An exact relativistic S-matrix in 1+1 dimensions:
The on-shell solution of the massive Thirring model
and the quantum Sine-Gordon equation®

M. Karowski
Institut fiir Theoretische Physik
Freie Universitat Berlin, Arnimallee 3, D-1000 Berlin 33, Germany

Abstract:

In the classical massive Thirring model and for the Sine-Gordon equation there
exists an infinite sequence of conservation laws which imply for scattering processes:
i) no particle production, ii) only momentum exchange, and iii) factorization of
the N particle S-matrix into two-particle S-matrices. These conservation laws are
claimed to survive quantization. The properties i), ii), and iii) together with unitar-
ity, crossing symmetry, and T-invariance determine uniquely the S-matrix and the
bound state spectrum which agrees with that one calculated in WKB approximation.
Hence, in 141 dimensions all relativistic models describing a particle-antiparticle
pair are equivalent if the above mentioned conservation laws hold true. The exact
complete S-matrix is given explicitly.
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1 Introduction

1.1 The results [1,2]

We shall calculate an S-matrix element like

EP)s - @) (KD, L) f(a), by (R) )T

for the scattering of arbitrary numbers of particles (fermions) f, antiparticles (anti-
fermions) f, and different kinds of bound states by, ..., b,, where b; can either be consid-
ered as a bound state of (ff) or (b;b;i_;) or (bjbgb;_; &) etc.

We shall see that the S-matrix in 141 dimensions is uniquely determined by some
general properties which are valid, e.g., in the case of the massive Thirring model and the

Sine-Gordon equation.

1.2 The Sine-Gordon equation

Let us consider the relativistic wave equation in 1+1 dimensions:
Q.
D¢+Esm5¢20 (1)

where ¢(z,t) is a classical field, y/a a mass parameter, and 5 a coupling constant. This
equation is completely soluble by means of the inverse scattering method [3]. There is a

static solution called “soliton”

arctan eVe®
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with energy or mass m = 8,/a/? and the antisoliton ¢4(z) = ¢5(—z). Another set of
solutions, oscillating in time, are the “breathers” which may be interpreted as soliton-
antisoliton bound states. They have a continuous (center of mass) energy spectrum with
0 < E < 2m.

Now we come to the most important property of the Sine-Gordon equation: there

exists an infinite sequence of local conservation laws [4]

O JE(x)=0 n=1,35,...



m
The corresponding charges of asymptotic states |p1,...,pn >OUt are

N

Z (pi+>
i=1
where pi = po + p;. (Similar currents exist for p_.) The conservation of these charges

implies for scattering
i) no particle production;

ii) only momentum exchange, i.e., the sets of incoming and outgoing momenta are

equal;

iii) factorization of an N-particle S-matrix into two-particle ones:

1<j

(Since the factors on the right hand side do not commute in general the ordering has to
be specified, see below.)

The usual quantization of a field theory — by defining Green’s functions in renormalized
perturbation theory by means of the Gell-Mann-Low expansion — is not very useful for the
Sine-Gordon equation if one wants to describe solitons. Since ¢g is very far away from the
vacuum ¢ = 0, which would be the starting point for ordinary perturbation theory. The
quantization of classical solutions can be attacked by semiclassical methods [5]. Dashen,
Hasslacher, and Neveu obtained in WKB approximation the bound state spectrum which

is now discrete, of course,

mk:2msin§—§ k=1,2,... <A\
where S
)\—E—l
and q )
55 (1-5)

is the soliton mass. This spectrum was claimed to be exact.

Coleman [6] gave arguments based on perturbation theory that the quantized Sine-
Gordon theory must be equivalent to another field theory in 141 dimensions, the massive
Thirring model. Other approaches to this problem were presented in [7].
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1.3 The Thirring model

The (massless) Thirring model [8] describes a self-interacting Dirac field in 141 dimension:
- I
Lo =90y — 59]u]

where j#* = 1)y* and g is a coupling constant. The operator solution of this model is
known since a long while and the Wightman functions

(Y1) ... P(xn))
can be calculated [8]. This field theory, however, is rather simple. Because of infra-red

effects there are no one-particle poles in momentum space and there is no scattering in
this model. The massive Thirring model defined by the Lagrangian

L= Ly—mi

is much more complicated. Coleman’s equivalence now says: identify the two fundamental
Thirring particles f, f with the soliton, antisoliton of the Sine-Gordon equation and relate
the coupling constants of both models by

2 8
1+2 =221,
L
Our approach is, in some sense, an alternative proof of this equivalence and also a proof
of the exactness of the WKB Sine-Gordon spectrum.

2 The massive Thirring model

Our treatment of the massive Thirring model starts with the observation that for the

classical case there exists again an infinite sequence of local conservation laws [9]:
0 JE(x)=0 n=1,3,5,....

The fields 1/, ¢ are anticommuting objects in the classical model; we consider it as the
tree approximation of the corresponding quantized model. The consequences of these
conservation laws are the same as for the Sine-Gordon equations mentioned above. This

can be seen as follows:
F = (Z/ya - m)¢ - gju’yuqu) =0.
In general, we have

Ot = N, F + hec.
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where A, is a local operator which may be expressed by powers of derivatives of the fields.
The integrated Ward identity with X = ¢ (z1)...9¢(zx) in tree approximation reads

0= [d®x(T0,JH(x) X )
= [T (D F(z) + hc) X )y
- /d%(T (Aniﬁ(m) - h.c.) X )ir

= (T Au(z1) ... ¥(an))er + ...+ (TY(x1) ... Dp(xN) Yir -

In momentum space on the mass shell after amputation only the parts in A, contribute
which are linear in the fields. These vanish for even n and are given for odd n by

AN, =i0% + ...
where 9, = 0y + 0;. Applying the LSZ reduction technique we obtain
M . N-M .
0= ""(ph, s h) [P1y o )™ (Z (p§+> - > (m) ) .

This means, an the S-matrix element vanishes unless Zij‘il(piJr)”, n=1,3,5,...1s con-
served. It follows that the set of incoming and outgoing momenta are equal:

iy, oyt ={p1, - ,onv_m}-
Hence we have the properties:
i) no particle production
ii) only momentum exchange
iii) factorization of S.

One believes [10] that i) and ii) imply iii).
The question is now whether the conservation laws survive quantization. The apparent

occurrence of anomalies may be seen as follows: In the BPHZ scheme the integrated Ward
identity reads [11]

0= [d*x(T Ng[0,J}](x) X)
= [x(T (Ng [ AnF ] (z) + hec) X)

= /d%(T (Nd3/2 [An] () z%@) + h.c.) X)

— [T (Ng [ (Dn — {D0}) mo¥ ] (z) + h.c) X).
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The dimension d = n + 2 of the operator 9,J! determines the subtraction degree of the
normal product Ny [0,J#] (z). The unrenormalized mass my differs from m by a counter
term which is finite in the BPHZ scheme and is determined by normalization conditions.
The reason for the extra term on the right-hand side is that mgv in F' has lower dimension.
Hence, in the quantum equation of motion inside of a normal product, Ny [Anm(ﬂ/}} (x)
has to be replaced by the anisotropic normal product Ny [{A,}met ] (z). This means
that subgraphs which contain the line ¢ are subtracted according to d and those which
do not contain the line ¢ are subtracted minimally (d — 1). Therefore, the extra term
will, in general, be different from zero if A\, is not linear in the fields which is true for
n > 3. One expects [12] that the currents J# can be redefined such that these anomalies
cancel. This was explicitly shown for n = 3 [13]. We believe that the conservation laws

and the properties i), ii), and iii) hold true in the quantized massive Thirring model.

3 The S-matrix

Our main result can be expressed as follows:

Theorem: If a relativistic model in 1+1 dimensions with a particle-antiparticle pair f, f
fulfills the assumptions:
1. i) no particle production
i1) only momentum exchange

iii) factorization of the S-matriz;
2. unitarity, crossing and T-invariance;

3. non-vanishing backward particle-antiparticle scattering (and some more technical

properties concerning analytic and asymptotic behaviour which will show up in the
proof),
then the S-matriz s uniquely determined. I depends on two parameters: the mass m and

a “coupling” constant .

Note that assumption 1. is a consequence of the conservation laws considered in the
previous section.

Proof: An S-matrix obeying 1. can be formulated as follows [2]:

out

(A (p), . o) [aa(@r), .-, an(py) )™
= (i (ph), ..., a(p) [ S™ Tar(pr), ... an(py))
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where the o; denote the different kinds of particles f, f, b1, ba, . ... The N-particle S-matrix
is a product of all two-particle ones in a special order which, for example for p; > ... > py
is given by:
N—1
SMpy,..on) =[] ( 11 5(2)(pi,pj)>
i=1 \i<j<N

where the two-particle S-operator is defined by

5(2)| ,Oél(pl),,@j(pj)> :taiaj’ 7az(pl)77&](p])>
+T04i04j‘ ...,ozj(pl-),...,ozi(pj)...>.

The transmission and the reflection amplitudes are ¢ and r, respectively. Because of ii),
reflection only appears for different particles with equal mass, as f and f. Let us consider
first “repulsive” couplings (g < 0, 3% > 4x) such that there are no bound states. The
general case will be obtained by analytic continuation with respect to the coupling. Then
S contains four functions: trpstrp tep =1t and re7i=r1.

Let us introduce the rapidity difference 6,5 by

(p1 + p2)? = 2m® (1 + cosh 6y5) .

The physical plane is mapped onto the strip 0 < Im 6 < 7 and the physical region for ff
scattering (p; + p2)? — i€ > 4m? correspond to 615 > 0.

. 012
(p1 + p2)2 il -
5 —_— C
0 4m?
0

Unitarity STS = S(—0) S(f) = 1 and crossing symmetry

trp(0) = t57(0) = t(im — 0)
r(0) = r(ir — 0)

yield
r? =131 —1/|t]?).

Hence, there remains only one unknown function ¢(¢) which we shall determine now [1].
If Int() is analytic in the physical strip and does not grow terribly for |[Re 6| — oo,
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Chauchy’s formula yields
1 dz

Int(f) = 51 . smh(z = 0) Int(z)
_ b C Az In (t(z)t(ir + z))
2mi J_., sinh(z — @) (

C being the contour enclosing the physical strip 0 < Im ¢ < 7. The unitarity and crossing
relations imply

h(z)
h(im — z)
where h(z) = t(z)/r(z) which is well defined if r # 0. We shall now prove that h(z) is
determined by the factorization condition of the three-particle S-matrix and T-invariance:

t(z)tlim+ 2) =

S®) has to be symmetric
512513523 = 523513512 -

This means, for example, that the amplitude for the transition

f1) f(p2) f(ps) — f(p1) F(p2) f(ps)
f(ps) p2 f(p1) f(ps) p2
f(p1)  f(p2) f(p1)  f(p2)
has to be equal to that one of the reversed process.
Using t(8) = r(0) h(0) = t;(0) h(0)/h(im — 6), we obtain the functional equation for h(#)

h(a+ B) = h(im + a) h(B) + h(a) h(it — B).

The solutions of this equation are

sinh \@

sinh \im

h(0) =

where ) is a free parameter to be interpreted later. After some calculations we obtain:

 dz sinhZ(1— A
t(0) = expi/ do sin ( ) sm@(m —0)
0

T sinh coshx/\

or

t(0) = F(0)/F(2ri — 0)
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with
F(H)—ﬁﬁ (20+5+4)(20+ 5+ £)
B (20-1+54 8y (20414514 8)°

i

k=1 1=0

This amplitude was first proposed by Zamolodchikov [14] who used the extra assumptions

(a) exactness of the WKB spectrum; (b) absence of resonances; and (c) for integer values

of X absence of reflection and validity of a formula for ¢(f) due to Korepin and Faddeev

[15]. In our treatment the properties (a) — (c) follow from the assumptions of the theorem.
The poles of the transmission amplitude () in the physical strip

Op =ir(1—k/N\) k=1,... <A\

correspond to (ff) bound states with masses

. km
my, = 2m sin — .

2\

This spectrum coincides with the one calculated in WKB approximation for the Sine-

Gordon equation [5], if we relate the free parameter A to the coupling constants § and ¢

by:
8T 2g
A=——-1=1+—=.
B m
For A < 1, where there are no bound states, the S-matrix is completely determined. For
A > 1 we have to calculate the scattering of bound states, i.e., the amplitudes ¢, ; and
th.b, [2,16]. We consider the residues of S® (py, pa,p3) at (pi +p2)? = m? and obtain after

some calculations in agreement with previous results in the semiclassical limit [15]:

k-1

: 2 sin 5 (4 + 452 + 1)
tr(0) = (=D)FAoAx ( [[ 4] where A;= —22r 202
j=1 sing (7 — "o — 3)
correspondingly for k£ < [:
k-1 2 (0 | ktl—2j
tan 5 (= + —55—~
tys(0) = BoBy | [[ Bj| where B;=—2 (lg 2 2].) .
=1 tan 3 (i — “552)
j

So, finally, we can calculate the general S-matrix element written down in the introduc-

tion.

4 Off-shell quantities
Using Watson’s theorem [17], one can calculate the soliton form factor [18]

(f(p0) 17"(0) [ f(p2)) = ulpr)y"ulpz) G(012)
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where

coshg * dx sinh £(1 — A) .5 TA

)= cosh g)\ =P _/0 z sinh 5 cosh §A sinh z\ S or

In principle, matrix elements like

M) F @), bR, e@) L), f@)s - b(R), )T

G(ng

can be calculated by means of a generalized Watson’s theorem and methods similar to
those used for the derivation of the S-matrix. This program, however, turns out to be
rather complicated. The determination of Wightman functions like

(o(z)o(y)) or (P(z1)...¢(xn))

is still an open problem.

The latter must have the same small distance behaviour as those for the massless
Thirring model [8] since the Callan-Symanzik function 8 in the massive Thirring model
vanishes identically [19].
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