2 Task Theoretical Physics VI - Statistics

2.1 (non interacting spins)

The probability for a single spin to be up (q) or down (p) in a system of N spins without any external field or interaction between the spins is $p=q=0.5$.
(a)

The probability $p_{N}(m)$ to have m spins up and $N-m$ spins down is taken out of the binomial distribution:
$p_{N}(m)=\binom{N}{m} q^{m}(1-q)^{N-m}=\binom{N}{m}\left(\frac{1}{2}\right)^{m}\left(\frac{1}{2}\right)^{N-m}=\frac{N!}{(N-m)!m!}\left(\frac{1}{2}\right)^{N}$
The normalisation condition is given using the binomial formula $\sum_{m=0}^{N}\binom{N}{m} q^{m} p^{N-m}=$ $(q+p)^{N}$, with $p=(1-q):$

$$
\sum_{m=0}^{N} p_{N}(m)=\left(\frac{1}{2}+\frac{1}{2}\right)^{N}=(1)^{N}=1
$$

(b)

The mean and variance are meant to be calculated:

$$
\begin{aligned}
\langle m\rangle & =\sum_{m=0}^{N} m P_{N}(m) \\
& =\sum_{m=0}^{N} m \frac{N!}{(N-m)!m!} q^{m} p^{N-m} \\
& =N q \sum_{m=1}^{N} \frac{(N-1)!}{(N-m)!(m-1)!} q^{m-1} p^{(N-1)-(m-1)} \\
& =N q \sum_{k=0}^{N-1} \frac{(N-1)!}{(N-k-1)!k!} q^{k} p^{(N-1)-k} \\
& =N q \sum_{k=0}^{n} \frac{n!}{(n-k)!k!} q^{k} p^{n-k} \\
& =N q \sum_{k=0}^{n} P_{n}(k) \\
& =N q
\end{aligned}
$$

for our case with $q=\frac{1}{2}$ we therefore get:

$$
\langle m\rangle=\frac{N}{2}
$$

The alternative way uses the momentum generating function $M_{m}(t):=$ $E(\exp (t m))$. Where $E(m)=\langle m\rangle$ means the expectation value which is equivalent to the mean value. Therefore we get:
$M_{m}(t)=\langle\exp (t m)\rangle=\sum_{m=0}^{N}\binom{N}{m} q^{m} p^{N-m} e^{m t}=\sum_{m=0}^{N}\binom{N}{m}\left(q e^{t}\right)^{m} p^{N-m}=\left(q e^{t}+p\right)^{N}$
The mean value then is

$$
\langle m\rangle=\left.\frac{d M_{m}(t)}{d t}\right|_{t=0}=\left.N q e^{t}\left(q e^{t}+1-q\right)^{N-1}\right|_{t=0}=N q(1)^{N-1}=N q
$$

which leads to the same result:

$$
\langle m\rangle=\frac{N}{2}
$$

We know calculate the second derivative of the momentum generating function, which we will need to calculate the variance:

$$
\begin{aligned}
\left\langle m^{2}\right\rangle & =\left.\frac{d^{2} M_{m}(t)}{d t^{2}}\right|_{t=0} \\
& =N(N-1) q^{2}\left(q e^{t}+1-q\right)^{N-2}+\left.N q e^{t}\left(q e^{t}+1-q\right)^{N-1}\right|_{t=0} \\
& =N(N-1) q^{2}+N q
\end{aligned}
$$

So in our case this is:

$$
\left\langle m^{2}\right\rangle=\frac{N}{4}(N+1)
$$

With the definition of the variance:

$$
\sigma^{2}=M^{\prime \prime}(0)-\left[M^{\prime}(0)\right]^{2}
$$

we can easily calculate the variance:

$$
\begin{aligned}
\sigma^{2} & =N(N-1) q^{2}+N q-N^{2} q^{2} \\
& =N^{2} q^{2}-N q^{2}+N q-N^{2} q^{2} \\
& =N q(1-q)
\end{aligned}
$$

with $q=\frac{1}{2}$ this is in our case:

$$
\sigma^{2}=\frac{N}{4}
$$

We now need to calculate the mean and variance for the dimensionless magnetization, which is defined by $M=2 m-N$, which can be easily done using the results we already obtained:

$$
\langle M\rangle=\langle 2 m-N\rangle=2\langle m\rangle-N=2 \frac{N}{2}-N=0
$$

and the variance is:

$$
\begin{aligned}
\left\langle\Delta M^{2}\right\rangle & =\left\langle M^{2}\right\rangle-\langle M\rangle^{2} \\
& =\left\langle(2 m-N)^{2}\right\rangle-0 \\
& =\left\langle\left(4 m^{2}-4 m N+N^{2}\right)\right\rangle \\
& =4\left\langle m^{2}\right\rangle-4\langle m\rangle N+N^{2} \\
& =4 \frac{N}{4}(N+1)-4 \frac{N}{2} N+N^{2} \\
& =N
\end{aligned}
$$

2.2 (typos in a book)

We are meant to find how many typos where not discovered in a book, where editor A found 200 and editor B found 150 , while the were 100 typos found by both editors. This means:

$$
\begin{aligned}
N_{A} & =200 \\
N_{B} & =150 \\
N_{A \cap B} & =100
\end{aligned}
$$

Using the formula for the conditional probability:

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

while A and B are independent, meaning $P(B \mid A)=P(B)$ we get:

$$
P(B)=\frac{P(A \cap B)}{P(A)} \Leftrightarrow 1=\frac{P(B) P(A)}{P(A \cap B)}
$$

Now we use the frequency interpretation, which is valid for $N \gg 1$, which is fullfilled in our case:

$$
\begin{aligned}
P(A) & \approx \frac{N_{A}}{N} \\
P(B) & \approx \frac{N_{B}}{N} \\
P(A \cap B) & \approx \frac{N_{A \cap B}}{N}
\end{aligned}
$$

We also know the normalisation condition (for all mistakes N):

$$
P(N)=1=\frac{N}{N}
$$

Using the probability of all found mistakes by A and B :

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

we can find the probability of the counter event with:

$$
P(N)=P(A \cup B)+P(\overline{A \cup B}) \Leftrightarrow P(\overline{A \cup B})=1-P(A \cup B)
$$

Now inserting the terms we got from the frequency interpretation we get:
$P(\overline{A \cup B})=1-\frac{N_{A}}{N}-\frac{N_{B}}{N}+\frac{N_{A \cap B}}{N}=1-\frac{250}{N}=\frac{N_{\overline{A \cup B}}}{N} \Rightarrow N_{\overline{A \cup B}}=N-250$
Where $N_{\overline{A \cup B}}$ is the amount of missed typos. To find the total number of mistakes N we use:

$$
1=\frac{P(B) P(A)}{P(A \cap B)}
$$

where $1=P(N)=\frac{N}{N}$. Inserting the frequncy interpretation terms leads to:

$$
\frac{N}{N}=\frac{\frac{N_{B}}{N} \frac{N_{A}}{N}}{\frac{N_{A \cap B}}{N}}
$$

which can be transformed into:

$$
N=\frac{N_{B} N_{A}}{N_{A \cap B}}=\frac{150 \cdot 200}{100}=300
$$

We insert the total number of mistakes in the formula for the amount of missed typos and we find:

$$
N_{\overline{A \cup B}}=N-250=300-250=50
$$

So the number of missed typos is 50 .

2.3 (probability and entropy)

We use the definition for the entropy of a probability distribution P according to $S=-k \sum P \ln P$. The definition of joint probability is given by:

$$
P(A \cap B)=P(B \mid A) \cdot P(A) \Leftrightarrow P^{(A, B)}(i, j)=P^{(B)}(j \mid i) \cdot P^{(A)}(i)
$$

with $i \in A$ and $j \in B$. We are meant to calculate the entropy $S=S_{(A, B)}$ and the distribution $P=P^{(A, B)}(i, j)$,

(a)

assuming strongly correlated events, which means:

$$
P^{(B)}(j \mid i)=\delta_{i j}
$$

for $i, j=1,2, \ldots, n$. Inserting this into the definition of P we find:

$$
P=P^{(A, B)}(i, j)=\delta_{i j} \cdot P^{(A)}(i)=\delta_{i j} \cdot P^{(A)}(j)
$$

This can be inserted in the definition of the entropy:

$$
\begin{aligned}
S(P) & =-k \sum_{i, j=1}^{n} \delta_{i j} \cdot P^{(A)}(j) \ln \left(\delta_{i j} \cdot P^{(A)}(j)\right) \\
& =-k \sum_{i, j=1}^{n} \delta_{i j} \cdot P^{(A)}(j)\left(\ln \left(\delta_{i j}\right)+\ln \left(P^{(A)}(j)\right)\right) \\
& =-k \sum_{i, j=1}^{n} \delta_{i j} \cdot P^{(A)}(j) \ln \left(\delta_{i j}\right)-k \sum_{i, j=1}^{n} \delta_{i j} \cdot P^{(A)}(j) \ln \left(P^{(A)}(j)\right) \\
& =-k \sum_{i, j=1}^{n} \delta_{i j} \cdot P^{(A)}(j) \ln \left(\delta_{i j}\right)-k \sum_{j=1}^{n} P^{(A)}(j) \ln \left(P^{(A)}(j)\right) \\
& =-k \sum_{i, j=1}^{n} \delta_{i j} \cdot P^{(A)}(j) \ln \left(\delta_{i j}\right)+S\left(P^{(A)}\right)
\end{aligned}
$$

Having a look at the first term we see the delta function in the ln-function, which for $i=j$ gives $\delta_{i i}=1$ leading to $\ln (1)=0$. Therefore we have to have a look at the case, where $i \neq j$, where $\delta_{i j}=0$, while $\ln (0)=$?. An easy way to find out, what the result is, is using a small variation $\lim _{m \rightarrow 0}\left(-k P^{(A)}(j) m \ln (m)\right)=$?. Using the rule of L'Hospital $\left(\frac{f(x)}{g(x)}=\frac{f^{\prime}(x)}{g^{\prime}(x)}\right)$ we receive:

$$
\lim _{m \rightarrow 0}\left(\frac{-k P^{(A)}(j)}{\frac{1}{m}} \ln (m)\right)=\lim _{m \rightarrow 0}\left(k P^{(A)}(j) \frac{\frac{1}{m}}{\frac{1}{m^{2}}}\right)=\lim _{m \rightarrow 0}\left(k P^{(A)}(j) m\right)=0
$$

Therefore we can neglect the first term and for strong correlation we get the entropy:

$$
S(P)=S\left(P^{(A)}\right)
$$

Interpreting this, we see, that all events in B are events, that also lie in A. The entropy is therefore only decided by A.

(b)

assuming statistically independent events, which means:

$$
P^{(B)}(j \mid i)=P^{(B)}(j)
$$

which means:

$$
P^{(A, B)}(i, j)=P^{(B)}(j) \cdot P^{(A)}(i)
$$

Inserting this into the entropy definition we get:

$$
\begin{aligned}
S(P) & =-k \sum_{i, j=1}^{n} P^{(B)}(j) \cdot P^{(A)}(i) \ln \left(P^{(B)}(j) \cdot P^{(A)}(i)\right) \\
& =-k \sum_{i, j=1}^{n} P^{(B)}(j) \cdot P^{(A)}(i)\left(\ln \left(P^{(B)}(j)\right)+\ln \left(P^{(A)}(i)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-k \sum_{j=1}^{n} P^{(B)}(j) \ln \left(P^{(B)}(j)\right) \cdot \sum_{i=1}^{n} P^{(A)}(i) \\
& -k \sum_{i, j=1}^{n} P^{(A)}(i) \ln \left(P^{(A)}(i)\right) \cdot \sum_{j=1}^{n} P^{(B)}(j) \\
& =S\left(P^{(B)}\right) \cdot 1+S\left(P^{(A)}\right) \cdot 1
\end{aligned}
$$

This means the entropy is:

$$
S(P)=S\left(P^{(A)}\right)+S\left(P^{(B)}\right)
$$

The entropy in this case depends on A and B, resulting of the uncorrelated events.

(c)

The interpretation of the results from (a) and (b) yields the equation

$$
S(P)=S\left(P^{(A, B)}\right) \leq S\left(P^{(A)}\right)+S\left(P^{(B)}\right)
$$

which means, that the strongly correlated events yield a smaller entropy in every case then uncorrelated events, which yield the highest entropy in the case of no correlation.

(d)

To show that the entropy S of the distribution of $P=P(i)=$ const is the maximum for a uniform distribution, we have to have a look at S :

$$
S=-k \sum_{i=1}^{N} P(i) \ln (P(i))
$$

First we start out with the example, using $P(i)=\frac{1}{N}$ leads to:

$$
S=-k \sum_{i=1}^{N} \frac{1}{N} \ln \left(\frac{1}{N}\right)=-k \sum_{i=1}^{N} \frac{1}{N}(\underbrace{\ln 1}_{=0}-\ln N)=k \sum_{i=1}^{N} \frac{1}{N} \ln N
$$

If we execute the sum, we get:

$$
S=k \frac{N}{N} \ln N=k \ln N
$$

Now we have to test the maximum, where we can use our knowledge of analysis II. We use the lagrange multiplicator methode, where our boundary condition is $\sum_{i} P(i)=1$, which leads to the boundary condition function $g(P(i))=\sum_{i} P(i)-1=0$. To find the extremum we use:

$$
0=\operatorname{grad}_{P} S(P(i))-\lambda \operatorname{grad}_{P} g(P(i))
$$

which leads to:

$$
\begin{aligned}
0 & =-k(\ln (P(1))+1)-\lambda \\
0 & =-k(\ln (P(2))+1)-\lambda \\
\vdots & \vdots \\
0 & =-k(\ln (P(N))+1)-\lambda
\end{aligned}
$$

which can only be satisfied for $P(1)=P(2)=\ldots=P(N)$. Therefore the uniform distribution is needed for an extremum. To proof the maximum we now need to have a look at the 2nd derivative:

$$
\Delta_{P} S(P(i))=-k \frac{1}{P(i)}
$$

Using the boundary condition, we find:

$$
\sum_{i} P(i)=1=P(1)+\ldots+P(i)+\ldots+P(N)=N \cdot P(i) \Leftrightarrow P(i)=\frac{1}{N}
$$

with $N>0, N \in \mathbb{N}$. So the 2nd derivative is always negative with:

$$
\Delta_{P} S(P(i))=-k N
$$

indicating a maximum. We can now calculated the lagrange multiplicator λ from the above equations:

$$
\begin{aligned}
\lambda & =-k\left(\ln \left(\frac{1}{N}\right)+1\right) \\
\lambda & =k \ln N-k
\end{aligned}
$$

2.4 (continuous random variable)

(a)

We are considering a particle performing a harmonic motion with $x(t)=x_{0} \sin (\omega t+\phi)$, with unknown phase ϕ. Our interest lies in the speed $\frac{d x}{d t}$ at x. While this is a harmonic oscillator we can use Hooks law and therefore get the DGL:

$$
F=m \frac{d^{2} x}{d t^{2}}=-D x
$$

which results to be the equation of the harmonic oscillator without damping. We can solve this one inserting $x(t)$, which leads to:

$$
\omega=\sqrt{\frac{D}{m}}
$$

Now we will have a look at the hamiltonian $H=T+V=E$ with $T=$ $\frac{1}{2} m\left(\frac{d x}{d t}\right)^{2}$ and $V=\frac{D}{2} x^{2}$ which is the whole energy in the system:

$$
\begin{equation*}
H=E=\frac{1}{2} m\left(\frac{d x}{d t}\right)^{2}+\frac{D}{2} x^{2} \tag{1}
\end{equation*}
$$

The whole energy in the system is constant. Having a look at the position $x\left(t=-\frac{\phi}{\omega}\right)=x_{0}$ leads to the energy:

$$
\begin{aligned}
\left.E\right|_{x(t)=x} & =\left[\frac{1}{2} m\left(\omega x_{0} \cos (\omega t+\phi)\right)^{2}+\frac{D}{2} x_{0}^{2} \sin ^{2}(\omega t+\phi)\right]_{t=-\frac{\phi}{\omega}} \\
& =\frac{1}{2} m \omega^{2} x_{0}^{2}
\end{aligned}
$$

This leads to a velocity at x of:

$$
\begin{aligned}
\left.E\right|_{x(t)=x} & =\frac{1}{2} m\left(\frac{d x}{d t}\right)^{2}+\frac{D}{2} x^{2} \\
\frac{1}{2} m \omega^{2} x_{0}^{2} & =\frac{1}{2} m\left(\frac{d x}{d t}\right)^{2}+\frac{D}{2} x^{2} \\
\frac{d x}{d t} & =\omega \sqrt{x_{0}^{2}-x^{2}}
\end{aligned}
$$

(b)

While the probability density $p(x)$ depends on the time the oscillator spends at x and the time it spends at x is inversely proportional to the speed (magnitude of velocity) at x we can write:

$$
p(x)=c \frac{1}{\omega \sqrt{x_{0}^{2}-x^{2}}}
$$

To estimate the proportionality constant c we can use the normalisation condition (the oscillation maximum is x_{0} and the minimum $-x_{0}$, which results of the sin only giving values between 1 and -1):

$$
\begin{aligned}
\int_{-x_{0}}^{x_{0}} p(x) d x & =1 \\
\frac{1}{c} & =\frac{1}{\omega} \int_{-x_{0}}^{x_{0}} \frac{1}{\sqrt{x_{0}^{2}-x^{2}}} d x \\
\frac{1}{c} & =\frac{1}{\omega x_{0}} \int_{-x_{0}}^{x_{0}} \frac{1}{\sqrt{1-\left(\frac{x}{x_{0}}\right)^{2}}} d x
\end{aligned}
$$

Using the substitution $\sin y=\frac{x}{x_{0}}$ with $\frac{d x}{d y}=x_{0} \cos y d y$ we get:

$$
\begin{aligned}
\frac{1}{c} & =\frac{1}{\omega x_{0}} \int_{\arcsin (-1)}^{\arcsin (1)} \frac{x_{0} \cos y}{\sqrt{1-\sin y^{2}}} d y \\
\frac{1}{c} & =\frac{1}{\omega} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos y}{\cos y} d y \\
c & =\frac{\omega}{\pi}
\end{aligned}
$$

Figure 1: sketch of $p(x)$ with $x_{0}=0.5 \cdot 10^{-10}$, which is the bohr radius

Therfore the probability density is given with:

$$
p(x)=\frac{1}{\pi \sqrt{x_{0}^{2}-x^{2}}}
$$

Which means, that the oscillator's probability density is independent of it's frequency ω (which by itself is dependent of the Hooks constant D and it's mass m).
(c)

From the sketch of $p(x)$ (fig. 1) we see the most probable value of $p(x)$ are $\pm x_{0}$ while $x=0$ is the least probable. To get the mean value we calculate:

$$
\begin{aligned}
\langle x\rangle & =\int_{-x_{0}}^{x_{0}} x p(x) d x \\
& =\int_{-x_{0}}^{x_{0}} \frac{x}{\pi \sqrt{x_{0}^{2}-x^{2}}} d x \\
& =\left[-\frac{1}{\pi} \sqrt{x_{0}^{2}-x^{2}}\right]_{-x_{0}}^{x_{0}} \\
& =0
\end{aligned}
$$

which seems not making much sense, till $p(x)>0$ at least at some points and it will never be negative, so we should get a positive mean value, at least the sketch tells us this. But if we think about $\langle x\rangle$ to be the position of the Oscillator, we know, that because of the symmetry 0 is the right answer.

Just some extra stuff I had a look at:
Now we want to have a look at what happens, when we have a look at $\langle p(x)\rangle$ (for the case that $f(p)=p(x)$, while $\langle p\rangle=\int_{-x_{0}}^{x_{0}} p f(p) d p$, which for sure isn't the case, but while we don't have $f(p)$ this is a first try):

$$
\begin{aligned}
\langle p(x)\rangle & =\int_{-x_{0}}^{x_{0}}(p(x))^{2} d x \\
& =\int_{-x_{0}}^{x_{0}} \frac{1}{\pi^{2}\left(x_{0}^{2}-x^{2}\right)} d x \\
& =\frac{1}{\pi^{2} x_{0}^{2}} \int_{-x_{0}}^{x_{0}} \frac{1}{\left(1-\left(\frac{x}{x_{0}}\right)^{2}\right)} d x
\end{aligned}
$$

Using the substitution $\sin y=\frac{x}{x_{0}}$ with $\frac{d x}{d y}=x_{0} \cos y d y$ we get:

$$
\begin{aligned}
\langle p(x)\rangle & =\frac{1}{\pi^{2} x_{0}^{2}} \int_{\arcsin (-1)}^{\arcsin (1)} \frac{x_{0} \cos y}{\left(1-\sin y^{2}\right)} d y \\
& =\frac{1}{\pi^{2} x_{0}^{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{\cos y} d y \\
& =\frac{1}{\pi^{2} x_{0}}\left[2 \operatorname{arctanh}\left(\tan \left(\frac{y}{2}\right)\right)\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \\
& =\frac{1}{\pi^{2} x_{0}}[\infty-(-\infty)]
\end{aligned}
$$

The integral doesn't converge unluckily.

