Solid State Theory Exercise 2

Point groups and their representations

Exercise 2.1 Energy bands of almost free electrons on the fcc lattice

Let us consider almost free electrons on a face-centered cubic (fcc) lattice. The goal of this exercise is to compute the lowest energy bands along the Δ-line using degenerate perturbation theory and the machinery of the group theory. Remember that in reciprocal space, the fcc lattice transforms into a body-centered cubic (bcc) lattice. The point group of the cubic Bravais lattices (simple cubic, fcc, bcc) is denoted by O_{h} (symmetry group of a cube). Its character table is given in Tab. 1.
a) We first study the Γ point $(\vec{k}=0)$. For free electrons $(V=0)$ the lowest energy level is non-degenerate and the second one has a eight fold degeneracy. We focus on the second level and denote the eight-dimensional representation of O_{h} defined on this subspace by Γ. Find the irreducible representations contained in Γ. Compute the group character χ_{Γ} and use the character table of O_{h} to show that

$$
\begin{equation*}
\Gamma=\Gamma_{1}^{+} \oplus \Gamma_{2}^{-} \oplus \Gamma_{4}^{-} \oplus \Gamma_{5}^{+} \tag{1}
\end{equation*}
$$

O_{h}	E $[x y z]$	$C_{3}(8)$	$C_{4}^{2}(3)$	$C_{2}(6)$	$C_{4}(6)$	J	$J C_{3}(8)$	$J C_{4}^{2}(3)$	$J C_{2}(6)$	$J C_{4}(6)$
	$[z x y]$	$[\bar{x} \bar{y} z]$	$[y x \bar{z}]$	$[\bar{y} x z]$	$[\bar{x} \bar{y} \bar{z}]$	$[\bar{z} \bar{x} \bar{y}]$	$[x y \bar{z}]$	$[\bar{y} \bar{x} z]$	$[z \bar{x} \bar{z}]$	
$\chi_{\Gamma_{1}^{+}}$	1	1	1	1	1	1	1	1	1	1
$\chi_{\Gamma_{1}^{-}}$	1	1	1	1	1	-1	-1	-1	-1	-1
$\chi_{\Gamma_{2}^{+}}$	1	1	1	-1	-1	1	1	1	-1	-1
$\chi_{\Gamma_{2}^{-}}$	1	1	1	-1	-1	-1	-1	-1	1	1
$\chi_{\Gamma_{3}^{+}}$	2	-1	2	0	0	2	-1	2	0	0
$\chi_{\Gamma_{3}^{-}}$	2	-1	2	0	0	2	1	-2	0	0
$\chi_{\Gamma_{4}^{+}}$	3	0	-1	-1	1	3	0	-1	-1	1
$\chi_{\Gamma_{4}^{-}}$	3	0	-1	-1	1	-3	0	1	1	-1
$\chi_{\Gamma_{5}^{+}}$	3	0	-1	1	-1	3	0	-1	1	-1
$\chi_{\Gamma_{5}^{-}}$	3	0	-1	1	-1	-3	0	1	-1	1

Table 1: The character table of the cubic point group O_{h}.
b) A finite periodic potential will in general split the second energy level at the Γ point. Applying degenerate perturbation theory to the Bloch equation [Eq. (1.20) in the lecture notes] leads to a 8×8 matrix with off-diagonal elements $u=V_{\frac{4 \pi}{a}(1,1,1)}$, $v=V_{\frac{4 \pi}{a}(1,0,0)}$ and $w=V_{\frac{4 \pi}{a}(1,1,0)}$ (we basically follow chapter 1.3 of the lecture notes). This matrix can be diagonalized by going into the symmetry subspaces.

Show that for the energies and the wave functions one finds

$$
\begin{array}{ccc}
\Gamma_{1}^{+}: & E_{0}+u+3 v+3 w & \cos \left(\frac{2 \pi}{a} x\right) \cos \left(\frac{2 \pi}{a} y\right) \cos \left(\frac{2 \pi}{a} z\right) ; \\
\Gamma_{2}^{-}: & E_{0}-u-3 v+3 w & \sin \left(\frac{2 \pi}{a} x\right) \sin \left(\frac{2 \pi}{a} y\right) \sin \left(\frac{2 \pi}{a} z\right) ; \\
\Gamma_{4}^{-}: & E_{0}-u+v-w & \left\{\sin \left(\frac{2 \pi}{a} x\right) \cos \left(\frac{2 \pi}{a} y\right) \cos \left(\frac{2 \pi}{a} z\right), \text { cyclic }\right\} ; \tag{2}\\
\Gamma_{5}^{+}: & E_{0}+u-v-w & \left\{\cos \left(\frac{2 \pi}{a} x\right) \sin \left(\frac{2 \pi}{a} y\right) \sin \left(\frac{2 \pi}{a} z\right), \text { cyclic }\right\} ;
\end{array}
$$

where $E_{0}=\frac{\hbar^{2}}{2 m} 3\left(\frac{2 \pi}{a}\right)^{2}$.
c) How do the irreducible representations split on the Δ-line? The Δ-line is defined by the points $\vec{k}=\frac{\pi}{a}(0,0, \delta), 0 \leq \delta \leq 1$. Use the character table of $C_{4 v}$.

$C_{4 v}$	E $C_{2}(1)$	$C_{4}(2)$	$\sigma_{v}(2)$	$\sigma_{d}(2)$	
	$[x y z]$	$[\bar{x} \bar{y} z]$	$[y \bar{x} z]$	$[\bar{x} y z]$	$[y x z]$
$\chi_{\Delta_{1}}$	1	1	1	1	1
$\chi_{\Delta_{2}}$	1	1	1	-1	-1
$\chi_{\Delta_{3}}$	1	1	-1	1	-1
$\chi_{\Delta_{4}}$	1	1	-1	-1	1
$\chi_{\Delta_{5}}$	2	-2	0	0	0

Table 2: The character table of $C_{4 v}$.
d) Let us now consider the point $X=\frac{2 \pi}{a}(0,0,1)$. The lowest level is two fold and the second four fold degenerate for $V=0$. Compute the energies and the wave functions for these two levels.
e) Finally, sketch the energy bands between the Γ and the X point. For an actual numerical calculation use the values $u=-0.05, v=0.05$ and $w=0.1$ (in units of $\left.\frac{(2 \pi \hbar)^{2}}{2 m a^{2}}\right)$.

Exercise 2.2 Lifting the degeneracy of the atomic states

Determine how the energy levels of the p, d and f orbitals of an atom lift due to a crystal field with cubic symmetry. Compute the corresponding eigenstates for the d orbitals. For this, consider the homogeneous harmonic polynomials of order 2. Alternatively, have a look at the basis functions given on page 11 of the lecture notes.

