New magnetism of 3d monolayers grown with oxygen surfactant: Experiment vs. *ab initio* calculations

Klaus Baberschke

Institut für Experimentalphysik Freie Universität Berlin Arnimallee 14 D-14195 Berlin-Dahlem

Germany

- 1. Growth and structure
- 2. Magnetism and MAE
- 3. Induced magnetism at oxygen

Goal: Theory should calculate: XAS-, XMCD spectra, magnetic moments at Ni and O

 $a + \varepsilon_1 -$

Þ http://www.physik.fu-berlin.de/~ag-baberschke

Physik, FU Berlin

Acknowledgement

BESSY-crew: H. Wende, C. Sorg, N. Ponpandian, M. Bernien, (A. Scherz)Lab. experiments: K. Lenz, T.Tolinski, (J. Lindner, E. Kosubek, C. Rüdt, R. Nünthel)

Support: BMBF (BESSY), DFG (lab.)

Physik, FU Berlin

1. Growth and structure: Surfactant Activity

Known:

- Improved growth
 - R. Nünthel *et al.*, *Surf. Sci.* **531**, 53 (2003), *Surf. Sci.* **566-568**, 100 (2004).
- Shift of SRT to lower thickness J. Lindner *et al.*,

Surf. Sci. 523, L65 (2003).

Open:

- Final evidence: O on top?
- NiO?
- Influence of O on spin and orbital moments of Ni?
- Induced magnetism of O?

Physik, FU Berlin

$O(\sqrt{2} \times 2\sqrt{2})R45^{\circ}/Cu(100)$ missing row reconstruction

$c(2 \times 2)O/Ni/Cu(100)$

from AES \Rightarrow oxygen floats on top of Ni film

R. Nünthel et al., Surf. Sci. 531, 53-67 (2003)

2. Magnetic Anisotropy Energy (MAE) in ultra thin films

There are <u>only 2 origins</u> for MAE: 1) dipol-dipol interaction $\sim (\overline{\mu_1} \bullet \overline{r})(\overline{\mu_2} \bullet \overline{r})$ and 2) spin-orbit coupling ? $\overline{\mathbf{L}} \overline{\mathbf{S}}$ (intrinsic K or ΔE_{band})

For thin films the Curie temperature can be manipulated

SP-KKR calculation for rigit fcc and relaxed fct structures

Physik, FU Berlin

Experiment

- X-ray absorption via total electron yield
- NEXAFS = µ(E)
 ➡ fingerprint of the chemical bond

• XMCD =
$$\mu^+(E) - \mu^-(E)$$

 \implies magnetic information

• element-specific method

Electronic Structure and Charge Transfer

Strong angular dependence at O K edge

 \implies oxygen on top

NiO differs significantly from Ni on O/Cu

⇒ no bulk-like NiO

+ Enhanced XAS at Ni L_3 edge

 \implies charge transfer from Ni to O

Physik, FU Berlin

Interface	$K_{\rm s}$ (μ eV/atom)	d_c (ML)
Ni/vacuum	-107	10.8
Ni/Cu	-59	7.6
Ni/CO (van Dijken e	et al.) -81	7.3
Ni/H ₂ (van Dijken et	t al.) -70	6.8
Ni/O (surfactar	nt) -17	4.9

Physik, FU Berlin

results of ab initio calculations

Density of states

- DOS shows that topmost Ni moment is basically unchanged
- O-induced surface state seen in the vicinity of X-point is responsible for change in MAE
- theory reveals induced moment in surfactant oxygen ($\sim 0.26 \mu_B$)

Jisang Hong et al., Phys. Rev. Lett. 92, 147202-1 (2004)

3. Induced magnetism at oxygen NEXAFS and XMCD at O K edge

Induced magnetism in oxygen? Ni on O/Cu(100)

theory: group of H. Ebert (LMU)

Experiment & Theory I (AG Ebert)

Physik, FU Berlin

lattice constant	Ni-O distance	height	comment
3.52 (Ni)	1.855	0.586	SEXAFS Aug. 2003, Ni on O/Cu(100)
3.61 (Cu)	1.855	0.428	
3.52 (Ni)	1.97	0.885	SEXAFS, O/Ni(100) bulk,
3.61 (Cu)	1.97	0.789	Wenzel et al. PRB 36, 7689 (1987)
3.52 (Ni)	1.902	0.72	LEED, O/Ni(100) bulk,
3.61 (Cu)	1.943	0.72	K. Heinz et al., PRB 41, 10179 (1990)
3.640	1.89	0.51	Theory, T. S. Rahman in joint Surf. Sci. 531, 53
3.634	1.87	0.44	(2003), 2 different structural scenarios
3.61	1.929	0.68	Theory, AG Wu in J. Hong et al. PRL 92 , 147202 (2004)

Experiment & Theory II (R. Wu)

Physik, FU Berlin

Physik, FU Berlin

Summary

The magnetism of nanostructures is a prototype case, which shows the close collaboration between theory and experiment

Theory: H. Ebert, LMU; J.J. Rehr, UW; O. Eriksson UU; P. Weinberger, TU Vienna;R. Wu, UCI; D.L. Mills, UCI; K.H. Bennemann, FUB; W. Nolting, HUB

- magnetism changes dramatically with surfactant: surface anisotropy is strongly reduced in magnitude
- Fe, Co and Ni induce magnetic moment in surfactant
- fair agreement with *ab initio* calculations