| TABLE 9.1 THE THREE STATISTICAL DISTRIBUTION FUNCTIONS | | | | |---|---|---|---| | | MAXWELL-
BOLTZMANN | BOSE-EINSTEIN | FERMI-DIRAC | | Applies to systems of | Identical, distin-
guishable particles | Identical, indistinguishable particles that do not obey exclusion principle | Identical, indistinguishable particles that obey exclusion principle | | Category of particles | Classical | Bosons | Fermions | | Properties of particles | Any spin, particles far enough apart so wave functions do not overlap | Spin 0, 1, 2, ;
wave functions are
symmetric to inter-
change of particle
labels | Spin $\frac{1}{2}$, $\frac{3}{2}$, $\frac{5}{2}$,; wave functions are antisymmetric to interchange of particle labels | | Examples | Molecules of a gas | Photons in a cav-
ity; phonons in a
solid; liquid he-
lium at low tem-
peratures | Free electrons in a metal; electrons in a star whose atoms have collapsed (white dwarf stars) | | Distribution function (number of particles in each state of energy ε at the temperature T) | $f_{MB}(\varepsilon) = Ae^{-\varepsilon/kT}$ | $f_{BE}(\varepsilon) = rac{1}{\mathrm{e}^{lpha}\mathrm{e}^{\mathcal{E}/kT}-1}$ | $f_{FD}(\varepsilon) = \frac{1}{e^{(\varepsilon - \varepsilon_F)/kT} + 1}$ | | Properties of distribution | No limit to number of particles per state | No limit to number of particles per state; more particles per state than f_{MB} at low energies; approaches f_{MB} at high energies | Never more than 1 particle per state; fewer particles per state than f_{MB} at low energies; approaches f_{MB} at high energies |