Theorie der Wärme – Statistical Physics (Prof. E. Frey)

Problem set 11

Problem 11.1 Ising model (6 pts)

Use Bogoliubov's inequality (Problem 6.6) to find an upper bound for the free energy of the Ising model on a d-dimensional cubic lattice

$$\mathcal{H} = -J \sum_{\langle ij \rangle} \sigma_i \sigma_j - H \sum_i \sigma_i , \qquad \sigma_i = \pm 1 , \quad i = 1, .., N = L^d$$

where the first sum is restricted to nearest neighbors, in terms of the solvable model

$$\mathcal{H}_0 = -H_0 \sum_i \sigma_i , \qquad \sigma_i = \pm 1 , \quad i = 1, .., N = L^d$$

Determine the effective field H_0 that minimizes the bound.

Problem 11.2 Ising model in one dimension (6 pts)

Evaluate the partition sum $Z(T, N; \{J_i\})$ for a one dimensional Ising chain with N spins:

$$\mathcal{H}_N = -\sum_{i=1}^{N-1} J_i \sigma_i \sigma_{i+1} \,, \qquad \sigma_i = \pm 1 \,.$$

Here the couplings J_i are fixed numbers dependent on the site *i*. It is favorable to sum over the bond variables $\tau_i = \sigma_i \sigma_{i+1}$ instead over the spin variables σ_i . Convince yourself that each configuration is characterized by one end spin and the sequence of bonds. An important quantity is the spatial correlation function $G_{i,n} = \langle \sigma_i \sigma_{i+n} \rangle$ that characterizes the decay of spin correlation as a function of distance *n*. Show that one can also write

$$G_{i,n} = \langle \prod_{k=i}^{i+n-1} \tau_k \rangle = Z(T,N;\{J_i\})^{-1} \left[\prod_{k=i}^{i+n-1} \frac{\partial}{\partial (J_k/k_B T)} \right] Z(T,N;\{J_i\})$$

and evaluate $G_{i,n}$. For the case of equal couplings $J_i \equiv J$, demonstrate that the spatial correlation function decreases exponentially with increasing distance $G_{i,n} = \exp(-n/\xi)$. Determine the correlation length ξ and derive its leading low-temperature behavior. Also for equal couplings, calculate the extensive part of the susceptibility

$$\chi = \frac{1}{k_B T} \sum_{i,j=1}^{N} \langle \sigma_i \sigma_j \rangle$$

and discuss χ as a function of temperature.

Problem 11.3 critical properties of the van-der Waals fluid (6 pts) The empirical equation of state of a van-der Waals fluid reads

$$\left(P + \frac{N^2 a}{V^2}\right)(V - Nb) = Nk_BT,$$

where P, V = Nv, T and N denote the pressure, volume, temperature, and the number of particles, respectively, and a, b are some non-universal constants. Show that by introducing reduced variables $\hat{P} = P/P_c$, $\hat{v} = v/v_c$, $\hat{T} = T/T_c$ with $P_c = a/27b^2$, $v_c = 3b$, $k_BT_c = 8a/27b$ one obtains a parameter-free form

$$\left(\hat{P} + \frac{3}{\hat{v}^2}\right)(3\hat{v} - 1) = 8\hat{T}.$$

Demonstrate that $\hat{P} = \hat{v} = \hat{T} = 1$ corresponds to a critical point, i.e. $(\partial P/\partial v)_T = (\partial^2 P/\partial v^2)_T = 0$. Expand the reduced pressure for small $t = \hat{T} - 1$, $\phi = \hat{v} - 1$ [Answer: $\hat{P} = 1 + 4t - 6t\phi - 3\phi^3/2 + \mathcal{O}(\phi^4, t\phi^2)$]. Derive the free energy per particle. Convince yourself that one has to use a Maxwell construction for t < 0 and discuss the shape of the coexistence curve in a P-v diagram. Evaluate the specific heat per particle $c_V = C_V/N$ above and below T_c at $v = v_c$. Calculate the isothermal compressibility κ_T

- (a) at $v = v_c$ for temperatures $T > T_c$.
- (b) at the coexistence boundary for $T < T_c$.

Termine für Übungsgruppen: Do 12-14 in T3, 1.3.48 (Franosch) Do 16-18 in T1, 1.3.21 (Parmeggiani, Lattanzi) in englischer Sprache Fr 12-14 in E2, 1.1.53 (Falcke) **Abgabe:** In der Vorlesung vom 10.7.02