Theoretical Physics VI: Statistical Physics - Theory of Heat

 Problem Set 2

 Problem Set 2}
due: 31. 10. 2007, 10:15 am

Problem 2.1 Non-interacting spins
A system of N spins without any external field or interaction between the spins has equal probability for a single spin to be up or down.
(a) Write down the probability $p_{N}(m)$ of having m spins up and $N-m$ down. Show that

$$
\sum_{m=0}^{N} p_{N}(m)=1
$$

(b) Calculate the mean $\langle m\rangle$ and the variance $\sqrt{\left\langle\Delta m^{2}\right\rangle}$. The dimensionless magnetization is defined by $M=2 m-N$. Calculate its mean and variance.

Problem 2.2
Two editors proof-read a book. Editor A finds 200 typos while editor B finds only 150 typos. Of all the typos found by editors A and B, 100 were found by both editors. How many typos were not discovered?

Problem 2.3 Probability \& entropy
The entropy of a probability distribution P is defined according to $S=-k \sum P \ln P$. Given that the joint probability of two events is $P(A \cap B)=P(B \mid A) \cdot P(A)$ or

$$
P^{(A, B)}(i, j)=P^{(B)}(j \mid i) \cdot P^{(A)}(i), \quad i \in A, j \in B
$$

calculate the entropy $S=S_{(A, B)}$ of the distribution $P=P^{(A, B)}(i, j)$
(a) assuming strongly correlated events, i.e.

$$
P^{(B)}(j \mid i)=\delta_{i j} \quad i, j=1,2, \ldots, n,
$$

(b) assuming statistically independent events.
(c) Interpret these results.
(d) Show that the entropy S of the distribution $P=P(i)$ is maximum for a uniform distribution, i.e. if $P(i)=1 / N$, then $S=k \ln N$.

Problem 2.4 Continuous random variable
Consider a particle performing harmonic motion, $x(t)=x_{0} \sin (\omega t+\phi)$ where the phase ϕ is unknown. The amount of time the particle spends between x and $x+d x$ is inversely proportional to its speed (i.e. the magnitude of its velocity) at x. Thinking in terms of an ensemble of similarly prepared oscillators, the probability density $p(x)$ for finding an oscillator at x is proportional to the time this oscillator spends near x.
(a) Find the speed at x as a function of x, ω and x_{0}.
(b) Find $p(x)$.

Hint: Use normalization to find the proportionality constant.
(c) Sketch $p(x)$. What are the most probable, the least probable and the mean value of $p(x)$?

