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6 Task Theoretical Physics VI - Statistics

6.1 (Debye theory of the heat capacity in solids: 1D)

Hamiltonian of a chain of linearly coupled harmonic oscillators:
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with E being the unitary matrix:

10 0
E— 0 1
0
0 0 1
and V being the matrix
2 -1 0 0
-1 2

V=1 o 0
.20 —1
0 0o -1 2

There exists an orthogonal transformation X which relates p; and 1; to the
normal mode coordinates P; and Q;. With
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and:
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6.2 (Debye theory of the heat capacity in solids: 3D)
(a)

We are considering a cube with sides of length L consisting of N atoms. In &

space there is now one k-state in each (%”)3 volume. Therefore the state density
is (V = L?):
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Now we are looking for the number of states which are smaller or equal to &,
which we get by integrating over a sphere with radius k in k-space. Therefore

the number of states is:
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Using now the definition for the density of state in frequency dependance:
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while we used debye approximation w = v-k, ‘;—‘; = v (while v is the velocity of
the mode/groupvelocity). Integration to the cutoff frequency - debye frequency
wp should give 3N states, that are contained in the N lattice with 3 different
modes of the same mode-velocity for each of the gridpoints:
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this equation can be rearranged to derive the debye frequency:
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We can now instantly rewrite 1 to the term we have been looking for the total
density of states in terms of the number of atoms N and the Debye frequency
wp.
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(b)

We now have to calculate the mean energy and the heat capacity.
Definition of mean energy (taken from the lecture):
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Definition of heat capacity:
9 (E)
Cp=—=
oT
inserting 3:
OIN 9 [“P  hw?
C,(T) = ——=— ———d
(T) w%BT/O Bt 1
N WD hw —1
A (557 1) dw
LUD 0 oT
9N [@P -1 e hw
= dwm3(7)2.ek?3T . (_—2>
9Nh h /wD wieTsT
wh kpT? Jo (ekz:T _1)2



now we want to get to the standard form, this is possible by using the
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The case 8 — oo:
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which is the famous Debye T3-law.
The case 8 — 0:

C, (T) = 3Nkp

6.3 (Simplified polymer model)
(a)

We are meant to show, that the number of configurations € (E) for which the
energy of the polymer is between F and E + 0F is equal to:
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for N> 1, al < 0F < E and |E| < Nal.
From task 1.2 b) we know, that the binomial distribution can be rewritten
in the gaussian distribution for N > 1:
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for our problem the possibility for a chain link to be “left” or “right” is equal,
this means the possibility for a chain link to be “right” is ¢ = %, resulting in:

Py (k) = \/%exp (—% (k - gf) @)

The energy of the polymer should be between F and E + §F, we can think
of k links to be right and (N — k) links to be left therefore (with x; = il):

E (k)= —akl—a(N — k)l = (N —2k)al

Which can be rewritten to:
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inserted in 4 this leads to:
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While there are two possibile settings for the links with IV links in total, the
total number of settings for the whole system is 2. Multiplying this with the
possibility for a special setting & gives us the number of configurations for the
setting k:
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while we want to find the number of configurations for the case of the energy
interval E to E + §F we have to sum over ) (E (k)) since we are in a discrete
case:
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We have a look at the sum, while §F is very small, the possibility changes
will also be very small. The possibility is directly linked to k = % — %, with
E — E + §F this becomes:

_ Nal - (E+0E)
B 2al

now with 0F < E and |E| < Nal the change in energy will “not” influence
k =~ k', therefore E (k') = E (k) and we can write, while the energy can be
written in front of the sum:

k/

Q(E) = QE®))

E€|E’,E'+6E)

while % is the number of states in [E, F + §F], it is a small number because
of §F being small, with
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inserting this, we get:
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(b)

definition of entropy:

S(E) = kplnQ(E)

while we want the entropy at energy E we cannot use the expression from
a), but instead we can use 5, which gives the energy for a given k:
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If we want the entropy for an interval [E, E 4+ §E] (seems unlikely, because
entropy doesn’t have physical meaning for intervals), we get:
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(c)

With T' = const. (polymer immersed in solution in thermal equilibrium) and
E # const. (energy fluctuations) we have to calculate the problem in the canon-
ical ensemble, therefore:
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Definition of partition function:
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inserting D (E) and o? = 55772, 7 =
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rewriting the exponent leads to:
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substituting o’ + % =r=E=%3— % and % = dFE, also using N >
1= Nal — oo we get:
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the first integral cancels because of symmetry, so we only have to calculate
the second one:
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Having a look at the special cases for physical insights. T" — oo the energy
will turn to infinity, while using:
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also the chain length will turn to infinity. For 7" — 0 we have the case of
energy turning to negative infinity. The chain length will then again turn to
infinity. The length of infinity might result of the assumption that N > 1 =
Nal — oco. The special case of zy = 0 is defined by:
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which means, there is no temperature, where the chain length will become
zero. This seems very unlikely, therefore this solution seems to be wrong !
We have a second try, this time we use the function given in a) which results
from:
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while AE ~ §E for AE — 0 we can rewrite that:
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From here it is now relatively easy, since we already did quite the equiva-

lent calculation before, with some minor differences, starting with the partition
function:
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inserting D (E) and o? = 2Nl12a2’ v = alj;\]ﬂ'iN with ¢y = 1 leads to:
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substituting o F + % =z and %ﬂ” =dFE, also using N > 1 = Nal — oo we
get:
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Definition of mean energy:
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inserting a? = 7o leads to:
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Same special cases for this equation lead to more physical results. First we
get ourselves

(E) =

_E_ Nl
a o BT

N =

from F = —axpn

which this time can become zero for infinitely high temperature, while the
average energy will be zero then, which seems to be correct, when we look at
E = —axy, what before wasn’t fulfilled. Now for low temperature the energy
will turn to minus infinity, while the length of the chain therefore will turn to
infinity, which seems ok too, since we used N > 1 = Nal — oo, therefore we
already observed an infinitely long chain.

Definition energy fluctuations:
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this means the energy fluctuations are:

AE = +/Nal
which we already saw quantitatively in the lecture AE o v/N.



Or if we take the normalised energy fluctuations:
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for N — oo the energy fluctuations tend to go to 0.

(d)
In thermal equilibrium the forces of the marker drawn by the electric field and
the force of the polymer on the marker, should add to zero. Therefore

Ffield = Fpolymer

with the definition of force:
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with E the electric energy (F = —azy) and = xny we can write:
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6.4 (Rotating ideal gas)

Cubic box with infinitely hard walls of volume V = L3. Distance between H
and Clisd=1.3 =1.3-1071"m

(a)

We first only consider translations. Starting with the particle in the box picture
in three dimensions, while we think of HCI to be one particle. This is justified
by the assumption of HCI being rigid, therefore the mass of this particle is
M = my +my. At first only for the z-coordinate:

L <L
V(x):{o 2 =7>7

with the border condition ¢ (z = —%) =0 and ¢ (z = £) = 0, also for the
first derivative, this leads to the energyvalues:
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for ny € N. This means F, got a lowest energy with n, = 1:
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Now extending the problem to three dimensions. We can just sum the one-
dimensional energies, while the dimensions are not coupled:
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therefore the spacing between the translational energy levels isn’t constant.
The lowest level can be found for all of the n; = 1 to be:

(nz + 0y +nz)
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the next highest level can be found for one of the n’s being 2 and the others
being 1, therefore the lowest spacing between to translational energy levels is:
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with L = 1072m. The translational energy levels therefore might be con-
sidered as continous to some respect.

Eo11 — Evi1 = ~2.7-107%%J

(b)
Definition of partition function:
Z=2n(T,V)=cn / d3N qd3N pe=BH(@x Px)
for the discrete (quantized case):

Zn (T) = T (e*ﬁﬁ )

with the hamiltonian:
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while translation and rotation are independent, we can find simultaneous
eigenkets:
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Inserting this in the parition function and considering the degeneracy of
20 41 leads to:
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we now have to consider the temperature, when rotations become important.
Therefore we assume, that the relevance starts, when the exponent becomes
about —[ (I 4 1) or better to say:

h2
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now using o« = SMILZ and Y= W we can rewrite:

ZN(T)= > > (@+1)exp(—Bla(n+n)+n2)+7(*+1)])

N, Ny n.=0 (=0

for high temperatures (especially kp - 14.6 K ~ 2 - 10722 J, which is much
higher then the spacing between translational energy levels) now, there are
many energy levels that can be reached (as seen in a)) therefore the energy
distribution becomes continous and we can rewrite in integrals (for the n’s this
would already be possible for T = 14.6 K):

Zn(T) = /Oood%exp(—ﬁa(ni+n§+n§))/Ooodz(zzﬂ)exp(—m(l?+z))

the first kind of integral is well known, the second one can be rewritten:

Iy (T) = (&)%e% /Ooo dl (20 + 1) exp <—m (l+ %>2>

this time we cannot use the symmetry, while the interval that we are using
for the integration isn’t symmetric. Therefore we have to do it by hand, first
starting with the substitution [ + % =r=ux— % ={ and dl = dz:

Zn(T) = <$>2e%/1mdz2xexp(—ﬁvx2)

this integral can be calculated using:

0
2 exp (—ﬁvx2) = —20yxexp (—ﬁ'y;vz)
<~
-1 0
T exp (—ﬂ”ymz) = 7;% exp (—57:1:2)

this inserted in the integral:
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While this is the partition function for one particle the systems partition
function is defined by Zsy,s = (Zn (T))" leading to:

Zgys (T) = (géfj)gzv (2’;;2) (kpT)2N (6)
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While we should calculate some expressions, we first have to think about what
temperature would be suitable, while the rotational degrees of freedom should
make an important contribution. This is only for 7' > 14.6 K, therefore we can
use 6.

Definition free energy:

F = —kgThZz
2 2 2
= —kpTNIn (g“) 2“d (kpT)?
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Definition entropy:
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S = Ty
= kBN%T E In (%f) +1In (2ud?) — gmh? + gln(szT)]
= kpN (% In (%ﬁj +In (2pd®) — glnfﬂ + gln(kBT) +Ta% [glnTD
= kpN (% In (%ﬁj +In (2ud®) — gln h? + gln(kBT) + gT%)
= kpN (% In (%ﬁj +In (2pd®) — glnfﬂ + gln(kBT) + g)
Definition of heat capacity:
08
=TTl
= Ta% (Nk:B (gm (%f) +1In (2ud?) — glnh2 + gln(kBT) + g))
= gNkBTa% InT
= gNkB

This result can be physically interpreted. The lineare molecules, will have
two rotational axes (one rotational axis has no momentum, the molecule binding
axis, the other two orthogonal to that one give one degree of freedom each)
and three translational degrees of freedom (there are no vibrational degrees of
freedom, the molecule got a “rigid bonding”), resulting in 5 degrees of freedom
f, while we got % = % this is perfectly fulfilled in the prediction for the heat
capacity.
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