

Magnetic anisotropy and orbital magnetism

Klaus Baberschke

Institut für Experimentalphysik Freie Universität Berlin Arnimallee 14 D-14195 Berlin-Dahlem Germany

- 1. Introduction (tutorial)
- 2. Magnetic Anisotropy Energy (MAE)
- 3. Orbital magnetic moment μ_L (which technique measures what?)

⇒ http://www.physik.fu-berlin.de/~ag-baberschke

1. Introduction

SS 1998

Übung zur Festkörperphysik II

The orbital moment is quenched in cubic symmetry

 $\langle 2- \mid \mathbf{L}_{\mathbf{Z}} \mid 2- \rangle = 0,$

but not for tetragonal symmetry

Freie Universität Berlin

20110 Ü

WE-Heraeus-Ferienkurs, Halle, 16. Sept. 2004

2

Orbital magnetism in second order perturbation theory

$\mathcal{H}' = \mu_{\rm B} \mathbf{H} \cdot \mathbf{L} + \lambda \mathbf{L} \cdot \mathbf{S}$

$$\mathcal{G}_{exp} \xrightarrow{B_2^0 \to K_2^0} K_2^0$$

$$\mathcal{H} = \sum_{i,j=1}^3 [\beta g_e(\delta_{ij} - 2\lambda\Lambda_{ij})S_iH_j - \lambda^2\Lambda_{ij}S_iS_j]$$

$$+ \text{ diamagnetic terms in } H_iH_j \qquad (3-23)$$
where Λ_{ij} is defined in relation to
states $(n > 0)$ as
$$\Lambda_{ij} = \sum_{n \neq 0} \frac{(0|L_i|n)(n|L_j|0)}{E_n - E_0} \qquad (3-24)$$

$$< 0|\mu_B H \cdot L|n > < n|\lambda L \cdot S|_0 > \qquad < 0|\lambda L \cdot S|_n > < n|\lambda L \cdot S|_0 >$$

In the principal axis system of a crystal with axial symmetry, the $\underline{\Lambda}$ tensor is diagonal with $\Lambda_{zz} = \Lambda_{\parallel}$ and $\Lambda_{xx} = \Lambda_{yy} = \Lambda_{\perp}$. Under these conditions, \mathcal{H} of (3-23) can be simplified, since

 $S_{x^{2}} + S_{y^{2}} = S(S + 1) - S_{z^{2}}$

to give

$$\mathcal{H} = g_{\parallel}\beta H_{z}S_{z} + g_{\perp}\beta(H_{x}S_{x} + H_{y}S_{y}) + D[S_{z}^{2} - \frac{1}{3}S(S+1)] \quad (3-25)$$
where
$$g_{\parallel} = g_{e}(1 - \lambda\Lambda_{\parallel})$$

$$g_{\perp} = g_{e}(1 - \lambda\Lambda_{\perp})$$

$$D = \lambda^{2}(\Lambda_{\perp} - \Lambda_{\parallel})$$

$$(3-26)$$

 $g_{\parallel} - g_{\parallel} = g_e \lambda (\Lambda_{\parallel} - \Lambda_{\parallel})$

anisotropic $\mu_L \leftrightarrow MAE$

G.E. Pake, p.66

Freie Universität Berlin

Magnetic Anisotropy Energy (MAE)

- 1. Magnetic anisotropy energy = f(T)
- 2. Anisotropic magnetic moment \neq f(T)

Characteristic energies of metallic ferromagnets

binding energy	1 - 10 eV/atom
exchange energy	10 - 10 ³ meV/atom
cubic MAE (Ni)	0.2 μeV/atom
uniaxial MAE (Co)	70 μeV/atom

 $\approx 1 \mu eV/atom$ is very small compared to

 $\approx 10 \text{ eV/atom total energy but all important}$

Spin reorientation in bulk Gd

Fig. 160. Experimental values of the anisotropy constants κ_2 , κ_4 and κ_6 versus temperature in Gadolinium. The circles (\circ for κ_2 , \bullet for κ_4) represent the data of Feron (Fig. 11 of Ref. 280), the triangles (Δ for κ_2 , \bullet for κ_4) the data of Graham (Fig. 1 of Ref. 66) and the full lines connect respectively the data of Feron and those of Graham. The dotted lines give the data of Corner *et al.* (Fig. 5 of Ref. 70 modified by Ref. 661) for κ_2 , κ_4 and κ_6 .

Gd ist not isotropic, it has K_2 , K_4 , $K_6 \neq 0$ Note also finite MAE above T_C

Freie Universität Berlin

Spin reorientation in bulk Ni und Co

Fig. 7. Temperature dependence of magnetocrystalline anisotropy constants of Ni.(a) K_1 . 1: [68 F 1], 2: [74 T 1], 3: [77 B 2], 4: [77 O 1]. Solid line: calculation [77 O 1].(b) K_1 , K_2 , and K_3 . Accuracy of data is considerably reduced near T_C : dashed lines in the insert [68 A 1].(c) K_3 . 1 and 2: [76 A 1], 3: [69 F 2], 4: [77 B 2]. Solid line is to guide the eye through confidence limits [76 A 1].

At the extremal value of K_2 a reorientation and second maximum in χ appears

FIG. 6. The variation of the initial susceptibility with temperature in nickel.

SRT for hcp Co $\sin\theta = (K_2/2K_4)^{1/2}$

Fig. 5. Temperature dependence of the angle θ between the direction of spontaneous magnetization and the *c* axis of a single crystal of hcp Co [61 B 5]. Points: data. Curve: calculated from $\sin\theta = (-K_1/2K_2)^{1/2}$.

LB III, 19a, p.45

6

Aus der Wissenschaft

Phys. BL 53 (1997)

Superstarke Magnete intermetallischer Verbindungen der Seltenerdmetalle

Leistungssteigerung durch nanokristalline Strukturen

H. Kronmüller

Abb. 3: Die Vorzugsrichtung des magnetischen Moments (*leichte Richtung*) der intermetallischen Seltenerdverbindungen hat ihre Ursache in der starren Kopplung zwischen magnetischem Moment (Pfeil) und Ladungsverteilung der 4f-Eletronen des Neodym. Bei einer Rotation des magnetischen Moments aus der c-Richtung (senkrecht) heraus dreht sich die anisotrope Ladungswolke mit. Da die Wechselwirkungsenergie zwischen 4f-Ladungswolke und Ladungswolken der benachbarten Ionen (\oplus) dabei zunimmt, wird die leichte Richtung favorisiert.

Freie Universität Berlin

Free energy density of MAE, K

(intrinsic, after substraction of $2\pi M^2$)

tetragonal [e.g. Ni, Co, Fe (001) / Cu (001)]:

$E_{tetr} = - K_2 \alpha_z^2$	$- {}^{1}/_{2} K_{4\perp} \alpha_{z}^{4} - {}^{1}/_{2} K_{4\parallel} (\alpha_{x}^{4} + \alpha_{y}^{4}) + \dots$	(B.Heinrich et al.)
= - $K_2 \cos^2 \theta$	- ${}^{1}/{}_{2} \operatorname{K}_{4\perp} \cos^{4}\theta - {}^{1}/{}_{2} \operatorname{K}_{4 } {}^{1}/{}_{4} (3 + \cos 4\phi) s$	sin ⁴ θ + (Bab et al.)
= (K ₂ + K _{4⊥}) sin ² θ	- ${}^{1}/_{2}$ (K _{4⊥} + ${}^{3}/_{4}$ K ₄) sin ⁴ θ - ${}^{1}/_{8}$ K ₄ cos4	lφ sin ⁴ θ +
= <mark>Κ₂</mark> sin²θ	+ $K_{4\perp}$ sin ⁴ θ + $K_{4\parallel}$ cos4 ϕ sin ⁴ θ +	(traditional)

hexagonal [e.g. Ni (111), Gd (0001) / W (110)]:

 $E_{hex} = k_2 \sin^2 \theta + \frac{1}{2} k_{2||} \cos 2\varphi \sin^2 \theta + k_4 \sin^4 \theta + k_{6\perp} \sin^6 \theta + k_{6||} \cos 6\varphi \sin^6 \theta + \dots$ K = k₂Y₂⁰ + k_{4m}Y₄^m + ... Legendre polyn. (B. Coqblin)

each K_i has a "volume" and "surface" contribution

 $K_{i} = K_{i}^{v} + 2K_{i}^{s}/d$

Freie Universität Berlin

2. Magnetic Anisotropy Energy (MAE) in ultra thin films

There are <u>only 2 origins</u> for MAE: 1) dipol-dipol interaction ~ $(\overline{\mu}_1 \cdot \overline{r})(\overline{\mu}_2 \cdot \overline{r})$ and 2) spin-orbit coupling $\lambda \overline{L} \overline{S}$ (intrinsic K or ΔE_{band})

Structural changes by ≈ 0.05 Å increase MAE by 2-3 orders of magnitude ($\sim 0.2 \rightarrow 100 \mu eV/atom$)

O. Hjortstam, K. B. et al. PRB **55**, 15026 ('97) R. Wu et al. JMMM **170**, 103 ('97)

FMR in ferromagnetic nanostructure

Freie Universität Berlin

Magnetic resonance (ESR, FMR)

$$\frac{\omega^2}{\gamma_{||,[100]}^2} = H_{0,[100]}^2 + H_{0,[100]} \left(4\pi M - 2\frac{K_2}{M} + \frac{4K_4||}{M} \right) + 2\frac{K_4||}{M} \left(4\pi M - 2\frac{K_2}{M} + \frac{2K_4||}{M} \right)$$

Freie Universität Berlin

For thin films the Curie temperature can be manipulated

Freie Universität Berlin

G. André et al., Surface Science **326**, 275 (1995) K. Baberschke and M. Farle, J. Appl. Phys. **81**, 5038 (1997)

Freie Universität Berlin

K is temperature dependent \Rightarrow K (T/T_C)

M. Farle et al., Surf. Sci. **439**, 146 (1999)

If d changes also $T_{C}(d)$ shifts taking this into consideration we found for all systems a 1/d dependence

Freie Universität Berlin

A. Berghaus, M. Farle, Yi Li, K. Baberschke Absolute determ. of the mag. anisotropy of ultrathin Gd and Ni/W(110).

Second Intern. Workshop on the Magnetic Properties of Low-Dimensional Systems.

San Luis Potosi, Mexico, Proc. in Physics 50, 61 (1989)

M. Farle et al., PRB 55, 3708 (1997)

Freie Universität Berlin

SP-KKR calculation for rigit fcc and relaxed fct structures

Freie Universität Berlin

Summary of Chap. 2

- Historical names like "crystalline" or "magnetoelastic" anisotropy energy should not be used in nanostructures. It is all SO interaction, or better, a fully relativistic treatment (full potential, etc.).
- Atoms at edges, steps have different K-values.
- Small changes in the local structure \sim few/100 Å may change the MAE dramatically.
- In most cases K depends on the reduced temperature $t=T/T_C(d)$.
- The experiments measure in most cases the sum of dipole and intrinsic (bandstructure) K.
- The dipole term may not be $2\pi M^2$ (see PhD thesis, Farle 1989).

3. Orbital magnetic moment μ_L

Which technique measures what?

 $\mu_L \, / \, \mu_S \,$ in UHV-FMR

μ_L , $\mu_S~$ in UHV-XMCD

 $\mu_L + \mu_S$ in UHV-SQUID

per definition:

1) spin moments are isotropic

2) also exchange coupling $\mathbf{J} \mathbf{S_1} \cdot \mathbf{S_2}$ is isotropic

3) so called anisotropic exchange is a (hidden) projection of the orbital momentum onto spin space

FMR/ESR line witdth at the phase transition

Th.v. Waldkirch, K.A. Müller, W. Berlinger, PRB (1973)

Thermodynamics of thin ferromagnetic films in ...

R.P. Erickson & D.L. Mills PRB 44, 11825 (91)

FIG. 4. Depicted are (a) the spin-wave normal modes of a trilayer, sketched at room temperature, and (b) the spin-wave "minibands" in a thick layer. Spin wave branches = $\omega_0 + \frac{1}{2}D\{k_{II}^2 + [\frac{\pi}{Nd}]^2\}$ d: spacing N: layers

"A criterion for a crossover from quasi 2D to 3D is..."

D: stiffness const.

Ni:
$$\hbar D \approx 4 \cdot 10^{-1} \text{ eV } \text{\AA}^2$$
; $d = 2.03 \text{\AA}$
T = 300 ~ 500 K \Rightarrow N_C $\approx 6 - 5$ layers

 $N_{c} = \frac{\hbar D}{kT} \cdot \frac{\pi}{d}$

Freie Universität Berlin

FMR in Fe_n/V_m superlattices

A.N. Anisimov et al., Phys. Rev. Lett. 82, 2390 (1999) A. Scherz et al., Phys. Rev. B 64, 180407(R) (2001)

2.0

1.5

bulk Fe

Ferromagnetic resonance on $Fe_n/V_m(001)$ superlattices

Freie Universität Berlin

L_{3,2} XAS and XMCD of 3d TM's

A. Scherz et al., XAFS XII June 2003 Sweden, Physica Scripta;A. Scherz et al., BESSY Highlights p. 8 (2002)

Freie Universität Berlin

X-ray Magnetic Circular Dichroism

Freie Universität Berlin

Orbital and spin magnetic moments deduced from XMCD

Freie Universität Berlin

Giant Magn. Anisotropy of Single Co Atoms and Nanoparticles

Freie Universität Berlin

Design of the UHV-SQUID magnetometer

Freie Universität Berlin

Sensitivity

Freie Universität Berlin

UHV-SQUID measurements

Theory:

Hjortstam et al., PRB **53**, 9204 (1996) Pentcheva et al., PRB **61**, 2211 (2000)

A. Ney et al. Europhys. Lett. **54**, 820 (2001)

Freie Universität Berlin

SQUID data deconvolution into spin (μ_S) and orbital (μ_L) moments

The total magnetic moment (squares) of Co/Cu(001) vs the inverse film thickness and its separation into spin (down triangle) and orbital (diamonds) contribution. The bulk value is indicated (dashed line) For comparison experimental results using PND and XMCD are given by the open symbols.

http://www.dissertation.de/PDF/an452.pdf

Freie Universität Berlin

The effect of temperature

The magnetization of Co/Cu(001) vs the inverse film thickness at different temperatures. The bulk values for 4K (full line) and 300K (dashed line) are indicated.

Deconvolution into spin (μ_S) and orbital (μ_L) moments

The total magnetic moment (squares) of Co/Cu(001) vs the inverse film thickness and its separation into spin (down triangle) and orbital (diamonds) contribution. The bulk value is indicated (dashed line). For comparison experimental results using PND and XMCD are given by the open symbols.

http://www.dissertation.de/PDF/an452.pdf

Freie Universität Berlin

Combination of MAE and $\Delta \mu_{I}$

Freie Universität Berlin

Summary of Chap. 3

- Different experiments measure different moments (μ_L and/or μ_S). Not every number is a "spin moment".
- FMR was little used, but determines unambiguously the ratio μ_L/μ_S (-if possible!).
- XMCD did use the sum rules very intensely. However, if one looks for small contributions of μ_L there are several pitfalls.
- To look at $\Delta \mu_L$ is even worse. At present there is still a mystery: if XMCD measures $\Delta \mu_L$ and calculates from this (via "Bruno formula") the MAE, it becomes in most cases to large by a factor 30.
- SQUID measures in absolute units. But how do we normalize to moments / ion ? Apparent enhanced moments appear if a fraction of the ions in a nanocluster do not contribute to the magnetization (oxidized, etc.)

Zusatz:

- 1) "magnetisches Moment"/Atom, gemessen in μ_B , ist temperaturunabhängig.
- 2) Magnetisierung M= $\Sigma \mu_i$; maximaler Wert = Sättigungsmagnetisierung M ist f(T) und verschwindet bei T_C, T_N.
- 3) μ setzt sich aus μ_L und μ_S zusammen, μ_S ist isotrop, μ_L anisotrop (nicht sphärische Ladungsverteilung, Bahndrehimpuls) in Festkörper g-Tensor.
- 4) Aus 3) resultiert MAE, (makroskopisch: Koerzitivfeldstärke).
 Es gibt (nach meiner Kenntnis) keinen isotropen Heisenberg
 Ferromagneten mindestens tritt die anisotrope Dipol-Dipol Ww. auf.
- 5) $J\overline{S}_1 \cdot \overline{S}_2$ ist isotrop, koppelt <u>nicht</u> an den Ortsraum. $(\overline{\mu}_1 \cdot \overline{r})(\overline{\mu}_2 \cdot \overline{r})$ koppelt an \overline{r} und ist in der Regel anisotrop (siehe $\overline{l} = \overline{r} \times \overline{p}$).
- *) bei sogenannten anisotropen Austausch ist \overline{l} via $\lambda \overline{l} \cdot \overline{s}$ in einem effectiven Spinraum projeziert