Problem Set 7

due: 5. 12. 2007, 10:15 am

Problem 7.1 Einstein theory of the heat capacity in solids (5 pts.) Consider a system of non-interacting harmonic oscillators on the sites of a lattice of N atoms. All oscillators have the same frequency ω and the energy of this system is given by

$$E = \sum_{i}^{3N} \hbar \omega n_i + \frac{3N}{2} \hbar \omega$$

with occupation numbers n_i .

(a) As a prerequisite, show in how many different ways 4 indistinguishable balls (\doteq quanta) can be distributed into 3 pots (\doteq lattice sites). Then calculate the number of states with energy E, $\Omega(E)$.

(b) Calculate the entropy, the energy and the heat capacity of the system. Compare your results to those obtained in the lecture.

Problem 7.2 Thermal noise in a circuit

(4 pts.)

(6 pts.)

Some passive electronic components (resistors, capacitors, inductors, transformers, etc.) are assembled to a circuit. Assume that the circuit contains no sources, and that it is held at temperature T.

(a) Find the probability density, p(v), that a voltage, v, will exist on a capacitor of capacitance, C. What is the root mean square voltage, $\sqrt{\langle v^2 \rangle}$, given that T = 300 K and C = 100 pF?

(b) Find the probability density, p(i), for the current, *i*, through an inductor of inductance *L*. What is the root mean square current, $\sqrt{\langle i^2 \rangle}$, given that T = 300 K and L = 1 mH?

Hint: Consider the energy stored in the capacitor, or inductor, and treat the respective component as system of interest which is immersed in a temperature reservoir (the circuit). optional: Why does this method not work for the voltage on a resistor?

Problem 7.3 Cooling and trapping of neutral atoms

A gas of N non-interacting atoms is trapped with the potential of the trap given by

$$V(r) = ar$$
 with $r = \sqrt{x^2 + y^2 + z^2}$.

The gas is in thermal equilibrium, and the temperature T is high enough such that the atoms can be treated classically.

(a) Find the single partition function Z_1 for a trapped atom. State your answer in the form $Z_1 = AT^{\alpha}a^{-\eta}$. What are A, α and η ?

(b) Find the entropy of the gas in terms of N and $Z_1 = Z_1(T, a)$.

(c) The atoms can be cooled if the potential is lowered reversibly by decreasing a while no heat exchange with the surroundings is allowed. Find T as a function of a and the initial values T_0 and a_0 . **Problem 7.4** Simple model of the heat capacity in glasses In a simple model of glasses, the particles are subject to a double well potential. At low temperatures, the double well potential can be approximated by a two-level system. Consider a system of N non-interacting particles at temperature T where particle i is in a state with energy $\pm \Delta_i$.

(a) In a first step, assume all Δ_i to be equal, i.e. $\Delta_i = \Delta$. Calculate for one particle the partition function and the mean energy, and derive the specific heat.

Note: The specific heat, C_V , is related to the heat capacity, c_V ,

$$c_V = \frac{C_V}{N} = \frac{\partial \langle E \rangle}{\partial T}.$$

(b) Now assume the available values Δ_i to be evenly distributed in an interval $[0, \Delta_0]$. Show that $C_V \propto T$ for $k_B T \ll \Delta_0$.

Hint: Consider the mean contribution of particle i to C_V . You may assume $k_B T \ll \Delta_i$, since it is the states with energies $\pm \Delta_i \gg k_B T$ which yield the largest contribution in the regime $k_BT \ll \Delta_0$. C_V can then be obtained by summing up the mean contributions and replacing the sum by an integral.

Problem 7.5 Exact differentials

Which of the following differentials is exact? For those cases, in which the differential is exact, find the function u(x, y).

(a)
$$du = \frac{-y \, dx}{x^2 + y^2} + \frac{x \, dy}{x^2 + y^2},$$

(b) $du = (y - x^2) \, dx + (x + y^2) \, dy,$
(c) $du = (2y^2 - 3x) \, dx + 4xy \, dy.$

(4 pts.)