
Heiko Dumlich January 23, 200812 Task Theoretical Physics VI - Statistics12.1 (Bose-Einstein condensation in d = 1, 2?)BEC occurs, if µ = ε0 (with µ the chemical potential and ε0 the single particleground state energy). We have ε0 = 0 for an ideal Bose gas without external�eld. We now want to check, if there is the possibility of BEC for d = 1, 2.Therefore we check if the number of particles will converge or diverge in d = 1, 2.De�nition of particle number
N =

∑

p
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)d ∫
ddp

e
β
(

p2

2m
−µ
)

− 1Starting with d = 1:
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p
dE = dp we get
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∫ ∞

0

dE
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2

eβE−βµ − 1Well, now we have to use a book (at least I have to :-) ), since this integral isa pretty hard nut. We start with the de�nition of the generalized zeta function(from the lecture):
gν (z) =

∞
∑

n=1
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nνnow we will prove the integral form:
gν (z) =

1

Γ (ν)
Iν (z)with
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∫ ∞
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∫ ∞
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=

∫ ∞

0
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(

ze−x
)n
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=

∞
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zn

∫ ∞

0

e−nxxν−1dxThe prove just needs the substitution x = t
n
and we get:
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∞
∑

n=1

zn

nν−1
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∫ ∞
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∞
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= gν (z) Γ (ν)therefore:
gν (z) =

1

Γ (ν)
Iν (z)

�This can now be used on the integral, where we can identify our problemwith Iν (z).
N =

√
m√
2

L

2π~
β− 1

2

∫ ∞
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)now inserting Γ
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=
√

π, we get:
N =
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√
2πmkBT

h
g 1
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(z) =
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2λT

g 1

2

(z) → ∞From the fact that N diverges we gather, that BEC is not possible for d = 1,since the number of particle in the ground state will not diverge.Now d = 2:
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− 1Changing from �cartesian� to �polar� coordinates
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We want to solve this integral, using
∫

dx

ex − 1
= ln

(

1 − e−x
)

⇔ ∂

∂x
ln
(

1 − e−x
)

=
e−x

1 − e−x
=

1

ex − 1this leads to
N =

L2m

2π~2

[

ln
(

1 − e−βE−βµ
)]∞

0

=
L2m

2π~2

[

ln (1) − ln
(

1 − e−βµ
)]

= −L2m

2π~2
ln
(

1 − e−βµ
)with µ → 0 the argument of the logarithm will go to 0, but while limε→0 − ln (ε) →

∞, N will not converge for d = 2. This means, the ground state particle numberis small compared to the total number of particles, therefore there is no BECfor d = 2.Alternatively with the help of the generalized zeta function we can identify
N =

L2m

2π~2
β−1

∫ ∞

0

dβE 1 · (βE)
1−1

eβEz−1 − 1

=
L2m

2π~2
β−1I1 (z)

=
2πmkBT

h2
L2g1 (z) Γ (1)which will not converge:

N =
L2

λ2
T

g1 (z) → ∞12.2 (Bose-Einstein condensation in a harmonic poten-tial)(a)The single particle Hamiltonian is given with
Ĥ =

1

2m

(

p̂2
x + p̂2

y + p̂2
z

)

+
1

2
m
(

ω2
xx̂2 + ω2

y ŷ2 + ω2
z ẑ2
)leading to the well known energy value:

ε =

3
∑

i=1

Ei =

3
∑

i=1

~ωi

(

ni +
1

2

)We �rst consider the possible energy states, while we have the condition
Ei ≥ 0 (with ni ≥ 0) we can only have values in one octant. Furthermorewe de�ne each energy state to have a rectangular energy unit cell surrounding3



it with the volume Vε = ~ω1~ω2~ω3 = (~ω̄)3. If we �x ε we will receive aplane in this octant (this means an octahedron if we would look at all octants),intercepting (ε, 0, 0), (0, ε, 0) and (0, 0, ε), a second plane with ε + ∆ε will nowbe parallel to the �rst one but with the intercepts (ε + ∆ε, 0, 0), (0, ε + ∆ε, 0)and (0, 0, ε + ∆ε). Therefore we can interpret it as the di�erence of the densityof states, while considering only the �rst case of a �xed ε would give us D (ε)while the second plane will lead to D (ε + ∆ε). While ε � ~ω̄ the ground stateenergy can be neglected. We also get a quasi continous density while before weonly had points in space, but now we can consider a real density, because of thehuge number of possible states N � 1. Now we can �nd the density of statesusing Ω = V
8 and the V for an octahedron V =

√
2

3 a3. With a the length of oneoctahedron side, while we get a =
√

2ε if we think of our used model, while wecan use the intercepts and the connecting line of two intercepts is a. Now usingthe de�nition of the density of states we get:
D (ε) =

1

Vε

dΩ

dε
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1
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dε

√
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3

(√
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=
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3 ε2 =

ε2

2 (~ω̄)
3(b)We consider N atoms in the trap. This is given by

N =

∫ ∞

0

dεD (ε)nBE (ε)with
nBE (ε) =

1

eβ(ε−µ) − 1we can insert D (ε) to get
N =

1

2 (~ω̄)3

∫ ∞
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dεε2nBE (ε)

=
1

2 (β~ω̄)
3

∫ ∞

0

dβε
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eβεz−1 − 1

=
1

2 (β~ω̄)
3 g3 (z) Γ (3)

=
1

2 (β~ω̄)
3 g3 (z) 2

=
g3 (z)

(β~ω̄)
3this means:

N =
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(

eβµ
)

(β~ω̄)
3just an implicit form of µ. But rearrangement seems not to be possible atthe moment. The only thing we can do is an approximation, using4



g3 (z) =

∞
∑

n=1

zn

n3and knowing that for bigger n this will be small because n3 in the denom-inator will become huge, while z in the numerator is about 1, we just simplytake the �rst order:
g3 (z) ≈ z = eβµTherefore we get the easy expression:

µ ≈ 1

β

[

lnN + 3 ln (β~ω̄)
3
]We are looking for Tc the Bose-Einstein-condensation temperature, we canset µ = 0 which means z = 1 and we therefore get:

N =
k3

BT 3
c g3 (1)

(~ω̄)
3rearranging for Tc and using gν (1) = ζ (ν)

Tc =
~ω̄
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(

N

g3 (1)

)
1

3

=
~ω̄

kB

(

N

ζ (3)

)
1

3 (1)After we found the critical temperature, we now want to compare the char-acteristic size of the trap to the thermal de Broglie wave to give a physicalinterpretation. It seems quite likely (also we don't have that for d)) to approx-imate by a symmetric trap (we only need the approximate order of the trapsize for comparison), while the size seems to be determined by the harmonicpotential. We therefore want to �nd the expectation value for ~r which we canget using the ground state energy, with ~p = 0 leading to
Ĥ = 0 +

1

2
m
(

ω2
xx2 + ω2

yy2 + ω2
zz2
)

≈ m

2
ω̄2~r2For further approximation we use the ground state energy with ωx = ωy =

ωz = ω̄ meaning E0 = 1
2~ (ωx + ωy + ωz) ≈ 3

2~ω̄. Putting things together weget:
m

2
ω̄2
〈

~r2
〉

≈
〈

Ĥ
〉

= 〈E0〉 ≈
3

2
~ω̄now we can rearrange this for r:

r =

√

3~

mω̄Now the de�nition of thermal de Broglie wave length is
λTc

=
h√

2πmkBTc5



with equation (1) this is:
λTc

=

√

h

mω̄

(

ζ (3)

N

)
1

6

=

√

1

6π

√

3~

mω̄

(

ζ (3)

N

)
1

6

= r ·
√

1

6π

(

ζ (3)

N

)
1

6The comparison now only yields the factor of
λTc

r
=

√

1

6π

(

ζ (3)

N

)
1

6for the thermal de Broglie wavelength compared to the characteristic size ofthe trap. Using N = 107 like given in d) we get a factor of
λTc

r
≈ 0.016 = 1.6 · 102This means the de Broglie wave length is about 2 orders smaller than thecharacteristic size of the trap. This will force the particles together to a certainamount, since there are 107 particles in there, increasing the density of particlesin the potential.To get an accurate value of Tc we �rst have to consider, what the depen-dencies for Tc are. Looking at equation (1) we see some constants, but also thedependence of ω̄ meaning dependence on ωx, ωy, ωz and on N . Our approxi-mation is only valid for a high N since otherwise, we won't have a continousdensity. Also we considered a symmetric case for the comparison between trapsize and thermal de Broglie wavelength, which in experimental setups is quitehard to establish, but while in task d) we get an example, where we don't havea symmetric potential it is likely that the symmetry doesn't matter for the Tctoo much, there is no reason why it should anyway. While N also in�uence thethermal de Broglie wavelength it seems likely, that the size of the trap shouldmatter (at least in comparison to the thermal de Broglie wavelength), this brings

ωx, ωy, ωz back in game, while if we had a huge trap it doesn't seem likely, thatall particles would be in the same state (at least those one in New York andBerlin will never form a BEC).(c)To �nd an expression for the condensate density for T < Tc we can �rst splitour particle number like we did in the lecture.
N =

∑

p

n (εp) = n (0) +
∑

p6=0

n (εp)We now have to go to the integral ∑p →
∫

d3p. We get:
N = n (0) +

∑

p6=0

n (εp)

= n (0) +
1

2 (~ω̄)
3

∫ ∞

E0

dεε2nBE (ε)substituting x = ε − E0 we get: 6



N = n (0) +
1

2 (~ω̄)3

∫ ∞

0

dx
x2 − 2xE0 + E2

0

eβxz−1 − 1(with z−1 = eβµ−βE0) which can be split into 3 integrals
N = n (0) +

1

2 (~ω̄)3

(

1

β3

∫ ∞

0

dβx
(βx)

3−1

eβxz−1 − 1
− 2E0

β2

∫ ∞

0

dβx
(βx)

2−1

eβxz−1 − 1
+

E2
0

β

∫ ∞

0

dβx
(βx)

1−1

eβxz−1 − 1

)rewriting the integrals we get:
N = n (0) +

1

2 (~ω̄)3

(

1

β3
g3 (z) Γ (3) − 2E0

β2
g2 (z) Γ (2) +

E2
0

β
g1 (z) Γ (1)

)now inserting the Γ functions leading to
N = n (0) +

1

2 (~ω̄)3

(

2

β3
g3 (z) − 2E0

β2
g2 (z) +

E2
0

β
g1 (z)

)now using E0 → 0 (well doesn't seem to be all right, since g1 (z) will lead tocomplex in�nity, therefore we want to get rid of this term) we can simplify thisto
N ≈ n (0) +

g3 (z)

(β~ω̄)3inserting N =
k3

BT 3

c g3(1)

(~ω̄)3
⇔ (~ω̄)

3
=

k3

BT 3

c g3(1)
N

we get
N = n (0) + N

g3 (z) k3
BT 3

k3
BT 3

c g3 (1)rearranged
n (0) = N

[

1 − g3 (z)T 3

g3 (1)T 3
c

]and with z = 1 we have
n (0) = N

[

1 −
(

T

Tc

)3
]In the lecture we found the exponent of 3

2 for the case without externalpotential, therefore this can be interpreted as an e�ect of the potential. Thepotential seems to increase the number of BEC particles faster than in the freestate. This seems likely, while they are forced together by the potential.7



(d)Using
Tc =

h ω̄
2π

kB

(

N

ζ (3)

)
1

3and inserting 1
2π

(ωx, ωy, ωz) = (250, 670, 7), N = 107 and ζ (3) = 1 + 1
23 +

1
33 + . . . = 1.202 . . . we get the critical temperature

Tc = 1.03 · 10−6 Kwhich seems quite small. Since we know that for Helium we can get temper-atures of about 1 − 2K and observe BEC.12.3 (Bose-Einstein condensation in a gravitational �eld)Energy eigenvalues in homogeneous gravitational �eld, within a V = L3 box,consisting of potential and kinetic part
E = Ekin + Epot =

p2

2m
+ mgheach particle got mass m and inner degree of freedom ω(a)Grand partition function

lnZG = −ω ln
(

1 − e−βmghz
)

+ ω
V

λ3
T

∞
∑

N=0

zN+1

(N + 1)
7

2

1 − e−βmgL(N+1)

βmgL
(2)We will just do the pretty basic stu� and then skip the rest. Therefore westart with knowledge from the lecture, where we showed that

ZG = Πi

[

1 − e−β(εi−µ)
]−ωJust using the ln on that leads us to

lnZG = −ω ln Πi

[

1 − e−β(εi−µ)
]while we got the given form of the result it seems worthy to seperate theground state from the rest of the energy states, while the ground state shouldbe independent of the kinetic term, we just get mgh and therefore:

lnZG = −ω
∑

i

ln
[

1 − e−β(εi−µ)
]

= −ω ln
(

1 − e−βmgheβµ
)

− ω

N
∑

i=1

ln
[

1 − e−β(εi−µ)
]8



but this is already �rst part of the task with ξ = e−βmghz and eβµ = z weget:
lnZG = −ω ln (1 − ξ) − ω

N
∑

i=1

ln
[

1 − e−β(εi−µ)
]It now remains to show that

−ω

N
∑

i=1

ln
[

1 − e−β(εi−µ)
]

= ω
V

λ3
T

∞
∑

N=0

zN+1

(N + 1)
7

2

1 − e−βmgL(N+1)

βmgLwhich we skippedBut for completeness the total result should be:
lnZG = −ω ln (1 − ξ) + ω

V

λ3
T

∞
∑

N=0

zN+1

(N + 1)
7

2

1 − e−βmgL(N+1)

βmgL(b)De�nition particle number:
N =

∂Φ

∂µ

=
1

β

∂ lnZG

∂µinserting lnZG from equation (2) we can see, that the only µ dependence isin z = eβµ the fugacity
N =

1

β

∂

∂µ

(

−ω ln
(

1 − e−βmghz
)

+ ω
V

λ3
T

∞
∑

N=0

zN+1

(N + 1)
7

2

1 − e−βmgL(N+1)

βmgL

)therefore we rewrite the di�erentiation:
∂

∂µ
=

∂z

∂µ

∂

∂z
= βz

∂

∂zThis leads to:
N = z

∂

∂z

(

−ω ln
(

1 − e−βmghz
)

+ ω
V

λ3
T

∞
∑

N=0

zN+1

(N + 1)
7

2

1 − e−βmgL(N+1)

βmgL

)

= −zω
−e−βmgh

1 − e−βmghz
+ zω

V

λ3
T

∞
∑

N=0

(N + 1) zN+1

(N + 1)
7

2

1 − e−βmgL(N+1)

βmgL

=
ω

eβmghz − 1
+

ωV

βmgLλ3
T

∞
∑

N=0

zN+1

(N + 1)
5

2

(

1 − e−βmgL(N+1)
)9



We can now move the index of the sum to N = 1 and identify it with thegeneralized zeta function:
gν (z) =

∞
∑

n=1

zn

nνand we got:
N =

ω

eβmghz − 1
+

ωV

βmgLλ3
T

∞
∑

N=1

(

zN

N
5

2

−
(

ze−βmgL
)N

N
5

2

)now using small T , meaning β will become big, the �rst term will cancel tothe second, since e−β → 0. It only remains:
N =

ωV

βmgLλ3
T

∞
∑

N=1

(

zN

N
5

2

−
(

ze−βmgL
)N

N
5

2

)inserting gerneralized zeta function de�nition and de�nition of fugacity z =
eβµ we get

N =
ωV

βmgLλ3
T

(

g 5

2

(z) − g 5

2

(

ze−βmgL
)

)

=
ωV

βmgLλ3
T

(

g 5

2

(

eµβ
)

− g 5

2

(

eβ(µ−mgL)
))with the approximation suggested in the task this becomes:

N ≈ ωV

βmgLλ3
T

(

g 5

2

(1) − µβg 3

2

(1) +
4

3

√
π (µβ)

3

2 + O
(

(µβ)2
)

)

− ωV

βmgLλ3
T

(

g 5

2

(1) − β (µ − mgL) g 3

2

(1) +
4

3

√
π (β (µ − mgL))

3

2 + O
(

(β (µ − mgL))2
)

)

=
ωV

βmgLλ3
T

(

βmgLg 3

2

(1) +
4

3

√
π
[

(µβ)
3

2 − (β (µ − mgL))
3

2

]

+ O
(

(µβ)
2
)

)

≈ ωV

λ3
T

g 3

2

(1) +
4ωV

√
π

3βmgLλ3
T

[

(µβ)
3

2 − (β (µ − mgL))
3

2

]Now Bose-Einstein condensation corresponds to z = 1 this means βµ = 0this leads to:
N =

ωV

λ3
T

[

g 3

2

(1) − 4

3
(πβmgL)

1

2

]and dividing through V this is
n =

N

V
=

ω

λ3
T

[

g 3

2

(1) − 4

3
(πβmgL)

1

2

]10



(c)We already found the Term N in b) which depends on T and we found it for
z = 1 which corresponds to BEC, which only occurs for T ≤ Tc. If we considerthe case T = Tc we can get an equation for Tc from this

n =
ω

λ3
Tc

[

g 3

2

(1) − 4

3

(

π

kBTc

mgL

)
1

2

]with
λ3

Tc
=

(

h√
2πmkBTc

)3and for constant n, which we have while the total particle number N isconserved and we the constraint of a box with solid borders means V is alsoconstant, we have from the lecture for g = 0

nλ3
Tc

= g 3

2

(1)which veri�es our equation for g = 0. We can now insert all we got and get:
n

(

h√
2πmkB

)3

T
− 3

2

c = ωg 3

2

(1) − 4

3
ω

(

π

kB

mgL

)
1

2

T
− 1

2

crewriting this for Tc isn't easy, just the �rst step
n

ω

(

h√
2πmkB

)3

= T
3

2

c g 3

2

(1) − 4

3

(

π

kB

mgL

)
1

2

T
1

2

cnow we want to simplify this a little bit using some constants
a =

n

ω

(

h√
2πmkB

)3

b =
4

3

(

π

kB

mgL

)
1

2

c = g 3

2

(1) = ζ

(

3

2

)we therefore get an equation of the form
cT

3

2

c − bT
1

2

c − a = 0

T
3

2

c − b

c
T

1

2

c − a

c
= 0We now have to solve it for Tc, mathematica gives a solution, but it seemspretty lengthy, therefore we guess, there must have been something wrong. Wegive the easier solution for g = 0 anyway:11



T 0
c =

(a

c

)
2

3

=







n
ω

(

h√
2πmkB

)3

g 3

2

(1)







2

3

=
h2

2πmkB

(

n

ωζ
(

3
2

)

)
2

3Now we can decide, whether T 0
c or Tc will be larger, since we got the equation:

n

ω

(

h√
2πmkB

)3

= T
3

2

c g 3

2

(1) − 4

3

(

π

kB

mgL

)
1

2

T
1

2

cand the left side is constant, while for g = 0 the right side will be larger thanfor g 6= 0. Therefore Tc < T 0
c . Going further now to �nd Tc in an approximation

n

ω

(

h√
2πmkBTc

)3

T
3

2

c = T
3

2

c g 3

2

(1) − 4

3

(

π

kB

mgL

)
1

2

T
1

2

cInserting nλ3
Tc

= g 3

2

(1) which is valid for g = 0 we get:
g 3

2

(1)

(

1

ω
− 1

)

Tc = −4

3

(

π

kB

mgL

)
1

2which can be seen as an approximation for the case of g 6= 0:
Tc =

4

3
ω

(

π
kB

mgL
)

1

2

ζ
(

3
2

)

(ω − 1)

12


