
Theoretical Physics VI: Statistical Physics - Theory of Heat

Problem Set 6

due: 28. 11. 2007, 10:15 am

Problem 6.1 Debye theory of the heat capacity in solids: 1D (3 pts.)
The Hamiltonian of a chain of linearly coupled harmonic oscillators is given by
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Determine the orthogonal transformation X̂ which relates p̂j, ûj to the normal mode

coordinates P̂i, Q̂i. What are the frequencies ωi of the normal modes?

Problem 6.2 Debye theory of the heat capacity in solids: 3D (6 pts.)
In Debye’s theory, a solid consisting of N atoms in a lattice is modelled by coupled
harmonic oscillators. This system is most easily treated in a normal mode picture (cf.
problem 6.1).
(a) Derive the density of states for a single normal mode by considering standing waves
in a cube. Calculate the total density of states in terms of the number of atoms and the
Debye frequency.
Hint: In Debye’s theory, the sum over all degrees of freedom is approximated by an integral
over the density of states.
(b) Calculate the mean energy and the heat capacity.

Problem 6.3 Simplified polymer model (8 pts.)
Consider a polymer, i.e. a long molecule such as a protein or DNA. Since such a molecule
has many degrees of freedom, statistical mechanics can be employed to model its behavior.
Let one end of the polymer be attached to a substrate. The other end is free to move
and has a dipolar marker attached to it. A uniform electric field can be used to exert a
constant force on the marker. The polymer shall be modelled as a one-dimensional chain
of N links of length l where each link can point left or right. Two examples of the possible
configurations of the polymer are shown below for N = 20:

In reality, N should of course be much larger than 20 to allow for a statistical description.
The second dimension is added in the figure only for the sake of clarity. As indicated,
the fixed end of the chain is located at x0 = 0 while the free end is at position xN . The
energy of the polymer is given by

E = −axN ,



where a is a positive constant which is proportional to the dipole moment of the marker
and the electric field gradient. Since −Nl ≤ xN ≤ Nl, the energy is bounded −Nal ≤
E ≤ Nal.
(a) Show that the number of configurations Ω(E) for which the energy of the polymer is
between E and δE is equal to

Ω(E) =
2NδE

al
√

2πN
e−

E2

2Nl2a2

for N � 1, al � δE � E and |E| � Nal.
Hint: Use Stirling’s formula up to orders of ln(N),
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(b) Find the entropy of the polymer at energy E.
(c) Let the polymer be immersed in a solution at temperature T . Assuming thermal
equilibrium between polymer and solution, what is the average energy 〈E〉 of the polymer?
What are the fluctuations in energy?
(d) What is the force which the polymer exerts on the marker? State your answer in
terms of the polymer’s extension xN , temperature T , link length l and number of links N .

Problem 6.4 Rotating ideal gas (8 pts.)
A cubic box with infinitely hard walls of volume, V = L3, contains an ideal gas of N rigid
HCl molecules. Assume that the effective distance between the H atom and the Cl atom
is d = 1.3 Å.
(a) If L = 1.0 cm, what is the spacing between translational energy levels?
(b) Write down the partition function for this system, including translational and rota-
tional contributions. At what temperature do rotations become important?
Hint: The Hamiltonian for a rigid rotor is given by

Ĥrot =
h̄2

2µd2
L̂

2
,

where µ is the reduced mass.
(c) What are the free energy, entropy and heat capacity for this system at temperatures
where rotational degrees of freedom make an important contribution?


