
Heiko Dumlich November 27, 20076 Task Theoretical Physics VI - Statistics6.1 (Debye theory of the heat capacity in solids: 1D)Hamiltonian of a chain of linearly coupled harmonic oscillators:
Ĥ1D =

N
∑
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j
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+
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NVûNwith E being the unitary matrix:
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and V being the matrix:
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There exists an orthogonal transformation X̂ which relates p̂j and ûj to thenormal mode coordinates P̂i and Q̂i. With
ûj =

N
∑

i=1

XjiQ̂i

p̂j =

N
∑

i=1

XjiP̂iWe know, that
X̂TVX̂ = Λwith
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
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
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and:
X̂T =



















x11 x21 · · · xN−1,1 xN1

x12 x22

...... . . . ...... xN−1,N−1

...
x1N · · · · · · xN−1,N xNN




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


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


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...... . . . ...... xN−1,N−1

...
xN1 · · · · · · xN,N−1 xNN
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


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







6.2 (Debye theory of the heat capacity in solids: 3D)(a)We are considering a cube with sides of length L consisting of N atoms. In kspace there is now one k-state in each ( 2π
L

)3 volume. Therefore the state densityis (V = L3):
D (k) =

1
(

2π
L

)3 =
L3

(2π)3
=

V

(2π)3Now we are looking for the number of states which are smaller or equal to k,which we get by integrating over a sphere with radius k in k-space. Thereforethe number of states is:
N =

∫

sphere

D (k) dk =

∫ k

0

dk k2D (k)

∫ π

0

dθ sin θ

∫ 2π

0

dϕ =

(

L

2π

)3
4π

3
k3Using now the de�nition for the density of state in frequency dependance:

D (ω) =
dN

dω
=
dN

dk
· dk
dω

=

(

L

2π

)3

4πk2 dk

dω
=

(

L

2π

)3

4πk2 1

v
=

V ω2

2π2v3
(1)while we used debye approximation ω = v·k, dω

dk
= v (while v is the velocity ofthe mode/groupvelocity). Integration to the cuto� frequency - debye frequency

ωD should give 3N states, that are contained in the N lattice with 3 di�erentmodes of the same mode-velocity for each of the gridpoints:
3N =

∫ ωD

0

D (ω) dω =

∫ ωD

0

V ω2

2π2v3
dω =

V ω3
D

6π2v3this equation can be rearranged to derive the debye frequency:2



ω3
D =

18π2Nv3

VWe can now instantly rewrite 1 to the term we have been looking for the totaldensity of states in terms of the number of atoms N and the Debye frequency
ωD:

D (N,ωD, ω) =
V ω2

2π2v3
=

9N

ω3
D

· ω2 (2)with V
2π2v3 = 9N

ω3

D

.(b)We now have to calculate the mean energy and the heat capacity.De�nition of mean energy (taken from the lecture):
〈E〉 =

1

2

∫ ωD

0

~ωD (ω) dω +

∫ ωD

0

n (ω)D (ω) dωwith
n (ω) =

~ω

eβ~ω − 1inserting 2:
〈E〉 =

9N

ω3
D

1

2

∫ ωD

0

~ω · ω2dω +
9N

ω3
D

∫ ωD

0

~ω

eβ~ω − 1
· ω2dω

=
9

2

N~

ω3
D

∫ ωD

0

ω3dω +
9N

ω3
D

∫ ωD

0

~ω3

eβ~ω − 1
dω

=
9

8
N~ωD +

9N

ω3
D

∫ ωD

0

~ω3

eβ~ω − 1
dω (3)De�nition of heat capacity:

Cv =
∂ 〈E〉
∂Tinserting 3:

Cv (T ) =
9N

ω3
D

∂

∂T

∫ ωD

0

~ω3

eβ~ω − 1
dω

=
9N

ω3
D

∫ ωD

0

~ω3 ∂

∂T

(

e
~ω

kB T − 1
)−1

dω

=
9N

ω3
D

∫ ωD

0

dω ~ω3 (−1)
(

e
~ω

kB T − 1
)2 · e

~ω
kB T ·

(

− ~ω

kBT 2

)

=
9N~

ω3
D

~

kBT 2

∫ ωD

0

dω
ω4e

~ω
kB T

(

e
~ω

kB T − 1
)23



now we want to get to the standard form, this is possible by using thesubstitution x = ~ω
kBT

⇔ ω = kBT
~
x⇒ dω = kBT

~
dx and TD = ~ωD

kB
:

Cv (T ) =
9N~

ω3
D

(

~

kBT

)

1

T

(

kBT

~

)5 ∫ β~ωD

0

dx
x4ex

(ex − 1)2

= 9NkB

(

kBT

~ωD

)3 ∫ β~ωD

0

dx
x4ex

(ex − 1)
2

= 9NkB

(

T

TD

)3 ∫ β~ωD

0

dx
x4ex

(ex − 1)
2The case β → ∞:

Cv (T ) =
12

5
π4NkB

T 3
D

T 3which is the famous Debye T 3-law.The case β → 0:
Cv (T ) = 3NkB6.3 (Simpli�ed polymer model)(a)We are meant to show, that the number of con�gurations Ω (E) for which theenergy of the polymer is between E and E + δE is equal to:

Ω (E) =
2NδE

al
√

2πN
e−

E2

2Nl2a2for N � 1, al � δE � E and |E| � Nal.From task 1.2 b) we know, that the binomial distribution can be rewrittenin the gaussian distribution for N � 1:
PN (k) =

N !

(N − k)!k!
qk (1 − q)

N−k
=

1
√

2πNq (1 − q)
exp

(

−1

2

1

Nq (1 − q)
(k −Nq)

2

)for our problem the possibility for a chain link to be �left� or �right� is equal,this means the possibility for a chain link to be �right� is q = 1
2 , resulting in:

PN (k) =

√

2

πN
exp

(

− 2

N

(

k − N

2

)2
) (4)The energy of the polymer should be between E and E + δE, we can thinkof k links to be right and (N − k) links to be left therefore (with xi = il):

E (k) = −akl− a (N − k) l = (N − 2k)alWhich can be rewritten to: 4



k =
N

2
− E

2alinserted in 4 this leads to:
PN (k) =

√

2

πN
exp

(

− E2

2Nl2a2

)While there are two possibile settings for the links with N links in total, thetotal number of settings for the whole system is 2N . Multiplying this with thepossibility for a special setting k gives us the number of con�gurations for thesetting k:
Ω (E (k)) =

2N

√

1
2πN

exp

(

− E (k)2

2Nl2a2

) (5)while we want to �nd the number of con�gurations for the case of the energyinterval E to E + δE we have to sum over Ω (E (k)) since we are in a discretecase:
Ω (E)

∣

∣

∣

E∈[E′,E′+δE]
=

E+δE
∑

E′=E

2N

√

1
2πN

exp

(

− E2

2Nl2a2

)We have a look at the sum, while δE is very small, the possibility changeswill also be very small. The possibility is directly linked to k = N
2 − E

2al
, with

E → E + δE this becomes:
k′ =

Nal − (E + δE)

2alnow with δE � E and |E| � Nal the change in energy will �not� in�uence
k ≈ k′, therefore E (k′) ≈ E (k) and we can write, while the energy can bewritten in front of the sum:

Ω (E)
∣

∣

∣

E∈[E′,E′+δE]
= Ω (E (k))

∑

E

= Ω (E (k)) δkwhile δk is the number of states in [E,E + δE], it is a small number becauseof δE being small, with
δk = k − k′

=
N

2
− E

2al
− N

2
+
E + δE

2al

=
δE

2alinserting this, we get:
Ω (E)

∣

∣

∣

E∈[E′,E′+δE]
=

2NδE

al
√

2πN
exp

(

− E2

2Nl2a2

)
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(b)de�nition of entropy:
S (E) = kB ln Ω (E)while we want the entropy at energy E we cannot use the expression froma), but instead we can use 5, which gives the energy for a given k:

S (E (k)) = kB ln





2N

√

1
2πN

exp

(

− E (k)
2

2Nl2a2

)





= kB

(

N ln 2 − 1

2
ln

(

1

2
πN

)

− E (k)
2

2Nl2a2

)If we want the entropy for an interval [E,E + δE] (seems unlikely, becauseentropy doesn't have physical meaning for intervals), we get:
S (E) = kB ln Ω (E)

∣

∣

∣

E∈[E′,E′+δE]

= kB ln

[

2NδE

al
√

2πN
exp

(

− E2

2Nl2a2

)]

= kB

[

ln

(

2NδE

al
√

2πN

)

− E2

2Nl2a2

](c)With T = const. (polymer immersed in solution in thermal equilibrium) and
E 6= const. (energy �uctuations) we have to calculate the problem in the canon-ical ensemble, therefore:

D (E) =
dΩ

dEusing 5 we get:
D (E) =

2N

√

1
2πN

d

dE
exp

(

− E2

2Nl2a2

)

=
2N

√

1
2πN

( −2 · E
2Nl2a2

)

exp

(

− E2

2Nl2a2

)

= − E2N

Nl2a2
√

1
2πN

exp

(

− E2

2Nl2a2

)De�nition of partition function:
ZN (T, V ) = cN

∫ Nal

−Nal

dE D (E) e−βE6



inserting D (E) and α2 = 1
2Nl2a2 , γ = 2N

Nl2a2

√
1

2
πN

with cN = 1 leads to:
ZN (T, V ) = −γ

∫ Nal

−Nal

dE E e−α2E2−βErewriting the exponent leads to:
ZN (T, V ) = −γ

∫ Nal

−Nal

dE E e
−
(

α2E2+βE+ β2

4α2

)

+ β2

4α2

= −γe
β2

4α2

∫ Nal

−Nal

dE E e−(αE+ β
2α )

2substituting αE + β
2α

= x ⇒ E = x
α
− β

2α2 and dx
α

= dE, also using N �
1 ⇒ Nal → ∞ we get:

ZN (T, V ) = − γ

α2
e

β2

4α2

∫ ∞

−∞
dx

(

xe−x2 − β

2α
e−x2

)the �rst integral cancels because of symmetry, so we only have to calculatethe second one:
ZN (T, V ) = − γβ

2α3
e−

β2

4α2

∫ ∞

−∞
dx e−x2

= − γβ

2α3
e−

β2

4α2 ·
√
π

= −γ
√
π

2α3
· β e−

β2

4α2De�nition of mean energy:
〈E〉 = − ∂

∂β
lnZN

=
∂

∂β
ln

(

−γ
√
π

2α3
· β e−

β2

4α2

)

=
∂

∂β
lnβ − ∂

∂β

(

β2

4α2

)

=
1

β
− 2β

4α2

=
1

β
− β

2α2inserting α2 = 1
2Nl2a2 leads to:

〈E〉 = kBT − Nl2a2

kBTHaving a look at the special cases for physical insights. T → ∞ the energywill turn to in�nity, while using: 7



E = −axN ⇒ xN = −E
a

⇒ xN =
kBT

a
+
Nl2a

kBTalso the chain length will turn to in�nity. For T → 0 we have the case ofenergy turning to negative in�nity. The chain length will then again turn toin�nity. The length of in�nity might result of the assumption that N � 1 ⇒
Nal → ∞. The special case of xN = 0 is de�ned by:

xN = 0 =
kBT

a
+
Nl2a

kBT
⇒ T 2 = −Nl

2a2

k2
B

⇒ T = ±i
√
N
la

kBwhich means, there is no temperature, where the chain length will becomezero. This seems very unlikely, therefore this solution seems to be wrong !We have a second try, this time we use the function given in a) which resultsfrom:
D (E) =

dΩ

dE

= lim
∆E→0

Ω (E + ∆E) − Ω (E)

∆E

= lim
∆E→0

1

∆E

(

E+∆E
∑

E′=0

Ω (E′ (k)) −
E
∑

E′=0

Ω (E′ (k))

)while ∆E ≈ δE for ∆E → 0 we can rewrite that:
D (E) =

1

δE
lim

δE→0

E+δE
∑

E′=E

Ω (E′ (k))

=
1

δE
Ω (E)

∣

∣

∣

E∈[E′,E′+δE]

=
2N

al
√

2πN
exp

(

− E2

2Nl2a2

)From here it is now relatively easy, since we already did quite the equiva-lent calculation before, with some minor di�erences, starting with the partitionfunction:
ZN (T, V ) = cN

∫ Nal

−Nal

dE D (E) e−βEinserting D (E) and α2 = 1
2Nl2a2 , γ = 2N

al
√

2πN
with cN = 1 leads to:

ZN (T, V ) = −γ
∫ Nal

−Nal

dE e−α2E2−βErewriting the exponent leads to:
ZN (T, V ) = −γe

β2

4α2

∫ Nal

−Nal

dE e−(αE+ β
2α )28



substituting αE + β
2α

= x and dx
α

= dE, also using N � 1 ⇒ Nal → ∞ weget:
ZN (T, V ) = − γ

α
e

β2

4α2

∫ ∞

−∞
dx e−x2

= − γ

α
e

β2

4α2

√
πDe�nition of mean energy:

〈E〉 = − ∂

∂β
lnZN

=
∂

∂β
ln

(

−γ
√
π

α
e

β2

4α2

)

= − ∂

∂β

(

β2

4α2

)

= − 2β

4α2

= − β

2α2inserting α2 = 1
2Nl2a2 leads to:

〈E〉 = −Nl
2a2

kBTSame special cases for this equation lead to more physical results. First weget ourselves
xN = −E

a
=
Nl2a

kBT
from E = −axNwhich this time can become zero for in�nitely high temperature, while theaverage energy will be zero then, which seems to be correct, when we look at

E = −axN , what before wasn't ful�lled. Now for low temperature the energywill turn to minus in�nity, while the length of the chain therefore will turn toin�nity, which seems ok too, since we used N � 1 ⇒ Nal → ∞, therefore wealready observed an in�nitely long chain.De�nition energy �uctuations:
∆E2 =

−∂ 〈H〉
∂β

= kBT
2∂ 〈E〉
∂Tinserting 〈E〉 therefore leads to:

∆E2 = kBT
2Nl

2a2

kBT 2
= Nl2a2this means the energy �uctuations are:

∆E =
√
Nalwhich we already saw quantitatively in the lecture ∆E ∝

√
N .9



Or if we take the normalised energy �uctuations:
∆E

〈E〉 =

√
Nal

−Nl2a2

kBT

= −
√

1

N

kBT

lafor N → ∞ the energy �uctuations tend to go to 0.(d)In thermal equilibrium the forces of the marker drawn by the electric �eld andthe force of the polymer on the marker, should add to zero. Therefore
Ffield = Fpolymerwith the de�nition of force:

F = −∂E
∂xwith E the electric energy (E = −axN ) and x = xN we can write:

F = aFurther using − 〈E〉
xN

= a:
F = −〈E〉

xN

=
Nl2a2

kBTxN

= awhich can �nally be rewritten to:
F =

kBT

Nl2
· xN6.4 (Rotating ideal gas)Cubic box with in�nitely hard walls of volume V = L3. Distance between Hand Cl is d = 1.3 = 1.3 · 10−10m.(a)We �rst only consider translations. Starting with the particle in the box picturein three dimensions, while we think of HCl to be one particle. This is justi�edby the assumption of HCl being rigid, therefore the mass of this particle is

M = mH +mCl. At �rst only for the x-coordinate:
V (x) =

{

0 −L
2 ≤ x ≤ L

2

∞ |x| > L
2with the border condition ϕ (x = −L

2

)

= 0 and ϕ (x = L
2

)

= 0, also for the�rst derivative, this leads to the energyvalues:
Enx

=
~

2

2M

(π

L

)2

n2
xfor nx ∈ N. This means Enx

got a lowest energy with nx = 1:10



Enx,min =
~

2

2M

(π

L

)2Now extending the problem to three dimensions. We can just sum the one-dimensional energies, while the dimensions are not coupled:
Enxnynz

=
~

2π2

2ML2

(

n2
x + n2

y + n2
z

)therefore the spacing between the translational energy levels isn't constant.The lowest level can be found for all of the ni = 1 to be:
E111 =

3~
2π2

2ML2the next highest level can be found for one of the n's being 2 and the othersbeing 1, therefore the lowest spacing between to translational energy levels is:
E211 − E111 =

~
2π2

2ML2
(6 − 3) =

3~
2π2

2ML2
≈ 2.7 · 10−38 Jwith L = 10−2m. The translational energy levels therefore might be con-sidered as continous to some respect.(b)De�nition of partition function:

Z = ZN (T, V ) = cN

∫

d3Nqd3Npe−βH(~qN ,~pN )for the discrete (quantized case):
ZN (T ) = Tr

(

e−βĤ
)with the hamiltonian:

Ĥ = Ĥtrans + Ĥrot =
∑

i

p2
i

2M
+

~
2

2µd2
L̂2while translation and rotation are independent, we can �nd simultaneouseigenkets:

Ĥ |ψ〉 = Ĥ |nxnynz〉trans ⊗ |l〉rot =

(

~
2π2

2ML2

(

n2
x + n2

y + n2
z

)

+
~

2l (l + 1)

2µd2

)

|ψ〉Inserting this in the parition function and considering the degeneracy of
2l+ 1 leads to:
ZN (T ) = Tr

(

e−βĤ
)

=

∞
∑

nx,ny,nz=0

∞
∑

l=0

(2l + 1)
〈

nxnynz; l| exp
(

−βĤ
)

|nxnynz; l
〉

=

∞
∑

nx,ny,nz=0

∞
∑

l=0

(2l + 1) exp

(

−β
[

~
2π2

2ML2

(

n2
x + n2

y + n2
z

)

+
~

2l (l + 1)

2µd2

])11



we now have to consider the temperature, when rotations become important.Therefore we assume, that the relevance starts, when the exponent becomesabout −l (l+ 1) or better to say:
β

~
2

2µd2
= 1

~
2

2kBµd2
= T

T ≈ 14.6Know using α = ~
2π2

2ML2 and γ = ~
2

2µd2 we can rewrite:
ZN (T ) =

∞
∑

nx,ny,nz=0

∞
∑

l=0

(2l+ 1) exp
(

−β
[

α
(

n2
x + n2

y + n2
z

)

+ γ
(

l2 + l
)])for high temperatures (especially kB · 14.6K ≈ 2 · 10−22 J , which is muchhigher then the spacing between translational energy levels) now, there aremany energy levels that can be reached (as seen in a)) therefore the energydistribution becomes continous and we can rewrite in integrals (for the n's thiswould already be possible for T = 14.6K):

ZN (T ) =

∫ ∞

0

d3n exp
(

−βα
(

n2
x + n2

y + n2
z

))

∫ ∞

0

dl (2l + 1) exp
(

−βγ
(

l2 + l
))the �rst kind of integral is well known, the second one can be rewritten:

ZN (T ) =

(

π

4αβ

)
3

2

e
βγ
4

∫ ∞

0

dl (2l + 1) exp

(

−βγ
(

l +
1

2

)2
)this time we cannot use the symmetry, while the interval that we are usingfor the integration isn't symmetric. Therefore we have to do it by hand, �rststarting with the substitution l + 1

2 = x⇒ x− 1
2 = l and dl = dx:

ZN (T ) =

(

π

4αβ

)
3

2

e
βγ
4

∫ ∞

1

2

dx 2x exp
(

−βγx2
)this integral can be calculated using:

∂

∂x
exp

(

−βγx2
)

= −2βγx exp
(

−βγx2
)

⇔
x exp

(

−βγx2
)

=
−1

2βγ

∂

∂x
exp

(

−βγx2
)this inserted in the integral: 12



∫ ∞

1

2

dxx exp
(

−βγx2
)

=
−1

2βγ

∫ ∞

1

2

dx
∂

∂x
exp

(

−βγx2
)

=
−1

2βγ

[

exp
(

−βγx2
)]∞

1

2

=
−1

2βγ

[

− exp

(

−βγ
4

)]

=
e−

βγ
4

2βγtherefore we get:
ZN (T ) =

(

π

4αβ

)
3

2

e
βγ
4 2

e−
βγ
4

2βγ

=

(

π

4αβ

)
3

2 1

βγinserting α and γ:
ZN (T ) =

(

π

4
(

~2π2

2ML2

)

β

)
3

2

1

β ~2

2µd2

=

(

kBTML2

2~2π

)
3

2 2µd2kBT

~2
=

(

ML2

2~2π

)
3

2 2µd2

~2
(kBT )

5

2While this is the partition function for one particle the systems partitionfunction is de�ned by Zsys = (ZN (T ))N leading to:
Zsys (T ) =

(

ML2

2~2π

)
3

2
N (

2µd2

~2

)N

(kBT )
5

2
N (6)(c)While we should calculate some expressions, we �rst have to think about whattemperature would be suitable, while the rotational degrees of freedom shouldmake an important contribution. This is only for T � 14.6K, therefore we canuse 6.De�nition free energy:

F = −kBT lnZ

= −kBTN ln

[

(

ML2

2~2π

)
3

2 2µd2

~2
(kBT )

5

2

]

= −kBTN

[

3

2
ln

(

ML2

2~2π

)

+ ln

(

2µd2

~2

)

+
5

2
ln (kBT )

]

= −kBTN

[

3

2
ln

(

ML2

2π

)

+ ln
(

2µd2
)

− 5

2
ln ~

2 +
5

2
ln (kBT )

]De�nition entropy: 13



S = −∂F
∂T

∣

∣

∣

V

= kBN
∂

∂T
T

[

3

2
ln

(

ML2

2π

)

+ ln
(

2µd2
)

− 5

2
ln ~

2 +
5

2
ln (kBT )

]

= kBN

(

3

2
ln

(

ML2

2π

)

+ ln
(

2µd2
)

− 5

2
ln ~

2 +
5

2
ln (kBT ) + T

∂

∂T

[

5

2
ln T

])

= kBN

(

3

2
ln

(

ML2

2π

)

+ ln
(

2µd2
)

− 5

2
ln ~

2 +
5

2
ln (kBT ) +

5

2
T

1

T

)

= kBN

(

3

2
ln

(

ML2

2π

)

+ ln
(

2µd2
)

− 5

2
ln ~

2 +
5

2
ln (kBT ) +

5

2

)De�nition of heat capacity:
CV = T

∂S

∂T

∣

∣

∣

N,V

= T
∂

∂T

(

NkB

(

3

2
ln

(

ML2

2π

)

+ ln
(

2µd2
)

− 5

2
ln ~

2 +
5

2
ln (kBT ) +

5

2

))

=
5

2
NkBT

∂

∂T
lnT

=
5

2
NkBThis result can be physically interpreted. The lineare molecules, will havetwo rotational axes (one rotational axis has no momentum, the molecule bindingaxis, the other two orthogonal to that one give one degree of freedom each)and three translational degrees of freedom (there are no vibrational degrees offreedom, the molecule got a �rigid bonding�), resulting in 5 degrees of freedom

f , while we got 5
2 = f

2 this is perfectly ful�lled in the prediction for the heatcapacity.
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