
Heiko Dumlich November 6, 20073 Task Theoretical Physics VI - Statistics3.1 (Discrete random variable)We examine the x component of the angular momentum of some quantum sys-tem, that can only take on three values: −~, 0 or ~. We know, that for a givenstate of the system:
〈Lx〉 =

~

3
and 〈

L2
x

〉
=

2~
2

3(a)We are meant to estimate the probability density p (Lx) for the x component ofthe angular momentum. We can therefore use the fact, that:
〈Lx〉 =

2∑

i=0

Lx,ip (Lx,i) =
~

3and
〈
L2

x

〉
=

2∑

i=0

L2
x,ip (Lx,i) =

2~
2

3with Lx,0 = −~, Lx,1 = 0 andLx,2 = ~.Additionally we know the normalisation condition:
2∑

i=0

p (Lx,i) = 1Using this three conditions we receive the equationsystem:
−~p (−~) + 0p (0) + ~p (~) =

~

3

(−~)
2
p (−~) + 02p (0) + ~

2p (~) =
2~

3
p (−~) + p (0) + p (~) = 1This leads to the matrix form:
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We can calculate the �rst two rows, multiplying with ~ and then adding orsubtracting them from another to get to:
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Therefore we already know:
p (~) =

1

2

p (−~) =
1

6Inserting this into the normalisation condition, we receive p (0):
p (0) = 1 − p (~) − p (−~) =

1

3Therefore we get the probability density of:
p (Lx) =

1

6
δ (Lx + ~) +

1

3
δ (Lx) +

1

2
δ (Lx − ~)The sketch is presented in �g. 1.
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0−~ ~Figure 1: sketch of the probability density p (Lx)(b)For the cumulative function the following formula holds:
F (x) = P (X ≤ x) =

∫ x

−∞

p (y) dyIn our case this leads to:
F (Lx) =

∫ Lx

−∞

p (y) dy =

∫ Lx

−∞

1

6
δ (y + ~) +

1

3
δ (y) +

1

2
δ (y − ~) dyThis leads to:

F (Lx) =







0 forLx < −~

1

6
for − ~ ≤ Lx < 0

1

2
for 0 ≤ Lx < ~

1 forLx ≥ ~The sketch can be found in �g. 2. While there are indeed only three values,that can be adopted, the sketch shouldn't be joined, because the values arediscrete. But anyway, if there would be values in between, they would have thisvalue, so it is sketched in joined style to express this fact.2
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0−~ ~Figure 2: sketch of the cumulative function F (Lx)3.2 (Classical particles in a box)(a)We are considering a classical particle of mass m moving in one dimension. Thecoordinate is denoted by x, while the momentum is denoted by p. The particleis con�ned to a box, being located between x = 0 and x = L. We know, thatthe energy of the particle lies between E and E + δE and we are meant to drawthe classical phase space for the particle.We �rst have to consider the hamiltonian for the problem.
H (x, p) =

p2

2m
+ V (x)While there is only the boundary condition of x = 0 and x = L we �nd thepotential

V (x) =

{

0 0 ≤ x ≤ L

∞ other cases ⇔ V (x) =
1 − (Θ (x) − Θ (x − L))

(Θ (x) − Θ (x − L))Now we have to look at the energy of the particle, which is given with:
H (x, p) = E and H (x, p) = E + δEthe potential just gives us a condition where the particle might be, so itis between x = 0 and x = L, while other x-space isn't accessible, even if weincreased E this wouldn't be possible. This means that the x value doesn'tin�uence the energy value, while the potential is 0, as long as 0 ≤ x ≤ L, butin the other x-cases the equation cannot be full�lled, because the potential isin�nite. The T = p2

2m
component therefore will create the shape of our phasespace graph. While p2

2m
= E ⇔ ∓p =

√
E
2m

is only created by one positive
p value (and we are just looking at positive ones for the phase space) and
p2

2m
= E + δE ⇔ ∓p =

√
E+δE

2m
too, while the start and ending point in x-spacewill be x = 0 and x = L, we just get to straight lines for the energy conditionborders. The regions between E and E +δE are accessible to the particle, whileother regions are not.The sketch can be found in �g. 3. (We only sketch the positive part of thegraph, since all information needed is contained in there, for sure the impulsecan be negative too, since we got the p2 term, therfore we get with x as a mirrorplane the same bar at the −p-side). 3
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0 LFigure 3: sketch of phase space for one particle(b)This time we are considering two weakly interacting classical particle of mass
m with positions x1, x2 and momenta p1, p2 in the same box. The particles arecon�ned to the box, being located between x = 0 and x = L. We know, thatthe total energy of the system lies between E and E + δE and we are meant todraw the classical phase space for x1, x2 and p1, p2.We again have to consider the hamiltonian for the problem.

H (x1, x2, p1, p2) =
p2
1

2m
+

p2
2

2m
+ V (x1, x2)While there is only the boundary condition of x = 0 and x = L we �nd thepotential

V (x) =

{

0 0 ≤ x ≤ L

∞ other cases ⇔ V (x) =
1 − (Θ (x) − Θ (x − L))

(Θ (x) − Θ (x − L))which is equal for x = x1 and x = x2.Now we have to look at the energy of the system, which is given by:
H (x1, x2, p1, p2) = E and H (x1, x2, p1, p2) = E + δEWhile the coordinates x1 and x2 doesn't have a real dependance, since theyare only part of the potential, which only leads to a straight line, we can im-mediately draw the x1, x2-plane. The energy-condition is meant to be full�lledby the p1, p2-components, if we use the 4 dimensional space. While the �rstparticle with coordinate x1 can be between x1 = 0 and x1 = L, which also ispossible for the second particle using x2-axis, what we get is a box.The p1, p2-plane is a little bit harder, this time we got the condition

E =
p2
1

2m
+

p2
2

2m
and E + δE =

p2
1

2m
+

p2
2

2m4



which will be full�lled by various p1 and p2 combinations. It seems likelythat we will receive some part of a circle for both the conditions, resulting intoan arc of a ring for the accessible p1, p2 phase space. While we only considerpositive values, we will only see an arc of the circle. The negative values of
p would only make sense, if we would give the negative values the oppositedirection of the positive values. This can be done, but it should be enough torepresent the arc of the ring to see the phase space �gure.The sketch for the x1, x2-plane be found in �g. 4, while the sketch for the
p1, p2-plane can be found in �g. 5. (We only sketch the positive part of thegraph, since all information needed is contained in there, for sure the impulsecan be negative too, since we got the p2 term, meaning we can see half a ring).
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Figure 4: sketch of phase space for two particles, x1, x2-plane
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Figure 5: sketch of phase space for two particles, p1, p2-plane5



3.3 (Non-interacting fermions)The joint probability for �nding particle 1 at x = x1 and particle 2 at x = x2for two non-interacting spinless fermions in a one-dimensional harmonic trap is:
p (x1, x2) =

1

πx2
0

(
x2 − x1

x0

)2

exp

[

−x2
1 + x2

2

x2
0

]with x0 6= 0 the characteristic distance.(a)The sketch of the x1, x2-plane with the joint probability can be found in �g. 6.

Figure 6: sketch of the joint probability, white means maximal, while blackmeans minimal(b)To �nd the probability for �nding particle at position 1 and position x = x1, wehave to integrate the second particle over the whole space, since we don't wantthe condition of particle 2 to be at position x2 any more, particle 1 should notbe in�uenced by particle 2. We therefore get:
p (x1) =

∫ ∞

−∞

p (x1, x2) dx2 =
1

πx4
0

∫ ∞

−∞

(x2 − x1)
2 exp

[

−x2
1 + x2

2

x2
0

]

dx2We can simplify this integral into 3 easier integrals:
p (x1) =

1

πx4
0

exp

[

−x2
1

x2
0

]

·
∫ ∞

−∞

x2
2 exp

[

−x2
2

x2
0

]

dx2 (�rst)
− 2x1

πx4
0

exp

[

−x2
1

x2
0

]

·
∫ ∞

−∞

x2 exp

[

−x2
2

x2
0

]

dx2 (middle)
+

x2
1

πx4
0

exp

[

−x2
1

x2
0

]

·
∫ ∞

−∞

exp

[

−x2
2

x2
0

]

dx2 (second)6



With symmetry considerations the middle integral cancels because we inte-grate over a symmetric interval and the integrand consists of an even and anodd term. So we only have to solve the other two integrals, from which thesecond one is the easier one, while the �rst one can be brought into the secondintegrals form through partial integration. We �rst solve the second one:
∫ ∞

−∞

exp

[

− 1

x2
0

x2
2

]

dx2 =

√
∫ ∞

−∞

dx

∫ ∞

−∞

dy exp

[

− 1

x2
0

(x2 + y2)

]

=

√
∫ ∞

0

dr

∫ 2π

0

dϕ r exp

(

− 1

x2
0

r2

)

=

√

x2
0π

∫ ∞

0

du exp (−u)

=
√

x2
0π

= x0

√
πNow we use the partial integration method to reduce the �rst one to theform of the second one:

∫ ∞

−∞

x2
2 exp

[

−x2
2

x2
0

]

dx2 =

[

x ·
(

−x2
0

2
exp

[

−x2
2

x2
0

])]∞

−∞

+
x2

0

2

∫ ∞

−∞

exp

[

− 1

x2
0

x2
2

]

dx2

=
1

2
x2

0 ·
∫ ∞

−∞

exp

[

− 1

x2
0

x2
2

]

dx2

=
1

2
x2

0 · x0

√
πInserting the results for the integrals into the equation for p (x1) we receive:

p (x1) =
1

πx4
0

exp

[

−x2
1

x2
0

]

· 1

2
x3

0

√
π +

x2
1

πx4
0

exp

[

−x2
1

x2
0

]

· x0

√
π

=
1

πx4
0

exp

[

−x2
1

x2
0

]

·
(

1

2
x3

0

√
π + x2

1x0

√
π

)�nally we get:
p (x1) =

∫ ∞

−∞

p (x1, x2) dx2 =
1

2
√

πx3
0

(
x2

0 + 2x2
1

)
exp

[

−x2
1

x2
0

]While we can simply substitute x2 → x1 and get the same starting equation,we immediately see, that the probability for �nding particle 2 at the position
x = x2 is:

p (x2) =

∫ ∞

−∞

p (x1, x2) dx1 =
1

2
√

πx3
0

(
x2

0 + 2x2
2

)
exp

[

−x2
2

x2
0

]From this point we see, that the particles are statistically dependent, sincethe correlation criterium for independance:7



p (x1, x2) = p (x1) · p (x2)doesn't hold for this case, since
p (x1) · p (x2) =

1

πx2
0

(
1

2
+

x2
1

x2
0

) (
1

2
+

x2
2

x2
0

)

exp

[

−x2
1 + x2

2

x2
0

]

6= 1

πx2
0

(
x2 − x1

x0

)2

exp

[

−x2
1 + x2

2

x2
0

]

= p (x1, x2)

⇒ p (x1, x2) 6= p (x1) · p (x2)Therefore the particles are statistically dependent.(c)The conditional probability density p (x1|x2) is de�ned as:
p (x1|x2) =

p (x1, x2)

p (x2)We can use p (x2) from (b) and therefore we get:
p (x1|x2) =

1

πx2
0

(
x2−x1

x0

)2

exp
[

−x2
1+x2

2

x2
0

]

1

2
√

πx3
0

(x2
0 + 2x2

2) exp
[

−x2
2

x2
0

] =
2
√

πx3
0

(
x2−x1

x0

)2

exp
[

−x2
1+x2

2

x2
0

]

exp
[

x2
2

x2
0

]

πx2
0 (x2

0 + 2x2
2)This can be further simpli�ed to:

p (x1|x2) =
2 (x2 − x1)

2

√
πx0 (x2

0 + 2x2
2)

exp

[

−x2
1

x2
0

]The sketch of the x1, x2-plane with the conditional probability can be foundin �g. 7.3.4 (Waiting times)Each hour 12 buses and 12 cars passing by on average. The buses are scheduledand appear exactly every 5 minutes, while the cars appear at random. Theprobability that a car passes in a time interval dt is given by dt
τ

with τ =
5minutes. While we got lots of �experiments�, but only few events we can usethe poisson distribution:

p (n) =
λn

n!
e−λ =

(
dt
τ

)n

n!
e−

dt

τwith 〈n〉 = λ = dt
τ
the average appearance frequency of occurence (Auftreten-shäu�gkeit) of an event.

8



Figure 7: sketch of p (x1|x2), white means maximal, while black means minimal(a)We are meant to verify, that there is an average number of 12 cars passing inan hour. We �rst calculate the expectation value:
〈n〉 =

∞∑

n=0

np (n) =

∞∑

n=0

n
λn

n!
e−λ = λ

∞∑

n=1

λn−1

(n − 1)!
e−λ = λ

∞∑

k=0

λk

k!
e−λ

︸ ︷︷ ︸

=1

= λThe average appearance frequency of occurence of an event is given by
λ =

dt

τwe simply have to insert τ = 5minutes and dt = 1 h = 60minutes and weget:
λ =

60minutes
5minutes = 12

�(b)We have a look at a randomly chosen 10 minute time interval, this means
dt = 10minutes. The probability of Pbus (n) = pb (n) and Pcar (n) = pc (n) aremeant to be calculated, while n is the number of vehicles of the demanded typethat pass. For the probability density of the buses we can write:

pb (n) = δ2nwhere δ2n = 1 for n = 2 and 0 for any other value. This results from thefollowing thoughts.The probability for at least 2 buses to pass is:
p

b,atleast (2) = 19



meaning, that you will see 2 buses in every 10 minute interval, also we know,that the chance to see k > 3 buses in the 10 minute interval is:
pb (k) = 0So we only need to have a look at the special case, where there are 2 or3 buses, while there is only one moment in time, where you can see 3 buses.We will neglect that moment, because it should be in�nitesimal in this model.We also don't have to consider the case of just seeing 1 bus, because the timeinterval is of that choice, that we will at least see 2 of them. Using the formula

pb (n) = δ2n for the probabilty density of the buses with dt = 10minutes forsure leads to the probability table:
n pb (n)

0 0
1 0
2 1

> 2 0Now we consider the case of the cars. While we use the poisson distributionwe have:
pc (n) =

(
dt
τ

)n

n!
e−

dt

τ =
2n

n!
e−2We get the following probability table:

n pc (n)
∑

n pc (n)

0 0.135 0.135
1 0.271 0.406
2 0.271 0.677
3 0.180 0.857
4 0.090 0.947
5 0.036 0.983
6 0.012 0.995
7 0.003 0.999
8 0.001 0.9998We are now asked to calculate the mean and the variance of those distribu-tions. While the mean of pb (n) can be given at instant with

〈n〉b = 2the variance can be given with
σ2

b = 0this follows because there is just one possibility, which is n = 2 and no otherevents will occur.While the mean value and the variance are equal for a poisson distribution,which can be shown in some lines: 10



σ2 = 〈n − 〈n〉〉2

= 〈n − λ〉2

=

∞∑

n=0

(n − λ)
2 λn

n!
e−λ

=
∞∑

n=0

(
n2 − 2nλ + λ2

) λn

n!
e−λ

=

∞∑

n=0

n2 λn

n!
e−λ − 2λ2 + λ2

=

∞∑

n=0

(n (n − 1) + n)
λn

n!
e−λ − λ2

=

∞∑

n=0

n (n − 1)
λn

n!
e−λ + λ − λ2

= λ2

∞∑

n=2

λn−2

(n − 2)!
e−λ + λ − λ2

= λwhere we used the normalisation condition 1 =
∑∞

n=0
λn

n!
e−λ.We now easily get the values for pc (n):

〈n〉c =
dt

τ

=
10minutes
5minutes

= 2and the variance is also found to be σ2
c = 2.(c)We this time seek for the probability distributions Pbus (∆t) = pb (∆t) and

Pcar (∆t) = pc (∆t) for the time interval ∆t between two successive buses andcars. We presume that the �rst bus is coming, when we start our time. Thereforewe will not be able to full�ll the 2 bus condition under 5minutes, while it isfull�lled after 5minutes. We get the probability distribution:
pb (∆t) = δ (5minutes− ∆t)The mean value is:

〈∆t〉 =

∫ ∞

0

∆t pb (∆t) d∆t

=

∫ ∞

0

∆t δ (5minutes− ∆t) d∆t

= 5minutes11



and the variance:
〈
∆t2

〉
−〈∆t〉2 =

∫ ∞

−∞

(∆t)
2

δ (5minutes− ∆t) d∆t−(5minutes)2 = (25 − 25) minutes2 = 0minutes2We can now use the condition n = 0 for the poisson distribution of the carcase, while for t-dependancy the distribution turns into a continuous one:
pc (0, t) = Ne−

t

τThe reason for using n = 0 follows from the average time we have to waitbetween two events, which is exactly what we seek for, the interval between twoevents.Unluckily the distribution isn't normalised for time, that's why we insertedthe normalisation constant N , so we can calculate the normalisation with 1 =
∫ ∞

0
p (t) dt:

1

N
=

∫ ∞

0

e−
t

τ dt

= τ

⇒ N =
1

τWhile we will need the integral:
∫ ∞

0

tne−αt dtseveral times, we will get a value for this in dependance of n, while we startout with partial integration:
∫ ∞

0

tne−αt dt =

[

−tn
1

α
e−αt

]∞

0
︸ ︷︷ ︸

0

+
n

α

∫ ∞

0

tn−1e−αt dt

= 0 +
n (n − 1)

α2

∫ ∞

0

tn−2e−αtdt

. . . again n − 2 times
=

n!

αn

∫ ∞

0

dt e−αt

=
n!

αn+1
.which leeds to ∫ ∞

0

tne−αt dt =
n!

αn+1
.Which we can show really fast with induction. The induction start for n = 0 :

∫ ∞

0

dt t0e−αt =

∫ ∞

0

dt e−αt

=
1

α
=

0!

α0+1

√12



Induction step:
n → n + 1 :

n!

αn+1
→ (n + 1)!

αn+2is given by
∫ ∞

0

dt tn+1e−αt =

[

− 1

α
tn+1e−αt

]∞

0

+
n + 1

α

∫ ∞

0

dt tne−αt

︸ ︷︷ ︸

= n!

αn+1

=
(n + 1)!

αn+2

⇒
∫ ∞

0

dt tne−αt =
n!

αn+1

�The probability function with the normalisation constant then is (t in min-utes):
pc (t) =

1

τ
e−

t

τThis leads to the mean value (using ∫ ∞

0
dt tne−

t

τ = n!τn+1):
〈t〉c =

∫ ∞

0

t p (t) dt

=
1

τ

∫ ∞

0

te−
t

τ dt

=
1

τ
· τ2

= τ

= 5minutesWe get the variance:
〈
t2

〉
− 〈t〉2

∣
∣
∣
c

=
1

τ

∫ ∞

0

t2e−
t

τ dt − τ2 =
1

τ
2τ3 − τ2 = τ2 = 25minutes2.(d)We now want to have a look at the probability distribution of the time, whichanother observer who arrives at the road at a randomly chosen time has to waitfor the �rst bus to arrive. The same interest is inhabited in our minds for cars.While for the cars this is an easy task, since the person arrives at random andjust has to wait, which is pretty much the same problem like c), because he hasto wait again, as long as there is no event. Therefore we get the result:

pc (t) =
1

τ
e−

t

τ

〈t〉c = τ
〈
t2

〉
− 〈t〉2

∣
∣
∣
c

= τ213



For the buses this time we know, that the maximum waiting time, till a buswill arrive is 5minutes, while we don't know for sure, how long it really is goingto be, since the person arrives at random, we at least know, that the probabilityto arrive at any of the minutes is 1

5
. The probability distribution for the bustherefore is:

pb (t) =
1

5minutes and t ∈ [0, 5]We can calculate the mean value with:
〈t〉b =

∫ 5minutes
0minutes tpb (t, φ) dt

=

∫ 5minutes
0minutes t

1

5minutesdt

=
1

5
· 52

2
minutes

= 2.5minutesThis seems most likely for the mean value. The variance can be calculatedto be:
〈
t2

〉
− 〈t〉2

∣
∣
∣
b

=
1

5minutes ∫ 5minutes
0minutes t2dt − 25

4
minutes2

=
1

5

53

3
minutes2 − 25

4
minutes2

=
100

12
minutes2 − 75

12
minutes2

=
25

12
minutes2Therefore the bus values are:

pb (t, φ) = δ (5minutes− φ − t)

〈t〉b = 2.5minutes
〈
t2

〉
− 〈t〉2

∣
∣
∣
b

=
25

12
minutes2We can now compare the results from c) with d). While for the at randomappearing cars the waiting time for an randomly appearing observer and thewaiting time between two events is equal, the waiting time for the bus betweentwo buses is two times higher then for the observer waiting time, that is ap-pearing at random. The variance now for the buses is relevant, while in c) itdidn't have a value. This results from the randomness of the appearance of theobeserver, while before everything was well planned and known.
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