PHASE TRANSITIONS IN FERROMAGNETIC MONOLAYERS?

Klaus Baberschke

Institut für Experimentalphysik Freie Universität Berlin Arnimallee 14 D-14195 Berlin-Dahlem Germany

> e-mail: bab@physik.fu-berlin.de http://www.physik.fu-berlin.de/~bab

Lecture 2

- 4. Curie Weiss susceptibility, χ_{ac} measured by means of mutual inductance, MOKE, and XMCD.
- 5. How do we determine T_C and the critical exponents?
- 6. Non linear χ_{ac} , the interpretation of higher harmonics in χ_{ac} .

4. Curie - Weiss susceptibility **C**_{ac} measured by means of mutual inductance, MOKE, and XMCD.

U. Bovensiepen et al., ECOSS 17, Surf. Sci. 402-404, 396 (1998)

Freie Universität Berlin

$$\chi_{\text{loc}} \equiv \frac{\partial M}{\partial H_{\text{loc}}} \quad \text{but} \quad \chi_{\text{exp}} = \frac{\partial M}{\partial H_{\text{ext}}}$$

$$H_{\text{loc}} = H_{\text{ext}} - NM, \quad \text{with} \quad N_{\text{x}} + N_{\text{y}} + N_{z} = 1$$

$$\chi_{\text{exp}} = \frac{1}{1/\chi_{\text{loc}} + N} \quad \text{and} \quad \chi_{\text{max}} \leq 1/N.$$
For thin plates one gets:
$$N \approx \frac{\pi \text{thickness}}{4 \text{ diameter}}.$$
K. B. # 17

In many papers χ is given in arb. units, why ? Use SI-units! N gives nice information. N_{in-plane} may be $10^{-3} - 10^{-5}$, but > 0

2 peaks in the ac-susceptibility

Freie Universität Berlin

Swedish-German Summer School, Sweden 14.-19. Sept. 2008

ac MOKE and ac XMCD

JMMM, 135, L1 (1994)

Journal of Magnetism and Magnetic Materials 146 (1995) 256-266

Ac susceptibility measurements of magnetic monolayers: MCXD, MOKE, and mutual inductance

A. Aspelmeier ^a, M. Tischer ^a, M. Farle ^a, M. Russo ^a, K. Baberschke ^{a,*}, D. Arvanitis ^b

^a Institut für Experimentalphysik, Arnimallee 14, D-14195 Berlin, Germany ^b Physics Department, Uppsala University, Box 530, S-75121 Uppsala, Sweden

Received 23 September 1994; in revised form 2 December 1994

JMMM, **146**, 256 (1995)

2.1. Ac MCXD

ELSEVIER

The typical setup for the ac MCXD experiments developed by our group is shown in Fig. 1. Circularly polarized light from the SX700 beamlines at

Fig. 1. Schematic view of the ac MCXD setup. Circularly polarized light is incident at $\theta \approx 7^\circ$. The four signals $\tilde{\chi}'$, $\tilde{\chi}''$, I_0 , and T are recorded simultaneously.

Fig. 2. Calibrated χ' and χ'' as a function of temperature in the vicinity of $T_{\rm C}$. A large constant background has been subtracted from the $\chi'_{\rm MCXD}$ of the Co film and also from $\chi'_{\rm MI}$ of the Gd film. $\chi'_{\rm MI}$ was corrected for the temperature-dependent hyperbolic background due to eddy currents of the substrate.

example, the angular dependence and the saturation effect is discussed in Refs. [28,29]. The experimental $\tilde{\chi}$ is related to the real χ in SI

units [26] via $(\chi', \chi'') = (\tilde{\chi}', \tilde{\chi}'') \cdot \frac{2\sqrt{2} B(d)}{I_0 N_{\text{MCD}}^{\text{Std}}} \cdot \frac{4\pi M_{\text{sat}}}{\hat{H}}, \quad (1)$

Fig. 3. Same as Fig. 2 for 3 thicknesses. The dashed lines indicate T_c . In the inset $T_c(d)$ is plotted, this work $(\bigcirc, \bullet$ shown in Fig. 3) and previous results (\times) [12,13]. The full lines are guides to the eye.

Fig. 5. $\chi(T)$ of 250 ML Gd/W(110) measured by ac MI (lower) and ac MOKE (upper curves). The field was applied in the film plane parallel and perpendicular to a W[001] direction as indicated. The scaling of the ac MOKE signal is arbitrary. However, the origin of the ordinate axis is the true experimental zero. Note the difference in the applied field amplitudes. The Gd film had been annealed to 800 K.

Freie Universität Berlin

Oscillatory Curie Temperature in Ultrathin Ferromagnets: Experimental Evidence

VOLUME 85, NUMBER 25

PHYSICAL REVIEW LETTERS

18 DECEMBER 2000

Oscillatory Curie Temperature of Two-Dimensional Ferromagnets

M. Pajda,¹ J. Kudrnovský,^{1,2} I. Turek,³ V. Drchal,² and P. Bruno¹ ¹Max-Planck Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany ²Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague 8, Czech Republic ³Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, CZ-61662 Brno, Czech Republic (Received 27 July 2000)

The effective exchange interactions of magnetic overlayers Fe/Cu(001) and Co/Cu(001) covered by a Cu-cap layer of varying thickness were calculated in real space from first principles. The effective two-dimensional Heisenberg Hamiltonian was constructed and used to estimate magnon dispersion laws, spin-wave stiffness constants, and overlayer Curie temperatures within the mean-field and random-phase approximations. Overlayer Curie temperature oscillates as a function of the cap-layer thickness in a qualitative agreement with a recent experiment.

FIG. 3. T_c^{RPA} of Co (left) and Fe (right) overlayers on a fcc-Cu(001) substrate covered by a cap layer of varying thickness. The dashed lines represent the embedded layer limit (infinite cap thickness) while the limit of zero cap thickness corresponds to the uncovered overlayer.

PHYSICAL REVIEW B

VOLUME 61, NUMBER 2

1 JANUARY 2000-II

Dependence of the Curie temperature on the Cu cover layer in x-Cu/Fe/Cu(001) sandwiches

R. Vollmer,* S. van Dijken,[†] M. Schleberger,[‡] and J. Kirschner Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany (Received 1 June 1999)

A strong reduction of the Curie temperature T_C has been observed for room-temperature-grown fcc Fe films on Cu(001) when covered with 1 monolayer (ML) Cu for all Fe thicknesses up to the fcc-bcc transition of the Fe film at ~11 ML. At 2 ML Cu coverage this decrease of T_C partially recovers and approaches a constant lower value on further increasing Cu coverage. The correlation of this observed magnetic behavior with electronic and possible structural changes of the Fe film upon Cu coverage is discussed.

Freie Universität Berlin

Swedish-German summer sensor, swegen 17. 17. sept. 2000

ac Susceptibility of Cu_n/Co/Cu(100)

 $p = 4 \times 10^{-11} \text{ mbar}$ 17 mOe < H_{ac} < 1.6 Oe $\omega_0 = 213 \text{ Hz}$ compensation < 10 mOe

50 K < T < 650 K $\Delta T = 3\text{-}5 \text{ mK/s}$ $\Delta T/T_{\text{C}} ~ 10^{\text{-}4}$

Freie Universität Berlin

Oscillatory T_C: Experimental Evidence

C. Rüdt, A. Scherz and K. B., J. Magn. Magn. Mater. 285, 95 (2004)

Freie Universität Berlin

Origin of T_C Change: Three Different Mechanisms

Freie Universität Berlin

<u>Plausibility of oscillatory amplitude of T_C</u>

Ferromagnetic Trilayers(XMCD) $\Delta T_C \approx 100 K \Leftrightarrow J_{inter} = 50 \mu eV / atom$ (FMR)(FMR) $J_{cap} \approx 2 \mu eV / atom \Leftrightarrow \Delta T_C^{cap} \approx 4 K$ (ac susceptibility)Capped ferromagnetic monolayer Cu/Co/Cu(100)

Dramatic change in T_C due to three different mechanisms

- Change of the magnetic moment at the Cu/Co interface
- Modifications of the electronic bandstructure at the Cu capping layer
- Oscillation of T_C due to the formation of QW-states

5. How do we determine T_C and the critical exponents?

PHYSICAL REVIEW B

VOLUME 54, NUMBER 21

1 DECEMBER 1996-I

Critical behavior of the uniaxial ferromagnetic monolayer Fe(110) on W(110)

Hans-Joachim Elmers, Jens Hauschild, and Ulrich Gradmann* Physikalisches Institut, Technische Universität Clausthal, D-38678 Clausthal-Zellerfeld, Germany (Received 11 July 1996)

The critical behavior of a ferromagnetic monolayer has been investigated experimentally for the case of the thermodynamically stable pseudomorphic monolayer Fe(110) on W(110). The nearly ideal monolayer samples were composed of monolayer Fe(110) stripes, grown by step flow from the atomic steps of the W(110) substrate, with a distribution of stripe widths around a mean value of 40 nm, and virtually infinite length. The magnetic properties were measured by spin-polarized low-energy electron diffraction, which could be done in weak magnetic fields up to 2 Oe. The monolayer samples show uniaxial magnetic anisotropy with the easy axis [110] in the film plane. Magnetization tails above T_c were shown to be a result of convolution of the critical power law with the monolayer stripe width distribution. Using an appropriate deconvolution, critical power laws could be established for both magnetization M and susceptibility χ , with critical exponents $\beta = (0.134 \pm 0.003)$ and $\gamma = (2.8 \pm 0.2)$, corresponding to predictions of a two-dimensional anisotropic Heisenberg model. [S0163-1829(96)03145-1]

Freie Universität Berlin

Dimensional crossover

L.J. de Jongh and H.E. Stanley, Phys. Rev. Lett. **36**, 817 (1976)

L.J. de Jongh, Physica 82B, 247 (1976)

L.J. de Jongh and A.R. Miedema, Adv. Phys. **23**, 1 (1974)

Freie Universität Berlin

Abbildung 2.2: Simulation der temperaturabhängigen Suszeptibilität nach Glg. (2.15). Dargestellt ist die interne Suszeptibilität $\chi'_{int}(\varepsilon)$ in absoluten Einheiten als Funktion der reduzierten Temperatur für die Molekularfeldtheorie ($\gamma = 1$) und das 2D- ($\gamma = 1.75$) und 3D-Ising-Modell ($\gamma = 1.25$) mit $\chi_0^+ = 0.024$ bestimmt für (Fe₂/V₅)₅₀ (s. Kap. 5). χ_0^- ergibt sich durch Berücksichtigung des entsprechenden Amplitudenverhältnisses (Tab. 2.2).

Freie Universität Berlin

Susceptibility and critical exponent γ

Freie Universität Berlin

 $(Fe_2 / V_5)_{50}$ (001): critical behavior at T_C

Freie Universität Berlin

Forced manipulation of T_C and γ

Summary: Usually T_C and ? or ß are fitted together in a log-log plot. This is very dangerous, small changes of ~ 0.4 K can change the exponent dramatically. Exponents need to be fitted to χ_{int} (after correction for N) NOT to χ_{exp} .

Freie Universität Berlin

6. Non linear $?_{ac}$, the interpretation of higher harmonics in $?_{ac}$.

C. Rüdt et al., Phys. Rev. B 69, 014419 (2003) and ICM 2003

 $\chi_n(T) = \chi'_n(T) + i \chi''_n(T)$

$$M_n(T) = 1/\tau_0 \int_0^{\tau_0} dt \, M(T,H) \exp(i n\omega_0 t)$$

Sketch of the field-, temperature-, and timedependent magnetization M(H,T,t) subject to an oscillating magnetic field H(t). (a) and (b) represent the paramagnetic case for $T>T_C$, whereas (c) and (d) show the ferromagnetic response for $T<T_C$. The phase-shift Δt between the oscillating magnetic field H(t) and the response function M(T,t) due to hysteretic effects is indicated (d). τ_0 is the oscillation period.

Measurement of higher harmonics

Freie Universität Berlin

Time-dependent magnetizations M(t) calculated via a Fourier analysis of the measured susceptibility coefficients $\chi_n(T)$, for reduced temperatures 0.975<T/T_C<1.01. Fourier coefficients up to order n=11 have been used.

Hysteresis loops M(H) for different reduced temperatures T/T_C .

Theoretically and experimentally $M_S(T)$, normalized to unity (left axis), and $H_C(T)$ (right axis) as a function of T/T_C . $H_C(T)$ has been calculated for both a uniaxial (K₂) and a quartic (K₄) in-plane anisotropy.

${\rm M}_{\rm S}$ and ${\rm H}_{\rm C}$ close to ${\rm T}_{\rm C}$

Separation of $\mathbf{c}\mathbf{q}(\mathbf{T})=\mathbf{c}\mathbf{q}_{,\mathrm{fm}}(\mathbf{T})+\mathbf{c}\mathbf{q}_{,\mathrm{pm}}(\mathbf{T})$ into a ferromagnetic (blue) and a paramagnetic part (red).

(a) theory and (b) experiment. In (b) the para- and ferromagnetic contributions are only drawn schematically (hatched areas).

$$T_{max} < T_C$$

Temperature-dependent magnetization and susceptibility of Fe_n/V_7 superlattices

M. Pärnaste,* M. van Kampen, R. Brucas, and B. Hjörvarsson Department of Physics, Uppsala University, Box 530, 751 21 Uppsala, Sweden (Received 3 September 2004; revised manuscript received 31 January 2005; published 31 March 2005)

FIG. 2. Magnetization versus temperature for the sample with 2.3 ML of Fe. The full line is a fit using Eq. (1), resulting in T_C =84.9±0.1 K and β =0.34±0.01. The dashed line is a fit using a distribution of T_C 's, yielding T_C =84.9±0.3 K and β =0.34±0.02. T_{start} =0.95 T_C marks the start of the fitted region. The inset shows M/(dM/dT) vs T, where the straight line is a linear fit with slope $1/\beta$ (β =0.337±0.007) where the x-axis intercept marks T_C (T_C =84.9±1 K).

FIG. 3. Normalized M vs reduced temperature for all samples in the series. The magnetization curves are normalized at t=-0.05. The full and dashed lines are plots of Eq. (1) with $\beta=0.35$ and 0.23, i.e., the 3D Heisenberg model and 2D XY model, respectively.

FIG. 7. Coercive field vs temperature for the sample with 2.3 ML of Fe. The horizontal dotted lines mark the values of the applied fields used in our measurements (2.8 and 14 μ T, respectively). The vertical line marks T_C as determined from magnetization data.

Summary

•This summer school is dealing with phase transitions in nanomagnetism, that is to say, the physics close to T_C . At elevated T the ,,T = 0 language" may be inappropriate. Do not interpret your measurements in a simple MFA.

•Static exchange - and anisotropy-fields, and T=0 DOS are insufficient, spin wave excitations, spin fluctuations are important for a proper description.

•The ac-susceptibility contains very reach information, but "a conclusive analysis ...is complex" (BH et al.) . Many mistakes (incompleteness) have been published in the literature.

•Nanomagnetism is clearly important for technological applications, but it opens also a huge field to study fundamentals, which may be inaccessible in 3D bulk.