Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke)

Übungsblatt 6: Spuroperator, Dichtematrix, Dekohärenz

Aufgabe 1 (4 Punkte)

Zeigen Sie die folgenden Eigenschaften des Spuroperators:

- a. $\operatorname{Sp} A$ ist invariant unter Basistransformation.
- b. Die Spurbildung ist eine lineare Abbildung, d.h. additiv und homogen.
- c. $\operatorname{Sp}(|\psi\rangle\langle\phi|) = \langle\phi|\psi\rangle$.
- d. Die Spur ist zyklisch invariant, d.h. Sp(AB) = Sp(BA), wenn sowohl Sp(AB) als auch Sp(BA) existieren.
- e. Sei \mathcal{H} ein Hilbertraum derart, daß $\mathcal{H} = \mathcal{H}_a \otimes \mathcal{H}_b$ gilt. Seien A und B Operatoren, die jeweils nur auf die Hilberträume \mathcal{H}_a bzw. \mathcal{H}_b wirken. Dann faktorisiert die Spur, d.h. $\operatorname{Sp}(AB) = \operatorname{Sp}_a(A)\operatorname{Sp}_b(B)$.
- f. Sei $\rho(t)$ ein zeitabhängiger Dichteoperator, dann ist Sp $(\rho^2(t))$ zeitunabhängig, d.h. ein reiner Zustand bleibt rein, ein gemischter Zustand bleibt gemischt.

Aufgabe 2 (2 Punkte)

Zeigen Sie, daß die Entropie $S = -k_B \operatorname{Sp}(\rho \ln \rho)$ eines quantenmechanischen Systems bei unitärer Zeitentwicklung zeitlich konstant bleibt.

Hinweis: Benutzen Sie die Entwicklung: $\ln x = \sum_{k=1}^{\infty} (-1)^{k+1} (x-1)^k / k, \ 0 < x \le 2.$

Aufgabe 3 (4 Punkte)

Gegeben sei ein Zwei-Energieniveau-System. Die normierten Energiezustände seien mit $|E_1\rangle$ und $|E_2\rangle$ bezeichnet. Ein beliebiger Zustand $|\psi(t)\rangle$ des Systems besitzt dann die Darstellung

$$|\psi(t)\rangle = c_1 e^{-i\frac{E_1 t}{\hbar}} |E_1\rangle + c_2 e^{-i\frac{E_2 t}{\hbar}} |E_2\rangle$$

wobei E_1 und E_2 die zugehörigen Energie
eigenwerte und c_1 und c_2 komplexwertige Normierungskonstanten sind. Der diesem Zustand zuge
ordente Dichteoperator sei mit $\rho(t) = |\psi(t)\rangle\langle\psi(t)|$ bezeichnet. Zeigen Sie, dass der zeitgemittelte Dichteoperator $\overline{\rho(t)} = \frac{1}{T} \int_0^T \rho(t) dt$ für Zeiten T, die sehr groß gegenüber $\hbar/|E_2 - E_1|$ sind, in den eines Gemisches übergeht.

Abgabetermin: Mittwoch, 29.11.2006 vor Beginn der Vorlesung.