
Heiko Dumlich January 14, 200811 Task Theoretical Physics VI - Statistics11.1 (Distribution functions of ideal quantum gases)(a)De�nition:
n (εi) = 〈n̂i〉 = tr (ρ̂n̂i)with:
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∑∞
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∑∞
nj=0 e−βnj(εj−µ)We now see, that all terms with i 6= j will lead to 1, while numerator anddenominator are the same then. We then get:

〈n̂i〉 =

∑∞
ni=0 nie

−βni(εi−µ)

∑∞
ni=0 e−βni(εi−µ)

(1)We now are at a point to distingusih between Bosons and Fermions. Startingwith Bosons, where ni = 0, 1, 2, . . . , this means we have to use the geometricseries (with 0 < q = e−β(εi−µ) < 1)
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a0q
ni = a0 ·

1
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While in the numerator we don't have the geometric form, we have to use a�trick�, while we �rst substitute x = −β (εi − µ):
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nie
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∂

∂x
enix

=
∂

∂x

∞∑
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enixwhile x doesn't depend on ni we can interchange the derivative and the sum.This now got the form of a geometric series with q = ex therefore we get:
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(1 − ex)2We can insert this in equation (1)
〈n̂i〉 =

ex
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1
1−ex

=
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=
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=

1

eβ(εi−µ) − 1Now starting from equation (1) for Fermions, where ni = 0, 1 we can easilyrewrite to:
〈n̂i〉 =
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1 + e−β(εi−µ)
=

1

eβ(εi−µ) + 1Therefore:
〈n̂i〉 =

1

eβ(εi−µ) ∓ 1
(2)
�(b)Figure (1) shows the Bose-Einstein distribution function, which is de�ned as:

〈n̂i〉− =
1

eβ(εi−µ) − 1with the special case for T → 0: 2



〈n̂i〉−
∣
∣
∣
T→0

=







0, µ < εi

∞, µ = εinot de�ned while negative, µ > εiwhile for µ = εi is just a convention.The graphs will have the same area underneath, meaning n (εi) will get highfor low range of energy states. This is especially interesting, since the numberof states is getting very high for low temperature, while the range of energystates is very small, this phenomenon for T → 0 is known as Bose-Einstein-Condensation, while the ground state becomes a singularity. The area of εi < µisn't accessible, while n (εi < µ) would be negative there (therefore this part ofthe plot isn't shown).

Figure 1: Sketch of the Bose-Einstein distributionFigure (2) shows the Fermi-Dirac distribution function, which is de�ned as:
〈n̂i〉+ =

1

eβ(εi−µ) + 1with the special case for T → 0:
〈n̂i〉+

∣
∣
∣
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=







0, µ < εi

1
2 , µ = εi

1, µ > εiwhile for µ = εi is just a convention.This distribution describes the behaviour of Fermions, while the Fermi-energy describes the last occupied state, it can be seen in the graph at µ = εi(best seen for T → 0). The occupation number has always to be between 1and 0 (pauli principle), the plot shows the probability for energy states to beoccupied. For T → 0 the function graph becomes a unit-step-function, thereforeoccupied states got n (εi) = 1 and unoccupied ones got n (εi) = 0. As we cansee, high energies lead to a much broader probability of occupation across all3



the energy states. This seems likely, while for higher energy, more Fermionscan occupy higher (and di�erent high without having a direct neighbor state)energy levels, while for T = 0 Fermions will always occupy the lowest possiblestate building the Fermi-sea. This again is justi�ed with the Fermi-energy andthe graph, which shows it at the jump from 1 to 0.

Figure 2: Sketch of the Fermi-Dirac distributionFigure (3) shows the Boltzmann distribution function.The Boltzmann distribution is the classical limes of both the forgoing distri-butions, while β (εi − µ) � 1 (high εi), therefore the ∓1 factor can be neglectedand we get:
〈n̂i〉 = e−β(εi−µ)We therefore get an exponential decaying behaviour. While the higher tem-peratures lead to very small values compared to the lowest temperature (illus-trated in red) you can only see the lightblue colour which is the highest of thethree higher temperatures.11.2 (Fluctuations in ideal quantum gases)At �rst a try with creation and destruction-operator-formalism, whichdidn't succeed.De�nition of single-particle occupation number:
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†
i âi =
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Figure 3: Sketch of the Boltzmann-Distribution
[
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âiâ
†
i − 1

)

â
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)This doesn't seem likely, while we got a negative result for Fermions it doesn'teven seem to make sense.Now the classic way (brute force):We were able to do some prepatory work in task 11.1 which we now willuse. Equation (2) shows 〈n̂i〉, from which we can easily derive
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=
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(3)First for Bosons, we again want the geometric series form, therefore we canuse the equivalent derivative trick, already used in 11.1 again, while we �rstsubstitute x = −β (εi − µ): 6
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=
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〈n̂i〉

)

=
1

〈n̂i〉
− 1

= eβ(εi−µ) + 1 − 1

= eβ(εi−µ)7



This means that we get the same result for Fermions and Bosons for theroot-mean-square deviation of the single-particle occupation numbers.11.3 (Trapped ideal Fermi gas)Given single-particle energy levels:
εn =

(

n +
1

2

)

~ω with n = 0, 1, 2, . . .the Hamiltonian is:
H =

∞∑

n=0

(

n +
1

2

)

~ωn̂n(a)De�nition:
ZG = tr

[

e−β(H−µN)
]this leads to:

ZG =
∞∑

N=0

∑
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∑

nn=N

e−β(εnnn−µnn)
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∑
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∑
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∑
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∑
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e−βnn((n+ 1

2 )~ω−µ)Now we have to use the condition, that we use fermions, which are limitedto nn = 0, 1 this leads to:
ZG = Πn

(

1 + e−β((n+ 1
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) (4)
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2
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1 + e−β( 1

2
~ω−µ)
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)

· . . .
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2
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)(5)but while this doesn't really simplify the situation we are going to use theform of equation (4). de�nition grand potential:
Φ = − 1

β
lnZG

= − 1

β
ln Πn
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now the form of equation (5) becomes useful, while we can write:
ln Πn

(

1 + e−β((n+ 1
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)
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· . . .
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1 + e−β( 1

2
~ω−µ)

)

+ · · · + ln
(

1 + e−β( 1

2
~ω−µ) · e−β~ωN
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β
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ln
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2 )~ω−µ)
)(b)de�nition of 〈N〉:

〈N〉 = −∂Φ
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=
1

β

∂
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(

1 + e−β((n+ 1

2 )~ω−µ)
)

=
1
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n
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e−β((n+ 1

2 )~ω−µ) (−β) (−1)

=
∑

n

1

eβ(εn−µ) + 1

=
∑

n

n (εn)We found, that the number of particles 〈N〉 can be rewritten in the sum ofthe average single-particle-occupation numbers.(c)Starting from β~ω � 1 we can rewrite the discrete sum into an integral, whilethe energy levels become quasi-continous. With the expression:
∞∑

n=0

→
∫ ∞

0

dn →
∫ ∞

0

dn

dεn

dεnwhile D (εn) = dn
dεn

is the density of energy states, which can be calculatedusing:
D (εn) =

1
dεn

dn

=
1

d
dn

(
n + 1

2

)
~ω

=
1

~ωTherefore we can rewrite our sum for 〈N〉 to:9



〈N〉 =
1

~ω

∫ ∞

0

dεn

1

eβ(εn−µ) + 1While we want the form given in the hint:
∫

dx

ex + 1
= − ln

(
1 + e−x

)
⇔ − ∂

∂x
ln
(
1 + e−x

)
= − (−1) e−x

1 + e−x
=

1

ex + 1we have to substitute β (εn − µ) = x which leads to dx
β

= dεn with theborders x1 → −βµ and x2 → ∞, therefore:
〈N〉 =

1

β~ω

∫ ∞

βµ

dx
1

ex + 1

=
1

β~ω

[
− ln

(
1 + e−x

)]∞

−βµ

=
1

β~ω

[
0 + ln

(
1 + eβµ

)]

=
ln
(
1 + eβµ

)

β~ωWe only have to rearrange this result now, to �nd an expression for thechemical potential µ (β, ~ω, 〈N〉):
µ =

1

β
ln
(

e〈N〉β~ω − 1
)For the special case T → 0 meaning β → ∞, the −1 can be neglected andwe get:

µ = 〈N〉 ~ω

kBTthe special case for high temperatures T → ∞ on the other hand leads to aneglectable exponential term, and then we get:
µ = lim

T→∞
kB T
︸︷︷︸

→∞

· ln (1)
︸ ︷︷ ︸

=0

= 011.4 (Ideal Fermi gas in a magnetic �eld)We got an ideal gas of spin- 12 fermions in the presence of a magnetic �eld. Allfermions should have a magnetic moment, µe. We are meant to compute themagnetization for this gas, which can be de�ned as (N↑,↓ number of occupiedstates with spin ↑, ↓)
m = µe

∑

i

nαi
=

µe

V
(N↓ − N↑) (6)while for spin- 12 fermions there are two further possible states (e.g. ↑, ↓,

+1,−1), beneath being unoccupied/occupied, for each energy state.10



We are looking at a one dimensional system, where the magnetization isdirected in the z-direction, forced by the external Bz-Field, therefore the twooccupied states can be de�ned as +1 and −1.We now have to get a hamiltonian for this problem, starting with the stan-dard hamiltonian (Fock-states):
Ĥ0 =

∑

i

εin̂ibut while there is a magnetic �eld now, we have to add a magnetic �eldhamiltonian for the total hamiltonian:
Ĥ = Ĥ0 + ĤmagWhile we already treated the Ising model and it's hamiltonian in task 10.1we can simplify it from a lattice to a gas, where we will neglect the nearestneighbor term and therefore the magnetic hamiltonian is de�ned with:

Ĥmag = −
N∑

i=0

~µe
~B = µeB

N∑

i=1

Ŝz
i =

N∑

i=1

∑

σ

sσµeBn̂iwhile N is the total number of particles in the gas, Ŝi can be either + 1
2 or

− 1
2 and B is the external electric �eld (coordinate system chosen in z-direction).This leads to the total Hamiltonian:

Ĥ =

N∑

i=1

∑

sσ=↑,↓

(εi + sσµeB) n̂iwith s↑ = +1 and s↓ = −1. We know, that for a non existent external �eldthe magnetization will be 0, this means, that N↑ = N↓. The external �eld willdirect some of the momenta, therefore N↑ < N↓ for B 6= 0. We now only needto calculate N↑ and N↓ to determine M . Therefore we de�ne the density ofstates for the electrons as:
D (E) = D↑ (E) + D↓ (E)while for B = 0 we have N↑ = N↓, meaning, that the densities will be equal:
1

2
D (E) = D↑ (E) = D↓ (E)but for B 6= 0 it is N↑ 6= N↓ and therefore D↑ (E) 6= D↓ (E). While Dσ (E)will change in dependence of the strength of the magnetic �eld, while D (E) isconstant, we can write:

Dσ (E) =
1

2
D (E − sσµeB) (7)this is clear, if you have a look at the single-particle energy levels, whichturn from εi to εi + sσµeB. Now we want to determine D (E − sσµeB), whichwe can using (from lecture notes) 11



D (ε) =
gV

4π2

(
2m

~2

) 3

2 √
ε (8)with ε = E − sσµeB we get:

Dσ (E) =
1

2

gV

4π2

(
2m

~2

) 3

2 √

E − sσµeB =
V

4π2

(
2m

~2

) 3

2 √

E − sσµeBwhile we use electrons, the g-factor is known to be g = 2. Finally we goteverything prepared to �nally get Nσ (formula from the lecture notes):
Nσ =

∫ ∞

−∞

dε Dσ (ε)n (ε)we can insert equation (7), while all energy values lower then ε−sσµeB havea density of zero:
Nσ =

1

2

∫ ∞

sσµ0B

dε D (ε − sσµeB)n (ε)while we want to use the Sommerfeld-expansion later in this task, we have tosubstitute, to get the border to 0. This means x = ε− sσµeB ⇔ ε = x + sσµeBleading to:
Nσ =

1

2

∫ ∞

0

dxD (x)n (x + sσµeB)While in laboratories nowadays magnetic �elds of 1T are common and thehighest �elds you can get are about 40T it seems likely that x � sσµeB, while(using e.g. µ0 = µB = 10−4 eVT ) we get terms of the order 10−3 for sσµeB.Because of that fact we can Taylor-expand n (x + sσµeB) around n (x) in �rstorder resulting in
Nσ =

1

2

∫ ∞

0

dxD (x)

(

n (x) + sσµeB
∂n

∂x

)While we want to calculate the magnetization we can insert Nσ in equation(6)
M =

µe

V
(N↓ − N↑)

= −µ2
eB

V

2

2

∫ ∞

0

dxD (x)
∂n

∂xpartial integration yields the form for the Sommerfeld-expansion:12



M = −µ2
eB

V

([
∂n

∂x

∂D (x)

∂x

]∞

0

−
∫ ∞

0

dx
∂D (x)

∂x
n (x)

)

=
µ2

eB

V

∫ ∞

0

dx
∂D (x)

∂x
n (x)border terms can be neglected. We �nally reached the Sommerfeld-expansionform with f (x) = ∂D(x)

∂x
and

I =

∫ ∞

0

dx f (x) n (x)

=

∫ µ

0

dx f (x) +
π2

6

1

β2

∂f (µ)

∂µ
+

7π4

360

1

β4

∂3f (µ)

∂µ3
+ O

(
1

β6

)we get for the magnetization:
M =

µ2
eB

V

∫ µ

0

dx
∂D (x)

∂x
+

π2

6

1

β2

∂2D (µ)

∂µ2
+

7π4

360

1

β4

∂4D (µ)

∂µ4
+ O

(
1

β6

)With equation (8) we therefore get (second order):
M =

µ2
eB

V

gV

4π2

(
2m

~2

) 3

2

(∫ µ

0

dx
∂

∂x

√
x +

π2

6

1

β2

∂2

∂µ2

√
µ

)

=
µ2

eB

V

gV

4π2

(
2m

~2

) 3

2

(

√
µ − π2

24

µ− 3

2

β2

)

=
µ2

eBg

4π2

(
2m

~2

) 3

2

(

√
µ − π2

24

µ− 3

2

β2

)Now we want to have a look at the special of T → 0, therefore 1
β
→ 0 andall higher order terms will disappear. We therefore get using µ = εF for T → 0and non degenerate ground state:

M =
µ2

eBg

4π2

(
2m

~2

) 3

2 √
εFthis can be rewritten in an elegant form using gV

4π2

(
2m
~2

) 3

2 = 3N

2ε
3

2

F

:
M =

3

2

µ2
eBN

V εF
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