3 Exercise - Introduction to Group Theory

3.1 (proof)

An Abelian-group is a group where the elements commute. While the irreducible representation normally are presented in matrices and matrices normally won't commute, it seems highly likely, that only onedimensonal irreducible representation will form Abelian-groups, since those are only numbers and will commute for sure, since we turn the operation from matrix to "normal" multiplication.

To prove this, we first have to use that each symmetry operation in an Abelian group is in a class itself. Now the sum of the dimensions of the irreducible representations equals the order of the group $\left(\sum_{i} l_{i}^{2}=h\right)$, while the number of different classes is equal to the number of different irreducible representations. With the help of this knowledge taken from the theorems, we can contradict:

Each symmetry operation is in a class by itself \rightarrow The number of symmetry operations (order h of the group) equals the number of classes which equal the number of the irreducible representations. While the order is also defined by $\sum_{i} l_{i}^{2}=h$, with l_{i} the dimension of the i-th irreducible representation, the dimension of all irreducible representations has to be one.

$3.2 \quad\left(D_{3}\right.$ character table)

The list of the matrices for all irreducible representations of the group:

$$
\begin{array}{cc}
E=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad C_{3}{ }^{1}=\left(\begin{array}{ccc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right) \quad C_{3}{ }^{2}=\left(\begin{array}{ccc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right) \\
C_{2}^{\prime}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \quad C_{2}^{\prime \prime}=\left(\begin{array}{lll}
? & ? & ? \\
? & ? & ? \\
? & ? & ?
\end{array}\right) \quad C_{2}^{\prime \prime \prime}=\left(\begin{array}{lll}
? & ? & ? \\
? & ? & ? \\
? & ? & ?
\end{array}\right)
\end{array}
$$

We therefore get (with the trivial one-dimensional representation and $f\left(E, C_{3}{ }^{1}, C_{3}{ }^{2}\right)=1$ and $f\left(C_{2}^{\prime}, C_{2}^{\prime \prime}, C_{2}^{\prime \prime \prime}\right)=$ -1):

	E	$C_{3}{ }^{1}$	$C_{3}{ }^{2}$	C_{2}^{\prime}	$C_{2}^{\prime \prime \prime}$	$C_{2}^{\prime \prime \prime}$
$1^{\text {St }}$ irr. rep	1	1	1	1	1	1
$2^{\text {nd }}$ irr. rep	1	1	1	-1	-1	-1
$3^{\text {rd }}$ irr. rep	$\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$	$\left(\begin{array}{cc}-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)$	$\left(\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)$	$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$	$\left(\begin{array}{cc}? & ? \\ ? & ?\end{array}\right)$	$\left(\begin{array}{cc}? & ? \\ ? & ?\end{array}\right)$

Taking the Traces now of the $3^{\text {rd }}$ irr. reps, we get:

$$
\begin{aligned}
\operatorname{Tr}(E) & =2 \\
\operatorname{Tr}\left(C_{3}\right) & =-1 \\
\operatorname{Tr}\left(C_{2}\right) & =0
\end{aligned}
$$

Now using the foregoing and the upper table, we can get the character table of D_{3} :

D_{3}	E	$2 C_{3}(z)$	$3 C_{2}^{\prime}$
A_{1}	1	1	1
A_{2}	1	1	-1
E	2	-1	0

(We here used the knowledge of the charactertable, while we were not able to derive the other two C_{2}-matrices, we only were able to prove it for C_{2}^{\prime}, but if we would have been able to get the other matrix representations, one could be quite sure, that it would turn out this way.)

3.3 (direct products)

We first give the character table of the point group $D_{3 h}$ which we will use to calculate some direct products:

$D_{3 h}$	E	$2 C_{3}(z)$	$3 C_{2}^{\prime}$	$\sigma_{h}(x y)$	$2 S_{3}$	$3 \sigma_{v}$
A_{1}^{\prime}	1	1	1	1	1	1
A_{2}^{\prime}	1	1	-1	1	1	-1
E^{\prime}	2	-1	0	2	-1	0
$A_{1}^{\prime \prime}$	1	1	1	-1	-1	-1
$A_{2}^{\prime \prime}$	1	1	-1	-1	-1	1
$E^{\prime \prime}$	2	-1	0	-2	1	0

We start calculating:

$$
\begin{aligned}
& A_{1}^{\prime} \otimes A_{2}^{\prime}=A_{2}^{\prime} \\
& A_{2}^{\prime} \otimes E^{\prime}=E^{\prime}
\end{aligned}
$$

which can be seen immediately, since the elements of A_{1}^{\prime} all equal 1 and the elements of A_{2}^{\prime}, for which the E^{\prime} elements aren't zero, are also 1 . Now it get's harder:

$$
E^{\prime} \otimes E^{\prime \prime}=?
$$

With

	E	$2 C_{3}(z)$	$3 C_{2}^{\prime}$	$\sigma_{h}(x y)$	$2 S_{3}$	$3 \sigma_{v}$
E^{\prime}	2	-1	0	2	-1	0
$E^{\prime \prime}$	2	-1	0	-2	1	0
$E^{\prime} \otimes E^{\prime \prime}$	4	1	0	-4	-1	0

and

$$
E^{\prime \prime} \otimes E^{\prime \prime}=?
$$

	E	$2 C_{3}(z)$	$3 C_{2}^{\prime}$	$\sigma_{h}(x y)$	$2 S_{3}$	$3 \sigma_{v}$
$E^{\prime \prime}$	2	-1	0	-2	1	0
$E^{\prime \prime}$	2	-1	0	-2	1	0
$E^{\prime \prime} \otimes E^{\prime \prime}$	4	1	0	4	1	0

We now have to reduce this representations. Therefore we first have to check if the representations are reducible, therefore we check the condition for irreducible representations:

$$
\sum_{R} \chi\left[\Gamma_{i}(R)\right]^{*} \chi\left[\Gamma_{j}(R)\right]=h \delta_{i j}
$$

with $i=j$ this leads to the condition:

$$
\sum_{i} l_{i}^{2}=h
$$

with l_{i} being the dimension of the i-th irreducible representation of a group of order h. Using the character table of D_{3} we find the order of h :

$$
\sum_{i} l_{i}^{2}=1^{2}+1^{2}+2^{2}+1^{2}+1^{2}+2^{2}=12=h
$$

Therefore the representation will be reducible if $\sum_{i} l_{i}^{2}=12$.

$$
\begin{array}{ccc}
E^{\prime} \otimes E^{\prime \prime}: & 1 \cdot|4|^{2}+2 \cdot|1|^{2}+3 \cdot|0|^{2}+1 \cdot|-4|^{2}+2 \cdot|-1|^{2}+3 \cdot|0|^{2}=36>12, & \text { reducible } \\
E^{\prime \prime} \otimes E^{\prime \prime}: & 1 \cdot|4|^{2}+2 \cdot|1|^{2}+3 \cdot|0|^{2}+1 \cdot|4|^{2}+2 \cdot|1|^{2}+3 \cdot|0|^{2}=36>12, & \text { reducible }
\end{array}
$$

We can now decompose the reducible representations using the formula:

$$
m_{i}=\frac{1}{h} \sum_{i} c_{i} \chi\left[\Gamma_{i}(R)\right]^{*} \chi\left[\Gamma_{i}(R)\right]
$$

where m_{i} stands for the irreducible representations ($m_{1}=A_{1}^{\prime}, m_{2}=A_{2}^{\prime}, m_{3}=E^{\prime}, m_{4}=A_{1}^{\prime \prime}, m_{5}=$ $\left.A_{2}^{\prime \prime}, m_{6}=E^{\prime \prime}\right)$. We now decompose, starting from $E^{\prime} \otimes E^{\prime \prime}$:
$A_{1}^{\prime}=\frac{1}{12}[1 \cdot 1 \cdot 4+2 \cdot 1 \cdot 1+3 \cdot 1 \cdot 0+1 \cdot 1 \cdot(-4)+2 \cdot 1 \cdot(-1)+3 \cdot 1 \cdot 0]=\frac{1}{12}(4+2-4-2)=0$
$A_{2}^{\prime}=\frac{1}{12}[1 \cdot 1 \cdot 4+2 \cdot 1 \cdot 1+3 \cdot(-1) \cdot 0+1 \cdot 1 \cdot(-4)+2 \cdot 1 \cdot(-1)+3 \cdot(-1) \cdot 0]=\frac{1}{12}(4+2-4-2)=0$
$E^{\prime}=\frac{1}{12}[1 \cdot 2 \cdot 4+2 \cdot(-1) \cdot 1+3 \cdot 0 \cdot 0+1 \cdot 2 \cdot(-4)+2 \cdot(-1) \cdot(-1)+3 \cdot 0 \cdot 0]=\frac{1}{12}(8-2-8+2)=0$
$A_{1}^{\prime \prime}=\frac{1}{12}[1 \cdot 1 \cdot 4+2 \cdot 1 \cdot 1+3 \cdot 1 \cdot 0+1 \cdot(-1) \cdot(-4)+2 \cdot(-1) \cdot(-1)+3 \cdot(-1) \cdot 0]=\frac{1}{12}(4+2+4+2)=1$
$A_{2}^{\prime \prime}=\frac{1}{12}[1 \cdot 1 \cdot 4+2 \cdot 1 \cdot 1+3 \cdot(-1) \cdot 0+1 \cdot(-1) \cdot(-4)+2 \cdot(-1) \cdot(-1)+3 \cdot 1 \cdot 0]=\frac{1}{12}(4+2+4+2)=1$
$E^{\prime \prime}=\frac{1}{12}[1 \cdot 2 \cdot 4+2 \cdot(-1) \cdot 1+3 \cdot 0 \cdot 0+1 \cdot(-2) \cdot(-4)+2 \cdot 1 \cdot(-1)+3 \cdot 0 \cdot 0]=\frac{1}{12}(8-2+8-2)=1$
now for $E^{\prime \prime} \otimes E^{\prime \prime}$:
$A_{1}^{\prime}=\frac{1}{12}[1 \cdot 1 \cdot 4+2 \cdot 1 \cdot 1+3 \cdot 1 \cdot 0+1 \cdot 1 \cdot 4+2 \cdot 1 \cdot 1+3 \cdot 1 \cdot 0]=\frac{1}{12}(4+2+4+2)=1$
$A_{2}^{\prime}=\frac{1}{12}[1 \cdot 1 \cdot 4+2 \cdot 1 \cdot 1+3 \cdot(-1) \cdot 0+1 \cdot 1 \cdot 4+2 \cdot 1 \cdot 1+3 \cdot(-1) \cdot 0]=\frac{1}{12}(4+2+4+2)=1$

$$
\begin{aligned}
E^{\prime} & =\frac{1}{12}[1 \cdot 2 \cdot 4+2 \cdot(-1) \cdot 1+3 \cdot 0 \cdot 0+1 \cdot 2 \cdot 4+2 \cdot(-1) \cdot 1+3 \cdot 0 \cdot 0]=\frac{1}{12}(8-2+8-2)=1 \\
A_{1}^{\prime \prime} & =\frac{1}{12}[1 \cdot 1 \cdot 4+2 \cdot 1 \cdot 1+3 \cdot 1 \cdot 0+1 \cdot(-1) \cdot 4+2 \cdot(-1) \cdot 1+3 \cdot(-1) \cdot 0]=\frac{1}{12}(4+2-4-2)=0 \\
A_{2}^{\prime \prime} & =\frac{1}{12}[1 \cdot 1 \cdot 4+2 \cdot 1 \cdot 1+3 \cdot(-1) \cdot 0+1 \cdot(-1) \cdot 4+2 \cdot(-1) \cdot 1+3 \cdot 1 \cdot 0]=\frac{1}{12}(4+2-4-2)=0 \\
E^{\prime \prime} & =\frac{1}{12}[1 \cdot 2 \cdot 4+2 \cdot(-1) \cdot 1+3 \cdot 0 \cdot 0+1 \cdot(-2) \cdot 4+2 \cdot 1 \cdot 1+3 \cdot 0 \cdot 0]=\frac{1}{12}(8-2-8+2)=0
\end{aligned}
$$

This leads to

$$
\begin{aligned}
E^{\prime} \otimes E^{\prime \prime} & =A_{1}^{\prime \prime}+A_{2}^{\prime \prime}+E^{\prime \prime} \\
E^{\prime \prime} \otimes E^{\prime \prime} & =A_{1}^{\prime}+A_{2}^{\prime}+E^{\prime}
\end{aligned}
$$

