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8 Task Theoretical Physics VI - Statistics

8.1 (Thermodynamics of the van der Waals gas)
Van der Waals gas:

2
(p+ 0‘%) (V — nb) = nRT

a,b constant, R = Nakp. n the number of moles (the equation given by the
task seems to be wrong, since it says N = nN 4, which would be the number of
particles). This can be rearranged to:
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First we will verify, that Cy will not depend on the volume.
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maxwell relation (will be used in the equation (2)):
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It is equivalent to show that Cy doesn’t depend on the volume V and that
the derivative of Cy in terms of V' is zero:
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now using p from (1) we get:
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Therefore Cy indeed doesn’t depend on the volume. Now we assume, that
the heat capacity is:
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CV = §TLR— iNkB

We can use, that the number of particles N = const. and U = U (T, V, N),
which leads to:
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while the definition of heat capacity is known:
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we still have to find (g—g) rn- We can get to know this using the entropy
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inserting (3):
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Now using, that entropy is exact:
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we can insert:
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while U is also exact:
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and (5) can be rearranged to:
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Now we can express the internal energy as:
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inserting (1):
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Now, while U is exact (this can be seen immediately, while both 2nd deriva-
tives lead to zero), we can integrate:

U(T,V):/CvdT—C(V)+UQ:CvT—C(V)+UQ

and

1 2
U(T,V):anQ/WdV—c(T)—i—Uo:—%—c(T)—i—Uo

this yields:
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U(T.V)=CvT =+ U

now we are looking at the limit a = 0 and we get:
U(T,V)=CyT + Uy
with Cy = %NkB and Uy = 0 this is:

U= gNkBT

Now the entropy, using (4) and (6):
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now inserting (1):
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which again is exact and yields:
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S(T,V) = Cv/TdT'i‘C(V) +SQ = CvlnT+C(V)+SO

and



dV +¢c(T)+ So =nRIn (V —nb) +¢(T) + So
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yielding the function:
S(T,V)=CyInT+nRIn(V —nb) + S
using b = 0:
S(T,V) = Nk (nVT3) + 5

Comparison with the entropy of the ideal gas (Sackur-Tetrode-equation)
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shows the same dependancies on V and T'. Therefore:
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because N = const..

S = Nkp

= const.

(b)

definition free energy:
F=U-TS8

inserting from Sackur-Tetrode:

F = gNkBT—l-NkBT
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or for our result for the entropy from a):

= NkgT

F = NkgT (g + 1nVT3) + TS,

8.2 (Cycles)

We observe several cycles for the ideal gas. The ideal gas is defined by the
equation:

pV = NkgT



definition of efficiency:
’[7 =
We can use:

dU =

which can be rewritten to:
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inserting Cy = (2—%)V and (g_\[i):r
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now using the definition of the enthalpy:
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+pdV + Vidp

> dV +p-dV

we get for adiabatic parts 6QQ = 0 = dU + pdV = 0:
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which can be rewritten using C,d1" = dH and g—”

= —p-dV
Vdp

vCy -dT = —vp-dV
Cpdl' = Vdp
which means:
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integration leads to:
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or using the ideal gas equation with p = w:
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or for V = %:
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(a) Otto cycle
to show:
n=1- (/W)

We first have a look at the cycle, where we see two adiabatic and two isochoric
parts. Starting at the middle left point with V7, while the volume doesn’t change
(dV = 0) we get:

Q1 =Cvdl

Integration leads to:

Tl,h
Q1 = CV/ dl' =Cv - (Th,, — Th,c)
Tl,c

now looking at the upper point of Va:

T2,c
Q2 = CV/ dT' =Cv - (Ty,c — Top)

Ton
with
W=Qi+Q2=Cv-(Tin—Tic— (Ton—"To.))
and
AQaps = Q1= Cy (Th,n — Ti.c)
we get:
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Now we want to express the temperature terms in volumes. Therefore we
can use the adiabatic parts of the cycle. We can insert the problem in (8):

TopV) 7 =TonVy ™t and Ty V) ' =To Wyt

leading to:
(Tip—Tie) VW™ = (Top—To) Vo™
(5™ - @u-t
Va (Ton, — Toc)
inserting in the efficiency equation:
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Well, the result isn’t the same like in the task, but while V3 < V5 and we

don’t want a negative 7, this result seems physically correct. Since the exponent

is non negative, we would have a negative efficiency for V2 /V; since it is bigger
then one for V; < V5.

(b) Joule cycle
to show:

n=1- (pl/p2)(v_1)/7

We first have a look at the cycle, where we see two adiabatic and two isobaric
parts. First we have a look at the isobaric parts, where p = const.. Starting at
P2 We use:

0QQ = dU+p-dV
dH dU + pdV + Vdp

for p = const. = dp = 0, therefore 6QQ = dH = C, dT" and we can simply
integrate:

To
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and for py:
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With the definition of the efficiency we get:
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Now the adiabatic parts (Q = 0), for our problem using (9):

1—v
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Typ," =To,p,” and To,py” =T1,p,"

this can be rearranged to:
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Inserted in (10) this leads to:
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(c) Diesel cycle

to show:

h=1_1 (Vo/V1)" = (V3/Va)?
v (Va/Vi) —(V3/Vi)

We again look at the cycle, where we got 2 adiabatic, one isobaric and one
isochoric parts. Starting with the isobaric part we get:

Qp? = Op (Tpll - Tp2m)

now the isochoric part:

Qvi=Cv (Tviec—Tvin)
this leads to the efficiency:
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with the adiabatic parts using (8):
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we can rearrange this:
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inserting in the efficiency equation we get:
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using, that py = const. and 22 = 222 and 22~ = Z22L (meaning both
g, b2 : Nkp Va Nkp Vs &

T,V combinations are on the same isobaric line) we can rewrite to:
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8.3 (Thermodynamic potentials)
Given equation of state:
DH DH MT
m T = n—r & D (11)

m is molar magnetization, H magnetic field, T temperature and D is a
constant, n number of moles.
further conditions:

Cngp = ———
Cpy = C

N number of particles and c¢ is constant.

At first we will get ourselves the hamiltonian for this problem. We interpret
the task as a solid body with magnetic moments in an extern magnetic field,
where those magnetic moments will be forced parallel to the extern field (the
total magnetisation will be parallel, while the magnetic moments can for sure
point in an arbitrary direction, but this effect is middled out over all magnetic
moments). The magnetisation is:
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while the magnetisation is parallel to the magnetic field the equation M-H =
M H holds and the hamiltonian is:

N
=Y i H=-VMH

Now we can use (11) to get:

We now follow the hint:

molar internal energy

First we consider the situation, while we got a solid there will be no change in
the pressure, volume or number of particles, therefore dp = 0, dV =0, dN = 0.

Therefore we get:
ou ou
dU = (ﬁ) dT’ + <8M> dM (12)

while we know % =cpy = (g—g)M the term (g—U)T is not known. We try

to find it in a similar way to 8.1.
Using the Gibbs-Duhem-Relation:

ds (U, M) = TdU <gﬁ> dM

now using (lecture 28.11.2007 thermodynamic limes) X, = (X,) = <E> =

<ﬁ> — o8 we get:

oM oM
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inserting (12):
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while entropy should be an exact differential:
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now using, that U is exact, too:
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therefore we get:
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which shows, that U is independant of M or equivalently u is independant
of m. Now we can use this in (12):

w=(55) ar
oT J

U=cuT+ Uy

and integration yields:

entropy

using (13) with U independant of M:
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we can integrate:
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which leads to:
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enthalpy

definition (with help of lecture from 2./7.11.2007 p = — <g—H>):
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now using thermodynamic limes <%> = % and inserting H leads to:
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free energy

definition:

F = U-TS
VM2
= C]uT—I—UQ—T'(C]wlDT'F +SQ>
nD
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Gibbs free energy

definition:
G=U-TS+pV=F+pV=H-TS
this means:
VM?T TV
G = eqyT(1—InT) - +U0—TSO+E.M2

= CMT(l —lnT) + Uy — TSy
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