
Heiko Dumlich October 30, 20072 Task Theoretical Physics VI - Statistics2.1 (non interacting spins)The probability for a single spin to be up (q) or down (p) in a system of N spinswithout any external �eld or interaction between the spins is p = q = 0.5.(a)The probability pN (m) to have m spins up and N −m spins down is taken outof the binomial distribution:
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The alternative way uses the momentum generating function Mm (t) :=
E (exp (tm)). Where E (m) = 〈m〉 means the expectation value which is equiv-alent to the mean value. Therefore we get:
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4We now need to calculate the mean and variance for the dimensionless mag-netization, which is de�ned by M = 2m − N , which can be easily done usingthe results we already obtained:
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and the variance is:
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= N2.2 (typos in a book)We are meant to �nd how many typos where not discovered in a book, whereeditor A found 200 and editor B found 150, while the were 100 typos found byboth editors. This means:
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we can �nd the probability of the counter event with:
P (N) = P (A ∪ B) + P
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1 =
P (B) P (A)

P (A ∩ B)where 1 = P (N) = N
N
. Inserting the frequncy interpretation terms leads to:

N

N
=

NB

N
NA

N
NA∩B

Nwhich can be transformed into:
N =

NBNA

NA∩B

=
150 · 200

100
= 300We insert the total number of mistakes in the formula for the amount ofmissed typos and we �nd:

NA∪B = N − 250 = 300 − 250 = 50So the number of missed typos is 50.2.3 (probability and entropy)We use the de�nition for the entropy of a probability distribution P accordingto S = −k
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P (A ∩ B) = P (B|A) · P (A) ⇔ P (A,B) (i, j) = P (B) (j|i) · P (A) (i)with i ∈ A and j ∈ B. We are meant to calculate the entropy S = S(A,B)and the distribution P = P (A,B) (i, j),(a)assuming strongly correlated events, which means:
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0 = −k (ln (P (1)) + 1) − λ

0 = −k (ln (P (2)) + 1) − λ... ... ...
0 = −k (ln (P (N)) + 1) − λwhich can only be satis�ed for P (1) = P (2) = . . . = P (N). Therefore theuniform distribution is needed for an extremum. To proof the maximum we nowneed to have a look at the 2nd derivative:
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λ = k lnN − k2.4 (continuous random variable)(a)We are considering a particle performing a harmonic motion with x (t) = x0 sin (ωt + φ),with unknown phase φ. Our interest lies in the speed dx
dt

at x. While this is aharmonic oscillator we can use Hooks law and therefore get the DGL:
F = m

d2x

dt2
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The whole energy in the system is constant. Having a look at the position
x
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= x0 leads to the energy:
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x and the time it spends at x is inversely proportional to the speed (magnitudeof velocity) at x we can write:
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0 − x2To estimate the proportionality constant c we can use the normalisationcondition (the oscillation maximum is x0 and the minimum −x0, which resultsof the sin only giving values between 1 and −1):
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Figure 1: sketch of p (x) with x0 = 0.5 · 10−10, which is the bohr radiusTherfore the probability density is given with:
p (x) =

1

π
√

x2
0 − x2Which means, that the oscillator's probability density is independent of it'sfrequency ω (which by itself is dependent of the Hooks constant D and it's mass

m).(c)From the sketch of p (x) (�g. 1) we see the most probable value of p (x) are ±x0while x = 0 is the least probable. To get the mean value we calculate:
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= 0which seems not making much sense, till p (x) > 0 at least at some pointsand it will never be negative, so we should get a positive mean value, at leastthe sketch tells us this. But if we think about 〈x〉 to be the position of theOscillator, we know, that because of the symmetry 0 is the right answer.Just some extra stu� I had a look at:Now we want to have a look at what happens, when we have a look at 〈p (x)〉(for the case that f (p) = p (x), while 〈p〉 =
∫ x0

−x0

p f (p) dp, which for sure isn'tthe case, but while we don't have f (p) this is a �rst try):9
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[∞− (−∞)]The integral doesn't converge unluckily.
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