Ion implantation

John Paul Adrian Glaubitz

University of Oslo

26.05.2011
1 Introduction
 Terminology
 Motivation

2 Equipment
 Principal setup
 Ion source
 Mass separator
 Beam deflection

3 Implantation process
 Distribution and dose
 Activation

4 Issues
 Defects
 Channeling

5 Conclusion & summary
Ion implantation is a technique for direct deposition of dopants into a crystal where a doping gas (e.g. BF$_3$) is ionized, extracted and impacted into the target crystal.
Predeposition diffusion has a number of deficiencies. For example, it is very difficult to accurately control the doping profile and region, doping by diffusion has to be performed at high temperatures meaning that other, unintentional diffusion in the crystal occurs as well, the crystal can easily be contaminated with other gases in the furnace while performing diffusion and it can be very challenging to create lightly doped regions which are important for MOSFETs for example (channels).

Ion implantation tackles these problems. It allows to precisely measure and control the doping concentration and profile, avoids contamination by filtering the dopand gas through mass separation, and can be performed at room temperature thus avoiding unintentional diffusion.
Predeposition diffusion has a number of deficiencies. For example, it is very difficult to accurately control the doping profile and region, doping by diffusion has to be performed at high temperatures meaning that other, unintentional diffusion in the crystal occurs as well, the crystal can easily be contaminated with other gases in the furnace while performing diffusion and it can be very challenging to create lightly doped regions which are important for MOSFETs for example (channels).

Ion implantation tackles these problems. It allows to precisely measure and control the doping concentration and profile, avoids contamination by filtering the dopand gas through mass separation, and can be performed at room temperature thus avoiding unintentional diffusion.
Predeposition diffusion has a number of deficiencies. For example, it is very difficult to accurately control the doping profile and region, doping by diffusion has to be performed at high temperatures meaning that other, unintentional diffusion in the crystal occurs as well, the crystal can easily be contaminated with other gases in the furnace while performing diffusion and it can be very challenging to create lightly doped regions which are important for MOSFETs for example (channels).

Ion implantation tackles these problems. It allows to precisely measure and control the doping concentration and profile, avoids contamination by filtering the dopand gas through mass separation, and can be performed at room temperature thus avoiding unintentional diffusion.
Predeposition diffusion has a number of deficiencies. For example, *it is very difficult to accurately control the doping profile and region*, doping by diffusion *has to be performed at high temperatures meaning that other, unintentional diffusion in the crystal occurs as well*, the crystal can easily be contaminated with other gases in the furnace while performing diffusion and *it can be very challenging to create lightly doped regions which are important for MOSFETs for example (channels).*

Ion implantation tackles these problems. *It allows to precisely measure and control the doping concentration and profile, avoids contamination by filtering the dopand gas through mass separation, and can be performed at room temperature thus avoiding unintentional diffusion.*
Predeposition diffusion has a number of deficiencies. For example, *it is very difficult to accurately control the doping profile and region*, *doping by diffusion has to be performed at high temperatures meaning that other, unintentional diffusion in the crystal occurs as well*, the crystal can easily be contaminated with other gases in the furnace while performing diffusion and *it can be very challenging to create lightly doped regions which are important for MOSFETs for example (channels).*

Ion implantation tackles these problems. *It allows to precisely measure and control the doping concentration and profile*, avoids contamination by filtering the dopand gas through mass separation, and *can be performed at room temperature thus avoiding unintentional diffusion.*
Predeposition diffusion has a number of deficiencies. For example, \textit{it is very difficult to accurately control the doping profile and region, doping by diffusion has to be performed at high temperatures meaning that other, unintentional diffusion in the crystal occurs as well, the crystal can easily be contaminated with other gases in the furnace while performing diffusion and it can be very challenging to create lightly doped regions which are important for MOSFETs for example (channels).}

\textbf{Ion implantation tackles these problems.} \textit{It allows to precisely measure and control the doping concentration and profile, avoids contamination by filtering the dopand gas through mass separation, and can be performed at room temperature thus avoiding unintentional diffusion.}
Predeposition diffusion has a number of deficiencies. For example, it is very difficult to accurately control the doping profile and region, doping by diffusion has to be performed at high temperatures meaning that other, unintentional diffusion in the crystal occurs as well, the crystal can easily be contaminated with other gases in the furnace while performing diffusion and it can be very challenging to create lightly doped regions which are important for MOSFETs for example (channels).

Ion implantation tackles these problems. It allows to precisely measure and control the doping concentration and profile, avoids contamination by filtering the dopand gas through mass separation, and can be performed at room temperature thus avoiding unintentional diffusion.
Predeposition diffusion has a number of deficiencies. For example, it is very difficult to accurately control the doping profile and region, doping by diffusion has to be performed at high temperatures meaning that other, unintentional diffusion in the crystal occurs as well, the crystal can easily be contaminated with other gases in the furnace while performing diffusion and it can be very challenging to create lightly doped regions which are important for MOSFETs for example (channels).

Ion implantation tackles these problems. It allows to precisely measure and control the doping concentration and profile, avoids contamination by filtering the dopand gas through mass separation, and can be performed at room temperature thus avoiding unintentional diffusion.
Predeposition diffusion has a number of deficiencies. For example, it is very difficult to accurately control the doping profile and region, doping by diffusion has to be performed at high temperatures meaning that other, unintentional diffusion in the crystal occurs as well, the crystal can easily be contaminated with other gases in the furnace while performing diffusion and it can be very challenging to create lightly doped regions which are important for MOSFETs for example (channels).

Ion implantation tackles these problems. It allows to precisely measure and control the doping concentration and profile, avoids contamination by filtering the dopand gas through mass separation, and can be performed at room temperature thus avoiding unintentional diffusion.
Ion implantation

John Paul
Adrian
Glaubitz

Contents
Introduction
Terminology
Motivation
Equipment
Principal setup
Ion source
Mass separator
Beam deflection
Implantation process
Distribution and dose
Activation
Issues
Defects
Channeling
Conclusion & summary

Source: http://www.hull.ac.uk/chemistry/massspec3/principles%20of%20ms.html
Campbell, Stephen A - *The Science and Engineering of Microelectronic Fabrication*

\[
\frac{M v^2}{r} = qvB \quad \text{and} \quad v = \sqrt{\frac{2E}{M}} = \sqrt{\frac{2qV_{ext}}{M}}
\]

thus

\[
r = \frac{1}{B} \sqrt{\frac{2MV_{ext}}{q}}
\]
Deflection determines position of ion beam on target surface. Allows very precise and controlled scanning over the surface which guarantees highly customizable and reproducible doping patterns eligible for mass production.
Doping profile is approximately given by a Gaussian

\[N(x) = \frac{\Phi}{\sqrt{2\pi}\Delta R_p} \exp\left(-\frac{1}{2}\left(\frac{x-R_p}{\Delta R_p}\right)^2\right) \]

- \(R_p \): projected range
- \(\Delta R_p \): straggle
- \(\Phi \): dose (in cm\(^{-2}\))

Both \(R_p \) and \(\Delta R_p \) increase with increasing beam energy. The dose is obtained by integrating the ion current over time.
Doping profile is approximately given by a Gaussian

\[N(x) = \frac{\Phi}{\sqrt{2\pi}\Delta R_p} \exp\left(-\frac{1}{2}\left(\frac{x-R_p}{\Delta R_p}\right)^2\right) \]

- \(R_p \): projected range
- \(\Delta R_p \): straggle
- \(\Phi \): dose (in cm\(^{-2}\))

Both \(R_p \) and \(\Delta R_p \) increase with increasing beam energy. The dose is obtained by integrating the ion current over time.
Doping profile is approximately given by a Gaussian

\[N(x) = \frac{\Phi}{\sqrt{2\pi}\Delta R_p} \exp\left(-\frac{1}{2} \left(\frac{x - R_p}{\Delta R_p}\right)^2\right) \]

- \(R_p \): projected range
- \(\Delta R_p \): straggle
- \(\Phi \): dose (in cm\(^{-2}\))

Both \(R_p \) and \(\Delta R_p \) increase with increasing beam energy. The dose is obtained by integrating the ion current over time.
Typical Gaussian with the characteristic parameters R_P and ΔR_P

Source: Streetman, Ben G.; Banerjee, Sanjay - *Solid State Electronic Devices*
Custom doping profiles are obtained through subsequent implantations

Source: Streetman, Ben G.; Banerjee, Sanjay - *Solid State Electronic Devices*
Right after implantation, only about 5% of the dopants have been bonded to the crystal and are electrically active. It is therefore necessary to activate the implanted dopants through heat treatment. Due to the activation, diffusion will occur and the doping profile changes accordingly.

\[
N(x) = \frac{\Phi}{\sqrt{2\pi} \sqrt{(\Delta R_p^2 + 2Dt)}} \exp \left(-\frac{1}{2} \left(\frac{x-R_p}{\Delta R_p^2 + 2Dt} \right) \right)
\]

- \(D \): diffusivity
- \(t \): time

Thus, to avoid strong unintentional diffusion, activation time must be kept as short as possible. One may use \textit{rapid thermal annealing} (RTA) for activation.
Right after implantation, only about 5% of the dopants have been bonded to the crystal and are electrically active. It is therefore necessary to activate the implanted dopants through heat treatment. Due to the activation, diffusion will occur and the doping profile changes accordingly.

\[
N(x) = \frac{\Phi}{\sqrt{2\pi} \sqrt{(\Delta R_p^2 + 2Dt)}} \exp\left(-\frac{1}{2} \left(\frac{x-R_p}{\Delta R_p^2 + 2Dt} \right) \right)
\]

- \(D\): diffusivity
- \(t\): time

Thus, to avoid strong unintentional diffusion, activation time must be kept as short as possible. One may use rapid thermal annealing (RTA) for activation.
Right after implantation, only about 5 % of the dopants have been bonded to the crystal and are electrically active. It is therefore necessary to activate the implanted dopants through heat treatment. Due to the activation, diffusion will occur and the doping profile changes accordingly.

\[N(x) = \frac{\Phi}{\sqrt{2\pi}\sqrt{(\Delta R_p^2 + 2Dt)}} \exp\left(-\frac{1}{2} \frac{x-R_p}{\Delta R_p^2 + 2Dt} \right) \]

- \(D \): diffusivity
- \(t \): time

Thus, to avoid strong unintentional diffusion, activation time must be kept as short as possible. One may use rapid thermal annealing (RTA) for activation.
Right after implantation, only about 5 % of the dopants have been bonded to the crystal and are electrically active. It is therefore necessary to *activate* the implanted dopants through heat treatment. Due to the activation, diffusion will occur and the doping profile changes accordingly.

\[
N(x) = \frac{\Phi}{\sqrt{2\pi} \sqrt{(\Delta R_p^2 + 2Dt)}} \exp\left(-\frac{1}{2}\left(\frac{x - R_p}{\Delta R_p^2 + 2Dt}\right)^2\right)
\]

- \(D\): diffusivity
- \(t\): time

Thus, to avoid strong unintentional diffusion, activation time must be kept as short as possible. One may use *rapid thermal annealing* (RTA) for activation.
Right after implantation, only about 5 % of the dopants have been bonded to the crystal and are electrically active. It is therefore necessary to activate the implanted dopants through heat treatment. Due to the activation, diffusion will occur and the doping profile changes accordingly.

\[
N(x) = \frac{\Phi}{\sqrt{2\pi} \sqrt{(\Delta R_p^2 + 2Dt)}} \exp\left(-\frac{1}{2} \left(\frac{x-R_p}{\Delta R_p^2 + 2Dt}\right)^2\right)
\]

- \(D\): diffusivity
- \(t\): time

Thus, to avoid strong unintentional diffusion, activation time must be kept as short as possible. One may use rapid thermal annealing (RTA) for activation.
Ion implantation

John Paul
Adrian Glaubitz

Contents
Introduction
Terminology
Motivation
Equipment
Principal setup
Ion source
Mass separator
Beam deflection
Implantation process
Distribution and dose
Activation
Issues
Defects
Channeling
Conclusion & summary

Topography scan (A) of the Si sample implanted with 3 MeV Au\(^{2+}\) ions with dose \(5 \times 10^9\) cm\(^{-2}\) from compared with a reference sample (B); there are no visible changes in the topography of the scan in (A) after ion bombardment. The electronic changes are only visible in the SCM images.

SCM images of Si samples implanted with 3 MeV Au$^{2+}$ ions with dose $5 \times 10^9 \text{cm}^{-2}$ (A), $8 \times 10^8 \text{cm}^{-2}$ (B) and $2 \times 10^8 \text{cm}^{-2}$ (C), as well as an unimplanted sample (D). These images show dose-dependent changes in the electronic structure of the Si bulk which are not visible in topography scans using AFM.

If ions move parallel to a major crystal direction, they can travel very long distance without any considerable energy loss due to scattering. This is called *channeling* and will disturb the doping profile.

\[
\Psi = 9.73^\circ \sqrt{\frac{Z_i Z_t}{E_{inc} d}}
\]

Campbell, Stephen A - *The Science and Engineering of Microelectronic Fabrication*
If ions move parallel to a major crystal direction, they can travel very long distance without any considerable energy loss due to scattering. This is called *channeling* and will disturb the doping profile.

Campbell, Stephen A - *The Science and Engineering of Microelectronic Fabrication*

Critical angle: \(\Psi = 9.73^\circ \sqrt{\frac{Z_i Z_f}{E_{inc} d}} \)
If ions move parallel to a major crystal direction, they can travel very long distance without any considerable energy loss due to scattering. This is called *channeling* and will disturb the doping profile.

\[
\Psi = 9.73^\circ \sqrt{\frac{Z_i Z_t}{E_{inc} d}}
\]

Campbell, Stephen A - *The Science and Engineering of Microelectronic Fabrication*
Ion implantation is a technique for depositing dopants into a target crystal using an ion gun. The dopant is brought into gaseous form, ionized, mass-separated and accelerated onto the target. Unlike predeposition diffusion, it will work at room temperature (no unintended diffusion) and the doping profile can be very accurately measured and controlled, thus yielding highly reproducible results. Most problems from ion implantation result from crystal damage which will additionally alter the electronic configuration by introducing electrically active defects. These defects have to be taken into consideration when determining the parameters for a profile. The defects introduced by ion implantation (prevention, effects, way of “healing”) are subject to research at many groups.
Ion implantation is a technique for depositing dopants into a target crystal using an ion gun. The dopant is brought into gaseous form, ionized, mass-separated and accelerated onto the target. Unlike predeposition diffusion, it will work at room temperature (no unintended diffusion) and the doping profile can be very accurately measured and controlled, thus yielding highly reproducible results. Most problems from ion implantation result from crystal damage which will additionally alter the electronic configuration by introducing electrically active defects. These defects have to be taken into consideration when determining the parameters for a profile. The defects introduced by ion implantation (prevention, effects, way of “healing”) are subject to research at many groups.
Ion implantation is a technique for depositing dopants into a target crystal using an ion gun. The dopant is brought into gaseous form, ionized, mass-separated and accelerated onto the target. Unlike predeposition diffusion, it will work at room temperature (no unintended diffusion) and the doping profile can be very accurately measured and controlled, thus yielding highly reproducible results. Most problems from ion implantation result from crystal damage which will additionally alter the electronic configuration by introducing electrically active defects. These defects have to be taken into consideration when determining the parameters for a profile. The defects introduced by ion implantation (prevention, effects, way of “healing”) are subject to research at many groups.
Ion implantation is a technique for depositing dopants into a target crystal using an ion gun. The dopant is brought into gaseous form, ionized, mass-separated and accelerated onto the target. Unlike predeposition diffusion, it will work at room temperature (no unintended diffusion) and the doping profile can be very accurately measured and controlled, thus yielding highly reproducible results. Most problems from ion implantation result from crystal damage which will additionally alter the electronic configuration by introducing electrically active defects. These defects have to be taken into consideration when determining the parameters for a profile. The defects introduced by ion implantation (prevention, effects, way of “healing”) are subject to research at many groups.
Ion implantation is a technique for depositing dopants into a target crystal using an ion gun. The dopant is brought into gaseous form, ionized, mass-separated and accelerated onto the target. Unlike predeposition diffusion, it will work at room temperature (no unintended diffusion) and the doping profile can be very accurately measured and controlled, thus yielding highly reproducible results. Most problems from ion implantation result from crystal damage which will additionally alter the electronic configuration by introducing electrically active defects. These defects have to be taken into consideration when determining the parameters for a profile. The defects introduced by ion implantation (prevention, effects, way of “healing”) are subject to research at many groups.
Campbell, Stephen A - *The Science and Engineering of Microelectronic Fabrication*

Streetman, Ben G.; Banerjee, Sanjay - *Solid State Electronic Devices*

Halbleiterechnologie von A bis Z - http://www.halbleiter.org

Thank you for your attention!