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On the basis of Zamolodchikov's S-matrix for two sine-Gordon solitons we derive the 
S-matrix for the scattering of an arbitrary number of particles including bound states. 

1. In troduct ion  

Since Coleman's [ l j  work on the equivalence of  the massive Thirring model and 
the sine-Gordon theory there has been some progress in solving this model  exactly 
[2j. The infinite number of  conservation laws [3] which forbid particle production 
and imply the conservation of  the set of  the particle momenta  impose strong restric- 
tions on the S-matrix. One believes. [4] that it factorizes into two-particle S-matrices. 

The exact two-particle S-matrix for the scattering of  solitons (antisolitons) was 
given recently by Zamolodchikov [5]. On the basis o f  his results we construct the 
complete S-matrix for the scattering of  an arbitrary number of  solitons, antisolitons, 
and bound states (breathers). 

In sect. 2 we generalize the notion of  the factorization o f  the S-matrix to the 
case of  the scattering o f  an arbitrary number of  different kinds of  particles. We derive 
necessary conditions for the two-particle scattering operator.  In sect. 3 we review 
Zamolodchikov's  S-matrix for the scattering of  two solitons (antisolitons), extend it 
to the multisoli ton sector and prove the above mentioned conditions. After giving a 
recipe for the S-operator  for bound states we calculate in sect. 4 the amplitudes for 
soliton-breather scattering and for breather-breather scattering. We also present some 
consistency checks. 

2. Factorizat ion o f  the S-matrix 

The infinite sequence of  conservation laws [3] * 

• For the quantized massive Thirring model so far only the first non-trivial conservation law has 
been established rigorously. 
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3uJ~ = 0 ,  k = 1,3,  5, ..., (1) 

corresponding to the conservation of  the sum of  powers of  the momenta imply 
(i) absence of  particle production, 
(ii) equality of  the sets of  initial and final momenta 

{P'I . . . . .  P'n') = {Pl  . . . . .  P n )  . 

One believes [41 that (i) and (ii) imply the factorization of  the S-matrix. In the case 
of  identical particles the factorization can be easily formulated [6]. 

°Ut(p'l ... Pn' [Pl . . .  P n  ) i n  = i n ( p ' l  " "  P'n' [ P l  . - .  Pn )in ~ I  e 2iS(pi'pj) , ( 2 )  
l <~i<j<~n 

where 5(pi ,  p j )  is the two-particle phase shift. Let us now generalize eq. (2) to the 
case o f  different kinds of  particles a E A. In the sine-Gordon theory or the massive 
Thirring model we have A = (f, f ,  b I , b2, ...} standing for soliton, antisoliton, and 
breathers. Whenever the properties (i) and (ii) hold true the Fock space decomposes 
into spaces o f  definite particle number and fixed set of  momenta 

c-j = G / "clpi dpl  (3a) 
1 1  

n:O "J 2a)l "'" 2COn ~ P l  ""Pn ' 

where 

- ~ -  ( ~ 1 )  ~ cgf "(~n)~' (3b) 
~ P l ' " P n  = ~ ( ~  Pl ®""  Pn J ' 

cqE A 

and ~(pa) is the (one-dimensional) space o f  a particle o f  type a with momentum p. 
The prime in eq. (3b) denotes symmetrization (antisymmetrization) with respect to 
bosons (fermions). The space ~ p l  ...pn is left-invariant by the S-operator. Moreover, 
it is known [6] that the conservation laws (1) imply the numbers r/i of  particles of  
the same type a i to be unchanged. Therefore, ~ p l  .-.Pn is built up by smaller sub- 
spaces corresponding to fixed particle configurations (ni}  with Y~n i = n. We do not 
attempt to express this fact in a more complicated notation. 

We characterize a state in ~pl- . .Pn by 

IO~Q) = I~Q1 ... O~On) , 

where Q = {Q1, Q2 ..... Q n }  is a permutation of  the integers (1 ,2  ..... n} and we 
adopt the convention that the particle corresponding to the entry k in [aQ) has mo- 
mentum Pk. The states are normalized according to 

n 

k = l  

It is clear from our definition of  states that the S-operator acts on them by a possible 
permutation o f  the labels c~Ok in laQ). The factorization of  the S-matrix can now be 
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formulated for the case of  different particles, too, 

°ut<a~2' I~Q >in = <~b' I l-I s(pi, p/)laQ>. (4) 
i<~i<j<~n 

Since the two-particle S-matrices S(Pi, pj) ,  in general, fail to commute it is necessary 
to specify the order of  the factors occuring in eq. (4). We take the following "time- 
ordering prescription": draw in a space time diagram lines parallel to the momenta 
(wave vectors) P l, P2 . . . .  , Pn and assign an interaction time tij (i ~ ]) to each inter- 
section point, cf. fig. 2a. Then the factors in eq. (4) are ordered according to their 
times tij, i.e. the operator with the lowest time acting first on the state IC~Q). Ob- 
viously, the ordering of  the interaction times depends on the actual choice of  mo- 
mentum lines. In order to have an unambiguous definition it is necessary that the 
product of  the two-particle S-matrices S q  = S(Pi, p / )  is invariant under arbitrary 
parallel shifts of  the momentum lines. This amounts to two necessary and sufficient 
commutation relations 

Si/Skt  : S~tSi/ for i, j, k, l all unequal,  (5a) 

Si /S ikS/e  - S /kS ikS i /  for i, j, k all unequal,  (5b) 

which guarantee the product of  the two-particle S-matrices in eq. (4) to be indepen- 
dent (a) of  the relative ordering of  the intersection points of  two different pairs of  
lines and (b) of  the parallel shift of  any line beyond the intersection point of  two 
other lines, cf. fig. 2b. For the case of  the sine-Gordon theory eqs. (5a, b) are proved 
in sect. 3. Note that in the case Pl > P2  >..- ~ P n  a possible "canonical" ordering 
of  the factors in eq. (4) is given by the sequence 

( 8 1 2  .. .  $ 1 n ) ( $ 2 3  ... S 2 n ) " . .  S n -  2 n • 

Finally, we remark that a structure of  the S-matrix which resembles eq. (4) and com- 
mutation relations similar to eqs. (5) are known from the many-body 6-function po- 
tential scattering [7]. 

The two-particle S-matrices Sij , in general, have both a transmission and a reflec- 
tion part 

Si/= Ti/ + Ri/ , (6) 

defined by 

Ti/IC~Q) = t~Qi~Q/ (pi, p/)Ic~Q) , (6a) 

R i~ IctQ) = r,~QiO, Q/(pi, p/)[OtQ(i,j)) , (6b) 

where (i,/) in (6b) is the transposition interchanging the indices i and/ ,  i.e. 

]OtQ) = 1... OtQi ... ~Q/  ...) , 

IOtQ(i,j)) = [... OlQ/ ... OtQi .. .) . 
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In the case of  only two types of  particles which are each others antiparticles, say 
solitons f and antisolitons f ,  we have four functions occuring in eq. (6), tff, t ~ ,  tf~-, 
and rf~-. They are, however, related by crossing symmetry and unitarity. Let us in- 
troduce the rapidity® by 

i.e. 

p O = m i c h O i ,  pl  = m i s h O i ,  

(Pi + Pi) 2 = m2 + m 2  + 2 m i m ]  ch Oij  , 

(Pi - Pi)  2 = m 2 + m 2 + 2 m i m j  ch(/~ - O i ] ) ,  

where 

O~j = O~ - 0 i , 

is the rapidity difference. The relation between the Mandelstam variable s and the 
rapidity ® in the various regions of  interest is given in fig. 1. 

The crossing relations 

( f f [ S ( p l ,  p 2 ) l f f ) =  ( f f [S (P l ,  - p E ) l f f )  = ( f f  I S ( - P l  , p E ) [ f f )  , 

( f f [S (p  1, p 2 ) l f f )  = ( f f l S ( P l ,  - p 2 ) ] f f ) ,  

then read 

t ( O )  = uqTr - 0 ) ,  (7a) 

r(O) = rqg  - 0 ) ,  (7b) 

where 

t = t _  , r = r _  , U = t f f  = / _ _  . 
ff ff f f 

From the unitarity o f  the S-matrix one deduces the relations 

t ( - O )  t(®) + r ( - ® )  r(O) = 1 , (8a) 

t ( - ® )  r(O) + r ( - ® )  t(®) = O, (8b) 

t( i lr  + O )  t(iTr - O) = 1 , (8c) 

which lead to 

r 2 (O) = t 2 (O)[ 1 -- (t(-- ®) t (O))-  1 ] . (9) 

From eqs. (7) and (8) we see that, in fact, there is only one independent function, 
since both the scattering amplitude for identical particles u(®) and the reflection am- 
plitude r(®) may be expressed in terms of  the particle-antiparticle transmission am- 
plitude t(®). 
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Fig. 1. Relation between the Mandelstam variable s and the rapidity (9. The physical sheet is 
mapped in the complex (9-plane into the strip 0 ~< Im (9 ~< 7r. The regions s > Sth (s-channel) and 
s ~ 0 (u-channel) correspond to Re (9 > 0, Im (9 = 0 and Re (9 ~< 0, Im (9 = 7r, respectively. The 
points 1, 2, ... denote the position of possible poles (bound states). 

3.  S o l i t o n s  

In this sect ion we first review some known  results on the two-par t ic le  S -mat r ix  
o f  the s ine-Gordon theory  for the scat ter ing o f  soli tons (ant isol i tons) .  Then  we 
prove the c o m m u t a t i o n  relat ions (5) for this S-matr ix .  Final ly ,  we discuss the poles 
o f  this S-mat r ix  which cor respond to sol i ton-ant isol i ton bound  states (breathers) .  

For  special cases o f  the coupl ing constant ,  namely  if  the quan t i ty  

X = l + 2 g  87r( (32)_87r  
~ -  = ~2- 1 - ~--~ , y ,  

is equal  to an integer,  Korep in  and Faddeev  [61 gave an expl ici t  formula  for the 
t ransmission ampl i tude  t (O)  for so l i ton-ant isol i ton  scattering,  

x e (9 - iun /x  + 1 
t (O) = ( - 1 )  x l-I e (  9 + e_ i~k /x  , (10)  

k = l  

which has poles at 

Ok = irr(1 -- k / X ) ,  (11)  

corresponding to  the quasiclassical s ine-Gordon spec t rum [9] 

k 
m k =  2m sin 7 r -  . (12)  

2X 

One easily verifies that ,  in this case (X integer),  the ref lect ion ampl i tude  r (®) vanishes 
iden t i ca l ly .  

It is convenient  to  wri te  eq. (10)  in the fo rm 

t (O)  =- t(so) = F(~o)/F(2 - ~o) , (13a)  

where tO = iTr~0 and 

~ . - t  = 
F(~ )  = T-I l -I  (2l  + k / X  + ~v) 

k=l  t=o ( 2 1 -  1 + k / X + ~ )  

f i  oo l -I  (2l  + (k + 1)/X + ~o)(2l + k / X  + ~o) 

k=O t=O (21 -- 1 + (k + 1)/X + ~o)(2l + 1 + k / h  + ~o)" 
(13b)  
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The last line of  eq. (13b) is defined for arbitrary X. The functions r(~;) and u(~p) can 
be calculated from eqs. (7), (8) and (13) 

sin zrX 
r(~) - sin 7rX~0 t (~) ,  (14a) 

sin zrX(1 
u (~) =- - ¢) t(~o). (14b) 

sin ~rX~ 

The analytic interpolation of the transmission amplitude t(~p) defined by eq. (13) 
was given by Zamolodchikov [5]. It satisfies the crossing and unitarity conditions (7) 
and (8), and it is in agreement with known results [10] of  perturbative calculations 
in the Thirring model coupling constant g and in the quasiclassical limit ~ -> 0 [6,8]. 

We now prove the commutat ion relations (5a, b) which guarantee an unambigu- 
ous definition of  the complete S-matrix in terms of  Zamolodchikov's two-particle S- 
matrices. First o f  all, eq. (5a) trivially holds since for unequal i,/', k, l the possible 
transpositions of  the particle labels, cf. eqs. (6a, b), do not interfere. So we are left 
with the proof  of  eq. (5b). Using eqs. (6) and (14) we calculate a specific matrix 
element, cf. fig. 2, with i = 1, j = 2, k = 3, 

<fff[(St2S13S23 - S23S13S12) l f f f )  

= r@12) r@l 3) t@23) + t(~012) u(~Pl 3) r(~P23) - r(tP23) t(~l 3) u(tPl 2) 

t@12) t (~O13) t(~023) 

sin nX~Ol2 sin nX¢13 sin ~X¢23 

× {sin 71"~k~023 sin 7rX + sin 71"~k~012 sin 7rX(1 - ~13) - sin "/r~ktpl 3 sin 7rX(1 - ~12)}  

= 0 .  

The last equality sign holds since the variables ¢i] are difference variables, i.e. 

tpl2 +~023 =tp13. 

By similar elementary calculations all other matrix elements of  S12Sl 3S23 and 
S23S13S12 can  be shown to be equal. 

In order to discuss the bound states we consider the amplitudes 

s+_ = t + r ,  

which describe the scattering of  soliton-antisoliton states of  definite charge conjuga- 
tion and space reflection parity 

C = P = + I  . 

From eqs. (13) and (14) it is seen that they have poles at 

k 
Ck = 1 X'  k = 1,2 . . . . .  (15) 
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t12' 

t~ 

p, p~ p~ P, P~ p~ 

Fig. 2. (a) Time ordering of the interaction of a three-particle scattering process. (b) Different 
time ordering obtained by parallel shifting a line. 

which correspond to bound states if ~k lies in the physical sheet, i.e. k < X. Their 
masses rn k are given by the sine-Gordon spectrum (12). More precisely, s+(s_) has 
poles at ~k for even (odd) values of  k only, and 

Res s + = R k > 0 ,  f o r k e v e n ,  
S=/T~ 2 

Res s_ - R k  < 0 ,  for k o d d .  
$ = m  2 

This is consistent with the opinion that the lowest bound state (k = 1) is a pseudo- 
scalar particle which corresponds to the (elementary) sine-Gordon field, since, in 
general, poles of  the S-matrix corresponding to states with symmetric (antisymmetric)  
wave functions must have a negative (positive) residue, and fermion-antifermion 
bound states with symmetric (antisymmetric) wave functions have negative (positive) 
C and P parity. 

The amplitude u(~) is continuous at ~ = ~k, therefore we conclude from the 
above considerations that the residue of  the soliton-antisoliton S-operator at sx 2 
= (Pl +P2)  2 = m~ acts as a projection operator,  i.e. 

1 
P~12 : = - -  Res S ( p l , p 2 ) ,  (16) 

_ 2 Rk Sl2-mk 

projects onto chargeless states 

X/~(I ff) + ( - 1 )  k If f ) ) ,  

with momentum p : P l  + P2, mass mk, and parity ( - 1 )  k. We identify them with the 
bound states (breathers) b k. 

4. Bound states 

In this section we calculate the amplitudes of  soliton-breather scattering and of  
breather-breather scattering. We also present several consistency checks. 
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From eqs. (5b) and (16) we find, cf. fig. 2, 

1 
- -  Res 
Rn s12=m2 n 

S12S13S23 =P~12S13S23 =S23S13/~12 

=S(p l  +P2, P3) (pl+P2)2=m2 . 
Ip =m2 

(17) 

The last equation serves as a definition of  the two-particle S-matrix in the bnf  and 
bnf  sector. Obviously, there is no reflection since the projector P~12 appears on both 
sides in eq. (17). The formula (17) may be interpreted diagrammatically as follows, 
cf. fig. 3, if the lines corresponding to the momenta  p I and P2 of  f and f in a state 
of  definite parity ( - 1 )  n become "parallel" then the two-particle S-operator is re- 
placed by a projection operator on a boson state bn of momentum Pl  + P2. More preci- 
sely, "parallel" means Re P l = Re P2 which is a consequence of  the conditions 
(Pl +Pz)  2 = m2 a n d p l  +Pz = real. 

For the scattering of  two bosons b n and bm we obtain similarly, cf. fig. 4, 

1 1 
- -  Res - -  Res S12S13S14S23S24S34 
Rn Sl2=m 2 R m  s34=m 2 

=1~12P~34S14S13S24S23 = S23S13S24S14P~12P~34 

=S(Pl  +P2, P3 +P4)  (pl +p2)2=rn2 • 
(p3+P4)2=m 2 

(18) 

By the same argument as above there is no reflection for boson-boson scattering. 
The diagrammatical interpretat ion o f  eq. (18) may be read off  fig. 5. 

Let us now calculate the boson-fermion scattering amplitude tbnf(~). From eqs. 
(16), (17) and (6) we have 

tbnf(~) ~" tbnf(Pl +P2, P3) = (bnf lS(pl  +P2, p3)lbn f) 

= l[ t23u13 + (-1)nr23r13 + u23t13] , (19) 

where 

and 

t23 = t(~23 ) , etc. 
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b j \  
P, P, P3 PI+P2 P~ 

Fig. 3. Composition of a fermion-antifermion pair f {o f  parity ( - 1 )  n with momenta Pl, P2 to a 

boson b n with momentum Pl + P2. 

(a) o (b) q q q 

Fig. 4. Three different time orderings for four-particle scattering. 

\ / 
\ / 

, \ 
q q q o, q+~ ,q+o, 

Fig. 5. Composition of two f f  pairs to two bosons bn, bm. 

/ 

/ / / 

\ / / / /  ~ 1 "  

b..k// //~"~ 
p, q q*~ q 

Fig. 6. Composition of  two bosons bn_k, bk to a boson b n in boson-fermion scattering. 
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Using eqs. (13) and (14) for u, r and t we find after a lengthy calculation 

tbnf(~) = ( - 1 )  n 

n - 1  
I-[ sin ½rr(~0 + (n - 2r)/2X + ~) 

r=l sin ½rr(~- ( n -  2r) /2X-~-)  

n ,_) 
X I-[ sin ~-rr(so + (n - 2r)/2X + 2 (20) 

1)" r=o sin ~rr(so- ( n -  2r)/2X 2 

Similarly the boson-boson amplitude tbnbm (~)  is obtained from eqs. (18), (16) and 
(6) 

1 
tbnbm(~ ) = ~ [t14u 13U24f23 + r14r13r24r23 + u14 t13 /24u23  

+ ( - - 1 ) n ( r 1 4 t 1 3 r 2 4 u 2 3  + u 1 4 r 1 3 t 2 4 r 2 3  ) 

+( - - l )m(r14r13t24u23  + u14113r24r23 ) 

+ ( - -1 )  n + m ( r l 4 t  13/24r23 + u l 4 r  13r24u23)]  , 

where 
n + m  

~o14 = ~ o +  1 2X 

n - - m  
~o13 = ~ - - - ,  

2X 

n + m  
, ~23 = ~ - -  1 a 2X ' 

H m 
~o24 = ~o + - -  

2X 

One finds 

(21) 

tg ~rr(¢ + (n + m)/2X) n1211 tg lrr(~0 + (n + m - 2r)/2X) 

tbnbm(¢)-- tg ½7r(¢-- (n + m)/2X) ~=, tg ½~(~o -- (n + m 2r)/2X) 

m - - I  
X l-[ tg ~Tr(~o + (n + m - 2r)/2X) 

r :  1 tg l r r ( ~ -  (n + m - 2r)/2X) " 
(22) 

For integer values of  X [6] and in the quasiclassical limit including first quantum cor. 
rections [14] eqs. (19) - (22)  reduce to known results. In particular, the scattering 
amplitude for two elementary sine-Gordon bosons b 1 is given by 

_ tg ~Tr(s0 + l/X) _ sin ~ + sin rr/X (23) 
t b l b  I (v) 

t g  ~-1r(¢ l/X) sin~r~0-sina/X ' 

in agreement with the general structure quoted in [6,11 ] 

8g(ch ®) sh ® - i (24) 
t b l b l  ({~)) = 8g(ch ®) sh ® + i '  
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if 

g(ch ®) = - [ 8  sin 7r/X]-' , 

which is consistent with perturbative calculations. One easily verifies that all ampli- 
tudes tbnbm can be cast into the form (24) with, however, more complicated func- 
tions g(cos ®). 

The pole of  tbnbm at ~ = (n + rn)/2X or s = m2n+m corresponds to the bound state 
bn+m i f n  + m < X. One easily derives the following relations which are based on 
charge conjugation, crossing symmetry,  and unitarity 

tbnf(~) = tung(g),  

tbnf(¢) = tbng(1 -- 9 ) ,  

g b n f ( - - ~ ) t b n f ( ~ )  = 1, 

tbnbm(~ ) = /bnbrn(1 - - ~ ) ,  

tbnbrn(--tp) /bnbrn(~) = 1 . 

(25a) 

(25b) 

(2Sc) 

(25d) 

(25e) 

In order to show that our scheme is consistent we generalize the meaning of  eqs. 
(16) and (17): The prescriptions remain true if they are applied to two bound states 

2 bn k, bk at (Pl +P2)  2 = rnn. By the same methods as in the derivation o feq .  (20) 
one verifies, cf. fig. 6, the relation 

tu n kf(Pl,P3) tbkf(P2,P3) I 2 2 tbnf(Pl + P 2 , P 3 )  (26) (Pl +P2) =ran 

Comparing eqs. (19) and (26) we find the result: the construction of  the two-particle 
S-matrix element of  a boson b n and a fermion f by the prescription of taking the 
residue of  a three-particle S-matrix element is independent of  whether the boson b n 
is considered as a bound state of  a fermion-antifermion pair i f ,  cf. fig. 3, or as a 
bound state of  lower bosons bn_k, bk, cf. fig. 6. More generally, a boson b n may be 
considered as bound state composed of  b n -  gbk I b l - j  .... 

\ / 
\ / 

bn/ /  ~ ~ bn// \\ bm 
/ \ k / \ 
q X _  ll, I:i "', 

Fig. 7. Composition of a fermion-antifermion pair f?-to a boson b m in boson-fermion scattering. 
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\ \ / ~\ / "  
\ \ / \ / 

/ " ~ \  \ " 

b " / / ~  b~\ \\bl bn// \\bk÷I 
" \ X / \ / / \ 

q 0, q 0, 

Fig. 8. Composition of two bosons b k, b l to a boson bk+ l in boson-boson scattering. 

A second consistency check is given by the relation, cf. fig. 7, 

tbnf(Pl ,P2) tbng(Pl, P3) (p2+P3)2=m2 = tbnbm(Pl,  P2 +P3) , (27) 

which is in agreement with eqs. (20), (22). 
Thirdly one has, cf. fig. 8, 

t bnbk(P l ,  P2)  tbnbl(Pl, P3) ,_ +_ .2 2 = tbnbk+l(Pl, P2 + P 3 ) '  (28) tP2 t~3) =mk+ l 

One also observes the relations 

tbnf(~P) lX=n = tgf (~)  t f f (~)[X=n , (29) 

tb~bm (¢)Ix=~ = tbmt-(¢) tbmr(¢)IX=n , (30) 

which in view of  eq. (15) and figs. 3 and 7 are easily understood: if X approaches the 
integer n from above then the pole Cn leaves the physical sheet and the bound states 
bn disintegrate into their constituents f, f ,  while bm remains bound if m < X = n. 

Finally, we quote some more physical properties of  the scattering amplitudes. 
The high energy behaviour is given by 

tbnf(S ) ~ (--1) n , tbnbm(S ) ~ 1 for S ~ oo. (31) 

Near the elastic thresholds (there are no inelastic ones) the amplitudes behave like 

tbnf(S)~(--1)n[1 +CnX/S -- (m +ran) 2] f o r s ~ ( m  +mn)  2 , (32a) 

tbnbm(S)~ [1 +CnmX/S-- (mn +mm)  2 ] fors-~(mn + m m )  2 , (32b) 

where the constants Cn, Cnm may be determined from eqs. (20) and (22). The vari- 
ous coupling strengths of  a soliton-antisoliton to a bound state and of  two bound 
states to a third one are, respectively, 

(2 ~n nrN=llTrr\2ctg~) = Res - ( - 1 )n2m  z cos2x  , (33a) 
gf~bn s12 =m2 tf~_-- = 
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2 7r(n + m) ]2 
= Re = -2mnm m sin gbnbmbn+m sl2=rn!+m tbnbm -2~ ] 

n--1 mi_~l 
× I-I tg[(zr/2X)(n + m - r)] tg[(Tr/2X)(n +m r)] 

r= 1 tg(Trr/2X) r =  l tg(zrr/2X) 
(33b) 

From eq. (33a) one directly sees that the coupling gfTbn vanishes in the limit X -+ n 
when the bound state decays. 

5. Conclusions 

Using Zamolodchikov's two-particle S-matrix for the scattering of  solitons and/or 
antisolitons [5] we have calculated the complete S-matrix of  the sine-Gordon theory 
(massive Thirring model). According to the general discussion of  sect. 2 it factorizes 
into two-particle scattering amplitudes t, r, u; tbnf, tbng, and tbnbm which are given 

by eqs. (13), (14), (20), (22) and (25). From eqs. (20) and (22) it is seen that the 
boson-fermion amplitudes tbn f and the boson-boson amplitudes tbnbm in general 
have "redundant poles" (mostly double poles) also in the physical sheet which are 
not related to bound states [12]. A similar situation is known from the exactly 
soluble 6-function potential scattering [7]. In particular, the simple poles in the bo- 
son-fermion amplitudes tbn f do not seem to correspond to bound states in the soli- 
ton sector. Hence, the massive Thirring model is completely solved on the mass shell. 
The much more complicated problem of finding the off-shell solution (i.e. the deter- 
mination of  the Wightman functions) remains open. 

Finally, we remark that Zamolodchikov's two-particle S-matrix can be derived 
uniquely from unitarity, crossing symmetry, and factorization in the sense of  sect. 2 
without resorting to any assumptions on the spectrum. The latter is a consequence 
of  the above mentioned properties [13]. 

Note added in proof: After having completed this paper we received a preprint 
by Zamolodchikov [ 15] in which similar results are derived. 

We would like to thank B. Berg, S. Meyer, B. Schroer, R. Seiler, T.T. Truong, and 
P. Weisz for useful discussions. 
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