the poles from

one-particle states in all sub-channels. Because there is only one kind of boson b with mass m,

we obtain for n = 3

K(3) =
const

(p1 + p2 + p3)2 −m2
=

Z(3)

cosh 1
2
θ12 cosh 1

2
θ13 cosh 1

2
θ23

. (23)

This proposal fulfills the consistency condition that F (3) with the leg corresponding to σ(x)

on-shell, as in eq. (20), has to reproduce the correct S-matrix S(2). From this condition we also

obtain the constant to be Z(3) = 2.

For n ≥ 5 the arguments are just slightly more involved. The function K(n) must have poles

at (pi+ pj + pk)
2 = m2 where any set of particles i, j, k is combined to give a one-particle state.

However, the residues of ”higher poles” where more than three particles build up a one-particle

state must vanish, since the presence of such poles would be in contradiction to the absence of

particle production. Hence the minimality hypothesis implies that K(n) has the form

K(n) =
const

(∏
i<j(pi + pj)

2
)n−3

2

∏
i<j<k

(
(pi + pj + pk)2 −m2

) =
Z(n)∏

i<j cosh
1
2
θij

(24)

The numerator is necessary in order to modify the severe singularities of the denominator at

pi + pj = 0 into simple poles. The constant Z(n) can again be determined to be Z(n) = 2(n−2)/2

by crossing and taking the off-shell leg σ(x) on-shell. Finally we obtain

⟨ 0 | σ(0) | p1, . . . , pn ⟩in = (2i)
n−1
2

∏
i<j

tanh
θij
2

(25)

for odd n. The matrix elements vanish for even n because of Z(2)-invariance.

5 Green’s functions

Till now the problem of constructing Green’s functions has been solved only for the simplest

field theory with soliton behaviour, the Z(2)-Ising model in the scaling limit T → Tc [8]. Having

deduced all matrix elements of the field σ(x), we can immediately write down expressions for

the Green’s functions. For example the two-point function is

τ(p) =

∫
d2x eipx ⟨T σ(x)σ(0) ⟩ = i

∫
dκ2 ρ(κ2)

p2 − κ2 + iϵ
(26)

with the spectral function ρ given by

ρ(p2) =
∑
n odd

1

n!

∫
dθ1
4π

· · ·
∫

dθ1
4π

2π δ(2)(p−
∑
i

pi)
∏

1≤i<i≤n

tanh2 θij
2

. (27)
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There are similar formulae for the n-point Green’s functions which are all in agreement with

those derived in [9] by different methods. This agreement supports the validity of the mini-

mality hypothesis and gives some confidence in the feasibility of the bootstrap program. The

determination of the correlation functions for one of the more involved soliton field theories

remains, however, a challenging open problem.
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