Problem 5.1 Quantum operations can only decrease distance

Given a trace-preserving quantum operation $\mathcal{E} : \mathcal{S}(\mathcal{H}) \to \mathcal{S}(\mathcal{H})$ and two states $\rho, \sigma \in \mathcal{S}(\mathcal{H})$, show that

$$\delta\left(\mathcal{E}(\sigma), \mathcal{E}(\rho)\right) \le \delta(\sigma, \rho). \tag{1}$$

What physical principle implies that this statement has to hold?

Problem 5.2 Depolarizing channel

We are given two two-dimensional Hilbert spaces \mathcal{H}_{A} and \mathcal{H}_{B} and a CPM $\mathcal{E}_{p} : \mathcal{S}(\mathcal{H}_{A}) \to \mathcal{S}(\mathcal{H}_{B})$ defined as

$$\mathcal{E}_p: \rho \mapsto \frac{p}{2}\mathbb{1} + (1-p)\rho.$$
⁽²⁾

a) Find an operator-sum representation for \mathcal{E}_p . Note that $\rho \in \mathcal{S}(\mathcal{H}_A)$ can be written in the Bloch sphere representation:

$$\rho = \frac{1}{2}(\mathbb{1} + \vec{r} \cdot \vec{X}), \quad \vec{r} \in \mathbb{R}^3, \quad \vec{r} \cdot \vec{X} = r_x X + r_y Y + r_z Z, \tag{3}$$

where X, Y and Z are Pauli matrices.

- b) What happens to the radius \vec{r} when we apply \mathcal{E}_p ? What is the physical interpretation of this?
- c) A probability distribution $P_A(0) = q$, $P_A(1) = 1 q$ can be encoded in a quantum state on \mathcal{H}_A as $\rho = q|0\rangle\langle 0|_A + (1 - q)|1\rangle\langle 1|_A$. Calculate $\mathcal{E}(\rho)$ and the conditional probabilities $P_{B|A}$ as well as P_B , which are defined accordingly on $\mathcal{H}_A \otimes \mathcal{H}_B$.
- d) Maximize the mutual information over q to find the classical channel capacity of the depolarizing channel.