Problem 1.1 Trace distance

The trace distance (or L_{1}-distance) between two probability distributions P_{X} and Q_{X} over a discrete alphabet \mathcal{X} is defined as

$$
\begin{equation*}
\delta\left(P_{X}, Q_{X}\right)=\frac{1}{2} \sum_{x \in \mathcal{X}}\left|P_{X}(x)-Q_{X}(x)\right| \tag{1}
\end{equation*}
$$

The trace distance may also be written as

$$
\begin{equation*}
\delta\left(P_{X}, Q_{X}\right)=\max _{\mathcal{S} \subseteq \mathcal{X}}\left|P_{X}[\mathcal{S}]-Q_{X}[\mathcal{S}]\right| \tag{2}
\end{equation*}
$$

where we maximize over all events $S \subseteq \mathcal{X}$ and the probability of an event is given by $P_{X}[\mathcal{S}]=$ $\sum_{x \in \mathcal{S}} P_{X}(x)$.
a) Show that $\delta(\cdot, \cdot)$ is a good measure of distance by proving that $0 \leq \delta\left(P_{X}, Q_{X}\right) \leq 1$ and the triangle inequality $\delta\left(P_{X}, R_{X}\right) \leq \delta\left(P_{X}, Q_{X}\right)+\delta\left(Q_{X}, R_{X}\right)$ for arbitrary probability distributions P_{X}, Q_{X} and R_{X}.
b) Show that definitions (2) and (1) are equivalent and use (2) to give a physical interpretation of the trace distance.

Problem 1.2 Weak Law of Large Numbers

Let A be a positive random variable with expectation value $\langle A\rangle$ and let $P[A \geq \varepsilon]$ denote the probability of an event $\{A \geq \varepsilon\}$.
a) Prove Markov's inequality

$$
\begin{equation*}
P[A \geq \varepsilon] \leq \frac{\langle A\rangle}{\varepsilon} \tag{3}
\end{equation*}
$$

b) Use Markov's inequality to prove the weak law of large numbers for i.i.d. X_{i} :

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left[\left(\frac{1}{n} \sum_{i} X_{i}-\mu\right)^{2} \geq \varepsilon\right]=0 \quad \text { for any } \varepsilon>0, \mu=\left\langle X_{i}\right\rangle \tag{4}
\end{equation*}
$$

Problem 1.3 Min-Entropy

The classical min-entropy of a probability distribution P_{X} over \mathcal{X} is defined as

$$
\begin{equation*}
H_{\min }(X)=\min _{x \in \mathcal{X}} h_{x} \tag{5}
\end{equation*}
$$

where the information content of an event $\{X=x\}$ is given by $h_{x}=-\log P_{X}(x)$. The following lemma has been used in the lecture:

Lemma 1. Let $\lambda \geq 0$ and $2^{\lambda} \in \mathbb{N}$. If $H_{\min }(X) \geq \lambda$ then there exists a probability distribution P_{R} such that $P_{X}(x)=\sum_{r} P_{R}(r) P_{X \mid R=r}(x)$, where $P_{X \mid R=r}(x)$ is flat and has support of size 2^{λ}.
a) Show that $H_{\min }(X) \leq \log |\mathcal{X}|$ for any distribution P_{X} over \mathcal{X}.
*b) Prove Lemma 1.

