
Heiko Dumlich December 18, 20079 Task Theoretical Physics VI - Statistics9.1 (Paramagnetic heat engine)Carnot engine uses paramagnetic substance, with equation of state:
M =

nDH

T
⇔ H =

MT

nD
(1)(a)Internal energy (wherever H dM comes from, at least it works, while M dH doesn't, in the lecture we got toknow that this depends on the substance, so i guess it's H dM for all paramagnetic substances then):

dU (S, M) = TdS + HdM (2)with free energy:
F = U − TSwe get:

dF (M, T ) = HdM − SdTwith
S = −

∂F

∂T

∣

∣

∣

M

H =
∂F

∂M

∣

∣

∣

Twhile free energy is exact, the following relation holds:
∂S

∂M
= −

∂H

∂Tinserting H from (1):
∂S

∂M
= −

∂H

∂T
= −

M

nDentropy:
dS (T, M) =

∂S

∂T

∣

∣

∣

M
dT +

∂S

∂M

∣

∣

∣

T
=

CM

T
dT −

M

nD
dMinserting in (2):

dU (S, M) = T

(

CM

T
dT −

M

nD
dM

)

+
MT

nD
dM

dU = CM dT 1



Integration yields (CM = C = const.):
U = CM (T − T0) + U0

�Therefore the internal energy can only depend on the temperature and not on the magnetization.(b)The typical carnot cylce consists of two adiabatic and two isothermic parts. Absorbed heat:
δQ = dU − δWthis is:

TdS = δQ = CM dT −
MT

nD
dMThe condition for the adiabatic parts is δQ = 0, therefore:

CM dT =
MT

nD
dMwhile using separation of variables leads to:

dT

T
=

1

CMnD
M dM

ln
T

T0
=

M2 − M2
0

2CMnD

T
∣

∣

∣

δQ=0
= T0 exp

(

M2 − M2
0

2CMnD

) (3)inserting T in (1) gives us the equation for the adiabates:
H |δQ=0 =

MT0

nD
exp

(

M2

2CMnD

)

exp

(

−
M2

0

2CMnD

)

∝ M · exp
(

M2
) (4)Now we have a look at the isotherms T = const. ⇒ dT = 0, therefore:

δQ
∣

∣

∣

T
= −H dM = −

MT

nD
dMwhile there is a minus sign in front of the H the carnot cycle has to be conuterclockwise.this means for the H − M -diagram (T ′ = const.):

H
∣

∣

∣

T=T ′

=
T ′

nD
· M (5)With the help of the equations (4) and (5) we can receive �g. 1.
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Figure 1: M − H diagram of a typical Carnot cycle(c)The total heat adsorbed is meant to be calculated. While the adiabatic parts wont change the heat, we justhave to consider Q1 and Q2 (�g. 1) on the isotherms (T12 > T34). For the isotherms we can use:
δQ

∣

∣

∣

T
= −H dMTherefore we receive

W12 = Q1 = −

∫ 2

1

H dM = −
T12

nD

∫ 2

1

M dM =
T12

2nD

(

M2
1 − M2

2

)and
W34 = Q2 = −

∫ 4

3

H dM =
T34

2nD

(

M2
3 − M2

4

)This leads to the total heat absorbed of:
Qtot = Q1 + Q2 =

1

2nD

(

T12

(

M2
1 − M2

2

)

+ T34

(

M2
3 − M2

4

))The work done on the adiabates is:
δW = dU = CMdTwhich leads to:

W23 = CM (T34 − T12)and
W41 = CM (T12 − T34)therefore W23 + W41 = 0 and the total work done is:

W = Qtot =
1

2nD

(

T12

(

M2
1 − M2

2

)

+ T34

(

M2
3 − M2

4

))3



(d)The e�ciency of the carnot cycle is known to be:
η = 1 −

Tcold

Thotwhich we are going to show for this case too, while T12 = Thot and T34 = Tcold.De�nition of e�ciency:
η =

∆W

∆Qabs

=
Q1 + Q2

Q1
= 1 +

Q2

Q1we just have to insert Q1 and Q2 know:
η = 1 +

Q2

Q1

= 1 +
T34

(

M2
3 − M2

4

)

T12 (M2
1 − M2

2 )

= 1 −
T34

(

M2
4 − M2

3

)

T12 (M2
1 − M2

2 )
(6)while we now have to show, that (

M2
4 − M2

3

)

=
(

M2
1 − M2

2

) we start from (3)
T12 = T34 exp

(

M2
1 − M2

4

2CMnD

)and
T34 = T12 exp

(

M2
3 − M2

2

2CMnD

)rewritten:
T12

T34
= exp

(

M2
1 − M2

4

2CMnD

)

T12

T34
= exp

(

M2
2 − M2

3

2CMnD

)this means:
exp

(

M2
1 − M2

4

2CMnD

)

= exp

(

M2
2 − M2

3

2CMnD

)

M2
1 − M2

4 = M2
2 − M2

3

M2
1 − M2

2 = M2
4 − M2

3this is exactly what we wanted to show. Inserting the result in (6) leads to the �nal result:
η = 1 −

T34

T12
= 1 −

Tcold

Thot
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9.2 (Phase transition in a van der Waals gas)Van der Waals gas:
(

p +
a

v2

)

(v − b) = RT (7)(a)Stability condition:
∂p

∂v

∣

∣

∣

T
≤ 0isn't ful�lled for all v and T for (7). Using (7):

p =
RT

(v − b)
−

a

v2
(8)

∂p

∂v

∣

∣

∣

T
= 2

a

v3
−

RT

(v − b)2We now have to consider the di�erent cases in dependance of v and T for:
2

a

v3
−

RT

(v − b)
2 ≤ 01) T is large, therefore the 2nd term will always dominate and the equation will be ful�lled.2) If T is small, the second term will only be bigger than the �rst one for v ≈ b and for large v, v → ∞.For intermediate v the system is instable.3) The third case occurs for ∂p

∂v

∣

∣

∣

T
= 0, where we will be on an isotherm.We now want to plot it, therefore we can get the isotherms for di�erent T using (8) and for the critical case

∂p
∂v

∣

∣

∣

T
= 0 we get (compare to task (b)):

p =
a

v2
−

2ab

v3The p−V diagram in �g. (2) (data from wikipedia.de1) shows the instability region, while in �g (3) we cansee a larger interval for V , which shows, that the instability region isn't that large.(b)Critical isotherm condition:
∂p

∂v

∣

∣

∣

T
= 0

0 = 2
a

v3
−

RT

(v − b)
21http://de.wikipedia.org/wiki/Van-der-Waals-Gleichung 5



Figure 2: p − V diagram of Van der Waals gas indicating the instability region (a and b are taken for water(H2O), with data from wikipedia.de: a = 557.29 kPadm6/mol2 and b = 0.031 dm3/mol)

Figure 3: p − V diagram of Van der Waals gas indicating the instability region, again for H2O, but this timefor a bigger V -interval.
RT

(v − b)
2 = 2

a

v3

Tc = 2
a

v3
c

(vc − b)
2

RThe second condition (change of curvature compare to (2) and/or (3)) leads to:
∂2p

∂v2

∣

∣

∣

T
= 0

0 = −6
a

v4
+ 2

RT

(v − b)
3

Tc = 3
a

Rv4
c

(vc − b)
36



using this two equations for Tc, we get:
2

a

v3
c

(vc − b)
2

R
= 3

a

Rv4
c

(vc − b)
3

vc = 3bin (7)
(

p +
a

v2

)

(v − b) = 2
a

v3
(v − b)2

pc =
a

v2
c

(

1 − 2
b

vc

)

pc =
a

27b2and
Tc = 2

a

v3
c

(vc − b)
2

R

Tc = 2
a

27b3

(3b − b)
2

R

Tc =
8a

27bRListing the critical terms:
pc =

a

27b2

vc = 3b

Tc =
8a

27bR(c)Equation (7) in critical units:
(

p +
a

v2

)

(v − b) = RT

( a

27b2
p′ +

a

9b2v′2

)

(3bv′ − b) = R
8a

27bR
T ′

(

p′ +
3

v′2

)

(3v′ − 1) = 8T ′Interestingly we got rid of the dependance of a, b. Therefore all van der Waals gases will ful�ll this equation.This means they will all have the same p − V -diagram.
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(d)equilibrium condition:
µl = µg = µ = const.with l=liquid and g=gas, while µ is the chemical potential. While we are on an isotherm T = const. Meaning

µ 6= µ (T ). With:
∫ g

l

dµ = µg − µl = 0and (from lecture 30.11.2007):
dµ = −

S

N
dT +

V

N
dpwith T = const. → dT = 0:

dµ = v dpwe get:
∫ pg

pl

v (p) dp = 0Intermezzo �nding v:First we now need to get v from (7):
pv − pb +

a

v
−

ab

v2
= RT

v3 − v2 RT

p
+

1

p
v − b

(

1 +
a

p

)

= 0 (9)this is a cubic equation, which is solvabale by using Cardano's formula. From the script �Mathematik fürPhysiker II - Lineare Algebra� by Lutz Heindorf:
x3 + ax2 + bx + c = 0this can be reduced to the Cardano's formula (pC means pCardano, to better distinguish between pressureand the variable)

y3 = pCy + qusing the substitution y = x + a
3 . The result is then:

y = u + v =
3

√

√

√

√ q

2
+

√

q2

4
−

p3C
27

+
3

√

√

√

√ q

2
−

√

q2

4
−

p3C
27We now have to subsitute, while x = v and a = −RT

p
, we therefore use:

y = v −
RT

3p
⇔ v = y +

1

3

RT

p8



inserting this in (9) we get:
(

y +
1

3

RT

p

)3

−

(

y +
1

3

RT

p

)2
RT

p
+

1

p

(

y +
1

3

RT

p

)

− b

(

1 +
a

p

)

= 0

y3 +
2

3

(

RT

p

)

y2 +
1

9

(

RT

p

)2

y +
1

3

(

RT

p

)

y2 +
2

9

(

RT

p

)2

y +
1

27

(

RT

p

)3

+

−

(

RT

p

)

y2 −
2

3

(

RT

p

)2

y −
1

9

(

RT

p

)3

+
1

p
y +

1

3

RT

p2
− b

(

1 +
a

p

)

= 0rearranged in Cardano's formula form:
y3 =

[

1

3

(

RT

p

)2

−
1

p

]

y +

[

2

27

(

RT

p

)3

−
1

3

RT

p2
+ b

(

1 +
a

p

)

]with:
pC =

1

3

(

RT

p

)2

−
1

p

q =

[

2

27

(

RT

p

)3

−
1

3

RT

p2
+ b

(

1 +
a

p

)

]Inserting this in Cardano's formula:
y =

3

√

√

√

√ q

2
+

√

q2

4
−

p3C
27

+
3

√

√

√

√q

2
−

√

q2

4
−

p3C
27

=

3

√

√

√

√

√

√

√

1

2

[

2

27

(

RT

p

)3

−
1

3

RT

p2
+ b

(

1 +
a

p

)

]

+

√

√

√

√

√

√

1

4

[

2

27

(

RT

p

)3

−
1

3

RT

p2
+ b

(

1 +
a

p

)

]

−

(

1
3

(

RT
p

)2

− 1
p

)3

27

+

3

√

√

√

√

√

√

√

1

2

[

2

27

(

RT

p

)3

−
1

3

RT

p2
+ b

(

1 +
a

p

)

]

−

√

√

√

√

√

√

1

4

[

2

27

(

RT

p

)3

−
1

3

RT

p2
+ b

(

1 +
a

p

)

]

−

(

1
3

(

RT
p

)2

− 1
p

)3

27Now the retransformation to v:
v = y +

1

3

RT

p

v =

3

√

√

√

√

√

√

√

1

2

[

2

27

(

RT

p

)3

−
1

3

RT

p2
+ b

(

1 +
a

p

)

]

+

√

√

√

√

√

√

1

4

[

2

27

(

RT

p

)3

−
1

3

RT

p2
+ b

(

1 +
a

p

)

]

−

(

1
3

(

RT
p

)2

− 1
p

)3

279



+

3

√

√

√

√

√

√

√

1

2

[

2

27

(

RT

p

)3

−
1

3

RT

p2
+ b

(

1 +
a

p

)

]

−

√

√

√

√

√

√

1

4

[

2

27

(

RT

p

)3

−
1

3

RT

p2
+ b

(

1 +
a

p

)

]

−

(

1
3

(

RT
p

)2

− 1
p

)3

27

+
1

3

RT

pWell, this result doesn't seem elegant, calculating the integral would cost a lot of time. Maybe this wouldn'teven lead to the correct result, therefore we spare the time and try a hopefully more elegant way.Back to our problem:While v doesn't have a proper form, we will try another way using Gibbs free energy G:
G = U − TS + pVwhile U = TS − pV + µN this means:
G = µN ⇒ g = µwhile µl (T, plg) = µg (T, plg) = const. (we are on one of the isotherms with a �xed T and plg equilibriumpressure, with l, g points in �g. (6)) we can derive for the Gibbs free energy at l and g:

Gl (T, plg) = Gg (T, plg)

Ul − TSl + plgVl = Ug − TSg + plgVgusing free energy de�nition F = U − TS we get:
Fl + plgVl = Fg + plgVg

Fl − Fg = plg (Vg − Vl)Alternatively we can use the di�erential of the free energy:
dF = dU − SdT − TdS = dG − pdV − V dpwhile p = const. since we are looking for the equilibrium pressure and G = const. we get:

dF = −pdVwhich can be integrated:
Fl − Fg = −

∫ Vl

Vg

pdVThis means the equation:
∫ Vg

Vl

pdV = plg (Vg − Vl) (10)holds, while we are on an isotherm (T = const.). 10



Geometrical interpretation yields A = B, which is shown in �g (6). This means the integration can be doneindependently of the path of integration, while on the left side of (10) we integrate over the isotherm and onthe right side, this is simply integration over the constant pressure plg. We can now think about what thisphysically could mean. We know that we have the gas phase at g and the liquid phase at l, now between thosepoints this must be our phase transition area. While the task was about this area, we already know, thatthere is a mixture of both phases in this area. The graph seems to be physically correct, since the gas phasedoesn't change in pressure too much, but in volume, while the liquid phase isn't changing in volume too much(incompressibility) but the pressure change is huge.

Figure 4: p − V diagram of Van der Waals gas (left side of equation (10))

Figure 5: p − V diagram of Van der Waals gas (right side of equation (10)We can now even calculate the pressure plg, if we insert p from (7) with
p = NRT

(

1

V − bN

)

−
N2a

V 211



Figure 6: p− V diagram of Van der Waals gas indicating that A = B, while this comes from comparison of �g.4 and �g. 5.we get:
plg (Vg − Vl) = −

∫ Vl

Vg

pdV

plg (Vg − Vl) =

∫ Vl

Vg

(

−NRT

(

1

V − bN

)

+
N2a

V 2

)

dV

plg (Vg − Vl) = [−NRT · ln (V − bN)]Vl

Vg
+

[

−
N2a

V

]Vl

Vg

plg (Vg − Vl) = NRT [ln (Vg − bN) − ln (Vl − bN)] + N2a

[

1

Vg

−
1

Vl

]

plg (Vg − Vl) = N

[

RT ln
(vg − b)

(vl − b)
+ a

(

1

vg

−
1

vl

)]

plg =
1

(vg − vl)

[

RT ln
(vg − b)

(vl − b)
+ a

vl − vg

vgvl

]

plg =
RT

(vg − vl)
ln

(vg − b)

(vl − b)
−

a

vgvl(e)Using the free energy:
F = Fl + Fg (11)we will derive the relative particle numbers

nl =
Nl

N12



ng =
Ng

N

nl + ng =
Nl + Ng

N
= 1with (11)

F

N
=

Fl

N

Nl

Nl

+
Fg

N

Ng

Ng

f =
Fl

Nl

nl +
Fg

Ng

ng

f = flnl + fgngnow we use g = µ and g = f + pv meaning f = µ − pv, µ = µg = µl, plg = pl = pg and nl + ng = 1 ⇔ nl =
1 − ng:

µ − plgv = (µl − plvl)nl + (µg − pgvg)ng

µ − plgv = µ (nl + ng) − plg (vlnl + vgng)

µ − plgv = µ − plg (vlnl + vgng)

v = vlnl + vgng

v = vl (1 − ng) + vgng

v − vl = (vg − vl)ng

ng =
v − vl

vg − vland for nl = 1 − ng:
nl =

(vg − vl)

(vg − vl)
−

v − vl

vg − vl

=
vg − v

vg − vlThe result seems physically likely, while we will have no nl for a volume v ≥ vg (while vg > vl is used tohave a positive denominator), this means, nl will become negative. A particle number cannot have a physicalmeaning when it is negative, therefore the number of particles will be zero. If we look at ng the particle numberwill vanish if v ≤ vl. Therefore this relations just holds in the transition area, but in it, we can calculate thenumber of particles for a given volume v. A sketch of the dependancies can be seen in �g. (7). Interpretingthis, we can say, that we have a measure, how close we are to one of the phases (gas or liquid).
Figure 7: This sketch shows a geometric interpretation of problem 9.2 (b)13



(f)We are looking at a temperature T < Tc. We �rst need to �nd f (v), using dF = dG − pdV − V dp =

dG +
(

∂F
∂V

)

dV +
(

∂F
∂p

)

dp we get:
∂F

∂V
=

∂f

∂v
= −pIntegrating, while using p from (8):

f − f0 = −

∫ v

v0

p dv

f (v) = f0 +

∫ v

v0

(

−
RT

(v − b)
+

a

v2

)

dv

f (v) = f0 +
[

−RT ln (v − b) −
a

v

]v

v0

f (v) = f0 + RT ln
(v0 − b)

(v − b)
+ a

v − v0

vv0

f (v) = c0 − RT ln (v − b) −
a

vwhile c0 contains all constant terms. A sketch of the behavior of this function can be found in �g. (8). Theproblem to encounter is, that the form of the graph of f highly depends on the T used, when we plot it withmathematica. Therefore we are trying to think of the behavior using the equation:
f (v) = c0 − RT ln (v − b) −

a

v

c0 just gives us some constant axis intercept. While for high v the middle term will dominate and lead to
−∞ for small v the last term will dominate and we will also have −∞ for f . For v = b we get f → ∞, while
limx→0 lnx → −∞.

Figure 8: This sketch shows the free energy plotted over vWe can now think of the e�ect of Maxwell's rule on f (v). Using Maxwell's rule (10) in rewritten form:14



∫ vg

vl

pdv = plg (vg − vl)This means, we will have a constant isotherm function behaviour in the part between vl and vg. We canlook at the transition interval seperately for f and write:
∂f

∂v
= −p

∫ f(vl)

f0

df +

∫ f(vg)

f(vl)

df +

∫ f(v)

f(vg)

df = −

∫ vl

v0

p dv −

∫ vg

vl

p dv −

∫ v

vg

p dv

f (v) = f0 −

∫ vl

v0

p dv −

∫ vg

vl

p dv −

∫ v

vg

p dv

f (v) = f0 + RT ln
(v0 − b)

(vl − b)
+ a

vl − v0

vlv0
− plg (vg − vl) + RT ln

(vg − b)

(v − b)
+ a

v − vg

vvg

f (v) = d0 (f0, v0, a, b, vl, vg, T, plg) − RT ln (v − b) −
a

vtherefore we just experience a shift of the constant, meaning a constant shift of the whole free energy, while
c0 (f0, v0, a, b, R, T ) 6= d0 (f0, v0, b, vl, vg, R, T, plg).9.3 (Thermodynamics of ice skating)Clausius-Clapeyron-equation:

dp

dT
=

q12

T (v2 − v1)
=

∆p

∆T
(12)with q12 the latent heat.(a)Given information:

m = 80 kg
l = 0.2m

w = 4 · 10−3m
vwater = 1.0 · 10−3 m3kg

vice = 1.1 · 10−3 m3kg
qice = 3.4 · 10+5 JkgWith p = F

A
and F = m · g (g = 9.81 ms2 ), while A = w · l we get for the pressure on the ice from the blade:

∆p = pblade =
m · g

w · l
= 9.81 · 105 Nm215



Using T = 0◦C = 273.15K and inserting in rearranged (12) we get:
∆T =

T (v2 − v1)

q12
∆p =

273.15 (1.0 − 1.1) · 10−3

3.4 · 105
9.81 · 105 K = −

273.15 · 10−4

3.4
9.81K = −0.0788KThe freezing point therefore is decreased by 0.0788K. This means the ice/water will be liquid at −0.0788K.We now want to estimate if this e�ect is su�cient to produce a �lm of water on which the skates can glide.Therefore we will start at T = 0◦C = 273.15K again, this time calculating (12) in it's given form, while ∆Tshould be the di�erence between temperature 0◦C and the temperature of the ice, while ∆p is the neededpressure to melt the ice, therefore we calculate the pressure, which is needed to melt ice at a temperature ∆Tbelow 0◦C:

∆p

∆T
=

q12

T (v2 − v1)
=

3.4 · 105

273.15 · 10−4

Jm3 K =
3.4 · 105

273.15 · 10−4

Jm3 K = 12.45 · 106paKThis means it needs a pressure of:
∆p = 12.45 · 106paK · ∆Tto melt ice at a temperature ∆T below 0◦C. This would mean, that we can only ice skate as long as the icetemperature isn't below T = −0.0788 ◦C if we only have a look at this e�ect. Well, while ice skating is actuallypossible (even at temperatures smaller than −20◦C), we can think of other e�ects. The main e�ect is found tobe the friction and the heat it produces when skating over the ice. While at high temperatures about 0◦C orlittle less, there is a naturally liquid �lm on the ice, which might allow the skating, at lower temperatures this�lm decreases till it vanishes, but skating remains possible. Therefore the skating experience might change independance of the ice temperature. The temperature of −7◦C was found to have a friction minimum, thereforeit is used in indoor iceskating rinks. More information about the theory of melting can be found in one of thebooks of Prof. Kleinert2.(b)Assuming vl � vg, vg = kBT

p
and qlq 6= qlq (T ) we can get using (12):

dp

dT
=

qlg

T (vg − vl)
≈

qlg

T (vg)
=

qlg

kBT 2
pseparating variables:
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)]2Kleinert, Hagen, Gauge Fields in Condensed Matter, Vol. II, "STRESSES AND DEFECTS; Di�erential Geometry, CrystalMelting", pp. 743-1456, World Scienti�c (Singapore, 1989); Paperback ISBN 9971-5-0210-016


