Theoretical Physics VI: Statistical Physics - Theory of Heat
 Problem Set 10

due: 9. 1. 2008, 10:15 am

Happy holidays!
Please study the chapter on identical particles and second quantization in the advanced quantum mechanics book of your choice (e.g. Nolting, volume 5/2, chapter 8 or Schwabl, Advanced Quantum Mechanics, chapter 1).

Problem 10.1 Ising model in the mean field approximation
A popular model of ferromagnetism proposed by Ising assigns spins to sites of a lattice. It is given in terms of the Hamiltonian,

$$
\hat{\mathbf{H}}=-J \sum_{\langle i, j\rangle=1}^{N} \hat{\mathbf{S}}_{i} \hat{\mathbf{S}}_{j}-\mu B \sum_{i=1}^{N} \hat{\mathbf{S}}_{i},
$$

where the first sum is over nearest neighbors only, and J denotes the interaction strength. The spin operators, $\hat{\mathbf{S}}_{i}$, have eigenvalues ± 1, and B denotes an external magnetic field. In the mean-field approximation, a given spin $\hat{\mathbf{S}}_{i}$ 'feels' only the interaction with the average of the other spins, $\langle\hat{\mathbf{S}}\rangle$, and the Hamiltonian reduces to

$$
\hat{\mathbf{H}}=-\sum_{i=1}^{N} E(J, B) \hat{\mathbf{S}}_{i} \quad \text { with } \quad E(J, B)=\frac{1}{2} J \nu\langle\hat{\mathbf{S}}\rangle+\mu B,
$$

and ν the number of nearest neighbors.
(a) Calculate the partition function and the specific Gibbs free energy, $g(J, B)$, and show that

$$
\begin{equation*}
\langle\hat{\mathbf{S}}\rangle=\tanh \left(\langle\hat{\mathbf{S}}\rangle \frac{T_{c}}{T}+\beta \mu B\right) \quad \text { with } \quad T_{c}=\frac{\nu J}{2 k_{B}} . \tag{1}
\end{equation*}
$$

(b) Interpret Eq. (1) geometrically for $B=0$.
(c) Show that without any external field, the order parameter $\langle\hat{\mathbf{S}}\rangle$ has the following temperature dependences,

$$
\begin{aligned}
& \langle\hat{\mathbf{S}}\rangle \approx 1-\frac{2 T}{T_{c}} e^{-2 T_{c} / T} \quad \text { if } \quad T \sim 0 \mathrm{~K}, \\
& \langle\hat{\mathbf{S}}\rangle \approx \sqrt{3\left(1-T / T_{c}\right)} \quad \text { if } \quad T \sim T_{c} .
\end{aligned}
$$

(d) Compute the jump in the heat capacity at $T=T_{c}$.
(e) Calculate the magnetic susceptibility,

$$
\chi_{T, N}(B=0)=\left.\frac{\partial M}{\partial B}\right|_{T, N},
$$

in the neighborhood of $T=T_{c}$ for both $T>T_{c}$ and $T<T_{c}$. What is the critical exponent for both cases?

Problem 10.2 Correct counting statistics
(3 pts.)
Consider a system of three particles and three single-particle energy levels, $E_{i}=0, \epsilon, 2 \epsilon$. Calculate the partition function for
(a) bosons, (b) spin-polarized fermions, and (c) distinguishable particles.

Problem 10.3 Conservation of symmetry
Show that the time evolution operator, $\hat{\mathbf{U}}\left(t, t_{0}\right)$, commutes with any permutation operator, $\hat{\mathbf{P}}_{i j}$ for a system of identical particles. The Hamiltonian may be explicitly time-dependent.

Problem 10.4 Commutators
(4 pts.)
Derive the following commutators for the occupation number operator, creator and annihilator,

$$
\left[\hat{\mathbf{n}}_{\alpha}, \hat{\mathbf{a}}_{\beta}^{+}\right]_{-} \quad, \quad\left[\hat{\mathbf{n}}_{\alpha}, \hat{\mathbf{a}}_{\beta}\right]_{-} .
$$

Compare the results for bosons and for fermions.

