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2 Task Theoretical Physics VI - Statistics

2.1 (non interacting spins)

The probability for a single spin to be up (¢) or down (p) in a system of N spins
without any external field or interaction between the spins is p = ¢ = 0.5.

(a)
The probability py (m) to have m spins up and N —m spins down is taken out
of the binomial distribution:
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The normalisation condition is given using the binomial formula ZZ:O ( N ) grpN—m =
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for our case with g = % we therefore get:



The alternative way uses the momentum generating function M, (t) =
E (exp (tm)). Where E (m) = (m) means the expectation value which is equiv-
alent to the mean value. Therefore we get:
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The mean value then is
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which leads to the same result:
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We know calculate the second derivative of the momentum generating func-
tion, which we will need to calculate the variance:
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So in our case this is:
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With the definition of the variance:
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we can easily calculate the variance:
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with ¢ = % this is in our case:

We now need to calculate the mean and variance for the dimensionless mag-
netization, which is defined by M = 2m — N, which can be easily done using
the results we already obtained:
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and the variance is:
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2.2 (typos in a book)

We are meant to find how many typos where not discovered in a book, where
editor A found 200 and editor B found 150, while the were 100 typos found by
both editors. This means:

Ny = 200
Np = 150
Nanp = 100

Using the formula for the conditional probability:

P(ANB)
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while A and B are independent, meaning P (B|A) = P (B) we get:
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Now we use the frequency interpretation, which is valid for N > 1, which is
fullfilled in our case:
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We also know the normalisation condition (for all mistakes N):

N
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Using the probability of all found mistakes by A and B:

P(AUB)=P(A)+P(B)—-P(ANB)



we can find the probability of the counter event with:

P(N)=P(AUB)+P(AUB) & P(AUB)=1-P(AUB)
Now inserting the terms we got from the frequency interpretation we get:
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Where N5z is the amount of missed typos. To find the total number of
mistakes N we use:
_P(B)P(4)
~ P(ANnB)

where 1 = P(N) = % Inserting the frequncy interpretation terms leads to:
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which can be transformed into:
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We insert the total number of mistakes in the formula for the amount of
missed typos and we find:

N4 = N —250 = 300 — 250 = 50
So the number of missed typos is 50.

2.3 (probability and entropy)

We use the definition for the entropy of a probability distribution P according
to S = —k>_ PlnP. The definition of joint probability is given by:

P(ANB)=P(BJA)-P(A) & PAPB) (i 5) = PB) (jli) - PW (i)

with i € A and j € B. We are meant to calculate the entropy S = S(4 B
and the distribution P = P45 (4, 5),

()
assuming strongly correlated events, which means:
P (jli) = &
fori,7 =1,2,...,n. Inserting this into the definition of P we find:
P = PP (i, j) = 5;; - P (i) = 6,5 - PYY ()

This can be inserted in the definition of the entropy:
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Having a look at the first term we see the delta function in the In-function,
which for i = j gives §;; = 1 leading to In (1) = 0. Therefore we have to have a
look at the case, where i # j, where ¢;; = 0, while In (0) = ?. An easy way to find
out, what the result is, is using a small variation lim,, ¢ (—kP(A) (j) mln (m)) =

?. Using the rule of L’Hospital (% = f;:g;”;) we receive:
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Therefore we can neglect the first term and for strong correlation we get the
entropy:

S(P)=58 (P<A>)

Interpreting this, we see, that all events in B are events, that also lie in A.
The entropy is therefore only decided by A.

(b)
assuming statistically independent events, which means:
B (jli)y = P ()
which means:
PUEN (i, j) = P () - P (i)

Inserting this into the entropy definition we get:

S(P) = —k Z P®) (j). PW (i)In (P<B> (j) - PO (i))
- —k Z PE) () P () (1n (P2 (7)) + 1 (P )



- —kZP(B 1n(P<B )zn:P

1

— kZP(A)(i (p(A) ) ip

i,5=1 Jj=1

- S (P<B>) 148 (P(A)) 1

This means the entropy is:
S(P)=5 (P +5(P®)

The entropy in this case depends on A and B, resulting of the uncorrelated
events.

(c)

The interpretation of the results from (a) and (b) yields the equation
S(P)=8(PA™) <5(PW) 45 (P@)
which means, that the strongly correlated events yield a smaller entropy in

every case then uncorrelated events, which yield the highest entropy in the case
of no correlation.

(d)
To show that the entropy S of the distribution of P = P (i) = const is the
maximum for a uniform distribution, we have to have a look at S:
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First we start out with the example, using P (i) = % leads to:
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If we execute the sum, we get:
N
S = kﬁln]\] =klnN
Now we have to test the maximum, where we can use our knowledge of
analysis II. We use the lagrange multiplicator methode, where our boundary

condition is ), P (i) = 1, which leads to the boundary condition function
g(P(i)) =3, P(i) —1=0. To find the extremum we use:

0= gradPS (P (i) — )\gr?a,dpg (P (4))

which leads to:
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which can only be satisfied for P (1) = P(2) = ... = P (N). Therefore the
uniform distribution is needed for an extremum. To proof the maximum we now
need to have a look at the 2nd derivative:
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Using the boundary condition, we find:
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with N > 0, N € N. So the 2nd derivative is always negative with:
ApS (P (i) = —kN

indicating a maximum. We can now calculated the lagrange multiplicator A
from the above equations:
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2.4 (continuous random variable)

(a)

We are considering a particle performing a harmonic motion with z (t) = ¢ sin (wt + ¢),
with unknown phase ¢. Our interest lies in the speed fl—f at x. While this is a
harmonic oscillator we can use Hooks law and therefore get the DGL:

d*x
F=m—=-Dx
dt?
which results to be the equation of the harmonic oscillator without damping.
We can solve this one inserting x (¢), which leads to:

D
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Now we will have a look at the hamiltonian H = T +V = E with T =

m (%)2 and V = £2? which is the whole energy in the system:
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The whole energy in the system is constant. Having a look at the position

T (t = —%) = x¢ leads to the energy:
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This leads to a velocity at z of:
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(b)

While the probability density p (z) depends on the time the oscillator spends at
z and the time it spends at x is inversely proportional to the speed (magnitude
of velocity) at © we can write:

1
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To estimate the proportionality constant ¢ we can use the normalisation
condition (the oscillation maximum is z¢ and the minimum —z, which results
of the sin only giving values between 1 and —1):
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Using the substitution siny = ;—0 with Z—; = x( cos ydy we get:
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Figure 1: sketch of p (x) with g = 0.5 - 1071°, which is the bohr radius

Therfore the probability density is given with:

T/ xg — z?

Which means, that the oscillator’s probability density is independent of it’s
frequency w (which by itself is dependent of the Hooks constant D and it’s mass
m).

(c)

From the sketch of p (z) (fig. 1) we see the most probable value of p (x) are +z¢
while z = 0 is the least probable. To get the mean value we calculate:
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which seems not making much sense, till p () > 0 at least at some points
and it will never be negative, so we should get a positive mean value, at least
the sketch tells us this. But if we think about (z) to be the position of the
Oscillator, we know, that because of the symmetry 0 is the right answer.

Just some extra stuff I had a look at:

Now we want to have a look at what happens, when we have a look at (p (z))
(for the case that f (p) = p(z), while (p) = ff;o p f (p) dp, which for sure isn’t
the case, but while we don’t have f (p) this is a first try):
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Using the substitution siny = ;—0 with Z—fj = x( cos ydy we get:
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The integral doesn’t converge unluckily.
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