Gesamtpunktzahl: 10 Punkte

 $\verb|http://www.physik.fu-berlin.de/\sim ag-fumagalli/lehre/physik2_ws0506/index.phys2.htm|$

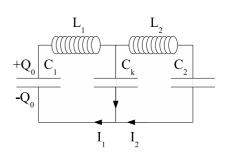
1. Gekoppelter Schwingkreis I

Die rechts abgebildete Schaltung stellt einen gekoppelten Schwingkreis dar, d.h. zwei ungedämpfte, über einen Kondensator C_k miteinander gekoppelte Schwingkreise. Zeigen Sie, dass die folgenden gekoppelten Differentialgleichungen für die Ströme gelten:

$$\left(\frac{1}{C_k} + \frac{1}{C_1}\right)I_1 + L_1\ddot{I}_1 - \frac{1}{C_k}I_2 = 0 \text{ und}$$
 (1)

$$-\frac{1}{C_k}I_1 + \left(\frac{1}{C_k} + \frac{1}{C_2}\right)I_2 + L_2\ddot{I}_2 = 0 \tag{2}$$

<u>Hinweis</u>: Definieren Sie zunächst die in der Schaltung vorkommenden Spannungen, indem Sie annehmen, dass der Kondensator C_1 bei $t = t_0$ auf Q_0 geladen und die beiden anderen ungeladen sind. Benutzen Sie die Kirchhoff'schen Regeln!



(3 Punkte)

2. Gekoppelter Schwingkreis II

Lösen Sie die in Aufgabe 1) genannten gekoppelten Differentialgleichungen mit dem Ansatz $I_i(t) = I_{i0} \cos(\omega t)$ mit i = 1, 2. Schreiben Sie das sich daraus ergebende lineare Gleichungssystem nach Kürzen der Zeitabhängigkeit in Matrixform:

$$\underline{\underline{M}}(\omega)\vec{I_0} = 0 \quad \text{mit} \quad \vec{I_0} = \begin{pmatrix} I_{10} \\ I_{20} \end{pmatrix} \quad \text{und} \quad \underline{\underline{M}}(\omega) = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}. \tag{3}$$

Diese Gleichung wird gelöst, indem die Determinante der Matrix gleich Null gesetzt wird. Daraus ergeben sich die beiden Eigenfrequenzen ω_1 und ω_2 . Diskutieren Sie die beiden Grenzfälle $C_k \to \infty$ und $C_k \to 0$ für die Eigenfrequenz.

(3 Punkte)

3. Wellengleichung

Die Wellengleichung $\left(\frac{\partial^2}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}\right) f(x,t) = 0$ wird u.a. durch eine harmonische Funktion der Form $f(x,t) = A\cos(kx - \omega t)$ gelöst. Zeigen Sie, dass die Phasengeschwindigkeit der Welle gegeben ist durch $c = \lambda \nu$, wobei $\lambda = (2\pi)/k$ und $\nu = \omega/(2\pi) = 1/T$ mit der Periodendauer T ist.

<u>Hinweis</u>: Betrachten Sie dazu die Welle einmal als Schwingung im Ort mit der Periode λ und einmal als Schwingung in der Zeit mit der Periode T und benutzen Sie die Invarianz der Funktion f bei Änderungen der Phase $\phi = kx - \omega t$ um ganzzahlige Vielfache m von 2π , d.h. $f(\phi) = f(\phi + 2\pi m)$.

(2 Punkte)

4. Laserpuls

Für Messungen in der Atmosphäre wird bei Prof. Wöste ein Laser verwendet, der Pulse von fünf Terrawatt Leistung erzeugt. Berechnen Sie, welchen Maximalfeldstärken E_0 und B_0 dies entspricht, wenn der Strahl auf einen Bereich von 1 μ m Ausdehnung fokussiert wird. Vergleichen Sie das Ergebnis mit der elektrischen Feldstärke, der ein Elektron in einem Wasserstoffatom typischerweise ausgesetzt ist, wenn es sich im Abstand von 1 Å von einem Proton befindet.

(2 Punkte)