Heiko Dumlich June 30, 2008

11 Blatt - Festkörperphysik 2 - Two-photon photoemission (2PPE)

11.1 (lineare Abhängigkeit $E_{kin}(h\nu)$)

Die lineare Abhängigkeit wurde über einen Fit der Peaks ermittelt (siehe Abbildung (1)). Es ergeben sich die folgenden linearen Abhängigkeiten. Für Peak A (f(x) = ax + b)

$$a = (1.088 \pm 0.094)$$

 $b = (-0.91 \pm 0.15) \text{ eV}$

und für Peak B (g(x) = cx + d)

$$c = (4.03 \pm 0.14)$$

 $d = (-5.35 \pm 0.20) \text{ eV}$

somit erhalten wir also für die linearen Abhängigkeiten

Peak A
$$\propto 1 \cdot h\nu$$

Peak B $\propto 4 \cdot h\nu$

Es gilt die Formel für die kinetische Energie:

$$E_{kin} = E_B + n \cdot h\nu - \Phi$$

mit $\Phi=4.93\,\mathrm{eV}$ und E_B der Bindungsenergie relativ zur Fermienergie. Wobei wir unsere Fitparameter identifizieren können a,c=n und $b,d=E_B-\Phi.$

11.2 (Anfangs-, Zwischen- und Endzustand)

Im Falle des Peaks A handelt es sich um einen Zwischenzustand (liegt energetisch zwischen E_F und E_{vac}), wobei dieser zuerst mit $3 \cdot h\nu$ aus dem Valenzband populiert wird. Peak B ist ein Anfangszustand (liegt energetisch unter E_F), wobei über einen virtuellen Zwischenzustand mit $1 \cdot h\nu$, $3 \cdot h\nu$ oder $3 \cdot h\nu$, $1 \cdot h\nu$ gegangen wird.

11.3 (Energie relativ zur Fermi- und Vakuumenergie)

Die Bindungsenergie relativ zur Vakuumenergie lässt sich berechnen als:

$$E_{B,V} = b, d$$

wobei die Bindungsenergie relativ zur Fermienergie durch

$$E_{B,F} = b, d + \Phi$$

gegeben ist. Wir erhalten also somit

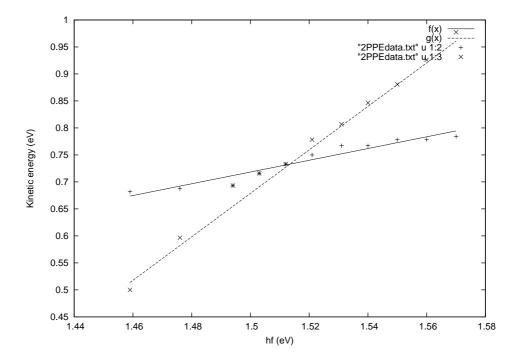


Figure 1: $E_{kin}/h\nu$ -Plot der Peaks der 2PPE-Messung

$$\begin{array}{lcl} E_{B,F,(A)} & = & (4.02 \pm 0.15) \; \mathrm{eV} \\ E_{B,F,(B)} & = & (-0.42 \pm 0.20) \; \mathrm{eV} \\ E_{B,V,(A)} & = & (-0.91 \pm 0.15) \; \mathrm{eV} \\ E_{B,V,(B)} & = & (-5.35 \pm 0.20) \; \mathrm{eV} \end{array}$$

11.4 (Oberflächenzustände)

Die experimentell bestimmten Energiewerte für die Oberflächenzustände können wir aus 11.3 entnehmen. Diese können wir vergleichen mit Werten, die wir für Shockley-, Tamm- und Rydbergzustände erhalten, um zu bestimmen, um welche Oberflächenzustände es sich handelt.

Die Rydbergzustände lassen sich berechnen über

$$E_n = E_{vac} - \frac{0.85 \,\text{eV}}{(n+a)^2}$$

mit $a = \frac{1}{2} \left(1 - \frac{\phi_c}{\pi} \right)$, was wir auf a = 1 setzen. In unserem Fall haben wir die Energie relativ zur Vakuumenergie betrachtet, d.h. wir können direkt vergleichen mit

$$E_{B,V} = -\frac{0.85 \,\text{eV}}{n^2}$$

Setzen wir n = 1 erhalten wir

$$E_{B,V} = -0.85 \,\mathrm{eV}$$

was gut mit unserer Messung von

$$E_{B,V,(A)} = (-0.91 \pm 0.15) \text{ eV}$$

übereinstimmt. Der Peak A ist daher also der Rydberzustand für n=1. Der Peak B kann nicht aus der Rydbergserie stammen, da $n \in \mathbb{N}$ und somit nur Werte $E \geq -0.85\,\mathrm{eV}$ erreicht werden können. Daher muss es sich um einen Shockley- oder Tammzustand handeln. Vergleich mit dem Vorlesungsskript (ARUPS.pdf) liefert, dass die Energie

$$E_{B,F,(B)} = (-0.42 \pm 0.20) \text{ eV}$$

einem Shockley Oberflächenzustand entsprechen muss.