Problem 4.1 Trace distance

The trace distance between two states given by density matrices $\rho, \sigma \in \mathcal{S}(\mathcal{H})$ is defined as

$$\delta(\rho, \sigma) = \frac{1}{2} \operatorname{tr} |\rho - \sigma| \,. \tag{1}$$

Alternatively we may write

$$\delta(\rho, \sigma) = \max_{P} \operatorname{tr}(P(\rho - \sigma)), \qquad (2)$$

where we maximize over all projectors P onto a subspace of \mathcal{H} .

The following lemma can be used to show the equality of the two definitions:

Lemma 1. Given two quantum states $\rho, \sigma \in S(\mathcal{H})$, there exist two positive operators $S, R \in \mathcal{P}(\mathcal{H})$ with orthogonal support such that $\rho - \sigma = R - S$.

- a) Prove Lemma 1.
- b) Show that the two definitions (1) and (2) are equal.

Problem 4.2 Trace distance of pure states

Find a simple expression for the trace distance of two pure states $\delta(|\phi\rangle, |\psi\rangle)$.

Problem 4.3 Purification

We are given a state $\rho_A \in \mathcal{S}(\mathcal{H}_A)$ and a decomposition $\rho_A = \sum_x \lambda_x \rho_A^x$ with $\lambda_x \ge 0$ and $\sum_x \lambda_x = 1$.

- a) We can always find a decomposition, such that $\rho_{\rm A}^x = |a_x\rangle \langle a_x|_{\rm A}$ is pure. Show that $|\Psi\rangle = \sum_x \sqrt{\lambda_x} |a_x\rangle_{\rm A} \otimes |b_x\rangle_{\rm B}$ is a purification for any orthonormal basis $\{|b_x\rangle_{\rm B}\}_x$ of $\mathcal{H}_{\rm B}$.
- *b) For $\rho_{\rm A}$ and any purification $|\Phi\rangle$ of $\rho_{\rm A}$ on $\mathcal{H}_{\rm A} \otimes \mathcal{H}_{\rm B}$, find a POVM $\{M_{\rm B}^x\}_x$ on $\mathcal{H}_{\rm B}$, such that

$$\lambda_x = \operatorname{tr}(|\Phi\rangle\langle\Phi|(\mathbb{1}_{\mathrm{A}}\otimes M_{\mathrm{B}}^x)) \quad \text{and} \quad \rho_{\mathrm{A}}^x = \frac{\operatorname{tr}_{\mathrm{B}}(|\Phi\rangle\langle\Phi|(\mathbb{1}_{\mathrm{A}}\otimes M_{\mathrm{B}}^x))}{\lambda_x}.$$
(3)

In this picture λ_x is the probability of measuring x and ρ_A^x is the state after such a measurement.