4. Übungsblatt zur Physik III im SS 2003, Baberschke

Ausgabe: 12.05.2003

Rückgabe: 20.05.2003, 09:00 Uhr

10. Die Lebensdauer eines angeregten Zustandes in einem bestimmten Atom ist ca. 10^{-8} s. Ein Atom kann zu jeder Zeit von t=0 bis $t\to\infty$ nach der Anregung abstrahlen. Die mittlere Zeit ist jedoch 10^{-8} s. Benutzen Sie dies als die Zeit Δt bei der Emission eines Photons und berechnen Sie die minimale Frequenzunschärfe $\Delta \nu$ des Photons. Welcher Teil von ν ist dies, wenn die beteiligte Spektrallinie 5000 Å ist? (Hierdurch ist die untere Grenze der Breite einer Spektrallinie gegeben, wenn keine anderen Prozesse wie z. B. der Dopplereffekt die Linie verbreitern.)

(2 P)

11. Bestimmen Sie die Energie-Eigenwerte und Eigenfunktionen eines Teilchens der Masse m in einem endlichen Potentialtopf in einer Dimension (V=0 für $-a \le x \le a$, $V=V_0$ sonst).

 $\mathit{Hinweise} :$ Die Lösung für $V = \infty$ wurde in der Vorlesung gezeigt. Führen Sie die reduzierten Koordinaten

$$\alpha = \sqrt{\frac{2me}{\hbar^2}}$$
 und $\beta = \sqrt{\frac{2m(V_0 - E)}{\hbar^2}}$

ein und weiter $\zeta = \alpha \cdot a$, $\eta = \beta \cdot a$. Die Rechnung mit diesen Variablen führt zu einer transzendenten Gleichung in ζ und η . Die Nullstellen dieser Gleichung finden Sie graphisch und erhalten so die Energie-Eigenwerte.

(4 P)

Die Übungsblätter bitte geheftet, sowie mit Namen und Übungsgruppe versehen im Briefkasten neben Raum 1.2.40 abgeben.