5 Task Theoretical Physics VI - Statistics

5.1 (Distinguishable vs. indistinguishable particles)

(a)

Using canonical ensemble:

$$
\begin{aligned}
\left.Z_{\mathrm{red}}\right|_{N} & =\frac{1}{h^{3 N} N!} \int d^{3 N} q \int d^{3 N} p \exp \left(-\beta \sum_{i=1}^{N} \frac{\vec{p}_{i}^{2}}{2 m}\right) \\
& =\frac{1}{h^{3 N} N!} \int d^{3 N} q\left[\int d p \exp \left(-\beta \frac{\vec{p}^{2}}{2 m}\right)\right]^{3 N} \\
& =\frac{1}{h^{3 N} N!} V^{N}\left[\sqrt{\frac{2 m \pi}{\beta}}\right]^{3 N} \\
& =\frac{V^{N}}{\lambda_{T}^{3 N} N!}
\end{aligned}
$$

with $\lambda_{T}=\frac{h}{\sqrt{2 \pi m k_{B} T}}$, same for blue and green. Therefore we get (red, blue and green distinguishable):

$$
Z_{\text {red,blue,green }}=\Pi_{i=1}^{3} Z_{i}=Z_{\text {red }} \cdot Z_{\text {blue }} \cdot Z_{\text {green }}=Z_{\text {red }}^{3}=\left(\frac{V^{N}}{\lambda_{T}^{3 N} N!}\right)^{3}
$$

free energy:

$$
\begin{aligned}
F_{\text {red,blue,green }} & =-\frac{1}{\beta} \ln Z \\
& =-\frac{1}{\beta} \ln \left[\left(\frac{V^{N}}{\lambda_{T}^{3 N} N!}\right)^{3}\right] \\
& =-3 k_{B} T\left[N \cdot \ln V-\ln N!-3 N \cdot \ln \lambda_{T}\right] \\
& =-3 k_{B} T\left[N \cdot \ln V-\ln N!+\frac{3}{2} N \cdot \ln \left(\frac{2 \pi m k_{B}}{h^{2}} T\right)\right]
\end{aligned}
$$

entropy:

$$
\begin{aligned}
S_{\text {red, blue,green }} & =-\frac{\partial F}{\partial T} \\
& =3 k_{B}\left[N \cdot \ln V-\ln N!+\frac{3}{2} N \cdot \ln \left(\frac{2 \pi m k_{B}}{h^{2}} T\right)\right] \\
& +3 k_{B} T \frac{3}{2} N \cdot \frac{1}{T} \\
& =3 k_{B}\left[N \cdot \ln V+\frac{3}{2} N \cdot\left[1+\ln \left(\frac{2 \pi m k_{B}}{h^{2}} T\right)\right]-\ln N!\right]
\end{aligned}
$$

(b)

For $3 N$ red atoms (all indistinguishable):

$$
\begin{aligned}
\left.Z_{\mathrm{red}}\right|_{3 N} & =\frac{1}{\left(h^{3 N}\right)^{3}(3 N)!}\left[\int d^{3 N} q \int d^{3 N} p \exp \left(-\beta \sum_{i=1}^{N} \frac{{\overrightarrow{p_{i}}}^{2}}{2 m}\right)\right]^{3} \\
& =\left(\frac{V^{N}}{\lambda_{T}^{3 N}((3 N)!)^{\frac{1}{3}}}\right)^{3}
\end{aligned}
$$

this leads to:

$$
F_{3 \mathrm{red}}=-3 k_{B} T\left[N \cdot \ln V-\frac{1}{3} \ln (3 N)!+\frac{3}{2} N \cdot \ln \left(\frac{2 \pi m k_{B}}{h^{2}} T\right)\right]
$$

and the entropy is:

$$
S_{3 \text { red }}=3 k_{B}\left[N \cdot \ln V+\frac{3}{2} N \cdot\left[1+\ln \left(\frac{2 \pi m k_{B}}{h^{2}} T\right)\right]-\frac{1}{3} \ln (3 N)!\right]
$$

Therefore the difference is (using Stirling formula $\ln N!\approx N \ln N-N$):

$$
\begin{aligned}
\left|S_{\text {red,blue,green }}-S_{3 \text { red }}\right| & =\left|3 k_{B}\left[-\ln N!+\frac{1}{3} \ln (3 N)!\right]\right| \\
& \approx\left|3 k_{B}[-N \cdot \ln N+N+N \cdot \ln (3 N)-N]\right| \\
& =\left|3 k_{B}[N \cdot \ln 3]\right| \\
& =3 N k_{B} \ln 3
\end{aligned}
$$

5.2 (Simplified model for adsorption on a surface)

We first define the density of states at one site functions:

$$
\begin{aligned}
& D_{0}(E)=\delta(E-0) \\
& D_{1}(E)=\delta\left(E-\epsilon_{1}\right) \\
& D_{2}(E)=\delta\left(E-\epsilon_{2}\right)
\end{aligned}
$$

(a)
definition of grand partition function:

$$
Z_{G}(T, V, \mu)=\sum_{N=0}^{\infty} \int_{-\infty}^{\infty} d E D_{N}(E) e^{-\beta(E-\mu N)}
$$

with defined $D_{N}(E)$, for one site and the condition, that there are only three possible states $0,1,2$:

$$
\begin{aligned}
Z_{1, G} & =\int_{-\infty}^{\infty} d E\left(\delta(E-0) e^{-\beta E}+\delta\left(E-\epsilon_{1}\right) e^{-\beta(E-\mu)}+\delta\left(E-\epsilon_{2}\right) e^{-\beta(E-2 \mu)}\right) \\
& =\left(1+e^{-\beta\left(\epsilon_{1}-\mu\right)}+e^{-\beta\left(\epsilon_{2}-2 \mu\right)}\right)
\end{aligned}
$$

for non-interacting particles $Z_{M, G}=Z_{1, G}^{M}$, this therefore leads to:

$$
Z_{M, G}=\left(1+e^{-\beta\left(\epsilon_{1}-\mu\right)}+e^{-\beta\left(\epsilon_{2}-2 \mu\right)}\right)^{M}
$$

(b)
definition of grand potential:

$$
\Phi(T, V, \mu)=-k_{B} T \ln Z_{G}(T, V, \mu)=-k_{B} T M \ln \left(1+e^{-\beta\left(\epsilon_{1}-\mu\right)}+e^{-\beta\left(\epsilon_{2}-2 \mu\right)}\right)
$$

definition of average number of particles:

$$
\begin{aligned}
\langle N\rangle & =\left.\frac{1}{\beta} \frac{\partial}{\partial \mu} \ln Z_{G}(T, V, \mu)\right|_{T, V} \\
& =\frac{M}{\beta} \frac{\partial}{\partial \mu} \ln \left(1+e^{-\beta\left(\epsilon_{1}-\mu\right)}+e^{-\beta\left(\epsilon_{2}-2 \mu\right)}\right) \\
& =\frac{M}{\beta}\left(1+e^{-\beta\left(\epsilon_{1}-\mu\right)}+e^{-\beta\left(\epsilon_{2}-2 \mu\right)}\right)^{-1}\left[e^{-\beta\left(\epsilon_{1}-\mu\right)} \beta+e^{-\beta\left(\epsilon_{2}-2 \mu\right)} 2 \beta\right] \\
& =\frac{M\left[e^{-\beta\left(\epsilon_{1}-\mu\right)}+2 e^{-\beta\left(\epsilon_{2}-2 \mu\right)}\right]}{1+e^{-\beta\left(\epsilon_{1}-\mu\right)}+e^{-\beta\left(\epsilon_{2}-2 \mu\right)}}
\end{aligned}
$$

definition of the mean energy:

$$
\begin{aligned}
\langle E\rangle & =-\frac{\partial}{\partial \beta} \ln Z_{G}+\mu\langle N\rangle \\
& =-\frac{\partial}{\partial \beta} \ln \left(1+e^{-\beta\left(\epsilon_{1}-\mu\right)}+e^{-\beta\left(\epsilon_{2}-2 \mu\right)}\right)^{M}+\mu\langle N\rangle \\
& =-M \frac{\left(-\left(\epsilon_{1}-\mu\right) e^{-\beta\left(\epsilon_{1}-\mu\right)}-\left(\epsilon_{2}-2 \mu\right) e^{-\beta\left(\epsilon_{2}-2 \mu\right)}\right)}{1+e^{-\beta\left(\epsilon_{1}-\mu\right)}+e^{-\beta\left(\epsilon_{2}-2 \mu\right)}}+\mu\langle N\rangle \\
& =M \frac{\left(\epsilon_{1}-\mu\right) e^{-\beta\left(\epsilon_{1}-\mu\right)}+\left(\epsilon_{2}-2 \mu\right) e^{-\beta\left(\epsilon_{2}-2 \mu\right)}}{1+e^{-\beta\left(\epsilon_{1}-\mu\right)}+e^{-\beta\left(\epsilon_{2}-2 \mu\right)}}-\mu \frac{M\left[e^{-\beta\left(\epsilon_{1}-\mu\right)}+2 e^{-\beta\left(\epsilon_{2}-2 \mu\right)}\right]}{1+e^{-\beta\left(\epsilon_{1}-\mu\right)}+e^{-\beta\left(\epsilon_{2}-2 \mu\right)}} \\
& =M \frac{\left(\epsilon_{1}-\mu-\mu\right) e^{-\beta\left(\epsilon_{1}-\mu\right)}+\left(\epsilon_{2}-2 \mu-2 \mu\right) e^{-\beta\left(\epsilon_{2}-2 \mu\right)}}{1+e^{-\beta\left(\epsilon_{1}-\mu\right)}+e^{-\beta\left(\epsilon_{2}-2 \mu\right)}} \\
& =M \frac{\epsilon_{1} e^{-\beta\left(\epsilon_{1}-\mu\right)}+\epsilon_{2} e^{-\beta\left(\epsilon_{2}-2 \mu\right)}}{1+e^{-\beta\left(\epsilon_{1}-\mu\right)}+e^{-\beta\left(\epsilon_{2}-2 \mu\right)}}
\end{aligned}
$$

(c)
definition of pressure using Sackur-Tetrode-equation for S :

$$
\begin{aligned}
p & =\left.T\left\langle\frac{\partial S}{\partial V}\right\rangle\right|_{N=N_{g}} \\
& =T\left\langle\frac{\partial}{\partial V}\left(N_{g} k_{B}\left[\ln \frac{V}{N_{g}}+\frac{3}{2} \ln \left(\frac{4 \pi m E}{3 N h^{2}}\right)+\frac{5}{2}\right]\right)\right\rangle \\
& =T\left\langle\left(N_{g} k_{B} \frac{1}{V}\right)\right\rangle \\
& =k_{B} T \frac{\left\langle N_{g}\right\rangle}{V}
\end{aligned}
$$

Therefore:

$$
\left\langle N_{g}\right\rangle=\frac{p V}{k_{B} T}
$$

Using the equation for $\langle N\rangle$ from \mathbf{b}) and the μ of an ideal gas (N_{g} is the number of particles in the gas, which acts as the particle reservoir):

$$
\mu=-k_{B} T \ln \left(\frac{V}{\left\langle N_{g}\right\rangle \lambda_{T}^{3}}\right)=k_{B} T \ln \left(\frac{\left\langle N_{g}\right\rangle \lambda_{T}^{3}}{V}\right)
$$

we get:

$$
\begin{aligned}
\langle N\rangle & =\frac{M\left[e^{-\beta\left(\epsilon_{1}-\mu\right)}+2 e^{-\beta\left(\epsilon_{2}-2 \mu\right)}\right]}{1+e^{-\beta\left(\epsilon_{1}-\mu\right)}+e^{-\beta\left(\epsilon_{2}-2 \mu\right)}} \\
& =\frac{M\left[e^{-\beta \epsilon_{1}+\ln \left(\frac{\left\langle N_{g}\right\rangle \lambda_{T}^{3}}{V}\right)}+2 e^{-\beta \epsilon_{2}+2 \ln \left(\frac{\left\langle N_{g}\right\rangle \lambda_{T}^{3}}{V}\right)}\right]}{1+e^{-\beta \epsilon_{1}+\ln \left(\frac{\left\langle N_{g}\right\rangle \lambda_{T}^{3}}{V}\right)}+e^{-\beta \epsilon_{2}+2 \ln \left(\frac{\left\langle N_{g}\right\rangle \lambda_{T}^{3}}{V}\right)}} \\
& =\frac{M\left[\left(\frac{\left\langle N_{g}\right\rangle \lambda_{T}^{3}}{V}\right) e^{-\beta \epsilon_{1}}+2\left(\frac{\left\langle N_{g}\right\rangle \lambda_{T}^{3}}{V}\right)^{2} e^{-\beta \epsilon_{2}}\right]}{1+\left(\frac{\left\langle N_{g}\right\rangle \lambda_{T}^{3}}{V}\right) e^{-\beta \epsilon_{1}}+\left(\frac{\left\langle N_{g}\right\rangle \lambda_{T}^{3}}{V}\right)^{2} e^{-\beta \epsilon_{2}}}
\end{aligned}
$$

with $\lambda_{T}=\frac{h \sqrt{\beta}}{\sqrt{2 \pi m}}$ and $\left\langle N_{g}\right\rangle=\frac{p V}{k_{B} T}$ this leads to:

$$
\langle N\rangle=\frac{M\left[p \beta^{\frac{5}{2}}\left(h^{2}(2 \pi m)^{-1}\right)^{\frac{3}{2}} e^{-\beta \epsilon_{1}}+2 p^{2} \beta^{5}\left(h^{2}(2 \pi m)^{-1}\right)^{3} e^{-\beta \epsilon_{2}}\right]}{1+p \beta^{\frac{5}{2}}\left(h^{2}(2 \pi m)^{-1}\right)^{\frac{3}{2}} e^{-\beta \epsilon_{1}}+p^{2} \beta^{5}\left(h^{2}(2 \pi m)^{-1}\right)^{3} e^{-\beta \epsilon_{2}}}
$$

assuming $\epsilon_{1}, \epsilon_{2}<0$ we observe the special cases of high and low temperature, first starting with high temperature $(\beta \rightarrow 0)$:

$$
\langle N\rangle=\lim _{\beta \rightarrow 0} \frac{M\left[\alpha \beta^{\frac{5}{2}} e^{-\beta \epsilon_{1}}+2 \alpha^{2} \beta^{5} e^{-\beta \epsilon_{2}}\right]}{1+\alpha \beta^{\frac{5}{2}} e^{-\beta \epsilon_{1}}+\alpha^{2} \beta^{5} e^{-\beta \epsilon_{2}}}=\frac{0}{1} \cdot M=0
$$

with $\alpha=p\left(h^{2}(2 \pi m)^{-1}\right)^{\frac{3}{2}}$. The interpretation of this situation is, that there will be no occupied states, since the temperature is very high, the particles won't be adsorbed by a surface. The particles become free since the kinetic energy is bigger then the binding energy.

Special case of low temperature $\beta \rightarrow \infty$, the 1 in the denominator can be neglected while the exponentials will become big, since $\epsilon_{1}, \epsilon_{2}<0$:
$\langle N\rangle=\lim _{\beta \rightarrow \infty} \frac{M\left[\alpha \beta^{\frac{5}{2}} e^{-\beta \epsilon_{1}}+2 \alpha^{2} \beta^{5} e^{-\beta \epsilon_{2}}\right]}{1+\alpha \beta^{\frac{5}{2}} e^{-\beta \epsilon_{1}}+\alpha^{2} \beta^{5} e^{-\beta \epsilon_{2}}}=\lim _{\beta \rightarrow \infty} \frac{M\left[\alpha \beta^{\frac{5}{2}} e^{-\beta \epsilon_{1}}+2 \alpha^{2} \beta^{5} e^{-\beta \epsilon_{2}}\right]}{\left[\alpha \beta^{\frac{5}{2}} e^{-\beta \epsilon_{1}}+\alpha^{2} \beta^{5} e^{-\beta \epsilon_{2}}\right]}$
We now can have a look at the case of $\left|\epsilon_{1}\right|>\left|\epsilon_{2}\right|$:

$$
\langle N\rangle=\lim _{\beta \rightarrow \infty} \frac{M \alpha \beta^{\frac{5}{2}} e^{-\beta \epsilon_{1}}}{\alpha \beta^{\frac{5}{2}} e^{-\beta \epsilon_{1}}}=M
$$

which perfectly fits the expectation, that every site will be occupied with 1 particle of ϵ_{1} being dominating. The second and more likely case (because two particles will have a higher binding energy then one) $\left|\epsilon_{2}\right|>\left|\epsilon_{1}\right|$ leads to:

$$
\langle N\rangle=\lim _{\beta \rightarrow \infty} \frac{M 2 \alpha^{2} \beta^{5} e^{-\beta \epsilon_{2}}}{\alpha^{2} \beta^{5} e^{-\beta \epsilon_{2}}}=2 M
$$

This is also the maximum, because now two particles are adsorbed on each site. This seems to be the most likely result.

5.3 (Atoms in a lattice)

There are $2 N$ lattices sites, N normal and N interstitial. N of them are occupied, while M interstitial and $N-M$ normal sites could be occupied. Therefore we can use the binomial $\binom{N}{M}$ for the probability of an interstitial site to be occupied and the binomial $\binom{N}{N-M}=\frac{N!}{(N-M)!(N-M-N)!}=\frac{N!}{(N-M)!M!}=$ $\binom{N}{M}$ for an normal site to be occupied. We can therefore define W :

$$
W=\binom{N}{M}^{2}
$$

which we can use to define the entropy:

$$
S=k_{B} \ln W=2 k_{B} \ln W^{\prime}
$$

with $W^{\prime}=\binom{N}{M}$. We can get the internal energy from here with:

$$
d U=T d S
$$

but first we rewrite S using Stirling's formula ($\ln N!=N \ln N-N$):

$$
\begin{aligned}
S & =2 k_{B} \ln W_{0} \\
& =2 k_{B} \ln \frac{N!}{M!(N-M)!} \\
& =2 k_{B}(\ln N!-\ln M!-\ln (N-M)!) \\
& =2 k_{B}(N \ln N-N-M \ln M+M-(N-M) \ln (N-M)+(N-M)) \\
& =2 k_{B}(N(\ln N-\ln (N-M))-M(\ln M-\ln (N-M))) \\
& =2 k_{B}\left(N\left(\ln \frac{N}{N-M}\right)-M\left(\ln \frac{M}{N-M}\right)\right)
\end{aligned}
$$

using $N \gg M$ and $U=M \epsilon$ we can rewrite:

$$
\begin{aligned}
S & =2 k_{B}\left(N\left(\ln \frac{N}{N}\right)-M\left(\ln \frac{M}{N}\right)\right) \\
& =-2 k_{B} \frac{U}{\epsilon} \ln \left(\frac{U}{N \epsilon}\right)
\end{aligned}
$$

Now we can use:

$$
\frac{1}{T}=\left(\frac{\partial U}{\partial S}\right)_{N}^{-1}=\left(\frac{\partial S}{\partial U}\right)_{N}
$$

therefore we can write:

$$
\begin{aligned}
-\frac{\epsilon}{2 k_{B} T} & =\frac{\partial}{\partial U}\left(U \ln \left(\frac{U}{N \epsilon}\right)\right) \\
-\frac{\epsilon}{2 k_{B} T} & =\ln \left(\frac{U}{N \epsilon}\right)+U \frac{1}{U}
\end{aligned}
$$

This can be rewritten to:

$$
U=N \epsilon \exp \left(-\left(\frac{\epsilon}{2 k_{B} T}+1\right)\right)
$$

now using $\frac{\epsilon}{2 k_{B} T} \gg 1$ we can simplify our result to:

$$
U=N \epsilon e^{-\frac{\epsilon}{2 k_{B} T}}
$$

definition of heat capacity:

$$
C_{v}(T)=\frac{\partial U}{\partial T}
$$

with this we get:

$$
\begin{aligned}
C_{v}(T) & =\frac{\partial}{\partial T}\left(N \epsilon e^{-\frac{\epsilon}{2 k_{B} T}}\right) \\
& =N \epsilon e^{-\frac{\epsilon}{2 k_{B} T}}\left(\frac{\epsilon}{2 k_{B} T^{2}}\right) \\
& =2 N k_{B}\left(\frac{\epsilon}{2 k_{B} T}\right)^{2} e^{-\frac{\epsilon}{2 k_{B} T}}
\end{aligned}
$$

5.4 (Density operator)

Matrix representation of density operator in basis $\left\{\left|m_{i}\right\rangle\right\}$:

$$
\left\langle m_{j}\right| \hat{\rho}\left|m_{i}\right\rangle=\frac{1}{4}\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

Eigenvalues of operator $\hat{\mathbf{J}}_{\mathbf{z}}: \lambda_{1}=-1, \lambda_{2}=0, \lambda_{3}=1$:

$$
\left\langle m_{j}\right| \hat{J}_{z}\left|m_{i}\right\rangle=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

with eigenvectors (using $\left(\left\langle m_{j}\right| \hat{J}_{z}\left|m_{i}\right\rangle-\lambda E\right) \cdot \vec{x}=0$):

$$
\begin{aligned}
|-1\rangle & =\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
|0\rangle & =\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
|1\rangle & =\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

(a)
hermicity:

$$
\hat{\rho}=\hat{\rho}^{\dagger}
$$

using complexconjugation on the matrix and transposing it leads to:

$$
\left\langle m_{j}\right| \hat{\rho}^{\dagger}\left|m_{i}\right\rangle=\frac{1}{4}\left(\begin{array}{ccc}
2 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

while all elements are real and the matrix is symmetric.
Before checking positive semi-definiteness, we calculate the eigenvalues and eigenvectors:

$$
\begin{aligned}
\left.\left|\left\langle m_{j}\right| \hat{\rho}\right| m_{i}\right\rangle-\lambda E \mid & =0 \\
{\left[(2-4 \lambda)(1-4 \lambda)^{2}-(1-4 \lambda)-(1-4 \lambda)\right] } & =0 \\
(1-4 \lambda)\left[2-8 \lambda-4 \lambda+16 \lambda^{2}-2\right] & =0 \\
\left(\lambda-\frac{3}{4}\right)\left(\frac{1}{4}-\lambda\right) \lambda & =0
\end{aligned}
$$

this leads to the eigenvalues:

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=\frac{1}{4} \\
& \lambda_{3}=\frac{3}{4}
\end{aligned}
$$

for the eigenvectors we get:

$$
\left(\begin{array}{ccc}
2-4 \lambda_{i} & 1 & 1 \\
1 & 1-4 \lambda_{i} & 0 \\
1 & 0 & 1-4 \lambda_{i}
\end{array}\right) \cdot \vec{x}=0
$$

this leads to:

$$
\begin{gathered}
\left(\begin{array}{ccc}
2 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \cdot \vec{x}_{1}=0 \\
\vec{x}_{1}=a \cdot\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right) \\
\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \cdot \vec{x}_{2}=0 \\
\vec{x}_{2}=b \cdot\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) \\
\left(\begin{array}{ccc}
-1 & 1 \\
1 & -2 & 0 \\
1 & 0 & -2
\end{array}\right) \cdot \vec{x}_{3}=0 \\
\vec{x}_{3}=c \cdot\left(\begin{array}{c}
2 \\
1 \\
1
\end{array}\right)
\end{gathered}
$$

normalising the eigenvectors leads to:

$$
\begin{aligned}
& \vec{x}_{1}=\frac{1}{\sqrt{3}} \cdot\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right) \\
& \vec{x}_{2}=\frac{1}{\sqrt{2}} \cdot\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) \\
& \vec{x}_{3}=\frac{1}{\sqrt{6}} \cdot\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)
\end{aligned}
$$

The eigenvectors form a ONB, therefore every vector can be constructed with them $\vec{x}=a_{1} \vec{x}_{1}+a_{2} \vec{x}_{2}+a_{3} \vec{x}_{3}$.
positive semi-definiteness:

$$
\vec{x}^{T}\left\langle m_{j}\right| \hat{\rho}\left|m_{i}\right\rangle \vec{x}=\geq 0
$$

for all vectors $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right) \neq \overrightarrow{0}$. We can prove that:

$$
\begin{aligned}
\vec{x}^{T}\left\langle m_{j}\right| \hat{\rho}\left|m_{i}\right\rangle \vec{x} & =\sum_{i, j} \alpha_{j} \vec{x}_{j}^{T}\left\langle m_{j}\right| \hat{\rho}\left|m_{i}\right\rangle \alpha_{i} \vec{x}_{i} \\
& =\sum_{i, j} \alpha_{j} \lambda_{i} \alpha_{i} \vec{x}_{j}^{T} \cdot \vec{x}_{i} \\
& =\sum_{i, j} \alpha_{j} \lambda_{i} \alpha_{i} \delta_{i j} \\
& =\sum_{i} \alpha_{i}^{2} \lambda_{i} \\
& \geq 0
\end{aligned}
$$

while we calculated λ_{i}, which are either positive or 0 and α_{i}^{2} will always be positive.

Calculation of the trace:

$$
\operatorname{Tr}(\hat{\rho})=\frac{1}{4} \sum_{i=1}^{3}\left\langle m_{i}\right| \hat{\rho}\left|m_{i}\right\rangle=\frac{1}{4}(2+1+1)=1
$$

So all requirements for a density operator are fullfilled.
(b)

We can use, that we will only have a pure state for $\operatorname{Tr}\left(\hat{\rho}^{2}\right)=1$:

$$
\begin{aligned}
\operatorname{Tr}\left(\hat{\rho}^{2}\right) & =\operatorname{Tr}\left(\frac{1}{16}\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)\right) \\
& =\frac{1}{16} \operatorname{Tr}\left(\left(\begin{array}{lll}
6 & 3 & 3 \\
3 & 2 & 1 \\
3 & 1 & 2
\end{array}\right)\right) \\
& =\frac{10}{16}
\end{aligned}
$$

Therefore this is not a pure state, that means it is a mixed state.
(c)
mean:

$$
\left\langle\hat{\mathbf{J}}_{\mathbf{z}}\right\rangle=\operatorname{Tr}\left(\hat{\rho} \hat{\mathbf{J}}_{\mathbf{z}}\right)
$$

this is:

$$
\left\langle\hat{\mathbf{J}}_{\mathbf{z}}\right\rangle=\operatorname{Tr}\left(\frac{1}{4}\left(\begin{array}{ccc}
2 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\right)
$$

$$
\begin{aligned}
& =\frac{1}{4} \operatorname{Tr}\left(\left(\begin{array}{lll}
-2 & 0 & 1 \\
-1 & 0 & 0 \\
-1 & 0 & 1
\end{array}\right)\right) \\
& =\frac{1}{4} \\
& \text { variance } \Delta \hat{\mathbf{J}}_{\mathbf{z}}^{2}=\left\langle\hat{\mathbf{J}}_{\mathbf{z}}^{2}\right\rangle-\left\langle\hat{\mathbf{J}}_{\mathbf{z}}\right\rangle^{\mathbf{2}} \text {, with: } \\
& \left\langle\hat{\mathbf{J}}_{\mathbf{z}}^{\mathbf{z}}\right\rangle=\operatorname{Tr}\left(\hat{\rho} \hat{\mathbf{J}}_{\mathbf{z}}^{\mathbf{z}}\right) \\
& =\operatorname{Tr}\left(\frac{1}{4}\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\right) \\
& =\frac{1}{4} \operatorname{Tr}\left(\left(\begin{array}{lll}
2 & 0 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1
\end{array}\right)\right) \\
& =\frac{3}{4}
\end{aligned}
$$

The variance therefore is:

$$
\Delta \hat{\mathbf{J}}_{\mathrm{z}}^{2}=\left\langle\hat{\mathbf{J}}_{\mathrm{z}}^{2}\right\rangle-\left\langle\hat{\mathbf{J}}_{\mathrm{z}}\right\rangle^{\mathbf{2}}=\frac{3}{4}-\frac{1}{16}=\frac{11}{16}
$$

5.5 (Purity)

To show:

$$
\operatorname{Tr}\left(\hat{\rho}^{2}\right) \leq 1, \text { in general and } \operatorname{Tr}\left(\hat{\rho}^{2}\right)=1 \text { for a pure state }
$$ in general (with $\hat{\rho}=\sum_{m} p_{m}|m\rangle\langle m|$):

$$
\begin{aligned}
\operatorname{Tr}\left(\hat{\rho}^{2}\right) & =\sum_{k}\langle k| \hat{\rho}^{2}|k\rangle \\
& =\sum_{n, m, k}\langle k| p_{n}|n\rangle\langle n| p_{m}|m\rangle\langle m \mid k\rangle \\
& =\sum_{n, m, k} p_{n} p_{m}\langle k \mid n\rangle\langle n \mid m\rangle\langle m \mid k\rangle \\
& =\sum_{n, m, k} p_{n} p_{m}\langle k \mid n\rangle \delta_{n m}\langle m \mid k\rangle \\
& =\sum_{m, k} p_{m}^{2}\left|\delta_{m k}\right|^{2} \\
& \leq 1
\end{aligned}
$$

using $0 \leq p_{m} \leq 1$ and $\sum_{m} p_{m}=1$. For a pure state $\hat{\rho}^{2}=|n\rangle \underbrace{\langle n \mid n\rangle}_{=1}\langle n|=$ $|n\rangle\langle n|=\hat{\rho}$, where $|n\rangle$ is the only occuring state in the ensemble meaning $p_{n}=$ $1 \Leftrightarrow p_{m}=\delta_{n m}$:

$$
\begin{aligned}
\operatorname{Tr}\left(\hat{\rho}^{2}\right) & =\sum_{m}\langle m \mid n\rangle \delta_{n m}\langle n \mid m\rangle \\
& =1
\end{aligned}
$$

