Theoretical Physics VI: Statistical Physics - Theory of Heat
 Problem Set 4

due: 14. 11. 2007, 10:15 am

Problem 4.1 Spin lattice
Consider an isolated crystal lattice. An unpaired electron with spin $1 / 2$ is localized at each site of the lattice. An external magnetic field $\vec{B}=B \vec{e}_{z}$ is applied, and the spins can point either parallel or anti-parallel to the magnetic field ($s_{z, i}= \pm 1 / 2$). Therefore the states describing the system are of the form

$$
r=\left(s_{z, 1}, s_{z, 2}, \ldots, s_{z, N}\right)
$$

where N denotes the total number of lattices sites and hence the total number of spins. The energy of state r is given by

$$
E_{r}(B)=-2 \mu_{B} B \sum_{i=1}^{N} s_{z, i}
$$

(a) Calculate the energy E_{n} for n spins pointing parallel to the magnetic field. What is the number of states $\Omega_{n}\left(E_{n}\right)$ with that energy?
(b) Apply Stirling's formula

$$
M!\approx(M / e)^{M} \quad(M \gg 1)
$$

to $\Omega_{n}\left(E_{n}\right)$. You may assume $N-n \gg 1$ and $n \gg 1$. Expressing n by E (cf. part a), show that
$\ln \Omega(E, B, N)=-\frac{N}{2}\left(1-\frac{E}{N \mu_{B} B}\right) \ln \left(\frac{1}{2}-\frac{E}{2 N \mu_{B} B}\right)-\frac{N}{2}\left(1+\frac{E}{N \mu_{B} B}\right) \ln \left(\frac{1}{2}+\frac{E}{2 N \mu_{B} B}\right)$.

Problem 4.2 Mixture of ideal gases

A vessel of volume V contains a mixture of ideal gases with N_{i} particles of the kind i, $i=1, \ldots, m$. Calculate the total entropy $S\left(E, V, N_{1}, \ldots, N_{m}\right)$ and the pressure.

Problem 4.3 Ideal gas in a centrifuge
A cylindrical centrifuge with radius R and height L contains an ideal gas. The centrifuge rotates at angular frequency ω. Choosing the z-axis along the axis of the centrifuge, the dynamics of one particle is described by the Hamiltonian function

$$
H=\frac{p^{2}}{2 m}-\omega\left(x p_{y}-y p_{x}\right),
$$

where m is the mass of the particles.
(a) Show that the partition function Z_{1} for one particle of the gas is given by

$$
Z_{1}=\left(\frac{2 \pi m}{h^{2} \beta}\right)^{3 / 2} \frac{2 \pi L}{m \beta \omega^{2}}\left(e^{m \beta \omega^{2} R^{2} / 2}-1\right) .
$$

Hint: First integrate over momentum, then employ cylindrical coordinates for the spatial integrals.
(b) Calculate the partition function Z if there are N identical particles in the cylinder.
(c) Calculate the Helmholtz free energy F of the gas in the centrifuge.
(d) Calculate the pressure and the total force on the outer wall of the centrifuge.

Problem 4.4 Doppler broadening
Consider a container with a gas of atoms, each of mass m, at temperature T. The atoms emit light which passes in the x-direction through a window and hits a spectrometer. A stationary atom would emit light at the frequency ν_{0}. But, because of the Doppler effect, the frequency observed from an atom moving with velocity v_{x} is given by

$$
\nu=\nu_{0}\left(1+\frac{v_{x}}{c}\right),
$$

where c is the speed of light. Therefore the light arriving at the spectrometer is characterized by an intensity distribution $I(\nu)$. Calculate
(a) the mean frequency $\langle\nu\rangle$ of the observed light,
(b) the root mean square frequency shift $\Delta \nu=\sqrt{\left\langle(\nu-\langle\nu\rangle)^{2}\right\rangle}$,
(c) the intensity distribution $I(\nu)$ in general and for the non-relativistic case $\left(k T \ll m c^{2}\right)$.

