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Abstract:

In the classical massive Thirring model and for the Sine-Gordon equation there
exists an infinite sequence of conservation laws which imply for scattering processes:
i) no particle production, ii) only momentum exchange, and iii) factorization of
the N particle S-matrix into two-particle S-matrices. These conservation laws are
claimed to survive quantization. The properties i), ii), and iii) together with unitar-
ity, crossing symmetry, and T-invariance determine uniquely the S-matrix and the
bound state spectrum which agrees with that one calculated in WKB approximation.
Hence, in 1+1 dimensions all relativistic models describing a particle-antiparticle
pair are equivalent if the above mentioned conservation laws hold true. The exact
complete S-matrix is given explicitly.
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1 Introduction

1.1 The results [1,2]

We shall calculate an S-matrix element like

out〈 f(p′), . . . , f̄(q′), . . . , bi(k
′), . . . | f(p), . . . , f̄(q), . . . , bj(k), . . . 〉in

for the scattering of arbitrary numbers of particles (fermions) f , antiparticles (anti-

fermions) f̄ , and different kinds of bound states b1, . . . , bn, where bi can either be consid-

ered as a bound state of (ff̄) or (bjbi−j) or (bjbkbi−j−k) etc.

We shall see that the S-matrix in 1+1 dimensions is uniquely determined by some

general properties which are valid, e.g., in the case of the massive Thirring model and the

Sine-Gordon equation.

1.2 The Sine-Gordon equation

Let us consider the relativistic wave equation in 1+1 dimensions:

2φ+
α

β
sin βφ = 0 (1)

where φ(x, t) is a classical field,
√
α a mass parameter, and β a coupling constant. This

equation is completely soluble by means of the inverse scattering method [3]. There is a

static solution called “soliton”

φS(x) =
4

β
arctan e

√
αx

-

6

x

φ
φA φS

with energy or mass m = 8
√
α/β2 and the antisoliton φA(x) = φS(−x). Another set of

solutions, oscillating in time, are the “breathers” which may be interpreted as soliton-

antisoliton bound states. They have a continuous (center of mass) energy spectrum with

0 < E < 2m.

Now we come to the most important property of the Sine-Gordon equation: there

exists an infinite sequence of local conservation laws [4]

∂µJ
µ
n (x) = 0 n = 1, 3, 5, . . .
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The corresponding charges of asymptotic states | p1, . . . , pN 〉
in
out are

N∑
i=1

(
pi+

)n
where p± = p0 ± p1. (Similar currents exist for p−.) The conservation of these charges

implies for scattering

i) no particle production;

ii) only momentum exchange, i.e., the sets of incoming and outgoing momenta are

equal;

iii) factorization of an N-particle S-matrix into two-particle ones:

S(N)(p1, . . . , pN) =
∏
i<j

S(2)(pi, pj) .

(Since the factors on the right hand side do not commute in general the ordering has to

be specified, see below.)

The usual quantization of a field theory – by defining Green’s functions in renormalized

perturbation theory by means of the Gell-Mann-Low expansion – is not very useful for the

Sine-Gordon equation if one wants to describe solitons. Since φS is very far away from the

vacuum φ = 0, which would be the starting point for ordinary perturbation theory. The

quantization of classical solutions can be attacked by semiclassical methods [5]. Dashen,

Hasslacher, and Neveu obtained in WKB approximation the bound state spectrum which

is now discrete, of course,

mk = 2m sin
kπ

2λ
k = 1, 2, . . . < λ

where

λ =
8π

β2
− 1

and

m =
8
√
α

β2

(
1− β2

8π

)
is the soliton mass. This spectrum was claimed to be exact.

Coleman [6] gave arguments based on perturbation theory that the quantized Sine-

Gordon theory must be equivalent to another field theory in 1+1 dimensions, the massive

Thirring model. Other approaches to this problem were presented in [7].

3



1.3 The Thirring model

The (massless) Thirring model [8] describes a self-interacting Dirac field in 1+1 dimension:

L0 = ψ̄iγ∂ψ − 1

2
gjµj

µ

where jµ = ψ̄γµψ and g is a coupling constant. The operator solution of this model is

known since a long while and the Wightman functions

〈ψ(x1) . . . ψ̄(xN) 〉

can be calculated [8]. This field theory, however, is rather simple. Because of infra-red

effects there are no one-particle poles in momentum space and there is no scattering in

this model. The massive Thirring model defined by the Lagrangian

L = L0 −mψ̄ψ

is much more complicated. Coleman’s equivalence now says: identify the two fundamental

Thirring particles f, f̄ with the soliton, antisoliton of the Sine-Gordon equation and relate

the coupling constants of both models by

1 +
2g

π
=

8π

β2
− 1 .

Our approach is, in some sense, an alternative proof of this equivalence and also a proof

of the exactness of the WKB Sine-Gordon spectrum.

2 The massive Thirring model

Our treatment of the massive Thirring model starts with the observation that for the

classical case there exists again an infinite sequence of local conservation laws [9]:

∂µJ
µ
n (x) = 0 n = 1, 3, 5, . . . .

The fields ψ, ψ̄ are anticommuting objects in the classical model; we consider it as the

tree approximation of the corresponding quantized model. The consequences of these

conservation laws are the same as for the Sine-Gordon equations mentioned above. This

can be seen as follows:

F := (iγ∂ −m)ψ − g jµγµψ = 0 .

In general, we have

∂µJ
µ
n = 4̄nF + h.c.
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where 4̄n is a local operator which may be expressed by powers of derivatives of the fields.

The integrated Ward identity with X = ψ(x1) . . . ψ(xN) in tree approximation reads

0 =
∫
d2x〈T∂µJµn (x)X 〉tr

=
∫
d2x〈T

(
4̄nF (x) + h.c.

)
X 〉tr

=

∫
d2x〈T

(
4̄ni

δ

δψ̄(x)
+ h.c.

)
X 〉tr

= 〈T 4n(x1) . . . ψ̄(xN) 〉tr + . . .+ 〈T ψ(x1) . . . 4̄n(xN) 〉tr .

In momentum space on the mass shell after amputation only the parts in 4n contribute

which are linear in the fields. These vanish for even n and are given for odd n by

4n = i∂n+ψ + . . .

where ∂+ = ∂0 + ∂1. Applying the LSZ reduction technique we obtain

0 = out〈 p′1, . . . , p′M) | p1, . . . , pN−M 〉in
(

M∑
i=1

(
p′i+

)n
−

N−M∑
i=1

(
pi+

)n)
.

This means, an the S-matrix element vanishes unless
∑M

i=1(pi+)n, n = 1, 3, 5, . . . is con-

served. It follows that the set of incoming and outgoing momenta are equal:

{p′1, . . . , p′M} = {p1, . . . , pN−M} .

Hence we have the properties:

i) no particle production

ii) only momentum exchange

iii) factorization of S.

One believes [10] that i) and ii) imply iii).

The question is now whether the conservation laws survive quantization. The apparent

occurrence of anomalies may be seen as follows: In the BPHZ scheme the integrated Ward

identity reads [11]

0 =
∫
d2x〈T Nd [ ∂µJ

µ
n ] (x)X 〉

=
∫
d2x〈T

(
Nd

[
4̄nF

]
(x) + h.c.

)
X 〉

=

∫
d2x〈T

(
Nd−3/2

[
4̄n

]
(x) i

δ

δψ̄(x)
+ h.c.

)
X 〉

−
∫
d2x〈T

(
Nd

[ (
4̄n − {4̄n}

)
m0ψ

]
(x) + h.c.

)
X 〉 .

5



The dimension d = n + 2 of the operator ∂µJ
µ
n determines the subtraction degree of the

normal product Nd [∂µJ
µ
n ] (x). The unrenormalized mass m0 differs from m by a counter

term which is finite in the BPHZ scheme and is determined by normalization conditions.

The reason for the extra term on the right-hand side is that m0ψ in F has lower dimension.

Hence, in the quantum equation of motion inside of a normal product, Nd

[
4̄nm0ψ

]
(x)

has to be replaced by the anisotropic normal product Nd

[
{4̄n}m0ψ

]
(x). This means

that subgraphs which contain the line ψ are subtracted according to d and those which

do not contain the line ψ are subtracted minimally (d − 1). Therefore, the extra term

will, in general, be different from zero if 4n is not linear in the fields which is true for

n ≥ 3. One expects [12] that the currents Jµn can be redefined such that these anomalies

cancel. This was explicitly shown for n = 3 [13]. We believe that the conservation laws

and the properties i), ii), and iii) hold true in the quantized massive Thirring model.

3 The S-matrix

Our main result can be expressed as follows:

Theorem: If a relativistic model in 1+1 dimensions with a particle-antiparticle pair f, f̄

fulfills the assumptions:

1. i) no particle production

ii) only momentum exchange

iii) factorization of the S-matrix;

2. unitarity, crossing and T-invariance;

3. non-vanishing backward particle-antiparticle scattering (and some more technical

properties concerning analytic and asymptotic behaviour which will show up in the

proof),

then the S-matrix is uniquely determined. I depends on two parameters: the mass m and

a “coupling” constant λ.

Note that assumption 1. is a consequence of the conservation laws considered in the

previous section.

Proof: An S-matrix obeying 1. can be formulated as follows [2]:

out〈α′1(p′1), . . . , α′N(p′N) |α1(p1), . . . , αN(pN) 〉in

= 〈α′1(p′1), . . . , α′N(p′N) |S(n) |α1(p1), . . . , αN(pN) 〉
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where the αi denote the different kinds of particles f, f̄ , b1, b2, . . .. The N -particle S-matrix

is a product of all two-particle ones in a special order which, for example for p1 > . . . > pN

is given by:

S(N)(p1, . . . , pN) =
N−1∏
i=1

( ∏
i<j≤N

S(2)(pi, pj)

)
where the two-particle S-operator is defined by

S(2) | . . . , αi(pi), . . . , αj(pj) . . . 〉 = tαiαj
| . . . , αi(pi), . . . , αj(pj) . . . 〉

+ rαiαj
| . . . , αj(pi), . . . , αi(pj) . . . 〉 .

The transmission and the reflection amplitudes are t and r, respectively. Because of ii),

reflection only appears for different particles with equal mass, as f and f̄ . Let us consider

first “repulsive” couplings (g < 0, β2 > 4π) such that there are no bound states. The

general case will be obtained by analytic continuation with respect to the coupling. Then

S(2) contains four functions: tff , tf̄ f̄ , tff̄ := t and rff̄ := r.

Let us introduce the rapidity difference θ12 by

(p1 + p2)2 = 2m2 (1 + cosh θ12) .

The physical plane is mapped onto the strip 0 < Im θ < π and the physical region for ff̄

scattering (p1 + p2)2 − iε > 4m2 correspond to θ12 > 0.

(p1 + p2)2

�� ��
0 4m2

←→

θ12'

&

$

%6C
0

iπ

Unitarity S†S = S(−θ)S(θ) = 1 and crossing symmetry

tff (θ) = tf̄ f̄ (θ) = t(iπ − θ)

r(θ) = r(iπ − θ)

yield

r2 = t2(1− 1/|t|2) .

Hence, there remains only one unknown function t(θ) which we shall determine now [1].

If ln t(θ) is analytic in the physical strip and does not grow terribly for |Re θ | → ∞,
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Chauchy’s formula yields

ln t(θ) =
1

2πi

∫
C

dz

sinh(z − θ)
ln t(z)

=
1

2πi

∫ ∞
−∞

dz

sinh(z − θ)
ln
(
t(z) t(iπ + z)

)
C being the contour enclosing the physical strip 0 < Im θ < π. The unitarity and crossing

relations imply

t(z) t(iπ + z) =
h(z)

h(iπ − z)

where h(z) = t(z)/r(z) which is well defined if r 6= 0. We shall now prove that h(z) is

determined by the factorization condition of the three-particle S-matrix and T-invariance:

S(3) has to be symmetric

S12S13S23 = S23S13S12 .

This means, for example, that the amplitude for the transition

f(p1) f(p2) f̄(p3) → f(p1) f̄(p2) f(p3)

x

t

-

6

�
�
�
�
��@

@
@
@
@@

f(p1) f(p2) f̄(p3)

f(p1)f̄(p2)f(p3)

=

�
�
�
�
��@

@
@
@
@@

f(p1) f(p2) f̄(p3)

f(p1)f̄(p2)f(p3)

has to be equal to that one of the reversed process.

Using t(θ) = r(θ)h(θ) = tff (θ)h(θ)/h(iπ− θ), we obtain the functional equation for h(θ)

h(α + β) = h(iπ + α)h(β) + h(α)h(iπ − β) .

The solutions of this equation are

h(θ) =
sinhλθ

sinhλiπ

where λ is a free parameter to be interpreted later. After some calculations we obtain:

t(θ) = exp i

∫ ∞
0

dx

x

sinh x
2
(1− λ)

sinh x
2

cosh x
2
λ

sin
xλ

π
(iπ − θ)

or

t(θ) = F (θ)/F (2πi− θ)
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with

F (θ) =
∞∏
k=1

∞∏
l=0

(
2l + k

λ
+ θ

iπ

) (
2l + k−1

λ
+ θ

iπ

)(
2l − 1 + k

λ
+ θ

iπ

) (
2l + 1 + k−1

λ
+ θ

iπ

) .
This amplitude was first proposed by Zamolodchikov [14] who used the extra assumptions

(a) exactness of the WKB spectrum; (b) absence of resonances; and (c) for integer values

of λ absence of reflection and validity of a formula for t(θ) due to Korepin and Faddeev

[15]. In our treatment the properties (a) – (c) follow from the assumptions of the theorem.

The poles of the transmission amplitude t(θ) in the physical strip

θk = iπ(1− k/λ) k = 1, . . . < λ

correspond to (ff̄) bound states with masses

mk = 2m sin
kπ

2λ
.

This spectrum coincides with the one calculated in WKB approximation for the Sine-

Gordon equation [5], if we relate the free parameter λ to the coupling constants β and g

by:

λ =
8π

β2
− 1 = 1 +

2g

π
.

For λ < 1, where there are no bound states, the S-matrix is completely determined. For

λ > 1 we have to calculate the scattering of bound states, i.e., the amplitudes tbkf and

tbkbl [2,16]. We consider the residues of S(3)(p1, p2, p3) at (p1 + p2)2 = m2
k and obtain after

some calculations in agreement with previous results in the semiclassical limit [15]:

tbkf (θ) = (−1)kA0Ak

(
k−1∏
j=1

Aj

)2

where Aj =
sin π

2

(
θ
iπ

+ k−2j
2λ

+ 1
2

)
sin π

2

(
θ
iπ
− k−2j

2λ
− 1

2

)
correspondingly for k ≤ l:

tbkbl(θ) = B0Bk

(
k−1∏
j=1

Bj

)2

where Bj =
tan π

2

(
θ
iπ

+ k+l−2j
2λ

)
tan π

2

(
θ
iπ
− k+l−2j

2λ

) .
So, finally, we can calculate the general S-matrix element written down in the introduc-

tion.

4 Off-shell quantities

Using Watson’s theorem [17], one can calculate the soliton form factor [18]

〈 f(p1) | jµ(0) | f(p2) 〉 = ū(p1)γµu(p2)G(θ12)

9



where

G(θ12) =
cosh θ

2

cosh θ
2
λ

exp−
∫ ∞

0

dx

x

sinh x
2
(1− λ)

sinh x
2

cosh x
2
λ sinhxλ

sin2 xλ

2π
θ .

In principle, matrix elements like

out〈 f(p′), . . . , f̄(q′), . . . , bi(k
′), . . . |φ(x) | f(p), . . . , f̄(q), . . . , bj(k), . . . 〉in

can be calculated by means of a generalized Watson’s theorem and methods similar to

those used for the derivation of the S-matrix. This program, however, turns out to be

rather complicated. The determination of Wightman functions like

〈φ(x)φ(y) 〉 or 〈ψ(x1) . . . ψ(xN) 〉

is still an open problem.

The latter must have the same small distance behaviour as those for the massless

Thirring model [8] since the Callan-Symanzik function β in the massive Thirring model

vanishes identically [19].
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