Grobstruktur: Der Hamilton-Operator ist $\mathcal{H}_0 = T + V(r)$; $V(r) = -Ze^2/r$.

Eigenschaften

- a) Die Wellenfunktion ist in Radial- und Winkelanteil separierbar
- b) Die Bewegungskonstanten sind l^2 , s^2 , l_z und s_z .
- c) Die Energie ist nur von n abhängig und ist proportional zu Z²/n².
 Die Energieniveaus sind entartet hinsichtlich m_I, m_s

d) Die Auswahlregeln für elektrische Dipolstrahlung sind:

$$\Delta l = \pm 1$$
;
 $\Delta m_l = 0$, π -Polarisation;
 $\Delta m_l = \pm 1$, σ -Polarisation;

und 1.

Bemerkungen

V(r) ist ein Zentralfeld

Nach Voraussetzung haben s und 1 keine Wechselwirkung miteinander

Der Energiewert ist durch $\langle r^{-1} \rangle$ festgelegt

Physikalisch ist keine Raumrichtung ausgezeichnet

Zufällige Entartung, da V(r) die spezielle Form $V \sim r^{-1}$ hat

Die Parität ändert sich

Feinstruktur: Der Hamilton-Operator ist $\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_1 + \mathcal{H}_2$; $\mathcal{H}_1 = \xi \mathbf{s} \cdot \mathbf{l}$; $\mathcal{H}_2 = \text{andere relativistische Effekte}$

Eigenschaften

- a) $\mathcal{H}_1 = \xi \mathbf{s} \cdot \mathbf{l}$ wird als kleine Störung behandelt.
- b) Die Bewegungskonstanten sind l^2 , s^2 , j^2 und j_z , jedoch nicht l_z und s_z .

Bemerkungen

s und I haben jetzt eine Wechselwirkung miteinander.

Es wirkt ein Drehmoment auf s und 1, jedoch nicht auf i.