
Heiko Dumlich January 7, 200810 Task Theoretical Physics VI - Statistics10.1 (Ising model in the mean �eld approximation)Spins are assigned to sites of a lattice, with the hamiltonian
Ĥ = −J

N∑

〈i,j〉=1

ŜiŜj − µB

N∑

i=1

Ŝiwith J the interaction strength and B an external magnetic �eld.The spin operators Ŝi,j have eigenvalues ±1. Using the mean �eld approxi-mation the hamiltonian reduces to
Ĥ = −

N∑

i=1

E (J,B) Ŝi with E (J,B) =
1

2
Jν
〈

Ŝ

〉

+ µBwhile ν is the number of nearest neighbors. The magnetizationM is de�nedby:
M =

N∑

i=1

µi

〈

Ŝi

〉

= Nµ
〈

Ŝ

〉 (1)(a)While we already treated a two state system in task 7.4 this problem has justto be rewritten into n-particle form.De�nition partition function:
Z = Tr

(

e−βĤ
)inserting the hamiltonian:

Z = Tr
(

eβ
∑

N

i=1
E(J,B)Ŝi

)

= Tr
(

ΠN
i=1e

βEŜi

)

=
∑

S1,...,SN

ΠN
i=1

〈

ψ|eβEŜi |ψ
〉

=
∑

S1,...,SN

ΠN
i=1〈S1| . . . 〈SN |eβEŜi|S1〉 . . . |SN 〉while we got two states for each particle Si = ± this leads to:

Z = ΠN
i=1

(
eβE + e−βE

)

= ΠN
i=12 coshβE

= (2 coshβE)
N1



De�nition of speci�c gibbs free energy:
g (J,B) = f (J,B) −Bmwhile the term Ts can be rewritten here to Bm because of the model offerromagnetism which is observed. The regularity can be measured using themagnetisation m, while the external magnetic�eld B will change it. With

f = −
1

β
lnZwe get:

g = −
N

β
ln (2 coshβE) −BmWe are meant to show that:

〈

Ŝ

〉

= tanh

(〈

Ŝ

〉 Tc

T
+ βµB

) with Tc =
νJ

2kB

(2)This can be done easily (we use Ŝ = 1
N

∑N
i=1 Ŝi ⇔

∑N
i=1 = N Ŝ):

〈

Ŝ

〉

=
1

Z
Tr
(

e−βH
Ŝ

)

=
1

Z
Tr
(

e−βEN Ŝ
Ŝ

)

= −
1

Z

∂

∂ (βEN)
Tr
(

e−βEN Ŝ

)

=
1

ZEN

∂

∂β
Z

=
1

ZEN

∂

∂β
(2 coshβE)

N

=
1

ZEN

(

N · (2 coshβE)
N−1

· 2 sinhβE ·E
)

=
(2 coshβE)N

Z

sinhβE

coshβE

= tanhβE

= tanh

(〈

Ŝ

〉 Jν

2kB

1

T
+ βµB

)

= tanh

(〈

Ŝ

〉 Tc

T
+ βµB

)

�(b)We now want to intepret equation (2) geometrically for B = 0:
〈

Ŝ

〉

= tanh

(〈

Ŝ

〉 Tc

T

) (3)2



therefore we got two dependences, while we think of Tc being a constant,we can vary the temperature (or the factor Tc/T ) and theoretically 〈Ŝ〉 can bevaried, too. We �rst plot (in �g. (1)) both sides in a diagram, while the leftside is the red plot and the right side is represented by the black plots, while
Tc/T is varied.

Figure 1: Plot of right and left hand side of equation (3), while the interceptsare marked with a blue cross.From this plot we can learn, that for Tc/T < 1 ⇔ Tc < T there willonly be the solution 〈Ŝ〉 = 0, while for T < Tc we have three solutions
〈

Ŝ

〉

= 0,±S0 (T ), while S0 (T ) is depending on the temperature. A physi-cal interpretation might be that the two possible non-zero values for 〈Ŝ〉 in thecase of T < Tc represent two cases of ordering the spins on that temperature,while an external �eld isn't needed. For the case T > Tc there will always bethe need of an external �eld to order the spins. But having 〈Ŝ〉 6= 0 means wehave a magnetization. This means above Tc, which now can be identi�ed as theCurie temperature, there will be no ferromagnetism anymore.(c)We are now looking at the two special cases T ≈ 0K and T ≈ Tc, while B = 0.We start out using equation (3):
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〈

Ŝ

〉

= tanh

(〈

Ŝ

〉 Tc

T

)

〈

Ŝ

〉

cosh

(〈

Ŝ

〉 Tc

T

)

= sinh

(〈

Ŝ

〉 Tc

T

)

〈

Ŝ

〉(

exp

(〈

Ŝ

〉 Tc

T

)

+ exp

(

−
〈

Ŝ

〉 Tc

T

))

= exp

(〈

Ŝ

〉 Tc

T

)

− exp

(

−
〈

Ŝ

〉 Tc

T

)

〈

Ŝ

〉(

exp

(

2
〈

Ŝ

〉 Tc

T

)

+ 1

)

= exp

(

2
〈

Ŝ

〉 Tc

T

)

− 1

exp

(

2
〈

Ŝ

〉 Tc

T

)(〈

Ŝ

〉

− 1
)

= −
(〈

Ŝ

〉

+ 1
)Now using T ≈ 0K we can use, that limx→∞ tanhx ≈ 1 therefore 〈Ŝ〉 ≈ 1,which leads to:

〈

Ŝ

〉

− 1 = −2 exp

(

−2
〈

Ŝ

〉 Tc

T

)

〈

Ŝ

〉

= 1 − 2 exp

(

−2
〈

Ŝ

〉 Tc

T

)

�For T ≈ Tc we can evaluate the tanh-function:
tanh

(〈

Ŝ

〉 Tc

T

)

≈
〈

Ŝ

〉 Tc

T
−

1

3

(〈

Ŝ

〉 Tc

T

)3

+ O

(

2

15

(〈

Ŝ

〉 Tc

T

)5
)inserting in (3) leads to:

〈

Ŝ

〉

= tanh

(〈

Ŝ

〉 Tc

T

)

〈

Ŝ

〉

=
〈

Ŝ

〉 Tc

T
−

1

3

(〈

Ŝ

〉 Tc

T

)3

〈

Ŝ

〉2

=

(
T

Tc

)3

3

(
Tc

T
− 1

)

〈

Ŝ

〉

=
T

Tc

√

3

(

1 −
T

Tc

) (4)now the prefactor T
Tc

≈ 1, we get:
〈

Ŝ

〉

≈

√

3

(

1 −
T

Tc

)

�4



(d)With de�nition of heat capacity:
C =

∂U

∂Tand the inner energy (using ∑N
i=1 = N Ŝ)

U =
〈

Ĥ

〉

=

〈

−

N∑

i=1

E (J,B) Ŝi

〉

=

〈

−

N∑

i=1

(
1

2
Jν
〈

Ŝ

〉

+ µB

)

Ŝi

〉

= −
1

2
JνN

〈

Ŝ

〉2

+NµB
〈

Ŝ

〉we get:
C =

∂

∂T

(

−
1

2
JνN

〈

Ŝ

〉2

+NµB
〈

Ŝ

〉)

= −JνN
〈

Ŝ

〉 ∂
〈

Ŝ

〉

∂T
+NµB

∂
〈

Ŝ

〉

∂Twe now want to �nd a solution for ∂〈Ŝ〉
∂T

, which we try to �nd by insertingequation (2).
∂
〈

Ŝ

〉

∂T
=

∂

∂T
tanh

(〈

Ŝ (T )
〉 Tc

T
+

µB

kBT

)using mathematica to solve this di�erentiation we get:
∂

∂T
tanh

(〈

Ŝ (T )
〉 Tc

T
+

µB

kBT

)

=

(

Tc

T

∂〈Ŝ〉
∂T

− µB
kBT 2 −

Tc〈Ŝ〉
T 2

)

(

cosh
(〈

Ŝ (T )
〉

Tc

T
+ µB

kBT

))2using (cosh (x))
2

= 1 − (tanhx)
2 and equation (2) leads to:

∂

∂T
tanh

(〈

Ŝ (T )
〉 Tc

T
+

µB

kBT

)

=

(

Tc

T

∂〈Ŝ〉
∂T

− µB
kBT 2 −

Tc〈Ŝ〉
T 2

)

1 −
〈

Ŝ

〉2inserting this
∂
〈

Ŝ

〉

∂T
=

µB + kBTc

〈

Ŝ

〉

kBT 2

[〈

Ŝ

〉2

− 1 + Tc

T

]which can be reinserted and this leads to:5



C = −JνN
〈

Ŝ

〉 ∂
〈

Ŝ

〉

∂T
+NµB

∂
〈

Ŝ

〉

∂T

=
N
(

µB + kBTc

〈

Ŝ

〉)

kBT 2

[〈

Ŝ

〉2

− 1 + Tc

T

]

(

−Jν
〈

Ŝ

〉

+ µB
)to calculate the jump at T = Tc we can use, that 〈Ŝ〉 = 0 for T > Tc,meaning we have:

lim
T↘Tc

C =
N (µB)

2

kBT [Tc − T ]for B = 0 we get:
lim

T↘Tc

C = 0For T ≈ Tc we can use the approximation from equation (4), while we nowhave to say B = 0:
lim

T↗Tc

C =

N

(

µB + kBT

√

3
(

1 − T
Tc

))(

−Jν T
Tc

√

3
(

1 − T
Tc

)

+ µB

)

kBT 2
[

3T 2

T 2
c

(

1 − T
Tc

)

− 1 + Tc

T

]

=

N

(

(µB)
2
− µBJν T

Tc

√

3
(

1 − T
Tc

)

+ µBkBT

√

3
(

1 − T
Tc

)

− 3JνkB
T 2

Tc

(

1 − T
Tc

))

kBT 2
[

3T 2

T 2
c

(

1 − T
Tc

)

−
(
1 − Tc

T

)]

=

N

(

(µB)
2
− µBJν T

Tc

√

3
(

1 − T
Tc

)

+ µBkBT

√

3
(

1 − T
Tc

))

kB
T 2

Tc

[(

3T 2

T 2
c

− 1
)

(Tc − T )
] −

3NJν

Tc

(

3T 2

T 2
c

− 1
)Now we can use, that T ≈ Tc, this leads to:

lim
T↗Tc

C =
N (µB)

2

2kBT (Tc − T )
−

3NJν

2Tc

=
N (µB)

2

2kB
T 2

Tc
(Tc − T )

− 3NkBwhile we used the approximation we have to use B = 0:
lim

T↗Tc

C = −3NkBTherefore comparing limT↗Tc
C and limT↘Tc

C (for B = 0) leads to thejump of: 6



∆C
∣
∣
∣
T=Tc

= 3NkBThis means we got a gap of 3NkB at the Curie temperature, if there is noexternal �eld B. If we have an external �eld B it seems to become some kindof more complicated, while the approximation we used needs to be modi�ed,which seems to be quite a hard task of work.(e)We now have to calculate the magnetic susceptibility
χT,N (B = 0) =

∂M

∂B

∣
∣
∣
T,Nfor T ≈ Tc with limT↗Tc

and limT↘Tc
. We use equation (1):

M = Nµ
〈

Ŝ

〉to get:
∂M

∂B
= Nµ

∂
〈

Ŝ

〉

∂Binserting equation (2) leads to:
∂M

∂B
= Nµ

∂

∂B
tanh

(〈

Ŝ (B)
〉 Tc

T
+ βµB

)where we have to di�erentiate:
∂

∂B
tanh

(〈

Ŝ (B)
〉 Tc

T
+ βµB

)

=

(

µ
kBT

+ Tc

T

∂〈Ŝ〉
∂B

)

(

cosh
(〈

Ŝ (B)
〉

Tc

T
+ µB

kBT

))2

=

(

µ
kBT

+ Tc

T

∂〈Ŝ〉
∂B

)

1 −
〈

Ŝ

〉2This leads to:
∂
〈

Ŝ

〉

∂B
=

(

µ
kBT

+ Tc

T

∂〈Ŝ〉
∂B

)

1 −
〈

Ŝ

〉2

∂
〈

Ŝ

〉

∂B
=

µ

kBT

(

1 −
〈

Ŝ

〉2

− Tc

T

)7



now we can insert it
∂M

∂B
= Nµ

∂
〈

Ŝ

〉

∂B

=
Nµ2

kBT

(

1 −
〈

Ŝ

〉2

− Tc

T

)We again want to use our approximation from equation (4), which can beused for T < Tc and B = 0:
∂M

∂B
=

Nµ2

kBT
(

1 − 3T 2

T 2
c

(

1 − T
Tc

)

− Tc

T

)

χT,N (B = 0) =
Nµ2

kBT
(

1 − 3T 2

T 2
c

(

1 − T
Tc

)

− Tc

T

)

χT,N (B = 0) =
Nµ2

kB
T
T 3

c

(
T 3

c − 3T 3
)if we use T

Tc
≈ T 2

T 2
c

≈ 1, which will be nearer to 1 for T < Tc and T ≈ Tcas the cubic term. Now we try the next approximation with 〈Ŝ〉2

= 0 while
T > Tc and B = 0, we get:

χT,N (B = 0) =
Nµ2

kB (T − Tc)This is the famous Curie-Weiss-Law
χm =

C

T − Tcwith C = Nµ2

kB
. But while the �rst result seems some kind of unlikely we seemto need another method of resolution. We try to evaluate (�rst order) equation(2) while for T ≈ Tc it will be small

〈

Ŝ

〉

=
〈

Ŝ

〉 Tc

T
+ βµB

M =
Nµ2B

kB (T − Tc)therefore we get the susceptibility:
χ =

Nµ2

kB (T − Tc)which we already had and which is Curie-Weiss-law again. To get a depen-dence of the side we come from with T to Tc we are going further one order inthe evaluation: 8



〈

Ŝ

〉

=
〈

Ŝ

〉 Tc

T
+ βµB −

1

3

(〈

Ŝ

〉 Tc

T
+ βµB

)3

(T − Tc)
〈

Ŝ

〉

=
µB

kB

−
1

3T 2

(〈

Ŝ

〉

Tc +
µB

kB

)3

(T − Tc)
〈

Ŝ

〉

=
µB

kB

−
1

3T 2

(
(〈

Ŝ

〉

Tc

)3

+
〈

Ŝ

〉2

Tc

µB

kB

+
〈

Ŝ

〉

Tc

(
µB

kB

)2

+

(
µB

kB

)3
)while it is easy to see, that this term will become quite a beast to handle,we will use the approximation, that B is small therefore we will cancel the B2and the B3 term leading to:

(T − Tc)
〈

Ŝ

〉

=
µB

kB

−
T 3

c

3T 2

〈

Ŝ

〉3

−
Tc

3T 2

〈

Ŝ

〉2 µB

kBnow the 〈Ŝ〉2

B term can be cancelled, since it will also be small because of
〈

Ŝ

〉2 being not too large and B being small. Therefore this is simpli�ed to:
T 3

c

3T 3

〈

Ŝ

〉3

+
(T − Tc)

T

〈

Ŝ

〉

=
µB

kBTnow using T ≈ Tc this is:
1

3

〈

Ŝ

〉3

+
(T − Tc)

T

〈

Ŝ

〉

=
µB

kBTNow inserting 〈Ŝ〉 = M/ (Nµ) leads to:
1

3

(
M

Nµ

)3

+
(T − Tc)

T

M

Nµ
=

µB

kBTwe can di�erentiate both sides with ∂/∂B this leads to, using χT,N (B = 0) =
∂M
∂B

:
M2χ

(Nµ)
3 +

(T − Tc)

T

χ

Nµ
=

µ

kBTthis can be rearranged to:
χ

(

M2

(Nµ)
3 +

(T − Tc)

NµT

)

=
µ

kBT

χ =
Nµ2

kB

(〈

Ŝ

〉2

T + (T − Tc)

)9



Now one more time the approximations for 〈Ŝ〉 can be used for T < Tc and
T > Tc, which lead to:

χ =

{
Nµ2

2kB(Tc−T ) , T < Tc

Nµ2

kB(T−Tc)
, T > Tcone more time Curie-Weiss-law for T > Tc. But a new version for T < Tc.With the critical exponents we will see, that this one �ts the expectation better,since it leads to the same critical exponent like the case T > Tc.We now have to calculate the critical exponents. First for the case of T > Tc,de�nition of critical exponent:

λ = lim
ε→0

ln |f (ε)|

ln |ε|with
f (ε) = A

(
T − Tc

Tc

)−λ

=

(
Nµ2

kBTc

)(
(T − Tc)

Tc

)−1therefore the critical exponent is λ = 1 and A = Nµ2

kBTc
. Now the case for

T < Tc:
f (ε) = A

(
T − Tc

Tc

)λ [

1 +B

(
T − Tc

Tc

)y

+ . . .

]

=
Nµ2

kB
T
T 3

c

(
T 3

c − 3T 3
)while the result seems to be wrong, we will not further try to �nd the criticalexponent. But it seems likely that the result of the critical exponent will be thesame with λ = 1 for T < Tc. Meaning both critical exponents are the same.Now for the other result:

f (ε) = A

(
T − Tc

Tc

)−λ

= (−1)λ
Nµ2

2kBTc

(
(T − Tc)

Tc

)−1this means the critical exponent is indeed the same λ = 1 and this time
A = − Nµ2

2kBTc
.Or we can do it alternatively with:

χ =

{

− Nµ2

2kBTcε
= A1

ε
, T < Tc

Nµ2

kBTcε
= A2

ε
, T > Tcwhile ε = T−Tc

Tc
, this leads to the critical exponents:

λ =







limε→0
ln|A1

ε |
ln|ε| = limε→0

∣
∣ ln A1

ln ε
− ln ε

ln ε

∣
∣ = 1, T < Tc

limε→0
ln|A2

ε |
ln|ε| = 1 T > Tc10.2 (Correct counting statistics)System of three particles and three single particle energy levels Ei = 0, ε, 2ε.We will calculate the partition functions for:10



(a) bosonsWe �rst do it explicitly using the characteristics of bosons, meaning, they canall occupy the same energy state:
0 ε 2ε εtot

3 0 0 0
2 1 0 1
2 0 1 2
1 1 1 3
1 2 0 2
1 0 2 4
0 3 0 3
0 2 1 4
0 1 2 5
0 0 3 6This means, we got 10 di�erent states. This is the same problem like task7.1 meaning the number of states is de�ned with:

ZNi
(N) =

(
N +Ni − 1

Ni

)

=
(N +Ni − 1)!

Ni! (N − 1)!while N is the number of single-particle energy states and Ni is the numberof quanta, meaning:
Z3 (3) =

(
3 + 3 − 1

3

)

=
5!

3!2!
= 10the formula has already been proven in task 7.1 using induction. Alterna-tively we can write the partition function using:

Z = Tre−βĤ

=

10∑

i=1

e−βEi

= 1 + e−βε + 2e−2βε + 2e−3βε + 2e−4βε + e−5βε + e−6βε(b) spin-polarized fermionsAgain explicitly �rst, while we have spin-polarized fermions, there is the pauli-principle which doesn't allow two particles to be in the same state. This means:
0 ε 2ε εtot

1 1 1 3as the only possibility, therefore the result is:
Z3 (3) = 1to derive a formula for this, we already know, that for the same amount ofenergy states and particles we will always get only one possible state. Now wewill consider the case of n particles and M single-particle energystates, �rst foran example n = 1,M = 2, meaning 11



ε1 ε2

1 0
0 1meaning Zn (M) = Z1 (2) = 2. for n = 1,M = 3 it is Z1 (3) = 3. Now using

n = 2,M = 3 we get
ε1 ε2 ε3

1 1 0
1 0 1
0 1 1leading to Z2 (3) = 3. At last n = 2,M = 4, with

ε1 ε2 ε3 ε4

1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1we have Z2 (4) = 6. Therefore we can have a look at our bordering condi-tions,

Z1 (M) = M

Zn (M) = 1, for n = Mto guess a partition function:
Zn (M) =

(
M
n

)

=
M !

n! (M − n)!for our examples this leads to:
Z1 (2) =

2!

1! (2 − 1)!
= 2

Z1 (3) =
3!

1! (3 − 1)!
= 3

Z2 (3) =
3!

2! (3 − 2)!
= 3

Z3 (3) =
3!

3! (3 − 3)!
= 1

Z2 (4) =
4!

2! (4 − 2)!
= 6Induction:

Z1 (M) =

(
M
1

)

=
M !

1! (M − 1)!
=
M · (M − 1)!

(M − 1)!
= M12



now M →M + 1:
Z1 (M + 1) =

(
M + 1

1

)

=
(M + 1)!

1!M !

=
(M + 1)M !

M !
= M + 1and the second bordering condition is ful�lled proven by induction:

Z1 (1) =

(
1
1

)

=
1!

1! (1 − 1)!
= 1and n→ n+ 1,M →M + 1 for n = M :

Zn+1 (n+ 1) =

(
n+ 1
n+ 1

)

=
(n+ 1)!

(n+ 1)! (n+ 1 − n− 1)!

= 1Therefore our partition function is:
Zn (M) =

(
M
n

)

=
M !

n! (M − n)!and for the special case n = 3, M = 3 this leads to:
Z3 (3) = 1Alternatively again for the partition function:
Z = e−3βε(c) distinguishable particlesWe again start out counting explicitly, while the particles are distinguishable,we can give a label to them, labeling them a,b and c:

13



0 ε 2ε εtotabc 0 0 0ab c 0 1ab 0 c 2ac b 0 1ac 0 b 2bc a 0 1bc 0 a 2a bc 0 2a 0 bc 4a b c 3a c b 3b ac 0 2b 0 ac 4b a c 3b c a 3c ab 0 2c 0 ab 4c a b 3c b a 30 abc 0 30 ab c 40 ac b 40 bc a 40 a bc 50 b ac 50 c ab 50 0 abc 6This means
Z3 (3) = 27 = 33now we want to get the formula to calculate it. Starting with examples,while it can be immediately seen, that

Z1 (M) = M = M1holds. This means, n = 1 is already well known, also we know:
Zn (1) = 1 = 1nNow we start with examples, while we already know all possible results ofthe combinations of n = 1 and M = 1 we start with n = 2, M = 2:

ε1 ε2ab 0a bb a0 ab14



This means Z2 (2) = 4 = 22. Further:
Z2 (3) = 9 = 32

Z3 (2) = 8 = 23We conclude:
Zn (M) = MnThis means for the given problem:
Z3 (3) = 27We alternatively get (nice �symmetry� 1, 3, 6, 7, 6, 3, 1):

Z = 1 + 3e−βε + 6e−2βε + 7e−3βε + 6e−4βε + 3e−5βε + e−6βε10.3 (Conservation of symmetry)The time evolution operator is de�ned with:
Û (t, t0) = I −

i

~

∫ t

t0

dt′Ĥ (t′) Û (t′, t0)with I being the identity. We are meant to show, that it commutes with anypermutation operator P̂ij for a system of identical particles. We furthermoreconsider Ĥ = Ĥ (t) a time-dependent hamiltonian. While the hamiltonian isexplicitly time dependent the time evolution operator can be rewritten usingthe Dyson-series:
Û (t, t0) = I −

i

~

∫ t

t0

dt′Ĥ (t′) +

(
i

h

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′Ĥ (t′) Ĥ (t′′) Û (t′′, t0)

= I +

∞∑

n=1

(

−
i

~

)n ∫ t

t0

dt1 dt2 . . .

∫ t

t0

dtn Ĥ (t1) Ĥ (t2) . . . Ĥ (tn) (5)While we showed in the lecture, that the permutation operator and a givenobservable ÂN ful�ll
ÂN = P̂

†
ijÂN P̂ijwhich is equal tô

PijÂN = ÂN P̂ij ⇔ P̂ijÂN − ÂN P̂ij = 0while we used P̂ijP̂
†
ij = P̂

2
ij = I. But this means the permutation operatorcommutes with the observable, especially for the hamiltonian Ĥ = ÂN , thismeans we get:
[

P̂ij , Ĥ
]

= 015



Now we can insert the time evolution operator:
[

P̂ij , Û (t, t0)
]

?
= 0while we saw in equation (5), that Û (t, t0) consists only of hamiltonians andthe identity, we can insert Û (t, t0):

[

P̂ij , Û (t, t0)
]

=
[

P̂ij , I
]

+

[

P̂ij ,

∞∑

n=1

(

−
i

~

)n ∫ t

t0

dt1

∫ t

t0

dt2 . . .

∫ t

t0

dtn Ĥ (t1) Ĥ (t2) . . . Ĥ (tn)

]

= 0 +

[

P̂ij ,

∞∑

n=1

(

−
i

~

)n ∫ t

t0

dt1

∫ t

t0

dt2 . . .

∫ t

t0

dtn Ĥ (t1) Ĥ (t2) . . . Ĥ (tn)

]while the permutation operator isn't a�ected by the integration and sum-mation, we can rewrite it to:
[

P̂ij , Û (t, t0)
]

=

∞∑

n=1

(

−
i

~

)n ∫ t

t0

dt1

∫ t

t0

dt2 . . .

∫ t

t0

dtn

[

P̂ij , Ĥ (t1) Ĥ (t2) . . . Ĥ (tn)
]Now the commutator [P̂ij , Ĥ (t1) Ĥ (t2) . . . Ĥ (tn)

] is of the form [A,BC . . . Z],which can be split in a sum of commutators of the form c1 [A,B] c2+c3 [A,C] c4+
· · ·+ cn−1 [A,Z] cn (with ci being products of operators), explicitly for the sim-pli�ed case of n = 2 (here c1 = I, c2 = C, c3 = B, c4 = I with I the identity):

[A,BC] = ABC −BAC +BAC
︸ ︷︷ ︸

=0

−BCA = [A,B]C +B [A,C]but while [P̂ij , Ĥ (tn)
]

= 0 we only have 0's in the sum and therefore:
[

P̂ij , Û (t, t0)
]

= 0

�10.4 (Commutators)Calculation of the commutators of occupation number operator n̂α = â
†
αâα withthe creator â

†
β and annhilator âβ :

[

n̂α, â
†
β

]

−
and [n̂α, âβ ]−we start with:

[

n̂α, â
†
β

]

−
=

[

â
†
αâα, â

†
β

]

−
= â

†
αâαâ

†
β − â

†
β â

†
αâαusing: 16



[AB,C] = ABC − CAB = ABC −ACB +ACB
︸ ︷︷ ︸

=0

−CAB = A [B,C] + [A,C]Bwe get:
[

n̂α, â
+
β

]

−
= â

†
α

[

âα, â
†
β

]

−
+
[

â
†
α, â

†
β

]

−
âαwith [âα, â

†
β

]

−
= δαβ and [â†

α, â
†
β

]

−
= 0 from the lecture we get for Bosons:

[

n̂α, â
+
β

]

−
= â

†
αδαβ + 0

= â
†
αδαβfor Fermions we got [âα, â

†
β

]

+
= âαâ

†
β + â

†
β âα = δαβ ⇔

[

âα, â
†
β

]

−
= δαβ −

2â†
β âα and [â†

α, â
†
β

]

+
= â

†
αâ

†
β + â

†
β â

†
α = 0 ⇔

[

â
†
α, â

†
β

]

−
= −2â†

βâ
†
α, therefore:

[

n̂α, â
+
β

]

−
= â

†
α

(

δαβ − 2â†
β âα

)

−
− 2â†

β â
†
αâα

= â
†
αδαβ − 2

[

â
†
α, â

†
β

]

+
âα

= â
†
αδαβThis means the relation is equal for Bosons and Fermions.Now for the commutator with the annhilator:

[n̂α, âβ ]− =
[
â
†
αâα, âβ

]

−

= â
†
α [âα, âβ ]− +

[
â
†
α, âβ

]

−
âαwith [âα, âβ ]− = 0 and [â†

α, âβ

]

−
= −

[
âβ , â

†
α

]

−
= −δαβ, for Bosons:

[n̂α, âβ ]− = 0 − δαβ âα

= −âαδαβand for Fermions ([â†
α, âβ

]

+
= â

†
αâβ+âβ â

†
α =

[
âβ , â

†
α

]

+
= δαβ ⇔

[
â
†
α, âβ

]

−
=

δαβ − 2âβ â
†
α and [âα, âβ ]+ = âαâβ + âβ âα = 0 ⇔ [âα, âβ ]− = −2âβâα):

[n̂α, âβ ]− = −2â†
αâβ âα +

(
δαβ − 2âβ â

†
α

)
âα

= âαδαβ − 2
[
â
†
α, âβ

]

+
âα

= −âαδαβAgain we got the same result for Bosons and Fermions.17


