An exact relativistic S-matrix in $1+1$ dimensions: The on-shell solution of the massive Thirring model and the quantum Sine-Gordon equation*

M. Karowski
Institut für Theoretische Physik
Freie Universität Berlin, Arnimallee 3, D-1000 Berlin 33, Germany

Abstract

: In the classical massive Thirring model and for the Sine-Gordon equation there exists an infinite sequence of conservation laws which imply for scattering processes: i) no particle production, ii) only momentum exchange, and iii) factorization of the N particle S-matrix into two-particle S-matrices. These conservation laws are claimed to survive quantization. The properties i), ii), and iii) together with unitarity, crossing symmetry, and T-invariance determine uniquely the S-matrix and the bound state spectrum which agrees with that one calculated in WKB approximation. Hence, in $1+1$ dimensions all relativistic models describing a particle-antiparticle pair are equivalent if the above mentioned conservation laws hold true. The exact complete S-matrix is given explicitly.

Contents

1 Introduction 2
1.1 The results [1,2] 2
1.2 The Sine-Gordon equation 2
1.3 The Thirring model 4
2 The massive Thirring model 4
3 The S-matrix 6
4 Off-shell quantities 9

[^0]
1 Introduction

1.1 The results $[1,2]$

We shall calculate an S-matrix element like

$$
{ }^{\text {out }}\left\langle f\left(p^{\prime}\right), \ldots, \bar{f}\left(q^{\prime}\right), \ldots, b_{i}\left(k^{\prime}\right), \ldots \mid f(p), \ldots, \bar{f}(q), \ldots, b_{j}(k), \ldots\right\rangle^{\text {in }}
$$

for the scattering of arbitrary numbers of particles (fermions) f, antiparticles (antifermions) \bar{f}, and different kinds of bound states b_{1}, \ldots, b_{n}, where b_{i} can either be considered as a bound state of $(f \bar{f})$ or $\left(b_{j} b_{i-j}\right)$ or $\left(b_{j} b_{k} b_{i-j-k}\right)$ etc.

We shall see that the S -matrix in $1+1$ dimensions is uniquely determined by some general properties which are valid, e.g., in the case of the massive Thirring model and the Sine-Gordon equation.

1.2 The Sine-Gordon equation

Let us consider the relativistic wave equation in $1+1$ dimensions:

$$
\begin{equation*}
\square \phi+\frac{\alpha}{\beta} \sin \beta \phi=0 \tag{1}
\end{equation*}
$$

where $\phi(x, t)$ is a classical field, $\sqrt{\alpha}$ a mass parameter, and β a coupling constant. This equation is completely soluble by means of the inverse scattering method [3]. There is a static solution called "soliton"

$$
\phi_{S}(x)=\frac{4}{\beta} \arctan e^{\sqrt{\alpha} x}
$$

with energy or mass $m=8 \sqrt{\alpha} / \beta^{2}$ and the antisoliton $\phi_{A}(x)=\phi_{S}(-x)$. Another set of solutions, oscillating in time, are the "breathers" which may be interpreted as solitonantisoliton bound states. They have a continuous (center of mass) energy spectrum with $0<E<2 m$.

Now we come to the most important property of the Sine-Gordon equation: there exists an infinite sequence of local conservation laws [4]

$$
\partial_{\mu} J_{n}^{\mu}(x)=0 \quad n=1,3,5, \ldots
$$

The corresponding charges of asymptotic states $\left|p_{1}, \ldots, p_{N}\right\rangle^{\text {in }} \stackrel{\text { out }}{ }$ are

$$
\sum_{i=1}^{N}\left(p_{i+}\right)^{n}
$$

where $p_{ \pm}=p_{0} \pm p_{1}$. (Similar currents exist for p_{-}.) The conservation of these charges implies for scattering
i) no particle production;
ii) only momentum exchange, i.e., the sets of incoming and outgoing momenta are equal;
iii) factorization of an N-particle S-matrix into two-particle ones:

$$
S^{(N)}\left(p_{1}, \ldots, p_{N}\right)=\prod_{i<j} S^{(2)}\left(p_{i}, p_{j}\right) .
$$

(Since the factors on the right hand side do not commute in general the ordering has to be specified, see below.)

The usual quantization of a field theory - by defining Green's functions in renormalized perturbation theory by means of the Gell-Mann-Low expansion - is not very useful for the Sine-Gordon equation if one wants to describe solitons. Since ϕ_{S} is very far away from the vacuum $\phi=0$, which would be the starting point for ordinary perturbation theory. The quantization of classical solutions can be attacked by semiclassical methods [5]. Dashen, Hasslacher, and Neveu obtained in WKB approximation the bound state spectrum which is now discrete, of course,

$$
m_{k}=2 m \sin \frac{k \pi}{2 \lambda} \quad k=1,2, \ldots<\lambda
$$

where

$$
\lambda=\frac{8 \pi}{\beta^{2}}-1
$$

and

$$
m=\frac{8 \sqrt{\alpha}}{\beta^{2}}\left(1-\frac{\beta^{2}}{8 \pi}\right)
$$

is the soliton mass. This spectrum was claimed to be exact.
Coleman [6] gave arguments based on perturbation theory that the quantized SineGordon theory must be equivalent to another field theory in $1+1$ dimensions, the massive Thirring model. Other approaches to this problem were presented in [7].

1.3 The Thirring model

The (massless) Thirring model [8] describes a self-interacting Dirac field in $1+1$ dimension:

$$
\mathcal{L}_{0}=\bar{\psi} i \gamma \partial \psi-\frac{1}{2} g j_{\mu} j^{\mu}
$$

where $j^{\mu}=\bar{\psi} \gamma^{\mu} \psi$ and g is a coupling constant. The operator solution of this model is known since a long while and the Wightman functions

$$
\left\langle\psi\left(x_{1}\right) \ldots \bar{\psi}\left(x_{N}\right)\right\rangle
$$

can be calculated [8]. This field theory, however, is rather simple. Because of infra-red effects there are no one-particle poles in momentum space and there is no scattering in this model. The massive Thirring model defined by the Lagrangian

$$
\mathcal{L}=\mathcal{L}_{0}-m \bar{\psi} \psi
$$

is much more complicated. Coleman's equivalence now says: identify the two fundamental Thirring particles f, \bar{f} with the soliton, antisoliton of the Sine-Gordon equation and relate the coupling constants of both models by

$$
1+\frac{2 g}{\pi}=\frac{8 \pi}{\beta^{2}}-1
$$

Our approach is, in some sense, an alternative proof of this equivalence and also a proof of the exactness of the WKB Sine-Gordon spectrum.

2 The massive Thirring model

Our treatment of the massive Thirring model starts with the observation that for the classical case there exists again an infinite sequence of local conservation laws [9]:

$$
\partial_{\mu} J_{n}^{\mu}(x)=0 \quad n=1,3,5, \ldots
$$

The fields $\psi, \bar{\psi}$ are anticommuting objects in the classical model; we consider it as the tree approximation of the corresponding quantized model. The consequences of these conservation laws are the same as for the Sine-Gordon equations mentioned above. This can be seen as follows:

$$
F:=(i \gamma \partial-m) \psi-g j_{\mu} \gamma^{\mu} \psi=0 .
$$

In general, we have

$$
\partial_{\mu} J_{n}^{\mu}=\bar{\triangle}_{n} F+h . c .
$$

where $\bar{\triangle}_{n}$ is a local operator which may be expressed by powers of derivatives of the fields. The integrated Ward identity with $X=\psi\left(x_{1}\right) \ldots \psi\left(x_{N}\right)$ in tree approximation reads

$$
\begin{aligned}
0 & =\int d^{2} x\left\langle T \partial_{\mu} J_{n}^{\mu}(x) X\right\rangle_{t r} \\
& =\int d^{2} x\left\langle T\left(\bar{\triangle}_{n} F(x)+h . c .\right) X\right\rangle_{t r} \\
& =\int d^{2} x\left\langle T\left(\bar{\triangle}_{n} i \frac{\delta}{\delta \bar{\psi}(x)}+\text { h.c. }\right) X\right\rangle_{t r} \\
& =\left\langle T \triangle_{n}\left(x_{1}\right) \ldots \bar{\psi}\left(x_{N}\right)\right\rangle_{t r}+\ldots+\left\langle T \psi\left(x_{1}\right) \ldots \bar{\triangle}_{n}\left(x_{N}\right)\right\rangle_{t r} .
\end{aligned}
$$

In momentum space on the mass shell after amputation only the parts in \triangle_{n} contribute which are linear in the fields. These vanish for even n and are given for odd n by

$$
\triangle_{n}=i \partial_{+}^{n} \psi+\ldots
$$

where $\partial_{+}=\partial_{0}+\partial_{1}$. Applying the LSZ reduction technique we obtain

$$
0={ }^{\text {out }}\left\langle p_{1}^{\prime}, \ldots, p_{M}^{\prime}\right)\left|p_{1}, \ldots, p_{N-M}\right\rangle^{\text {in }}\left(\sum_{i=1}^{M}\left(p_{i+}^{\prime}\right)^{n}-\sum_{i=1}^{N-M}\left(p_{i+}\right)^{n}\right) .
$$

This means, an the S-matrix element vanishes unless $\sum_{i=1}^{M}\left(p_{i+}\right)^{n}, n=1,3,5, \ldots$ is conserved. It follows that the set of incoming and outgoing momenta are equal:

$$
\left\{p_{1}^{\prime}, \ldots, p_{M}^{\prime}\right\}=\left\{p_{1}, \ldots, p_{N-M}\right\} .
$$

Hence we have the properties:
i) no particle production
ii) only momentum exchange
iii) factorization of S.

One believes [10] that i) and ii) imply iii).
The question is now whether the conservation laws survive quantization. The apparent occurrence of anomalies may be seen as follows: In the BPHZ scheme the integrated Ward identity reads [11]

$$
\begin{aligned}
0= & \int d^{2} x\left\langle T N_{d}\left[\partial_{\mu} J_{n}^{\mu}\right](x) X\right\rangle \\
= & \int d^{2} x\left\langle T\left(N_{d}\left[\bar{\triangle}_{n} F\right](x)+\text { h.c. }\right) X\right\rangle \\
= & \int d^{2} x\left\langle T\left(N_{d-3 / 2}\left[\bar{\triangle}_{n}\right](x) i \frac{\delta}{\delta \bar{\psi}(x)}+\text { h.c. }\right) X\right\rangle \\
& \quad-\int d^{2} x\left\langle T\left(N_{d}\left[\left(\bar{\triangle}_{n}-\left\{\bar{\triangle}_{n}\right\}\right) m_{0} \psi\right](x)+\text { h.c. }\right) X\right\rangle .
\end{aligned}
$$

The dimension $d=n+2$ of the operator $\partial_{\mu} J_{n}^{\mu}$ determines the subtraction degree of the normal product $N_{d}\left[\partial_{\mu} J_{n}^{\mu}\right](x)$. The unrenormalized mass m_{0} differs from m by a counter term which is finite in the BPHZ scheme and is determined by normalization conditions. The reason for the extra term on the right-hand side is that $m_{0} \psi$ in F has lower dimension. Hence, in the quantum equation of motion inside of a normal product, $N_{d}\left[\bar{\triangle}_{n} m_{0} \psi\right](x)$ has to be replaced by the anisotropic normal product $N_{d}\left[\left\{\bar{\triangle}_{n}\right\} m_{0} \psi\right](x)$. This means that subgraphs which contain the line ψ are subtracted according to d and those which do not contain the line ψ are subtracted minimally $(d-1)$. Therefore, the extra term will, in general, be different from zero if \triangle_{n} is not linear in the fields which is true for $n \geq 3$. One expects [12] that the currents J_{n}^{μ} can be redefined such that these anomalies cancel. This was explicitly shown for $n=3$ [13]. We believe that the conservation laws and the properties i), ii), and iii) hold true in the quantized massive Thirring model.

3 The S-matrix

Our main result can be expressed as follows:
Theorem: If a relativistic model in $1+1$ dimensions with a particle-antiparticle pair f, \bar{f} fulfills the assumptions:

1. i) no particle production
ii) only momentum exchange
iii) factorization of the S-matrix;
2. unitarity, crossing and T-invariance;
3. non-vanishing backward particle-antiparticle scattering (and some more technical properties concerning analytic and asymptotic behaviour which will show up in the proof),
then the S-matrix is uniquely determined. I depends on two parameters: the mass m and a "coupling" constant λ.

Note that assumption 1. is a consequence of the conservation laws considered in the previous section.

Proof: An S-matrix obeying 1. can be formulated as follows [2]:

$$
\begin{aligned}
& { }^{\text {out }}\left\langle\alpha_{1}^{\prime}\left(p_{1}^{\prime}\right), \ldots, \alpha_{N}^{\prime}\left(p_{N}^{\prime}\right) \mid \alpha_{1}\left(p_{1}\right), \ldots, \alpha_{N}\left(p_{N}\right)\right\rangle^{\text {in }} \\
& \quad=\left\langle\alpha_{1}^{\prime}\left(p_{1}^{\prime}\right), \ldots, \alpha_{N}^{\prime}\left(p_{N}^{\prime}\right)\right| S^{(n)}\left|\alpha_{1}\left(p_{1}\right), \ldots, \alpha_{N}\left(p_{N}\right)\right\rangle
\end{aligned}
$$

where the α_{i} denote the different kinds of particles $f, \bar{f}, b_{1}, b_{2}, \ldots$. The N-particle S-matrix is a product of all two-particle ones in a special order which, for example for $p_{1}>\ldots>p_{N}$ is given by:

$$
S^{(N)}\left(p_{1}, \ldots, p_{N}\right)=\prod_{i=1}^{N-1}\left(\prod_{i<j \leq N} S^{(2)}\left(p_{i}, p_{j}\right)\right)
$$

where the two-particle S -operator is defined by

$$
\begin{aligned}
S^{(2)}\left|\ldots, \alpha_{i}\left(p_{i}\right), \ldots, \alpha_{j}\left(p_{j}\right) \ldots\right\rangle= & t_{\alpha_{i} \alpha_{j}}\left|\ldots, \alpha_{i}\left(p_{i}\right), \ldots, \alpha_{j}\left(p_{j}\right) \ldots\right\rangle \\
& +r_{\alpha_{i} \alpha_{j}}\left|\ldots, \alpha_{j}\left(p_{i}\right), \ldots, \alpha_{i}\left(p_{j}\right) \ldots\right\rangle .
\end{aligned}
$$

The transmission and the reflection amplitudes are t and r, respectively. Because of ii), reflection only appears for different particles with equal mass, as f and \bar{f}. Let us consider first "repulsive" couplings $\left(g<0, \beta^{2}>4 \pi\right)$ such that there are no bound states. The general case will be obtained by analytic continuation with respect to the coupling. Then $S^{(2)}$ contains four functions: $t_{f f}, t_{\bar{f} \bar{f}}, t_{f \bar{f}}:=t$ and $r_{f \bar{f}}:=r$.

Let us introduce the rapidity difference θ_{12} by

$$
\left(p_{1}+p_{2}\right)^{2}=2 m^{2}\left(1+\cosh \theta_{12}\right) .
$$

The physical plane is mapped onto the strip $0<\operatorname{Im} \theta<\pi$ and the physical region for $f \bar{f}$ scattering $\left(p_{1}+p_{2}\right)^{2}-i \epsilon>4 m^{2}$ correspond to $\theta_{12}>0$.

Unitarity $S^{\dagger} S=S(-\theta) S(\theta)=1$ and crossing symmetry

$$
\begin{gathered}
t_{f f}(\theta)=t_{\bar{f} \bar{f}}(\theta)=t(i \pi-\theta) \\
r(\theta)=r(i \pi-\theta)
\end{gathered}
$$

yield

$$
r^{2}=t^{2}\left(1-1 /|t|^{2}\right) .
$$

Hence, there remains only one unknown function $t(\theta)$ which we shall determine now [1]. If $\ln t(\theta)$ is analytic in the physical strip and does not grow terribly for $|\operatorname{Re} \theta| \rightarrow \infty$,

Chauchy's formula yields

$$
\begin{aligned}
\ln t(\theta) & =\frac{1}{2 \pi i} \int_{\mathcal{C}} \frac{d z}{\sinh (z-\theta)} \ln t(z) \\
& =\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{d z}{\sinh (z-\theta)} \ln (t(z) t(i \pi+z))
\end{aligned}
$$

\mathcal{C} being the contour enclosing the physical strip $0<\operatorname{Im} \theta<\pi$. The unitarity and crossing relations imply

$$
t(z) t(i \pi+z)=\frac{h(z)}{h(i \pi-z)}
$$

where $h(z)=t(z) / r(z)$ which is well defined if $r \neq 0$. We shall now prove that $h(z)$ is determined by the factorization condition of the three-particle S-matrix and T-invariance: $S^{(3)}$ has to be symmetric

$$
S_{12} S_{13} S_{23}=S_{23} S_{13} S_{12}
$$

This means, for example, that the amplitude for the transition

$$
f\left(p_{1}\right) f\left(p_{2}\right) \bar{f}\left(p_{3}\right) \rightarrow f\left(p_{1}\right) \bar{f}\left(p_{2}\right) f\left(p_{3}\right)
$$

has to be equal to that one of the reversed process.
Using $t(\theta)=r(\theta) h(\theta)=t_{f f}(\theta) h(\theta) / h(i \pi-\theta)$, we obtain the functional equation for $h(\theta)$

$$
h(\alpha+\beta)=h(i \pi+\alpha) h(\beta)+h(\alpha) h(i \pi-\beta) .
$$

The solutions of this equation are

$$
h(\theta)=\frac{\sinh \lambda \theta}{\sinh \lambda i \pi}
$$

where λ is a free parameter to be interpreted later. After some calculations we obtain:

$$
t(\theta)=\exp i \int_{0}^{\infty} \frac{d x}{x} \frac{\sinh \frac{x}{2}(1-\lambda)}{\sinh \frac{x}{2} \cosh \frac{x}{2} \lambda} \sin \frac{x \lambda}{\pi}(i \pi-\theta)
$$

or

$$
t(\theta)=F(\theta) / F(2 \pi i-\theta)
$$

with

$$
F(\theta)=\prod_{k=1}^{\infty} \prod_{l=0}^{\infty} \frac{\left(2 l+\frac{k}{\lambda}+\frac{\theta}{i \pi}\right)\left(2 l+\frac{k-1}{\lambda}+\frac{\theta}{i \pi}\right)}{\left(2 l-1+\frac{k}{\lambda}+\frac{\theta}{i \pi}\right)\left(2 l+1+\frac{k-1}{\lambda}+\frac{\theta}{i \pi}\right)} .
$$

This amplitude was first proposed by Zamolodchikov [14] who used the extra assumptions (a) exactness of the WKB spectrum; (b) absence of resonances; and (c) for integer values of λ absence of reflection and validity of a formula for $t(\theta)$ due to Korepin and Faddeev [15]. In our treatment the properties (a) - (c) follow from the assumptions of the theorem.

The poles of the transmission amplitude $t(\theta)$ in the physical strip

$$
\theta_{k}=i \pi(1-k / \lambda) \quad k=1, \ldots<\lambda
$$

correspond to $(f \bar{f})$ bound states with masses

$$
m_{k}=2 m \sin \frac{k \pi}{2 \lambda} .
$$

This spectrum coincides with the one calculated in WKB approximation for the SineGordon equation [5], if we relate the free parameter λ to the coupling constants β and g by:

$$
\lambda=\frac{8 \pi}{\beta^{2}}-1=1+\frac{2 g}{\pi} .
$$

For $\lambda<1$, where there are no bound states, the S-matrix is completely determined. For $\lambda>1$ we have to calculate the scattering of bound states, i.e., the amplitudes $t_{b_{k} f}$ and $t_{b_{k} b_{l}}[2,16]$. We consider the residues of $S^{(3)}\left(p_{1}, p_{2}, p_{3}\right)$ at $\left(p_{1}+p_{2}\right)^{2}=m_{k}^{2}$ and obtain after some calculations in agreement with previous results in the semiclassical limit [15]:

$$
t_{b_{k} f} f(\theta)=(-1)^{k} A_{0} A_{k}\left(\prod_{j=1}^{k-1} A_{j}\right)^{2} \quad \text { where } \quad A_{j}=\frac{\sin \frac{\pi}{2}\left(\frac{\theta}{i \pi}+\frac{k-2 j}{2 \lambda}+\frac{1}{2}\right)}{\sin \frac{\pi}{2}\left(\frac{\theta}{i \pi}-\frac{k-2 j}{2 \lambda}-\frac{1}{2}\right)}
$$

correspondingly for $k \leq l$:

$$
t_{b_{k} b_{l}}(\theta)=B_{0} B_{k}\left(\prod_{j=1}^{k-1} B_{j}\right)^{2} \text { where } \quad B_{j}=\frac{\tan \frac{\pi}{2}\left(\frac{\theta}{i \pi}+\frac{k+l-2 j}{2 \lambda}\right)}{\tan \frac{\pi}{2}\left(\frac{\theta}{i \pi}-\frac{k+l-2 j}{2 \lambda}\right)} .
$$

So, finally, we can calculate the general S-matrix element written down in the introduction.

4 Off-shell quantities

Using Watson's theorem [17], one can calculate the soliton form factor [18]

$$
\left\langle f\left(p_{1}\right)\right| j^{\mu}(0)\left|f\left(p_{2}\right)\right\rangle=\bar{u}\left(p_{1}\right) \gamma^{\mu} u\left(p_{2}\right) G\left(\theta_{12}\right)
$$

where

$$
G\left(\theta_{12}\right)=\frac{\cosh \frac{\theta}{2}}{\cosh \frac{\theta}{2} \lambda} \exp -\int_{0}^{\infty} \frac{d x}{x} \frac{\sinh \frac{x}{2}(1-\lambda)}{\sinh \frac{x}{2} \cosh \frac{x}{2} \lambda \sinh x \lambda} \sin ^{2} \frac{x \lambda}{2 \pi} \theta .
$$

In principle, matrix elements like

$$
{ }^{\text {out }}\left\langle f\left(p^{\prime}\right), \ldots, \bar{f}\left(q^{\prime}\right), \ldots, b_{i}\left(k^{\prime}\right), \ldots\right| \phi(x)\left|f(p), \ldots, \bar{f}(q), \ldots, b_{j}(k), \ldots\right\rangle^{\text {in }}
$$

can be calculated by means of a generalized Watson's theorem and methods similar to those used for the derivation of the S-matrix. This program, however, turns out to be rather complicated. The determination of Wightman functions like

$$
\langle\phi(x) \phi(y)\rangle \quad \text { or } \quad\left\langle\psi\left(x_{1}\right) \ldots \psi\left(x_{N}\right)\right\rangle
$$

is still an open problem.
The latter must have the same small distance behaviour as those for the massless Thirring model [8] since the Callan-Symanzik function β in the massive Thirring model vanishes identically [19].

Acknowledgment:

This talk is based on collaborations with members of the Institut für Theoretische Physik, FU-Berlin, with B. Berg, S. Meyer, B. Schroer, R. Seiler, H.J. Thun, T.T. Troung and P.H. Weisz.

References

[1] M. Karowski, H.J. Thun, T.T. Troung, and P. Weisz, Phys. Lett. 67B (1977) 321.
[2] M. Karowski and H.J. Thun, 'Complete S-matrix of the massive Thirring model', FU Berlin preprint $77 / 6$, to be published.
[3] M. S. Ablowitz, O.J. Kaup, A.C. Newell and N. Segur, Phys. Rev. Lett. 31 (1973) 125; L.A. Takhtadzhyan and L.D. Faddeev, Theor. Math. Phys. 21 (1975) 1046. For a review, see: A.C. Scott, F.Y.F. Chu and D.W. McLaughlin, Proc. IEEE 61 (1973) 1443.
[4] M.D. Kruskal and D. Wiley, American Mathematical Society, Summer Seminar on Nonlinear Wave Motion, ed. A.C. Newell, Potsdam, N.Y. July 1972; H. Steudel, Annalen der Physik 32 (1975) 205; c.f. also: R. Flume, Phys. Lett. 62B (1976) 93 and corrigendum to be published.
[5] V.E. Korepin and L.D. Faddeev, Theor. Math. Phys. 25 (1975) 1039;
R. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. D10 (1974) 4114, 4130, 4138; D11 (1975) 3424.
[6] S. Coleman, Phys. Rev. D11 (1975) 2088.
[7] S. Mandelstam, Phys. Rev. D11 (1975) 3027;
R. Seiler and D. Uhlenbrock, Les Méthodes Mathématiques de la Théorie Quantique des Champes, No. 248, p. 363; Ann. Phys. 105 (1977) 81;
B. Schroer and T.T. Truong, Phys. Rev. D15 (1977) 1684.
[8] W. Thirring, Ann. Phys. 3 (1958) 91;
V. Glaser, Nuovo Cimento 9 (1958) 990:
K. Johnson, Nuovo Cimento 20 (1961) 773:
B. Klaiber, Lectures in theoretical physics (Gordon and Breach, New York, 1968) p. 141.
[9] B. Berg, M. Karowski and H.J. Thun, Phys. Lett. 62B (1976) 187, 64B (1976) 286;
B. Yoon, Phys. Rev. D13 (1976) 3440;
R. Flume, D.K. Mitter and N. Papanicolaou, Phys. Lett. 64B (1976) 289;
P.P. Kulish and E.R. Nissimov, Pisma v JETP 24 (1976) 247.
[10] P.P. Kulish, Theor. Math. Phys. 26 (1976) 132;
R. Flume, V. Glaser and D. Iagolnitzer, unpublished.
[11] W. Zimmermann, Ann Phys. 77 (1973) 536;
M. Gomes and J.H. Lowenstein, Phys. Rev D7 (1973) 550.
[12] P.P. Kulish and E.R. Nissimov, Pisma v JETP 24 (1976) 247.
[13] The first proof for this conservation law was done in loop approximation:
B. Berg, M. Karowski and H.J. Thun, Phys. Lett. 62B (1976) 633;

For a general treatment, see: R. Flume and S. Meyer, Nuovo Cimento Lett. 18 (1977) 236;
B. Berg, M. Karowski and H.J. Thun, Nuovo Cimento 38A (1977) 11.
[14] A.B. Zamolodchikov, Moscow preprint ITEP-148 (1976).
This amplitude is in agreement with results of perturbative calculations in the Thirring model coupling constant g and in the semiclassical limit $\beta \rightarrow 0$:
P.H. Weisz, Nucl. Phys. B122 (1977) 1;
R. Jackiw and G. Woo, Phys. Rev. D12 (1975) 1743.
[15] V.E. Korepin and L.D. Faddeev, Theor. Math. Phys. 25 (1975) 1039;
J.L. Gervais and A. Jevicki, Nucl. Phys. B110 (1975) 113;
M.T. Jaekel, Nucl. Phys. B118 (1977) 508.
[16] A.B. Zamolodchikov, Moscow preprint ITEP-12 (1977).
[17] K.M. Watson, Phys. Rev. 95 (1954) 228.
[18] P.H. Weisz, Phys. Lett. 67B (1977) 179.
[19] M. Gomes and J.H. Lowenstein, Nucl. Phys. B45 (1972) 252.

[^0]: *Talk presented at the International School of Subnuclear Physics, Erice, Italy (July 1977)

