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12 Task Theoretical Physics VI - Statistics

12.1 (Bose-Einstein condensation in d = 1,27)

BEC occurs, if 4 = ¢y (with p the chemical potential and ¢ the single particle

ground state energy). We have ¢y = 0 for an ideal Bose gas without external

field. We now want to check, if there is the possibility of BEC for d = 1,2.

Therefore we check if the number of particles will converge or divergeind =1, 2.
Definition of particle number
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Well, now we have to use a book (at least I have to :-) ), since this integral is
a pretty hard nut. We start with the definition of the generalized zeta function
(from the lecture):
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now we will prove the integral form:
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I, (z) = Zniiln/o ttetdt

therefore:
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This can now be used on the integral, where we can identify our problem
with I, (2).
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From the fact that N diverges we gather, that BEC is not possible for d = 1,
since the number of particle in the ground state will not diverge.

Now d = 2:
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Changing from “cartesian” to “polar” coordinates
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We want to solve this integral, using
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L2m _ _ [e%e]
N = 72 [ln(l—e PE B”)]O
L? _
= S5 () (1 —e)]
2
= —%ln (1—6_5“)

with g — 0 the argument of the logarithm will go to 0, but while lim. o — In (¢) —
00, N will not converge for d = 2. This means, the ground state particle number
is small compared to the total number of particles, therefore there is no BEC
for d = 2.

Alternatively with the help of the generalized zeta function we can identify
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12.2 (Bose-Einstein condensation in a harmonic poten-
tial)
(a)
The single particle Hamiltonian is given with
N 1 1
H= (P2 + P, +P7) + 3 (w23® + w2j? + w22?)
leading to the well known energy value:
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We first consider the possible energy states, while we have the condition
E; > 0 (with n; > 0) we can only have values in one octant. Furthermore
we define each energy state to have a rectangular energy unit cell surrounding



it with the volume V., = hwihwohiws = (h&})g If we fix € we will receive a
plane in this octant (this means an octahedron if we would look at all octants),
intercepting (e,0,0), (0,€,0) and (0,0,¢€), a second plane with € + Ae will now
be parallel to the first one but with the intercepts (e + Ag,0,0), (0, e + Ae, 0)
and (0,0, € + Ae). Therefore we can interpret it as the difference of the density
of states, while considering only the first case of a fixed ¢ would give us D (¢)
while the second plane will lead to D (e + Ae). While € > hw the ground state
energy can be neglected. We also get a quasi continous density while before we
only had points in space, but now we can consider a real density, because of the
huge number of possible states NV > 1. Now we can find the density of states
using O = = and the V for an octahedron V = ‘f a®. With a the length of one
octahedron 51de while we get a = V2¢ if we thlnk of our used model, while we
can use the intercepts and the connecting line of two intercepts is a. Now using
the definition of the density of states we get:
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(b)

We consider N atoms in the trap. This is given by
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just an implicit form of p. But rearrangement seems not to be possible at
the moment. The only thing we can do is an approximation, using



n

65(:) =) =

n=1

and knowing that for bigger n this will be small because n3 in the denom-
inator will become huge, while z in the numerator is about 1, we just simply
take the first order:

g3(2) ~ z = PP

Therefore we get the easy expression:
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We are looking for T, the Bose-Einstein-condensation temperature, we can
set u = 0 which means z = 1 and we therefore get:
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rearranging for 7. and using g, (1) = ¢ (v)

After we found the critical temperature, we now want to compare the char-
acteristic size of the trap to the thermal de Broglie wave to give a physical
interpretation. It seems quite likely (also we don’t have that for d)) to approx-
imate by a symmetric trap (we only need the approximate order of the trap
size for comparison), while the size seems to be determined by the harmonic
potential. We therefore want to find the expectation value for 7 which we can
get using the ground state energy, with g = 0 leading to
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For further approximation we use the ground state energy with w, = w, =
w, = w meaning Ey = %h(wm +wy +w,) & %h&} Putting things together we

get:
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now we can rearrange this for r:
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Now the definition of thermal de Broglie wave length is
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with equation (1) this is:

The comparison now only yields the factor of
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for the thermal de Broglie wavelength compared to the characteristic size of
the trap. Using N = 107 like given in d) we get a factor of
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This means the de Broglie wave length is about 2 orders smaller than the
characteristic size of the trap. This will force the particles together to a certain
amount, since there are 107 particles in there, increasing the density of particles
in the potential.

To get an accurate value of T, we first have to consider, what the depen-
dencies for T, are. Looking at equation (1) we see some constants, but also the
dependence of w meaning dependence on wg,wy,w, and on N. Our approxi-
mation is only valid for a high NV since otherwise, we won’t have a continous
density. Also we considered a symmetric case for the comparison between trap
size and thermal de Broglie wavelength, which in experimental setups is quite
hard to establish, but while in task d) we get an example, where we don’t have
a symmetric potential it is likely that the symmetry doesn’t matter for the T,
too much, there is no reason why it should anyway. While N also influence the
thermal de Broglie wavelength it seems likely, that the size of the trap should
matter (at least in comparison to the thermal de Broglie wavelength), this brings
Wg,wy,w, back in game, while if we had a huge trap it doesn’t seem likely, that
all particles would be in the same state (at least those one in New York and
Berlin will never form a BEC).

(c)

To find an expression for the condensate density for T' < T, we can first split
our particle number like we did in the lecture.
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We now have to go to the integral Zp — [ d3p. We get:
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substituting z = € — Ey we get:
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(with 271 = ¢#r#=BF0) which can be split into 3 integrals
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rewriting the integrals we get:
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now inserting the I' functions leading to
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now using Ey — 0 (well doesn’t seem to be all right, since g; (z) will lead to
complex infinity, therefore we want to get rid of this term) we can simplify this
to
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and with z = 1 we have
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In the lecture we found the exponent of % for the case without external
potential, therefore this can be interpreted as an effect of the potential. The
potential seems to increase the number of BEC particles faster than in the free
state. This seems likely, while they are forced together by the potential.




(d)
Using

_hg (N
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and inserting - (wg, wy,w:) = (250,670,7), N =107 and ((3) = 1 + 55 +
3% +...=1.202... we get the critical temperature

T.=1.03-107%K

which seems quite small. Since we know that for Helium we can get temper-
atures of about 1 — 2K and observe BEC.

12.3 (Bose-Einstein condensation in a gravitational field)

Energy eigenvalues in homogeneous gravitational field, within a V = L3 box,
consisting of potential and kinetic part
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each particle got mass m and inner degree of freedom w

(a)
Grand partition function
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We will just do the pretty basic stuff and then skip the rest. Therefore we
start with knowledge from the lecture, where we showed that
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Just using the In on that leads us to
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while we got the given form of the result it seems worthy to seperate the
ground state from the rest of the energy states, while the ground state should
be independent of the kinetic term, we just get mgh and therefore:
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but this is already first part of the task with £ = e 89"z and ef#* = 2 we
get:
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But for completeness the total result should be:
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Definition particle number:
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inserting In Zg from equation (2) we can see, that the only p dependence is
in z = e’ the fugacity
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We can now move the index of the sum to N = 1 and identify it with the
generalized zeta function:
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now using small 7', meaning § will become big, the first term will cancel to
the second, since e — 0. It only remains:
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inserting gerneralized zeta function definition and definition of fugacity z =
ePr we get
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with the approximation suggested in the task this becomes:
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Now Bose-Einstein condensation corresponds to z = 1 this means Su = 0
this leads to:
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(c)

We already found the Term N in b) which depends on 7" and we found it for
z = 1 which corresponds to BEC, which only occurs for T' < T,. If we consider
the case T'= T, we can get an equation for 7, from this

with
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and for constant n, which we have while the total particle number N is
conserved and we the constraint of a box with solid borders means V is also

constant, we have from the lecture for g =0
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which verifies our equation for ¢ = 0. We can now insert all we got and get:
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rewriting this for T, isn’t easy, just the first step
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now we want to simplify this a little bit using some constants
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We now have to solve it for T,, mathematica gives a solution, but it seems
pretty lengthy, therefore we guess, there must have been something wrong. We

give the easier solution for g = 0 anyway:
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Now we can decide, whether T or T, will be larger, since we got the equation:
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and the left side is constant, while for g = 0 the right side will be larger than
for g # 0. Therefore T, < T?. Going further now to find 7, in an approximation
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Inserting nA\}, = g3 (1) which is valid for g = 0 we get:
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which can be seen as an approximation for the case of g # 0:
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