Theoretical Physics VI: Statistical Physics - Theory of Heat

Problem Set 6

due: 28. 11. 2007, 10:15 am

Problem 6.1 Debye theory of the heat capacity in solids: 1D (3 pts.) The Hamiltonian of a chain of linearly coupled harmonic oscillators is given by

$$\hat{\mathbf{H}}_{1\mathrm{D}} = \sum_{j=1}^{N} \frac{\hat{\mathbf{p}}_{j}^{2}}{2m} + \frac{k}{2} \sum_{j=1}^{N-1} \left(\hat{\mathbf{u}}_{j+1} - \hat{\mathbf{u}}_{j} \right)^{2} + \frac{k}{2} \hat{\mathbf{u}}_{1}^{2} + \frac{k}{2} \hat{\mathbf{u}}_{N}^{2}$$

Determine the orthogonal transformation $\hat{\mathbf{X}}$ which relates $\hat{\mathbf{p}}_j$, $\hat{\mathbf{u}}_j$ to the normal mode coordinates $\hat{\mathbf{P}}_i$, $\hat{\mathbf{Q}}_i$. What are the frequencies ω_i of the normal modes?

Problem 6.2 Debye theory of the heat capacity in solids: 3D (6 pts.) In Debye's theory, a solid consisting of N atoms in a lattice is modelled by coupled harmonic oscillators. This system is most easily treated in a normal mode picture (cf. problem 6.1).

(a) Derive the density of states for a single normal mode by considering standing waves in a cube. Calculate the total density of states in terms of the number of atoms and the Debye frequency.

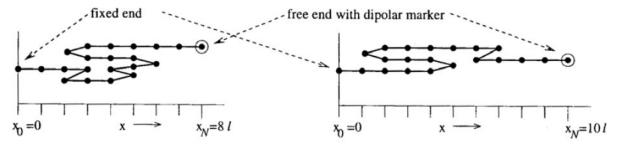
Hint: In Debye's theory, the sum over all degrees of freedom is approximated by an integral over the density of states.

(b) Calculate the mean energy and the heat capacity.

Problem 6.3 Simplified polymer model

(8 pts.)

Consider a polymer, i.e. a long molecule such as a protein or DNA. Since such a molecule has many degrees of freedom, statistical mechanics can be employed to model its behavior. Let one end of the polymer be attached to a substrate. The other end is free to move and has a dipolar marker attached to it. A uniform electric field can be used to exert a constant force on the marker. The polymer shall be modelled as a one-dimensional chain of N links of length l where each link can point left or right. Two examples of the possible configurations of the polymer are shown below for N = 20:



In reality, N should of course be much larger than 20 to allow for a statistical description. The second dimension is added in the figure only for the sake of clarity. As indicated, the fixed end of the chain is located at $x_0 = 0$ while the free end is at position x_N . The energy of the polymer is given by

$$E = -ax_N,$$

where a is a positive constant which is proportional to the dipole moment of the marker and the electric field gradient. Since $-Nl \leq x_N \leq Nl$, the energy is bounded $-Nal \leq E \leq Nal$.

(a) Show that the number of configurations $\Omega(E)$ for which the energy of the polymer is between E and δE is equal to

$$\Omega(E) = \frac{2^N \delta E}{a l \sqrt{2\pi N}} e^{-\frac{E^2}{2N l^2 a^2}}$$

for $N \gg 1$, $al \ll \delta E \ll E$ and $|E| \ll Nal$. Hint: Use Stirling's formula up to orders of $\ln(N)$,

$$\ln N! \approx N \ln N - N + \frac{1}{2} \ln(2\pi N)$$

(b) Find the entropy of the polymer at energy E.

(c) Let the polymer be immersed in a solution at temperature T. Assuming thermal equilibrium between polymer and solution, what is the average energy $\langle E \rangle$ of the polymer? What are the fluctuations in energy?

(d) What is the force which the polymer exerts on the marker? State your answer in terms of the polymer's extension x_N , temperature T, link length l and number of links N.

Problem 6.4 Rotating ideal gas

A cubic box with infinitely hard walls of volume, $V = L^3$, contains an ideal gas of N rigid HCl molecules. Assume that the effective distance between the H atom and the Cl atom is d = 1.3 Å.

(8 pts.)

(a) If L = 1.0 cm, what is the spacing between translational energy levels?

(b) Write down the partition function for this system, including translational and rotational contributions. At what temperature do rotations become important?

Hint: The Hamiltonian for a rigid rotor is given by

$$\mathbf{\hat{H}}_{rot} = \frac{\hbar^2}{2\mu d^2} \mathbf{\hat{L}}^2 \,,$$

where μ is the reduced mass.

(c) What are the free energy, entropy and heat capacity for this system at temperatures where rotational degrees of freedom make an important contribution?